xref: /openbmc/linux/fs/f2fs/super.c (revision aac5987a)
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27 
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37 
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41 
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 
44 char *fault_name[FAULT_MAX] = {
45 	[FAULT_KMALLOC]		= "kmalloc",
46 	[FAULT_PAGE_ALLOC]	= "page alloc",
47 	[FAULT_ALLOC_NID]	= "alloc nid",
48 	[FAULT_ORPHAN]		= "orphan",
49 	[FAULT_BLOCK]		= "no more block",
50 	[FAULT_DIR_DEPTH]	= "too big dir depth",
51 	[FAULT_EVICT_INODE]	= "evict_inode fail",
52 	[FAULT_IO]		= "IO error",
53 	[FAULT_CHECKPOINT]	= "checkpoint error",
54 };
55 
56 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
57 						unsigned int rate)
58 {
59 	struct f2fs_fault_info *ffi = &sbi->fault_info;
60 
61 	if (rate) {
62 		atomic_set(&ffi->inject_ops, 0);
63 		ffi->inject_rate = rate;
64 		ffi->inject_type = (1 << FAULT_MAX) - 1;
65 	} else {
66 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
67 	}
68 }
69 #endif
70 
71 /* f2fs-wide shrinker description */
72 static struct shrinker f2fs_shrinker_info = {
73 	.scan_objects = f2fs_shrink_scan,
74 	.count_objects = f2fs_shrink_count,
75 	.seeks = DEFAULT_SEEKS,
76 };
77 
78 enum {
79 	Opt_gc_background,
80 	Opt_disable_roll_forward,
81 	Opt_norecovery,
82 	Opt_discard,
83 	Opt_nodiscard,
84 	Opt_noheap,
85 	Opt_user_xattr,
86 	Opt_nouser_xattr,
87 	Opt_acl,
88 	Opt_noacl,
89 	Opt_active_logs,
90 	Opt_disable_ext_identify,
91 	Opt_inline_xattr,
92 	Opt_noinline_xattr,
93 	Opt_inline_data,
94 	Opt_inline_dentry,
95 	Opt_noinline_dentry,
96 	Opt_flush_merge,
97 	Opt_noflush_merge,
98 	Opt_nobarrier,
99 	Opt_fastboot,
100 	Opt_extent_cache,
101 	Opt_noextent_cache,
102 	Opt_noinline_data,
103 	Opt_data_flush,
104 	Opt_mode,
105 	Opt_io_size_bits,
106 	Opt_fault_injection,
107 	Opt_lazytime,
108 	Opt_nolazytime,
109 	Opt_err,
110 };
111 
112 static match_table_t f2fs_tokens = {
113 	{Opt_gc_background, "background_gc=%s"},
114 	{Opt_disable_roll_forward, "disable_roll_forward"},
115 	{Opt_norecovery, "norecovery"},
116 	{Opt_discard, "discard"},
117 	{Opt_nodiscard, "nodiscard"},
118 	{Opt_noheap, "no_heap"},
119 	{Opt_user_xattr, "user_xattr"},
120 	{Opt_nouser_xattr, "nouser_xattr"},
121 	{Opt_acl, "acl"},
122 	{Opt_noacl, "noacl"},
123 	{Opt_active_logs, "active_logs=%u"},
124 	{Opt_disable_ext_identify, "disable_ext_identify"},
125 	{Opt_inline_xattr, "inline_xattr"},
126 	{Opt_noinline_xattr, "noinline_xattr"},
127 	{Opt_inline_data, "inline_data"},
128 	{Opt_inline_dentry, "inline_dentry"},
129 	{Opt_noinline_dentry, "noinline_dentry"},
130 	{Opt_flush_merge, "flush_merge"},
131 	{Opt_noflush_merge, "noflush_merge"},
132 	{Opt_nobarrier, "nobarrier"},
133 	{Opt_fastboot, "fastboot"},
134 	{Opt_extent_cache, "extent_cache"},
135 	{Opt_noextent_cache, "noextent_cache"},
136 	{Opt_noinline_data, "noinline_data"},
137 	{Opt_data_flush, "data_flush"},
138 	{Opt_mode, "mode=%s"},
139 	{Opt_io_size_bits, "io_bits=%u"},
140 	{Opt_fault_injection, "fault_injection=%u"},
141 	{Opt_lazytime, "lazytime"},
142 	{Opt_nolazytime, "nolazytime"},
143 	{Opt_err, NULL},
144 };
145 
146 /* Sysfs support for f2fs */
147 enum {
148 	GC_THREAD,	/* struct f2fs_gc_thread */
149 	SM_INFO,	/* struct f2fs_sm_info */
150 	DCC_INFO,	/* struct discard_cmd_control */
151 	NM_INFO,	/* struct f2fs_nm_info */
152 	F2FS_SBI,	/* struct f2fs_sb_info */
153 #ifdef CONFIG_F2FS_FAULT_INJECTION
154 	FAULT_INFO_RATE,	/* struct f2fs_fault_info */
155 	FAULT_INFO_TYPE,	/* struct f2fs_fault_info */
156 #endif
157 };
158 
159 struct f2fs_attr {
160 	struct attribute attr;
161 	ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
162 	ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
163 			 const char *, size_t);
164 	int struct_type;
165 	int offset;
166 };
167 
168 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
169 {
170 	if (struct_type == GC_THREAD)
171 		return (unsigned char *)sbi->gc_thread;
172 	else if (struct_type == SM_INFO)
173 		return (unsigned char *)SM_I(sbi);
174 	else if (struct_type == DCC_INFO)
175 		return (unsigned char *)SM_I(sbi)->dcc_info;
176 	else if (struct_type == NM_INFO)
177 		return (unsigned char *)NM_I(sbi);
178 	else if (struct_type == F2FS_SBI)
179 		return (unsigned char *)sbi;
180 #ifdef CONFIG_F2FS_FAULT_INJECTION
181 	else if (struct_type == FAULT_INFO_RATE ||
182 					struct_type == FAULT_INFO_TYPE)
183 		return (unsigned char *)&sbi->fault_info;
184 #endif
185 	return NULL;
186 }
187 
188 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
189 		struct f2fs_sb_info *sbi, char *buf)
190 {
191 	struct super_block *sb = sbi->sb;
192 
193 	if (!sb->s_bdev->bd_part)
194 		return snprintf(buf, PAGE_SIZE, "0\n");
195 
196 	return snprintf(buf, PAGE_SIZE, "%llu\n",
197 		(unsigned long long)(sbi->kbytes_written +
198 			BD_PART_WRITTEN(sbi)));
199 }
200 
201 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
202 			struct f2fs_sb_info *sbi, char *buf)
203 {
204 	unsigned char *ptr = NULL;
205 	unsigned int *ui;
206 
207 	ptr = __struct_ptr(sbi, a->struct_type);
208 	if (!ptr)
209 		return -EINVAL;
210 
211 	ui = (unsigned int *)(ptr + a->offset);
212 
213 	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
214 }
215 
216 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
217 			struct f2fs_sb_info *sbi,
218 			const char *buf, size_t count)
219 {
220 	unsigned char *ptr;
221 	unsigned long t;
222 	unsigned int *ui;
223 	ssize_t ret;
224 
225 	ptr = __struct_ptr(sbi, a->struct_type);
226 	if (!ptr)
227 		return -EINVAL;
228 
229 	ui = (unsigned int *)(ptr + a->offset);
230 
231 	ret = kstrtoul(skip_spaces(buf), 0, &t);
232 	if (ret < 0)
233 		return ret;
234 #ifdef CONFIG_F2FS_FAULT_INJECTION
235 	if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX))
236 		return -EINVAL;
237 #endif
238 	*ui = t;
239 	return count;
240 }
241 
242 static ssize_t f2fs_attr_show(struct kobject *kobj,
243 				struct attribute *attr, char *buf)
244 {
245 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
246 								s_kobj);
247 	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
248 
249 	return a->show ? a->show(a, sbi, buf) : 0;
250 }
251 
252 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
253 						const char *buf, size_t len)
254 {
255 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
256 									s_kobj);
257 	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
258 
259 	return a->store ? a->store(a, sbi, buf, len) : 0;
260 }
261 
262 static void f2fs_sb_release(struct kobject *kobj)
263 {
264 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
265 								s_kobj);
266 	complete(&sbi->s_kobj_unregister);
267 }
268 
269 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
270 static struct f2fs_attr f2fs_attr_##_name = {			\
271 	.attr = {.name = __stringify(_name), .mode = _mode },	\
272 	.show	= _show,					\
273 	.store	= _store,					\
274 	.struct_type = _struct_type,				\
275 	.offset = _offset					\
276 }
277 
278 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname)	\
279 	F2FS_ATTR_OFFSET(struct_type, name, 0644,		\
280 		f2fs_sbi_show, f2fs_sbi_store,			\
281 		offsetof(struct struct_name, elname))
282 
283 #define F2FS_GENERAL_RO_ATTR(name) \
284 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
285 
286 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
287 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
288 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
289 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
290 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
291 F2FS_RW_ATTR(DCC_INFO, discard_cmd_control, max_small_discards, max_discards);
292 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
293 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
294 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
295 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
296 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
297 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
298 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
299 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
300 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
301 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
302 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
303 #ifdef CONFIG_F2FS_FAULT_INJECTION
304 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate);
305 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type);
306 #endif
307 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
308 
309 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
310 static struct attribute *f2fs_attrs[] = {
311 	ATTR_LIST(gc_min_sleep_time),
312 	ATTR_LIST(gc_max_sleep_time),
313 	ATTR_LIST(gc_no_gc_sleep_time),
314 	ATTR_LIST(gc_idle),
315 	ATTR_LIST(reclaim_segments),
316 	ATTR_LIST(max_small_discards),
317 	ATTR_LIST(batched_trim_sections),
318 	ATTR_LIST(ipu_policy),
319 	ATTR_LIST(min_ipu_util),
320 	ATTR_LIST(min_fsync_blocks),
321 	ATTR_LIST(max_victim_search),
322 	ATTR_LIST(dir_level),
323 	ATTR_LIST(ram_thresh),
324 	ATTR_LIST(ra_nid_pages),
325 	ATTR_LIST(dirty_nats_ratio),
326 	ATTR_LIST(cp_interval),
327 	ATTR_LIST(idle_interval),
328 #ifdef CONFIG_F2FS_FAULT_INJECTION
329 	ATTR_LIST(inject_rate),
330 	ATTR_LIST(inject_type),
331 #endif
332 	ATTR_LIST(lifetime_write_kbytes),
333 	NULL,
334 };
335 
336 static const struct sysfs_ops f2fs_attr_ops = {
337 	.show	= f2fs_attr_show,
338 	.store	= f2fs_attr_store,
339 };
340 
341 static struct kobj_type f2fs_ktype = {
342 	.default_attrs	= f2fs_attrs,
343 	.sysfs_ops	= &f2fs_attr_ops,
344 	.release	= f2fs_sb_release,
345 };
346 
347 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
348 {
349 	struct va_format vaf;
350 	va_list args;
351 
352 	va_start(args, fmt);
353 	vaf.fmt = fmt;
354 	vaf.va = &args;
355 	printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
356 	va_end(args);
357 }
358 
359 static void init_once(void *foo)
360 {
361 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
362 
363 	inode_init_once(&fi->vfs_inode);
364 }
365 
366 static int parse_options(struct super_block *sb, char *options)
367 {
368 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
369 	struct request_queue *q;
370 	substring_t args[MAX_OPT_ARGS];
371 	char *p, *name;
372 	int arg = 0;
373 
374 	if (!options)
375 		return 0;
376 
377 	while ((p = strsep(&options, ",")) != NULL) {
378 		int token;
379 		if (!*p)
380 			continue;
381 		/*
382 		 * Initialize args struct so we know whether arg was
383 		 * found; some options take optional arguments.
