xref: /openbmc/linux/fs/f2fs/super.c (revision a266ef69b890f099069cf51bb40572611c435a54)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/fs_context.h>
12 #include <linux/sched/mm.h>
13 #include <linux/statfs.h>
14 #include <linux/buffer_head.h>
15 #include <linux/kthread.h>
16 #include <linux/parser.h>
17 #include <linux/mount.h>
18 #include <linux/seq_file.h>
19 #include <linux/proc_fs.h>
20 #include <linux/random.h>
21 #include <linux/exportfs.h>
22 #include <linux/blkdev.h>
23 #include <linux/quotaops.h>
24 #include <linux/f2fs_fs.h>
25 #include <linux/sysfs.h>
26 #include <linux/quota.h>
27 #include <linux/unicode.h>
28 #include <linux/part_stat.h>
29 #include <linux/zstd.h>
30 #include <linux/lz4.h>
31 
32 #include "f2fs.h"
33 #include "node.h"
34 #include "segment.h"
35 #include "xattr.h"
36 #include "gc.h"
37 #include "iostat.h"
38 
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/f2fs.h>
41 
42 static struct kmem_cache *f2fs_inode_cachep;
43 
44 #ifdef CONFIG_F2FS_FAULT_INJECTION
45 
46 const char *f2fs_fault_name[FAULT_MAX] = {
47 	[FAULT_KMALLOC]		= "kmalloc",
48 	[FAULT_KVMALLOC]	= "kvmalloc",
49 	[FAULT_PAGE_ALLOC]	= "page alloc",
50 	[FAULT_PAGE_GET]	= "page get",
51 	[FAULT_ALLOC_NID]	= "alloc nid",
52 	[FAULT_ORPHAN]		= "orphan",
53 	[FAULT_BLOCK]		= "no more block",
54 	[FAULT_DIR_DEPTH]	= "too big dir depth",
55 	[FAULT_EVICT_INODE]	= "evict_inode fail",
56 	[FAULT_TRUNCATE]	= "truncate fail",
57 	[FAULT_READ_IO]		= "read IO error",
58 	[FAULT_CHECKPOINT]	= "checkpoint error",
59 	[FAULT_DISCARD]		= "discard error",
60 	[FAULT_WRITE_IO]	= "write IO error",
61 	[FAULT_SLAB_ALLOC]	= "slab alloc",
62 	[FAULT_DQUOT_INIT]	= "dquot initialize",
63 	[FAULT_LOCK_OP]		= "lock_op",
64 	[FAULT_BLKADDR]		= "invalid blkaddr",
65 };
66 
67 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
68 							unsigned int type)
69 {
70 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
71 
72 	if (rate) {
73 		atomic_set(&ffi->inject_ops, 0);
74 		ffi->inject_rate = rate;
75 	}
76 
77 	if (type)
78 		ffi->inject_type = type;
79 
80 	if (!rate && !type)
81 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
82 }
83 #endif
84 
85 /* f2fs-wide shrinker description */
86 static struct shrinker f2fs_shrinker_info = {
87 	.scan_objects = f2fs_shrink_scan,
88 	.count_objects = f2fs_shrink_count,
89 	.seeks = DEFAULT_SEEKS,
90 };
91 
92 enum {
93 	Opt_gc_background,
94 	Opt_disable_roll_forward,
95 	Opt_norecovery,
96 	Opt_discard,
97 	Opt_nodiscard,
98 	Opt_noheap,
99 	Opt_heap,
100 	Opt_user_xattr,
101 	Opt_nouser_xattr,
102 	Opt_acl,
103 	Opt_noacl,
104 	Opt_active_logs,
105 	Opt_disable_ext_identify,
106 	Opt_inline_xattr,
107 	Opt_noinline_xattr,
108 	Opt_inline_xattr_size,
109 	Opt_inline_data,
110 	Opt_inline_dentry,
111 	Opt_noinline_dentry,
112 	Opt_flush_merge,
113 	Opt_noflush_merge,
114 	Opt_barrier,
115 	Opt_nobarrier,
116 	Opt_fastboot,
117 	Opt_extent_cache,
118 	Opt_noextent_cache,
119 	Opt_noinline_data,
120 	Opt_data_flush,
121 	Opt_reserve_root,
122 	Opt_resgid,
123 	Opt_resuid,
124 	Opt_mode,
125 	Opt_io_size_bits,
126 	Opt_fault_injection,
127 	Opt_fault_type,
128 	Opt_lazytime,
129 	Opt_nolazytime,
130 	Opt_quota,
131 	Opt_noquota,
132 	Opt_usrquota,
133 	Opt_grpquota,
134 	Opt_prjquota,
135 	Opt_usrjquota,
136 	Opt_grpjquota,
137 	Opt_prjjquota,
138 	Opt_offusrjquota,
139 	Opt_offgrpjquota,
140 	Opt_offprjjquota,
141 	Opt_jqfmt_vfsold,
142 	Opt_jqfmt_vfsv0,
143 	Opt_jqfmt_vfsv1,
144 	Opt_alloc,
145 	Opt_fsync,
146 	Opt_test_dummy_encryption,
147 	Opt_inlinecrypt,
148 	Opt_checkpoint_disable,
149 	Opt_checkpoint_disable_cap,
150 	Opt_checkpoint_disable_cap_perc,
151 	Opt_checkpoint_enable,
152 	Opt_checkpoint_merge,
153 	Opt_nocheckpoint_merge,
154 	Opt_compress_algorithm,
155 	Opt_compress_log_size,
156 	Opt_compress_extension,
157 	Opt_nocompress_extension,
158 	Opt_compress_chksum,
159 	Opt_compress_mode,
160 	Opt_compress_cache,
161 	Opt_atgc,
162 	Opt_gc_merge,
163 	Opt_nogc_merge,
164 	Opt_discard_unit,
165 	Opt_memory_mode,
166 	Opt_age_extent_cache,
167 	Opt_err,
168 };
169 
170 static match_table_t f2fs_tokens = {
171 	{Opt_gc_background, "background_gc=%s"},
172 	{Opt_disable_roll_forward, "disable_roll_forward"},
173 	{Opt_norecovery, "norecovery"},
174 	{Opt_discard, "discard"},
175 	{Opt_nodiscard, "nodiscard"},
176 	{Opt_noheap, "no_heap"},
177 	{Opt_heap, "heap"},
178 	{Opt_user_xattr, "user_xattr"},
179 	{Opt_nouser_xattr, "nouser_xattr"},
180 	{Opt_acl, "acl"},
181 	{Opt_noacl, "noacl"},
182 	{Opt_active_logs, "active_logs=%u"},
183 	{Opt_disable_ext_identify, "disable_ext_identify"},
184 	{Opt_inline_xattr, "inline_xattr"},
185 	{Opt_noinline_xattr, "noinline_xattr"},
186 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
187 	{Opt_inline_data, "inline_data"},
188 	{Opt_inline_dentry, "inline_dentry"},
189 	{Opt_noinline_dentry, "noinline_dentry"},
190 	{Opt_flush_merge, "flush_merge"},
191 	{Opt_noflush_merge, "noflush_merge"},
192 	{Opt_barrier, "barrier"},
193 	{Opt_nobarrier, "nobarrier"},
194 	{Opt_fastboot, "fastboot"},
195 	{Opt_extent_cache, "extent_cache"},
196 	{Opt_noextent_cache, "noextent_cache"},
197 	{Opt_noinline_data, "noinline_data"},
198 	{Opt_data_flush, "data_flush"},
199 	{Opt_reserve_root, "reserve_root=%u"},
200 	{Opt_resgid, "resgid=%u"},
201 	{Opt_resuid, "resuid=%u"},
202 	{Opt_mode, "mode=%s"},
203 	{Opt_io_size_bits, "io_bits=%u"},
204 	{Opt_fault_injection, "fault_injection=%u"},
205 	{Opt_fault_type, "fault_type=%u"},
206 	{Opt_lazytime, "lazytime"},
207 	{Opt_nolazytime, "nolazytime"},
208 	{Opt_quota, "quota"},
209 	{Opt_noquota, "noquota"},
210 	{Opt_usrquota, "usrquota"},
211 	{Opt_grpquota, "grpquota"},
212 	{Opt_prjquota, "prjquota"},
213 	{Opt_usrjquota, "usrjquota=%s"},
214 	{Opt_grpjquota, "grpjquota=%s"},
215 	{Opt_prjjquota, "prjjquota=%s"},
216 	{Opt_offusrjquota, "usrjquota="},
217 	{Opt_offgrpjquota, "grpjquota="},
218 	{Opt_offprjjquota, "prjjquota="},
219 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
220 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
221 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
222 	{Opt_alloc, "alloc_mode=%s"},
223 	{Opt_fsync, "fsync_mode=%s"},
224 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
225 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
226 	{Opt_inlinecrypt, "inlinecrypt"},
227 	{Opt_checkpoint_disable, "checkpoint=disable"},
228 	{Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
229 	{Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
230 	{Opt_checkpoint_enable, "checkpoint=enable"},
231 	{Opt_checkpoint_merge, "checkpoint_merge"},
232 	{Opt_nocheckpoint_merge, "nocheckpoint_merge"},
233 	{Opt_compress_algorithm, "compress_algorithm=%s"},
234 	{Opt_compress_log_size, "compress_log_size=%u"},
235 	{Opt_compress_extension, "compress_extension=%s"},
236 	{Opt_nocompress_extension, "nocompress_extension=%s"},
237 	{Opt_compress_chksum, "compress_chksum"},
238 	{Opt_compress_mode, "compress_mode=%s"},
239 	{Opt_compress_cache, "compress_cache"},
240 	{Opt_atgc, "atgc"},
241 	{Opt_gc_merge, "gc_merge"},
242 	{Opt_nogc_merge, "nogc_merge"},
243 	{Opt_discard_unit, "discard_unit=%s"},
244 	{Opt_memory_mode, "memory=%s"},
245 	{Opt_age_extent_cache, "age_extent_cache"},
246 	{Opt_err, NULL},
247 };
248 
249 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
250 {
251 	struct va_format vaf;
252 	va_list args;
253 	int level;
254 
255 	va_start(args, fmt);
256 
257 	level = printk_get_level(fmt);
258 	vaf.fmt = printk_skip_level(fmt);
259 	vaf.va = &args;
260 	printk("%c%cF2FS-fs (%s): %pV\n",
261 	       KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
262 
263 	va_end(args);
264 }
265 
266 #if IS_ENABLED(CONFIG_UNICODE)
267 static const struct f2fs_sb_encodings {
268 	__u16 magic;
269 	char *name;
270 	unsigned int version;
271 } f2fs_sb_encoding_map[] = {
272 	{F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
273 };
274 
275 static const struct f2fs_sb_encodings *
276 f2fs_sb_read_encoding(const struct f2fs_super_block *sb)
277 {
278 	__u16 magic = le16_to_cpu(sb->s_encoding);
279 	int i;
280 
281 	for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
282 		if (magic == f2fs_sb_encoding_map[i].magic)
283 			return &f2fs_sb_encoding_map[i];
284 
285 	return NULL;
286 }
287 
288 struct kmem_cache *f2fs_cf_name_slab;
289 static int __init f2fs_create_casefold_cache(void)
290 {
291 	f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name",
292 							F2FS_NAME_LEN);
293 	return f2fs_cf_name_slab ? 0 : -ENOMEM;
294 }
295 
296 static void f2fs_destroy_casefold_cache(void)
297 {
298 	kmem_cache_destroy(f2fs_cf_name_slab);
299 }
300 #else
301 static int __init f2fs_create_casefold_cache(void) { return 0; }
302 static void f2fs_destroy_casefold_cache(void) { }
303 #endif
304 
305 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
306 {
307 	block_t limit = min((sbi->user_block_count >> 3),
308 			sbi->user_block_count - sbi->reserved_blocks);
309 
310 	/* limit is 12.5% */
311 	if (test_opt(sbi, RESERVE_ROOT) &&
312 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
313 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
314 		f2fs_info(sbi, "Reduce reserved blocks for root = %u",
315 			  F2FS_OPTION(sbi).root_reserved_blocks);
316 	}
317 	if (!test_opt(sbi, RESERVE_ROOT) &&
318 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
319 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
320 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
321 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
322 		f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
323 			  from_kuid_munged(&init_user_ns,
324 					   F2FS_OPTION(sbi).s_resuid),
325 			  from_kgid_munged(&init_user_ns,
326 					   F2FS_OPTION(sbi).s_resgid));
327 }
328 
329 static inline int adjust_reserved_segment(struct f2fs_sb_info *sbi)
330 {
331 	unsigned int sec_blks = sbi->blocks_per_seg * sbi->segs_per_sec;
332 	unsigned int avg_vblocks;
333 	unsigned int wanted_reserved_segments;
334 	block_t avail_user_block_count;
335 
336 	if (!F2FS_IO_ALIGNED(sbi))
337 		return 0;
338 
339 	/* average valid block count in section in worst case */
340 	avg_vblocks = sec_blks / F2FS_IO_SIZE(sbi);
341 
342 	/*
343 	 * we need enough free space when migrating one section in worst case
344 	 */
345 	wanted_reserved_segments = (F2FS_IO_SIZE(sbi) / avg_vblocks) *
346 						reserved_segments(sbi);
347 	wanted_reserved_segments -= reserved_segments(sbi);
348 
349 	avail_user_block_count = sbi->user_block_count -
350 				sbi->current_reserved_blocks -
351 				F2FS_OPTION(sbi).root_reserved_blocks;
352 
353 	if (wanted_reserved_segments * sbi->blocks_per_seg >
354 					avail_user_block_count) {
355 		f2fs_err(sbi, "IO align feature can't grab additional reserved segment: %u, available segments: %u",
356 			wanted_reserved_segments,
357 			avail_user_block_count >> sbi->log_blocks_per_seg);
358 		return -ENOSPC;
359 	}
360 
361 	SM_I(sbi)->additional_reserved_segments = wanted_reserved_segments;
362 
363 	f2fs_info(sbi, "IO align feature needs additional reserved segment: %u",
364 			 wanted_reserved_segments);
365 
366 	return 0;
367 }
368 
369 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
370 {
371 	if (!F2FS_OPTION(sbi).unusable_cap_perc)
372 		return;
373 
374 	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
375 		F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
376 	else
377 		F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
378 					F2FS_OPTION(sbi).unusable_cap_perc;
379 
380 	f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
381 			F2FS_OPTION(sbi).unusable_cap,
382 			F2FS_OPTION(sbi).unusable_cap_perc);
383 }
384 
385 static void init_once(void *foo)
386 {
387 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
388 
389 	inode_init_once(&fi->vfs_inode);
390 }
391 
392 #ifdef CONFIG_QUOTA
393 static const char * const quotatypes[] = INITQFNAMES;
394 #define QTYPE2NAME(t) (quotatypes[t])
395 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
396 							substring_t *args)
397 {
398 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
399 	char *qname;
400 	int ret = -EINVAL;
401 
402 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
403 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
404 		return -EINVAL;
405 	}
406 	if (f2fs_sb_has_quota_ino(sbi)) {
407 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
408 		return 0;
409 	}
410 
411 	qname = match_strdup(args);
412 	if (!qname) {
413 		f2fs_err(sbi, "Not enough memory for storing quotafile name");
414 		return -ENOMEM;
415 	}
416 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
417 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
418 			ret = 0;
419 		else
420 			f2fs_err(sbi, "%s quota file already specified",
421 				 QTYPE2NAME(qtype));
422 		goto errout;
423 	}
424 	if (strchr(qname, '/')) {
425 		f2fs_err(sbi, "quotafile must be on filesystem root");
426 		goto errout;
427 	}
428 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
429 	set_opt(sbi, QUOTA);
430 	return 0;
431 errout:
432 	kfree(qname);
433 	return ret;
434 }
435 
436 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
437 {
438 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
439 
440 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
441 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
442 		return -EINVAL;
443 	}
444 	kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
445 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
446 	return 0;
447 }
448 
449 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
450 {
451 	/*
452 	 * We do the test below only for project quotas. 'usrquota' and
453 	 * 'grpquota' mount options are allowed even without quota feature
454 	 * to support legacy quotas in quota files.
455 	 */
456 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
457 		f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
458 		return -1;
459 	}
460 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
461 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
462 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
463 		if (test_opt(sbi, USRQUOTA) &&
464 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
465 			clear_opt(sbi, USRQUOTA);
466 
467 		if (test_opt(sbi, GRPQUOTA) &&
468 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
469 			clear_opt(sbi, GRPQUOTA);
470 
471 		if (test_opt(sbi, PRJQUOTA) &&
472 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
473 			clear_opt(sbi, PRJQUOTA);
474 
475 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
476 				test_opt(sbi, PRJQUOTA)) {
477 			f2fs_err(sbi, "old and new quota format mixing");
478 			return -1;
479 		}
480 
481 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
482 			f2fs_err(sbi, "journaled quota format not specified");
483 			return -1;
484 		}
485 	}
486 
487 	if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
488 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
489 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
490 	}
491 	return 0;
492 }
493 #endif
494 
495 static int f2fs_set_test_dummy_encryption(struct super_block *sb,
496 					  const char *opt,
497 					  const substring_t *arg,
498 					  bool is_remount)
499 {
500 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
501 	struct fs_parameter param = {
502 		.type = fs_value_is_string,
503 		.string = arg->from ? arg->from : "",
504 	};
505 	struct fscrypt_dummy_policy *policy =
506 		&F2FS_OPTION(sbi).dummy_enc_policy;
507 	int err;
508 
509 	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
510 		f2fs_warn(sbi, "test_dummy_encryption option not supported");
511 		return -EINVAL;
512 	}
513 
514 	if (!f2fs_sb_has_encrypt(sbi)) {
515 		f2fs_err(sbi, "Encrypt feature is off");
516 		return -EINVAL;
517 	}
518 
519 	/*
520 	 * This mount option is just for testing, and it's not worthwhile to
521 	 * implement the extra complexity (e.g. RCU protection) that would be
522 	 * needed to allow it to be set or changed during remount.  We do allow
523 	 * it to be specified during remount, but only if there is no change.
524 	 */
525 	if (is_remount && !fscrypt_is_dummy_policy_set(policy)) {
526 		f2fs_warn(sbi, "Can't set test_dummy_encryption on remount");
527 		return -EINVAL;
528 	}
529 
530 	err = fscrypt_parse_test_dummy_encryption(&param, policy);
531 	if (err) {
532 		if (err == -EEXIST)
533 			f2fs_warn(sbi,
534 				  "Can't change test_dummy_encryption on remount");
535 		else if (err == -EINVAL)
536 			f2fs_warn(sbi, "Value of option \"%s\" is unrecognized",
537 				  opt);
538 		else
539 			f2fs_warn(sbi, "Error processing option \"%s\" [%d]",
540 				  opt, err);
541 		return -EINVAL;
542 	}
543 	err = fscrypt_add_test_dummy_key(sb, policy);
544 	if (err) {
545 		f2fs_warn(sbi, "Error adding test dummy encryption key [%d]",
546 			  err);
547 		return err;
548 	}
549 	f2fs_warn(sbi, "Test dummy encryption mode enabled");
550 	return 0;
551 }
552 
553 #ifdef CONFIG_F2FS_FS_COMPRESSION
554 /*
555  * 1. The same extension name cannot not appear in both compress and non-compress extension
556  * at the same time.
