xref: /openbmc/linux/fs/f2fs/super.c (revision a591525f)
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/f2fs_fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/quota.h>
29 
30 #include "f2fs.h"
31 #include "node.h"
32 #include "segment.h"
33 #include "xattr.h"
34 #include "gc.h"
35 #include "trace.h"
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/f2fs.h>
39 
40 static struct kmem_cache *f2fs_inode_cachep;
41 
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 
44 char *fault_name[FAULT_MAX] = {
45 	[FAULT_KMALLOC]		= "kmalloc",
46 	[FAULT_KVMALLOC]	= "kvmalloc",
47 	[FAULT_PAGE_ALLOC]	= "page alloc",
48 	[FAULT_PAGE_GET]	= "page get",
49 	[FAULT_ALLOC_BIO]	= "alloc bio",
50 	[FAULT_ALLOC_NID]	= "alloc nid",
51 	[FAULT_ORPHAN]		= "orphan",
52 	[FAULT_BLOCK]		= "no more block",
53 	[FAULT_DIR_DEPTH]	= "too big dir depth",
54 	[FAULT_EVICT_INODE]	= "evict_inode fail",
55 	[FAULT_TRUNCATE]	= "truncate fail",
56 	[FAULT_IO]		= "IO error",
57 	[FAULT_CHECKPOINT]	= "checkpoint error",
58 };
59 
60 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
61 						unsigned int rate)
62 {
63 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
64 
65 	if (rate) {
66 		atomic_set(&ffi->inject_ops, 0);
67 		ffi->inject_rate = rate;
68 		ffi->inject_type = (1 << FAULT_MAX) - 1;
69 	} else {
70 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
71 	}
72 }
73 #endif
74 
75 /* f2fs-wide shrinker description */
76 static struct shrinker f2fs_shrinker_info = {
77 	.scan_objects = f2fs_shrink_scan,
78 	.count_objects = f2fs_shrink_count,
79 	.seeks = DEFAULT_SEEKS,
80 };
81 
82 enum {
83 	Opt_gc_background,
84 	Opt_disable_roll_forward,
85 	Opt_norecovery,
86 	Opt_discard,
87 	Opt_nodiscard,
88 	Opt_noheap,
89 	Opt_heap,
90 	Opt_user_xattr,
91 	Opt_nouser_xattr,
92 	Opt_acl,
93 	Opt_noacl,
94 	Opt_active_logs,
95 	Opt_disable_ext_identify,
96 	Opt_inline_xattr,
97 	Opt_noinline_xattr,
98 	Opt_inline_xattr_size,
99 	Opt_inline_data,
100 	Opt_inline_dentry,
101 	Opt_noinline_dentry,
102 	Opt_flush_merge,
103 	Opt_noflush_merge,
104 	Opt_nobarrier,
105 	Opt_fastboot,
106 	Opt_extent_cache,
107 	Opt_noextent_cache,
108 	Opt_noinline_data,
109 	Opt_data_flush,
110 	Opt_reserve_root,
111 	Opt_resgid,
112 	Opt_resuid,
113 	Opt_mode,
114 	Opt_io_size_bits,
115 	Opt_fault_injection,
116 	Opt_lazytime,
117 	Opt_nolazytime,
118 	Opt_quota,
119 	Opt_noquota,
120 	Opt_usrquota,
121 	Opt_grpquota,
122 	Opt_prjquota,
123 	Opt_usrjquota,
124 	Opt_grpjquota,
125 	Opt_prjjquota,
126 	Opt_offusrjquota,
127 	Opt_offgrpjquota,
128 	Opt_offprjjquota,
129 	Opt_jqfmt_vfsold,
130 	Opt_jqfmt_vfsv0,
131 	Opt_jqfmt_vfsv1,
132 	Opt_whint,
133 	Opt_alloc,
134 	Opt_fsync,
135 	Opt_test_dummy_encryption,
136 	Opt_err,
137 };
138 
139 static match_table_t f2fs_tokens = {
140 	{Opt_gc_background, "background_gc=%s"},
141 	{Opt_disable_roll_forward, "disable_roll_forward"},
142 	{Opt_norecovery, "norecovery"},
143 	{Opt_discard, "discard"},
144 	{Opt_nodiscard, "nodiscard"},
145 	{Opt_noheap, "no_heap"},
146 	{Opt_heap, "heap"},
147 	{Opt_user_xattr, "user_xattr"},
148 	{Opt_nouser_xattr, "nouser_xattr"},
149 	{Opt_acl, "acl"},
150 	{Opt_noacl, "noacl"},
151 	{Opt_active_logs, "active_logs=%u"},
152 	{Opt_disable_ext_identify, "disable_ext_identify"},
153 	{Opt_inline_xattr, "inline_xattr"},
154 	{Opt_noinline_xattr, "noinline_xattr"},
155 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
156 	{Opt_inline_data, "inline_data"},
157 	{Opt_inline_dentry, "inline_dentry"},
158 	{Opt_noinline_dentry, "noinline_dentry"},
159 	{Opt_flush_merge, "flush_merge"},
160 	{Opt_noflush_merge, "noflush_merge"},
161 	{Opt_nobarrier, "nobarrier"},
162 	{Opt_fastboot, "fastboot"},
163 	{Opt_extent_cache, "extent_cache"},
164 	{Opt_noextent_cache, "noextent_cache"},
165 	{Opt_noinline_data, "noinline_data"},
166 	{Opt_data_flush, "data_flush"},
167 	{Opt_reserve_root, "reserve_root=%u"},
168 	{Opt_resgid, "resgid=%u"},
169 	{Opt_resuid, "resuid=%u"},
170 	{Opt_mode, "mode=%s"},
171 	{Opt_io_size_bits, "io_bits=%u"},
172 	{Opt_fault_injection, "fault_injection=%u"},
173 	{Opt_lazytime, "lazytime"},
174 	{Opt_nolazytime, "nolazytime"},
175 	{Opt_quota, "quota"},
176 	{Opt_noquota, "noquota"},
177 	{Opt_usrquota, "usrquota"},
178 	{Opt_grpquota, "grpquota"},
179 	{Opt_prjquota, "prjquota"},
180 	{Opt_usrjquota, "usrjquota=%s"},
181 	{Opt_grpjquota, "grpjquota=%s"},
182 	{Opt_prjjquota, "prjjquota=%s"},
183 	{Opt_offusrjquota, "usrjquota="},
184 	{Opt_offgrpjquota, "grpjquota="},
185 	{Opt_offprjjquota, "prjjquota="},
186 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
187 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
188 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
189 	{Opt_whint, "whint_mode=%s"},
190 	{Opt_alloc, "alloc_mode=%s"},
191 	{Opt_fsync, "fsync_mode=%s"},
192 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
193 	{Opt_err, NULL},
194 };
195 
196 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
197 {
198 	struct va_format vaf;
199 	va_list args;
200 
201 	va_start(args, fmt);
202 	vaf.fmt = fmt;
203 	vaf.va = &args;
204 	printk_ratelimited("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
205 	va_end(args);
206 }
207 
208 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
209 {
210 	block_t limit = (sbi->user_block_count << 1) / 1000;
211 
212 	/* limit is 0.2% */
213 	if (test_opt(sbi, RESERVE_ROOT) &&
214 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
215 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
216 		f2fs_msg(sbi->sb, KERN_INFO,
217 			"Reduce reserved blocks for root = %u",
218 			F2FS_OPTION(sbi).root_reserved_blocks);
219 	}
220 	if (!test_opt(sbi, RESERVE_ROOT) &&
221 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
222 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
223 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
224 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
225 		f2fs_msg(sbi->sb, KERN_INFO,
226 			"Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
227 				from_kuid_munged(&init_user_ns,
228 					F2FS_OPTION(sbi).s_resuid),
229 				from_kgid_munged(&init_user_ns,
230 					F2FS_OPTION(sbi).s_resgid));
231 }
232 
233 static void init_once(void *foo)
234 {
235 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
236 
237 	inode_init_once(&fi->vfs_inode);
238 }
239 
240 #ifdef CONFIG_QUOTA
241 static const char * const quotatypes[] = INITQFNAMES;
242 #define QTYPE2NAME(t) (quotatypes[t])
243 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
244 							substring_t *args)
245 {
246 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
247 	char *qname;
248 	int ret = -EINVAL;
249 
250 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
251 		f2fs_msg(sb, KERN_ERR,
252 			"Cannot change journaled "
253 			"quota options when quota turned on");
254 		return -EINVAL;
255 	}
256 	if (f2fs_sb_has_quota_ino(sb)) {
257 		f2fs_msg(sb, KERN_INFO,
258 			"QUOTA feature is enabled, so ignore qf_name");
259 		return 0;
260 	}
261 
262 	qname = match_strdup(args);
263 	if (!qname) {
264 		f2fs_msg(sb, KERN_ERR,
265 			"Not enough memory for storing quotafile name");
266 		return -EINVAL;
267 	}
268 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
269 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
270 			ret = 0;
271 		else
272 			f2fs_msg(sb, KERN_ERR,
273 				 "%s quota file already specified",
274 				 QTYPE2NAME(qtype));
275 		goto errout;
276 	}
277 	if (strchr(qname, '/')) {
278 		f2fs_msg(sb, KERN_ERR,
279 			"quotafile must be on filesystem root");
280 		goto errout;
281 	}
282 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
283 	set_opt(sbi, QUOTA);
284 	return 0;
285 errout:
286 	kfree(qname);
287 	return ret;
288 }
289 
290 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
291 {
292 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
293 
294 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
295 		f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options"
296 			" when quota turned on");
297 		return -EINVAL;
298 	}
299 	kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
300 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
301 	return 0;
302 }
303 
304 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
305 {
306 	/*
307 	 * We do the test below only for project quotas. 'usrquota' and
308 	 * 'grpquota' mount options are allowed even without quota feature
309 	 * to support legacy quotas in quota files.
310 	 */
311 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi->sb)) {
312 		f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. "
313 			 "Cannot enable project quota enforcement.");
314 		return -1;
315 	}
316 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
317 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
318 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
319 		if (test_opt(sbi, USRQUOTA) &&
320 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
321 			clear_opt(sbi, USRQUOTA);
322 
323 		if (test_opt(sbi, GRPQUOTA) &&
324 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
325 			clear_opt(sbi, GRPQUOTA);
326 
327 		if (test_opt(sbi, PRJQUOTA) &&
328 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
329 			clear_opt(sbi, PRJQUOTA);
330 
331 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
332 				test_opt(sbi, PRJQUOTA)) {
333 			f2fs_msg(sbi->sb, KERN_ERR, "old and new quota "
334 					"format mixing");
335 			return -1;
336 		}
337 
338 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
339 			f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format "
340 					"not specified");
341 			return -1;
342 		}
343 	}
344 
345 	if (f2fs_sb_has_quota_ino(sbi->sb) && F2FS_OPTION(sbi).s_jquota_fmt) {
346 		f2fs_msg(sbi->sb, KERN_INFO,
347 			"QUOTA feature is enabled, so ignore jquota_fmt");
348 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
349 	}
350 	if (f2fs_sb_has_quota_ino(sbi->sb) && f2fs_readonly(sbi->sb)) {
351 		f2fs_msg(sbi->sb, KERN_INFO,
352 			 "Filesystem with quota feature cannot be mounted RDWR "
353 			 "without CONFIG_QUOTA");
354 		return -1;
355 	}
356 	return 0;
357 }
358 #endif
359 
360 static int parse_options(struct super_block *sb, char *options)
361 {
362 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
363 	struct request_queue *q;
364 	substring_t args[MAX_OPT_ARGS];
365 	char *p, *name;
366 	int arg = 0;
367 	kuid_t uid;
368 	kgid_t gid;
369 #ifdef CONFIG_QUOTA
370 	int ret;
371 #endif
372 
373 	if (!options)
374 		return 0;
375 
376 	while ((p = strsep(&options, ",")) != NULL) {
377 		int token;
378 		if (!*p)
379 			continue;
380 		/*
381 		 * Initialize args struct so we know whether arg was
382 		 * found; some options take optional arguments.