384 		 */
385 		args[0].to = args[0].from = NULL;
386 		token = match_token(p, f2fs_tokens, args);
387 
388 		switch (token) {
389 		case Opt_gc_background:
390 			name = match_strdup(&args[0]);
391 
392 			if (!name)
393 				return -ENOMEM;
394 			if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
395 				set_opt(sbi, BG_GC);
396 				clear_opt(sbi, FORCE_FG_GC);
397 			} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
398 				clear_opt(sbi, BG_GC);
399 				clear_opt(sbi, FORCE_FG_GC);
400 			} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
401 				set_opt(sbi, BG_GC);
402 				set_opt(sbi, FORCE_FG_GC);
403 			} else {
404 				kfree(name);
405 				return -EINVAL;
406 			}
407 			kfree(name);
408 			break;
409 		case Opt_disable_roll_forward:
410 			set_opt(sbi, DISABLE_ROLL_FORWARD);
411 			break;
412 		case Opt_norecovery:
413 			/* this option mounts f2fs with ro */
414 			set_opt(sbi, DISABLE_ROLL_FORWARD);
415 			if (!f2fs_readonly(sb))
416 				return -EINVAL;
417 			break;
418 		case Opt_discard:
419 			q = bdev_get_queue(sb->s_bdev);
420 			if (blk_queue_discard(q)) {
421 				set_opt(sbi, DISCARD);
422 			} else if (!f2fs_sb_mounted_blkzoned(sb)) {
423 				f2fs_msg(sb, KERN_WARNING,
424 					"mounting with \"discard\" option, but "
425 					"the device does not support discard");
426 			}
427 			break;
428 		case Opt_nodiscard:
429 			if (f2fs_sb_mounted_blkzoned(sb)) {
430 				f2fs_msg(sb, KERN_WARNING,
431 					"discard is required for zoned block devices");
432 				return -EINVAL;
433 			}
434 			clear_opt(sbi, DISCARD);
435 			break;
436 		case Opt_noheap:
437 			set_opt(sbi, NOHEAP);
438 			break;
439 #ifdef CONFIG_F2FS_FS_XATTR
440 		case Opt_user_xattr:
441 			set_opt(sbi, XATTR_USER);
442 			break;
443 		case Opt_nouser_xattr:
444 			clear_opt(sbi, XATTR_USER);
445 			break;
446 		case Opt_inline_xattr:
447 			set_opt(sbi, INLINE_XATTR);
448 			break;
449 		case Opt_noinline_xattr:
450 			clear_opt(sbi, INLINE_XATTR);
451 			break;
452 #else
453 		case Opt_user_xattr:
454 			f2fs_msg(sb, KERN_INFO,
455 				"user_xattr options not supported");
456 			break;
457 		case Opt_nouser_xattr:
458 			f2fs_msg(sb, KERN_INFO,
459 				"nouser_xattr options not supported");
460 			break;
461 		case Opt_inline_xattr:
462 			f2fs_msg(sb, KERN_INFO,
463 				"inline_xattr options not supported");
464 			break;
465 		case Opt_noinline_xattr:
466 			f2fs_msg(sb, KERN_INFO,
467 				"noinline_xattr options not supported");
468 			break;
469 #endif
470 #ifdef CONFIG_F2FS_FS_POSIX_ACL
471 		case Opt_acl:
472 			set_opt(sbi, POSIX_ACL);
473 			break;
474 		case Opt_noacl:
475 			clear_opt(sbi, POSIX_ACL);
476 			break;
477 #else
478 		case Opt_acl:
479 			f2fs_msg(sb, KERN_INFO, "acl options not supported");
480 			break;
481 		case Opt_noacl:
482 			f2fs_msg(sb, KERN_INFO, "noacl options not supported");
483 			break;
484 #endif
485 		case Opt_active_logs:
486 			if (args->from && match_int(args, &arg))
487 				return -EINVAL;
488 			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
489 				return -EINVAL;
490 			sbi->active_logs = arg;
491 			break;
492 		case Opt_disable_ext_identify:
493 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
494 			break;
495 		case Opt_inline_data:
496 			set_opt(sbi, INLINE_DATA);
497 			break;
498 		case Opt_inline_dentry:
499 			set_opt(sbi, INLINE_DENTRY);
500 			break;
501 		case Opt_noinline_dentry:
502 			clear_opt(sbi, INLINE_DENTRY);
503 			break;
504 		case Opt_flush_merge:
505 			set_opt(sbi, FLUSH_MERGE);
506 			break;
507 		case Opt_noflush_merge:
508 			clear_opt(sbi, FLUSH_MERGE);
509 			break;
510 		case Opt_nobarrier:
511 			set_opt(sbi, NOBARRIER);
512 			break;
513 		case Opt_fastboot:
514 			set_opt(sbi, FASTBOOT);
515 			break;
516 		case Opt_extent_cache:
517 			set_opt(sbi, EXTENT_CACHE);
518 			break;
519 		case Opt_noextent_cache:
520 			clear_opt(sbi, EXTENT_CACHE);
521 			break;
522 		case Opt_noinline_data:
523 			clear_opt(sbi, INLINE_DATA);
524 			break;
525 		case Opt_data_flush:
526 			set_opt(sbi, DATA_FLUSH);
527 			break;
528 		case Opt_mode:
529 			name = match_strdup(&args[0]);
530 
531 			if (!name)
532 				return -ENOMEM;
533 			if (strlen(name) == 8 &&
534 					!strncmp(name, "adaptive", 8)) {
535 				if (f2fs_sb_mounted_blkzoned(sb)) {
536 					f2fs_msg(sb, KERN_WARNING,
537 						 "adaptive mode is not allowed with "
538 						 "zoned block device feature");
539 					kfree(name);
540 					return -EINVAL;
541 				}
542 				set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
543 			} else if (strlen(name) == 3 &&
544 					!strncmp(name, "lfs", 3)) {
545 				set_opt_mode(sbi, F2FS_MOUNT_LFS);
546 			} else {
547 				kfree(name);
548 				return -EINVAL;
549 			}
550 			kfree(name);
551 			break;
552 		case Opt_io_size_bits:
553 			if (args->from && match_int(args, &arg))
554 				return -EINVAL;
555 			if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
556 				f2fs_msg(sb, KERN_WARNING,
557 					"Not support %d, larger than %d",
558 					1 << arg, BIO_MAX_PAGES);
559 				return -EINVAL;
560 			}
561 			sbi->write_io_size_bits = arg;
562 			break;
563 		case Opt_fault_injection:
564 			if (args->from && match_int(args, &arg))
565 				return -EINVAL;
566 #ifdef CONFIG_F2FS_FAULT_INJECTION
567 			f2fs_build_fault_attr(sbi, arg);
568 			set_opt(sbi, FAULT_INJECTION);
569 #else
570 			f2fs_msg(sb, KERN_INFO,
571 				"FAULT_INJECTION was not selected");
572 #endif
573 			break;
574 		case Opt_lazytime:
575 			sb->s_flags |= MS_LAZYTIME;
576 			break;
577 		case Opt_nolazytime:
578 			sb->s_flags &= ~MS_LAZYTIME;
579 			break;
580 		default:
581 			f2fs_msg(sb, KERN_ERR,
582 				"Unrecognized mount option \"%s\" or missing value",
583 				p);
584 			return -EINVAL;
585 		}
586 	}
587 
588 	if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
589 		f2fs_msg(sb, KERN_ERR,
590 				"Should set mode=lfs with %uKB-sized IO",
591 				F2FS_IO_SIZE_KB(sbi));
592 		return -EINVAL;
593 	}
594 	return 0;
595 }
596 
597 static struct inode *f2fs_alloc_inode(struct super_block *sb)
598 {
599 	struct f2fs_inode_info *fi;
600 
601 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
602 	if (!fi)
603 		return NULL;
604 
605 	init_once((void *) fi);
606 
607 	/* Initialize f2fs-specific inode info */
608 	fi->vfs_inode.i_version = 1;
609 	atomic_set(&fi->dirty_pages, 0);
610 	fi->i_current_depth = 1;
611 	fi->i_advise = 0;
612 	init_rwsem(&fi->i_sem);
613 	INIT_LIST_HEAD(&fi->dirty_list);
614 	INIT_LIST_HEAD(&fi->gdirty_list);
615 	INIT_LIST_HEAD(&fi->inmem_pages);
616 	mutex_init(&fi->inmem_lock);
617 	init_rwsem(&fi->dio_rwsem[READ]);
618 	init_rwsem(&fi->dio_rwsem[WRITE]);
619 
620 	/* Will be used by directory only */
621 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
622 	return &fi->vfs_inode;
623 }
624 
625 static int f2fs_drop_inode(struct inode *inode)
626 {
627 	int ret;
628 	/*
629 	 * This is to avoid a deadlock condition like below.