557  * 2. If the compress extension specifies all files, the types specified by the non-compress
558  * extension will be treated as special cases and will not be compressed.
559  * 3. Don't allow the non-compress extension specifies all files.
560  */
561 static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi)
562 {
563 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
564 	unsigned char (*noext)[F2FS_EXTENSION_LEN];
565 	int ext_cnt, noext_cnt, index = 0, no_index = 0;
566 
567 	ext = F2FS_OPTION(sbi).extensions;
568 	ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
569 	noext = F2FS_OPTION(sbi).noextensions;
570 	noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
571 
572 	if (!noext_cnt)
573 		return 0;
574 
575 	for (no_index = 0; no_index < noext_cnt; no_index++) {
576 		if (!strcasecmp("*", noext[no_index])) {
577 			f2fs_info(sbi, "Don't allow the nocompress extension specifies all files");
578 			return -EINVAL;
579 		}
580 		for (index = 0; index < ext_cnt; index++) {
581 			if (!strcasecmp(ext[index], noext[no_index])) {
582 				f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension",
583 						ext[index]);
584 				return -EINVAL;
585 			}
586 		}
587 	}
588 	return 0;
589 }
590 
591 #ifdef CONFIG_F2FS_FS_LZ4
592 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str)
593 {
594 #ifdef CONFIG_F2FS_FS_LZ4HC
595 	unsigned int level;
596 #endif
597 
598 	if (strlen(str) == 3) {
599 		F2FS_OPTION(sbi).compress_level = 0;
600 		return 0;
601 	}
602 
603 #ifdef CONFIG_F2FS_FS_LZ4HC
604 	str += 3;
605 
606 	if (str[0] != ':') {
607 		f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
608 		return -EINVAL;
609 	}
610 	if (kstrtouint(str + 1, 10, &level))
611 		return -EINVAL;
612 
613 	if (level < LZ4HC_MIN_CLEVEL || level > LZ4HC_MAX_CLEVEL) {
614 		f2fs_info(sbi, "invalid lz4hc compress level: %d", level);
615 		return -EINVAL;
616 	}
617 
618 	F2FS_OPTION(sbi).compress_level = level;
619 	return 0;
620 #else
621 	f2fs_info(sbi, "kernel doesn't support lz4hc compression");
622 	return -EINVAL;
623 #endif
624 }
625 #endif
626 
627 #ifdef CONFIG_F2FS_FS_ZSTD
628 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str)
629 {
630 	unsigned int level;
631 	int len = 4;
632 
633 	if (strlen(str) == len) {
634 		F2FS_OPTION(sbi).compress_level = 0;
635 		return 0;
636 	}
637 
638 	str += len;
639 
640 	if (str[0] != ':') {
641 		f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
642 		return -EINVAL;
643 	}
644 	if (kstrtouint(str + 1, 10, &level))
645 		return -EINVAL;
646 
647 	if (!level || level > zstd_max_clevel()) {
648 		f2fs_info(sbi, "invalid zstd compress level: %d", level);
649 		return -EINVAL;
650 	}
651 
652 	F2FS_OPTION(sbi).compress_level = level;
653 	return 0;
654 }
655 #endif
656 #endif
657 
658 static int parse_options(struct super_block *sb, char *options, bool is_remount)
659 {
660 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
661 	substring_t args[MAX_OPT_ARGS];
662 #ifdef CONFIG_F2FS_FS_COMPRESSION
663 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
664 	unsigned char (*noext)[F2FS_EXTENSION_LEN];
665 	int ext_cnt, noext_cnt;
666 #endif
667 	char *p, *name;
668 	int arg = 0;
669 	kuid_t uid;
670 	kgid_t gid;
671 	int ret;
672 
673 	if (!options)
674 		goto default_check;
675 
676 	while ((p = strsep(&options, ",")) != NULL) {
677 		int token;
678 
679 		if (!*p)
680 			continue;
681 		/*
682 		 * Initialize args struct so we know whether arg was
683 		 * found; some options take optional arguments.
684 		 */
685 		args[0].to = args[0].from = NULL;
686 		token = match_token(p, f2fs_tokens, args);
687 
688 		switch (token) {
689 		case Opt_gc_background:
690 			name = match_strdup(&args[0]);
691 
692 			if (!name)
693 				return -ENOMEM;
694 			if (!strcmp(name, "on")) {
695 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
696 			} else if (!strcmp(name, "off")) {
697 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF;
698 			} else if (!strcmp(name, "sync")) {
699 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC;
700 			} else {
701 				kfree(name);
702 				return -EINVAL;
703 			}
704 			kfree(name);
705 			break;
706 		case Opt_disable_roll_forward:
707 			set_opt(sbi, DISABLE_ROLL_FORWARD);
708 			break;
709 		case Opt_norecovery:
710 			/* this option mounts f2fs with ro */
711 			set_opt(sbi, NORECOVERY);
712 			if (!f2fs_readonly(sb))
713 				return -EINVAL;
714 			break;
715 		case Opt_discard:
716 			if (!f2fs_hw_support_discard(sbi)) {
717 				f2fs_warn(sbi, "device does not support discard");
718 				break;
719 			}
720 			set_opt(sbi, DISCARD);
721 			break;
722 		case Opt_nodiscard:
723 			if (f2fs_hw_should_discard(sbi)) {
724 				f2fs_warn(sbi, "discard is required for zoned block devices");
725 				return -EINVAL;
726 			}
727 			clear_opt(sbi, DISCARD);
728 			break;
729 		case Opt_noheap:
730 			set_opt(sbi, NOHEAP);
731 			break;
732 		case Opt_heap:
733 			clear_opt(sbi, NOHEAP);
734 			break;
735 #ifdef CONFIG_F2FS_FS_XATTR
736 		case Opt_user_xattr:
737 			set_opt(sbi, XATTR_USER);
738 			break;
739 		case Opt_nouser_xattr:
740 			clear_opt(sbi, XATTR_USER);
741 			break;
742 		case Opt_inline_xattr:
743 			set_opt(sbi, INLINE_XATTR);
744 			break;
745 		case Opt_noinline_xattr:
746 			clear_opt(sbi, INLINE_XATTR);
747 			break;
748 		case Opt_inline_xattr_size:
749 			if (args->from && match_int(args, &arg))
750 				return -EINVAL;
751 			set_opt(sbi, INLINE_XATTR_SIZE);
752 			F2FS_OPTION(sbi).inline_xattr_size = arg;
753 			break;
754 #else
755 		case Opt_user_xattr:
756 			f2fs_info(sbi, "user_xattr options not supported");
757 			break;
758 		case Opt_nouser_xattr:
759 			f2fs_info(sbi, "nouser_xattr options not supported");
760 			break;
761 		case Opt_inline_xattr:
762 			f2fs_info(sbi, "inline_xattr options not supported");
763 			break;
764 		case Opt_noinline_xattr:
765 			f2fs_info(sbi, "noinline_xattr options not supported");
766 			break;
767 #endif
768 #ifdef CONFIG_F2FS_FS_POSIX_ACL
769 		case Opt_acl:
770 			set_opt(sbi, POSIX_ACL);
771 			break;
772 		case Opt_noacl:
773 			clear_opt(sbi, POSIX_ACL);
774 			break;
775 #else
776 		case Opt_acl:
777 			f2fs_info(sbi, "acl options not supported");
778 			break;
779 		case Opt_noacl:
780 			f2fs_info(sbi, "noacl options not supported");
781 			break;
782 #endif
783 		case Opt_active_logs:
784 			if (args->from && match_int(args, &arg))
785 				return -EINVAL;
786 			if (arg != 2 && arg != 4 &&
787 				arg != NR_CURSEG_PERSIST_TYPE)
788 				return -EINVAL;
789 			F2FS_OPTION(sbi).active_logs = arg;
790 			break;
791 		case Opt_disable_ext_identify:
792 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
793 			break;
794 		case Opt_inline_data:
795 			set_opt(sbi, INLINE_DATA);
796 			break;
797 		case Opt_inline_dentry:
798 			set_opt(sbi, INLINE_DENTRY);
799 			break;
800 		case Opt_noinline_dentry:
801 			clear_opt(sbi, INLINE_DENTRY);
802 			break;
803 		case Opt_flush_merge:
804 			set_opt(sbi, FLUSH_MERGE);
805 			break;
806 		case Opt_noflush_merge:
807 			clear_opt(sbi, FLUSH_MERGE);
808 			break;
809 		case Opt_nobarrier:
810 			set_opt(sbi, NOBARRIER);
811 			break;
812 		case Opt_barrier:
813 			clear_opt(sbi, NOBARRIER);
814 			break;
815 		case Opt_fastboot:
816 			set_opt(sbi, FASTBOOT);
817 			break;
818 		case Opt_extent_cache:
819 			set_opt(sbi, READ_EXTENT_CACHE);
820 			break;
821 		case Opt_noextent_cache:
822 			clear_opt(sbi, READ_EXTENT_CACHE);
823 			break;
824 		case Opt_noinline_data:
825 			clear_opt(sbi, INLINE_DATA);
826 			break;
827 		case Opt_data_flush:
828 			set_opt(sbi, DATA_FLUSH);
829 			break;
830 		case Opt_reserve_root:
831 			if (args->from && match_int(args, &arg))
832 				return -EINVAL;
833 			if (test_opt(sbi, RESERVE_ROOT)) {
834 				f2fs_info(sbi, "Preserve previous reserve_root=%u",
835 					  F2FS_OPTION(sbi).root_reserved_blocks);
836 			} else {
837 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
838 				set_opt(sbi, RESERVE_ROOT);
839 			}
840 			break;
841 		case Opt_resuid:
842 			if (args->from && match_int(args, &arg))
843 				return -EINVAL;
844 			uid = make_kuid(current_user_ns(), arg);
845 			if (!uid_valid(uid)) {
846 				f2fs_err(sbi, "Invalid uid value %d", arg);
847 				return -EINVAL;
848 			}
849 			F2FS_OPTION(sbi).s_resuid = uid;
850 			break;
851 		case Opt_resgid:
852 			if (args->from && match_int(args, &arg))
853 				return -EINVAL;
854 			gid = make_kgid(current_user_ns(), arg);
855 			if (!gid_valid(gid)) {
856 				f2fs_err(sbi, "Invalid gid value %d", arg);
857 				return -EINVAL;
858 			}
859 			F2FS_OPTION(sbi).s_resgid = gid;
860 			break;
861 		case Opt_mode:
862 			name = match_strdup(&args[0]);
863 
864 			if (!name)
865 				return -ENOMEM;
866 			if (!strcmp(name, "adaptive")) {
867 				if (f2fs_sb_has_blkzoned(sbi)) {
868 					f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
869 					kfree(name);
870 					return -EINVAL;
871 				}
872 				F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
873 			} else if (!strcmp(name, "lfs")) {
874 				F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
875 			} else if (!strcmp(name, "fragment:segment")) {
876 				F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_SEG;
877 			} else if (!strcmp(name, "fragment:block")) {
878 				F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_BLK;
879 			} else {
880 				kfree(name);
881 				return -EINVAL;
882 			}
883 			kfree(name);
884 			break;
885 		case Opt_io_size_bits:
886 			if (args->from && match_int(args, &arg))
887 				return -EINVAL;
888 			if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_VECS)) {
889 				f2fs_warn(sbi, "Not support %d, larger than %d",
890 					  1 << arg, BIO_MAX_VECS);
891 				return -EINVAL;
892 			}
893 			F2FS_OPTION(sbi).write_io_size_bits = arg;
894 			break;
895 #ifdef CONFIG_F2FS_FAULT_INJECTION
896 		case Opt_fault_injection:
897 			if (args->from && match_int(args, &arg))
898 				return -EINVAL;
899 			f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
900 			set_opt(sbi, FAULT_INJECTION);
901 			break;
902 
903 		case Opt_fault_type:
904 			if (args->from && match_int(args, &arg))
905 				return -EINVAL;
906 			f2fs_build_fault_attr(sbi, 0, arg);
907 			set_opt(sbi, FAULT_INJECTION);
908 			break;
909 #else
910 		case Opt_fault_injection:
911 			f2fs_info(sbi, "fault_injection options not supported");
912 			break;
913 
914 		case Opt_fault_type:
915 			f2fs_info(sbi, "fault_type options not supported");
916 			break;
917 #endif
918 		case Opt_lazytime:
919 			sb->s_flags |= SB_LAZYTIME;
920 			break;
921 		case Opt_nolazytime:
922 			sb->s_flags &= ~SB_LAZYTIME;
923 			break;
924 #ifdef CONFIG_QUOTA
925 		case Opt_quota:
926 		case Opt_usrquota:
927 			set_opt(sbi, USRQUOTA);
928 			break;
929 		case Opt_grpquota:
930 			set_opt(sbi, GRPQUOTA);
931 			break;
932 		case Opt_prjquota:
933 			set_opt(sbi, PRJQUOTA);
934 			break;
935 		case Opt_usrjquota:
936 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
937 			if (ret)
938 				return ret;
939 			break;
940 		case Opt_grpjquota:
941 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
942 			if (ret)
943 				return ret;
944 			break;
945 		case Opt_prjjquota:
946 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
947 			if (ret)
948 				return ret;
949 			break;
950 		case Opt_offusrjquota:
951 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
952 			if (ret)
953 				return ret;
954 			break;
955 		case Opt_offgrpjquota:
956 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
957 			if (ret)
958 				return ret;
959 			break;
960 		case Opt_offprjjquota:
961 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
962 			if (ret)
963 				return ret;
964 			break;
965 		case Opt_jqfmt_vfsold:
966 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
967 			break;
968 		case Opt_jqfmt_vfsv0:
969 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
970 			break;
971 		case Opt_jqfmt_vfsv1:
972 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
973 			break;
974 		case Opt_noquota:
975 			clear_opt(sbi, QUOTA);
976 			clear_opt(sbi, USRQUOTA);
977 			clear_opt(sbi, GRPQUOTA);
978 			clear_opt(sbi, PRJQUOTA);
979 			break;
980 #else
981 		case Opt_quota:
982 		case Opt_usrquota:
983 		case Opt_grpquota:
984 		case Opt_prjquota:
985 		case Opt_usrjquota:
986 		case Opt_grpjquota:
987 		case Opt_prjjquota:
988 		case Opt_offusrjquota:
989 		case Opt_offgrpjquota:
990 		case Opt_offprjjquota:
991 		case Opt_jqfmt_vfsold:
992 		case Opt_jqfmt_vfsv0:
993 		case Opt_jqfmt_vfsv1:
994 		case Opt_noquota:
995 			f2fs_info(sbi, "quota operations not supported");
996 			break;
997 #endif
998 		case Opt_alloc:
999 			name = match_strdup(&args[0]);
1000 			if (!name)
1001 				return -ENOMEM;
1002 
1003 			if (!strcmp(name, "default")) {
1004 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1005 			} else if (!strcmp(name, "reuse")) {
1006 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
1007 			} else {
1008 				kfree(name);
1009 				return -EINVAL;
1010 			}
1011 			kfree(name);
1012 			break;
1013 		case Opt_fsync:
1014 			name = match_strdup(&args[0]);
1015 			if (!name)
1016 				return -ENOMEM;
1017 			if (!strcmp(name, "posix")) {
1018 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1019 			} else if (!strcmp(name, "strict")) {
1020 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
1021 			} else if (!strcmp(name, "nobarrier")) {
1022 				F2FS_OPTION(sbi).fsync_mode =
1023 							FSYNC_MODE_NOBARRIER;
1024 			} else {
1025 				kfree(name);
1026 				return -EINVAL;
1027 			}
1028 			kfree(name);
1029 			break;
1030 		case Opt_test_dummy_encryption:
1031 			ret = f2fs_set_test_dummy_encryption(sb, p, &args[0],
1032 							     is_remount);
1033 			if (ret)
1034 				return ret;
1035 			break;
1036 		case Opt_inlinecrypt:
1037 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
1038 			sb->s_flags |= SB_INLINECRYPT;
1039 #else
1040 			f2fs_info(sbi, "inline encryption not supported");
1041 #endif
1042 			break;
1043 		case Opt_checkpoint_disable_cap_perc:
1044 			if (args->from && match_int(args, &arg))
1045 				return -EINVAL;
1046 			if (arg < 0 || arg > 100)
1047 				return -EINVAL;
1048 			F2FS_OPTION(sbi).unusable_cap_perc = arg;
1049 			set_opt(sbi, DISABLE_CHECKPOINT);
1050 			break;
1051 		case Opt_checkpoint_disable_cap:
1052 			if (args->from && match_int(args, &arg))
1053 				return -EINVAL;
1054 			F2FS_OPTION(sbi).unusable_cap = arg;
1055 			set_opt(sbi, DISABLE_CHECKPOINT);
1056 			break;
1057 		case Opt_checkpoint_disable:
1058 			set_opt(sbi, DISABLE_CHECKPOINT);
1059 			break;
1060 		case Opt_checkpoint_enable:
1061 			clear_opt(sbi, DISABLE_CHECKPOINT);
1062 			break;
1063 		case Opt_checkpoint_merge:
1064 			set_opt(sbi, MERGE_CHECKPOINT);
1065 			break;
1066 		case Opt_nocheckpoint_merge:
1067 			clear_opt(sbi, MERGE_CHECKPOINT);
1068 			break;
1069 #ifdef CONFIG_F2FS_FS_COMPRESSION
1070 		case Opt_compress_algorithm:
1071 			if (!f2fs_sb_has_compression(sbi)) {
1072 				f2fs_info(sbi, "Image doesn't support compression");
1073 				break;
1074 			}
1075 			name = match_strdup(&args[0]);
1076 			if (!name)
1077 				return -ENOMEM;
1078 			if (!strcmp(name, "lzo")) {
1079 #ifdef CONFIG_F2FS_FS_LZO
1080 				F2FS_OPTION(sbi).compress_level = 0;
1081 				F2FS_OPTION(sbi).compress_algorithm =
1082 								COMPRESS_LZO;
1083 #else
1084 				f2fs_info(sbi, "kernel doesn't support lzo compression");
1085 #endif
1086 			} else if (!strncmp(name, "lz4", 3)) {
1087 #ifdef CONFIG_F2FS_FS_LZ4
1088 				ret = f2fs_set_lz4hc_level(sbi, name);
1089 				if (ret) {
1090 					kfree(name);
1091 					return -EINVAL;
1092 				}
1093 				F2FS_OPTION(sbi).compress_algorithm =
1094 								COMPRESS_LZ4;
1095 #else
1096 				f2fs_info(sbi, "kernel doesn't support lz4 compression");
1097 #endif
1098 			} else if (!strncmp(name, "zstd", 4)) {
1099 #ifdef CONFIG_F2FS_FS_ZSTD
1100 				ret = f2fs_set_zstd_level(sbi, name);