383 		 */
384 		args[0].to = args[0].from = NULL;
385 		token = match_token(p, f2fs_tokens, args);
386 
387 		switch (token) {
388 		case Opt_gc_background:
389 			name = match_strdup(&args[0]);
390 
391 			if (!name)
392 				return -ENOMEM;
393 			if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
394 				set_opt(sbi, BG_GC);
395 				clear_opt(sbi, FORCE_FG_GC);
396 			} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
397 				clear_opt(sbi, BG_GC);
398 				clear_opt(sbi, FORCE_FG_GC);
399 			} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
400 				set_opt(sbi, BG_GC);
401 				set_opt(sbi, FORCE_FG_GC);
402 			} else {
403 				kfree(name);
404 				return -EINVAL;
405 			}
406 			kfree(name);
407 			break;
408 		case Opt_disable_roll_forward:
409 			set_opt(sbi, DISABLE_ROLL_FORWARD);
410 			break;
411 		case Opt_norecovery:
412 			/* this option mounts f2fs with ro */
413 			set_opt(sbi, DISABLE_ROLL_FORWARD);
414 			if (!f2fs_readonly(sb))
415 				return -EINVAL;
416 			break;
417 		case Opt_discard:
418 			q = bdev_get_queue(sb->s_bdev);
419 			if (blk_queue_discard(q)) {
420 				set_opt(sbi, DISCARD);
421 			} else if (!f2fs_sb_has_blkzoned(sb)) {
422 				f2fs_msg(sb, KERN_WARNING,
423 					"mounting with \"discard\" option, but "
424 					"the device does not support discard");
425 			}
426 			break;
427 		case Opt_nodiscard:
428 			if (f2fs_sb_has_blkzoned(sb)) {
429 				f2fs_msg(sb, KERN_WARNING,
430 					"discard is required for zoned block devices");
431 				return -EINVAL;
432 			}
433 			clear_opt(sbi, DISCARD);
434 			break;
435 		case Opt_noheap:
436 			set_opt(sbi, NOHEAP);
437 			break;
438 		case Opt_heap:
439 			clear_opt(sbi, NOHEAP);
440 			break;
441 #ifdef CONFIG_F2FS_FS_XATTR
442 		case Opt_user_xattr:
443 			set_opt(sbi, XATTR_USER);
444 			break;
445 		case Opt_nouser_xattr:
446 			clear_opt(sbi, XATTR_USER);
447 			break;
448 		case Opt_inline_xattr:
449 			set_opt(sbi, INLINE_XATTR);
450 			break;
451 		case Opt_noinline_xattr:
452 			clear_opt(sbi, INLINE_XATTR);
453 			break;
454 		case Opt_inline_xattr_size:
455 			if (args->from && match_int(args, &arg))
456 				return -EINVAL;
457 			set_opt(sbi, INLINE_XATTR_SIZE);
458 			F2FS_OPTION(sbi).inline_xattr_size = arg;
459 			break;
460 #else
461 		case Opt_user_xattr:
462 			f2fs_msg(sb, KERN_INFO,
463 				"user_xattr options not supported");
464 			break;
465 		case Opt_nouser_xattr:
466 			f2fs_msg(sb, KERN_INFO,
467 				"nouser_xattr options not supported");
468 			break;
469 		case Opt_inline_xattr:
470 			f2fs_msg(sb, KERN_INFO,
471 				"inline_xattr options not supported");
472 			break;
473 		case Opt_noinline_xattr:
474 			f2fs_msg(sb, KERN_INFO,
475 				"noinline_xattr options not supported");
476 			break;
477 #endif
478 #ifdef CONFIG_F2FS_FS_POSIX_ACL
479 		case Opt_acl:
480 			set_opt(sbi, POSIX_ACL);
481 			break;
482 		case Opt_noacl:
483 			clear_opt(sbi, POSIX_ACL);
484 			break;
485 #else
486 		case Opt_acl:
487 			f2fs_msg(sb, KERN_INFO, "acl options not supported");
488 			break;
489 		case Opt_noacl:
490 			f2fs_msg(sb, KERN_INFO, "noacl options not supported");
491 			break;
492 #endif
493 		case Opt_active_logs:
494 			if (args->from && match_int(args, &arg))
495 				return -EINVAL;
496 			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
497 				return -EINVAL;
498 			F2FS_OPTION(sbi).active_logs = arg;
499 			break;
500 		case Opt_disable_ext_identify:
501 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
502 			break;
503 		case Opt_inline_data:
504 			set_opt(sbi, INLINE_DATA);
505 			break;
506 		case Opt_inline_dentry:
507 			set_opt(sbi, INLINE_DENTRY);
508 			break;
509 		case Opt_noinline_dentry:
510 			clear_opt(sbi, INLINE_DENTRY);
511 			break;
512 		case Opt_flush_merge:
513 			set_opt(sbi, FLUSH_MERGE);
514 			break;
515 		case Opt_noflush_merge:
516 			clear_opt(sbi, FLUSH_MERGE);
517 			break;
518 		case Opt_nobarrier:
519 			set_opt(sbi, NOBARRIER);
520 			break;
521 		case Opt_fastboot:
522 			set_opt(sbi, FASTBOOT);
523 			break;
524 		case Opt_extent_cache:
525 			set_opt(sbi, EXTENT_CACHE);
526 			break;
527 		case Opt_noextent_cache:
528 			clear_opt(sbi, EXTENT_CACHE);
529 			break;
530 		case Opt_noinline_data:
531 			clear_opt(sbi, INLINE_DATA);
532 			break;
533 		case Opt_data_flush:
534 			set_opt(sbi, DATA_FLUSH);
535 			break;
536 		case Opt_reserve_root:
537 			if (args->from && match_int(args, &arg))
538 				return -EINVAL;
539 			if (test_opt(sbi, RESERVE_ROOT)) {
540 				f2fs_msg(sb, KERN_INFO,
541 					"Preserve previous reserve_root=%u",
542 					F2FS_OPTION(sbi).root_reserved_blocks);
543 			} else {
544 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
545 				set_opt(sbi, RESERVE_ROOT);
546 			}
547 			break;
548 		case Opt_resuid:
549 			if (args->from && match_int(args, &arg))
550 				return -EINVAL;
551 			uid = make_kuid(current_user_ns(), arg);
552 			if (!uid_valid(uid)) {
553 				f2fs_msg(sb, KERN_ERR,
554 					"Invalid uid value %d", arg);
555 				return -EINVAL;
556 			}
557 			F2FS_OPTION(sbi).s_resuid = uid;
558 			break;
559 		case Opt_resgid:
560 			if (args->from && match_int(args, &arg))
561 				return -EINVAL;
562 			gid = make_kgid(current_user_ns(), arg);
563 			if (!gid_valid(gid)) {
564 				f2fs_msg(sb, KERN_ERR,
565 					"Invalid gid value %d", arg);
566 				return -EINVAL;
567 			}
568 			F2FS_OPTION(sbi).s_resgid = gid;
569 			break;
570 		case Opt_mode:
571 			name = match_strdup(&args[0]);
572 
573 			if (!name)
574 				return -ENOMEM;
575 			if (strlen(name) == 8 &&
576 					!strncmp(name, "adaptive", 8)) {
577 				if (f2fs_sb_has_blkzoned(sb)) {
578 					f2fs_msg(sb, KERN_WARNING,
579 						 "adaptive mode is not allowed with "
580 						 "zoned block device feature");
581 					kfree(name);
582 					return -EINVAL;
583 				}
584 				set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
585 			} else if (strlen(name) == 3 &&
586 					!strncmp(name, "lfs", 3)) {
587 				set_opt_mode(sbi, F2FS_MOUNT_LFS);
588 			} else {
589 				kfree(name);
590 				return -EINVAL;
591 			}
592 			kfree(name);
593 			break;
594 		case Opt_io_size_bits:
595 			if (args->from && match_int(args, &arg))
596 				return -EINVAL;
597 			if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
598 				f2fs_msg(sb, KERN_WARNING,
599 					"Not support %d, larger than %d",
600 					1 << arg, BIO_MAX_PAGES);
601 				return -EINVAL;
602 			}
603 			F2FS_OPTION(sbi).write_io_size_bits = arg;
604 			break;
605 		case Opt_fault_injection:
606 			if (args->from && match_int(args, &arg))
607 				return -EINVAL;
608 #ifdef CONFIG_F2FS_FAULT_INJECTION
609 			f2fs_build_fault_attr(sbi, arg);
610 			set_opt(sbi, FAULT_INJECTION);
611 #else
612 			f2fs_msg(sb, KERN_INFO,
613 				"FAULT_INJECTION was not selected");
614 #endif
615 			break;
616 		case Opt_lazytime:
617 			sb->s_flags |= SB_LAZYTIME;
618 			break;
619 		case Opt_nolazytime:
620 			sb->s_flags &= ~SB_LAZYTIME;
621 			break;
622 #ifdef CONFIG_QUOTA
623 		case Opt_quota:
624 		case Opt_usrquota:
625 			set_opt(sbi, USRQUOTA);
626 			break;
627 		case Opt_grpquota:
628 			set_opt(sbi, GRPQUOTA);
629 			break;
630 		case Opt_prjquota:
631 			set_opt(sbi, PRJQUOTA);
632 			break;
633 		case Opt_usrjquota:
634 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
635 			if (ret)
636 				return ret;
637 			break;
638 		case Opt_grpjquota:
639 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
640 			if (ret)
641 				return ret;
642 			break;
643 		case Opt_prjjquota:
644 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
645 			if (ret)
646 				return ret;
647 			break;
648 		case Opt_offusrjquota:
649 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
650 			if (ret)
651 				return ret;
652 			break;
653 		case Opt_offgrpjquota:
654 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
655 			if (ret)
656 				return ret;
657 			break;
658 		case Opt_offprjjquota:
659 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
660 			if (ret)
661 				return ret;
662 			break;
663 		case Opt_jqfmt_vfsold:
664 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
665 			break;
666 		case Opt_jqfmt_vfsv0:
667 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
668 			break;
669 		case Opt_jqfmt_vfsv1:
670 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
671 			break;
672 		case Opt_noquota:
673 			clear_opt(sbi, QUOTA);
674 			clear_opt(sbi, USRQUOTA);
675 			clear_opt(sbi, GRPQUOTA);
676 			clear_opt(sbi, PRJQUOTA);
677 			break;
678 #else
679 		case Opt_quota:
680 		case Opt_usrquota:
681 		case Opt_grpquota:
682 		case Opt_prjquota:
683 		case Opt_usrjquota:
684 		case Opt_grpjquota:
685 		case Opt_prjjquota:
686 		case Opt_offusrjquota:
687 		case Opt_offgrpjquota:
688 		case Opt_offprjjquota:
689 		case Opt_jqfmt_vfsold:
690 		case Opt_jqfmt_vfsv0:
691 		case Opt_jqfmt_vfsv1:
692 		case Opt_noquota:
693 			f2fs_msg(sb, KERN_INFO,
694 					"quota operations not supported");
695 			break;
696 #endif
697 		case Opt_whint:
698 			name = match_strdup(&args[0]);
699 			if (!name)
700 				return -ENOMEM;
701 			if (strlen(name) == 10 &&
702 					!strncmp(name, "user-based", 10)) {
703 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
704 			} else if (strlen(name) == 3 &&
705 					!strncmp(name, "off", 3)) {
706 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
707 			} else if (strlen(name) == 8 &&
708 					!strncmp(name, "fs-based", 8)) {
709 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
710 			} else {
711 				kfree(name);
712 				return -EINVAL;
713 			}
714 			kfree(name);
715 			break;
716 		case Opt_alloc:
717 			name = match_strdup(&args[0]);
718 			if (!name)
719 				return -ENOMEM;
720 
721 			if (strlen(name) == 7 &&
722 					!strncmp(name, "default", 7)) {
723 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
724 			} else if (strlen(name) == 5 &&
725 					!strncmp(name, "reuse", 5)) {
726 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
727 			} else {
728 				kfree(name);
729 				return -EINVAL;
730 			}
731 			kfree(name);
732 			break;
733 		case Opt_fsync:
734 			name = match_strdup(&args[0]);
735 			if (!name)
736 				return -ENOMEM;
737 			if (strlen(name) == 5 &&
738 					!strncmp(name, "posix", 5)) {
739 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
740 			} else if (strlen(name) == 6 &&
741 					!strncmp(name, "strict", 6)) {
742 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
743 			} else {
744 				kfree(name);
745 				return -EINVAL;
746 			}
747 			kfree(name);
748 			break;
749 		case Opt_test_dummy_encryption:
750 #ifdef CONFIG_F2FS_FS_ENCRYPTION
751 			if (!f2fs_sb_has_encrypt(sb)) {
752 				f2fs_msg(sb, KERN_ERR, "Encrypt feature is off");
753 				return -EINVAL;
754 			}
755 
756 			F2FS_OPTION(sbi).test_dummy_encryption = true;
757 			f2fs_msg(sb, KERN_INFO,
758 					"Test dummy encryption mode enabled");
759 #else
760 			f2fs_msg(sb, KERN_INFO,
761 					"Test dummy encryption mount option ignored");
762 #endif
763 			break;
764 		default:
765 			f2fs_msg(sb, KERN_ERR,
766 				"Unrecognized mount option \"%s\" or missing value",
767 				p);
768 			return -EINVAL;
769 		}
770 	}
771 #ifdef CONFIG_QUOTA
772 	if (f2fs_check_quota_options(sbi))
773 		return -EINVAL;
774 #endif
775 
776 	if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
777 		f2fs_msg(sb, KERN_ERR,
778 				"Should set mode=lfs with %uKB-sized IO",
779 				F2FS_IO_SIZE_KB(sbi));
780 		return -EINVAL;
781 	}
782 
783 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
784 		if (!f2fs_sb_has_extra_attr(sb) ||
785 			!f2fs_sb_has_flexible_inline_xattr(sb)) {
786 			f2fs_msg(sb, KERN_ERR,
787 					"extra_attr or flexible_inline_xattr "
788 					"feature is off");
789 			return -EINVAL;
790 		}
791 		if (!test_opt(sbi, INLINE_XATTR)) {
792 			f2fs_msg(sb, KERN_ERR,
793 					"inline_xattr_size option should be "
794 					"set with inline_xattr option");
795 			return -EINVAL;
796 		}
797 		if (!F2FS_OPTION(sbi).inline_xattr_size ||
798 			F2FS_OPTION(sbi).inline_xattr_size >=
799 					DEF_ADDRS_PER_INODE -
800 					F2FS_TOTAL_EXTRA_ATTR_SIZE -
801 					DEF_INLINE_RESERVED_SIZE -
802 					DEF_MIN_INLINE_SIZE) {
803 			f2fs_msg(sb, KERN_ERR,
804 					"inline xattr size is out of range");
805 			return -EINVAL;
806 		}
807 	}
808 
809 	/* Not pass down write hints if the number of active logs is lesser
810 	 * than NR_CURSEG_TYPE.