630 	 * writeback_single_inode(inode)
631 	 *  - f2fs_write_data_page
632 	 *    - f2fs_gc -> iput -> evict
633 	 *       - inode_wait_for_writeback(inode)
634 	 */
635 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
636 		if (!inode->i_nlink && !is_bad_inode(inode)) {
637 			/* to avoid evict_inode call simultaneously */
638 			atomic_inc(&inode->i_count);
639 			spin_unlock(&inode->i_lock);
640 
641 			/* some remained atomic pages should discarded */
642 			if (f2fs_is_atomic_file(inode))
643 				drop_inmem_pages(inode);
644 
645 			/* should remain fi->extent_tree for writepage */
646 			f2fs_destroy_extent_node(inode);
647 
648 			sb_start_intwrite(inode->i_sb);
649 			f2fs_i_size_write(inode, 0);
650 
651 			if (F2FS_HAS_BLOCKS(inode))
652 				f2fs_truncate(inode);
653 
654 			sb_end_intwrite(inode->i_sb);
655 
656 			fscrypt_put_encryption_info(inode, NULL);
657 			spin_lock(&inode->i_lock);
658 			atomic_dec(&inode->i_count);
659 		}
660 		trace_f2fs_drop_inode(inode, 0);
661 		return 0;
662 	}
663 	ret = generic_drop_inode(inode);
664 	trace_f2fs_drop_inode(inode, ret);
665 	return ret;
666 }
667 
668 int f2fs_inode_dirtied(struct inode *inode, bool sync)
669 {
670 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
671 	int ret = 0;
672 
673 	spin_lock(&sbi->inode_lock[DIRTY_META]);
674 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
675 		ret = 1;
676 	} else {
677 		set_inode_flag(inode, FI_DIRTY_INODE);
678 		stat_inc_dirty_inode(sbi, DIRTY_META);
679 	}
680 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
681 		list_add_tail(&F2FS_I(inode)->gdirty_list,
682 				&sbi->inode_list[DIRTY_META]);
683 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
684 	}
685 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
686 	return ret;
687 }
688 
689 void f2fs_inode_synced(struct inode *inode)
690 {
691 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
692 
693 	spin_lock(&sbi->inode_lock[DIRTY_META]);
694 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
695 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
696 		return;
697 	}
698 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
699 		list_del_init(&F2FS_I(inode)->gdirty_list);
700 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
701 	}
702 	clear_inode_flag(inode, FI_DIRTY_INODE);
703 	clear_inode_flag(inode, FI_AUTO_RECOVER);
704 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
705 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
706 }
707 
708 /*
709  * f2fs_dirty_inode() is called from __mark_inode_dirty()
710  *
711  * We should call set_dirty_inode to write the dirty inode through write_inode.
712  */
713 static void f2fs_dirty_inode(struct inode *inode, int flags)
714 {
715 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
716 
717 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
718 			inode->i_ino == F2FS_META_INO(sbi))
719 		return;
720 
721 	if (flags == I_DIRTY_TIME)
722 		return;
723 
724 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
725 		clear_inode_flag(inode, FI_AUTO_RECOVER);
726 
727 	f2fs_inode_dirtied(inode, false);
728 }
729 
730 static void f2fs_i_callback(struct rcu_head *head)
731 {
732 	struct inode *inode = container_of(head, struct inode, i_rcu);
733 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
734 }
735 
736 static void f2fs_destroy_inode(struct inode *inode)
737 {
738 	call_rcu(&inode->i_rcu, f2fs_i_callback);
739 }
740 
741 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
742 {
743 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
744 	percpu_counter_destroy(&sbi->total_valid_inode_count);
745 }
746 
747 static void destroy_device_list(struct f2fs_sb_info *sbi)
748 {
749 	int i;
750 
751 	for (i = 0; i < sbi->s_ndevs; i++) {
752 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
753 #ifdef CONFIG_BLK_DEV_ZONED
754 		kfree(FDEV(i).blkz_type);
755 #endif
756 	}
757 	kfree(sbi->devs);
758 }
759 
760 static void f2fs_put_super(struct super_block *sb)
761 {
762 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
763 
764 	if (sbi->s_proc) {
765 		remove_proc_entry("segment_info", sbi->s_proc);
766 		remove_proc_entry("segment_bits", sbi->s_proc);
767 		remove_proc_entry(sb->s_id, f2fs_proc_root);
768 	}
769 	kobject_del(&sbi->s_kobj);
770 
771 	stop_gc_thread(sbi);
772 
773 	/* prevent remaining shrinker jobs */
774 	mutex_lock(&sbi->umount_mutex);
775 
776 	/*
777 	 * We don't need to do checkpoint when superblock is clean.
778 	 * But, the previous checkpoint was not done by umount, it needs to do
779 	 * clean checkpoint again.
780 	 */
781 	if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
782 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
783 		struct cp_control cpc = {
784 			.reason = CP_UMOUNT,
785 		};
786 		write_checkpoint(sbi, &cpc);
787 	}
788 
789 	/* be sure to wait for any on-going discard commands */
790 	f2fs_wait_discard_bio(sbi, NULL_ADDR);
791 
792 	/* write_checkpoint can update stat informaion */
793 	f2fs_destroy_stats(sbi);
794 
795 	/*
796 	 * normally superblock is clean, so we need to release this.
797 	 * In addition, EIO will skip do checkpoint, we need this as well.
798 	 */
799 	release_ino_entry(sbi, true);
800 
801 	f2fs_leave_shrinker(sbi);
802 	mutex_unlock(&sbi->umount_mutex);
803 
804 	/* our cp_error case, we can wait for any writeback page */
805 	f2fs_flush_merged_bios(sbi);
806 
807 	iput(sbi->node_inode);
808 	iput(sbi->meta_inode);
809 
810 	/* destroy f2fs internal modules */
811 	destroy_node_manager(sbi);
812 	destroy_segment_manager(sbi);
813 
814 	kfree(sbi->ckpt);
815 	kobject_put(&sbi->s_kobj);
816 	wait_for_completion(&sbi->s_kobj_unregister);
817 
818 	sb->s_fs_info = NULL;
819 	if (sbi->s_chksum_driver)
820 		crypto_free_shash(sbi->s_chksum_driver);
821 	kfree(sbi->raw_super);
822 
823 	destroy_device_list(sbi);
824 	mempool_destroy(sbi->write_io_dummy);
825 	destroy_percpu_info(sbi);
826 	kfree(sbi);
827 }
828 
829 int f2fs_sync_fs(struct super_block *sb, int sync)
830 {
831 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
832 	int err = 0;
833 
834 	trace_f2fs_sync_fs(sb, sync);
835 
836 	if (sync) {
837 		struct cp_control cpc;
838 
839 		cpc.reason = __get_cp_reason(sbi);
840 
841 		mutex_lock(&sbi->gc_mutex);
842 		err = write_checkpoint(sbi, &cpc);
843 		mutex_unlock(&sbi->gc_mutex);
844 	}
845 	f2fs_trace_ios(NULL, 1);
846 
847 	return err;
848 }
849 
850 static int f2fs_freeze(struct super_block *sb)
851 {
852 	if (f2fs_readonly(sb))
853 		return 0;
854 
855 	/* IO error happened before */
856 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
857 		return -EIO;
858 
859 	/* must be clean, since sync_filesystem() was already called */
860 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
861 		return -EINVAL;
862 	return 0;
863 }
864 
865 static int f2fs_unfreeze(struct super_block *sb)
866 {
867 	return 0;
868 }
869 
870 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
871 {
872 	struct super_block *sb = dentry->d_sb;
873 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
874 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
875 	block_t total_count, user_block_count, start_count, ovp_count;
876 
877 	total_count = le64_to_cpu(sbi->raw_super->block_count);
878 	user_block_count = sbi->user_block_count;
879 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
880 	ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
881 	buf->f_type = F2FS_SUPER_MAGIC;
882 	buf->f_bsize = sbi->blocksize;
883 
884 	buf->f_blocks = total_count - start_count;
885 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count;
886 	buf->f_bavail = user_block_count - valid_user_blocks(sbi);
887 
888 	buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
889 	buf->f_ffree = min(buf->f_files - valid_node_count(sbi),
890 							buf->f_bavail);
891 
892 	buf->f_namelen = F2FS_NAME_LEN;
893 	buf->f_fsid.val[0] = (u32)id;
894 	buf->f_fsid.val[1] = (u32)(id >> 32);
895 
896 	return 0;
897 }
898 