1101 				if (ret) {
1102 					kfree(name);
1103 					return -EINVAL;
1104 				}
1105 				F2FS_OPTION(sbi).compress_algorithm =
1106 								COMPRESS_ZSTD;
1107 #else
1108 				f2fs_info(sbi, "kernel doesn't support zstd compression");
1109 #endif
1110 			} else if (!strcmp(name, "lzo-rle")) {
1111 #ifdef CONFIG_F2FS_FS_LZORLE
1112 				F2FS_OPTION(sbi).compress_level = 0;
1113 				F2FS_OPTION(sbi).compress_algorithm =
1114 								COMPRESS_LZORLE;
1115 #else
1116 				f2fs_info(sbi, "kernel doesn't support lzorle compression");
1117 #endif
1118 			} else {
1119 				kfree(name);
1120 				return -EINVAL;
1121 			}
1122 			kfree(name);
1123 			break;
1124 		case Opt_compress_log_size:
1125 			if (!f2fs_sb_has_compression(sbi)) {
1126 				f2fs_info(sbi, "Image doesn't support compression");
1127 				break;
1128 			}
1129 			if (args->from && match_int(args, &arg))
1130 				return -EINVAL;
1131 			if (arg < MIN_COMPRESS_LOG_SIZE ||
1132 				arg > MAX_COMPRESS_LOG_SIZE) {
1133 				f2fs_err(sbi,
1134 					"Compress cluster log size is out of range");
1135 				return -EINVAL;
1136 			}
1137 			F2FS_OPTION(sbi).compress_log_size = arg;
1138 			break;
1139 		case Opt_compress_extension:
1140 			if (!f2fs_sb_has_compression(sbi)) {
1141 				f2fs_info(sbi, "Image doesn't support compression");
1142 				break;
1143 			}
1144 			name = match_strdup(&args[0]);
1145 			if (!name)
1146 				return -ENOMEM;
1147 
1148 			ext = F2FS_OPTION(sbi).extensions;
1149 			ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
1150 
1151 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
1152 				ext_cnt >= COMPRESS_EXT_NUM) {
1153 				f2fs_err(sbi,
1154 					"invalid extension length/number");
1155 				kfree(name);
1156 				return -EINVAL;
1157 			}
1158 
1159 			strcpy(ext[ext_cnt], name);
1160 			F2FS_OPTION(sbi).compress_ext_cnt++;
1161 			kfree(name);
1162 			break;
1163 		case Opt_nocompress_extension:
1164 			if (!f2fs_sb_has_compression(sbi)) {
1165 				f2fs_info(sbi, "Image doesn't support compression");
1166 				break;
1167 			}
1168 			name = match_strdup(&args[0]);
1169 			if (!name)
1170 				return -ENOMEM;
1171 
1172 			noext = F2FS_OPTION(sbi).noextensions;
1173 			noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
1174 
1175 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
1176 				noext_cnt >= COMPRESS_EXT_NUM) {
1177 				f2fs_err(sbi,
1178 					"invalid extension length/number");
1179 				kfree(name);
1180 				return -EINVAL;
1181 			}
1182 
1183 			strcpy(noext[noext_cnt], name);
1184 			F2FS_OPTION(sbi).nocompress_ext_cnt++;
1185 			kfree(name);
1186 			break;
1187 		case Opt_compress_chksum:
1188 			F2FS_OPTION(sbi).compress_chksum = true;
1189 			break;
1190 		case Opt_compress_mode:
1191 			name = match_strdup(&args[0]);
1192 			if (!name)
1193 				return -ENOMEM;
1194 			if (!strcmp(name, "fs")) {
1195 				F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
1196 			} else if (!strcmp(name, "user")) {
1197 				F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER;
1198 			} else {
1199 				kfree(name);
1200 				return -EINVAL;
1201 			}
1202 			kfree(name);
1203 			break;
1204 		case Opt_compress_cache:
1205 			set_opt(sbi, COMPRESS_CACHE);
1206 			break;
1207 #else
1208 		case Opt_compress_algorithm:
1209 		case Opt_compress_log_size:
1210 		case Opt_compress_extension:
1211 		case Opt_nocompress_extension:
1212 		case Opt_compress_chksum:
1213 		case Opt_compress_mode:
1214 		case Opt_compress_cache:
1215 			f2fs_info(sbi, "compression options not supported");
1216 			break;
1217 #endif
1218 		case Opt_atgc:
1219 			set_opt(sbi, ATGC);
1220 			break;
1221 		case Opt_gc_merge:
1222 			set_opt(sbi, GC_MERGE);
1223 			break;
1224 		case Opt_nogc_merge:
1225 			clear_opt(sbi, GC_MERGE);
1226 			break;
1227 		case Opt_discard_unit:
1228 			name = match_strdup(&args[0]);
1229 			if (!name)
1230 				return -ENOMEM;
1231 			if (!strcmp(name, "block")) {
1232 				F2FS_OPTION(sbi).discard_unit =
1233 						DISCARD_UNIT_BLOCK;
1234 			} else if (!strcmp(name, "segment")) {
1235 				F2FS_OPTION(sbi).discard_unit =
1236 						DISCARD_UNIT_SEGMENT;
1237 			} else if (!strcmp(name, "section")) {
1238 				F2FS_OPTION(sbi).discard_unit =
1239 						DISCARD_UNIT_SECTION;
1240 			} else {
1241 				kfree(name);
1242 				return -EINVAL;
1243 			}
1244 			kfree(name);
1245 			break;
1246 		case Opt_memory_mode:
1247 			name = match_strdup(&args[0]);
1248 			if (!name)
1249 				return -ENOMEM;
1250 			if (!strcmp(name, "normal")) {
1251 				F2FS_OPTION(sbi).memory_mode =
1252 						MEMORY_MODE_NORMAL;
1253 			} else if (!strcmp(name, "low")) {
1254 				F2FS_OPTION(sbi).memory_mode =
1255 						MEMORY_MODE_LOW;
1256 			} else {
1257 				kfree(name);
1258 				return -EINVAL;
1259 			}
1260 			kfree(name);
1261 			break;
1262 		case Opt_age_extent_cache:
1263 			set_opt(sbi, AGE_EXTENT_CACHE);
1264 			break;
1265 		default:
1266 			f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
1267 				 p);
1268 			return -EINVAL;
1269 		}
1270 	}
1271 default_check:
1272 #ifdef CONFIG_QUOTA
1273 	if (f2fs_check_quota_options(sbi))
1274 		return -EINVAL;
1275 #else
1276 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
1277 		f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1278 		return -EINVAL;
1279 	}
1280 	if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
1281 		f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1282 		return -EINVAL;
1283 	}
1284 #endif
1285 #if !IS_ENABLED(CONFIG_UNICODE)
1286 	if (f2fs_sb_has_casefold(sbi)) {
1287 		f2fs_err(sbi,
1288 			"Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
1289 		return -EINVAL;
1290 	}
1291 #endif
1292 	/*
1293 	 * The BLKZONED feature indicates that the drive was formatted with
1294 	 * zone alignment optimization. This is optional for host-aware
1295 	 * devices, but mandatory for host-managed zoned block devices.
1296 	 */
1297 #ifndef CONFIG_BLK_DEV_ZONED
1298 	if (f2fs_sb_has_blkzoned(sbi)) {
1299 		f2fs_err(sbi, "Zoned block device support is not enabled");
1300 		return -EINVAL;
1301 	}
1302 #endif
1303 	if (f2fs_sb_has_blkzoned(sbi)) {
1304 		if (F2FS_OPTION(sbi).discard_unit !=
1305 						DISCARD_UNIT_SECTION) {
1306 			f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default");
1307 			F2FS_OPTION(sbi).discard_unit =
1308 					DISCARD_UNIT_SECTION;
1309 		}
1310 	}
1311 
1312 #ifdef CONFIG_F2FS_FS_COMPRESSION
1313 	if (f2fs_test_compress_extension(sbi)) {
1314 		f2fs_err(sbi, "invalid compress or nocompress extension");
1315 		return -EINVAL;
1316 	}
1317 #endif
1318 
1319 	if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) {
1320 		f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
1321 			 F2FS_IO_SIZE_KB(sbi));
1322 		return -EINVAL;
1323 	}
1324 
1325 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
1326 		int min_size, max_size;
1327 
1328 		if (!f2fs_sb_has_extra_attr(sbi) ||
1329 			!f2fs_sb_has_flexible_inline_xattr(sbi)) {
1330 			f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
1331 			return -EINVAL;
1332 		}
1333 		if (!test_opt(sbi, INLINE_XATTR)) {
1334 			f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
1335 			return -EINVAL;
1336 		}
1337 
1338 		min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
1339 		max_size = MAX_INLINE_XATTR_SIZE;
1340 
1341 		if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
1342 				F2FS_OPTION(sbi).inline_xattr_size > max_size) {
1343 			f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
1344 				 min_size, max_size);
1345 			return -EINVAL;
1346 		}
1347 	}
1348 
1349 	if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) {
1350 		f2fs_err(sbi, "LFS not compatible with checkpoint=disable");
1351 		return -EINVAL;
1352 	}
1353 
1354 	if (test_opt(sbi, ATGC) && f2fs_lfs_mode(sbi)) {
1355 		f2fs_err(sbi, "LFS not compatible with ATGC");
1356 		return -EINVAL;
1357 	}
1358 
1359 	if (f2fs_is_readonly(sbi) && test_opt(sbi, FLUSH_MERGE)) {
1360 		f2fs_err(sbi, "FLUSH_MERGE not compatible with readonly mode");
1361 		return -EINVAL;
1362 	}
1363 
1364 	if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) {
1365 		f2fs_err(sbi, "Allow to mount readonly mode only");
1366 		return -EROFS;
1367 	}
1368 	return 0;
1369 }
1370 
1371 static struct inode *f2fs_alloc_inode(struct super_block *sb)
1372 {
1373 	struct f2fs_inode_info *fi;
1374 
1375 	if (time_to_inject(F2FS_SB(sb), FAULT_SLAB_ALLOC)) {
1376 		f2fs_show_injection_info(F2FS_SB(sb), FAULT_SLAB_ALLOC);
1377 		return NULL;
1378 	}
1379 
1380 	fi = alloc_inode_sb(sb, f2fs_inode_cachep, GFP_F2FS_ZERO);
1381 	if (!fi)
1382 		return NULL;
1383 
1384 	init_once((void *) fi);
1385 
1386 	/* Initialize f2fs-specific inode info */
1387 	atomic_set(&fi->dirty_pages, 0);
1388 	atomic_set(&fi->i_compr_blocks, 0);
1389 	init_f2fs_rwsem(&fi->i_sem);
1390 	spin_lock_init(&fi->i_size_lock);
1391 	INIT_LIST_HEAD(&fi->dirty_list);
1392 	INIT_LIST_HEAD(&fi->gdirty_list);
1393 	init_f2fs_rwsem(&fi->i_gc_rwsem[READ]);
1394 	init_f2fs_rwsem(&fi->i_gc_rwsem[WRITE]);
1395 	init_f2fs_rwsem(&fi->i_xattr_sem);
1396 
1397 	/* Will be used by directory only */
1398 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
1399 
1400 	return &fi->vfs_inode;
1401 }
1402 
1403 static int f2fs_drop_inode(struct inode *inode)
1404 {
1405 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1406 	int ret;
1407 
1408 	/*
1409 	 * during filesystem shutdown, if checkpoint is disabled,
1410 	 * drop useless meta/node dirty pages.
1411 	 */
1412 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1413 		if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1414 			inode->i_ino == F2FS_META_INO(sbi)) {
1415 			trace_f2fs_drop_inode(inode, 1);
1416 			return 1;
1417 		}
1418 	}
1419 
1420 	/*
1421 	 * This is to avoid a deadlock condition like below.
1422 	 * writeback_single_inode(inode)
1423 	 *  - f2fs_write_data_page
1424 	 *    - f2fs_gc -> iput -> evict
1425 	 *       - inode_wait_for_writeback(inode)
1426 	 */
1427 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1428 		if (!inode->i_nlink && !is_bad_inode(inode)) {
1429 			/* to avoid evict_inode call simultaneously */
1430 			atomic_inc(&inode->i_count);
1431 			spin_unlock(&inode->i_lock);
1432 
1433 			f2fs_abort_atomic_write(inode, true);
1434 
1435 			/* should remain fi->extent_tree for writepage */
1436 			f2fs_destroy_extent_node(inode);
1437 
1438 			sb_start_intwrite(inode->i_sb);
1439 			f2fs_i_size_write(inode, 0);
1440 
1441 			f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1442 					inode, NULL, 0, DATA);
1443 			truncate_inode_pages_final(inode->i_mapping);
1444 
1445 			if (F2FS_HAS_BLOCKS(inode))
1446 				f2fs_truncate(inode);
1447 
1448 			sb_end_intwrite(inode->i_sb);
1449 
1450 			spin_lock(&inode->i_lock);
1451 			atomic_dec(&inode->i_count);
1452 		}
1453 		trace_f2fs_drop_inode(inode, 0);
1454 		return 0;
1455 	}
1456 	ret = generic_drop_inode(inode);
1457 	if (!ret)
1458 		ret = fscrypt_drop_inode(inode);
1459 	trace_f2fs_drop_inode(inode, ret);
1460 	return ret;
1461 }
1462 
1463 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1464 {
1465 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1466 	int ret = 0;
1467 
1468 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1469 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1470 		ret = 1;
1471 	} else {
1472 		set_inode_flag(inode, FI_DIRTY_INODE);
1473 		stat_inc_dirty_inode(sbi, DIRTY_META);
1474 	}
1475 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1476 		list_add_tail(&F2FS_I(inode)->gdirty_list,
1477 				&sbi->inode_list[DIRTY_META]);
1478 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
1479 	}
1480 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1481 	return ret;
1482 }
1483 
1484 void f2fs_inode_synced(struct inode *inode)
1485 {
1486 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1487 
1488 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1489 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1490 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1491 		return;
1492 	}
1493 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1494 		list_del_init(&F2FS_I(inode)->gdirty_list);
1495 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
1496 	}
1497 	clear_inode_flag(inode, FI_DIRTY_INODE);
1498 	clear_inode_flag(inode, FI_AUTO_RECOVER);
1499 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1500 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1501 }
1502 
1503 /*
1504  * f2fs_dirty_inode() is called from __mark_inode_dirty()
1505  *
1506  * We should call set_dirty_inode to write the dirty inode through write_inode.
1507  */
1508 static void f2fs_dirty_inode(struct inode *inode, int flags)
1509 {
1510 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1511 
1512 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1513 			inode->i_ino == F2FS_META_INO(sbi))
1514 		return;
1515 
1516 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1517 		clear_inode_flag(inode, FI_AUTO_RECOVER);
1518 
1519 	f2fs_inode_dirtied(inode, false);
1520 }
1521 
1522 static void f2fs_free_inode(struct inode *inode)
1523 {
1524 	fscrypt_free_inode(inode);
1525 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1526 }
1527 
1528 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1529 {
1530 	percpu_counter_destroy(&sbi->total_valid_inode_count);
1531 	percpu_counter_destroy(&sbi->rf_node_block_count);
1532 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
1533 }
1534 
1535 static void destroy_device_list(struct f2fs_sb_info *sbi)
1536 {
1537 	int i;
1538 
1539 	for (i = 0; i < sbi->s_ndevs; i++) {
1540 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1541 #ifdef CONFIG_BLK_DEV_ZONED
1542 		kvfree(FDEV(i).blkz_seq);
1543 #endif
1544 	}
1545 	kvfree(sbi->devs);
1546 }
1547 
1548 static void f2fs_put_super(struct super_block *sb)
1549 {
1550 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1551 	int i;
1552 	bool dropped;
1553 
1554 	/* unregister procfs/sysfs entries in advance to avoid race case */
1555 	f2fs_unregister_sysfs(sbi);
1556 
1557 	f2fs_quota_off_umount(sb);
1558 
1559 	/* prevent remaining shrinker jobs */
1560 	mutex_lock(&sbi->umount_mutex);
1561 
1562 	/*
1563 	 * flush all issued checkpoints and stop checkpoint issue thread.
1564 	 * after then, all checkpoints should be done by each process context.
1565 	 */
1566 	f2fs_stop_ckpt_thread(sbi);
1567 
1568 	/*
1569 	 * We don't need to do checkpoint when superblock is clean.
1570 	 * But, the previous checkpoint was not done by umount, it needs to do
1571 	 * clean checkpoint again.
1572 	 */
1573 	if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1574 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1575 		struct cp_control cpc = {
1576 			.reason = CP_UMOUNT,
1577 		};
1578 		f2fs_write_checkpoint(sbi, &cpc);
1579 	}
1580 
1581 	/* be sure to wait for any on-going discard commands */
1582 	dropped = f2fs_issue_discard_timeout(sbi);
1583 
1584 	if (f2fs_realtime_discard_enable(sbi) && !sbi->discard_blks && !dropped) {
1585 		struct cp_control cpc = {
1586 			.reason = CP_UMOUNT | CP_TRIMMED,
1587 		};
1588 		f2fs_write_checkpoint(sbi, &cpc);
1589 	}
1590 
1591 	/*
1592 	 * normally superblock is clean, so we need to release this.
1593 	 * In addition, EIO will skip do checkpoint, we need this as well.
1594 	 */
1595 	f2fs_release_ino_entry(sbi, true);
1596 
1597 	f2fs_leave_shrinker(sbi);
1598 	mutex_unlock(&sbi->umount_mutex);
1599 
1600 	/* our cp_error case, we can wait for any writeback page */
1601 	f2fs_flush_merged_writes(sbi);
1602 
1603 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1604 
1605 	f2fs_bug_on(sbi, sbi->fsync_node_num);
1606 
1607 	f2fs_destroy_compress_inode(sbi);
1608 
1609 	iput(sbi->node_inode);
1610 	sbi->node_inode = NULL;
1611 
1612 	iput(sbi->meta_inode);
1613 	sbi->meta_inode = NULL;
1614 
1615 	/*
1616 	 * iput() can update stat information, if f2fs_write_checkpoint()
1617 	 * above failed with error.
