1 /* 2 * fs/f2fs/super.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/fs.h> 14 #include <linux/statfs.h> 15 #include <linux/buffer_head.h> 16 #include <linux/backing-dev.h> 17 #include <linux/kthread.h> 18 #include <linux/parser.h> 19 #include <linux/mount.h> 20 #include <linux/seq_file.h> 21 #include <linux/proc_fs.h> 22 #include <linux/random.h> 23 #include <linux/exportfs.h> 24 #include <linux/blkdev.h> 25 #include <linux/f2fs_fs.h> 26 #include <linux/sysfs.h> 27 28 #include "f2fs.h" 29 #include "node.h" 30 #include "segment.h" 31 #include "xattr.h" 32 #include "gc.h" 33 #include "trace.h" 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/f2fs.h> 37 38 static struct proc_dir_entry *f2fs_proc_root; 39 static struct kmem_cache *f2fs_inode_cachep; 40 static struct kset *f2fs_kset; 41 42 #ifdef CONFIG_F2FS_FAULT_INJECTION 43 44 char *fault_name[FAULT_MAX] = { 45 [FAULT_KMALLOC] = "kmalloc", 46 [FAULT_PAGE_ALLOC] = "page alloc", 47 [FAULT_ALLOC_NID] = "alloc nid", 48 [FAULT_ORPHAN] = "orphan", 49 [FAULT_BLOCK] = "no more block", 50 [FAULT_DIR_DEPTH] = "too big dir depth", 51 [FAULT_EVICT_INODE] = "evict_inode fail", 52 [FAULT_IO] = "IO error", 53 [FAULT_CHECKPOINT] = "checkpoint error", 54 }; 55 56 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, 57 unsigned int rate) 58 { 59 struct f2fs_fault_info *ffi = &sbi->fault_info; 60 61 if (rate) { 62 atomic_set(&ffi->inject_ops, 0); 63 ffi->inject_rate = rate; 64 ffi->inject_type = (1 << FAULT_MAX) - 1; 65 } else { 66 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 67 } 68 } 69 #endif 70 71 /* f2fs-wide shrinker description */ 72 static struct shrinker f2fs_shrinker_info = { 73 .scan_objects = f2fs_shrink_scan, 74 .count_objects = f2fs_shrink_count, 75 .seeks = DEFAULT_SEEKS, 76 }; 77 78 enum { 79 Opt_gc_background, 80 Opt_disable_roll_forward, 81 Opt_norecovery, 82 Opt_discard, 83 Opt_nodiscard, 84 Opt_noheap, 85 Opt_user_xattr, 86 Opt_nouser_xattr, 87 Opt_acl, 88 Opt_noacl, 89 Opt_active_logs, 90 Opt_disable_ext_identify, 91 Opt_inline_xattr, 92 Opt_noinline_xattr, 93 Opt_inline_data, 94 Opt_inline_dentry, 95 Opt_noinline_dentry, 96 Opt_flush_merge, 97 Opt_noflush_merge, 98 Opt_nobarrier, 99 Opt_fastboot, 100 Opt_extent_cache, 101 Opt_noextent_cache, 102 Opt_noinline_data, 103 Opt_data_flush, 104 Opt_mode, 105 Opt_io_size_bits, 106 Opt_fault_injection, 107 Opt_lazytime, 108 Opt_nolazytime, 109 Opt_err, 110 }; 111 112 static match_table_t f2fs_tokens = { 113 {Opt_gc_background, "background_gc=%s"}, 114 {Opt_disable_roll_forward, "disable_roll_forward"}, 115 {Opt_norecovery, "norecovery"}, 116 {Opt_discard, "discard"}, 117 {Opt_nodiscard, "nodiscard"}, 118 {Opt_noheap, "no_heap"}, 119 {Opt_user_xattr, "user_xattr"}, 120 {Opt_nouser_xattr, "nouser_xattr"}, 121 {Opt_acl, "acl"}, 122 {Opt_noacl, "noacl"}, 123 {Opt_active_logs, "active_logs=%u"}, 124 {Opt_disable_ext_identify, "disable_ext_identify"}, 125 {Opt_inline_xattr, "inline_xattr"}, 126 {Opt_noinline_xattr, "noinline_xattr"}, 127 {Opt_inline_data, "inline_data"}, 128 {Opt_inline_dentry, "inline_dentry"}, 129 {Opt_noinline_dentry, "noinline_dentry"}, 130 {Opt_flush_merge, "flush_merge"}, 131 {Opt_noflush_merge, "noflush_merge"}, 132 {Opt_nobarrier, "nobarrier"}, 133 {Opt_fastboot, "fastboot"}, 134 {Opt_extent_cache, "extent_cache"}, 135 {Opt_noextent_cache, "noextent_cache"}, 136 {Opt_noinline_data, "noinline_data"}, 137 {Opt_data_flush, "data_flush"}, 138 {Opt_mode, "mode=%s"}, 139 {Opt_io_size_bits, "io_bits=%u"}, 140 {Opt_fault_injection, "fault_injection=%u"}, 141 {Opt_lazytime, "lazytime"}, 142 {Opt_nolazytime, "nolazytime"}, 143 {Opt_err, NULL}, 144 }; 145 146 /* Sysfs support for f2fs */ 147 enum { 148 GC_THREAD, /* struct f2fs_gc_thread */ 149 SM_INFO, /* struct f2fs_sm_info */ 150 DCC_INFO, /* struct discard_cmd_control */ 151 NM_INFO, /* struct f2fs_nm_info */ 152 F2FS_SBI, /* struct f2fs_sb_info */ 153 #ifdef CONFIG_F2FS_FAULT_INJECTION 154 FAULT_INFO_RATE, /* struct f2fs_fault_info */ 155 FAULT_INFO_TYPE, /* struct f2fs_fault_info */ 156 #endif 157 }; 158 159 struct f2fs_attr { 160 struct attribute attr; 161 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *); 162 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *, 163 const char *, size_t); 164 int struct_type; 165 int offset; 166 }; 167 168 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type) 169 { 170 if (struct_type == GC_THREAD) 171 return (unsigned char *)sbi->gc_thread; 172 else if (struct_type == SM_INFO) 173 return (unsigned char *)SM_I(sbi); 174 else if (struct_type == DCC_INFO) 175 return (unsigned char *)SM_I(sbi)->dcc_info; 176 else if (struct_type == NM_INFO) 177 return (unsigned char *)NM_I(sbi); 178 else if (struct_type == F2FS_SBI) 179 return (unsigned char *)sbi; 180 #ifdef CONFIG_F2FS_FAULT_INJECTION 181 else if (struct_type == FAULT_INFO_RATE || 182 struct_type == FAULT_INFO_TYPE) 183 return (unsigned char *)&sbi->fault_info; 184 #endif 185 return NULL; 186 } 187 188 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a, 189 struct f2fs_sb_info *sbi, char *buf) 190 { 191 struct super_block *sb = sbi->sb; 192 193 if (!sb->s_bdev->bd_part) 194 return snprintf(buf, PAGE_SIZE, "0\n"); 195 196 return snprintf(buf, PAGE_SIZE, "%llu\n", 197 (unsigned long long)(sbi->kbytes_written + 198 BD_PART_WRITTEN(sbi))); 199 } 200 201 static ssize_t f2fs_sbi_show(struct f2fs_attr *a, 202 struct f2fs_sb_info *sbi, char *buf) 203 { 204 unsigned char *ptr = NULL; 205 unsigned int *ui; 206 207 ptr = __struct_ptr(sbi, a->struct_type); 208 if (!ptr) 209 return -EINVAL; 210 211 ui = (unsigned int *)(ptr + a->offset); 212 213 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 214 } 215 216 static ssize_t f2fs_sbi_store(struct f2fs_attr *a, 217 struct f2fs_sb_info *sbi, 218 const char *buf, size_t count) 219 { 220 unsigned char *ptr; 221 unsigned long t; 222 unsigned int *ui; 223 ssize_t ret; 224 225 ptr = __struct_ptr(sbi, a->struct_type); 226 if (!ptr) 227 return -EINVAL; 228 229 ui = (unsigned int *)(ptr + a->offset); 230 231 ret = kstrtoul(skip_spaces(buf), 0, &t); 232 if (ret < 0) 233 return ret; 234 #ifdef CONFIG_F2FS_FAULT_INJECTION 235 if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX)) 236 return -EINVAL; 237 #endif 238 *ui = t; 239 return count; 240 } 241 242 static ssize_t f2fs_attr_show(struct kobject *kobj, 243 struct attribute *attr, char *buf) 244 { 245 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 246 s_kobj); 247 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 248 249 return a->show ? a->show(a, sbi, buf) : 0; 250 } 251 252 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr, 253 const char *buf, size_t len) 254 { 255 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 256 s_kobj); 257 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 258 259 return a->store ? a->store(a, sbi, buf, len) : 0; 260 } 261 262 static void f2fs_sb_release(struct kobject *kobj) 263 { 264 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 265 s_kobj); 266 complete(&sbi->s_kobj_unregister); 267 } 268 269 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \ 270 static struct f2fs_attr f2fs_attr_##_name = { \ 271 .attr = {.name = __stringify(_name), .mode = _mode }, \ 272 .show = _show, \ 273 .store = _store, \ 274 .struct_type = _struct_type, \ 275 .offset = _offset \ 276 } 277 278 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \ 279 F2FS_ATTR_OFFSET(struct_type, name, 0644, \ 280 f2fs_sbi_show, f2fs_sbi_store, \ 281 offsetof(struct struct_name, elname)) 282 283 #define F2FS_GENERAL_RO_ATTR(name) \ 284 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL) 285 286 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time); 287 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time); 288 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time); 289 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle); 290 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments); 291 F2FS_RW_ATTR(DCC_INFO, discard_cmd_control, max_small_discards, max_discards); 292 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections); 293 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy); 294 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util); 295 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks); 296 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh); 297 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages); 