899 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
900 {
901 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
902 
903 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
904 		if (test_opt(sbi, FORCE_FG_GC))
905 			seq_printf(seq, ",background_gc=%s", "sync");
906 		else
907 			seq_printf(seq, ",background_gc=%s", "on");
908 	} else {
909 		seq_printf(seq, ",background_gc=%s", "off");
910 	}
911 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
912 		seq_puts(seq, ",disable_roll_forward");
913 	if (test_opt(sbi, DISCARD))
914 		seq_puts(seq, ",discard");
915 	if (test_opt(sbi, NOHEAP))
916 		seq_puts(seq, ",no_heap_alloc");
917 #ifdef CONFIG_F2FS_FS_XATTR
918 	if (test_opt(sbi, XATTR_USER))
919 		seq_puts(seq, ",user_xattr");
920 	else
921 		seq_puts(seq, ",nouser_xattr");
922 	if (test_opt(sbi, INLINE_XATTR))
923 		seq_puts(seq, ",inline_xattr");
924 	else
925 		seq_puts(seq, ",noinline_xattr");
926 #endif
927 #ifdef CONFIG_F2FS_FS_POSIX_ACL
928 	if (test_opt(sbi, POSIX_ACL))
929 		seq_puts(seq, ",acl");
930 	else
931 		seq_puts(seq, ",noacl");
932 #endif
933 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
934 		seq_puts(seq, ",disable_ext_identify");
935 	if (test_opt(sbi, INLINE_DATA))
936 		seq_puts(seq, ",inline_data");
937 	else
938 		seq_puts(seq, ",noinline_data");
939 	if (test_opt(sbi, INLINE_DENTRY))
940 		seq_puts(seq, ",inline_dentry");
941 	else
942 		seq_puts(seq, ",noinline_dentry");
943 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
944 		seq_puts(seq, ",flush_merge");
945 	if (test_opt(sbi, NOBARRIER))
946 		seq_puts(seq, ",nobarrier");
947 	if (test_opt(sbi, FASTBOOT))
948 		seq_puts(seq, ",fastboot");
949 	if (test_opt(sbi, EXTENT_CACHE))
950 		seq_puts(seq, ",extent_cache");
951 	else
952 		seq_puts(seq, ",noextent_cache");
953 	if (test_opt(sbi, DATA_FLUSH))
954 		seq_puts(seq, ",data_flush");
955 
956 	seq_puts(seq, ",mode=");
957 	if (test_opt(sbi, ADAPTIVE))
958 		seq_puts(seq, "adaptive");
959 	else if (test_opt(sbi, LFS))
960 		seq_puts(seq, "lfs");
961 	seq_printf(seq, ",active_logs=%u", sbi->active_logs);
962 	if (F2FS_IO_SIZE_BITS(sbi))
963 		seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi));
964 #ifdef CONFIG_F2FS_FAULT_INJECTION
965 	if (test_opt(sbi, FAULT_INJECTION))
966 		seq_puts(seq, ",fault_injection");
967 #endif
968 
969 	return 0;
970 }
971 
972 static int segment_info_seq_show(struct seq_file *seq, void *offset)
973 {
974 	struct super_block *sb = seq->private;
975 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
976 	unsigned int total_segs =
977 			le32_to_cpu(sbi->raw_super->segment_count_main);
978 	int i;
979 
980 	seq_puts(seq, "format: segment_type|valid_blocks\n"
981 		"segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
982 
983 	for (i = 0; i < total_segs; i++) {
984 		struct seg_entry *se = get_seg_entry(sbi, i);
985 
986 		if ((i % 10) == 0)
987 			seq_printf(seq, "%-10d", i);
988 		seq_printf(seq, "%d|%-3u", se->type,
989 					get_valid_blocks(sbi, i, 1));
990 		if ((i % 10) == 9 || i == (total_segs - 1))
991 			seq_putc(seq, '\n');
992 		else
993 			seq_putc(seq, ' ');
994 	}
995 
996 	return 0;
997 }
998 
999 static int segment_bits_seq_show(struct seq_file *seq, void *offset)
1000 {
1001 	struct super_block *sb = seq->private;
1002 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1003 	unsigned int total_segs =
1004 			le32_to_cpu(sbi->raw_super->segment_count_main);
1005 	int i, j;
1006 
1007 	seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n"
1008 		"segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
1009 
1010 	for (i = 0; i < total_segs; i++) {
1011 		struct seg_entry *se = get_seg_entry(sbi, i);
1012 
1013 		seq_printf(seq, "%-10d", i);
1014 		seq_printf(seq, "%d|%-3u|", se->type,
1015 					get_valid_blocks(sbi, i, 1));
1016 		for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++)
1017 			seq_printf(seq, " %.2x", se->cur_valid_map[j]);
1018 		seq_putc(seq, '\n');
1019 	}
1020 	return 0;
1021 }
1022 
1023 #define F2FS_PROC_FILE_DEF(_name)					\
1024 static int _name##_open_fs(struct inode *inode, struct file *file)	\
1025 {									\
1026 	return single_open(file, _name##_seq_show, PDE_DATA(inode));	\
1027 }									\
1028 									\
1029 static const struct file_operations f2fs_seq_##_name##_fops = {		\
1030 	.open = _name##_open_fs,					\
1031 	.read = seq_read,						\
1032 	.llseek = seq_lseek,						\
1033 	.release = single_release,					\
1034 };
1035 
1036 F2FS_PROC_FILE_DEF(segment_info);
1037 F2FS_PROC_FILE_DEF(segment_bits);
1038 
1039 static void default_options(struct f2fs_sb_info *sbi)
1040 {
1041 	/* init some FS parameters */
1042 	sbi->active_logs = NR_CURSEG_TYPE;
1043 
1044 	set_opt(sbi, BG_GC);
1045 	set_opt(sbi, INLINE_XATTR);
1046 	set_opt(sbi, INLINE_DATA);
1047 	set_opt(sbi, INLINE_DENTRY);
1048 	set_opt(sbi, EXTENT_CACHE);
1049 	sbi->sb->s_flags |= MS_LAZYTIME;
1050 	set_opt(sbi, FLUSH_MERGE);
1051 	if (f2fs_sb_mounted_blkzoned(sbi->sb)) {
1052 		set_opt_mode(sbi, F2FS_MOUNT_LFS);
1053 		set_opt(sbi, DISCARD);
1054 	} else {
1055 		set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1056 	}
1057 
1058 #ifdef CONFIG_F2FS_FS_XATTR
1059 	set_opt(sbi, XATTR_USER);
1060 #endif
1061 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1062 	set_opt(sbi, POSIX_ACL);
1063 #endif
1064 
1065 #ifdef CONFIG_F2FS_FAULT_INJECTION
1066 	f2fs_build_fault_attr(sbi, 0);
1067 #endif
1068 }
1069 
1070 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1071 {
1072 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1073 	struct f2fs_mount_info org_mount_opt;
1074 	int err, active_logs;
1075 	bool need_restart_gc = false;
1076 	bool need_stop_gc = false;
1077 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1078 #ifdef CONFIG_F2FS_FAULT_INJECTION
1079 	struct f2fs_fault_info ffi = sbi->fault_info;
1080 #endif
1081 
1082 	/*
1083 	 * Save the old mount options in case we
1084 	 * need to restore them.
1085 	 */
1086 	org_mount_opt = sbi->mount_opt;
1087 	active_logs = sbi->active_logs;
1088 
1089 	/* recover superblocks we couldn't write due to previous RO mount */
1090 	if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1091 		err = f2fs_commit_super(sbi, false);
1092 		f2fs_msg(sb, KERN_INFO,
1093 			"Try to recover all the superblocks, ret: %d", err);
1094 		if (!err)
1095 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1096 	}
1097 
1098 	sbi->mount_opt.opt = 0;
1099 	default_options(sbi);
1100 
1101 	/* parse mount options */
1102 	err = parse_options(sb, data);
1103 	if (err)
1104 		goto restore_opts;
1105 
1106 	/*
1107 	 * Previous and new state of filesystem is RO,
1108 	 * so skip checking GC and FLUSH_MERGE conditions.
1109 	 */
1110 	if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1111 		goto skip;
1112 
1113 	/* disallow enable/disable extent_cache dynamically */
1114 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1115 		err = -EINVAL;
1116 		f2fs_msg(sbi->sb, KERN_WARNING,
1117 				"switch extent_cache option is not allowed");
1118 		goto restore_opts;
1119 	}
1120 
1121 	/*
1122 	 * We stop the GC thread if FS is mounted as RO
1123 	 * or if background_gc = off is passed in mount
1124 	 * option. Also sync the filesystem.
1125 	 */
1126 	if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1127 		if (sbi->gc_thread) {
1128 			stop_gc_thread(sbi);
1129 			need_restart_gc = true;
1130 		}
1131 	} else if (!sbi->gc_thread) {
1132 		err = start_gc_thread(sbi);
1133 		if (err)
1134 			goto restore_opts;
1135 		need_stop_gc = true;
1136 	}
1137 
1138 	if (*flags & MS_RDONLY) {
1139 		writeback_inodes_sb(sb, WB_REASON_SYNC);
1140 		sync_inodes_sb(sb);
1141 
1142 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1143 		set_sbi_flag(sbi, SBI_IS_CLOSE);
1144 		f2fs_sync_fs(sb, 1);
1145 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
1146 	}
1147 
1148 	/*
1149 	 * We stop issue flush thread if FS is mounted as RO
1150 	 * or if flush_merge is not passed in mount option.