1618 	 */
1619 	f2fs_destroy_stats(sbi);
1620 
1621 	/* destroy f2fs internal modules */
1622 	f2fs_destroy_node_manager(sbi);
1623 	f2fs_destroy_segment_manager(sbi);
1624 
1625 	f2fs_destroy_post_read_wq(sbi);
1626 
1627 	kvfree(sbi->ckpt);
1628 
1629 	sb->s_fs_info = NULL;
1630 	if (sbi->s_chksum_driver)
1631 		crypto_free_shash(sbi->s_chksum_driver);
1632 	kfree(sbi->raw_super);
1633 
1634 	destroy_device_list(sbi);
1635 	f2fs_destroy_page_array_cache(sbi);
1636 	f2fs_destroy_xattr_caches(sbi);
1637 	mempool_destroy(sbi->write_io_dummy);
1638 #ifdef CONFIG_QUOTA
1639 	for (i = 0; i < MAXQUOTAS; i++)
1640 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1641 #endif
1642 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
1643 	destroy_percpu_info(sbi);
1644 	f2fs_destroy_iostat(sbi);
1645 	for (i = 0; i < NR_PAGE_TYPE; i++)
1646 		kvfree(sbi->write_io[i]);
1647 #if IS_ENABLED(CONFIG_UNICODE)
1648 	utf8_unload(sb->s_encoding);
1649 #endif
1650 	kfree(sbi);
1651 }
1652 
1653 int f2fs_sync_fs(struct super_block *sb, int sync)
1654 {
1655 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1656 	int err = 0;
1657 
1658 	if (unlikely(f2fs_cp_error(sbi)))
1659 		return 0;
1660 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1661 		return 0;
1662 
1663 	trace_f2fs_sync_fs(sb, sync);
1664 
1665 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1666 		return -EAGAIN;
1667 
1668 	if (sync)
1669 		err = f2fs_issue_checkpoint(sbi);
1670 
1671 	return err;
1672 }
1673 
1674 static int f2fs_freeze(struct super_block *sb)
1675 {
1676 	if (f2fs_readonly(sb))
1677 		return 0;
1678 
1679 	/* IO error happened before */
1680 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1681 		return -EIO;
1682 
1683 	/* must be clean, since sync_filesystem() was already called */
1684 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1685 		return -EINVAL;
1686 
1687 	/* Let's flush checkpoints and stop the thread. */
1688 	f2fs_flush_ckpt_thread(F2FS_SB(sb));
1689 
1690 	/* to avoid deadlock on f2fs_evict_inode->SB_FREEZE_FS */
1691 	set_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING);
1692 	return 0;
1693 }
1694 
1695 static int f2fs_unfreeze(struct super_block *sb)
1696 {
1697 	clear_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING);
1698 	return 0;
1699 }
1700 
1701 #ifdef CONFIG_QUOTA
1702 static int f2fs_statfs_project(struct super_block *sb,
1703 				kprojid_t projid, struct kstatfs *buf)
1704 {
1705 	struct kqid qid;
1706 	struct dquot *dquot;
1707 	u64 limit;
1708 	u64 curblock;
1709 
1710 	qid = make_kqid_projid(projid);
1711 	dquot = dqget(sb, qid);
1712 	if (IS_ERR(dquot))
1713 		return PTR_ERR(dquot);
1714 	spin_lock(&dquot->dq_dqb_lock);
1715 
1716 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1717 					dquot->dq_dqb.dqb_bhardlimit);
1718 	if (limit)
1719 		limit >>= sb->s_blocksize_bits;
1720 
1721 	if (limit && buf->f_blocks > limit) {
1722 		curblock = (dquot->dq_dqb.dqb_curspace +
1723 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1724 		buf->f_blocks = limit;
1725 		buf->f_bfree = buf->f_bavail =
1726 			(buf->f_blocks > curblock) ?
1727 			 (buf->f_blocks - curblock) : 0;
1728 	}
1729 
1730 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1731 					dquot->dq_dqb.dqb_ihardlimit);
1732 
1733 	if (limit && buf->f_files > limit) {
1734 		buf->f_files = limit;
1735 		buf->f_ffree =
1736 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1737 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1738 	}
1739 
1740 	spin_unlock(&dquot->dq_dqb_lock);
1741 	dqput(dquot);
1742 	return 0;
1743 }
1744 #endif
1745 
1746 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1747 {
1748 	struct super_block *sb = dentry->d_sb;
1749 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1750 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1751 	block_t total_count, user_block_count, start_count;
1752 	u64 avail_node_count;
1753 	unsigned int total_valid_node_count;
1754 
1755 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1756 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1757 	buf->f_type = F2FS_SUPER_MAGIC;
1758 	buf->f_bsize = sbi->blocksize;
1759 
1760 	buf->f_blocks = total_count - start_count;
1761 
1762 	spin_lock(&sbi->stat_lock);
1763 
1764 	user_block_count = sbi->user_block_count;
1765 	total_valid_node_count = valid_node_count(sbi);
1766 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1767 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1768 						sbi->current_reserved_blocks;
1769 
1770 	if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1771 		buf->f_bfree = 0;
1772 	else
1773 		buf->f_bfree -= sbi->unusable_block_count;
1774 	spin_unlock(&sbi->stat_lock);
1775 
1776 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1777 		buf->f_bavail = buf->f_bfree -
1778 				F2FS_OPTION(sbi).root_reserved_blocks;
1779 	else
1780 		buf->f_bavail = 0;
1781 
1782 	if (avail_node_count > user_block_count) {
1783 		buf->f_files = user_block_count;
1784 		buf->f_ffree = buf->f_bavail;
1785 	} else {
1786 		buf->f_files = avail_node_count;
1787 		buf->f_ffree = min(avail_node_count - total_valid_node_count,
1788 					buf->f_bavail);
1789 	}
1790 
1791 	buf->f_namelen = F2FS_NAME_LEN;
1792 	buf->f_fsid    = u64_to_fsid(id);
1793 
1794 #ifdef CONFIG_QUOTA
1795 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1796 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1797 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1798 	}
1799 #endif
1800 	return 0;
1801 }
1802 
1803 static inline void f2fs_show_quota_options(struct seq_file *seq,
1804 					   struct super_block *sb)
1805 {
1806 #ifdef CONFIG_QUOTA
1807 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1808 
1809 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1810 		char *fmtname = "";
1811 
1812 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1813 		case QFMT_VFS_OLD:
1814 			fmtname = "vfsold";
1815 			break;
1816 		case QFMT_VFS_V0:
1817 			fmtname = "vfsv0";
1818 			break;
1819 		case QFMT_VFS_V1:
1820 			fmtname = "vfsv1";
1821 			break;
1822 		}
1823 		seq_printf(seq, ",jqfmt=%s", fmtname);
1824 	}
1825 
1826 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1827 		seq_show_option(seq, "usrjquota",
1828 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1829 
1830 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1831 		seq_show_option(seq, "grpjquota",
1832 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1833 
1834 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1835 		seq_show_option(seq, "prjjquota",
1836 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1837 #endif
1838 }
1839 
1840 #ifdef CONFIG_F2FS_FS_COMPRESSION
1841 static inline void f2fs_show_compress_options(struct seq_file *seq,
1842 							struct super_block *sb)
1843 {
1844 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1845 	char *algtype = "";
1846 	int i;
1847 
1848 	if (!f2fs_sb_has_compression(sbi))
1849 		return;
1850 
1851 	switch (F2FS_OPTION(sbi).compress_algorithm) {
1852 	case COMPRESS_LZO:
1853 		algtype = "lzo";
1854 		break;
1855 	case COMPRESS_LZ4:
1856 		algtype = "lz4";
1857 		break;
1858 	case COMPRESS_ZSTD:
1859 		algtype = "zstd";
1860 		break;
1861 	case COMPRESS_LZORLE:
1862 		algtype = "lzo-rle";
1863 		break;
1864 	}
1865 	seq_printf(seq, ",compress_algorithm=%s", algtype);
1866 
1867 	if (F2FS_OPTION(sbi).compress_level)
1868 		seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level);
1869 
1870 	seq_printf(seq, ",compress_log_size=%u",
1871 			F2FS_OPTION(sbi).compress_log_size);
1872 
1873 	for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1874 		seq_printf(seq, ",compress_extension=%s",
1875 			F2FS_OPTION(sbi).extensions[i]);
1876 	}
1877 
1878 	for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) {
1879 		seq_printf(seq, ",nocompress_extension=%s",
1880 			F2FS_OPTION(sbi).noextensions[i]);
1881 	}
1882 
1883 	if (F2FS_OPTION(sbi).compress_chksum)
1884 		seq_puts(seq, ",compress_chksum");
1885 
1886 	if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS)
1887 		seq_printf(seq, ",compress_mode=%s", "fs");
1888 	else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER)
1889 		seq_printf(seq, ",compress_mode=%s", "user");
1890 
1891 	if (test_opt(sbi, COMPRESS_CACHE))
1892 		seq_puts(seq, ",compress_cache");
1893 }
1894 #endif
1895 
1896 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1897 {
1898 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1899 
1900 	if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
1901 		seq_printf(seq, ",background_gc=%s", "sync");
1902 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
1903 		seq_printf(seq, ",background_gc=%s", "on");
1904 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
1905 		seq_printf(seq, ",background_gc=%s", "off");
1906 
1907 	if (test_opt(sbi, GC_MERGE))
1908 		seq_puts(seq, ",gc_merge");
1909 
1910 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1911 		seq_puts(seq, ",disable_roll_forward");
1912 	if (test_opt(sbi, NORECOVERY))
1913 		seq_puts(seq, ",norecovery");
1914 	if (test_opt(sbi, DISCARD))
1915 		seq_puts(seq, ",discard");
1916 	else
1917 		seq_puts(seq, ",nodiscard");
1918 	if (test_opt(sbi, NOHEAP))
1919 		seq_puts(seq, ",no_heap");
1920 	else
1921 		seq_puts(seq, ",heap");
1922 #ifdef CONFIG_F2FS_FS_XATTR
1923 	if (test_opt(sbi, XATTR_USER))
1924 		seq_puts(seq, ",user_xattr");
1925 	else
1926 		seq_puts(seq, ",nouser_xattr");
1927 	if (test_opt(sbi, INLINE_XATTR))
1928 		seq_puts(seq, ",inline_xattr");
1929 	else
1930 		seq_puts(seq, ",noinline_xattr");
1931 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1932 		seq_printf(seq, ",inline_xattr_size=%u",
1933 					F2FS_OPTION(sbi).inline_xattr_size);
1934 #endif
1935 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1936 	if (test_opt(sbi, POSIX_ACL))
1937 		seq_puts(seq, ",acl");
1938 	else
1939 		seq_puts(seq, ",noacl");
1940 #endif
1941 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1942 		seq_puts(seq, ",disable_ext_identify");
1943 	if (test_opt(sbi, INLINE_DATA))
1944 		seq_puts(seq, ",inline_data");
1945 	else
1946 		seq_puts(seq, ",noinline_data");
1947 	if (test_opt(sbi, INLINE_DENTRY))
1948 		seq_puts(seq, ",inline_dentry");
1949 	else
1950 		seq_puts(seq, ",noinline_dentry");
1951 	if (test_opt(sbi, FLUSH_MERGE))
1952 		seq_puts(seq, ",flush_merge");
1953 	else
1954 		seq_puts(seq, ",noflush_merge");
1955 	if (test_opt(sbi, NOBARRIER))
1956 		seq_puts(seq, ",nobarrier");
1957 	else
1958 		seq_puts(seq, ",barrier");
1959 	if (test_opt(sbi, FASTBOOT))
1960 		seq_puts(seq, ",fastboot");
1961 	if (test_opt(sbi, READ_EXTENT_CACHE))
1962 		seq_puts(seq, ",extent_cache");
1963 	else
1964 		seq_puts(seq, ",noextent_cache");
1965 	if (test_opt(sbi, AGE_EXTENT_CACHE))
1966 		seq_puts(seq, ",age_extent_cache");
1967 	if (test_opt(sbi, DATA_FLUSH))
1968 		seq_puts(seq, ",data_flush");
1969 
1970 	seq_puts(seq, ",mode=");
1971 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
1972 		seq_puts(seq, "adaptive");
1973 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
1974 		seq_puts(seq, "lfs");
1975 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG)
1976 		seq_puts(seq, "fragment:segment");
1977 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
1978 		seq_puts(seq, "fragment:block");
1979 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1980 	if (test_opt(sbi, RESERVE_ROOT))
1981 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1982 				F2FS_OPTION(sbi).root_reserved_blocks,
1983 				from_kuid_munged(&init_user_ns,
1984 					F2FS_OPTION(sbi).s_resuid),
1985 				from_kgid_munged(&init_user_ns,
1986 					F2FS_OPTION(sbi).s_resgid));
1987 	if (F2FS_IO_SIZE_BITS(sbi))
1988 		seq_printf(seq, ",io_bits=%u",
1989 				F2FS_OPTION(sbi).write_io_size_bits);
1990 #ifdef CONFIG_F2FS_FAULT_INJECTION
1991 	if (test_opt(sbi, FAULT_INJECTION)) {
1992 		seq_printf(seq, ",fault_injection=%u",
1993 				F2FS_OPTION(sbi).fault_info.inject_rate);
1994 		seq_printf(seq, ",fault_type=%u",
1995 				F2FS_OPTION(sbi).fault_info.inject_type);
1996 	}
1997 #endif
1998 #ifdef CONFIG_QUOTA
1999 	if (test_opt(sbi, QUOTA))
2000 		seq_puts(seq, ",quota");
2001 	if (test_opt(sbi, USRQUOTA))
2002 		seq_puts(seq, ",usrquota");
2003 	if (test_opt(sbi, GRPQUOTA))
2004 		seq_puts(seq, ",grpquota");
2005 	if (test_opt(sbi, PRJQUOTA))
2006 		seq_puts(seq, ",prjquota");
2007 #endif
2008 	f2fs_show_quota_options(seq, sbi->sb);
2009 
2010 	fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
2011 
2012 	if (sbi->sb->s_flags & SB_INLINECRYPT)
2013 		seq_puts(seq, ",inlinecrypt");
2014 
2015 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
2016 		seq_printf(seq, ",alloc_mode=%s", "default");
2017 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
2018 		seq_printf(seq, ",alloc_mode=%s", "reuse");
2019 
2020 	if (test_opt(sbi, DISABLE_CHECKPOINT))
2021 		seq_printf(seq, ",checkpoint=disable:%u",
2022 				F2FS_OPTION(sbi).unusable_cap);
2023 	if (test_opt(sbi, MERGE_CHECKPOINT))
2024 		seq_puts(seq, ",checkpoint_merge");
2025 	else
2026 		seq_puts(seq, ",nocheckpoint_merge");
2027 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
2028 		seq_printf(seq, ",fsync_mode=%s", "posix");
2029 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
2030 		seq_printf(seq, ",fsync_mode=%s", "strict");
2031 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
2032 		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
2033 
2034 #ifdef CONFIG_F2FS_FS_COMPRESSION
2035 	f2fs_show_compress_options(seq, sbi->sb);
2036 #endif
2037 
2038 	if (test_opt(sbi, ATGC))
2039 		seq_puts(seq, ",atgc");
2040 
2041 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK)
2042 		seq_printf(seq, ",discard_unit=%s", "block");
2043 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2044 		seq_printf(seq, ",discard_unit=%s", "segment");
2045 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2046 		seq_printf(seq, ",discard_unit=%s", "section");
2047 
2048 	if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_NORMAL)
2049 		seq_printf(seq, ",memory=%s", "normal");
2050 	else if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW)
2051 		seq_printf(seq, ",memory=%s", "low");
2052 
2053 	return 0;
2054 }
2055 
2056 static void default_options(struct f2fs_sb_info *sbi)
2057 {
2058 	/* init some FS parameters */
2059 	if (f2fs_sb_has_readonly(sbi))
2060 		F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE;
2061 	else
2062 		F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE;
2063 
2064 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
2065 	if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count_main) <=
2066 							SMALL_VOLUME_SEGMENTS)
2067 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
2068 	else
2069 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
2070 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
2071 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
2072 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
2073 	F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
2074 	F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
2075 	F2FS_OPTION(sbi).compress_ext_cnt = 0;
2076 	F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
2077 	F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
2078 	F2FS_OPTION(sbi).memory_mode = MEMORY_MODE_NORMAL;
2079 
2080 	sbi->sb->s_flags &= ~SB_INLINECRYPT;
2081 
2082 	set_opt(sbi, INLINE_XATTR);
2083 	set_opt(sbi, INLINE_DATA);
2084 	set_opt(sbi, INLINE_DENTRY);
2085 	set_opt(sbi, READ_EXTENT_CACHE);
2086 	set_opt(sbi, NOHEAP);
2087 	clear_opt(sbi, DISABLE_CHECKPOINT);
2088 	set_opt(sbi, MERGE_CHECKPOINT);
2089 	F2FS_OPTION(sbi).unusable_cap = 0;
2090 	sbi->sb->s_flags |= SB_LAZYTIME;
2091 	if (!f2fs_is_readonly(sbi))
2092 		set_opt(sbi, FLUSH_MERGE);
2093 	if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi))
2094 		set_opt(sbi, DISCARD);
2095 	if (f2fs_sb_has_blkzoned(sbi)) {
2096 		F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
2097 		F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION;
2098 	} else {
2099 		F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
2100 		F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK;
2101 	}
2102 
2103 #ifdef CONFIG_F2FS_FS_XATTR
2104 	set_opt(sbi, XATTR_USER);
2105 #endif
2106 #ifdef CONFIG_F2FS_FS_POSIX_ACL
2107 	set_opt(sbi, POSIX_ACL);
2108 #endif
2109 
2110 	f2fs_build_fault_attr(sbi, 0, 0);
2111 }
2112 
2113 #ifdef CONFIG_QUOTA
2114 static int f2fs_enable_quotas(struct super_block *sb);
2115 #endif
2116 
2117 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
2118 {
2119 	unsigned int s_flags = sbi->sb->s_flags;
2120 	struct cp_control cpc;
2121 	unsigned int gc_mode = sbi->gc_mode;
2122 	int err = 0;
2123 	int ret;
2124 	block_t unusable;
2125 
2126 	if (s_flags & SB_RDONLY) {
2127 		f2fs_err(sbi, "checkpoint=disable on readonly fs");
2128 		return -EINVAL;
2129 	}
2130 	sbi->sb->s_flags |= SB_ACTIVE;
2131 
2132 	/* check if we need more GC first */
2133 	unusable = f2fs_get_unusable_blocks(sbi);
2134 	if (!f2fs_disable_cp_again(sbi, unusable))
2135 		goto skip_gc;
2136 
2137 	f2fs_update_time(sbi, DISABLE_TIME);
2138 
2139 	sbi->gc_mode = GC_URGENT_HIGH;
2140 
2141 	while (!f2fs_time_over(sbi, DISABLE_TIME)) {
2142 		struct f2fs_gc_control gc_control = {
2143 			.victim_segno = NULL_SEGNO,
2144 			.init_gc_type = FG_GC,
2145 			.should_migrate_blocks = false,
2146 			.err_gc_skipped = true,
2147 			.nr_free_secs = 1 };
2148 
2149 		f2fs_down_write(&sbi->gc_lock);
2150 		err = f2fs_gc(sbi, &gc_control);
2151 		if (err == -ENODATA) {
2152 			err = 0;
2153 			break;
2154 		}
2155 		if (err && err != -EAGAIN)
2156 			break;
2157 	}
2158 
2159 	ret = sync_filesystem(sbi->sb);
2160 	if (ret || err) {
2161 		err = ret ? ret : err;
2162 		goto restore_flag;
2163 	}
2164 
2165 	unusable = f2fs_get_unusable_blocks(sbi);
2166 	if (f2fs_disable_cp_again(sbi, unusable)) {
2167 		err = -EAGAIN;
2168 		goto restore_flag;
2169 	}
2170 
2171 skip_gc:
2172 	f2fs_down_write(&sbi->gc_lock);
2173 	cpc.reason = CP_PAUSE;
2174 	set_sbi_flag(sbi, SBI_CP_DISABLED);
2175 	err = f2fs_write_checkpoint(sbi, &cpc);
2176 	if (err)
2177 		goto out_unlock;
2178 
2179 	spin_lock(&sbi->stat_lock);
2180 	sbi->unusable_block_count = unusable;
2181 	spin_unlock(&sbi->stat_lock);
2182 
2183 out_unlock:
2184 	f2fs_up_write(&sbi->gc_lock);
2185 restore_flag:
2186 	sbi->gc_mode = gc_mode;
2187 	sbi->sb->s_flags = s_flags;	/* Restore SB_RDONLY status */
2188 	return err;
2189 }
2190 
2191 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
2192 {
2193 	int retry = DEFAULT_RETRY_IO_COUNT;
2194 
2195 	/* we should flush all the data to keep data consistency */
2196 	do {
2197 		sync_inodes_sb(sbi->sb);
2198 		f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
2199 	} while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--);
2200 
2201 	if (unlikely(retry < 0))
2202 		f2fs_warn(sbi, "checkpoint=enable has some unwritten data.");
2203 
2204 	f2fs_down_write(&sbi->gc_lock);
2205 	f2fs_dirty_to_prefree(sbi);
2206 
2207 	clear_sbi_flag(sbi, SBI_CP_DISABLED);
2208 	set_sbi_flag(sbi, SBI_IS_DIRTY);
2209 	f2fs_up_write(&sbi->gc_lock);
2210 
2211 	f2fs_sync_fs(sbi->sb, 1);
2212 
2213 	/* Let's ensure there's no pending checkpoint anymore */
2214 	f2fs_flush_ckpt_thread(sbi);
2215 }
2216 
2217 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
2218 {
2219 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2220 	struct f2fs_mount_info org_mount_opt;
2221 	unsigned long old_sb_flags;
2222 	int err;
2223 	bool need_restart_gc = false, need_stop_gc = false;
2224 	bool need_restart_ckpt = false, need_stop_ckpt = false;
2225 	bool need_restart_flush = false, need_stop_flush = false;
2226 	bool need_restart_discard = false, need_stop_discard = false;
2227 	bool no_read_extent_cache = !test_opt(sbi, READ_EXTENT_CACHE);
2228 	bool no_age_extent_cache = !test_opt(sbi, AGE_EXTENT_CACHE);
2229 	bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT);
2230 	bool no_io_align = !F2FS_IO_ALIGNED(sbi);
2231 	bool no_atgc = !test_opt(sbi, ATGC);
2232 	bool no_discard = !test_opt(sbi, DISCARD);
2233 	bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE);
2234 	bool block_unit_discard = f2fs_block_unit_discard(sbi);
2235 #ifdef CONFIG_QUOTA
2236 	int i, j;
2237 #endif
2238 
2239 	/*
2240 	 * Save the old mount options in case we
2241 	 * need to restore them.