811 	 */
812 	if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
813 		F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
814 	return 0;
815 }
816 
817 static struct inode *f2fs_alloc_inode(struct super_block *sb)
818 {
819 	struct f2fs_inode_info *fi;
820 
821 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
822 	if (!fi)
823 		return NULL;
824 
825 	init_once((void *) fi);
826 
827 	/* Initialize f2fs-specific inode info */
828 	atomic_set(&fi->dirty_pages, 0);
829 	fi->i_current_depth = 1;
830 	init_rwsem(&fi->i_sem);
831 	INIT_LIST_HEAD(&fi->dirty_list);
832 	INIT_LIST_HEAD(&fi->gdirty_list);
833 	INIT_LIST_HEAD(&fi->inmem_ilist);
834 	INIT_LIST_HEAD(&fi->inmem_pages);
835 	mutex_init(&fi->inmem_lock);
836 	init_rwsem(&fi->dio_rwsem[READ]);
837 	init_rwsem(&fi->dio_rwsem[WRITE]);
838 	init_rwsem(&fi->i_mmap_sem);
839 	init_rwsem(&fi->i_xattr_sem);
840 
841 	/* Will be used by directory only */
842 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
843 
844 	return &fi->vfs_inode;
845 }
846 
847 static int f2fs_drop_inode(struct inode *inode)
848 {
849 	int ret;
850 	/*
851 	 * This is to avoid a deadlock condition like below.
852 	 * writeback_single_inode(inode)
853 	 *  - f2fs_write_data_page
854 	 *    - f2fs_gc -> iput -> evict
855 	 *       - inode_wait_for_writeback(inode)
856 	 */
857 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
858 		if (!inode->i_nlink && !is_bad_inode(inode)) {
859 			/* to avoid evict_inode call simultaneously */
860 			atomic_inc(&inode->i_count);
861 			spin_unlock(&inode->i_lock);
862 
863 			/* some remained atomic pages should discarded */
864 			if (f2fs_is_atomic_file(inode))
865 				drop_inmem_pages(inode);
866 
867 			/* should remain fi->extent_tree for writepage */
868 			f2fs_destroy_extent_node(inode);
869 
870 			sb_start_intwrite(inode->i_sb);
871 			f2fs_i_size_write(inode, 0);
872 
873 			if (F2FS_HAS_BLOCKS(inode))
874 				f2fs_truncate(inode);
875 
876 			sb_end_intwrite(inode->i_sb);
877 
878 			spin_lock(&inode->i_lock);
879 			atomic_dec(&inode->i_count);
880 		}
881 		trace_f2fs_drop_inode(inode, 0);
882 		return 0;
883 	}
884 	ret = generic_drop_inode(inode);
885 	trace_f2fs_drop_inode(inode, ret);
886 	return ret;
887 }
888 
889 int f2fs_inode_dirtied(struct inode *inode, bool sync)
890 {
891 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
892 	int ret = 0;
893 
894 	spin_lock(&sbi->inode_lock[DIRTY_META]);
895 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
896 		ret = 1;
897 	} else {
898 		set_inode_flag(inode, FI_DIRTY_INODE);
899 		stat_inc_dirty_inode(sbi, DIRTY_META);
900 	}
901 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
902 		list_add_tail(&F2FS_I(inode)->gdirty_list,
903 				&sbi->inode_list[DIRTY_META]);
904 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
905 	}
906 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
907 	return ret;
908 }
909 
910 void f2fs_inode_synced(struct inode *inode)
911 {
912 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
913 
914 	spin_lock(&sbi->inode_lock[DIRTY_META]);
915 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
916 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
917 		return;
918 	}
919 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
920 		list_del_init(&F2FS_I(inode)->gdirty_list);
921 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
922 	}
923 	clear_inode_flag(inode, FI_DIRTY_INODE);
924 	clear_inode_flag(inode, FI_AUTO_RECOVER);
925 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
926 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
927 }
928 
929 /*
930  * f2fs_dirty_inode() is called from __mark_inode_dirty()
931  *
932  * We should call set_dirty_inode to write the dirty inode through write_inode.
933  */
934 static void f2fs_dirty_inode(struct inode *inode, int flags)
935 {
936 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
937 
938 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
939 			inode->i_ino == F2FS_META_INO(sbi))
940 		return;
941 
942 	if (flags == I_DIRTY_TIME)
943 		return;
944 
945 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
946 		clear_inode_flag(inode, FI_AUTO_RECOVER);
947 
948 	f2fs_inode_dirtied(inode, false);
949 }
950 
951 static void f2fs_i_callback(struct rcu_head *head)
952 {
953 	struct inode *inode = container_of(head, struct inode, i_rcu);
954 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
955 }
956 
957 static void f2fs_destroy_inode(struct inode *inode)
958 {
959 	call_rcu(&inode->i_rcu, f2fs_i_callback);
960 }
961 
962 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
963 {
964 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
965 	percpu_counter_destroy(&sbi->total_valid_inode_count);
966 }
967 
968 static void destroy_device_list(struct f2fs_sb_info *sbi)
969 {
970 	int i;
971 
972 	for (i = 0; i < sbi->s_ndevs; i++) {
973 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
974 #ifdef CONFIG_BLK_DEV_ZONED
975 		kfree(FDEV(i).blkz_type);
976 #endif
977 	}
978 	kfree(sbi->devs);
979 }
980 
981 static void f2fs_put_super(struct super_block *sb)
982 {
983 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
984 	int i;
985 	bool dropped;
986 
987 	f2fs_quota_off_umount(sb);
988 
989 	/* prevent remaining shrinker jobs */
990 	mutex_lock(&sbi->umount_mutex);
991 
992 	/*
993 	 * We don't need to do checkpoint when superblock is clean.
994 	 * But, the previous checkpoint was not done by umount, it needs to do
995 	 * clean checkpoint again.
996 	 */
997 	if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
998 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
999 		struct cp_control cpc = {
1000 			.reason = CP_UMOUNT,
1001 		};
1002 		write_checkpoint(sbi, &cpc);
1003 	}
1004 
1005 	/* be sure to wait for any on-going discard commands */
1006 	dropped = f2fs_wait_discard_bios(sbi);
1007 
1008 	if (f2fs_discard_en(sbi) && !sbi->discard_blks && !dropped) {
1009 		struct cp_control cpc = {
1010 			.reason = CP_UMOUNT | CP_TRIMMED,
1011 		};
1012 		write_checkpoint(sbi, &cpc);
1013 	}
1014 
1015 	/* write_checkpoint can update stat informaion */
1016 	f2fs_destroy_stats(sbi);
1017 
1018 	/*
1019 	 * normally superblock is clean, so we need to release this.
1020 	 * In addition, EIO will skip do checkpoint, we need this as well.
1021 	 */
1022 	release_ino_entry(sbi, true);
1023 
1024 	f2fs_leave_shrinker(sbi);
1025 	mutex_unlock(&sbi->umount_mutex);
1026 
1027 	/* our cp_error case, we can wait for any writeback page */
1028 	f2fs_flush_merged_writes(sbi);
1029 
1030 	iput(sbi->node_inode);
1031 	iput(sbi->meta_inode);
1032 
1033 	/* destroy f2fs internal modules */
1034 	destroy_node_manager(sbi);
1035 	destroy_segment_manager(sbi);
1036 
1037 	kfree(sbi->ckpt);
1038 
1039 	f2fs_unregister_sysfs(sbi);
1040 
1041 	sb->s_fs_info = NULL;
1042 	if (sbi->s_chksum_driver)
1043 		crypto_free_shash(sbi->s_chksum_driver);
1044 	kfree(sbi->raw_super);
1045 
1046 	destroy_device_list(sbi);
1047 	mempool_destroy(sbi->write_io_dummy);
1048 #ifdef CONFIG_QUOTA
1049 	for (i = 0; i < MAXQUOTAS; i++)
1050 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1051 #endif
1052 	destroy_percpu_info(sbi);
1053 	for (i = 0; i < NR_PAGE_TYPE; i++)
1054 		kfree(sbi->write_io[i]);
1055 	kfree(sbi);
1056 }
1057 
1058 int f2fs_sync_fs(struct super_block *sb, int sync)
1059 {
1060 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1061 	int err = 0;
1062 
1063 	if (unlikely(f2fs_cp_error(sbi)))
1064 		return 0;
1065 
1066 	trace_f2fs_sync_fs(sb, sync);
1067 
1068 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1069 		return -EAGAIN;
1070 
1071 	if (sync) {
1072 		struct cp_control cpc;
1073 
1074 		cpc.reason = __get_cp_reason(sbi);
1075 
1076 		mutex_lock(&sbi->gc_mutex);
1077 		err = write_checkpoint(sbi, &cpc);
1078 		mutex_unlock(&sbi->gc_mutex);
1079 	}
1080 	f2fs_trace_ios(NULL, 1);
1081 
1082 	return err;
1083 }
1084 
1085 static int f2fs_freeze(struct super_block *sb)
1086 {
1087 	if (f2fs_readonly(sb))
1088 		return 0;
1089 
1090 	/* IO error happened before */
1091 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1092 		return -EIO;
1093 
1094 	/* must be clean, since sync_filesystem() was already called */
1095 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1096 		return -EINVAL;
1097 	return 0;
1098 }
1099 
1100 static int f2fs_unfreeze(struct super_block *sb)
1101 {
1102 	return 0;
1103 }
1104 
1105 #ifdef CONFIG_QUOTA
1106 static int f2fs_statfs_project(struct super_block *sb,
1107 				kprojid_t projid, struct kstatfs *buf)
1108 {
1109 	struct kqid qid;
1110 	struct dquot *dquot;
1111 	u64 limit;
1112 	u64 curblock;
1113 
1114 	qid = make_kqid_projid(projid);
1115 	dquot = dqget(sb, qid);
1116 	if (IS_ERR(dquot))
1117 		return PTR_ERR(dquot);
1118 	spin_lock(&dq_data_lock);
1119 
1120 	limit = (dquot->dq_dqb.dqb_bsoftlimit ?
1121 		 dquot->dq_dqb.dqb_bsoftlimit :
1122 		 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
1123 	if (limit && buf->f_blocks > limit) {
1124 		curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
1125 		buf->f_blocks = limit;
1126 		buf->f_bfree = buf->f_bavail =
1127 			(buf->f_blocks > curblock) ?
1128 			 (buf->f_blocks - curblock) : 0;
1129 	}
1130 
1131 	limit = dquot->dq_dqb.dqb_isoftlimit ?