1151 	 */
1152 	if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1153 		clear_opt(sbi, FLUSH_MERGE);
1154 		destroy_flush_cmd_control(sbi, false);
1155 	} else {
1156 		err = create_flush_cmd_control(sbi);
1157 		if (err)
1158 			goto restore_gc;
1159 	}
1160 skip:
1161 	/* Update the POSIXACL Flag */
1162 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1163 		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1164 
1165 	return 0;
1166 restore_gc:
1167 	if (need_restart_gc) {
1168 		if (start_gc_thread(sbi))
1169 			f2fs_msg(sbi->sb, KERN_WARNING,
1170 				"background gc thread has stopped");
1171 	} else if (need_stop_gc) {
1172 		stop_gc_thread(sbi);
1173 	}
1174 restore_opts:
1175 	sbi->mount_opt = org_mount_opt;
1176 	sbi->active_logs = active_logs;
1177 #ifdef CONFIG_F2FS_FAULT_INJECTION
1178 	sbi->fault_info = ffi;
1179 #endif
1180 	return err;
1181 }
1182 
1183 static struct super_operations f2fs_sops = {
1184 	.alloc_inode	= f2fs_alloc_inode,
1185 	.drop_inode	= f2fs_drop_inode,
1186 	.destroy_inode	= f2fs_destroy_inode,
1187 	.write_inode	= f2fs_write_inode,
1188 	.dirty_inode	= f2fs_dirty_inode,
1189 	.show_options	= f2fs_show_options,
1190 	.evict_inode	= f2fs_evict_inode,
1191 	.put_super	= f2fs_put_super,
1192 	.sync_fs	= f2fs_sync_fs,
1193 	.freeze_fs	= f2fs_freeze,
1194 	.unfreeze_fs	= f2fs_unfreeze,
1195 	.statfs		= f2fs_statfs,
1196 	.remount_fs	= f2fs_remount,
1197 };
1198 
1199 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1200 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1201 {
1202 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1203 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1204 				ctx, len, NULL);
1205 }
1206 
1207 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1208 							void *fs_data)
1209 {
1210 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1211 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1212 				ctx, len, fs_data, XATTR_CREATE);
1213 }
1214 
1215 static unsigned f2fs_max_namelen(struct inode *inode)
1216 {
1217 	return S_ISLNK(inode->i_mode) ?
1218 			inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1219 }
1220 
1221 static const struct fscrypt_operations f2fs_cryptops = {
1222 	.key_prefix	= "f2fs:",
1223 	.get_context	= f2fs_get_context,
1224 	.set_context	= f2fs_set_context,
1225 	.is_encrypted	= f2fs_encrypted_inode,
1226 	.empty_dir	= f2fs_empty_dir,
1227 	.max_namelen	= f2fs_max_namelen,
1228 };
1229 #else
1230 static const struct fscrypt_operations f2fs_cryptops = {
1231 	.is_encrypted	= f2fs_encrypted_inode,
1232 };
1233 #endif
1234 
1235 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1236 		u64 ino, u32 generation)
1237 {
1238 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1239 	struct inode *inode;
1240 
1241 	if (check_nid_range(sbi, ino))
1242 		return ERR_PTR(-ESTALE);
1243 
1244 	/*
1245 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
1246 	 * However f2fs_iget currently does appropriate checks to handle stale
1247 	 * inodes so everything is OK.
1248 	 */
1249 	inode = f2fs_iget(sb, ino);
1250 	if (IS_ERR(inode))
1251 		return ERR_CAST(inode);
1252 	if (unlikely(generation && inode->i_generation != generation)) {
1253 		/* we didn't find the right inode.. */
1254 		iput(inode);
1255 		return ERR_PTR(-ESTALE);
1256 	}
1257 	return inode;
1258 }
1259 
1260 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1261 		int fh_len, int fh_type)
1262 {
1263 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1264 				    f2fs_nfs_get_inode);
1265 }
1266 
1267 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1268 		int fh_len, int fh_type)
1269 {
1270 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1271 				    f2fs_nfs_get_inode);
1272 }
1273 
1274 static const struct export_operations f2fs_export_ops = {
1275 	.fh_to_dentry = f2fs_fh_to_dentry,
1276 	.fh_to_parent = f2fs_fh_to_parent,
1277 	.get_parent = f2fs_get_parent,
1278 };
1279 
1280 static loff_t max_file_blocks(void)
1281 {
1282 	loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
1283 	loff_t leaf_count = ADDRS_PER_BLOCK;
1284 
1285 	/* two direct node blocks */
1286 	result += (leaf_count * 2);
1287 
1288 	/* two indirect node blocks */
1289 	leaf_count *= NIDS_PER_BLOCK;
1290 	result += (leaf_count * 2);
1291 
1292 	/* one double indirect node block */
1293 	leaf_count *= NIDS_PER_BLOCK;
1294 	result += leaf_count;
1295 
1296 	return result;
1297 }
1298 
1299 static int __f2fs_commit_super(struct buffer_head *bh,
1300 			struct f2fs_super_block *super)
1301 {
1302 	lock_buffer(bh);
1303 	if (super)
1304 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1305 	set_buffer_uptodate(bh);
1306 	set_buffer_dirty(bh);
1307 	unlock_buffer(bh);
1308 
1309 	/* it's rare case, we can do fua all the time */
1310 	return __sync_dirty_buffer(bh, REQ_PREFLUSH | REQ_FUA);
1311 }
1312 
1313 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1314 					struct buffer_head *bh)
1315 {
1316 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1317 					(bh->b_data + F2FS_SUPER_OFFSET);
1318 	struct super_block *sb = sbi->sb;
1319 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1320 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1321 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1322 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1323 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1324 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1325 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1326 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1327 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1328 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1329 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1330 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
1331 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1332 	u64 main_end_blkaddr = main_blkaddr +
1333 				(segment_count_main << log_blocks_per_seg);
1334 	u64 seg_end_blkaddr = segment0_blkaddr +
1335 				(segment_count << log_blocks_per_seg);
1336 
1337 	if (segment0_blkaddr != cp_blkaddr) {
1338 		f2fs_msg(sb, KERN_INFO,
1339 			"Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1340 			segment0_blkaddr, cp_blkaddr);
1341 		return true;
1342 	}
1343 
1344 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1345 							sit_blkaddr) {
1346 		f2fs_msg(sb, KERN_INFO,
1347 			"Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1348 			cp_blkaddr, sit_blkaddr,
1349 			segment_count_ckpt << log_blocks_per_seg);
1350 		return true;
1351 	}
1352 
1353 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1354 							nat_blkaddr) {
1355 		f2fs_msg(sb, KERN_INFO,
1356 			"Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1357 			sit_blkaddr, nat_blkaddr,
1358 			segment_count_sit << log_blocks_per_seg);
1359 		return true;
1360 	}
1361 
1362 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1363 							ssa_blkaddr) {
1364 		f2fs_msg(sb, KERN_INFO,
1365 			"Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1366 			nat_blkaddr, ssa_blkaddr,
1367 			segment_count_nat << log_blocks_per_seg);
1368 		return true;
1369 	}
1370 
1371 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1372 							main_blkaddr) {
1373 		f2fs_msg(sb, KERN_INFO,
1374 			"Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1375 			ssa_blkaddr, main_blkaddr,
1376 			segment_count_ssa << log_blocks_per_seg);
1377 		return true;
1378 	}
1379 
1380 	if (main_end_blkaddr > seg_end_blkaddr) {
1381 		f2fs_msg(sb, KERN_INFO,
1382 			"Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1383 			main_blkaddr,
1384 			segment0_blkaddr +
1385 				(segment_count << log_blocks_per_seg),
1386 			segment_count_main << log_blocks_per_seg);
1387 		return true;
1388 	} else if (main_end_blkaddr < seg_end_blkaddr) {
1389 		int err = 0;
1390 		char *res;
1391 
1392 		/* fix in-memory information all the time */
1393 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1394 				segment0_blkaddr) >> log_blocks_per_seg);
1395 
1396 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1397 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1398 			res = "internally";
1399 		} else {
1400 			err = __f2fs_commit_super(bh, NULL);
1401 			res = err ? "failed" : "done";
1402 		}
1403 		f2fs_msg(sb, KERN_INFO,
1404 			"Fix alignment : %s, start(%u) end(%u) block(%u)",
1405 			res, main_blkaddr,
1406 			segment0_blkaddr +
1407 				(segment_count << log_blocks_per_seg),
1408 			segment_count_main << log_blocks_per_seg);
1409 		if (err)
1410 			return true;
1411 	}
1412 	return false;
1413 }
1414 
1415 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1416 				struct buffer_head *bh)
1417 {
1418 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1419 					(bh->b_data + F2FS_SUPER_OFFSET);
1420 	struct super_block *sb = sbi->sb;
1421 	unsigned int blocksize;
1422 
1423 	if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1424 		f2fs_msg(sb, KERN_INFO,
1425 			"Magic Mismatch, valid(0x%x) - read(0x%x)",
1426 			F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1427 		return 1;
1428 	}
1429 
1430 	/* Currently, support only 4KB page cache size */
1431 	if (F2FS_BLKSIZE != PAGE_SIZE) {
1432 		f2fs_msg(sb, KERN_INFO,
1433 			"Invalid page_cache_size (%lu), supports only 4KB\n",
1434 			PAGE_SIZE);
1435 		return 1;
1436 	}
1437 
1438 	/* Currently, support only 4KB block size */
1439 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1440 	if (blocksize != F2FS_BLKSIZE) {
1441 		f2fs_msg(sb, KERN_INFO,
1442 			"Invalid blocksize (%u), supports only 4KB\n",