2242 	 */
2243 	org_mount_opt = sbi->mount_opt;
2244 	old_sb_flags = sb->s_flags;
2245 
2246 #ifdef CONFIG_QUOTA
2247 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
2248 	for (i = 0; i < MAXQUOTAS; i++) {
2249 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2250 			org_mount_opt.s_qf_names[i] =
2251 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
2252 				GFP_KERNEL);
2253 			if (!org_mount_opt.s_qf_names[i]) {
2254 				for (j = 0; j < i; j++)
2255 					kfree(org_mount_opt.s_qf_names[j]);
2256 				return -ENOMEM;
2257 			}
2258 		} else {
2259 			org_mount_opt.s_qf_names[i] = NULL;
2260 		}
2261 	}
2262 #endif
2263 
2264 	/* recover superblocks we couldn't write due to previous RO mount */
2265 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
2266 		err = f2fs_commit_super(sbi, false);
2267 		f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
2268 			  err);
2269 		if (!err)
2270 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2271 	}
2272 
2273 	default_options(sbi);
2274 
2275 	/* parse mount options */
2276 	err = parse_options(sb, data, true);
2277 	if (err)
2278 		goto restore_opts;
2279 
2280 	/*
2281 	 * Previous and new state of filesystem is RO,
2282 	 * so skip checking GC and FLUSH_MERGE conditions.
2283 	 */
2284 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
2285 		goto skip;
2286 
2287 	if (f2fs_sb_has_readonly(sbi) && !(*flags & SB_RDONLY)) {
2288 		err = -EROFS;
2289 		goto restore_opts;
2290 	}
2291 
2292 #ifdef CONFIG_QUOTA
2293 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
2294 		err = dquot_suspend(sb, -1);
2295 		if (err < 0)
2296 			goto restore_opts;
2297 	} else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
2298 		/* dquot_resume needs RW */
2299 		sb->s_flags &= ~SB_RDONLY;
2300 		if (sb_any_quota_suspended(sb)) {
2301 			dquot_resume(sb, -1);
2302 		} else if (f2fs_sb_has_quota_ino(sbi)) {
2303 			err = f2fs_enable_quotas(sb);
2304 			if (err)
2305 				goto restore_opts;
2306 		}
2307 	}
2308 #endif
2309 	/* disallow enable atgc dynamically */
2310 	if (no_atgc == !!test_opt(sbi, ATGC)) {
2311 		err = -EINVAL;
2312 		f2fs_warn(sbi, "switch atgc option is not allowed");
2313 		goto restore_opts;
2314 	}
2315 
2316 	/* disallow enable/disable extent_cache dynamically */
2317 	if (no_read_extent_cache == !!test_opt(sbi, READ_EXTENT_CACHE)) {
2318 		err = -EINVAL;
2319 		f2fs_warn(sbi, "switch extent_cache option is not allowed");
2320 		goto restore_opts;
2321 	}
2322 	/* disallow enable/disable age extent_cache dynamically */
2323 	if (no_age_extent_cache == !!test_opt(sbi, AGE_EXTENT_CACHE)) {
2324 		err = -EINVAL;
2325 		f2fs_warn(sbi, "switch age_extent_cache option is not allowed");
2326 		goto restore_opts;
2327 	}
2328 
2329 	if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
2330 		err = -EINVAL;
2331 		f2fs_warn(sbi, "switch io_bits option is not allowed");
2332 		goto restore_opts;
2333 	}
2334 
2335 	if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) {
2336 		err = -EINVAL;
2337 		f2fs_warn(sbi, "switch compress_cache option is not allowed");
2338 		goto restore_opts;
2339 	}
2340 
2341 	if (block_unit_discard != f2fs_block_unit_discard(sbi)) {
2342 		err = -EINVAL;
2343 		f2fs_warn(sbi, "switch discard_unit option is not allowed");
2344 		goto restore_opts;
2345 	}
2346 
2347 	if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
2348 		err = -EINVAL;
2349 		f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
2350 		goto restore_opts;
2351 	}
2352 
2353 	/*
2354 	 * We stop the GC thread if FS is mounted as RO
2355 	 * or if background_gc = off is passed in mount
2356 	 * option. Also sync the filesystem.
2357 	 */
2358 	if ((*flags & SB_RDONLY) ||
2359 			(F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF &&
2360 			!test_opt(sbi, GC_MERGE))) {
2361 		if (sbi->gc_thread) {
2362 			f2fs_stop_gc_thread(sbi);
2363 			need_restart_gc = true;
2364 		}
2365 	} else if (!sbi->gc_thread) {
2366 		err = f2fs_start_gc_thread(sbi);
2367 		if (err)
2368 			goto restore_opts;
2369 		need_stop_gc = true;
2370 	}
2371 
2372 	if (*flags & SB_RDONLY) {
2373 		sync_inodes_sb(sb);
2374 
2375 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2376 		set_sbi_flag(sbi, SBI_IS_CLOSE);
2377 		f2fs_sync_fs(sb, 1);
2378 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
2379 	}
2380 
2381 	if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) ||
2382 			!test_opt(sbi, MERGE_CHECKPOINT)) {
2383 		f2fs_stop_ckpt_thread(sbi);
2384 		need_restart_ckpt = true;
2385 	} else {
2386 		/* Flush if the prevous checkpoint, if exists. */
2387 		f2fs_flush_ckpt_thread(sbi);
2388 
2389 		err = f2fs_start_ckpt_thread(sbi);
2390 		if (err) {
2391 			f2fs_err(sbi,
2392 			    "Failed to start F2FS issue_checkpoint_thread (%d)",
2393 			    err);
2394 			goto restore_gc;
2395 		}
2396 		need_stop_ckpt = true;
2397 	}
2398 
2399 	/*
2400 	 * We stop issue flush thread if FS is mounted as RO
2401 	 * or if flush_merge is not passed in mount option.
2402 	 */
2403 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
2404 		clear_opt(sbi, FLUSH_MERGE);
2405 		f2fs_destroy_flush_cmd_control(sbi, false);
2406 		need_restart_flush = true;
2407 	} else {
2408 		err = f2fs_create_flush_cmd_control(sbi);
2409 		if (err)
2410 			goto restore_ckpt;
2411 		need_stop_flush = true;
2412 	}
2413 
2414 	if (no_discard == !!test_opt(sbi, DISCARD)) {
2415 		if (test_opt(sbi, DISCARD)) {
2416 			err = f2fs_start_discard_thread(sbi);
2417 			if (err)
2418 				goto restore_flush;
2419 			need_stop_discard = true;
2420 		} else {
2421 			f2fs_stop_discard_thread(sbi);
2422 			f2fs_issue_discard_timeout(sbi);
2423 			need_restart_discard = true;
2424 		}
2425 	}
2426 
2427 	if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) {
2428 		if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2429 			err = f2fs_disable_checkpoint(sbi);
2430 			if (err)
2431 				goto restore_discard;
2432 		} else {
2433 			f2fs_enable_checkpoint(sbi);
2434 		}
2435 	}
2436 
2437 skip:
2438 #ifdef CONFIG_QUOTA
2439 	/* Release old quota file names */
2440 	for (i = 0; i < MAXQUOTAS; i++)
2441 		kfree(org_mount_opt.s_qf_names[i]);
2442 #endif
2443 	/* Update the POSIXACL Flag */
2444 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2445 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2446 
2447 	limit_reserve_root(sbi);
2448 	adjust_unusable_cap_perc(sbi);
2449 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
2450 	return 0;
2451 restore_discard:
2452 	if (need_restart_discard) {
2453 		if (f2fs_start_discard_thread(sbi))
2454 			f2fs_warn(sbi, "discard has been stopped");
2455 	} else if (need_stop_discard) {
2456 		f2fs_stop_discard_thread(sbi);
2457 	}
2458 restore_flush:
2459 	if (need_restart_flush) {
2460 		if (f2fs_create_flush_cmd_control(sbi))
2461 			f2fs_warn(sbi, "background flush thread has stopped");
2462 	} else if (need_stop_flush) {
2463 		clear_opt(sbi, FLUSH_MERGE);
2464 		f2fs_destroy_flush_cmd_control(sbi, false);
2465 	}
2466 restore_ckpt:
2467 	if (need_restart_ckpt) {
2468 		if (f2fs_start_ckpt_thread(sbi))
2469 			f2fs_warn(sbi, "background ckpt thread has stopped");
2470 	} else if (need_stop_ckpt) {
2471 		f2fs_stop_ckpt_thread(sbi);
2472 	}
2473 restore_gc:
2474 	if (need_restart_gc) {
2475 		if (f2fs_start_gc_thread(sbi))
2476 			f2fs_warn(sbi, "background gc thread has stopped");
2477 	} else if (need_stop_gc) {
2478 		f2fs_stop_gc_thread(sbi);
2479 	}
2480 restore_opts:
2481 #ifdef CONFIG_QUOTA
2482 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
2483 	for (i = 0; i < MAXQUOTAS; i++) {
2484 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
2485 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
2486 	}
2487 #endif
2488 	sbi->mount_opt = org_mount_opt;
2489 	sb->s_flags = old_sb_flags;
2490 	return err;
2491 }
2492 
2493 #ifdef CONFIG_QUOTA
2494 /* Read data from quotafile */
2495 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
2496 			       size_t len, loff_t off)
2497 {
2498 	struct inode *inode = sb_dqopt(sb)->files[type];
2499 	struct address_space *mapping = inode->i_mapping;
2500 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
2501 	int offset = off & (sb->s_blocksize - 1);
2502 	int tocopy;
2503 	size_t toread;
2504 	loff_t i_size = i_size_read(inode);
2505 	struct page *page;
2506 
2507 	if (off > i_size)
2508 		return 0;
2509 
2510 	if (off + len > i_size)
2511 		len = i_size - off;
2512 	toread = len;
2513 	while (toread > 0) {
2514 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
2515 repeat:
2516 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
2517 		if (IS_ERR(page)) {
2518 			if (PTR_ERR(page) == -ENOMEM) {
2519 				memalloc_retry_wait(GFP_NOFS);
2520 				goto repeat;
2521 			}
2522 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2523 			return PTR_ERR(page);
2524 		}
2525 
2526 		lock_page(page);
2527 
2528 		if (unlikely(page->mapping != mapping)) {
2529 			f2fs_put_page(page, 1);
2530 			goto repeat;
2531 		}
2532 		if (unlikely(!PageUptodate(page))) {
2533 			f2fs_put_page(page, 1);
2534 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2535 			return -EIO;
2536 		}
2537 
2538 		memcpy_from_page(data, page, offset, tocopy);
2539 		f2fs_put_page(page, 1);
2540 
2541 		offset = 0;
2542 		toread -= tocopy;
2543 		data += tocopy;
2544 		blkidx++;
2545 	}
2546 	return len;
2547 }
2548 
2549 /* Write to quotafile */
2550 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
2551 				const char *data, size_t len, loff_t off)
2552 {
2553 	struct inode *inode = sb_dqopt(sb)->files[type];
2554 	struct address_space *mapping = inode->i_mapping;
2555 	const struct address_space_operations *a_ops = mapping->a_ops;
2556 	int offset = off & (sb->s_blocksize - 1);
2557 	size_t towrite = len;
2558 	struct page *page;
2559 	void *fsdata = NULL;
2560 	int err = 0;
2561 	int tocopy;
2562 
2563 	while (towrite > 0) {
2564 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
2565 								towrite);
2566 retry:
2567 		err = a_ops->write_begin(NULL, mapping, off, tocopy,
2568 							&page, &fsdata);
2569 		if (unlikely(err)) {
2570 			if (err == -ENOMEM) {
2571 				f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT);
2572 				goto retry;
2573 			}
2574 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2575 			break;
2576 		}
2577 
2578 		memcpy_to_page(page, offset, data, tocopy);
2579 
2580 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
2581 						page, fsdata);
2582 		offset = 0;
2583 		towrite -= tocopy;
2584 		off += tocopy;
2585 		data += tocopy;
2586 		cond_resched();
2587 	}
2588 
2589 	if (len == towrite)
2590 		return err;
2591 	inode->i_mtime = inode->i_ctime = current_time(inode);
2592 	f2fs_mark_inode_dirty_sync(inode, false);
2593 	return len - towrite;
2594 }
2595 
2596 int f2fs_dquot_initialize(struct inode *inode)
2597 {
2598 	if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT)) {
2599 		f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_DQUOT_INIT);
2600 		return -ESRCH;
2601 	}
2602 
2603 	return dquot_initialize(inode);
2604 }
2605 
2606 static struct dquot **f2fs_get_dquots(struct inode *inode)
2607 {
2608 	return F2FS_I(inode)->i_dquot;
2609 }
2610 
2611 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
2612 {
2613 	return &F2FS_I(inode)->i_reserved_quota;
2614 }
2615 
2616 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
2617 {
2618 	if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
2619 		f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
2620 		return 0;
2621 	}
2622 
2623 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
2624 					F2FS_OPTION(sbi).s_jquota_fmt, type);
2625 }
2626 
2627 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
2628 {
2629 	int enabled = 0;
2630 	int i, err;
2631 
2632 	if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
2633 		err = f2fs_enable_quotas(sbi->sb);
2634 		if (err) {
2635 			f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2636 			return 0;
2637 		}
2638 		return 1;
2639 	}
2640 
2641 	for (i = 0; i < MAXQUOTAS; i++) {
2642 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2643 			err = f2fs_quota_on_mount(sbi, i);
2644 			if (!err) {
2645 				enabled = 1;
2646 				continue;
2647 			}
2648 			f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2649 				 err, i);
2650 		}
2651 	}
2652 	return enabled;
2653 }
2654 
2655 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2656 			     unsigned int flags)
2657 {
2658 	struct inode *qf_inode;
2659 	unsigned long qf_inum;
2660 	int err;
2661 
2662 	BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2663 
2664 	qf_inum = f2fs_qf_ino(sb, type);
2665 	if (!qf_inum)
2666 		return -EPERM;
2667 
2668 	qf_inode = f2fs_iget(sb, qf_inum);
2669 	if (IS_ERR(qf_inode)) {
2670 		f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2671 		return PTR_ERR(qf_inode);
2672 	}
2673 
2674 	/* Don't account quota for quota files to avoid recursion */
2675 	qf_inode->i_flags |= S_NOQUOTA;
2676 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2677 	iput(qf_inode);
2678 	return err;
2679 }
2680 
2681 static int f2fs_enable_quotas(struct super_block *sb)
2682 {
2683 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2684 	int type, err = 0;
2685 	unsigned long qf_inum;
2686 	bool quota_mopt[MAXQUOTAS] = {
2687 		test_opt(sbi, USRQUOTA),
2688 		test_opt(sbi, GRPQUOTA),
2689 		test_opt(sbi, PRJQUOTA),
2690 	};
2691 
2692 	if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2693 		f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2694 		return 0;
2695 	}
2696 
2697 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2698 
2699 	for (type = 0; type < MAXQUOTAS; type++) {
2700 		qf_inum = f2fs_qf_ino(sb, type);
2701 		if (qf_inum) {
2702 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2703 				DQUOT_USAGE_ENABLED |
2704 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2705 			if (err) {
2706 				f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2707 					 type, err);
2708 				for (type--; type >= 0; type--)
2709 					dquot_quota_off(sb, type);
2710 				set_sbi_flag(F2FS_SB(sb),
2711 						SBI_QUOTA_NEED_REPAIR);
2712 				return err;
2713 			}
2714 		}
2715 	}
2716 	return 0;
2717 }
2718 
2719 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type)
2720 {
2721 	struct quota_info *dqopt = sb_dqopt(sbi->sb);
2722 	struct address_space *mapping = dqopt->files[type]->i_mapping;
2723 	int ret = 0;
2724 
2725 	ret = dquot_writeback_dquots(sbi->sb, type);
2726 	if (ret)
2727 		goto out;
2728 
2729 	ret = filemap_fdatawrite(mapping);
2730 	if (ret)
2731 		goto out;
2732 
2733 	/* if we are using journalled quota */
2734 	if (is_journalled_quota(sbi))
2735 		goto out;
2736 
2737 	ret = filemap_fdatawait(mapping);
2738 
2739 	truncate_inode_pages(&dqopt->files[type]->i_data, 0);
2740 out:
2741 	if (ret)
2742 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2743 	return ret;
2744 }
2745 
2746 int f2fs_quota_sync(struct super_block *sb, int type)
2747 {
2748 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2749 	struct quota_info *dqopt = sb_dqopt(sb);
2750 	int cnt;
2751 	int ret = 0;
2752 
2753 	/*
2754 	 * Now when everything is written we can discard the pagecache so
2755 	 * that userspace sees the changes.