1132 		dquot->dq_dqb.dqb_isoftlimit :
1133 		dquot->dq_dqb.dqb_ihardlimit;
1134 	if (limit && buf->f_files > limit) {
1135 		buf->f_files = limit;
1136 		buf->f_ffree =
1137 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1138 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1139 	}
1140 
1141 	spin_unlock(&dq_data_lock);
1142 	dqput(dquot);
1143 	return 0;
1144 }
1145 #endif
1146 
1147 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1148 {
1149 	struct super_block *sb = dentry->d_sb;
1150 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1151 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1152 	block_t total_count, user_block_count, start_count;
1153 	u64 avail_node_count;
1154 
1155 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1156 	user_block_count = sbi->user_block_count;
1157 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1158 	buf->f_type = F2FS_SUPER_MAGIC;
1159 	buf->f_bsize = sbi->blocksize;
1160 
1161 	buf->f_blocks = total_count - start_count;
1162 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1163 						sbi->current_reserved_blocks;
1164 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1165 		buf->f_bavail = buf->f_bfree -
1166 				F2FS_OPTION(sbi).root_reserved_blocks;
1167 	else
1168 		buf->f_bavail = 0;
1169 
1170 	avail_node_count = sbi->total_node_count - sbi->nquota_files -
1171 						F2FS_RESERVED_NODE_NUM;
1172 
1173 	if (avail_node_count > user_block_count) {
1174 		buf->f_files = user_block_count;
1175 		buf->f_ffree = buf->f_bavail;
1176 	} else {
1177 		buf->f_files = avail_node_count;
1178 		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1179 					buf->f_bavail);
1180 	}
1181 
1182 	buf->f_namelen = F2FS_NAME_LEN;
1183 	buf->f_fsid.val[0] = (u32)id;
1184 	buf->f_fsid.val[1] = (u32)(id >> 32);
1185 
1186 #ifdef CONFIG_QUOTA
1187 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1188 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1189 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1190 	}
1191 #endif
1192 	return 0;
1193 }
1194 
1195 static inline void f2fs_show_quota_options(struct seq_file *seq,
1196 					   struct super_block *sb)
1197 {
1198 #ifdef CONFIG_QUOTA
1199 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1200 
1201 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1202 		char *fmtname = "";
1203 
1204 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1205 		case QFMT_VFS_OLD:
1206 			fmtname = "vfsold";
1207 			break;
1208 		case QFMT_VFS_V0:
1209 			fmtname = "vfsv0";
1210 			break;
1211 		case QFMT_VFS_V1:
1212 			fmtname = "vfsv1";
1213 			break;
1214 		}
1215 		seq_printf(seq, ",jqfmt=%s", fmtname);
1216 	}
1217 
1218 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1219 		seq_show_option(seq, "usrjquota",
1220 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1221 
1222 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1223 		seq_show_option(seq, "grpjquota",
1224 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1225 
1226 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1227 		seq_show_option(seq, "prjjquota",
1228 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1229 #endif
1230 }
1231 
1232 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1233 {
1234 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1235 
1236 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1237 		if (test_opt(sbi, FORCE_FG_GC))
1238 			seq_printf(seq, ",background_gc=%s", "sync");
1239 		else
1240 			seq_printf(seq, ",background_gc=%s", "on");
1241 	} else {
1242 		seq_printf(seq, ",background_gc=%s", "off");
1243 	}
1244 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1245 		seq_puts(seq, ",disable_roll_forward");
1246 	if (test_opt(sbi, DISCARD))
1247 		seq_puts(seq, ",discard");
1248 	if (test_opt(sbi, NOHEAP))
1249 		seq_puts(seq, ",no_heap");
1250 	else
1251 		seq_puts(seq, ",heap");
1252 #ifdef CONFIG_F2FS_FS_XATTR
1253 	if (test_opt(sbi, XATTR_USER))
1254 		seq_puts(seq, ",user_xattr");
1255 	else
1256 		seq_puts(seq, ",nouser_xattr");
1257 	if (test_opt(sbi, INLINE_XATTR))
1258 		seq_puts(seq, ",inline_xattr");
1259 	else
1260 		seq_puts(seq, ",noinline_xattr");
1261 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1262 		seq_printf(seq, ",inline_xattr_size=%u",
1263 					F2FS_OPTION(sbi).inline_xattr_size);
1264 #endif
1265 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1266 	if (test_opt(sbi, POSIX_ACL))
1267 		seq_puts(seq, ",acl");
1268 	else
1269 		seq_puts(seq, ",noacl");
1270 #endif
1271 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1272 		seq_puts(seq, ",disable_ext_identify");
1273 	if (test_opt(sbi, INLINE_DATA))
1274 		seq_puts(seq, ",inline_data");
1275 	else
1276 		seq_puts(seq, ",noinline_data");
1277 	if (test_opt(sbi, INLINE_DENTRY))
1278 		seq_puts(seq, ",inline_dentry");
1279 	else
1280 		seq_puts(seq, ",noinline_dentry");
1281 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1282 		seq_puts(seq, ",flush_merge");
1283 	if (test_opt(sbi, NOBARRIER))
1284 		seq_puts(seq, ",nobarrier");
1285 	if (test_opt(sbi, FASTBOOT))
1286 		seq_puts(seq, ",fastboot");
1287 	if (test_opt(sbi, EXTENT_CACHE))
1288 		seq_puts(seq, ",extent_cache");
1289 	else
1290 		seq_puts(seq, ",noextent_cache");
1291 	if (test_opt(sbi, DATA_FLUSH))
1292 		seq_puts(seq, ",data_flush");
1293 
1294 	seq_puts(seq, ",mode=");
1295 	if (test_opt(sbi, ADAPTIVE))
1296 		seq_puts(seq, "adaptive");
1297 	else if (test_opt(sbi, LFS))
1298 		seq_puts(seq, "lfs");
1299 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1300 	if (test_opt(sbi, RESERVE_ROOT))
1301 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1302 				F2FS_OPTION(sbi).root_reserved_blocks,
1303 				from_kuid_munged(&init_user_ns,
1304 					F2FS_OPTION(sbi).s_resuid),
1305 				from_kgid_munged(&init_user_ns,
1306 					F2FS_OPTION(sbi).s_resgid));
1307 	if (F2FS_IO_SIZE_BITS(sbi))
1308 		seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi));
1309 #ifdef CONFIG_F2FS_FAULT_INJECTION
1310 	if (test_opt(sbi, FAULT_INJECTION))
1311 		seq_printf(seq, ",fault_injection=%u",
1312 				F2FS_OPTION(sbi).fault_info.inject_rate);
1313 #endif
1314 #ifdef CONFIG_QUOTA
1315 	if (test_opt(sbi, QUOTA))
1316 		seq_puts(seq, ",quota");
1317 	if (test_opt(sbi, USRQUOTA))
1318 		seq_puts(seq, ",usrquota");
1319 	if (test_opt(sbi, GRPQUOTA))
1320 		seq_puts(seq, ",grpquota");
1321 	if (test_opt(sbi, PRJQUOTA))
1322 		seq_puts(seq, ",prjquota");
1323 #endif
1324 	f2fs_show_quota_options(seq, sbi->sb);
1325 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1326 		seq_printf(seq, ",whint_mode=%s", "user-based");
1327 	else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1328 		seq_printf(seq, ",whint_mode=%s", "fs-based");
1329 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1330 	if (F2FS_OPTION(sbi).test_dummy_encryption)
1331 		seq_puts(seq, ",test_dummy_encryption");
1332 #endif
1333 
1334 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1335 		seq_printf(seq, ",alloc_mode=%s", "default");
1336 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1337 		seq_printf(seq, ",alloc_mode=%s", "reuse");
1338 
1339 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1340 		seq_printf(seq, ",fsync_mode=%s", "posix");
1341 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1342 		seq_printf(seq, ",fsync_mode=%s", "strict");
1343 	return 0;
1344 }
1345 
1346 static void default_options(struct f2fs_sb_info *sbi)
1347 {
1348 	/* init some FS parameters */
1349 	F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1350 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1351 	F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1352 	F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1353 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1354 	F2FS_OPTION(sbi).test_dummy_encryption = false;
1355 	sbi->readdir_ra = 1;
1356 
1357 	set_opt(sbi, BG_GC);
1358 	set_opt(sbi, INLINE_XATTR);
1359 	set_opt(sbi, INLINE_DATA);
1360 	set_opt(sbi, INLINE_DENTRY);
1361 	set_opt(sbi, EXTENT_CACHE);
1362 	set_opt(sbi, NOHEAP);
1363 	sbi->sb->s_flags |= SB_LAZYTIME;
1364 	set_opt(sbi, FLUSH_MERGE);
1365 	if (f2fs_sb_has_blkzoned(sbi->sb)) {
1366 		set_opt_mode(sbi, F2FS_MOUNT_LFS);
1367 		set_opt(sbi, DISCARD);
1368 	} else {
1369 		set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1370 	}
1371 
1372 #ifdef CONFIG_F2FS_FS_XATTR
1373 	set_opt(sbi, XATTR_USER);
1374 #endif
1375 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1376 	set_opt(sbi, POSIX_ACL);
1377 #endif
1378 
1379 #ifdef CONFIG_F2FS_FAULT_INJECTION
1380 	f2fs_build_fault_attr(sbi, 0);
1381 #endif
1382 }
1383 
1384 #ifdef CONFIG_QUOTA
1385 static int f2fs_enable_quotas(struct super_block *sb);
1386 #endif
1387 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1388 {
1389 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1390 	struct f2fs_mount_info org_mount_opt;
1391 	unsigned long old_sb_flags;
1392 	int err;
1393 	bool need_restart_gc = false;
1394 	bool need_stop_gc = false;
1395 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1396 #ifdef CONFIG_QUOTA
1397 	int i, j;
1398 #endif
1399 
1400 	/*
1401 	 * Save the old mount options in case we
1402 	 * need to restore them.
1403 	 */
1404 	org_mount_opt = sbi->mount_opt;
1405 	old_sb_flags = sb->s_flags;
1406 
1407 #ifdef CONFIG_QUOTA
1408 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1409 	for (i = 0; i < MAXQUOTAS; i++) {
1410 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1411 			org_mount_opt.s_qf_names[i] =
1412 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1413 				GFP_KERNEL);
1414 			if (!org_mount_opt.s_qf_names[i]) {
1415 				for (j = 0; j < i; j++)
1416 					kfree(org_mount_opt.s_qf_names[j]);
1417 				return -ENOMEM;
1418 			}
1419 		} else {
1420 			org_mount_opt.s_qf_names[i] = NULL;
1421 		}
1422 	}
1423 #endif
1424 
1425 	/* recover superblocks we couldn't write due to previous RO mount */
1426 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1427 		err = f2fs_commit_super(sbi, false);
1428 		f2fs_msg(sb, KERN_INFO,
1429 			"Try to recover all the superblocks, ret: %d", err);
1430 		if (!err)
1431 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1432 	}
1433 
1434 	default_options(sbi);
1435 
1436 	/* parse mount options */
1437 	err = parse_options(sb, data);
1438 	if (err)
1439 		goto restore_opts;
1440 
1441 	/*
1442 	 * Previous and new state of filesystem is RO,
1443 	 * so skip checking GC and FLUSH_MERGE conditions.
1444 	 */
1445 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1446 		goto skip;
1447 
1448 #ifdef CONFIG_QUOTA
1449 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1450 		err = dquot_suspend(sb, -1);
1451 		if (err < 0)
1452 			goto restore_opts;
1453 	} else if (f2fs_readonly(sb) && !(*flags & MS_RDONLY)) {
1454 		/* dquot_resume needs RW */
1455 		sb->s_flags &= ~SB_RDONLY;
1456 		if (sb_any_quota_suspended(sb)) {
1457 			dquot_resume(sb, -1);
1458 		} else if (f2fs_sb_has_quota_ino(sb)) {
1459 			err = f2fs_enable_quotas(sb);
1460 			if (err)
1461 				goto restore_opts;
1462 		}
1463 	}
1464 #endif
1465 	/* disallow enable/disable extent_cache dynamically */
1466 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1467 		err = -EINVAL;
1468 		f2fs_msg(sbi->sb, KERN_WARNING,
1469 				"switch extent_cache option is not allowed");
1470 		goto restore_opts;
1471 	}
1472 
1473 	/*
1474 	 * We stop the GC thread if FS is mounted as RO
1475 	 * or if background_gc = off is passed in mount
1476 	 * option. Also sync the filesystem.
1477 	 */
1478 	if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) {
1479 		if (sbi->gc_thread) {
1480 			stop_gc_thread(sbi);
1481 			need_restart_gc = true;
1482 		}
1483 	} else if (!sbi->gc_thread) {
1484 		err = start_gc_thread(sbi);
1485 		if (err)
1486 			goto restore_opts;
1487 		need_stop_gc = true;
1488 	}
1489 
1490 	if (*flags & SB_RDONLY ||
1491 		F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1492 		writeback_inodes_sb(sb, WB_REASON_SYNC);
1493 		sync_inodes_sb(sb);
1494 
1495 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1496 		set_sbi_flag(sbi, SBI_IS_CLOSE);
1497 		f2fs_sync_fs(sb, 1);
1498 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
1499 	}
1500 
1501 	/*
1502 	 * We stop issue flush thread if FS is mounted as RO
1503 	 * or if flush_merge is not passed in mount option.