298 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio); 299 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search); 300 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level); 301 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]); 302 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]); 303 #ifdef CONFIG_F2FS_FAULT_INJECTION 304 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate); 305 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type); 306 #endif 307 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes); 308 309 #define ATTR_LIST(name) (&f2fs_attr_##name.attr) 310 static struct attribute *f2fs_attrs[] = { 311 ATTR_LIST(gc_min_sleep_time), 312 ATTR_LIST(gc_max_sleep_time), 313 ATTR_LIST(gc_no_gc_sleep_time), 314 ATTR_LIST(gc_idle), 315 ATTR_LIST(reclaim_segments), 316 ATTR_LIST(max_small_discards), 317 ATTR_LIST(batched_trim_sections), 318 ATTR_LIST(ipu_policy), 319 ATTR_LIST(min_ipu_util), 320 ATTR_LIST(min_fsync_blocks), 321 ATTR_LIST(max_victim_search), 322 ATTR_LIST(dir_level), 323 ATTR_LIST(ram_thresh), 324 ATTR_LIST(ra_nid_pages), 325 ATTR_LIST(dirty_nats_ratio), 326 ATTR_LIST(cp_interval), 327 ATTR_LIST(idle_interval), 328 #ifdef CONFIG_F2FS_FAULT_INJECTION 329 ATTR_LIST(inject_rate), 330 ATTR_LIST(inject_type), 331 #endif 332 ATTR_LIST(lifetime_write_kbytes), 333 NULL, 334 }; 335 336 static const struct sysfs_ops f2fs_attr_ops = { 337 .show = f2fs_attr_show, 338 .store = f2fs_attr_store, 339 }; 340 341 static struct kobj_type f2fs_ktype = { 342 .default_attrs = f2fs_attrs, 343 .sysfs_ops = &f2fs_attr_ops, 344 .release = f2fs_sb_release, 345 }; 346 347 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) 348 { 349 struct va_format vaf; 350 va_list args; 351 352 va_start(args, fmt); 353 vaf.fmt = fmt; 354 vaf.va = &args; 355 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); 356 va_end(args); 357 } 358 359 static void init_once(void *foo) 360 { 361 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 362 363 inode_init_once(&fi->vfs_inode); 364 } 365 366 static int parse_options(struct super_block *sb, char *options) 367 { 368 struct f2fs_sb_info *sbi = F2FS_SB(sb); 369 struct request_queue *q; 370 substring_t args[MAX_OPT_ARGS]; 371 char *p, *name; 372 int arg = 0; 373 374 if (!options) 375 return 0; 376 377 while ((p = strsep(&options, ",")) != NULL) { 378 int token; 379 if (!*p) 380 continue; 381 /* 382 * Initialize args struct so we know whether arg was 383 * found; some options take optional arguments. 384 */ 385 args[0].to = args[0].from = NULL; 386 token = match_token(p, f2fs_tokens, args); 387 388 switch (token) { 389 case Opt_gc_background: 390 name = match_strdup(&args[0]); 391 392 if (!name) 393 return -ENOMEM; 394 if (strlen(name) == 2 && !strncmp(name, "on", 2)) { 395 set_opt(sbi, BG_GC); 396 clear_opt(sbi, FORCE_FG_GC); 397 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) { 398 clear_opt(sbi, BG_GC); 399 clear_opt(sbi, FORCE_FG_GC); 400 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) { 401 set_opt(sbi, BG_GC); 402 set_opt(sbi, FORCE_FG_GC); 403 } else { 404 kfree(name); 405 return -EINVAL; 406 } 407 kfree(name); 408 break; 409 case Opt_disable_roll_forward: 410 set_opt(sbi, DISABLE_ROLL_FORWARD); 411 break; 412 case Opt_norecovery: 413 /* this option mounts f2fs with ro */ 414 set_opt(sbi, DISABLE_ROLL_FORWARD); 415 if (!f2fs_readonly(sb)) 416 return -EINVAL; 417 break; 418 case Opt_discard: 419 q = bdev_get_queue(sb->s_bdev); 420 if (blk_queue_discard(q)) { 421 set_opt(sbi, DISCARD); 422 } else if (!f2fs_sb_mounted_blkzoned(sb)) { 423 f2fs_msg(sb, KERN_WARNING, 424 "mounting with \"discard\" option, but " 425 "the device does not support discard"); 426 } 427 break; 428 case Opt_nodiscard: 429 if (f2fs_sb_mounted_blkzoned(sb)) { 430 f2fs_msg(sb, KERN_WARNING, 431 "discard is required for zoned block devices"); 432 return -EINVAL; 433 } 434 clear_opt(sbi, DISCARD); 435 break; 436 case Opt_noheap: 437 set_opt(sbi, NOHEAP); 438 break; 439 #ifdef CONFIG_F2FS_FS_XATTR 440 case Opt_user_xattr: 441 set_opt(sbi, XATTR_USER); 442 break; 443 case Opt_nouser_xattr: 444 clear_opt(sbi, XATTR_USER); 445 break; 446 case Opt_inline_xattr: 447 set_opt(sbi, INLINE_XATTR); 448 break; 449 case Opt_noinline_xattr: 450 clear_opt(sbi, INLINE_XATTR); 451 break; 452 #else 453 case Opt_user_xattr: 454 f2fs_msg(sb, KERN_INFO, 455 "user_xattr options not supported"); 456 break; 457 case Opt_nouser_xattr: 458 f2fs_msg(sb, KERN_INFO, 459 "nouser_xattr options not supported"); 460 break; 461 case Opt_inline_xattr: 462 f2fs_msg(sb, KERN_INFO, 463 "inline_xattr options not supported"); 464 break; 465 case Opt_noinline_xattr: 466 f2fs_msg(sb, KERN_INFO, 467 "noinline_xattr options not supported"); 468 break; 469 #endif 470 #ifdef CONFIG_F2FS_FS_POSIX_ACL 471 case Opt_acl: 472 set_opt(sbi, POSIX_ACL); 473 break; 474 case Opt_noacl: 475 clear_opt(sbi, POSIX_ACL); 476 break; 477 #else 478 case Opt_acl: 479 f2fs_msg(sb, KERN_INFO, "acl options not supported"); 480 break; 481 case Opt_noacl: 482 f2fs_msg(sb, KERN_INFO, "noacl options not supported"); 483 break; 484 #endif 485 case Opt_active_logs: 486 if (args->from && match_int(args, &arg)) 487 return -EINVAL; 488 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 489 return -EINVAL; 490 sbi->active_logs = arg; 491 break; 492 case Opt_disable_ext_identify: 493 set_opt(sbi, DISABLE_EXT_IDENTIFY); 494 break; 495 case Opt_inline_data: 496 set_opt(sbi, INLINE_DATA); 497 break; 498 case Opt_inline_dentry: 499 set_opt(sbi, INLINE_DENTRY); 500 break; 501 case Opt_noinline_dentry: 502 clear_opt(sbi, INLINE_DENTRY); 503 break; 504 case Opt_flush_merge: 505 set_opt(sbi, FLUSH_MERGE); 506 break; 507 case Opt_noflush_merge: 508 clear_opt(sbi, FLUSH_MERGE); 509 break; 510 case Opt_nobarrier: 511 set_opt(sbi, NOBARRIER); 512 break; 513 case Opt_fastboot: 514 set_opt(sbi, FASTBOOT); 515 break; 516 case Opt_extent_cache: 517 set_opt(sbi, EXTENT_CACHE); 518 break; 519 case Opt_noextent_cache: 520 clear_opt(sbi, EXTENT_CACHE); 521 break; 522 case Opt_noinline_data: 523 clear_opt(sbi, INLINE_DATA); 524 break; 525 case Opt_data_flush: 526 set_opt(sbi, DATA_FLUSH); 527 break; 528 case Opt_mode: 529 name = match_strdup(&args[0]); 530 531 if (!name) 532 return -ENOMEM; 533 if (strlen(name) == 8 && 534 !strncmp(name, "adaptive", 8)) { 535 if (f2fs_sb_mounted_blkzoned(sb)) { 536 f2fs_msg(sb, KERN_WARNING, 537 "adaptive mode is not allowed with " 538 "zoned block device feature"); 539 kfree(name); 540 return -EINVAL; 541 } 542 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 543 } else if (strlen(name) == 3 && 544 !strncmp(name, "lfs", 3)) { 545 set_opt_mode(sbi, F2FS_MOUNT_LFS); 546 } else { 547 kfree(name); 548 return -EINVAL; 549 } 550 kfree(name); 551 break; 552 case Opt_io_size_bits: 553 if (args->from && match_int(args, &arg)) 554 return -EINVAL; 555 if (arg > __ilog2_u32(BIO_MAX_PAGES)) { 556 f2fs_msg(sb, KERN_WARNING, 557 "Not support %d, larger than %d", 558 1 << arg, BIO_MAX_PAGES); 559 return -EINVAL; 560 } 561 sbi->write_io_size_bits = arg; 562 break; 563 case Opt_fault_injection: 564 if (args->from && match_int(args, &arg)) 565 return -EINVAL; 566 #ifdef CONFIG_F2FS_FAULT_INJECTION 567 f2fs_build_fault_attr(sbi, arg); 568 set_opt(sbi, FAULT_INJECTION); 569 #else 570 f2fs_msg(sb, KERN_INFO, 571 "FAULT_INJECTION was not selected"); 572 #endif 573 break; 574 case Opt_lazytime: 575 sb->s_flags |= MS_LAZYTIME; 576 break; 577 case Opt_nolazytime: 578 sb->s_flags &= ~MS_LAZYTIME; 579 break; 580 default: 581 f2fs_msg(sb, KERN_ERR, 582 "Unrecognized mount option \"%s\" or missing value", 583 p); 584 return -EINVAL; 585 } 586 } 587 588 if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) { 589 f2fs_msg(sb, KERN_ERR, 590 "Should set mode=lfs with %uKB-sized IO", 591 F2FS_IO_SIZE_KB(sbi)); 592 return -EINVAL; 593 } 594 return 0; 595 } 596 597 static struct inode *f2fs_alloc_inode(struct super_block *sb) 598 { 599 struct f2fs_inode_info *fi; 600 601 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 602 if (!fi) 603 return NULL; 604 605 init_once((void *) fi); 606 607 /* Initialize f2fs-specific inode info */ 608 fi->vfs_inode.i_version = 1; 609 atomic_set(&fi->dirty_pages, 0); 610 fi->i_current_depth = 1; 611 fi->i_advise = 0; 612 init_rwsem(&fi->i_sem); 613 INIT_LIST_HEAD(&fi->dirty_list); 614 INIT_LIST_HEAD(&fi->gdirty_list); 615 INIT_LIST_HEAD(&fi->inmem_pages); 616 mutex_init(&fi->inmem_lock); 617 init_rwsem(&fi->dio_rwsem[READ]); 618 init_rwsem(&fi->dio_rwsem[WRITE]); 619 620 /* Will be used by directory only */ 621 fi->i_dir_level = F2FS_SB(sb)->dir_level; 622 return &fi->vfs_inode; 623 } 624 625 static int f2fs_drop_inode(struct inode *inode) 626 { 627 int ret; 628 /* 629 * This is to avoid a deadlock condition like below. 