2756 	 */
2757 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2758 
2759 		if (type != -1 && cnt != type)
2760 			continue;
2761 
2762 		if (!sb_has_quota_active(sb, cnt))
2763 			continue;
2764 
2765 		if (!f2fs_sb_has_quota_ino(sbi))
2766 			inode_lock(dqopt->files[cnt]);
2767 
2768 		/*
2769 		 * do_quotactl
2770 		 *  f2fs_quota_sync
2771 		 *  f2fs_down_read(quota_sem)
2772 		 *  dquot_writeback_dquots()
2773 		 *  f2fs_dquot_commit
2774 		 *			      block_operation
2775 		 *			      f2fs_down_read(quota_sem)
2776 		 */
2777 		f2fs_lock_op(sbi);
2778 		f2fs_down_read(&sbi->quota_sem);
2779 
2780 		ret = f2fs_quota_sync_file(sbi, cnt);
2781 
2782 		f2fs_up_read(&sbi->quota_sem);
2783 		f2fs_unlock_op(sbi);
2784 
2785 		if (!f2fs_sb_has_quota_ino(sbi))
2786 			inode_unlock(dqopt->files[cnt]);
2787 
2788 		if (ret)
2789 			break;
2790 	}
2791 	return ret;
2792 }
2793 
2794 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2795 							const struct path *path)
2796 {
2797 	struct inode *inode;
2798 	int err;
2799 
2800 	/* if quota sysfile exists, deny enabling quota with specific file */
2801 	if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2802 		f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2803 		return -EBUSY;
2804 	}
2805 
2806 	err = f2fs_quota_sync(sb, type);
2807 	if (err)
2808 		return err;
2809 
2810 	err = dquot_quota_on(sb, type, format_id, path);
2811 	if (err)
2812 		return err;
2813 
2814 	inode = d_inode(path->dentry);
2815 
2816 	inode_lock(inode);
2817 	F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2818 	f2fs_set_inode_flags(inode);
2819 	inode_unlock(inode);
2820 	f2fs_mark_inode_dirty_sync(inode, false);
2821 
2822 	return 0;
2823 }
2824 
2825 static int __f2fs_quota_off(struct super_block *sb, int type)
2826 {
2827 	struct inode *inode = sb_dqopt(sb)->files[type];
2828 	int err;
2829 
2830 	if (!inode || !igrab(inode))
2831 		return dquot_quota_off(sb, type);
2832 
2833 	err = f2fs_quota_sync(sb, type);
2834 	if (err)
2835 		goto out_put;
2836 
2837 	err = dquot_quota_off(sb, type);
2838 	if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2839 		goto out_put;
2840 
2841 	inode_lock(inode);
2842 	F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2843 	f2fs_set_inode_flags(inode);
2844 	inode_unlock(inode);
2845 	f2fs_mark_inode_dirty_sync(inode, false);
2846 out_put:
2847 	iput(inode);
2848 	return err;
2849 }
2850 
2851 static int f2fs_quota_off(struct super_block *sb, int type)
2852 {
2853 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2854 	int err;
2855 
2856 	err = __f2fs_quota_off(sb, type);
2857 
2858 	/*
2859 	 * quotactl can shutdown journalled quota, result in inconsistence
2860 	 * between quota record and fs data by following updates, tag the
2861 	 * flag to let fsck be aware of it.
2862 	 */
2863 	if (is_journalled_quota(sbi))
2864 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2865 	return err;
2866 }
2867 
2868 void f2fs_quota_off_umount(struct super_block *sb)
2869 {
2870 	int type;
2871 	int err;
2872 
2873 	for (type = 0; type < MAXQUOTAS; type++) {
2874 		err = __f2fs_quota_off(sb, type);
2875 		if (err) {
2876 			int ret = dquot_quota_off(sb, type);
2877 
2878 			f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2879 				 type, err, ret);
2880 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2881 		}
2882 	}
2883 	/*
2884 	 * In case of checkpoint=disable, we must flush quota blocks.
2885 	 * This can cause NULL exception for node_inode in end_io, since
2886 	 * put_super already dropped it.
2887 	 */
2888 	sync_filesystem(sb);
2889 }
2890 
2891 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2892 {
2893 	struct quota_info *dqopt = sb_dqopt(sb);
2894 	int type;
2895 
2896 	for (type = 0; type < MAXQUOTAS; type++) {
2897 		if (!dqopt->files[type])
2898 			continue;
2899 		f2fs_inode_synced(dqopt->files[type]);
2900 	}
2901 }
2902 
2903 static int f2fs_dquot_commit(struct dquot *dquot)
2904 {
2905 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2906 	int ret;
2907 
2908 	f2fs_down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
2909 	ret = dquot_commit(dquot);
2910 	if (ret < 0)
2911 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2912 	f2fs_up_read(&sbi->quota_sem);
2913 	return ret;
2914 }
2915 
2916 static int f2fs_dquot_acquire(struct dquot *dquot)
2917 {
2918 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2919 	int ret;
2920 
2921 	f2fs_down_read(&sbi->quota_sem);
2922 	ret = dquot_acquire(dquot);
2923 	if (ret < 0)
2924 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2925 	f2fs_up_read(&sbi->quota_sem);
2926 	return ret;
2927 }
2928 
2929 static int f2fs_dquot_release(struct dquot *dquot)
2930 {
2931 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2932 	int ret = dquot_release(dquot);
2933 
2934 	if (ret < 0)
2935 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2936 	return ret;
2937 }
2938 
2939 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2940 {
2941 	struct super_block *sb = dquot->dq_sb;
2942 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2943 	int ret = dquot_mark_dquot_dirty(dquot);
2944 
2945 	/* if we are using journalled quota */
2946 	if (is_journalled_quota(sbi))
2947 		set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2948 
2949 	return ret;
2950 }
2951 
2952 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2953 {
2954 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2955 	int ret = dquot_commit_info(sb, type);
2956 
2957 	if (ret < 0)
2958 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2959 	return ret;
2960 }
2961 
2962 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2963 {
2964 	*projid = F2FS_I(inode)->i_projid;
2965 	return 0;
2966 }
2967 
2968 static const struct dquot_operations f2fs_quota_operations = {
2969 	.get_reserved_space = f2fs_get_reserved_space,
2970 	.write_dquot	= f2fs_dquot_commit,
2971 	.acquire_dquot	= f2fs_dquot_acquire,
2972 	.release_dquot	= f2fs_dquot_release,
2973 	.mark_dirty	= f2fs_dquot_mark_dquot_dirty,
2974 	.write_info	= f2fs_dquot_commit_info,
2975 	.alloc_dquot	= dquot_alloc,
2976 	.destroy_dquot	= dquot_destroy,
2977 	.get_projid	= f2fs_get_projid,
2978 	.get_next_id	= dquot_get_next_id,
2979 };
2980 
2981 static const struct quotactl_ops f2fs_quotactl_ops = {
2982 	.quota_on	= f2fs_quota_on,
2983 	.quota_off	= f2fs_quota_off,
2984 	.quota_sync	= f2fs_quota_sync,
2985 	.get_state	= dquot_get_state,
2986 	.set_info	= dquot_set_dqinfo,
2987 	.get_dqblk	= dquot_get_dqblk,
2988 	.set_dqblk	= dquot_set_dqblk,
2989 	.get_nextdqblk	= dquot_get_next_dqblk,
2990 };
2991 #else
2992 int f2fs_dquot_initialize(struct inode *inode)
2993 {
2994 	return 0;
2995 }
2996 
2997 int f2fs_quota_sync(struct super_block *sb, int type)
2998 {
2999 	return 0;
3000 }
3001 
3002 void f2fs_quota_off_umount(struct super_block *sb)
3003 {
3004 }
3005 #endif
3006 
3007 static const struct super_operations f2fs_sops = {
3008 	.alloc_inode	= f2fs_alloc_inode,
3009 	.free_inode	= f2fs_free_inode,
3010 	.drop_inode	= f2fs_drop_inode,
3011 	.write_inode	= f2fs_write_inode,
3012 	.dirty_inode	= f2fs_dirty_inode,
3013 	.show_options	= f2fs_show_options,
3014 #ifdef CONFIG_QUOTA
3015 	.quota_read	= f2fs_quota_read,
3016 	.quota_write	= f2fs_quota_write,
3017 	.get_dquots	= f2fs_get_dquots,
3018 #endif
3019 	.evict_inode	= f2fs_evict_inode,
3020 	.put_super	= f2fs_put_super,
3021 	.sync_fs	= f2fs_sync_fs,
3022 	.freeze_fs	= f2fs_freeze,
3023 	.unfreeze_fs	= f2fs_unfreeze,
3024 	.statfs		= f2fs_statfs,
3025 	.remount_fs	= f2fs_remount,
3026 };
3027 
3028 #ifdef CONFIG_FS_ENCRYPTION
3029 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
3030 {
3031 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
3032 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
3033 				ctx, len, NULL);
3034 }
3035 
3036 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
3037 							void *fs_data)
3038 {
3039 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
3040 
3041 	/*
3042 	 * Encrypting the root directory is not allowed because fsck
3043 	 * expects lost+found directory to exist and remain unencrypted
3044 	 * if LOST_FOUND feature is enabled.
3045 	 *
3046 	 */
3047 	if (f2fs_sb_has_lost_found(sbi) &&
3048 			inode->i_ino == F2FS_ROOT_INO(sbi))
3049 		return -EPERM;
3050 
3051 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
3052 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
3053 				ctx, len, fs_data, XATTR_CREATE);
3054 }
3055 
3056 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb)
3057 {
3058 	return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy;
3059 }
3060 
3061 static bool f2fs_has_stable_inodes(struct super_block *sb)
3062 {
3063 	return true;
3064 }
3065 
3066 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
3067 				       int *ino_bits_ret, int *lblk_bits_ret)
3068 {
3069 	*ino_bits_ret = 8 * sizeof(nid_t);
3070 	*lblk_bits_ret = 8 * sizeof(block_t);
3071 }
3072 
3073 static struct block_device **f2fs_get_devices(struct super_block *sb,
3074 					      unsigned int *num_devs)
3075 {
3076 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
3077 	struct block_device **devs;
3078 	int i;
3079 
3080 	if (!f2fs_is_multi_device(sbi))
3081 		return NULL;
3082 
3083 	devs = kmalloc_array(sbi->s_ndevs, sizeof(*devs), GFP_KERNEL);
3084 	if (!devs)
3085 		return ERR_PTR(-ENOMEM);
3086 
3087 	for (i = 0; i < sbi->s_ndevs; i++)
3088 		devs[i] = FDEV(i).bdev;
3089 	*num_devs = sbi->s_ndevs;
3090 	return devs;
3091 }
3092 
3093 static const struct fscrypt_operations f2fs_cryptops = {
3094 	.key_prefix		= "f2fs:",
3095 	.get_context		= f2fs_get_context,
3096 	.set_context		= f2fs_set_context,
3097 	.get_dummy_policy	= f2fs_get_dummy_policy,
3098 	.empty_dir		= f2fs_empty_dir,
3099 	.has_stable_inodes	= f2fs_has_stable_inodes,
3100 	.get_ino_and_lblk_bits	= f2fs_get_ino_and_lblk_bits,
3101 	.get_devices		= f2fs_get_devices,
3102 };
3103 #endif
3104 
3105 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
3106 		u64 ino, u32 generation)
3107 {
3108 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
3109 	struct inode *inode;
3110 
3111 	if (f2fs_check_nid_range(sbi, ino))
3112 		return ERR_PTR(-ESTALE);
3113 
3114 	/*
3115 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
3116 	 * However f2fs_iget currently does appropriate checks to handle stale
3117 	 * inodes so everything is OK.
3118 	 */
3119 	inode = f2fs_iget(sb, ino);
3120 	if (IS_ERR(inode))
3121 		return ERR_CAST(inode);
3122 	if (unlikely(generation && inode->i_generation != generation)) {
3123 		/* we didn't find the right inode.. */
3124 		iput(inode);
3125 		return ERR_PTR(-ESTALE);
3126 	}
3127 	return inode;
3128 }
3129 
3130 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
3131 		int fh_len, int fh_type)
3132 {
3133 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
3134 				    f2fs_nfs_get_inode);
3135 }
3136 
3137 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
3138 		int fh_len, int fh_type)
3139 {
3140 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
3141 				    f2fs_nfs_get_inode);
3142 }
3143 
3144 static const struct export_operations f2fs_export_ops = {
3145 	.fh_to_dentry = f2fs_fh_to_dentry,
3146 	.fh_to_parent = f2fs_fh_to_parent,
3147 	.get_parent = f2fs_get_parent,
3148 };
3149 
3150 loff_t max_file_blocks(struct inode *inode)
3151 {
3152 	loff_t result = 0;
3153 	loff_t leaf_count;
3154 
3155 	/*
3156 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
3157 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
3158 	 * space in inode.i_addr, it will be more safe to reassign
3159 	 * result as zero.