1443 			blocksize);
1444 		return 1;
1445 	}
1446 
1447 	/* check log blocks per segment */
1448 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1449 		f2fs_msg(sb, KERN_INFO,
1450 			"Invalid log blocks per segment (%u)\n",
1451 			le32_to_cpu(raw_super->log_blocks_per_seg));
1452 		return 1;
1453 	}
1454 
1455 	/* Currently, support 512/1024/2048/4096 bytes sector size */
1456 	if (le32_to_cpu(raw_super->log_sectorsize) >
1457 				F2FS_MAX_LOG_SECTOR_SIZE ||
1458 		le32_to_cpu(raw_super->log_sectorsize) <
1459 				F2FS_MIN_LOG_SECTOR_SIZE) {
1460 		f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1461 			le32_to_cpu(raw_super->log_sectorsize));
1462 		return 1;
1463 	}
1464 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
1465 		le32_to_cpu(raw_super->log_sectorsize) !=
1466 			F2FS_MAX_LOG_SECTOR_SIZE) {
1467 		f2fs_msg(sb, KERN_INFO,
1468 			"Invalid log sectors per block(%u) log sectorsize(%u)",
1469 			le32_to_cpu(raw_super->log_sectors_per_block),
1470 			le32_to_cpu(raw_super->log_sectorsize));
1471 		return 1;
1472 	}
1473 
1474 	/* check reserved ino info */
1475 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
1476 		le32_to_cpu(raw_super->meta_ino) != 2 ||
1477 		le32_to_cpu(raw_super->root_ino) != 3) {
1478 		f2fs_msg(sb, KERN_INFO,
1479 			"Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1480 			le32_to_cpu(raw_super->node_ino),
1481 			le32_to_cpu(raw_super->meta_ino),
1482 			le32_to_cpu(raw_super->root_ino));
1483 		return 1;
1484 	}
1485 
1486 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1487 	if (sanity_check_area_boundary(sbi, bh))
1488 		return 1;
1489 
1490 	return 0;
1491 }
1492 
1493 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1494 {
1495 	unsigned int total, fsmeta;
1496 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1497 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1498 	unsigned int ovp_segments, reserved_segments;
1499 
1500 	total = le32_to_cpu(raw_super->segment_count);
1501 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1502 	fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1503 	fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1504 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1505 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1506 
1507 	if (unlikely(fsmeta >= total))
1508 		return 1;
1509 
1510 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1511 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1512 
1513 	if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
1514 			ovp_segments == 0 || reserved_segments == 0)) {
1515 		f2fs_msg(sbi->sb, KERN_ERR,
1516 			"Wrong layout: check mkfs.f2fs version");
1517 		return 1;
1518 	}
1519 
1520 	if (unlikely(f2fs_cp_error(sbi))) {
1521 		f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1522 		return 1;
1523 	}
1524 	return 0;
1525 }
1526 
1527 static void init_sb_info(struct f2fs_sb_info *sbi)
1528 {
1529 	struct f2fs_super_block *raw_super = sbi->raw_super;
1530 	int i;
1531 
1532 	sbi->log_sectors_per_block =
1533 		le32_to_cpu(raw_super->log_sectors_per_block);
1534 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1535 	sbi->blocksize = 1 << sbi->log_blocksize;
1536 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1537 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1538 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1539 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1540 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
1541 	sbi->total_node_count =
1542 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
1543 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1544 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1545 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1546 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1547 	sbi->cur_victim_sec = NULL_SECNO;
1548 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1549 
1550 	sbi->dir_level = DEF_DIR_LEVEL;
1551 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1552 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1553 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
1554 
1555 	for (i = 0; i < NR_COUNT_TYPE; i++)
1556 		atomic_set(&sbi->nr_pages[i], 0);
1557 
1558 	INIT_LIST_HEAD(&sbi->s_list);
1559 	mutex_init(&sbi->umount_mutex);
1560 	mutex_init(&sbi->wio_mutex[NODE]);
1561 	mutex_init(&sbi->wio_mutex[DATA]);
1562 	spin_lock_init(&sbi->cp_lock);
1563 }
1564 
1565 static int init_percpu_info(struct f2fs_sb_info *sbi)
1566 {
1567 	int err;
1568 
1569 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1570 	if (err)
1571 		return err;
1572 
1573 	return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1574 								GFP_KERNEL);
1575 }
1576 
1577 #ifdef CONFIG_BLK_DEV_ZONED
1578 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
1579 {
1580 	struct block_device *bdev = FDEV(devi).bdev;
1581 	sector_t nr_sectors = bdev->bd_part->nr_sects;
1582 	sector_t sector = 0;
1583 	struct blk_zone *zones;
1584 	unsigned int i, nr_zones;
1585 	unsigned int n = 0;
1586 	int err = -EIO;
1587 
1588 	if (!f2fs_sb_mounted_blkzoned(sbi->sb))
1589 		return 0;
1590 
1591 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
1592 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
1593 		return -EINVAL;
1594 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
1595 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
1596 				__ilog2_u32(sbi->blocks_per_blkz))
1597 		return -EINVAL;
1598 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
1599 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
1600 					sbi->log_blocks_per_blkz;
1601 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
1602 		FDEV(devi).nr_blkz++;
1603 
1604 	FDEV(devi).blkz_type = kmalloc(FDEV(devi).nr_blkz, GFP_KERNEL);
1605 	if (!FDEV(devi).blkz_type)
1606 		return -ENOMEM;
1607 
1608 #define F2FS_REPORT_NR_ZONES   4096
1609 
1610 	zones = kcalloc(F2FS_REPORT_NR_ZONES, sizeof(struct blk_zone),
1611 			GFP_KERNEL);
1612 	if (!zones)
1613 		return -ENOMEM;
1614 
1615 	/* Get block zones type */
1616 	while (zones && sector < nr_sectors) {
1617 
1618 		nr_zones = F2FS_REPORT_NR_ZONES;
1619 		err = blkdev_report_zones(bdev, sector,
1620 					  zones, &nr_zones,
1621 					  GFP_KERNEL);
1622 		if (err)
1623 			break;
1624 		if (!nr_zones) {
1625 			err = -EIO;
1626 			break;
1627 		}
1628 
1629 		for (i = 0; i < nr_zones; i++) {
1630 			FDEV(devi).blkz_type[n] = zones[i].type;
1631 			sector += zones[i].len;
1632 			n++;
1633 		}
1634 	}
1635 
1636 	kfree(zones);
1637 
1638 	return err;
1639 }
1640 #endif
1641 
1642 /*
1643  * Read f2fs raw super block.
1644  * Because we have two copies of super block, so read both of them
1645  * to get the first valid one. If any one of them is broken, we pass
1646  * them recovery flag back to the caller.
1647  */
1648 static int read_raw_super_block(struct f2fs_sb_info *sbi,
1649 			struct f2fs_super_block **raw_super,
1650 			int *valid_super_block, int *recovery)
1651 {
1652 	struct super_block *sb = sbi->sb;
1653 	int block;
1654 	struct buffer_head *bh;
1655 	struct f2fs_super_block *super;
1656 	int err = 0;
1657 
1658 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1659 	if (!super)
1660 		return -ENOMEM;
1661 
1662 	for (block = 0; block < 2; block++) {
1663 		bh = sb_bread(sb, block);
1664 		if (!bh) {
1665 			f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1666 				block + 1);
1667 			err = -EIO;
1668 			continue;
1669 		}
1670 
1671 		/* sanity checking of raw super */
1672 		if (sanity_check_raw_super(sbi, bh)) {
1673 			f2fs_msg(sb, KERN_ERR,
1674 				"Can't find valid F2FS filesystem in %dth superblock",
1675 				block + 1);
1676 			err = -EINVAL;
1677 			brelse(bh);
1678 			continue;
1679 		}
1680 
1681 		if (!*raw_super) {
1682 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1683 							sizeof(*super));
1684 			*valid_super_block = block;
1685 			*raw_super = super;
1686 		}
1687 		brelse(bh);
1688 	}
1689 
1690 	/* Fail to read any one of the superblocks*/
1691 	if (err < 0)
1692 		*recovery = 1;
1693 
1694 	/* No valid superblock */
1695 	if (!*raw_super)
1696 		kfree(super);
1697 	else
1698 		err = 0;
1699 
1700 	return err;
1701 }
1702 
1703 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1704 {
1705 	struct buffer_head *bh;
1706 	int err;
1707 
1708 	if ((recover && f2fs_readonly(sbi->sb)) ||
1709 				bdev_read_only(sbi->sb->s_bdev)) {
1710 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1711 		return -EROFS;
1712 	}
1713 
1714 	/* write back-up superblock first */
1715 	bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1716 	if (!bh)
1717 		return -EIO;
1718 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1719 	brelse(bh);
1720 
1721 	/* if we are in recovery path, skip writing valid superblock */
1722 	if (recover || err)
1723 		return err;
1724 
1725 	/* write current valid superblock */
1726 	bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1727 	if (!bh)
1728 		return -EIO;
1729 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1730 	brelse(bh);
1731 	return err;
1732 }
1733 
1734 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
1735 {
1736 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1737 	unsigned int max_devices = MAX_DEVICES;
1738 	int i;
1739 
1740 	/* Initialize single device information */
1741 	if (!RDEV(0).path[0]) {
1742 		if (!bdev_is_zoned(sbi->sb->s_bdev))
1743 			return 0;
1744 		max_devices = 1;
1745 	}
1746 
1747 	/*
1748 	 * Initialize multiple devices information, or single
1749 	 * zoned block device information.