1504 	 */
1505 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1506 		clear_opt(sbi, FLUSH_MERGE);
1507 		destroy_flush_cmd_control(sbi, false);
1508 	} else {
1509 		err = create_flush_cmd_control(sbi);
1510 		if (err)
1511 			goto restore_gc;
1512 	}
1513 skip:
1514 #ifdef CONFIG_QUOTA
1515 	/* Release old quota file names */
1516 	for (i = 0; i < MAXQUOTAS; i++)
1517 		kfree(org_mount_opt.s_qf_names[i]);
1518 #endif
1519 	/* Update the POSIXACL Flag */
1520 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1521 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1522 
1523 	limit_reserve_root(sbi);
1524 	return 0;
1525 restore_gc:
1526 	if (need_restart_gc) {
1527 		if (start_gc_thread(sbi))
1528 			f2fs_msg(sbi->sb, KERN_WARNING,
1529 				"background gc thread has stopped");
1530 	} else if (need_stop_gc) {
1531 		stop_gc_thread(sbi);
1532 	}
1533 restore_opts:
1534 #ifdef CONFIG_QUOTA
1535 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1536 	for (i = 0; i < MAXQUOTAS; i++) {
1537 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1538 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1539 	}
1540 #endif
1541 	sbi->mount_opt = org_mount_opt;
1542 	sb->s_flags = old_sb_flags;
1543 	return err;
1544 }
1545 
1546 #ifdef CONFIG_QUOTA
1547 /* Read data from quotafile */
1548 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1549 			       size_t len, loff_t off)
1550 {
1551 	struct inode *inode = sb_dqopt(sb)->files[type];
1552 	struct address_space *mapping = inode->i_mapping;
1553 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
1554 	int offset = off & (sb->s_blocksize - 1);
1555 	int tocopy;
1556 	size_t toread;
1557 	loff_t i_size = i_size_read(inode);
1558 	struct page *page;
1559 	char *kaddr;
1560 
1561 	if (off > i_size)
1562 		return 0;
1563 
1564 	if (off + len > i_size)
1565 		len = i_size - off;
1566 	toread = len;
1567 	while (toread > 0) {
1568 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1569 repeat:
1570 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1571 		if (IS_ERR(page)) {
1572 			if (PTR_ERR(page) == -ENOMEM) {
1573 				congestion_wait(BLK_RW_ASYNC, HZ/50);
1574 				goto repeat;
1575 			}
1576 			return PTR_ERR(page);
1577 		}
1578 
1579 		lock_page(page);
1580 
1581 		if (unlikely(page->mapping != mapping)) {
1582 			f2fs_put_page(page, 1);
1583 			goto repeat;
1584 		}
1585 		if (unlikely(!PageUptodate(page))) {
1586 			f2fs_put_page(page, 1);
1587 			return -EIO;
1588 		}
1589 
1590 		kaddr = kmap_atomic(page);
1591 		memcpy(data, kaddr + offset, tocopy);
1592 		kunmap_atomic(kaddr);
1593 		f2fs_put_page(page, 1);
1594 
1595 		offset = 0;
1596 		toread -= tocopy;
1597 		data += tocopy;
1598 		blkidx++;
1599 	}
1600 	return len;
1601 }
1602 
1603 /* Write to quotafile */
1604 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1605 				const char *data, size_t len, loff_t off)
1606 {
1607 	struct inode *inode = sb_dqopt(sb)->files[type];
1608 	struct address_space *mapping = inode->i_mapping;
1609 	const struct address_space_operations *a_ops = mapping->a_ops;
1610 	int offset = off & (sb->s_blocksize - 1);
1611 	size_t towrite = len;
1612 	struct page *page;
1613 	char *kaddr;
1614 	int err = 0;
1615 	int tocopy;
1616 
1617 	while (towrite > 0) {
1618 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1619 								towrite);
1620 retry:
1621 		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1622 							&page, NULL);
1623 		if (unlikely(err)) {
1624 			if (err == -ENOMEM) {
1625 				congestion_wait(BLK_RW_ASYNC, HZ/50);
1626 				goto retry;
1627 			}
1628 			break;
1629 		}
1630 
1631 		kaddr = kmap_atomic(page);
1632 		memcpy(kaddr + offset, data, tocopy);
1633 		kunmap_atomic(kaddr);
1634 		flush_dcache_page(page);
1635 
1636 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1637 						page, NULL);
1638 		offset = 0;
1639 		towrite -= tocopy;
1640 		off += tocopy;
1641 		data += tocopy;
1642 		cond_resched();
1643 	}
1644 
1645 	if (len == towrite)
1646 		return err;
1647 	inode->i_mtime = inode->i_ctime = current_time(inode);
1648 	f2fs_mark_inode_dirty_sync(inode, false);
1649 	return len - towrite;
1650 }
1651 
1652 static struct dquot **f2fs_get_dquots(struct inode *inode)
1653 {
1654 	return F2FS_I(inode)->i_dquot;
1655 }
1656 
1657 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1658 {
1659 	return &F2FS_I(inode)->i_reserved_quota;
1660 }
1661 
1662 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1663 {
1664 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
1665 					F2FS_OPTION(sbi).s_jquota_fmt, type);
1666 }
1667 
1668 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1669 {
1670 	int enabled = 0;
1671 	int i, err;
1672 
1673 	if (f2fs_sb_has_quota_ino(sbi->sb) && rdonly) {
1674 		err = f2fs_enable_quotas(sbi->sb);
1675 		if (err) {
1676 			f2fs_msg(sbi->sb, KERN_ERR,
1677 					"Cannot turn on quota_ino: %d", err);
1678 			return 0;
1679 		}
1680 		return 1;
1681 	}
1682 
1683 	for (i = 0; i < MAXQUOTAS; i++) {
1684 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1685 			err = f2fs_quota_on_mount(sbi, i);
1686 			if (!err) {
1687 				enabled = 1;
1688 				continue;
1689 			}
1690 			f2fs_msg(sbi->sb, KERN_ERR,
1691 				"Cannot turn on quotas: %d on %d", err, i);
1692 		}
1693 	}
1694 	return enabled;
1695 }
1696 
1697 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
1698 			     unsigned int flags)
1699 {
1700 	struct inode *qf_inode;
1701 	unsigned long qf_inum;
1702 	int err;
1703 
1704 	BUG_ON(!f2fs_sb_has_quota_ino(sb));
1705 
1706 	qf_inum = f2fs_qf_ino(sb, type);
1707 	if (!qf_inum)
1708 		return -EPERM;
1709 
1710 	qf_inode = f2fs_iget(sb, qf_inum);
1711 	if (IS_ERR(qf_inode)) {
1712 		f2fs_msg(sb, KERN_ERR,
1713 			"Bad quota inode %u:%lu", type, qf_inum);
1714 		return PTR_ERR(qf_inode);
1715 	}
1716 
1717 	/* Don't account quota for quota files to avoid recursion */
1718 	qf_inode->i_flags |= S_NOQUOTA;
1719 	err = dquot_enable(qf_inode, type, format_id, flags);
1720 	iput(qf_inode);
1721 	return err;
1722 }
1723 
1724 static int f2fs_enable_quotas(struct super_block *sb)
1725 {
1726 	int type, err = 0;
1727 	unsigned long qf_inum;
1728 	bool quota_mopt[MAXQUOTAS] = {
1729 		test_opt(F2FS_SB(sb), USRQUOTA),
1730 		test_opt(F2FS_SB(sb), GRPQUOTA),
1731 		test_opt(F2FS_SB(sb), PRJQUOTA),
1732 	};
1733 
1734 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
1735 	for (type = 0; type < MAXQUOTAS; type++) {
1736 		qf_inum = f2fs_qf_ino(sb, type);
1737 		if (qf_inum) {
1738 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
1739 				DQUOT_USAGE_ENABLED |
1740 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
1741 			if (err) {
1742 				f2fs_msg(sb, KERN_ERR,
1743 					"Failed to enable quota tracking "
1744 					"(type=%d, err=%d). Please run "
1745 					"fsck to fix.", type, err);
1746 				for (type--; type >= 0; type--)
1747 					dquot_quota_off(sb, type);
1748 				return err;
1749 			}
1750 		}
1751 	}
1752 	return 0;
1753 }
1754 
1755 static int f2fs_quota_sync(struct super_block *sb, int type)
1756 {
1757 	struct quota_info *dqopt = sb_dqopt(sb);
1758 	int cnt;
1759 	int ret;
1760 
1761 	ret = dquot_writeback_dquots(sb, type);
1762 	if (ret)
1763 		return ret;
1764 
1765 	/*
1766 	 * Now when everything is written we can discard the pagecache so
1767 	 * that userspace sees the changes.
1768 	 */
1769 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1770 		if (type != -1 && cnt != type)
1771 			continue;
1772 		if (!sb_has_quota_active(sb, cnt))
1773 			continue;
1774 
1775 		ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping);
1776 		if (ret)
1777 			return ret;
1778 
1779 		inode_lock(dqopt->files[cnt]);
1780 		truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1781 		inode_unlock(dqopt->files[cnt]);
1782 	}
1783 	return 0;
1784 }
1785 
1786 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1787 							const struct path *path)
1788 {
1789 	struct inode *inode;
1790 	int err;
1791 
1792 	err = f2fs_quota_sync(sb, type);
1793 	if (err)
1794 		return err;
1795 
1796 	err = dquot_quota_on(sb, type, format_id, path);
1797 	if (err)
1798 		return err;
1799 
1800 	inode = d_inode(path->dentry);
1801 
1802 	inode_lock(inode);
1803 	F2FS_I(inode)->i_flags |= FS_NOATIME_FL | FS_IMMUTABLE_FL;
1804 	inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
1805 					S_NOATIME | S_IMMUTABLE);
1806 	inode_unlock(inode);
1807 	f2fs_mark_inode_dirty_sync(inode, false);
1808 
1809 	return 0;
1810 }
1811 
1812 static int f2fs_quota_off(struct super_block *sb, int type)
1813 {
1814 	struct inode *inode = sb_dqopt(sb)->files[type];
1815 	int err;
1816 
1817 	if (!inode || !igrab(inode))
1818 		return dquot_quota_off(sb, type);
1819 
1820 	f2fs_quota_sync(sb, type);
1821 
1822 	err = dquot_quota_off(sb, type);
1823 	if (err || f2fs_sb_has_quota_ino(sb))
1824 		goto out_put;
1825 
1826 	inode_lock(inode);
1827 	F2FS_I(inode)->i_flags &= ~(FS_NOATIME_FL | FS_IMMUTABLE_FL);
1828 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
1829 	inode_unlock(inode);
1830 	f2fs_mark_inode_dirty_sync(inode, false);
1831 out_put:
1832 	iput(inode);
1833 	return err;
1834 }
1835 
1836 void f2fs_quota_off_umount(struct super_block *sb)
1837 {
1838 	int type;
1839 
1840 	for (type = 0; type < MAXQUOTAS; type++)
1841 		f2fs_quota_off(sb, type);
1842 }
1843 
1844 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
1845 {
1846 	*projid = F2FS_I(inode)->i_projid;
1847 	return 0;
1848 }
1849 
1850 static const struct dquot_operations f2fs_quota_operations = {
1851 	.get_reserved_space = f2fs_get_reserved_space,
1852 	.write_dquot	= dquot_commit,
1853 	.acquire_dquot	= dquot_acquire,
1854 	.release_dquot	= dquot_release,
1855 	.mark_dirty	= dquot_mark_dquot_dirty,
1856 	.write_info	= dquot_commit_info,
1857 	.alloc_dquot	= dquot_alloc,
1858 	.destroy_dquot	= dquot_destroy,
1859 	.get_projid	= f2fs_get_projid,
1860 	.get_next_id	= dquot_get_next_id,
1861 };
1862 
1863 static const struct quotactl_ops f2fs_quotactl_ops = {
1864 	.quota_on	= f2fs_quota_on,
1865 	.quota_off	= f2fs_quota_off,
1866 	.quota_sync	= f2fs_quota_sync,
1867 	.get_state	= dquot_get_state,
1868 	.set_info	= dquot_set_dqinfo,
1869 	.get_dqblk	= dquot_get_dqblk,
1870 	.set_dqblk	= dquot_set_dqblk,
1871 	.get_nextdqblk	= dquot_get_next_dqblk,
1872 };
1873 #else
1874 void f2fs_quota_off_umount(struct super_block *sb)
1875 {
1876 }
1877 #endif
1878 
1879 static const struct super_operations f2fs_sops = {
1880 	.alloc_inode	= f2fs_alloc_inode,
1881 	.drop_inode	= f2fs_drop_inode,
1882 	.destroy_inode	= f2fs_destroy_inode,
1883 	.write_inode	= f2fs_write_inode,
1884 	.dirty_inode	= f2fs_dirty_inode,
1885 	.show_options	= f2fs_show_options,
1886 #ifdef CONFIG_QUOTA
1887 	.quota_read	= f2fs_quota_read,
1888 	.quota_write	= f2fs_quota_write,
1889 	.get_dquots	= f2fs_get_dquots,
1890 #endif
1891 	.evict_inode	= f2fs_evict_inode,
1892 	.put_super	= f2fs_put_super,
1893 	.sync_fs	= f2fs_sync_fs,
1894 	.freeze_fs	= f2fs_freeze,
1895 	.unfreeze_fs	= f2fs_unfreeze,
1896 	.statfs		= f2fs_statfs,
1897 	.remount_fs	= f2fs_remount,
1898 };
1899 
1900 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1901 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1902 {
1903 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1904 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1905 				ctx, len, NULL);
1906 }
1907 
1908 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1909 							void *fs_data)
1910 {
1911 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1912 
1913 	/*
1914 	 * Encrypting the root directory is not allowed because fsck
1915 	 * expects lost+found directory to exist and remain unencrypted
1916 	 * if LOST_FOUND feature is enabled.
1917 	 *
1918 	 */
1919 	if (f2fs_sb_has_lost_found(sbi->sb) &&
1920 			inode->i_ino == F2FS_ROOT_INO(sbi))
1921 		return -EPERM;
1922 
1923 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1924 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1925 				ctx, len, fs_data, XATTR_CREATE);
1926 }
1927 
1928 static bool f2fs_dummy_context(struct inode *inode)
1929 {
1930 	return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode));
1931 }
1932 
1933 static const struct fscrypt_operations f2fs_cryptops = {
1934 	.key_prefix	= "f2fs:",
1935 	.get_context	= f2fs_get_context,
1936 	.set_context	= f2fs_set_context,
1937 	.dummy_context	= f2fs_dummy_context,
1938 	.empty_dir	= f2fs_empty_dir,
1939 	.max_namelen	= F2FS_NAME_LEN,
1940 };
1941 #endif
1942 
1943 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1944 		u64 ino, u32 generation)
1945 {
1946 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1947 	struct inode *inode;
1948 
1949 	if (check_nid_range(sbi, ino))
1950 		return ERR_PTR(-ESTALE);
1951 
1952 	/*
1953 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
1954 	 * However f2fs_iget currently does appropriate checks to handle stale
1955 	 * inodes so everything is OK.