630 * writeback_single_inode(inode) 631 * - f2fs_write_data_page 632 * - f2fs_gc -> iput -> evict 633 * - inode_wait_for_writeback(inode) 634 */ 635 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 636 if (!inode->i_nlink && !is_bad_inode(inode)) { 637 /* to avoid evict_inode call simultaneously */ 638 atomic_inc(&inode->i_count); 639 spin_unlock(&inode->i_lock); 640 641 /* some remained atomic pages should discarded */ 642 if (f2fs_is_atomic_file(inode)) 643 drop_inmem_pages(inode); 644 645 /* should remain fi->extent_tree for writepage */ 646 f2fs_destroy_extent_node(inode); 647 648 sb_start_intwrite(inode->i_sb); 649 f2fs_i_size_write(inode, 0); 650 651 if (F2FS_HAS_BLOCKS(inode)) 652 f2fs_truncate(inode); 653 654 sb_end_intwrite(inode->i_sb); 655 656 fscrypt_put_encryption_info(inode, NULL); 657 spin_lock(&inode->i_lock); 658 atomic_dec(&inode->i_count); 659 } 660 trace_f2fs_drop_inode(inode, 0); 661 return 0; 662 } 663 ret = generic_drop_inode(inode); 664 trace_f2fs_drop_inode(inode, ret); 665 return ret; 666 } 667 668 int f2fs_inode_dirtied(struct inode *inode, bool sync) 669 { 670 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 671 int ret = 0; 672 673 spin_lock(&sbi->inode_lock[DIRTY_META]); 674 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 675 ret = 1; 676 } else { 677 set_inode_flag(inode, FI_DIRTY_INODE); 678 stat_inc_dirty_inode(sbi, DIRTY_META); 679 } 680 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 681 list_add_tail(&F2FS_I(inode)->gdirty_list, 682 &sbi->inode_list[DIRTY_META]); 683 inc_page_count(sbi, F2FS_DIRTY_IMETA); 684 } 685 spin_unlock(&sbi->inode_lock[DIRTY_META]); 686 return ret; 687 } 688 689 void f2fs_inode_synced(struct inode *inode) 690 { 691 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 692 693 spin_lock(&sbi->inode_lock[DIRTY_META]); 694 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 695 spin_unlock(&sbi->inode_lock[DIRTY_META]); 696 return; 697 } 698 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 699 list_del_init(&F2FS_I(inode)->gdirty_list); 700 dec_page_count(sbi, F2FS_DIRTY_IMETA); 701 } 702 clear_inode_flag(inode, FI_DIRTY_INODE); 703 clear_inode_flag(inode, FI_AUTO_RECOVER); 704 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 705 spin_unlock(&sbi->inode_lock[DIRTY_META]); 706 } 707 708 /* 709 * f2fs_dirty_inode() is called from __mark_inode_dirty() 710 * 711 * We should call set_dirty_inode to write the dirty inode through write_inode. 712 */ 713 static void f2fs_dirty_inode(struct inode *inode, int flags) 714 { 715 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 716 717 if (inode->i_ino == F2FS_NODE_INO(sbi) || 718 inode->i_ino == F2FS_META_INO(sbi)) 719 return; 720 721 if (flags == I_DIRTY_TIME) 722 return; 723 724 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 725 clear_inode_flag(inode, FI_AUTO_RECOVER); 726 727 f2fs_inode_dirtied(inode, false); 728 } 729 730 static void f2fs_i_callback(struct rcu_head *head) 731 { 732 struct inode *inode = container_of(head, struct inode, i_rcu); 733 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 734 } 735 736 static void f2fs_destroy_inode(struct inode *inode) 737 { 738 call_rcu(&inode->i_rcu, f2fs_i_callback); 739 } 740 741 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 742 { 743 percpu_counter_destroy(&sbi->alloc_valid_block_count); 744 percpu_counter_destroy(&sbi->total_valid_inode_count); 745 } 746 747 static void destroy_device_list(struct f2fs_sb_info *sbi) 748 { 749 int i; 750 751 for (i = 0; i < sbi->s_ndevs; i++) { 752 blkdev_put(FDEV(i).bdev, FMODE_EXCL); 753 #ifdef CONFIG_BLK_DEV_ZONED 754 kfree(FDEV(i).blkz_type); 755 #endif 756 } 757 kfree(sbi->devs); 758 } 759 760 static void f2fs_put_super(struct super_block *sb) 761 { 762 struct f2fs_sb_info *sbi = F2FS_SB(sb); 763 764 if (sbi->s_proc) { 765 remove_proc_entry("segment_info", sbi->s_proc); 766 remove_proc_entry("segment_bits", sbi->s_proc); 767 remove_proc_entry(sb->s_id, f2fs_proc_root); 768 } 769 kobject_del(&sbi->s_kobj); 770 771 stop_gc_thread(sbi); 772 773 /* prevent remaining shrinker jobs */ 774 mutex_lock(&sbi->umount_mutex); 775 776 /* 777 * We don't need to do checkpoint when superblock is clean. 778 * But, the previous checkpoint was not done by umount, it needs to do 779 * clean checkpoint again. 780 */ 781 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 782 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 783 struct cp_control cpc = { 784 .reason = CP_UMOUNT, 785 }; 786 write_checkpoint(sbi, &cpc); 787 } 788 789 /* be sure to wait for any on-going discard commands */ 790 f2fs_wait_discard_bio(sbi, NULL_ADDR); 791 792 /* write_checkpoint can update stat informaion */ 793 f2fs_destroy_stats(sbi); 794 795 /* 796 * normally superblock is clean, so we need to release this. 797 * In addition, EIO will skip do checkpoint, we need this as well. 798 */ 799 release_ino_entry(sbi, true); 800 801 f2fs_leave_shrinker(sbi); 802 mutex_unlock(&sbi->umount_mutex); 803 804 /* our cp_error case, we can wait for any writeback page */ 805 f2fs_flush_merged_bios(sbi); 806 807 iput(sbi->node_inode); 808 iput(sbi->meta_inode); 809 810 /* destroy f2fs internal modules */ 811 destroy_node_manager(sbi); 812 destroy_segment_manager(sbi); 813 814 kfree(sbi->ckpt); 815 kobject_put(&sbi->s_kobj); 816 wait_for_completion(&sbi->s_kobj_unregister); 817 818 sb->s_fs_info = NULL; 819 if (sbi->s_chksum_driver) 820 crypto_free_shash(sbi->s_chksum_driver); 821 kfree(sbi->raw_super); 822 823 destroy_device_list(sbi); 824 mempool_destroy(sbi->write_io_dummy); 825 destroy_percpu_info(sbi); 826 kfree(sbi); 827 } 828 829 int f2fs_sync_fs(struct super_block *sb, int sync) 830 { 831 struct f2fs_sb_info *sbi = F2FS_SB(sb); 832 int err = 0; 833 834 trace_f2fs_sync_fs(sb, sync); 835 836 if (sync) { 837 struct cp_control cpc; 838 839 cpc.reason = __get_cp_reason(sbi); 840 841 mutex_lock(&sbi->gc_mutex); 842 err = write_checkpoint(sbi, &cpc); 843 mutex_unlock(&sbi->gc_mutex); 844 } 845 f2fs_trace_ios(NULL, 1); 846 847 return err; 848 } 849 850 static int f2fs_freeze(struct super_block *sb) 851 { 852 if (f2fs_readonly(sb)) 853 return 0; 854 855 /* IO error happened before */ 856 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 857 return -EIO; 858 859 /* must be clean, since sync_filesystem() was already called */ 860 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 861 return -EINVAL; 862 return 0; 863 } 864 865 static int f2fs_unfreeze(struct super_block *sb) 866 { 867 return 0; 868 } 869 870 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 871 { 872 struct super_block *sb = dentry->d_sb; 873 struct f2fs_sb_info *sbi = F2FS_SB(sb); 874 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 875 block_t total_count, user_block_count, start_count, ovp_count; 876 877 total_count = le64_to_cpu(sbi->raw_super->block_count); 878 user_block_count = sbi->user_block_count; 879 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 880 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg; 881 buf->f_type = F2FS_SUPER_MAGIC; 882 buf->f_bsize = sbi->blocksize; 883 884 buf->f_blocks = total_count - start_count; 885 buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count; 886 buf->f_bavail = user_block_count - valid_user_blocks(sbi); 887 888 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 889 buf->f_ffree = min(buf->f_files - valid_node_count(sbi), 890 buf->f_bavail); 891 892 buf->f_namelen = F2FS_NAME_LEN; 893 buf->f_fsid.val[0] = (u32)id; 894 buf->f_fsid.val[1] = (u32)(id >> 32); 895 896 return 0; 897 } 898 899 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 900 { 901 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 902 903 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) { 904 if (test_opt(sbi, FORCE_FG_GC)) 905 seq_printf(seq, ",background_gc=%s", "sync"); 906 else 907 seq_printf(seq, ",background_gc=%s", "on"); 908 } else { 909 seq_printf(seq, ",background_gc=%s", "off"); 910 } 911 