1750 	 */
1751 	sbi->devs = kcalloc(max_devices, sizeof(struct f2fs_dev_info),
1752 				GFP_KERNEL);
1753 	if (!sbi->devs)
1754 		return -ENOMEM;
1755 
1756 	for (i = 0; i < max_devices; i++) {
1757 
1758 		if (i > 0 && !RDEV(i).path[0])
1759 			break;
1760 
1761 		if (max_devices == 1) {
1762 			/* Single zoned block device mount */
1763 			FDEV(0).bdev =
1764 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
1765 					sbi->sb->s_mode, sbi->sb->s_type);
1766 		} else {
1767 			/* Multi-device mount */
1768 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
1769 			FDEV(i).total_segments =
1770 				le32_to_cpu(RDEV(i).total_segments);
1771 			if (i == 0) {
1772 				FDEV(i).start_blk = 0;
1773 				FDEV(i).end_blk = FDEV(i).start_blk +
1774 				    (FDEV(i).total_segments <<
1775 				    sbi->log_blocks_per_seg) - 1 +
1776 				    le32_to_cpu(raw_super->segment0_blkaddr);
1777 			} else {
1778 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
1779 				FDEV(i).end_blk = FDEV(i).start_blk +
1780 					(FDEV(i).total_segments <<
1781 					sbi->log_blocks_per_seg) - 1;
1782 			}
1783 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
1784 					sbi->sb->s_mode, sbi->sb->s_type);
1785 		}
1786 		if (IS_ERR(FDEV(i).bdev))
1787 			return PTR_ERR(FDEV(i).bdev);
1788 
1789 		/* to release errored devices */
1790 		sbi->s_ndevs = i + 1;
1791 
1792 #ifdef CONFIG_BLK_DEV_ZONED
1793 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
1794 				!f2fs_sb_mounted_blkzoned(sbi->sb)) {
1795 			f2fs_msg(sbi->sb, KERN_ERR,
1796 				"Zoned block device feature not enabled\n");
1797 			return -EINVAL;
1798 		}
1799 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
1800 			if (init_blkz_info(sbi, i)) {
1801 				f2fs_msg(sbi->sb, KERN_ERR,
1802 					"Failed to initialize F2FS blkzone information");
1803 				return -EINVAL;
1804 			}
1805 			if (max_devices == 1)
1806 				break;
1807 			f2fs_msg(sbi->sb, KERN_INFO,
1808 				"Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
1809 				i, FDEV(i).path,
1810 				FDEV(i).total_segments,
1811 				FDEV(i).start_blk, FDEV(i).end_blk,
1812 				bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
1813 				"Host-aware" : "Host-managed");
1814 			continue;
1815 		}
1816 #endif
1817 		f2fs_msg(sbi->sb, KERN_INFO,
1818 			"Mount Device [%2d]: %20s, %8u, %8x - %8x",
1819 				i, FDEV(i).path,
1820 				FDEV(i).total_segments,
1821 				FDEV(i).start_blk, FDEV(i).end_blk);
1822 	}
1823 	f2fs_msg(sbi->sb, KERN_INFO,
1824 			"IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
1825 	return 0;
1826 }
1827 
1828 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1829 {
1830 	struct f2fs_sb_info *sbi;
1831 	struct f2fs_super_block *raw_super;
1832 	struct inode *root;
1833 	int err;
1834 	bool retry = true, need_fsck = false;
1835 	char *options = NULL;
1836 	int recovery, i, valid_super_block;
1837 	struct curseg_info *seg_i;
1838 
1839 try_onemore:
1840 	err = -EINVAL;
1841 	raw_super = NULL;
1842 	valid_super_block = -1;
1843 	recovery = 0;
1844 
1845 	/* allocate memory for f2fs-specific super block info */
1846 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1847 	if (!sbi)
1848 		return -ENOMEM;
1849 
1850 	sbi->sb = sb;
1851 
1852 	/* Load the checksum driver */
1853 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1854 	if (IS_ERR(sbi->s_chksum_driver)) {
1855 		f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1856 		err = PTR_ERR(sbi->s_chksum_driver);
1857 		sbi->s_chksum_driver = NULL;
1858 		goto free_sbi;
1859 	}
1860 
1861 	/* set a block size */
1862 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1863 		f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1864 		goto free_sbi;
1865 	}
1866 
1867 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1868 								&recovery);
1869 	if (err)
1870 		goto free_sbi;
1871 
1872 	sb->s_fs_info = sbi;
1873 	sbi->raw_super = raw_super;
1874 
1875 	/*
1876 	 * The BLKZONED feature indicates that the drive was formatted with
1877 	 * zone alignment optimization. This is optional for host-aware
1878 	 * devices, but mandatory for host-managed zoned block devices.
1879 	 */
1880 #ifndef CONFIG_BLK_DEV_ZONED
1881 	if (f2fs_sb_mounted_blkzoned(sb)) {
1882 		f2fs_msg(sb, KERN_ERR,
1883 			 "Zoned block device support is not enabled\n");
1884 		goto free_sb_buf;
1885 	}
1886 #endif
1887 	default_options(sbi);
1888 	/* parse mount options */
1889 	options = kstrdup((const char *)data, GFP_KERNEL);
1890 	if (data && !options) {
1891 		err = -ENOMEM;
1892 		goto free_sb_buf;
1893 	}
1894 
1895 	err = parse_options(sb, options);
1896 	if (err)
1897 		goto free_options;
1898 
1899 	sbi->max_file_blocks = max_file_blocks();
1900 	sb->s_maxbytes = sbi->max_file_blocks <<
1901 				le32_to_cpu(raw_super->log_blocksize);
1902 	sb->s_max_links = F2FS_LINK_MAX;
1903 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1904 
1905 	sb->s_op = &f2fs_sops;
1906 	sb->s_cop = &f2fs_cryptops;
1907 	sb->s_xattr = f2fs_xattr_handlers;
1908 	sb->s_export_op = &f2fs_export_ops;
1909 	sb->s_magic = F2FS_SUPER_MAGIC;
1910 	sb->s_time_gran = 1;
1911 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1912 		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1913 	memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1914 
1915 	/* init f2fs-specific super block info */
1916 	sbi->valid_super_block = valid_super_block;
1917 	mutex_init(&sbi->gc_mutex);
1918 	mutex_init(&sbi->cp_mutex);
1919 	init_rwsem(&sbi->node_write);
1920 
1921 	/* disallow all the data/node/meta page writes */
1922 	set_sbi_flag(sbi, SBI_POR_DOING);
1923 	spin_lock_init(&sbi->stat_lock);
1924 
1925 	init_rwsem(&sbi->read_io.io_rwsem);
1926 	sbi->read_io.sbi = sbi;
1927 	sbi->read_io.bio = NULL;
1928 	for (i = 0; i < NR_PAGE_TYPE; i++) {
1929 		init_rwsem(&sbi->write_io[i].io_rwsem);
1930 		sbi->write_io[i].sbi = sbi;
1931 		sbi->write_io[i].bio = NULL;
1932 	}
1933 
1934 	init_rwsem(&sbi->cp_rwsem);
1935 	init_waitqueue_head(&sbi->cp_wait);
1936 	init_sb_info(sbi);
1937 
1938 	err = init_percpu_info(sbi);
1939 	if (err)
1940 		goto free_options;
1941 
1942 	if (F2FS_IO_SIZE(sbi) > 1) {
1943 		sbi->write_io_dummy =
1944 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
1945 		if (!sbi->write_io_dummy)
1946 			goto free_options;
1947 	}
1948 
1949 	/* get an inode for meta space */
1950 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1951 	if (IS_ERR(sbi->meta_inode)) {
1952 		f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1953 		err = PTR_ERR(sbi->meta_inode);
1954 		goto free_io_dummy;
1955 	}
1956 
1957 	err = get_valid_checkpoint(sbi);
1958 	if (err) {
1959 		f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1960 		goto free_meta_inode;
1961 	}
1962 
1963 	/* Initialize device list */
1964 	err = f2fs_scan_devices(sbi);
1965 	if (err) {
1966 		f2fs_msg(sb, KERN_ERR, "Failed to find devices");
1967 		goto free_devices;
1968 	}
1969 
1970 	sbi->total_valid_node_count =
1971 				le32_to_cpu(sbi->ckpt->valid_node_count);
1972 	percpu_counter_set(&sbi->total_valid_inode_count,
1973 				le32_to_cpu(sbi->ckpt->valid_inode_count));
1974 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1975 	sbi->total_valid_block_count =
1976 				le64_to_cpu(sbi->ckpt->valid_block_count);
1977 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1978 
1979 	for (i = 0; i < NR_INODE_TYPE; i++) {
1980 		INIT_LIST_HEAD(&sbi->inode_list[i]);
1981 		spin_lock_init(&sbi->inode_lock[i]);
1982 	}
1983 
1984 	init_extent_cache_info(sbi);
1985 
1986 	init_ino_entry_info(sbi);
1987 
1988 	/* setup f2fs internal modules */
1989 	err = build_segment_manager(sbi);
1990 	if (err) {
1991 		f2fs_msg(sb, KERN_ERR,
1992 			"Failed to initialize F2FS segment manager");
1993 		goto free_sm;
1994 	}
1995 	err = build_node_manager(sbi);
1996 	if (err) {
1997 		f2fs_msg(sb, KERN_ERR,
1998 			"Failed to initialize F2FS node manager");
1999 		goto free_nm;
2000 	}
2001 
2002 	/* For write statistics */
2003 	if (sb->s_bdev->bd_part)
2004 		sbi->sectors_written_start =
2005 			(u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
2006 
2007 	/* Read accumulated write IO statistics if exists */
2008 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
2009 	if (__exist_node_summaries(sbi))
2010 		sbi->kbytes_written =
2011 			le64_to_cpu(seg_i->journal->info.kbytes_written);
2012 
2013 	build_gc_manager(sbi);
2014 
2015 	/* get an inode for node space */
2016 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
2017 	if (IS_ERR(sbi->node_inode)) {
2018 		f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
2019 		err = PTR_ERR(sbi->node_inode);
2020 		goto free_nm;
2021 	}
2022 
2023 	f2fs_join_shrinker(sbi);
2024 
2025 	/* if there are nt orphan nodes free them */
2026 	err = recover_orphan_inodes(sbi);
2027 	if (err)
2028 		goto free_node_inode;
2029 
2030 	/* read root inode and dentry */
2031 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
2032 	if (IS_ERR(root)) {
2033 		f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
2034 		err = PTR_ERR(root);
2035 		goto free_node_inode;
2036 	}
2037 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2038 		iput(root);
2039 		err = -EINVAL;
2040 		goto free_node_inode;
2041 	}
2042 
2043 	sb->s_root = d_make_root(root); /* allocate root dentry */
2044 	if (!sb->s_root) {
2045 		err = -ENOMEM;
2046 		goto free_root_inode;
2047 	}
2048 
2049 	err = f2fs_build_stats(sbi);
2050 	if (err)
2051 		goto free_root_inode;
2052 
2053 	if (f2fs_proc_root)
2054 		sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
2055 
2056 	if (sbi->s_proc) {
2057 		proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
2058 				 &f2fs_seq_segment_info_fops, sb);
2059 		proc_create_data("segment_bits", S_IRUGO, sbi->s_proc,
2060 				 &f2fs_seq_segment_bits_fops, sb);
2061 	}
2062 
2063 	sbi->s_kobj.kset = f2fs_kset;
2064 	init_completion(&sbi->s_kobj_unregister);
2065 	err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
2066 							"%s", sb->s_id);
2067 	if (err)
2068 		goto free_proc;
2069 
2070 	/* recover fsynced data */
2071 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
2072 		/*
2073 		 * mount should be failed, when device has readonly mode, and
2074 		 * previous checkpoint was not done by clean system shutdown.