1956 	 */
1957 	inode = f2fs_iget(sb, ino);
1958 	if (IS_ERR(inode))
1959 		return ERR_CAST(inode);
1960 	if (unlikely(generation && inode->i_generation != generation)) {
1961 		/* we didn't find the right inode.. */
1962 		iput(inode);
1963 		return ERR_PTR(-ESTALE);
1964 	}
1965 	return inode;
1966 }
1967 
1968 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1969 		int fh_len, int fh_type)
1970 {
1971 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1972 				    f2fs_nfs_get_inode);
1973 }
1974 
1975 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1976 		int fh_len, int fh_type)
1977 {
1978 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1979 				    f2fs_nfs_get_inode);
1980 }
1981 
1982 static const struct export_operations f2fs_export_ops = {
1983 	.fh_to_dentry = f2fs_fh_to_dentry,
1984 	.fh_to_parent = f2fs_fh_to_parent,
1985 	.get_parent = f2fs_get_parent,
1986 };
1987 
1988 static loff_t max_file_blocks(void)
1989 {
1990 	loff_t result = 0;
1991 	loff_t leaf_count = ADDRS_PER_BLOCK;
1992 
1993 	/*
1994 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
1995 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
1996 	 * space in inode.i_addr, it will be more safe to reassign
1997 	 * result as zero.
1998 	 */
1999 
2000 	/* two direct node blocks */
2001 	result += (leaf_count * 2);
2002 
2003 	/* two indirect node blocks */
2004 	leaf_count *= NIDS_PER_BLOCK;
2005 	result += (leaf_count * 2);
2006 
2007 	/* one double indirect node block */
2008 	leaf_count *= NIDS_PER_BLOCK;
2009 	result += leaf_count;
2010 
2011 	return result;
2012 }
2013 
2014 static int __f2fs_commit_super(struct buffer_head *bh,
2015 			struct f2fs_super_block *super)
2016 {
2017 	lock_buffer(bh);
2018 	if (super)
2019 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2020 	set_buffer_dirty(bh);
2021 	unlock_buffer(bh);
2022 
2023 	/* it's rare case, we can do fua all the time */
2024 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2025 }
2026 
2027 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2028 					struct buffer_head *bh)
2029 {
2030 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2031 					(bh->b_data + F2FS_SUPER_OFFSET);
2032 	struct super_block *sb = sbi->sb;
2033 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2034 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2035 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2036 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2037 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2038 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2039 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2040 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2041 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2042 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2043 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2044 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
2045 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2046 	u64 main_end_blkaddr = main_blkaddr +
2047 				(segment_count_main << log_blocks_per_seg);
2048 	u64 seg_end_blkaddr = segment0_blkaddr +
2049 				(segment_count << log_blocks_per_seg);
2050 
2051 	if (segment0_blkaddr != cp_blkaddr) {
2052 		f2fs_msg(sb, KERN_INFO,
2053 			"Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2054 			segment0_blkaddr, cp_blkaddr);
2055 		return true;
2056 	}
2057 
2058 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2059 							sit_blkaddr) {
2060 		f2fs_msg(sb, KERN_INFO,
2061 			"Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2062 			cp_blkaddr, sit_blkaddr,
2063 			segment_count_ckpt << log_blocks_per_seg);
2064 		return true;
2065 	}
2066 
2067 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2068 							nat_blkaddr) {
2069 		f2fs_msg(sb, KERN_INFO,
2070 			"Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2071 			sit_blkaddr, nat_blkaddr,
2072 			segment_count_sit << log_blocks_per_seg);
2073 		return true;
2074 	}
2075 
2076 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2077 							ssa_blkaddr) {
2078 		f2fs_msg(sb, KERN_INFO,
2079 			"Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2080 			nat_blkaddr, ssa_blkaddr,
2081 			segment_count_nat << log_blocks_per_seg);
2082 		return true;
2083 	}
2084 
2085 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2086 							main_blkaddr) {
2087 		f2fs_msg(sb, KERN_INFO,
2088 			"Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2089 			ssa_blkaddr, main_blkaddr,
2090 			segment_count_ssa << log_blocks_per_seg);
2091 		return true;
2092 	}
2093 
2094 	if (main_end_blkaddr > seg_end_blkaddr) {
2095 		f2fs_msg(sb, KERN_INFO,
2096 			"Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2097 			main_blkaddr,
2098 			segment0_blkaddr +
2099 				(segment_count << log_blocks_per_seg),
2100 			segment_count_main << log_blocks_per_seg);
2101 		return true;
2102 	} else if (main_end_blkaddr < seg_end_blkaddr) {
2103 		int err = 0;
2104 		char *res;
2105 
2106 		/* fix in-memory information all the time */
2107 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2108 				segment0_blkaddr) >> log_blocks_per_seg);
2109 
2110 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2111 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2112 			res = "internally";
2113 		} else {
2114 			err = __f2fs_commit_super(bh, NULL);
2115 			res = err ? "failed" : "done";
2116 		}
2117 		f2fs_msg(sb, KERN_INFO,
2118 			"Fix alignment : %s, start(%u) end(%u) block(%u)",
2119 			res, main_blkaddr,
2120 			segment0_blkaddr +
2121 				(segment_count << log_blocks_per_seg),
2122 			segment_count_main << log_blocks_per_seg);
2123 		if (err)
2124 			return true;
2125 	}
2126 	return false;
2127 }
2128 
2129 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2130 				struct buffer_head *bh)
2131 {
2132 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2133 					(bh->b_data + F2FS_SUPER_OFFSET);
2134 	struct super_block *sb = sbi->sb;
2135 	unsigned int blocksize;
2136 
2137 	if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
2138 		f2fs_msg(sb, KERN_INFO,
2139 			"Magic Mismatch, valid(0x%x) - read(0x%x)",
2140 			F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2141 		return 1;
2142 	}
2143 
2144 	/* Currently, support only 4KB page cache size */
2145 	if (F2FS_BLKSIZE != PAGE_SIZE) {
2146 		f2fs_msg(sb, KERN_INFO,
2147 			"Invalid page_cache_size (%lu), supports only 4KB\n",
2148 			PAGE_SIZE);
2149 		return 1;
2150 	}
2151 
2152 	/* Currently, support only 4KB block size */
2153 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2154 	if (blocksize != F2FS_BLKSIZE) {
2155 		f2fs_msg(sb, KERN_INFO,
2156 			"Invalid blocksize (%u), supports only 4KB\n",
2157 			blocksize);
2158 		return 1;
2159 	}
2160 
2161 	/* check log blocks per segment */
2162 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2163 		f2fs_msg(sb, KERN_INFO,
2164 			"Invalid log blocks per segment (%u)\n",
2165 			le32_to_cpu(raw_super->log_blocks_per_seg));
2166 		return 1;
2167 	}
2168 
2169 	/* Currently, support 512/1024/2048/4096 bytes sector size */
2170 	if (le32_to_cpu(raw_super->log_sectorsize) >
2171 				F2FS_MAX_LOG_SECTOR_SIZE ||
2172 		le32_to_cpu(raw_super->log_sectorsize) <
2173 				F2FS_MIN_LOG_SECTOR_SIZE) {
2174 		f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
2175 			le32_to_cpu(raw_super->log_sectorsize));
2176 		return 1;
2177 	}
2178 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
2179 		le32_to_cpu(raw_super->log_sectorsize) !=
2180 			F2FS_MAX_LOG_SECTOR_SIZE) {
2181 		f2fs_msg(sb, KERN_INFO,
2182 			"Invalid log sectors per block(%u) log sectorsize(%u)",
2183 			le32_to_cpu(raw_super->log_sectors_per_block),
2184 			le32_to_cpu(raw_super->log_sectorsize));
2185 		return 1;
2186 	}
2187 
2188 	/* check reserved ino info */
2189 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
2190 		le32_to_cpu(raw_super->meta_ino) != 2 ||
2191 		le32_to_cpu(raw_super->root_ino) != 3) {
2192 		f2fs_msg(sb, KERN_INFO,
2193 			"Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2194 			le32_to_cpu(raw_super->node_ino),
2195 			le32_to_cpu(raw_super->meta_ino),
2196 			le32_to_cpu(raw_super->root_ino));
2197 		return 1;
2198 	}
2199 
2200 	if (le32_to_cpu(raw_super->segment_count) > F2FS_MAX_SEGMENT) {
2201 		f2fs_msg(sb, KERN_INFO,
2202 			"Invalid segment count (%u)",
2203 			le32_to_cpu(raw_super->segment_count));
2204 		return 1;
2205 	}
2206 
2207 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2208 	if (sanity_check_area_boundary(sbi, bh))
2209 		return 1;
2210 
2211 	return 0;
2212 }
2213 
2214 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
2215 {
2216 	unsigned int total, fsmeta;
2217 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2218 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2219 	unsigned int ovp_segments, reserved_segments;
2220 	unsigned int main_segs, blocks_per_seg;
2221 	int i;
2222 
2223 	total = le32_to_cpu(raw_super->segment_count);
2224 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2225 	fsmeta += le32_to_cpu(raw_super->segment_count_sit);
2226 	fsmeta += le32_to_cpu(raw_super->segment_count_nat);
2227 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2228 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2229 
2230 	if (unlikely(fsmeta >= total))
2231 		return 1;
2232 
2233 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2234 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2235 
2236 	if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2237 			ovp_segments == 0 || reserved_segments == 0)) {
2238 		f2fs_msg(sbi->sb, KERN_ERR,
2239 			"Wrong layout: check mkfs.f2fs version");
2240 		return 1;
2241 	}
2242 
2243 	main_segs = le32_to_cpu(raw_super->segment_count_main);
2244 	blocks_per_seg = sbi->blocks_per_seg;
2245 
2246 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2247 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2248 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2249 			return 1;
2250 	}
2251 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2252 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2253 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2254 			return 1;
2255 	}
2256 
2257 	if (unlikely(f2fs_cp_error(sbi))) {
2258 		f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
2259 		return 1;
2260 	}
2261 	return 0;
2262 }
2263 
2264 static void init_sb_info(struct f2fs_sb_info *sbi)
2265 {
2266 	struct f2fs_super_block *raw_super = sbi->raw_super;
2267 	int i, j;
2268 
2269 	sbi->log_sectors_per_block =
2270 		le32_to_cpu(raw_super->log_sectors_per_block);
2271 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2272 	sbi->blocksize = 1 << sbi->log_blocksize;
2273 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2274 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2275 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2276 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2277 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
2278 	sbi->total_node_count =
2279 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
2280 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2281 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2282 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2283 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2284 	sbi->cur_victim_sec = NULL_SECNO;
2285 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2286 
2287 	sbi->dir_level = DEF_DIR_LEVEL;
2288 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2289 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2290 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
2291 
2292 	for (i = 0; i < NR_COUNT_TYPE; i++)
2293 		atomic_set(&sbi->nr_pages[i], 0);
2294 
2295 	atomic_set(&sbi->wb_sync_req, 0);
2296 
2297 	INIT_LIST_HEAD(&sbi->s_list);
2298 	mutex_init(&sbi->umount_mutex);
2299 	for (i = 0; i < NR_PAGE_TYPE - 1; i++)
2300 		for (j = HOT; j < NR_TEMP_TYPE; j++)
2301 			mutex_init(&sbi->wio_mutex[i][j]);
2302 	spin_lock_init(&sbi->cp_lock);
2303 
2304 	sbi->dirty_device = 0;
2305 	spin_lock_init(&sbi->dev_lock);
2306 
2307 	init_rwsem(&sbi->sb_lock);
2308 }
2309 
2310 static int init_percpu_info(struct f2fs_sb_info *sbi)
2311 {
2312 	int err;
2313 
2314 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2315 	if (err)
2316 		return err;
2317 
2318 	return percpu_counter_init(&sbi->total_valid_inode_count, 0,
2319 								GFP_KERNEL);
2320 }
2321 
2322 #ifdef CONFIG_BLK_DEV_ZONED
2323 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2324 {
2325 	struct block_device *bdev = FDEV(devi).bdev;
2326 	sector_t nr_sectors = bdev->bd_part->nr_sects;
2327 	sector_t sector = 0;
2328 	struct blk_zone *zones;
2329 	unsigned int i, nr_zones;
2330 	unsigned int n = 0;
2331 	int err = -EIO;
2332 
2333 	if (!f2fs_sb_has_blkzoned(sbi->sb))
2334 		return 0;
2335 
2336 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
2337 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
2338 		return -EINVAL;
2339 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2340 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2341 				__ilog2_u32(sbi->blocks_per_blkz))
2342 		return -EINVAL;
2343 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2344 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2345 					sbi->log_blocks_per_blkz;
2346 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2347 		FDEV(devi).nr_blkz++;
2348 
2349 	FDEV(devi).blkz_type = f2fs_kmalloc(sbi, FDEV(devi).nr_blkz,
2350 								GFP_KERNEL);
2351 	if (!FDEV(devi).blkz_type)
2352 		return -ENOMEM;
2353 
2354 #define F2FS_REPORT_NR_ZONES   4096
2355 
2356 	zones = f2fs_kzalloc(sbi, sizeof(struct blk_zone) *
2357 				F2FS_REPORT_NR_ZONES, GFP_KERNEL);
2358 	if (!zones)
2359 		return -ENOMEM;
2360 
2361 	/* Get block zones type */
2362 	while (zones && sector < nr_sectors) {
2363 
2364 		nr_zones = F2FS_REPORT_NR_ZONES;
2365 		err = blkdev_report_zones(bdev, sector,
2366 					  zones, &nr_zones,
2367 					  GFP_KERNEL);
2368 		if (err)
2369 			break;
2370 		if (!nr_zones) {
2371 			err = -EIO;
2372 			break;
2373 		}
2374 
2375 		for (i = 0; i < nr_zones; i++) {
2376 			FDEV(devi).blkz_type[n] = zones[i].type;
2377 			sector += zones[i].len;
2378 			n++;
2379 		}
2380 	}
2381 
2382 	kfree(zones);
2383 
2384 	return err;
2385 }
2386 #endif
2387 
2388 /*
2389  * Read f2fs raw super block.