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 912 seq_puts(seq, ",disable_roll_forward"); 913 if (test_opt(sbi, DISCARD)) 914 seq_puts(seq, ",discard"); 915 if (test_opt(sbi, NOHEAP)) 916 seq_puts(seq, ",no_heap_alloc"); 917 #ifdef CONFIG_F2FS_FS_XATTR 918 if (test_opt(sbi, XATTR_USER)) 919 seq_puts(seq, ",user_xattr"); 920 else 921 seq_puts(seq, ",nouser_xattr"); 922 if (test_opt(sbi, INLINE_XATTR)) 923 seq_puts(seq, ",inline_xattr"); 924 else 925 seq_puts(seq, ",noinline_xattr"); 926 #endif 927 #ifdef CONFIG_F2FS_FS_POSIX_ACL 928 if (test_opt(sbi, POSIX_ACL)) 929 seq_puts(seq, ",acl"); 930 else 931 seq_puts(seq, ",noacl"); 932 #endif 933 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 934 seq_puts(seq, ",disable_ext_identify"); 935 if (test_opt(sbi, INLINE_DATA)) 936 seq_puts(seq, ",inline_data"); 937 else 938 seq_puts(seq, ",noinline_data"); 939 if (test_opt(sbi, INLINE_DENTRY)) 940 seq_puts(seq, ",inline_dentry"); 941 else 942 seq_puts(seq, ",noinline_dentry"); 943 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 944 seq_puts(seq, ",flush_merge"); 945 if (test_opt(sbi, NOBARRIER)) 946 seq_puts(seq, ",nobarrier"); 947 if (test_opt(sbi, FASTBOOT)) 948 seq_puts(seq, ",fastboot"); 949 if (test_opt(sbi, EXTENT_CACHE)) 950 seq_puts(seq, ",extent_cache"); 951 else 952 seq_puts(seq, ",noextent_cache"); 953 if (test_opt(sbi, DATA_FLUSH)) 954 seq_puts(seq, ",data_flush"); 955 956 seq_puts(seq, ",mode="); 957 if (test_opt(sbi, ADAPTIVE)) 958 seq_puts(seq, "adaptive"); 959 else if (test_opt(sbi, LFS)) 960 seq_puts(seq, "lfs"); 961 seq_printf(seq, ",active_logs=%u", sbi->active_logs); 962 if (F2FS_IO_SIZE_BITS(sbi)) 963 seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi)); 964 #ifdef CONFIG_F2FS_FAULT_INJECTION 965 if (test_opt(sbi, FAULT_INJECTION)) 966 seq_puts(seq, ",fault_injection"); 967 #endif 968 969 return 0; 970 } 971 972 static int segment_info_seq_show(struct seq_file *seq, void *offset) 973 { 974 struct super_block *sb = seq->private; 975 struct f2fs_sb_info *sbi = F2FS_SB(sb); 976 unsigned int total_segs = 977 le32_to_cpu(sbi->raw_super->segment_count_main); 978 int i; 979 980 seq_puts(seq, "format: segment_type|valid_blocks\n" 981 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n"); 982 983 for (i = 0; i < total_segs; i++) { 984 struct seg_entry *se = get_seg_entry(sbi, i); 985 986 if ((i % 10) == 0) 987 seq_printf(seq, "%-10d", i); 988 seq_printf(seq, "%d|%-3u", se->type, 989 get_valid_blocks(sbi, i, 1)); 990 if ((i % 10) == 9 || i == (total_segs - 1)) 991 seq_putc(seq, '\n'); 992 else 993 seq_putc(seq, ' '); 994 } 995 996 return 0; 997 } 998 999 static int segment_bits_seq_show(struct seq_file *seq, void *offset) 1000 { 1001 struct super_block *sb = seq->private; 1002 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1003 unsigned int total_segs = 1004 le32_to_cpu(sbi->raw_super->segment_count_main); 1005 int i, j; 1006 1007 seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n" 1008 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n"); 1009 1010 for (i = 0; i < total_segs; i++) { 1011 struct seg_entry *se = get_seg_entry(sbi, i); 1012 1013 seq_printf(seq, "%-10d", i); 1014 seq_printf(seq, "%d|%-3u|", se->type, 1015 get_valid_blocks(sbi, i, 1)); 1016 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++) 1017 seq_printf(seq, " %.2x", se->cur_valid_map[j]); 1018 seq_putc(seq, '\n'); 1019 } 1020 return 0; 1021 } 1022 1023 #define F2FS_PROC_FILE_DEF(_name) \ 1024 static int _name##_open_fs(struct inode *inode, struct file *file) \ 1025 { \ 1026 return single_open(file, _name##_seq_show, PDE_DATA(inode)); \ 1027 } \ 1028 \ 1029 static const struct file_operations f2fs_seq_##_name##_fops = { \ 1030 .open = _name##_open_fs, \ 1031 .read = seq_read, \ 1032 .llseek = seq_lseek, \ 1033 .release = single_release, \ 1034 }; 1035 1036 F2FS_PROC_FILE_DEF(segment_info); 1037 F2FS_PROC_FILE_DEF(segment_bits); 1038 1039 static void default_options(struct f2fs_sb_info *sbi) 1040 { 1041 /* init some FS parameters */ 1042 sbi->active_logs = NR_CURSEG_TYPE; 1043 1044 set_opt(sbi, BG_GC); 1045 set_opt(sbi, INLINE_XATTR); 1046 set_opt(sbi, INLINE_DATA); 1047 set_opt(sbi, INLINE_DENTRY); 1048 set_opt(sbi, EXTENT_CACHE); 1049 sbi->sb->s_flags |= MS_LAZYTIME; 1050 set_opt(sbi, FLUSH_MERGE); 1051 if (f2fs_sb_mounted_blkzoned(sbi->sb)) { 1052 set_opt_mode(sbi, F2FS_MOUNT_LFS); 1053 set_opt(sbi, DISCARD); 1054 } else { 1055 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 1056 } 1057 1058 #ifdef CONFIG_F2FS_FS_XATTR 1059 set_opt(sbi, XATTR_USER); 1060 #endif 1061 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1062 set_opt(sbi, POSIX_ACL); 1063 #endif 1064 1065 #ifdef CONFIG_F2FS_FAULT_INJECTION 1066 f2fs_build_fault_attr(sbi, 0); 1067 #endif 1068 } 1069 1070 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 1071 { 1072 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1073 struct f2fs_mount_info org_mount_opt; 1074 int err, active_logs; 1075 bool need_restart_gc = false; 1076 bool need_stop_gc = false; 1077 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 1078 #ifdef CONFIG_F2FS_FAULT_INJECTION 1079 struct f2fs_fault_info ffi = sbi->fault_info; 1080 #endif 1081 1082 /* 1083 * Save the old mount options in case we 1084 * need to restore them. 1085 */ 1086 org_mount_opt = sbi->mount_opt; 1087 active_logs = sbi->active_logs; 1088 1089 /* recover superblocks we couldn't write due to previous RO mount */ 1090 if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 1091 err = f2fs_commit_super(sbi, false); 1092 f2fs_msg(sb, KERN_INFO, 1093 "Try to recover all the superblocks, ret: %d", err); 1094 if (!err) 1095 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1096 } 1097 1098 sbi->mount_opt.opt = 0; 1099 default_options(sbi); 1100 1101 /* parse mount options */ 1102 err = parse_options(sb, data); 1103 if (err) 1104 goto restore_opts; 1105 1106 /* 1107 * Previous and new state of filesystem is RO, 1108 * so skip checking GC and FLUSH_MERGE conditions. 1109 */ 1110 if (f2fs_readonly(sb) && (*flags & MS_RDONLY)) 1111 goto skip; 1112 1113 /* disallow enable/disable extent_cache dynamically */ 1114 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 1115 err = -EINVAL; 1116 f2fs_msg(sbi->sb, KERN_WARNING, 1117 "switch extent_cache option is not allowed"); 1118 goto restore_opts; 1119 } 1120 1121 /* 1122 * We stop the GC thread if FS is mounted as RO 1123 * or if background_gc = off is passed in mount 1124 * option. Also sync the filesystem. 1125 */ 1126 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) { 1127 if (sbi->gc_thread) { 1128 stop_gc_thread(sbi); 1129 need_restart_gc = true; 1130 } 1131 } else if (!sbi->gc_thread) { 1132 err = start_gc_thread(sbi); 1133 if (err) 1134 goto restore_opts; 1135 need_stop_gc = true; 1136 } 1137 1138 if (*flags & MS_RDONLY) { 1139 writeback_inodes_sb(sb, WB_REASON_SYNC); 1140 sync_inodes_sb(sb); 1141 1142 set_sbi_flag(sbi, SBI_IS_DIRTY); 1143 set_sbi_flag(sbi, SBI_IS_CLOSE); 1144 f2fs_sync_fs(sb, 1); 1145 clear_sbi_flag(sbi, SBI_IS_CLOSE); 1146 } 1147 1148 /* 1149 * We stop issue flush thread if FS is mounted as RO 1150 * or if flush_merge is not passed in mount option. 1151 */ 1152 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 1153 clear_opt(sbi, FLUSH_MERGE); 1154 destroy_flush_cmd_control(sbi, false); 1155 } else { 1156 err = create_flush_cmd_control(sbi); 1157 if (err) 1158 goto restore_gc; 1159 } 1160 skip: 1161 /* Update the POSIXACL Flag */ 1162 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 1163 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 1164 1165 return 0; 1166 restore_gc: 1167 if (need_restart_gc) { 1168 if (start_gc_thread(sbi)) 1169 f2fs_msg(sbi->sb, KERN_WARNING, 1170 "background gc thread has stopped"); 1171 } else if (need_stop_gc) { 1172 stop_gc_thread(sbi); 1173 } 1174 restore_opts: 1175 sbi->mount_opt = org_mount_opt; 1176 sbi->active_logs = active_logs; 1177 #ifdef CONFIG_F2FS_FAULT_INJECTION 1178 sbi->fault_info = ffi; 1179 #endif 1180 return err; 1181 } 1182 1183 static struct super_operations f2fs_sops = { 1184 .alloc_inode = f2fs_alloc_inode, 1185 .drop_inode = f2fs_drop_inode, 1186 .destroy_inode = f2fs_destroy_inode, 1187 .write_inode = f2fs_write_inode, 1188 .dirty_inode = f2fs_dirty_inode, 1189 .show_options = f2fs_show_options, 1190 .evict_inode = f2fs_evict_inode, 1191 .put_super = f2fs_put_super, 1192 .sync_fs = f2fs_sync_fs, 1193 .freeze_fs = f2fs_freeze, 1194 .unfreeze_fs = f2fs_unfreeze, 1195 .statfs = f2fs_statfs, 1196 .remount_fs = f2fs_remount, 1197 }; 1198 1199 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1200 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 1201 { 1202 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 1203 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 1204 ctx, len, NULL); 1205 } 1206 1207 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 1208 void *fs_data) 1209 { 1210 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 1211 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 1212 ctx, len, fs_data, XATTR_CREATE); 1213 } 1214 1215 static unsigned f2fs_max_namelen(struct inode *inode) 1216 { 1217 return S_ISLNK(inode->i_mode) ? 