3160 	 */
3161 
3162 	if (inode && f2fs_compressed_file(inode))
3163 		leaf_count = ADDRS_PER_BLOCK(inode);
3164 	else
3165 		leaf_count = DEF_ADDRS_PER_BLOCK;
3166 
3167 	/* two direct node blocks */
3168 	result += (leaf_count * 2);
3169 
3170 	/* two indirect node blocks */
3171 	leaf_count *= NIDS_PER_BLOCK;
3172 	result += (leaf_count * 2);
3173 
3174 	/* one double indirect node block */
3175 	leaf_count *= NIDS_PER_BLOCK;
3176 	result += leaf_count;
3177 
3178 	return result;
3179 }
3180 
3181 static int __f2fs_commit_super(struct buffer_head *bh,
3182 			struct f2fs_super_block *super)
3183 {
3184 	lock_buffer(bh);
3185 	if (super)
3186 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
3187 	set_buffer_dirty(bh);
3188 	unlock_buffer(bh);
3189 
3190 	/* it's rare case, we can do fua all the time */
3191 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
3192 }
3193 
3194 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
3195 					struct buffer_head *bh)
3196 {
3197 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
3198 					(bh->b_data + F2FS_SUPER_OFFSET);
3199 	struct super_block *sb = sbi->sb;
3200 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3201 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
3202 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
3203 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
3204 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3205 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3206 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
3207 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
3208 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
3209 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
3210 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3211 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
3212 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3213 	u64 main_end_blkaddr = main_blkaddr +
3214 				(segment_count_main << log_blocks_per_seg);
3215 	u64 seg_end_blkaddr = segment0_blkaddr +
3216 				(segment_count << log_blocks_per_seg);
3217 
3218 	if (segment0_blkaddr != cp_blkaddr) {
3219 		f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
3220 			  segment0_blkaddr, cp_blkaddr);
3221 		return true;
3222 	}
3223 
3224 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
3225 							sit_blkaddr) {
3226 		f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
3227 			  cp_blkaddr, sit_blkaddr,
3228 			  segment_count_ckpt << log_blocks_per_seg);
3229 		return true;
3230 	}
3231 
3232 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
3233 							nat_blkaddr) {
3234 		f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
3235 			  sit_blkaddr, nat_blkaddr,
3236 			  segment_count_sit << log_blocks_per_seg);
3237 		return true;
3238 	}
3239 
3240 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
3241 							ssa_blkaddr) {
3242 		f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
3243 			  nat_blkaddr, ssa_blkaddr,
3244 			  segment_count_nat << log_blocks_per_seg);
3245 		return true;
3246 	}
3247 
3248 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
3249 							main_blkaddr) {
3250 		f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
3251 			  ssa_blkaddr, main_blkaddr,
3252 			  segment_count_ssa << log_blocks_per_seg);
3253 		return true;
3254 	}
3255 
3256 	if (main_end_blkaddr > seg_end_blkaddr) {
3257 		f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)",
3258 			  main_blkaddr, seg_end_blkaddr,
3259 			  segment_count_main << log_blocks_per_seg);
3260 		return true;
3261 	} else if (main_end_blkaddr < seg_end_blkaddr) {
3262 		int err = 0;
3263 		char *res;
3264 
3265 		/* fix in-memory information all the time */
3266 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
3267 				segment0_blkaddr) >> log_blocks_per_seg);
3268 
3269 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
3270 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3271 			res = "internally";
3272 		} else {
3273 			err = __f2fs_commit_super(bh, NULL);
3274 			res = err ? "failed" : "done";
3275 		}
3276 		f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)",
3277 			  res, main_blkaddr, seg_end_blkaddr,
3278 			  segment_count_main << log_blocks_per_seg);
3279 		if (err)
3280 			return true;
3281 	}
3282 	return false;
3283 }
3284 
3285 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
3286 				struct buffer_head *bh)
3287 {
3288 	block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main;
3289 	block_t total_sections, blocks_per_seg;
3290 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
3291 					(bh->b_data + F2FS_SUPER_OFFSET);
3292 	size_t crc_offset = 0;
3293 	__u32 crc = 0;
3294 
3295 	if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
3296 		f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
3297 			  F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
3298 		return -EINVAL;
3299 	}
3300 
3301 	/* Check checksum_offset and crc in superblock */
3302 	if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
3303 		crc_offset = le32_to_cpu(raw_super->checksum_offset);
3304 		if (crc_offset !=
3305 			offsetof(struct f2fs_super_block, crc)) {
3306 			f2fs_info(sbi, "Invalid SB checksum offset: %zu",
3307 				  crc_offset);
3308 			return -EFSCORRUPTED;
3309 		}
3310 		crc = le32_to_cpu(raw_super->crc);
3311 		if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
3312 			f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
3313 			return -EFSCORRUPTED;
3314 		}
3315 	}
3316 
3317 	/* Currently, support only 4KB block size */
3318 	if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) {
3319 		f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u",
3320 			  le32_to_cpu(raw_super->log_blocksize),
3321 			  F2FS_BLKSIZE_BITS);
3322 		return -EFSCORRUPTED;
3323 	}
3324 
3325 	/* check log blocks per segment */
3326 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
3327 		f2fs_info(sbi, "Invalid log blocks per segment (%u)",
3328 			  le32_to_cpu(raw_super->log_blocks_per_seg));
3329 		return -EFSCORRUPTED;
3330 	}
3331 
3332 	/* Currently, support 512/1024/2048/4096 bytes sector size */
3333 	if (le32_to_cpu(raw_super->log_sectorsize) >
3334 				F2FS_MAX_LOG_SECTOR_SIZE ||
3335 		le32_to_cpu(raw_super->log_sectorsize) <
3336 				F2FS_MIN_LOG_SECTOR_SIZE) {
3337 		f2fs_info(sbi, "Invalid log sectorsize (%u)",
3338 			  le32_to_cpu(raw_super->log_sectorsize));
3339 		return -EFSCORRUPTED;
3340 	}
3341 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
3342 		le32_to_cpu(raw_super->log_sectorsize) !=
3343 			F2FS_MAX_LOG_SECTOR_SIZE) {
3344 		f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
3345 			  le32_to_cpu(raw_super->log_sectors_per_block),
3346 			  le32_to_cpu(raw_super->log_sectorsize));
3347 		return -EFSCORRUPTED;
3348 	}
3349 
3350 	segment_count = le32_to_cpu(raw_super->segment_count);
3351 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3352 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3353 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3354 	total_sections = le32_to_cpu(raw_super->section_count);
3355 
3356 	/* blocks_per_seg should be 512, given the above check */
3357 	blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
3358 
3359 	if (segment_count > F2FS_MAX_SEGMENT ||
3360 				segment_count < F2FS_MIN_SEGMENTS) {
3361 		f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
3362 		return -EFSCORRUPTED;
3363 	}
3364 
3365 	if (total_sections > segment_count_main || total_sections < 1 ||
3366 			segs_per_sec > segment_count || !segs_per_sec) {
3367 		f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
3368 			  segment_count, total_sections, segs_per_sec);
3369 		return -EFSCORRUPTED;
3370 	}
3371 
3372 	if (segment_count_main != total_sections * segs_per_sec) {
3373 		f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)",
3374 			  segment_count_main, total_sections, segs_per_sec);
3375 		return -EFSCORRUPTED;
3376 	}
3377 
3378 	if ((segment_count / segs_per_sec) < total_sections) {
3379 		f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
3380 			  segment_count, segs_per_sec, total_sections);
3381 		return -EFSCORRUPTED;
3382 	}
3383 
3384 	if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
3385 		f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
3386 			  segment_count, le64_to_cpu(raw_super->block_count));
3387 		return -EFSCORRUPTED;
3388 	}
3389 
3390 	if (RDEV(0).path[0]) {
3391 		block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
3392 		int i = 1;
3393 
3394 		while (i < MAX_DEVICES && RDEV(i).path[0]) {
3395 			dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
3396 			i++;
3397 		}
3398 		if (segment_count != dev_seg_count) {
3399 			f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
3400 					segment_count, dev_seg_count);
3401 			return -EFSCORRUPTED;
3402 		}
3403 	} else {
3404 		if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) &&
3405 					!bdev_is_zoned(sbi->sb->s_bdev)) {
3406 			f2fs_info(sbi, "Zoned block device path is missing");
3407 			return -EFSCORRUPTED;
3408 		}
3409 	}
3410 
3411 	if (secs_per_zone > total_sections || !secs_per_zone) {
3412 		f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
3413 			  secs_per_zone, total_sections);
3414 		return -EFSCORRUPTED;
3415 	}
3416 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
3417 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
3418 			(le32_to_cpu(raw_super->extension_count) +
3419 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
3420 		f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
3421 			  le32_to_cpu(raw_super->extension_count),
3422 			  raw_super->hot_ext_count,
3423 			  F2FS_MAX_EXTENSION);
3424 		return -EFSCORRUPTED;
3425 	}
3426 
3427 	if (le32_to_cpu(raw_super->cp_payload) >=
3428 				(blocks_per_seg - F2FS_CP_PACKS -
3429 				NR_CURSEG_PERSIST_TYPE)) {
3430 		f2fs_info(sbi, "Insane cp_payload (%u >= %u)",
3431 			  le32_to_cpu(raw_super->cp_payload),
3432 			  blocks_per_seg - F2FS_CP_PACKS -
3433 			  NR_CURSEG_PERSIST_TYPE);
3434 		return -EFSCORRUPTED;
3435 	}
3436 
3437 	/* check reserved ino info */
3438 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
3439 		le32_to_cpu(raw_super->meta_ino) != 2 ||
3440 		le32_to_cpu(raw_super->root_ino) != 3) {
3441 		f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
3442 			  le32_to_cpu(raw_super->node_ino),
3443 			  le32_to_cpu(raw_super->meta_ino),
3444 			  le32_to_cpu(raw_super->root_ino));
3445 		return -EFSCORRUPTED;
3446 	}
3447 
3448 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
3449 	if (sanity_check_area_boundary(sbi, bh))
3450 		return -EFSCORRUPTED;
3451 
3452 	return 0;
3453 }
3454 
3455 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
3456 {
3457 	unsigned int total, fsmeta;
3458 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3459 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3460 	unsigned int ovp_segments, reserved_segments;
3461 	unsigned int main_segs, blocks_per_seg;
3462 	unsigned int sit_segs, nat_segs;
3463 	unsigned int sit_bitmap_size, nat_bitmap_size;
3464 	unsigned int log_blocks_per_seg;
3465 	unsigned int segment_count_main;
3466 	unsigned int cp_pack_start_sum, cp_payload;
3467 	block_t user_block_count, valid_user_blocks;
3468 	block_t avail_node_count, valid_node_count;
3469 	unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks;
3470 	int i, j;
3471 
3472 	total = le32_to_cpu(raw_super->segment_count);
3473 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
3474 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
3475 	fsmeta += sit_segs;
3476 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
3477 	fsmeta += nat_segs;
3478 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
3479 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
3480 
3481 	if (unlikely(fsmeta >= total))
3482 		return 1;
3483 
3484 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3485 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3486 
3487 	if (!f2fs_sb_has_readonly(sbi) &&
3488 			unlikely(fsmeta < F2FS_MIN_META_SEGMENTS ||
3489 			ovp_segments == 0 || reserved_segments == 0)) {
3490 		f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
3491 		return 1;
3492 	}
3493 	user_block_count = le64_to_cpu(ckpt->user_block_count);
3494 	segment_count_main = le32_to_cpu(raw_super->segment_count_main) +
3495 			(f2fs_sb_has_readonly(sbi) ? 1 : 0);
3496 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3497 	if (!user_block_count || user_block_count >=
3498 			segment_count_main << log_blocks_per_seg) {
3499 		f2fs_err(sbi, "Wrong user_block_count: %u",
3500 			 user_block_count);
3501 		return 1;
3502 	}
3503 
3504 	valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
3505 	if (valid_user_blocks > user_block_count) {
3506 		f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
3507 			 valid_user_blocks, user_block_count);
3508 		return 1;
3509 	}
3510 
3511 	valid_node_count = le32_to_cpu(ckpt->valid_node_count);
3512 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
3513 	if (valid_node_count > avail_node_count) {
3514 		f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
3515 			 valid_node_count, avail_node_count);
3516 		return 1;
3517 	}
3518 
3519 	main_segs = le32_to_cpu(raw_super->segment_count_main);
3520 	blocks_per_seg = sbi->blocks_per_seg;
3521 
3522 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3523 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
3524 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
3525 			return 1;
3526 
3527 		if (f2fs_sb_has_readonly(sbi))
3528 			goto check_data;
3529 
3530 		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
3531 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3532 				le32_to_cpu(ckpt->cur_node_segno[j])) {
3533 				f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
3534 					 i, j,
3535 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3536 				return 1;
3537 			}
3538 		}
3539 	}
3540 check_data:
3541 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
3542 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
3543 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
3544 			return 1;
3545 
3546 		if (f2fs_sb_has_readonly(sbi))
3547 			goto skip_cross;
3548 
3549 		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
3550 			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
3551 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3552 				f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
3553 					 i, j,
3554 					 le32_to_cpu(ckpt->cur_data_segno[i]));
3555 				return 1;
3556 			}
3557 		}
3558 	}
3559 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3560 		for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
3561 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3562 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3563 				f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
3564 					 i, j,
3565 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3566 				return 1;
3567 			}
3568 		}
3569 	}
3570 skip_cross:
3571 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
3572 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
3573 
3574 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
3575 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
3576 		f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
3577 			 sit_bitmap_size, nat_bitmap_size);
3578 		return 1;
3579 	}
3580 
3581 	cp_pack_start_sum = __start_sum_addr(sbi);
3582 	cp_payload = __cp_payload(sbi);
3583 	if (cp_pack_start_sum < cp_payload + 1 ||
3584 		cp_pack_start_sum > blocks_per_seg - 1 -
3585 			NR_CURSEG_PERSIST_TYPE) {
3586 		f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
3587 			 cp_pack_start_sum);
3588 		return 1;
3589 	}
3590 
3591 	if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
3592 		le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
3593 		f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
3594 			  "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
3595 			  "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
3596 			  le32_to_cpu(ckpt->checksum_offset));
3597 		return 1;
3598 	}
3599 
3600 	nat_blocks = nat_segs << log_blocks_per_seg;
3601 	nat_bits_bytes = nat_blocks / BITS_PER_BYTE;
3602 	nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3603 	if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) &&
3604 		(cp_payload + F2FS_CP_PACKS +
3605 		NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) {
3606 		f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)",
3607 			  cp_payload, nat_bits_blocks);
3608 		return 1;
3609 	}
3610 
3611 	if (unlikely(f2fs_cp_error(sbi))) {
3612 		f2fs_err(sbi, "A bug case: need to run fsck");
3613 		return 1;
3614 	}
3615 	return 0;
3616 }
3617 
3618 static void init_sb_info(struct f2fs_sb_info *sbi)
3619 {
3620 	struct f2fs_super_block *raw_super = sbi->raw_super;
3621 	int i;
3622 
3623 	sbi->log_sectors_per_block =
3624 		le32_to_cpu(raw_super->log_sectors_per_block);
3625 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
3626 	sbi->blocksize = 1 << sbi->log_blocksize;
3627 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3628 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
3629 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3630 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3631 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
3632 	sbi->total_node_count =
3633 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
3634 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
3635 	F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino);
3636 	F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino);
3637 	F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino);
3638 	sbi->cur_victim_sec = NULL_SECNO;
3639 	sbi->gc_mode = GC_NORMAL;
3640 	sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
3641 	sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
3642 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
3643 	sbi->migration_granularity = sbi->segs_per_sec;
3644 	sbi->seq_file_ra_mul = MIN_RA_MUL;
3645 	sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE;
3646 	sbi->max_fragment_hole = DEF_FRAGMENT_SIZE;
3647 	spin_lock_init(&sbi->gc_remaining_trials_lock);
3648 	atomic64_set(&sbi->current_atomic_write, 0);
3649 
3650 	sbi->dir_level = DEF_DIR_LEVEL;
3651 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
3652 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
3653 	sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
3654 	sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
3655 	sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
3656 	sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
3657 				DEF_UMOUNT_DISCARD_TIMEOUT;
3658 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
3659 
3660 	for (i = 0; i < NR_COUNT_TYPE; i++)
3661 		atomic_set(&sbi->nr_pages[i], 0);
3662 
3663 	for (i = 0; i < META; i++)
3664 		atomic_set(&sbi->wb_sync_req[i], 0);
3665 
3666 	INIT_LIST_HEAD(&sbi->s_list);
3667 	mutex_init(&sbi->umount_mutex);
3668 	init_f2fs_rwsem(&sbi->io_order_lock);
3669 	spin_lock_init(&sbi->cp_lock);
3670 
3671 	sbi->dirty_device = 0;
3672 	spin_lock_init(&sbi->dev_lock);
3673 
3674 	init_f2fs_rwsem(&sbi->sb_lock);
3675 	init_f2fs_rwsem(&sbi->pin_sem);
3676 }
3677 
3678 static int init_percpu_info(struct f2fs_sb_info *sbi)
3679 {
3680 	int err;
3681 
3682 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
3683 	if (err)
3684 		return err;
3685 
3686 	err = percpu_counter_init(&sbi->rf_node_block_count, 0, GFP_KERNEL);
3687 	if (err)
3688 		goto err_valid_block;
3689 
3690 	err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
3691 								GFP_KERNEL);
3692 	if (err)
3693 		goto err_node_block;
3694 	return 0;
3695 
3696 err_node_block:
3697 	percpu_counter_destroy(&sbi->rf_node_block_count);
3698 err_valid_block:
3699 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
3700 	return err;
3701 }
3702 
3703 #ifdef CONFIG_BLK_DEV_ZONED
3704 
3705 struct f2fs_report_zones_args {
3706 	struct f2fs_sb_info *sbi;
3707 	struct f2fs_dev_info *dev;
3708 };
3709 
3710 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
3711 			      void *data)
3712 {
3713 	struct f2fs_report_zones_args *rz_args = data;
3714 	block_t unusable_blocks = (zone->len - zone->capacity) >>
3715 					F2FS_LOG_SECTORS_PER_BLOCK;
3716 
3717 	if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
3718 		return 0;
3719 
3720 	set_bit(idx, rz_args->dev->blkz_seq);
3721 	if (!rz_args->sbi->unusable_blocks_per_sec) {
3722 		rz_args->sbi->unusable_blocks_per_sec = unusable_blocks;
3723 		return 0;
3724 	}
3725 	if (rz_args->sbi->unusable_blocks_per_sec != unusable_blocks) {
3726 		f2fs_err(rz_args->sbi, "F2FS supports single zone capacity\n");
3727 		return -EINVAL;
3728 	}
3729 	return 0;
3730 }
3731 
3732 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
3733 {
3734 	struct block_device *bdev = FDEV(devi).bdev;
3735 	sector_t nr_sectors = bdev_nr_sectors(bdev);
3736 	struct f2fs_report_zones_args rep_zone_arg;
3737 	u64 zone_sectors;
3738 	int ret;
3739 
3740 	if (!f2fs_sb_has_blkzoned(sbi))
3741 		return 0;
3742 
3743 	zone_sectors = bdev_zone_sectors(bdev);
3744 	if (!is_power_of_2(zone_sectors)) {
3745 		f2fs_err(sbi, "F2FS does not support non power of 2 zone sizes\n");
3746 		return -EINVAL;
3747 	}
3748 
3749 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3750 				SECTOR_TO_BLOCK(zone_sectors))
3751 		return -EINVAL;
3752 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(zone_sectors);
3753 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
3754 				__ilog2_u32(sbi->blocks_per_blkz))
3755 		return -EINVAL;
3756 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
3757 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
3758 					sbi->log_blocks_per_blkz;
3759 	if (nr_sectors & (zone_sectors - 1))
3760 		FDEV(devi).nr_blkz++;
3761 
3762 	FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
3763 					BITS_TO_LONGS(FDEV(devi).nr_blkz)
3764 					* sizeof(unsigned long),
3765 					GFP_KERNEL);
3766 	if (!FDEV(devi).blkz_seq)
3767 		return -ENOMEM;
3768 
3769 	rep_zone_arg.sbi = sbi;
3770 	rep_zone_arg.dev = &FDEV(devi);
3771 
3772 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3773 				  &rep_zone_arg);
3774 	if (ret < 0)
3775 		return ret;
3776 	return 0;
3777 }
3778 #endif
3779 
3780 /*
3781  * Read f2fs raw super block.
3782  * Because we have two copies of super block, so read both of them
3783  * to get the first valid one. If any one of them is broken, we pass
3784  * them recovery flag back to the caller.