2075 		 */
2076 		if (bdev_read_only(sb->s_bdev) &&
2077 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
2078 			err = -EROFS;
2079 			goto free_kobj;
2080 		}
2081 
2082 		if (need_fsck)
2083 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2084 
2085 		if (!retry)
2086 			goto skip_recovery;
2087 
2088 		err = recover_fsync_data(sbi, false);
2089 		if (err < 0) {
2090 			need_fsck = true;
2091 			f2fs_msg(sb, KERN_ERR,
2092 				"Cannot recover all fsync data errno=%d", err);
2093 			goto free_kobj;
2094 		}
2095 	} else {
2096 		err = recover_fsync_data(sbi, true);
2097 
2098 		if (!f2fs_readonly(sb) && err > 0) {
2099 			err = -EINVAL;
2100 			f2fs_msg(sb, KERN_ERR,
2101 				"Need to recover fsync data");
2102 			goto free_kobj;
2103 		}
2104 	}
2105 skip_recovery:
2106 	/* recover_fsync_data() cleared this already */
2107 	clear_sbi_flag(sbi, SBI_POR_DOING);
2108 
2109 	/*
2110 	 * If filesystem is not mounted as read-only then
2111 	 * do start the gc_thread.
2112 	 */
2113 	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
2114 		/* After POR, we can run background GC thread.*/
2115 		err = start_gc_thread(sbi);
2116 		if (err)
2117 			goto free_kobj;
2118 	}
2119 	kfree(options);
2120 
2121 	/* recover broken superblock */
2122 	if (recovery) {
2123 		err = f2fs_commit_super(sbi, true);
2124 		f2fs_msg(sb, KERN_INFO,
2125 			"Try to recover %dth superblock, ret: %d",
2126 			sbi->valid_super_block ? 1 : 2, err);
2127 	}
2128 
2129 	f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
2130 				cur_cp_version(F2FS_CKPT(sbi)));
2131 	f2fs_update_time(sbi, CP_TIME);
2132 	f2fs_update_time(sbi, REQ_TIME);
2133 	return 0;
2134 
2135 free_kobj:
2136 	f2fs_sync_inode_meta(sbi);
2137 	kobject_del(&sbi->s_kobj);
2138 	kobject_put(&sbi->s_kobj);
2139 	wait_for_completion(&sbi->s_kobj_unregister);
2140 free_proc:
2141 	if (sbi->s_proc) {
2142 		remove_proc_entry("segment_info", sbi->s_proc);
2143 		remove_proc_entry("segment_bits", sbi->s_proc);
2144 		remove_proc_entry(sb->s_id, f2fs_proc_root);
2145 	}
2146 	f2fs_destroy_stats(sbi);
2147 free_root_inode:
2148 	dput(sb->s_root);
2149 	sb->s_root = NULL;
2150 free_node_inode:
2151 	truncate_inode_pages_final(NODE_MAPPING(sbi));
2152 	mutex_lock(&sbi->umount_mutex);
2153 	release_ino_entry(sbi, true);
2154 	f2fs_leave_shrinker(sbi);
2155 	/*
2156 	 * Some dirty meta pages can be produced by recover_orphan_inodes()
2157 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
2158 	 * followed by write_checkpoint() through f2fs_write_node_pages(), which
2159 	 * falls into an infinite loop in sync_meta_pages().
2160 	 */
2161 	truncate_inode_pages_final(META_MAPPING(sbi));
2162 	iput(sbi->node_inode);
2163 	mutex_unlock(&sbi->umount_mutex);
2164 free_nm:
2165 	destroy_node_manager(sbi);
2166 free_sm:
2167 	destroy_segment_manager(sbi);
2168 free_devices:
2169 	destroy_device_list(sbi);
2170 	kfree(sbi->ckpt);
2171 free_meta_inode:
2172 	make_bad_inode(sbi->meta_inode);
2173 	iput(sbi->meta_inode);
2174 free_io_dummy:
2175 	mempool_destroy(sbi->write_io_dummy);
2176 free_options:
2177 	destroy_percpu_info(sbi);
2178 	kfree(options);
2179 free_sb_buf:
2180 	kfree(raw_super);
2181 free_sbi:
2182 	if (sbi->s_chksum_driver)
2183 		crypto_free_shash(sbi->s_chksum_driver);
2184 	kfree(sbi);
2185 
2186 	/* give only one another chance */
2187 	if (retry) {
2188 		retry = false;
2189 		shrink_dcache_sb(sb);
2190 		goto try_onemore;
2191 	}
2192 	return err;
2193 }
2194 
2195 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
2196 			const char *dev_name, void *data)
2197 {
2198 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
2199 }
2200 
2201 static void kill_f2fs_super(struct super_block *sb)
2202 {
2203 	if (sb->s_root)
2204 		set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
2205 	kill_block_super(sb);
2206 }
2207 
2208 static struct file_system_type f2fs_fs_type = {
2209 	.owner		= THIS_MODULE,
2210 	.name		= "f2fs",
2211 	.mount		= f2fs_mount,
2212 	.kill_sb	= kill_f2fs_super,
2213 	.fs_flags	= FS_REQUIRES_DEV,
2214 };
2215 MODULE_ALIAS_FS("f2fs");
2216 
2217 static int __init init_inodecache(void)
2218 {
2219 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
2220 			sizeof(struct f2fs_inode_info), 0,
2221 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
2222 	if (!f2fs_inode_cachep)
2223 		return -ENOMEM;
2224 	return 0;
2225 }
2226 
2227 static void destroy_inodecache(void)
2228 {
2229 	/*
2230 	 * Make sure all delayed rcu free inodes are flushed before we
2231 	 * destroy cache.
2232 	 */
2233 	rcu_barrier();
2234 	kmem_cache_destroy(f2fs_inode_cachep);
2235 }
2236 
2237 static int __init init_f2fs_fs(void)
2238 {
2239 	int err;
2240 
2241 	f2fs_build_trace_ios();
2242 
2243 	err = init_inodecache();
2244 	if (err)
2245 		goto fail;
2246 	err = create_node_manager_caches();
2247 	if (err)
2248 		goto free_inodecache;
2249 	err = create_segment_manager_caches();
2250 	if (err)
2251 		goto free_node_manager_caches;
2252 	err = create_checkpoint_caches();
2253 	if (err)
2254 		goto free_segment_manager_caches;
2255 	err = create_extent_cache();
2256 	if (err)
2257 		goto free_checkpoint_caches;
2258 	f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
2259 	if (!f2fs_kset) {
2260 		err = -ENOMEM;
2261 		goto free_extent_cache;
2262 	}
2263 	err = register_shrinker(&f2fs_shrinker_info);
2264 	if (err)
2265 		goto free_kset;
2266 
2267 	err = register_filesystem(&f2fs_fs_type);
2268 	if (err)
2269 		goto free_shrinker;
2270 	err = f2fs_create_root_stats();
2271 	if (err)
2272 		goto free_filesystem;
2273 	f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
2274 	return 0;
2275 
2276 free_filesystem:
2277 	unregister_filesystem(&f2fs_fs_type);
2278 free_shrinker:
2279 	unregister_shrinker(&f2fs_shrinker_info);
2280 free_kset:
2281 	kset_unregister(f2fs_kset);
2282 free_extent_cache:
2283 	destroy_extent_cache();
2284 free_checkpoint_caches:
2285 	destroy_checkpoint_caches();
2286 free_segment_manager_caches:
2287 	destroy_segment_manager_caches();
2288 free_node_manager_caches:
2289 	destroy_node_manager_caches();
2290 free_inodecache:
2291 	destroy_inodecache();
2292 fail:
2293 	return err;
2294 }
2295 
2296 static void __exit exit_f2fs_fs(void)
2297 {
2298 	remove_proc_entry("fs/f2fs", NULL);
2299 	f2fs_destroy_root_stats();
2300 	unregister_filesystem(&f2fs_fs_type);
2301 	unregister_shrinker(&f2fs_shrinker_info);
2302 	kset_unregister(f2fs_kset);
2303 	destroy_extent_cache();
2304 	destroy_checkpoint_caches();
2305 	destroy_segment_manager_caches();
2306 	destroy_node_manager_caches();
2307 	destroy_inodecache();
2308 	f2fs_destroy_trace_ios();
2309 }
2310 
2311 module_init(init_f2fs_fs)
2312 module_exit(exit_f2fs_fs)
2313 
2314 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2315 MODULE_DESCRIPTION("Flash Friendly File System");
2316 MODULE_LICENSE("GPL");
2317 
2318