1218 inode->i_sb->s_blocksize : F2FS_NAME_LEN; 1219 } 1220 1221 static const struct fscrypt_operations f2fs_cryptops = { 1222 .key_prefix = "f2fs:", 1223 .get_context = f2fs_get_context, 1224 .set_context = f2fs_set_context, 1225 .is_encrypted = f2fs_encrypted_inode, 1226 .empty_dir = f2fs_empty_dir, 1227 .max_namelen = f2fs_max_namelen, 1228 }; 1229 #else 1230 static const struct fscrypt_operations f2fs_cryptops = { 1231 .is_encrypted = f2fs_encrypted_inode, 1232 }; 1233 #endif 1234 1235 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 1236 u64 ino, u32 generation) 1237 { 1238 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1239 struct inode *inode; 1240 1241 if (check_nid_range(sbi, ino)) 1242 return ERR_PTR(-ESTALE); 1243 1244 /* 1245 * f2fs_iget isn't quite right if the inode is currently unallocated! 1246 * However f2fs_iget currently does appropriate checks to handle stale 1247 * inodes so everything is OK. 1248 */ 1249 inode = f2fs_iget(sb, ino); 1250 if (IS_ERR(inode)) 1251 return ERR_CAST(inode); 1252 if (unlikely(generation && inode->i_generation != generation)) { 1253 /* we didn't find the right inode.. */ 1254 iput(inode); 1255 return ERR_PTR(-ESTALE); 1256 } 1257 return inode; 1258 } 1259 1260 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1261 int fh_len, int fh_type) 1262 { 1263 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1264 f2fs_nfs_get_inode); 1265 } 1266 1267 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 1268 int fh_len, int fh_type) 1269 { 1270 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1271 f2fs_nfs_get_inode); 1272 } 1273 1274 static const struct export_operations f2fs_export_ops = { 1275 .fh_to_dentry = f2fs_fh_to_dentry, 1276 .fh_to_parent = f2fs_fh_to_parent, 1277 .get_parent = f2fs_get_parent, 1278 }; 1279 1280 static loff_t max_file_blocks(void) 1281 { 1282 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS); 1283 loff_t leaf_count = ADDRS_PER_BLOCK; 1284 1285 /* two direct node blocks */ 1286 result += (leaf_count * 2); 1287 1288 /* two indirect node blocks */ 1289 leaf_count *= NIDS_PER_BLOCK; 1290 result += (leaf_count * 2); 1291 1292 /* one double indirect node block */ 1293 leaf_count *= NIDS_PER_BLOCK; 1294 result += leaf_count; 1295 1296 return result; 1297 } 1298 1299 static int __f2fs_commit_super(struct buffer_head *bh, 1300 struct f2fs_super_block *super) 1301 { 1302 lock_buffer(bh); 1303 if (super) 1304 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 1305 set_buffer_uptodate(bh); 1306 set_buffer_dirty(bh); 1307 unlock_buffer(bh); 1308 1309 /* it's rare case, we can do fua all the time */ 1310 return __sync_dirty_buffer(bh, REQ_PREFLUSH | REQ_FUA); 1311 } 1312 1313 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 1314 struct buffer_head *bh) 1315 { 1316 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 1317 (bh->b_data + F2FS_SUPER_OFFSET); 1318 struct super_block *sb = sbi->sb; 1319 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 1320 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 1321 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 1322 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 1323 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 1324 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 1325 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 1326 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 1327 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 1328 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 1329 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 1330 u32 segment_count = le32_to_cpu(raw_super->segment_count); 1331 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 1332 u64 main_end_blkaddr = main_blkaddr + 1333 (segment_count_main << log_blocks_per_seg); 1334 u64 seg_end_blkaddr = segment0_blkaddr + 1335 (segment_count << log_blocks_per_seg); 1336 1337 if (segment0_blkaddr != cp_blkaddr) { 1338 f2fs_msg(sb, KERN_INFO, 1339 "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 1340 segment0_blkaddr, cp_blkaddr); 1341 return true; 1342 } 1343 1344 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 1345 sit_blkaddr) { 1346 f2fs_msg(sb, KERN_INFO, 1347 "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 1348 cp_blkaddr, sit_blkaddr, 1349 segment_count_ckpt << log_blocks_per_seg); 1350 return true; 1351 } 1352 1353 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 1354 nat_blkaddr) { 1355 f2fs_msg(sb, KERN_INFO, 1356 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 1357 sit_blkaddr, nat_blkaddr, 1358 segment_count_sit << log_blocks_per_seg); 1359 return true; 1360 } 1361 1362 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 1363 ssa_blkaddr) { 1364 f2fs_msg(sb, KERN_INFO, 1365 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 1366 nat_blkaddr, ssa_blkaddr, 1367 segment_count_nat << log_blocks_per_seg); 1368 return true; 1369 } 1370 1371 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 1372 main_blkaddr) { 1373 f2fs_msg(sb, KERN_INFO, 1374 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 1375 ssa_blkaddr, main_blkaddr, 1376 segment_count_ssa << log_blocks_per_seg); 1377 return true; 1378 } 1379 1380 if (main_end_blkaddr > seg_end_blkaddr) { 1381 f2fs_msg(sb, KERN_INFO, 1382 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)", 1383 main_blkaddr, 1384 segment0_blkaddr + 1385 (segment_count << log_blocks_per_seg), 1386 segment_count_main << log_blocks_per_seg); 1387 return true; 1388 } else if (main_end_blkaddr < seg_end_blkaddr) { 1389 int err = 0; 1390 char *res; 1391 1392 /* fix in-memory information all the time */ 1393 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 1394 segment0_blkaddr) >> log_blocks_per_seg); 1395 1396 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 1397 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1398 res = "internally"; 1399 } else { 1400 err = __f2fs_commit_super(bh, NULL); 1401 res = err ? "failed" : "done"; 1402 } 1403 f2fs_msg(sb, KERN_INFO, 1404 "Fix alignment : %s, start(%u) end(%u) block(%u)", 1405 res, main_blkaddr, 1406 segment0_blkaddr + 1407 (segment_count << log_blocks_per_seg), 1408 segment_count_main << log_blocks_per_seg); 1409 if (err) 1410 return true; 1411 } 1412 return false; 1413 } 1414 1415 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 1416 struct buffer_head *bh) 1417 { 1418 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 1419 (bh->b_data + F2FS_SUPER_OFFSET); 1420 struct super_block *sb = sbi->sb; 1421 unsigned int blocksize; 1422 1423 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { 1424 f2fs_msg(sb, KERN_INFO, 1425 "Magic Mismatch, valid(0x%x) - read(0x%x)", 1426 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 1427 return 1; 1428 } 1429 1430 /* Currently, support only 4KB page cache size */ 1431 if (F2FS_BLKSIZE != PAGE_SIZE) { 1432 f2fs_msg(sb, KERN_INFO, 1433 "Invalid page_cache_size (%lu), supports only 4KB\n", 1434 PAGE_SIZE); 1435 return 1; 1436 } 1437 1438 /* Currently, support only 4KB block size */ 1439 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 1440 if (blocksize != F2FS_BLKSIZE) { 1441 f2fs_msg(sb, KERN_INFO, 1442 "Invalid blocksize (%u), supports only 4KB\n", 1443 blocksize); 1444 return 1; 1445 } 1446 1447 /* check log blocks per segment */ 1448 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 1449 f2fs_msg(sb, KERN_INFO, 1450 "Invalid log blocks per segment (%u)\n", 1451 le32_to_cpu(raw_super->log_blocks_per_seg)); 1452 return 1; 1453 } 1454 1455 /* Currently, support 512/1024/2048/4096 bytes sector size */ 1456 if (le32_to_cpu(raw_super->log_sectorsize) > 1457 F2FS_MAX_LOG_SECTOR_SIZE || 1458 le32_to_cpu(raw_super->log_sectorsize) < 1459 F2FS_MIN_LOG_SECTOR_SIZE) { 1460 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)", 1461 le32_to_cpu(raw_super->log_sectorsize)); 1462 return 1; 1463 } 1464 if (le32_to_cpu(raw_super->log_sectors_per_block) + 1465 le32_to_cpu(raw_super->log_sectorsize) != 1466 F2FS_MAX_LOG_SECTOR_SIZE) { 1467 f2fs_msg(sb, KERN_INFO, 1468 "Invalid log sectors per block(%u) log sectorsize(%u)", 1469 le32_to_cpu(raw_super->log_sectors_per_block), 1470 le32_to_cpu(raw_super->log_sectorsize)); 1471 return 1; 1472 } 1473 1474 /* check reserved ino info */ 1475 if (le32_to_cpu(raw_super->node_ino) != 1 || 1476 le32_to_cpu(raw_super->meta_ino) != 2 || 1477 le32_to_cpu(raw_super->root_ino) != 3) { 1478 f2fs_msg(sb, KERN_INFO, 1479 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 1480 le32_to_cpu(raw_super->node_ino), 1481 le32_to_cpu(raw_super->meta_ino), 1482 le32_to_cpu(raw_super->root_ino)); 1483 return 1; 1484 } 1485 1486 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 1487 if (sanity_check_area_boundary(sbi, bh)) 1488 return 1; 1489 1490 return 0; 1491 } 1492 1493 int sanity_check_ckpt(struct f2fs_sb_info *sbi) 1494 { 1495 unsigned int total, fsmeta; 1496 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1497 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1498 unsigned int ovp_segments, reserved_segments; 1499 1500 total = le32_to_cpu(raw_super->segment_count); 1501 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 1502 fsmeta += le32_to_cpu(raw_super->segment_count_sit); 1503 fsmeta += le32_to_cpu(raw_super->segment_count_nat); 1504 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 1505 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 1506 1507 if (unlikely(fsmeta >= total)) 1508 return 1; 1509 1510 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 1511 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 1512 1513 if (unlikely(fsmeta < F2FS_MIN_SEGMENTS || 1514 ovp_segments == 0 || reserved_segments == 0)) { 1515 f2fs_msg(sbi->sb, KERN_ERR, 1516 "Wrong layout: check mkfs.f2fs version"); 1517 return 1; 1518 } 1519 1520 if (unlikely(f2fs_cp_error(sbi))) { 1521 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); 1522 return 1; 1523 } 1524 return 0; 1525 } 1526 1527 static void init_sb_info(struct f2fs_sb_info *sbi) 1528 { 1529 struct f2fs_super_block *raw_super = sbi->raw_super; 1530 int i; 1531 1532 sbi->log_sectors_per_block = 1533 le32_to_cpu(raw_super->log_sectors_per_block); 1534 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 1535 sbi->blocksize = 1 << sbi->log_blocksize; 1536 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 1537 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 1538 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 1539 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 1540 sbi->total_sections = le32_to_cpu(raw_super->section_count); 1541 sbi->total_node_count = 1542 (le32_to_cpu(raw_super->segment_count_nat) / 2) 1543 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 1544 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 1545 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 1546 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 1547 sbi->cur_victim_sec = NULL_SECNO; 1548 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 1549 1550 sbi->dir_level = DEF_DIR_LEVEL; 1551 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 1552 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 1553 clear_sbi_flag(sbi, SBI_NEED_FSCK); 1554 1555 for (i = 0; i < NR_COUNT_TYPE; i++) 1556 atomic_set(&sbi->nr_pages[i], 0); 1557 1558 INIT_LIST_HEAD(&sbi->s_list); 1559 mutex_init(&sbi->umount_mutex); 1560 mutex_init(&sbi->wio_mutex[NODE]); 1561 mutex_init(&sbi->wio_mutex[DATA]); 1562 spin_lock_init(&sbi->cp_lock); 1563 } 1564 1565 static int init_percpu_info(struct f2fs_sb_info *sbi) 1566 { 1567 int err; 1568 1569 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 1570 if (err) 1571 return err; 1572 1573 return percpu_counter_init(&sbi->total_valid_inode_count, 0, 1574 GFP_KERNEL); 1575 } 1576 1577 #ifdef CONFIG_BLK_DEV_ZONED 1578 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 1579 { 1580 struct block_device *bdev = FDEV(devi).bdev; 1581 sector_t nr_sectors = bdev->bd_part->nr_sects; 1582 sector_t sector = 0; 1583 struct blk_zone *zones; 1584 unsigned int i, nr_zones; 1585 unsigned int n = 0; 1586 int err = -EIO; 1587 1588 if (!f2fs_sb_mounted_blkzoned(sbi->sb)) 1589 return 0; 1590 1591 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 1592 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev))) 1593 return -EINVAL; 1594 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)); 1595 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz != 1596 __ilog2_u32(sbi->blocks_per_blkz)) 1597 return -EINVAL; 1598 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz); 1599 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >> 1600 sbi->log_blocks_per_blkz; 1601 if (nr_sectors & (bdev_zone_sectors(bdev) - 1)) 1602 FDEV(devi).nr_blkz++; 1603 1604 FDEV(devi).blkz_type = kmalloc(FDEV(devi).nr_blkz, GFP_KERNEL); 1605 if (!FDEV(devi).blkz_type) 1606 return -ENOMEM; 1607 1608 #define F2FS_REPORT_NR_ZONES 4096 1609 1610 zones = kcalloc(F2FS_REPORT_NR_ZONES, sizeof(struct blk_zone), 1611 GFP_KERNEL); 1612 if (!zones) 1613 return -ENOMEM; 1614 1615 /* Get block zones type */ 1616 while (zones && sector < nr_sectors) { 1617 1618 nr_zones = F2FS_REPORT_NR_ZONES; 1619 err = blkdev_report_zones(bdev, sector, 1620 zones, &nr_zones, 1621 GFP_KERNEL); 1622 if (err) 1623 break; 1624 if (!nr_zones) { 1625 err = -EIO; 1626 break; 1627 } 1628 1629 for (i = 0; i < nr_zones; i++) { 1630 FDEV(devi).blkz_type[n] = zones[i].type; 1631 sector += zones[i].len; 1632 n++; 1633 } 1634 } 1635 1636 kfree(zones); 1637 1638 return err; 1639 } 1640 #endif 1641 1642 /* 1643 * Read f2fs raw super block. 1644 * Because we have two copies of super block, so read both of them 1645 * to get the first valid one. If any one of them is broken, we pass 1646 * them recovery flag back to the caller. 1647 */ 1648 static int read_raw_super_block(struct f2fs_sb_info *sbi, 1649 struct f2fs_super_block **raw_super, 1650 int *valid_super_block, int *recovery) 1651 { 1652 struct super_block *sb = sbi->sb; 1653 int block; 1654 struct buffer_head *bh; 1655 struct f2fs_super_block *super; 1656 int err = 0; 1657 1658 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 1659 if (!super) 1660 return -ENOMEM; 1661 1662 for (block = 0; block < 2; block++) { 1663 bh = sb_bread(sb, block); 1664 if (!bh) { 1665 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock", 1666 block + 1); 1667 err = -EIO; 1668 continue; 1669 } 1670 1671 /* sanity checking of raw super */ 1672 if (sanity_check_raw_super(sbi, bh)) { 1673 f2fs_msg(sb, KERN_ERR, 1674 "Can't find valid F2FS filesystem in %dth superblock", 1675 block + 1); 1676 err = -EINVAL; 1677 brelse(bh); 1678 continue; 1679 } 1680 1681 if (!*raw_super) { 1682 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 1683 sizeof(*super)); 1684 *valid_super_block = block; 1685 *raw_super = super; 1686 } 1687 brelse(bh); 1688 } 1689 1690 /* Fail to read any one of the superblocks*/ 1691 if (err < 0) 1692 *recovery = 1; 1693 1694 /* No valid superblock */ 1695 if (!*raw_super) 1696 kfree(super); 1697 else 1698 err = 0; 1699 1700 return err; 1701 } 1702 1703 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 1704 { 1705 struct buffer_head *bh; 1706 int err; 1707 1708 if ((recover && f2fs_readonly(sbi->sb)) || 1709 bdev_read_only(sbi->sb->s_bdev)) { 1710 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1711 return -EROFS; 1712 } 1713 1714 /* write back-up superblock first */ 1715 bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1); 1716 if (!bh) 1717 return -EIO; 1718 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 1719 brelse(bh); 1720 1721 /* if we are in recovery path, skip writing valid superblock */ 1722 if (recover || err) 1723 return err; 1724 1725 /* write current valid superblock */ 1726 bh = sb_getblk(sbi->sb, sbi->valid_super_block); 1727 if (!bh) 1728 return -EIO; 1729 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 1730 brelse(bh); 1731 return err; 1732 } 1733 1734 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 1735 { 1736 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1737 unsigned int max_devices = MAX_DEVICES; 1738 int i; 1739 1740 /* Initialize single device information */ 1741 if (!RDEV(0).path[0]) { 1742 if (!bdev_is_zoned(sbi->sb->s_bdev)) 1743 return 0; 1744 max_devices = 1; 1745 } 1746 1747 /* 1748 * Initialize multiple devices information, or single 1749 * zoned block device information. 