2390  * Because we have two copies of super block, so read both of them
2391  * to get the first valid one. If any one of them is broken, we pass
2392  * them recovery flag back to the caller.
2393  */
2394 static int read_raw_super_block(struct f2fs_sb_info *sbi,
2395 			struct f2fs_super_block **raw_super,
2396 			int *valid_super_block, int *recovery)
2397 {
2398 	struct super_block *sb = sbi->sb;
2399 	int block;
2400 	struct buffer_head *bh;
2401 	struct f2fs_super_block *super;
2402 	int err = 0;
2403 
2404 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2405 	if (!super)
2406 		return -ENOMEM;
2407 
2408 	for (block = 0; block < 2; block++) {
2409 		bh = sb_bread(sb, block);
2410 		if (!bh) {
2411 			f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
2412 				block + 1);
2413 			err = -EIO;
2414 			continue;
2415 		}
2416 
2417 		/* sanity checking of raw super */
2418 		if (sanity_check_raw_super(sbi, bh)) {
2419 			f2fs_msg(sb, KERN_ERR,
2420 				"Can't find valid F2FS filesystem in %dth superblock",
2421 				block + 1);
2422 			err = -EINVAL;
2423 			brelse(bh);
2424 			continue;
2425 		}
2426 
2427 		if (!*raw_super) {
2428 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2429 							sizeof(*super));
2430 			*valid_super_block = block;
2431 			*raw_super = super;
2432 		}
2433 		brelse(bh);
2434 	}
2435 
2436 	/* Fail to read any one of the superblocks*/
2437 	if (err < 0)
2438 		*recovery = 1;
2439 
2440 	/* No valid superblock */
2441 	if (!*raw_super)
2442 		kfree(super);
2443 	else
2444 		err = 0;
2445 
2446 	return err;
2447 }
2448 
2449 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2450 {
2451 	struct buffer_head *bh;
2452 	int err;
2453 
2454 	if ((recover && f2fs_readonly(sbi->sb)) ||
2455 				bdev_read_only(sbi->sb->s_bdev)) {
2456 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2457 		return -EROFS;
2458 	}
2459 
2460 	/* write back-up superblock first */
2461 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
2462 	if (!bh)
2463 		return -EIO;
2464 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2465 	brelse(bh);
2466 
2467 	/* if we are in recovery path, skip writing valid superblock */
2468 	if (recover || err)
2469 		return err;
2470 
2471 	/* write current valid superblock */
2472 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
2473 	if (!bh)
2474 		return -EIO;
2475 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2476 	brelse(bh);
2477 	return err;
2478 }
2479 
2480 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
2481 {
2482 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2483 	unsigned int max_devices = MAX_DEVICES;
2484 	int i;
2485 
2486 	/* Initialize single device information */
2487 	if (!RDEV(0).path[0]) {
2488 		if (!bdev_is_zoned(sbi->sb->s_bdev))
2489 			return 0;
2490 		max_devices = 1;
2491 	}
2492 
2493 	/*
2494 	 * Initialize multiple devices information, or single
2495 	 * zoned block device information.
2496 	 */
2497 	sbi->devs = f2fs_kzalloc(sbi, sizeof(struct f2fs_dev_info) *
2498 						max_devices, GFP_KERNEL);
2499 	if (!sbi->devs)
2500 		return -ENOMEM;
2501 
2502 	for (i = 0; i < max_devices; i++) {
2503 
2504 		if (i > 0 && !RDEV(i).path[0])
2505 			break;
2506 
2507 		if (max_devices == 1) {
2508 			/* Single zoned block device mount */
2509 			FDEV(0).bdev =
2510 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
2511 					sbi->sb->s_mode, sbi->sb->s_type);
2512 		} else {
2513 			/* Multi-device mount */
2514 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
2515 			FDEV(i).total_segments =
2516 				le32_to_cpu(RDEV(i).total_segments);
2517 			if (i == 0) {
2518 				FDEV(i).start_blk = 0;
2519 				FDEV(i).end_blk = FDEV(i).start_blk +
2520 				    (FDEV(i).total_segments <<
2521 				    sbi->log_blocks_per_seg) - 1 +
2522 				    le32_to_cpu(raw_super->segment0_blkaddr);
2523 			} else {
2524 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
2525 				FDEV(i).end_blk = FDEV(i).start_blk +
2526 					(FDEV(i).total_segments <<
2527 					sbi->log_blocks_per_seg) - 1;
2528 			}
2529 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
2530 					sbi->sb->s_mode, sbi->sb->s_type);
2531 		}
2532 		if (IS_ERR(FDEV(i).bdev))
2533 			return PTR_ERR(FDEV(i).bdev);
2534 
2535 		/* to release errored devices */
2536 		sbi->s_ndevs = i + 1;
2537 
2538 #ifdef CONFIG_BLK_DEV_ZONED
2539 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
2540 				!f2fs_sb_has_blkzoned(sbi->sb)) {
2541 			f2fs_msg(sbi->sb, KERN_ERR,
2542 				"Zoned block device feature not enabled\n");
2543 			return -EINVAL;
2544 		}
2545 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
2546 			if (init_blkz_info(sbi, i)) {
2547 				f2fs_msg(sbi->sb, KERN_ERR,
2548 					"Failed to initialize F2FS blkzone information");
2549 				return -EINVAL;
2550 			}
2551 			if (max_devices == 1)
2552 				break;
2553 			f2fs_msg(sbi->sb, KERN_INFO,
2554 				"Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
2555 				i, FDEV(i).path,
2556 				FDEV(i).total_segments,
2557 				FDEV(i).start_blk, FDEV(i).end_blk,
2558 				bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
2559 				"Host-aware" : "Host-managed");
2560 			continue;
2561 		}
2562 #endif
2563 		f2fs_msg(sbi->sb, KERN_INFO,
2564 			"Mount Device [%2d]: %20s, %8u, %8x - %8x",
2565 				i, FDEV(i).path,
2566 				FDEV(i).total_segments,
2567 				FDEV(i).start_blk, FDEV(i).end_blk);
2568 	}
2569 	f2fs_msg(sbi->sb, KERN_INFO,
2570 			"IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
2571 	return 0;
2572 }
2573 
2574 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
2575 {
2576 	struct f2fs_sm_info *sm_i = SM_I(sbi);
2577 
2578 	/* adjust parameters according to the volume size */
2579 	if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
2580 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
2581 		sm_i->dcc_info->discard_granularity = 1;
2582 		sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
2583 	}
2584 }
2585 
2586 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
2587 {
2588 	struct f2fs_sb_info *sbi;
2589 	struct f2fs_super_block *raw_super;
2590 	struct inode *root;
2591 	int err;
2592 	bool retry = true, need_fsck = false;
2593 	char *options = NULL;
2594 	int recovery, i, valid_super_block;
2595 	struct curseg_info *seg_i;
2596 
2597 try_onemore:
2598 	err = -EINVAL;
2599 	raw_super = NULL;
2600 	valid_super_block = -1;
2601 	recovery = 0;
2602 
2603 	/* allocate memory for f2fs-specific super block info */
2604 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
2605 	if (!sbi)
2606 		return -ENOMEM;
2607 
2608 	sbi->sb = sb;
2609 
2610 	/* Load the checksum driver */
2611 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
2612 	if (IS_ERR(sbi->s_chksum_driver)) {
2613 		f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
2614 		err = PTR_ERR(sbi->s_chksum_driver);
2615 		sbi->s_chksum_driver = NULL;
2616 		goto free_sbi;
2617 	}
2618 
2619 	/* set a block size */
2620 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
2621 		f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
2622 		goto free_sbi;
2623 	}
2624 
2625 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
2626 								&recovery);
2627 	if (err)
2628 		goto free_sbi;
2629 
2630 	sb->s_fs_info = sbi;
2631 	sbi->raw_super = raw_super;
2632 
2633 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
2634 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
2635 
2636 	/* precompute checksum seed for metadata */
2637 	if (f2fs_sb_has_inode_chksum(sb))
2638 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
2639 						sizeof(raw_super->uuid));
2640 
2641 	/*
2642 	 * The BLKZONED feature indicates that the drive was formatted with
2643 	 * zone alignment optimization. This is optional for host-aware
2644 	 * devices, but mandatory for host-managed zoned block devices.
2645 	 */
2646 #ifndef CONFIG_BLK_DEV_ZONED
2647 	if (f2fs_sb_has_blkzoned(sb)) {
2648 		f2fs_msg(sb, KERN_ERR,
2649 			 "Zoned block device support is not enabled\n");
2650 		err = -EOPNOTSUPP;
2651 		goto free_sb_buf;
2652 	}
2653 #endif
2654 	default_options(sbi);
2655 	/* parse mount options */
2656 	options = kstrdup((const char *)data, GFP_KERNEL);
2657 	if (data && !options) {
2658 		err = -ENOMEM;
2659 		goto free_sb_buf;
2660 	}
2661 
2662 	err = parse_options(sb, options);
2663 	if (err)
2664 		goto free_options;
2665 
2666 	sbi->max_file_blocks = max_file_blocks();
2667 	sb->s_maxbytes = sbi->max_file_blocks <<
2668 				le32_to_cpu(raw_super->log_blocksize);
2669 	sb->s_max_links = F2FS_LINK_MAX;
2670 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2671 
2672 #ifdef CONFIG_QUOTA
2673 	sb->dq_op = &f2fs_quota_operations;
2674 	if (f2fs_sb_has_quota_ino(sb))
2675 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
2676 	else
2677 		sb->s_qcop = &f2fs_quotactl_ops;
2678 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
2679 
2680 	if (f2fs_sb_has_quota_ino(sbi->sb)) {
2681 		for (i = 0; i < MAXQUOTAS; i++) {
2682 			if (f2fs_qf_ino(sbi->sb, i))
2683 				sbi->nquota_files++;
2684 		}
2685 	}
2686 #endif
2687 
2688 	sb->s_op = &f2fs_sops;
2689 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2690 	sb->s_cop = &f2fs_cryptops;
2691 #endif
2692 	sb->s_xattr = f2fs_xattr_handlers;
2693 	sb->s_export_op = &f2fs_export_ops;
2694 	sb->s_magic = F2FS_SUPER_MAGIC;
2695 	sb->s_time_gran = 1;
2696 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2697 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2698 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
2699 	sb->s_iflags |= SB_I_CGROUPWB;
2700 
2701 	/* init f2fs-specific super block info */
2702 	sbi->valid_super_block = valid_super_block;
2703 	mutex_init(&sbi->gc_mutex);
2704 	mutex_init(&sbi->cp_mutex);
2705 	init_rwsem(&sbi->node_write);
2706 	init_rwsem(&sbi->node_change);
2707 
2708 	/* disallow all the data/node/meta page writes */
2709 	set_sbi_flag(sbi, SBI_POR_DOING);
2710 	spin_lock_init(&sbi->stat_lock);
2711 
2712 	/* init iostat info */
2713 	spin_lock_init(&sbi->iostat_lock);
2714 	sbi->iostat_enable = false;
2715 
2716 	for (i = 0; i < NR_PAGE_TYPE; i++) {
2717 		int n = (i == META) ? 1: NR_TEMP_TYPE;
2718 		int j;
2719 
2720 		sbi->write_io[i] = f2fs_kmalloc(sbi,
2721 					n * sizeof(struct f2fs_bio_info),
2722 					GFP_KERNEL);
2723 		if (!sbi->write_io[i]) {
2724 			err = -ENOMEM;
2725 			goto free_options;
2726 		}
2727 
2728 		for (j = HOT; j < n; j++) {
2729 			init_rwsem(&sbi->write_io[i][j].io_rwsem);
2730 			sbi->write_io[i][j].sbi = sbi;
2731 			sbi->write_io[i][j].bio = NULL;
2732 			spin_lock_init(&sbi->write_io[i][j].io_lock);
2733 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
2734 		}
2735 	}
2736 
2737 	init_rwsem(&sbi->cp_rwsem);
2738 	init_waitqueue_head(&sbi->cp_wait);
2739 	init_sb_info(sbi);
2740 
2741 	err = init_percpu_info(sbi);
2742 	if (err)
2743 		goto free_bio_info;
2744 
2745 	if (F2FS_IO_SIZE(sbi) > 1) {
2746 		sbi->write_io_dummy =
2747 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