1750 */ 1751 sbi->devs = kcalloc(max_devices, sizeof(struct f2fs_dev_info), 1752 GFP_KERNEL); 1753 if (!sbi->devs) 1754 return -ENOMEM; 1755 1756 for (i = 0; i < max_devices; i++) { 1757 1758 if (i > 0 && !RDEV(i).path[0]) 1759 break; 1760 1761 if (max_devices == 1) { 1762 /* Single zoned block device mount */ 1763 FDEV(0).bdev = 1764 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev, 1765 sbi->sb->s_mode, sbi->sb->s_type); 1766 } else { 1767 /* Multi-device mount */ 1768 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 1769 FDEV(i).total_segments = 1770 le32_to_cpu(RDEV(i).total_segments); 1771 if (i == 0) { 1772 FDEV(i).start_blk = 0; 1773 FDEV(i).end_blk = FDEV(i).start_blk + 1774 (FDEV(i).total_segments << 1775 sbi->log_blocks_per_seg) - 1 + 1776 le32_to_cpu(raw_super->segment0_blkaddr); 1777 } else { 1778 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 1779 FDEV(i).end_blk = FDEV(i).start_blk + 1780 (FDEV(i).total_segments << 1781 sbi->log_blocks_per_seg) - 1; 1782 } 1783 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 1784 sbi->sb->s_mode, sbi->sb->s_type); 1785 } 1786 if (IS_ERR(FDEV(i).bdev)) 1787 return PTR_ERR(FDEV(i).bdev); 1788 1789 /* to release errored devices */ 1790 sbi->s_ndevs = i + 1; 1791 1792 #ifdef CONFIG_BLK_DEV_ZONED 1793 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 1794 !f2fs_sb_mounted_blkzoned(sbi->sb)) { 1795 f2fs_msg(sbi->sb, KERN_ERR, 1796 "Zoned block device feature not enabled\n"); 1797 return -EINVAL; 1798 } 1799 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 1800 if (init_blkz_info(sbi, i)) { 1801 f2fs_msg(sbi->sb, KERN_ERR, 1802 "Failed to initialize F2FS blkzone information"); 1803 return -EINVAL; 1804 } 1805 if (max_devices == 1) 1806 break; 1807 f2fs_msg(sbi->sb, KERN_INFO, 1808 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 1809 i, FDEV(i).path, 1810 FDEV(i).total_segments, 1811 FDEV(i).start_blk, FDEV(i).end_blk, 1812 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 1813 "Host-aware" : "Host-managed"); 1814 continue; 1815 } 1816 #endif 1817 f2fs_msg(sbi->sb, KERN_INFO, 1818 "Mount Device [%2d]: %20s, %8u, %8x - %8x", 1819 i, FDEV(i).path, 1820 FDEV(i).total_segments, 1821 FDEV(i).start_blk, FDEV(i).end_blk); 1822 } 1823 f2fs_msg(sbi->sb, KERN_INFO, 1824 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi)); 1825 return 0; 1826 } 1827 1828 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 1829 { 1830 struct f2fs_sb_info *sbi; 1831 struct f2fs_super_block *raw_super; 1832 struct inode *root; 1833 int err; 1834 bool retry = true, need_fsck = false; 1835 char *options = NULL; 1836 int recovery, i, valid_super_block; 1837 struct curseg_info *seg_i; 1838 1839 try_onemore: 1840 err = -EINVAL; 1841 raw_super = NULL; 1842 valid_super_block = -1; 1843 recovery = 0; 1844 1845 /* allocate memory for f2fs-specific super block info */ 1846 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 1847 if (!sbi) 1848 return -ENOMEM; 1849 1850 sbi->sb = sb; 1851 1852 /* Load the checksum driver */ 1853 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 1854 if (IS_ERR(sbi->s_chksum_driver)) { 1855 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver."); 1856 err = PTR_ERR(sbi->s_chksum_driver); 1857 sbi->s_chksum_driver = NULL; 1858 goto free_sbi; 1859 } 1860 1861 /* set a block size */ 1862 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 1863 f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); 1864 goto free_sbi; 1865 } 1866 1867 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 1868 &recovery); 1869 if (err) 1870 goto free_sbi; 1871 1872 sb->s_fs_info = sbi; 1873 sbi->raw_super = raw_super; 1874 1875 /* 1876 * The BLKZONED feature indicates that the drive was formatted with 1877 * zone alignment optimization. This is optional for host-aware 1878 * devices, but mandatory for host-managed zoned block devices. 1879 */ 1880 #ifndef CONFIG_BLK_DEV_ZONED 1881 if (f2fs_sb_mounted_blkzoned(sb)) { 1882 f2fs_msg(sb, KERN_ERR, 1883 "Zoned block device support is not enabled\n"); 1884 goto free_sb_buf; 1885 } 1886 #endif 1887 default_options(sbi); 1888 /* parse mount options */ 1889 options = kstrdup((const char *)data, GFP_KERNEL); 1890 if (data && !options) { 1891 err = -ENOMEM; 1892 goto free_sb_buf; 1893 } 1894 1895 err = parse_options(sb, options); 1896 if (err) 1897 goto free_options; 1898 1899 sbi->max_file_blocks = max_file_blocks(); 1900 sb->s_maxbytes = sbi->max_file_blocks << 1901 le32_to_cpu(raw_super->log_blocksize); 1902 sb->s_max_links = F2FS_LINK_MAX; 1903 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 1904 1905 sb->s_op = &f2fs_sops; 1906 sb->s_cop = &f2fs_cryptops; 1907 sb->s_xattr = f2fs_xattr_handlers; 1908 sb->s_export_op = &f2fs_export_ops; 1909 sb->s_magic = F2FS_SUPER_MAGIC; 1910 sb->s_time_gran = 1; 1911 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 1912 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 1913 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 1914 1915 /* init f2fs-specific super block info */ 1916 sbi->valid_super_block = valid_super_block; 1917 mutex_init(&sbi->gc_mutex); 1918 mutex_init(&sbi->cp_mutex); 1919 init_rwsem(&sbi->node_write); 1920 1921 /* disallow all the data/node/meta page writes */ 1922 set_sbi_flag(sbi, SBI_POR_DOING); 1923 spin_lock_init(&sbi->stat_lock); 1924 1925 init_rwsem(&sbi->read_io.io_rwsem); 1926 sbi->read_io.sbi = sbi; 1927 sbi->read_io.bio = NULL; 1928 for (i = 0; i < NR_PAGE_TYPE; i++) { 1929 init_rwsem(&sbi->write_io[i].io_rwsem); 1930 sbi->write_io[i].sbi = sbi; 1931 sbi->write_io[i].bio = NULL; 1932 } 1933 1934 init_rwsem(&sbi->cp_rwsem); 1935 init_waitqueue_head(&sbi->cp_wait); 1936 init_sb_info(sbi); 1937 1938 err = init_percpu_info(sbi); 1939 if (err) 1940 goto free_options; 1941 1942 if (F2FS_IO_SIZE(sbi) > 1) { 1943 sbi->write_io_dummy = 1944 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); 1945 if (!sbi->write_io_dummy) 1946 goto free_options; 1947 } 1948 1949 /* get an inode for meta space */ 1950 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 1951 if (IS_ERR(sbi->meta_inode)) { 1952 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); 1953 err = PTR_ERR(sbi->meta_inode); 1954 goto free_io_dummy; 1955 } 1956 1957 err = get_valid_checkpoint(sbi); 1958 if (err) { 1959 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); 1960 goto free_meta_inode; 1961 } 1962 1963 /* Initialize device list */ 1964 err = f2fs_scan_devices(sbi); 1965 if (err) { 1966 f2fs_msg(sb, KERN_ERR, "Failed to find devices"); 1967 goto free_devices; 1968 } 1969 1970 sbi->total_valid_node_count = 1971 le32_to_cpu(sbi->ckpt->valid_node_count); 1972 percpu_counter_set(&sbi->total_valid_inode_count, 1973 le32_to_cpu(sbi->ckpt->valid_inode_count)); 1974 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 1975 sbi->total_valid_block_count = 1976 le64_to_cpu(sbi->ckpt->valid_block_count); 1977 sbi->last_valid_block_count = sbi->total_valid_block_count; 1978 1979 for (i = 0; i < NR_INODE_TYPE; i++) { 1980 INIT_LIST_HEAD(&sbi->inode_list[i]); 1981 spin_lock_init(&sbi->inode_lock[i]); 1982 } 1983 1984 init_extent_cache_info(sbi); 1985 1986 init_ino_entry_info(sbi); 1987 1988 /* setup f2fs internal modules */ 1989 err = build_segment_manager(sbi); 1990 if (err) { 1991 f2fs_msg(sb, KERN_ERR, 1992 "Failed to initialize F2FS segment manager"); 1993 goto free_sm; 1994 } 1995 err = build_node_manager(sbi); 1996 if (err) { 1997 f2fs_msg(sb, KERN_ERR, 1998 "Failed to initialize F2FS node manager"); 1999 goto free_nm; 2000 } 2001 2002 /* For write statistics */ 2003 if (sb->s_bdev->bd_part) 2004 sbi->sectors_written_start = 2005 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]); 2006 2007 /* Read accumulated write IO statistics if exists */ 2008 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 2009 if (__exist_node_summaries(sbi)) 2010 sbi->kbytes_written = 2011 le64_to_cpu(seg_i->journal->info.kbytes_written); 2012 2013 build_gc_manager(sbi); 2014 2015 /* get an inode