2748 		if (!sbi->write_io_dummy) {
2749 			err = -ENOMEM;
2750 			goto free_percpu;
2751 		}
2752 	}
2753 
2754 	/* get an inode for meta space */
2755 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
2756 	if (IS_ERR(sbi->meta_inode)) {
2757 		f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
2758 		err = PTR_ERR(sbi->meta_inode);
2759 		goto free_io_dummy;
2760 	}
2761 
2762 	err = get_valid_checkpoint(sbi);
2763 	if (err) {
2764 		f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
2765 		goto free_meta_inode;
2766 	}
2767 
2768 	/* Initialize device list */
2769 	err = f2fs_scan_devices(sbi);
2770 	if (err) {
2771 		f2fs_msg(sb, KERN_ERR, "Failed to find devices");
2772 		goto free_devices;
2773 	}
2774 
2775 	sbi->total_valid_node_count =
2776 				le32_to_cpu(sbi->ckpt->valid_node_count);
2777 	percpu_counter_set(&sbi->total_valid_inode_count,
2778 				le32_to_cpu(sbi->ckpt->valid_inode_count));
2779 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
2780 	sbi->total_valid_block_count =
2781 				le64_to_cpu(sbi->ckpt->valid_block_count);
2782 	sbi->last_valid_block_count = sbi->total_valid_block_count;
2783 	sbi->reserved_blocks = 0;
2784 	sbi->current_reserved_blocks = 0;
2785 	limit_reserve_root(sbi);
2786 
2787 	for (i = 0; i < NR_INODE_TYPE; i++) {
2788 		INIT_LIST_HEAD(&sbi->inode_list[i]);
2789 		spin_lock_init(&sbi->inode_lock[i]);
2790 	}
2791 
2792 	init_extent_cache_info(sbi);
2793 
2794 	init_ino_entry_info(sbi);
2795 
2796 	/* setup f2fs internal modules */
2797 	err = build_segment_manager(sbi);
2798 	if (err) {
2799 		f2fs_msg(sb, KERN_ERR,
2800 			"Failed to initialize F2FS segment manager");
2801 		goto free_sm;
2802 	}
2803 	err = build_node_manager(sbi);
2804 	if (err) {
2805 		f2fs_msg(sb, KERN_ERR,
2806 			"Failed to initialize F2FS node manager");
2807 		goto free_nm;
2808 	}
2809 
2810 	/* For write statistics */
2811 	if (sb->s_bdev->bd_part)
2812 		sbi->sectors_written_start =
2813 			(u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
2814 
2815 	/* Read accumulated write IO statistics if exists */
2816 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
2817 	if (__exist_node_summaries(sbi))
2818 		sbi->kbytes_written =
2819 			le64_to_cpu(seg_i->journal->info.kbytes_written);
2820 
2821 	build_gc_manager(sbi);
2822 
2823 	/* get an inode for node space */
2824 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
2825 	if (IS_ERR(sbi->node_inode)) {
2826 		f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
2827 		err = PTR_ERR(sbi->node_inode);
2828 		goto free_nm;
2829 	}
2830 
2831 	err = f2fs_build_stats(sbi);
2832 	if (err)
2833 		goto free_node_inode;
2834 
2835 	/* read root inode and dentry */
2836 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
2837 	if (IS_ERR(root)) {
2838 		f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
2839 		err = PTR_ERR(root);
2840 		goto free_stats;
2841 	}
2842 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2843 		iput(root);
2844 		err = -EINVAL;
2845 		goto free_node_inode;
2846 	}
2847 
2848 	sb->s_root = d_make_root(root); /* allocate root dentry */
2849 	if (!sb->s_root) {
2850 		err = -ENOMEM;
2851 		goto free_root_inode;
2852 	}
2853 
2854 	err = f2fs_register_sysfs(sbi);
2855 	if (err)
2856 		goto free_root_inode;
2857 
2858 #ifdef CONFIG_QUOTA
2859 	/*
2860 	 * Turn on quotas which were not enabled for read-only mounts if
2861 	 * filesystem has quota feature, so that they are updated correctly.
2862 	 */
2863 	if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb)) {
2864 		err = f2fs_enable_quotas(sb);
2865 		if (err) {
2866 			f2fs_msg(sb, KERN_ERR,
2867 				"Cannot turn on quotas: error %d", err);
2868 			goto free_sysfs;
2869 		}
2870 	}
2871 #endif
2872 	/* if there are nt orphan nodes free them */
2873 	err = recover_orphan_inodes(sbi);
2874 	if (err)
2875 		goto free_meta;
2876 
2877 	/* recover fsynced data */
2878 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
2879 		/*
2880 		 * mount should be failed, when device has readonly mode, and
2881 		 * previous checkpoint was not done by clean system shutdown.
2882 		 */
2883 		if (bdev_read_only(sb->s_bdev) &&
2884 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
2885 			err = -EROFS;
2886 			goto free_meta;
2887 		}
2888 
2889 		if (need_fsck)
2890 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2891 
2892 		if (!retry)
2893 			goto skip_recovery;
2894 
2895 		err = recover_fsync_data(sbi, false);
2896 		if (err < 0) {
2897 			need_fsck = true;
2898 			f2fs_msg(sb, KERN_ERR,
2899 				"Cannot recover all fsync data errno=%d", err);
2900 			goto free_meta;
2901 		}
2902 	} else {
2903 		err = recover_fsync_data(sbi, true);
2904 
2905 		if (!f2fs_readonly(sb) && err > 0) {
2906 			err = -EINVAL;
2907 			f2fs_msg(sb, KERN_ERR,
2908 				"Need to recover fsync data");
2909 			goto free_meta;
2910 		}
2911 	}
2912 skip_recovery:
2913 	/* recover_fsync_data() cleared this already */
2914 	clear_sbi_flag(sbi, SBI_POR_DOING);
2915 
2916 	/*
2917 	 * If filesystem is not mounted as read-only then
2918 	 * do start the gc_thread.
2919 	 */
2920 	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
2921 		/* After POR, we can run background GC thread.*/
2922 		err = start_gc_thread(sbi);
2923 		if (err)
2924 			goto free_meta;
2925 	}
2926 	kfree(options);
2927 
2928 	/* recover broken superblock */
2929 	if (recovery) {
2930 		err = f2fs_commit_super(sbi, true);
2931 		f2fs_msg(sb, KERN_INFO,
2932 			"Try to recover %dth superblock, ret: %d",
2933 			sbi->valid_super_block ? 1 : 2, err);
2934 	}
2935 
2936 	f2fs_join_shrinker(sbi);
2937 
2938 	f2fs_tuning_parameters(sbi);
2939 
2940 	f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
2941 				cur_cp_version(F2FS_CKPT(sbi)));
2942 	f2fs_update_time(sbi, CP_TIME);
2943 	f2fs_update_time(sbi, REQ_TIME);
2944 	return 0;
2945 
2946 free_meta:
2947 #ifdef CONFIG_QUOTA
2948 	if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb))
2949 		f2fs_quota_off_umount(sbi->sb);
2950 #endif
2951 	f2fs_sync_inode_meta(sbi);
2952 	/*
2953 	 * Some dirty meta pages can be produced by recover_orphan_inodes()
2954 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
2955 	 * followed by write_checkpoint() through f2fs_write_node_pages(), which
2956 	 * falls into an infinite loop in sync_meta_pages().
2957 	 */
2958 	truncate_inode_pages_final(META_MAPPING(sbi));
2959 #ifdef CONFIG_QUOTA
2960 free_sysfs:
2961 #endif
2962 	f2fs_unregister_sysfs(sbi);
2963 free_root_inode:
2964 	dput(sb->s_root);
2965 	sb->s_root = NULL;
2966 free_stats:
2967 	f2fs_destroy_stats(sbi);
2968 free_node_inode:
2969 	release_ino_entry(sbi, true);
2970 	truncate_inode_pages_final(NODE_MAPPING(sbi));
2971 	iput(sbi->node_inode);
2972 free_nm:
2973 	destroy_node_manager(sbi);
2974 free_sm:
2975 	destroy_segment_manager(sbi);
2976 free_devices:
2977 	destroy_device_list(sbi);
2978 	kfree(sbi->ckpt);
2979 free_meta_inode:
2980 	make_bad_inode(sbi->meta_inode);
2981 	iput(sbi->meta_inode);
2982 free_io_dummy:
2983 	mempool_destroy(sbi->write_io_dummy);
2984 free_percpu:
2985 	destroy_percpu_info(sbi);
2986 free_bio_info:
2987 	for (i = 0; i < NR_PAGE_TYPE; i++)
2988 		kfree(sbi->write_io[i]);
2989 free_options:
2990 #ifdef CONFIG_QUOTA
2991 	for (i = 0; i < MAXQUOTAS; i++)
2992 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
2993 #endif
2994 	kfree(options);
2995 free_sb_buf:
2996 	kfree(raw_super);
2997 free_sbi:
2998 	if (sbi->s_chksum_driver)
2999 		crypto_free_shash(sbi->s_chksum_driver);
3000 	kfree(sbi);
3001 
3002 	/* give only one another chance */
3003 	if (retry) {
3004 		retry = false;
3005 		shrink_dcache_sb(sb);
3006 		goto try_onemore;
3007 	}
3008 	return err;
3009 }
3010 
3011 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3012 			const char *dev_name, void *data)
3013 {
3014 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3015 }
3016 
3017 static void kill_f2fs_super(struct super_block *sb)
3018 {
3019 	if (sb->s_root) {
3020 		set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
3021 		stop_gc_thread(F2FS_SB(sb));
3022 		stop_discard_thread(F2FS_SB(sb));
3023 	}
3024 	kill_block_super(sb);
3025 }
3026 
3027 static struct file_system_type f2fs_fs_type = {
3028 	.owner		= THIS_MODULE,
3029 	.name		= "f2fs",
3030 	.mount		= f2fs_mount,
3031 	.kill_sb	= kill_f2fs_super,
3032 	.fs_flags	= FS_REQUIRES_DEV,
3033 };
3034 MODULE_ALIAS_FS("f2fs");
3035 
3036 static int __init init_inodecache(void)
3037 {
3038 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3039 			sizeof(struct f2fs_inode_info), 0,
3040 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3041 	if (!f2fs_inode_cachep)
3042 		return -ENOMEM;
3043 	return 0;
3044 }
3045 
3046 static void destroy_inodecache(void)
3047 {
3048 	/*
3049 	 * Make sure all delayed rcu free inodes are flushed before we
3050 	 * destroy cache.
3051 	 */
3052 	rcu_barrier();
3053 	kmem_cache_destroy(f2fs_inode_cachep);
3054 }
3055 
3056 static int __init init_f2fs_fs(void)
3057 {
3058 	int err;
3059 
3060 	f2fs_build_trace_ios();
3061 
3062 	err = init_inodecache();
3063 	if (err)
3064 		goto fail;
3065 	err = create_node_manager_caches();
3066 	if (err)
3067 		goto free_inodecache;
3068 	err = create_segment_manager_caches();
3069 	if (err)
3070 		goto free_node_manager_caches;
3071 	err = create_checkpoint_caches();
3072 	if (err)
3073 		goto free_segment_manager_caches;
3074 	err = create_extent_cache();
3075 	if (err)
3076 		goto free_checkpoint_caches;
3077 	err = f2fs_init_sysfs();
3078 	if (err)
3079 		goto free_extent_cache;
3080 	err = register_shrinker(&f2fs_shrinker_info);
3081 	if (err)
3082 		goto free_sysfs;
3083 	err = register_filesystem(&f2fs_fs_type);
3084 	if (err)
3085 		goto free_shrinker;
3086 	err = f2fs_create_root_stats();
3087 	if (err)
3088 		goto free_filesystem;
3089 	return 0;
3090 
3091 free_filesystem:
3092 	unregister_filesystem(&f2fs_fs_type);
3093 free_shrinker:
3094 	unregister_shrinker(&f2fs_shrinker_info);
3095 free_sysfs:
3096 	f2fs_exit_sysfs();
3097 free_extent_cache:
3098 	destroy_extent_cache();
3099 free_checkpoint_caches:
3100 	destroy_checkpoint_caches();
3101 free_segment_manager_caches:
3102 	destroy_segment_manager_caches();
3103 free_node_manager_caches:
3104 	destroy_node_manager_caches();
3105 free_inodecache:
3106 	destroy_inodecache();
3107 fail:
3108 	return err;
3109 }
3110 
3111 static void __exit exit_f2fs_fs(void)
3112 {
3113 	f2fs_destroy_root_stats();
3114 	unregister_filesystem(&f2fs_fs_type);
3115 	unregister_shrinker(&f2fs_shrinker_info);
3116 	f2fs_exit_sysfs();
3117 	destroy_extent_cache();
3118 	destroy_checkpoint_caches();
3119 	destroy_segment_manager_caches();
3120 	destroy_node_manager_caches();
3121 	destroy_inodecache();
3122 	f2fs_destroy_trace_ios();
3123 }
3124 
3125 module_init(init_f2fs_fs)
3126 module_exit(exit_f2fs_fs)
3127 
3128 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
3129 MODULE_DESCRIPTION("Flash Friendly File System");
3130 MODULE_LICENSE("GPL");
3131 
3132