for node space */ 2016 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 2017 if (IS_ERR(sbi->node_inode)) { 2018 f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); 2019 err = PTR_ERR(sbi->node_inode); 2020 goto free_nm; 2021 } 2022 2023 f2fs_join_shrinker(sbi); 2024 2025 /* if there are nt orphan nodes free them */ 2026 err = recover_orphan_inodes(sbi); 2027 if (err) 2028 goto free_node_inode; 2029 2030 /* read root inode and dentry */ 2031 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 2032 if (IS_ERR(root)) { 2033 f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); 2034 err = PTR_ERR(root); 2035 goto free_node_inode; 2036 } 2037 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 2038 iput(root); 2039 err = -EINVAL; 2040 goto free_node_inode; 2041 } 2042 2043 sb->s_root = d_make_root(root); /* allocate root dentry */ 2044 if (!sb->s_root) { 2045 err = -ENOMEM; 2046 goto free_root_inode; 2047 } 2048 2049 err = f2fs_build_stats(sbi); 2050 if (err) 2051 goto free_root_inode; 2052 2053 if (f2fs_proc_root) 2054 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root); 2055 2056 if (sbi->s_proc) { 2057 proc_create_data("segment_info", S_IRUGO, sbi->s_proc, 2058 &f2fs_seq_segment_info_fops, sb); 2059 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc, 2060 &f2fs_seq_segment_bits_fops, sb); 2061 } 2062 2063 sbi->s_kobj.kset = f2fs_kset; 2064 init_completion(&sbi->s_kobj_unregister); 2065 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL, 2066 "%s", sb->s_id); 2067 if (err) 2068 goto free_proc; 2069 2070 /* recover fsynced data */ 2071 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 2072 /* 2073 * mount should be failed, when device has readonly mode, and 2074 * previous checkpoint was not done by clean system shutdown. 2075 */ 2076 if (bdev_read_only(sb->s_bdev) && 2077 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 2078 err = -EROFS; 2079 goto free_kobj; 2080 } 2081 2082 if (need_fsck) 2083 set_sbi_flag(sbi, SBI_NEED_FSCK); 2084 2085 if (!retry) 2086 goto skip_recovery; 2087 2088 err = recover_fsync_data(sbi, false); 2089 if (err < 0) { 2090 need_fsck = true; 2091 f2fs_msg(sb, KERN_ERR, 2092 "Cannot recover all fsync data errno=%d", err); 2093 goto free_kobj; 2094 } 2095 } else { 2096 err = recover_fsync_data(sbi, true); 2097 2098 if (!f2fs_readonly(sb) && err > 0) { 2099 err = -EINVAL; 2100 f2fs_msg(sb, KERN_ERR, 2101 "Need to recover fsync data"); 2102 goto free_kobj; 2103 } 2104 } 2105 skip_recovery: 2106 /* recover_fsync_data() cleared this already */ 2107 clear_sbi_flag(sbi, SBI_POR_DOING); 2108 2109 /* 2110 * If filesystem is not mounted as read-only then 2111 * do start the gc_thread. 2112 */ 2113 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) { 2114 /* After POR, we can run background GC thread.*/ 2115 err = start_gc_thread(sbi); 2116 if (err) 2117 goto free_kobj; 2118 } 2119 kfree(options); 2120 2121 /* recover broken superblock */ 2122 if (recovery) { 2123 err = f2fs_commit_super(sbi, true); 2124 f2fs_msg(sb, KERN_INFO, 2125 "Try to recover %dth superblock, ret: %d", 2126 sbi->valid_super_block ? 1 : 2, err); 2127 } 2128 2129 f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx", 2130 cur_cp_version(F2FS_CKPT(sbi))); 2131 f2fs_update_time(sbi, CP_TIME); 2132 f2fs_update_time(sbi, REQ_TIME); 2133 return 0; 2134 2135 free_kobj: 2136 f2fs_sync_inode_meta(sbi); 2137 kobject_del(&sbi->s_kobj); 2138 kobject_put(&sbi->s_kobj); 2139 wait_for_completion(&sbi->s_kobj_unregister); 2140 free_proc: 2141 if (sbi->s_proc) { 2142 remove_proc_entry("segment_info", sbi->s_proc); 2143 remove_proc_entry("segment_bits", sbi->s_proc); 2144 remove_proc_entry(sb->s_id, f2fs_proc_root); 2145 } 2146 f2fs_destroy_stats(sbi); 2147 free_root_inode: 2148 dput(sb->s_root); 2149 sb->s_root = NULL; 2150 free_node_inode: 2151 truncate_inode_pages_final(NODE_MAPPING(sbi)); 2152 mutex_lock(&sbi->umount_mutex); 2153 release_ino_entry(sbi, true); 2154 f2fs_leave_shrinker(sbi); 2155 /* 2156 * Some dirty meta pages can be produced by recover_orphan_inodes() 2157 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 2158 * followed by write_checkpoint() through f2fs_write_node_pages(), which 2159 * falls into an infinite loop in sync_meta_pages(). 2160 */ 2161 truncate_inode_pages_final(META_MAPPING(sbi)); 2162 iput(sbi->node_inode); 2163 mutex_unlock(&sbi->umount_mutex); 2164 free_nm: 2165 destroy_node_manager(sbi); 2166 free_sm: 2167 destroy_segment_manager(sbi); 2168 free_devices: 2169 destroy_device_list(sbi); 2170 kfree(sbi->ckpt); 2171 free_meta_inode: 2172 make_bad_inode(sbi->meta_inode); 2173 iput(sbi->meta_inode); 2174 free_io_dummy: 2175 mempool_destroy(sbi->write_io_dummy); 2176 free_options: 2177 destroy_percpu_info(sbi); 2178 kfree(options); 2179 free_sb_buf: 2180 kfree(raw_super); 2181 free_sbi: 2182 if (sbi->s_chksum_driver) 2183 crypto_free_shash(sbi->s_chksum_driver); 2184 kfree(sbi); 2185 2186 /* give only one another chance */ 2187 if (retry) { 2188 retry = false; 2189 shrink_dcache_sb(sb); 2190 goto try_onemore; 2191 } 2192 return err; 2193 } 2194 2195 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 2196 const char *dev_name, void *data) 2197 { 2198 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 2199 } 2200 2201 static void kill_f2fs_super(struct super_block *sb) 2202 { 2203 if (sb->s_root) 2204 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE); 2205 kill_block_super(sb); 2206 } 2207 2208 static struct file_system_type f2fs_fs_type = { 2209 .owner = THIS_MODULE, 2210 .name = "f2fs", 2211 .mount = f2fs_mount, 2212 .kill_sb = kill_f2fs_super, 2213 .fs_flags = FS_REQUIRES_DEV, 2214 }; 2215 MODULE_ALIAS_FS("f2fs"); 2216 2217 static int __init init_inodecache(void) 2218 { 2219 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 2220 sizeof(struct f2fs_inode_info), 0, 2221 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 2222 if (!f2fs_inode_cachep) 2223 return -ENOMEM; 2224 return 0; 2225 } 2226 2227 static void destroy_inodecache(void) 2228 { 2229 /* 2230 * Make sure all delayed rcu free inodes are flushed before we 2231 * destroy cache. 2232 */ 2233 rcu_barrier(); 2234 kmem_cache_destroy(f2fs_inode_cachep); 2235 } 2236 2237 static int __init init_f2fs_fs(void) 2238 { 2239 int err; 2240 2241 f2fs_build_trace_ios(); 2242 2243 err = init_inodecache(); 2244 if (err) 2245 goto fail; 2246 err = create_node_manager_caches(); 2247 if (err) 2248 goto free_inodecache; 2249 err = create_segment_manager_caches(); 2250 if (err) 2251 goto free_node_manager_caches; 2252 err = create_checkpoint_caches(); 2253 if (err) 2254 goto free_segment_manager_caches; 2255 err = create_extent_cache(); 2256 if (err) 2257 goto free_checkpoint_caches; 2258 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj); 2259 if (!f2fs_kset) { 2260 err = -ENOMEM; 2261 goto free_extent_cache; 2262 } 2263 err = register_shrinker(&f2fs_shrinker_info); 2264 if (err) 2265 goto free_kset; 2266 2267 err = register_filesystem(&f2fs_fs_type); 2268 if (err) 2269 goto free_shrinker; 2270 err = f2fs_create_root_stats(); 2271 if (err) 2272 goto free_filesystem; 2273 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL); 2274 return 0; 2275 2276 free_filesystem: 2277 unregister_filesystem(&f2fs_fs_type); 2278 free_shrinker: 2279 unregister_shrinker(&f2fs_shrinker_info); 2280 free_kset: 2281 kset_unregister(f2fs_kset); 2282 free_extent_cache: 2283 destroy_extent_cache(); 2284 free_checkpoint_caches: 2285 destroy_checkpoint_caches(); 2286 free_segment_manager_caches: 2287 destroy_segment_manager_caches(); 2288 free_node_manager_caches: 2289 destroy_node_manager_caches(); 2290 free_inodecache: 2291 destroy_inodecache(); 2292 fail: 2293 return err; 2294 } 2295 2296 static void __exit exit_f2fs_fs(void) 2297 { 2298 remove_proc_entry("fs/f2fs", NULL); 2299 f2fs_destroy_root_stats(); 2300 unregister_filesystem(&f2fs_fs_type); 2301 unregister_shrinker(&f2fs_shrinker_info); 2302 kset_unregister(f2fs_kset); 2303 destroy_extent_cache(); 2304 destroy_checkpoint_caches(); 2305 destroy_segment_manager_caches(); 2306 destroy_node_manager_caches(); 2307 destroy_inodecache(); 2308 f2fs_destroy_trace_ios(); 2309 } 2310 2311 module_init(init_f2fs_fs) 2312 module_exit(exit_f2fs_fs) 2313 2314 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 2315 MODULE_DESCRIPTION("Flash Friendly File System"); 2316 MODULE_LICENSE("GPL"); 2317 2318