3785  */
3786 static int read_raw_super_block(struct f2fs_sb_info *sbi,
3787 			struct f2fs_super_block **raw_super,
3788 			int *valid_super_block, int *recovery)
3789 {
3790 	struct super_block *sb = sbi->sb;
3791 	int block;
3792 	struct buffer_head *bh;
3793 	struct f2fs_super_block *super;
3794 	int err = 0;
3795 
3796 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3797 	if (!super)
3798 		return -ENOMEM;
3799 
3800 	for (block = 0; block < 2; block++) {
3801 		bh = sb_bread(sb, block);
3802 		if (!bh) {
3803 			f2fs_err(sbi, "Unable to read %dth superblock",
3804 				 block + 1);
3805 			err = -EIO;
3806 			*recovery = 1;
3807 			continue;
3808 		}
3809 
3810 		/* sanity checking of raw super */
3811 		err = sanity_check_raw_super(sbi, bh);
3812 		if (err) {
3813 			f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3814 				 block + 1);
3815 			brelse(bh);
3816 			*recovery = 1;
3817 			continue;
3818 		}
3819 
3820 		if (!*raw_super) {
3821 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3822 							sizeof(*super));
3823 			*valid_super_block = block;
3824 			*raw_super = super;
3825 		}
3826 		brelse(bh);
3827 	}
3828 
3829 	/* No valid superblock */
3830 	if (!*raw_super)
3831 		kfree(super);
3832 	else
3833 		err = 0;
3834 
3835 	return err;
3836 }
3837 
3838 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3839 {
3840 	struct buffer_head *bh;
3841 	__u32 crc = 0;
3842 	int err;
3843 
3844 	if ((recover && f2fs_readonly(sbi->sb)) ||
3845 				bdev_read_only(sbi->sb->s_bdev)) {
3846 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3847 		return -EROFS;
3848 	}
3849 
3850 	/* we should update superblock crc here */
3851 	if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3852 		crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3853 				offsetof(struct f2fs_super_block, crc));
3854 		F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3855 	}
3856 
3857 	/* write back-up superblock first */
3858 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3859 	if (!bh)
3860 		return -EIO;
3861 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3862 	brelse(bh);
3863 
3864 	/* if we are in recovery path, skip writing valid superblock */
3865 	if (recover || err)
3866 		return err;
3867 
3868 	/* write current valid superblock */
3869 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
3870 	if (!bh)
3871 		return -EIO;
3872 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3873 	brelse(bh);
3874 	return err;
3875 }
3876 
3877 void f2fs_handle_stop(struct f2fs_sb_info *sbi, unsigned char reason)
3878 {
3879 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3880 	int err;
3881 
3882 	f2fs_down_write(&sbi->sb_lock);
3883 
3884 	if (raw_super->s_stop_reason[reason] < ((1 << BITS_PER_BYTE) - 1))
3885 		raw_super->s_stop_reason[reason]++;
3886 
3887 	err = f2fs_commit_super(sbi, false);
3888 	if (err)
3889 		f2fs_err(sbi, "f2fs_commit_super fails to record reason:%u err:%d",
3890 								reason, err);
3891 	f2fs_up_write(&sbi->sb_lock);
3892 }
3893 
3894 static void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag)
3895 {
3896 	spin_lock(&sbi->error_lock);
3897 	if (!test_bit(flag, (unsigned long *)sbi->errors)) {
3898 		set_bit(flag, (unsigned long *)sbi->errors);
3899 		sbi->error_dirty = true;
3900 	}
3901 	spin_unlock(&sbi->error_lock);
3902 }
3903 
3904 static bool f2fs_update_errors(struct f2fs_sb_info *sbi)
3905 {
3906 	bool need_update = false;
3907 
3908 	spin_lock(&sbi->error_lock);
3909 	if (sbi->error_dirty) {
3910 		memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors,
3911 							MAX_F2FS_ERRORS);
3912 		sbi->error_dirty = false;
3913 		need_update = true;
3914 	}
3915 	spin_unlock(&sbi->error_lock);
3916 
3917 	return need_update;
3918 }
3919 
3920 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error)
3921 {
3922 	int err;
3923 
3924 	f2fs_save_errors(sbi, error);
3925 
3926 	f2fs_down_write(&sbi->sb_lock);
3927 
3928 	if (!f2fs_update_errors(sbi))
3929 		goto out_unlock;
3930 
3931 	err = f2fs_commit_super(sbi, false);
3932 	if (err)
3933 		f2fs_err(sbi, "f2fs_commit_super fails to record errors:%u, err:%d",
3934 								error, err);
3935 out_unlock:
3936 	f2fs_up_write(&sbi->sb_lock);
3937 }
3938 
3939 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3940 {
3941 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3942 	unsigned int max_devices = MAX_DEVICES;
3943 	unsigned int logical_blksize;
3944 	int i;
3945 
3946 	/* Initialize single device information */
3947 	if (!RDEV(0).path[0]) {
3948 		if (!bdev_is_zoned(sbi->sb->s_bdev))
3949 			return 0;
3950 		max_devices = 1;
3951 	}
3952 
3953 	/*
3954 	 * Initialize multiple devices information, or single
3955 	 * zoned block device information.
3956 	 */
3957 	sbi->devs = f2fs_kzalloc(sbi,
3958 				 array_size(max_devices,
3959 					    sizeof(struct f2fs_dev_info)),
3960 				 GFP_KERNEL);
3961 	if (!sbi->devs)
3962 		return -ENOMEM;
3963 
3964 	logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev);
3965 	sbi->aligned_blksize = true;
3966 
3967 	for (i = 0; i < max_devices; i++) {
3968 
3969 		if (i > 0 && !RDEV(i).path[0])
3970 			break;
3971 
3972 		if (max_devices == 1) {
3973 			/* Single zoned block device mount */
3974 			FDEV(0).bdev =
3975 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3976 					sbi->sb->s_mode, sbi->sb->s_type);
3977 		} else {
3978 			/* Multi-device mount */
3979 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3980 			FDEV(i).total_segments =
3981 				le32_to_cpu(RDEV(i).total_segments);
3982 			if (i == 0) {
3983 				FDEV(i).start_blk = 0;
3984 				FDEV(i).end_blk = FDEV(i).start_blk +
3985 				    (FDEV(i).total_segments <<
3986 				    sbi->log_blocks_per_seg) - 1 +
3987 				    le32_to_cpu(raw_super->segment0_blkaddr);
3988 			} else {
3989 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3990 				FDEV(i).end_blk = FDEV(i).start_blk +
3991 					(FDEV(i).total_segments <<
3992 					sbi->log_blocks_per_seg) - 1;
3993 			}
3994 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3995 					sbi->sb->s_mode, sbi->sb->s_type);
3996 		}
3997 		if (IS_ERR(FDEV(i).bdev))
3998 			return PTR_ERR(FDEV(i).bdev);
3999 
4000 		/* to release errored devices */
4001 		sbi->s_ndevs = i + 1;
4002 
4003 		if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev))
4004 			sbi->aligned_blksize = false;
4005 
4006 #ifdef CONFIG_BLK_DEV_ZONED
4007 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
4008 				!f2fs_sb_has_blkzoned(sbi)) {
4009 			f2fs_err(sbi, "Zoned block device feature not enabled");
4010 			return -EINVAL;
4011 		}
4012 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
4013 			if (init_blkz_info(sbi, i)) {
4014 				f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
4015 				return -EINVAL;
4016 			}
4017 			if (max_devices == 1)
4018 				break;
4019 			f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
4020 				  i, FDEV(i).path,
4021 				  FDEV(i).total_segments,
4022 				  FDEV(i).start_blk, FDEV(i).end_blk,
4023 				  bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
4024 				  "Host-aware" : "Host-managed");
4025 			continue;
4026 		}
4027 #endif
4028 		f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
4029 			  i, FDEV(i).path,
4030 			  FDEV(i).total_segments,
4031 			  FDEV(i).start_blk, FDEV(i).end_blk);
4032 	}
4033 	f2fs_info(sbi,
4034 		  "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
4035 	return 0;
4036 }
4037 
4038 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
4039 {
4040 #if IS_ENABLED(CONFIG_UNICODE)
4041 	if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) {
4042 		const struct f2fs_sb_encodings *encoding_info;
4043 		struct unicode_map *encoding;
4044 		__u16 encoding_flags;
4045 
4046 		encoding_info = f2fs_sb_read_encoding(sbi->raw_super);
4047 		if (!encoding_info) {
4048 			f2fs_err(sbi,
4049 				 "Encoding requested by superblock is unknown");
4050 			return -EINVAL;
4051 		}
4052 
4053 		encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags);
4054 		encoding = utf8_load(encoding_info->version);
4055 		if (IS_ERR(encoding)) {
4056 			f2fs_err(sbi,
4057 				 "can't mount with superblock charset: %s-%u.%u.%u "
4058 				 "not supported by the kernel. flags: 0x%x.",
4059 				 encoding_info->name,
4060 				 unicode_major(encoding_info->version),
4061 				 unicode_minor(encoding_info->version),
4062 				 unicode_rev(encoding_info->version),
4063 				 encoding_flags);
4064 			return PTR_ERR(encoding);
4065 		}
4066 		f2fs_info(sbi, "Using encoding defined by superblock: "
4067 			 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4068 			 unicode_major(encoding_info->version),
4069 			 unicode_minor(encoding_info->version),
4070 			 unicode_rev(encoding_info->version),
4071 			 encoding_flags);
4072 
4073 		sbi->sb->s_encoding = encoding;
4074 		sbi->sb->s_encoding_flags = encoding_flags;
4075 	}
4076 #else
4077 	if (f2fs_sb_has_casefold(sbi)) {
4078 		f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
4079 		return -EINVAL;
4080 	}
4081 #endif
4082 	return 0;
4083 }
4084 
4085 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
4086 {
4087 	/* adjust parameters according to the volume size */
4088 	if (MAIN_SEGS(sbi) <= SMALL_VOLUME_SEGMENTS) {
4089 		if (f2fs_block_unit_discard(sbi))
4090 			SM_I(sbi)->dcc_info->discard_granularity =
4091 						MIN_DISCARD_GRANULARITY;
4092 		SM_I(sbi)->ipu_policy = 1 << F2FS_IPU_FORCE |
4093 					1 << F2FS_IPU_HONOR_OPU_WRITE;
4094 	}
4095 
4096 	sbi->readdir_ra = true;
4097 }
4098 
4099 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
4100 {
4101 	struct f2fs_sb_info *sbi;
4102 	struct f2fs_super_block *raw_super;
4103 	struct inode *root;
4104 	int err;
4105 	bool skip_recovery = false, need_fsck = false;
4106 	char *options = NULL;
4107 	int recovery, i, valid_super_block;
4108 	struct curseg_info *seg_i;
4109 	int retry_cnt = 1;
4110 
4111 try_onemore:
4112 	err = -EINVAL;
4113 	raw_super = NULL;
4114 	valid_super_block = -1;
4115 	recovery = 0;
4116 
4117 	/* allocate memory for f2fs-specific super block info */
4118 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
4119 	if (!sbi)
4120 		return -ENOMEM;
4121 
4122 	sbi->sb = sb;
4123 
4124 	/* initialize locks within allocated memory */
4125 	init_f2fs_rwsem(&sbi->gc_lock);
4126 	mutex_init(&sbi->writepages);
4127 	init_f2fs_rwsem(&sbi->cp_global_sem);
4128 	init_f2fs_rwsem(&sbi->node_write);
4129 	init_f2fs_rwsem(&sbi->node_change);
4130 	spin_lock_init(&sbi->stat_lock);
4131 	init_f2fs_rwsem(&sbi->cp_rwsem);
4132 	init_f2fs_rwsem(&sbi->quota_sem);
4133 	init_waitqueue_head(&sbi->cp_wait);
4134 	spin_lock_init(&sbi->error_lock);
4135 
4136 	for (i = 0; i < NR_INODE_TYPE; i++) {
4137 		INIT_LIST_HEAD(&sbi->inode_list[i]);
4138 		spin_lock_init(&sbi->inode_lock[i]);
4139 	}
4140 	mutex_init(&sbi->flush_lock);
4141 
4142 	/* Load the checksum driver */
4143 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
4144 	if (IS_ERR(sbi->s_chksum_driver)) {
4145 		f2fs_err(sbi, "Cannot load crc32 driver.");
4146 		err = PTR_ERR(sbi->s_chksum_driver);
4147 		sbi->s_chksum_driver = NULL;
4148 		goto free_sbi;
4149 	}
4150 
4151 	/* set a block size */
4152 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
4153 		f2fs_err(sbi, "unable to set blocksize");
4154 		goto free_sbi;
4155 	}
4156 
4157 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
4158 								&recovery);
4159 	if (err)
4160 		goto free_sbi;
4161 
4162 	sb->s_fs_info = sbi;
4163 	sbi->raw_super = raw_super;
4164 
4165 	memcpy(sbi->errors, raw_super->s_errors, MAX_F2FS_ERRORS);
4166 
4167 	/* precompute checksum seed for metadata */
4168 	if (f2fs_sb_has_inode_chksum(sbi))
4169 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
4170 						sizeof(raw_super->uuid));
4171 
4172 	default_options(sbi);
4173 	/* parse mount options */
4174 	options = kstrdup((const char *)data, GFP_KERNEL);
4175 	if (data && !options) {
4176 		err = -ENOMEM;
4177 		goto free_sb_buf;
4178 	}
4179 
4180 	err = parse_options(sb, options, false);
4181 	if (err)
4182 		goto free_options;
4183 
4184 	sb->s_maxbytes = max_file_blocks(NULL) <<
4185 				le32_to_cpu(raw_super->log_blocksize);
4186 	sb->s_max_links = F2FS_LINK_MAX;
4187 
4188 	err = f2fs_setup_casefold(sbi);
4189 	if (err)
4190 		goto free_options;
4191 
4192 #ifdef CONFIG_QUOTA
4193 	sb->dq_op = &f2fs_quota_operations;
4194 	sb->s_qcop = &f2fs_quotactl_ops;
4195 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4196 
4197 	if (f2fs_sb_has_quota_ino(sbi)) {
4198 		for (i = 0; i < MAXQUOTAS; i++) {
4199 			if (f2fs_qf_ino(sbi->sb, i))
4200 				sbi->nquota_files++;
4201 		}
4202 	}
4203 #endif
4204 
4205 	sb->s_op = &f2fs_sops;
4206 #ifdef CONFIG_FS_ENCRYPTION
4207 	sb->s_cop = &f2fs_cryptops;
4208 #endif
4209 #ifdef CONFIG_FS_VERITY
4210 	sb->s_vop = &f2fs_verityops;
4211 #endif
4212 	sb->s_xattr = f2fs_xattr_handlers;
4213 	sb->s_export_op = &f2fs_export_ops;
4214 	sb->s_magic = F2FS_SUPER_MAGIC;
4215 	sb->s_time_gran = 1;
4216 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4217 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
4218 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
4219 	sb->s_iflags |= SB_I_CGROUPWB;
4220 
4221 	/* init f2fs-specific super block info */
4222 	sbi->valid_super_block = valid_super_block;
4223 
4224 	/* disallow all the data/node/meta page writes */
4225 	set_sbi_flag(sbi, SBI_POR_DOING);
4226 
4227 	err = f2fs_init_write_merge_io(sbi);
4228 	if (err)
4229 		goto free_bio_info;
4230 
4231 	init_sb_info(sbi);
4232 
4233 	err = f2fs_init_iostat(sbi);
4234 	if (err)
4235 		goto free_bio_info;
4236 
4237 	err = init_percpu_info(sbi);
4238 	if (err)
4239 		goto free_iostat;
4240 
4241 	if (F2FS_IO_ALIGNED(sbi)) {
4242 		sbi->write_io_dummy =
4243 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
4244 		if (!sbi->write_io_dummy) {
4245 			err = -ENOMEM;
4246 			goto free_percpu;
4247 		}
4248 	}
4249 
4250 	/* init per sbi slab cache */
4251 	err = f2fs_init_xattr_caches(sbi);
4252 	if (err)
4253 		goto free_io_dummy;
4254 	err = f2fs_init_page_array_cache(sbi);
4255 	if (err)
4256 		goto free_xattr_cache;
4257 
4258 	/* get an inode for meta space */
4259 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
4260 	if (IS_ERR(sbi->meta_inode)) {
4261 		f2fs_err(sbi, "Failed to read F2FS meta data inode");
4262 		err = PTR_ERR(sbi->meta_inode);
4263 		goto free_page_array_cache;
4264 	}
4265 
4266 	err = f2fs_get_valid_checkpoint(sbi);
4267 	if (err) {
4268 		f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
4269 		goto free_meta_inode;
4270 	}
4271 
4272 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
4273 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
4274 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
4275 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
4276 		sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
4277 	}
4278 
4279 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
4280 		set_sbi_flag(sbi, SBI_NEED_FSCK);
4281 
4282 	/* Initialize device list */
4283 	err = f2fs_scan_devices(sbi);
4284 	if (err) {
4285 		f2fs_err(sbi, "Failed to find devices");
4286 		goto free_devices;
4287 	}
4288 
4289 	err = f2fs_init_post_read_wq(sbi);
4290 	if (err) {
4291 		f2fs_err(sbi, "Failed to initialize post read workqueue");
4292 		goto free_devices;
4293 	}
4294 
4295 	sbi->total_valid_node_count =
4296 				le32_to_cpu(sbi->ckpt->valid_node_count);
4297 	percpu_counter_set(&sbi->total_valid_inode_count,
4298 				le32_to_cpu(sbi->ckpt->valid_inode_count));
4299 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
4300 	sbi->total_valid_block_count =
4301 				le64_to_cpu(sbi->ckpt->valid_block_count);
4302 	sbi->last_valid_block_count = sbi->total_valid_block_count;
4303 	sbi->reserved_blocks = 0;
4304 	sbi->current_reserved_blocks = 0;
4305 	limit_reserve_root(sbi);
4306 	adjust_unusable_cap_perc(sbi);
4307 
4308 	f2fs_init_extent_cache_info(sbi);
4309 
4310 	f2fs_init_ino_entry_info(sbi);
4311 
4312 	f2fs_init_fsync_node_info(sbi);
4313 
4314 	/* setup checkpoint request control and start checkpoint issue thread */
4315 	f2fs_init_ckpt_req_control(sbi);
4316 	if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) &&
4317 			test_opt(sbi, MERGE_CHECKPOINT)) {
4318 		err = f2fs_start_ckpt_thread(sbi);
4319 		if (err) {
4320 			f2fs_err(sbi,
4321 			    "Failed to start F2FS issue_checkpoint_thread (%d)",
4322 			    err);
4323 			goto stop_ckpt_thread;
4324 		}
4325 	}
4326 
4327 	/* setup f2fs internal modules */
4328 	err = f2fs_build_segment_manager(sbi);
4329 	if (err) {
4330 		f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
4331 			 err);
4332 		goto free_sm;
4333 	}
4334 	err = f2fs_build_node_manager(sbi);
4335 	if (err) {
4336 		f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
4337 			 err);
4338 		goto free_nm;
4339 	}
4340 
4341 	err = adjust_reserved_segment(sbi);
4342 	if (err)
4343 		goto free_nm;
4344 
4345 	/* For write statistics */
4346 	sbi->sectors_written_start = f2fs_get_sectors_written(sbi);
4347 
4348 	/* Read accumulated write IO statistics if exists */
4349 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
4350 	if (__exist_node_summaries(sbi))
4351 		sbi->kbytes_written =
4352 			le64_to_cpu(seg_i->journal->info.kbytes_written);
4353 
4354 	f2fs_build_gc_manager(sbi);
4355 
4356 	err = f2fs_build_stats(sbi);
4357 	if (err)
4358 		goto free_nm;
4359 
4360 	/* get an inode for node space */
4361 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
4362 	if (IS_ERR(sbi->node_inode)) {
4363 		f2fs_err(sbi, "Failed to read node inode");
4364 		err = PTR_ERR(sbi->node_inode);
4365 		goto free_stats;
4366 	}
4367 
4368 	/* read root inode and dentry */
4369 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
4370 	if (IS_ERR(root)) {
4371 		f2fs_err(sbi, "Failed to read root inode");
4372 		err = PTR_ERR(root);
4373 		goto free_node_inode;
4374 	}
4375 	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
4376 			!root->i_size || !root->i_nlink) {
4377 		iput(root);
4378 		err = -EINVAL;
4379 		goto free_node_inode;
4380 	}
4381 
4382 	sb->s_root = d_make_root(root); /* allocate root dentry */
4383 	if (!sb->s_root) {
4384 		err = -ENOMEM;
4385 		goto free_node_inode;
4386 	}
4387 
4388 	err = f2fs_init_compress_inode(sbi);
4389 	if (err)
4390 		goto free_root_inode;
4391 
4392 	err = f2fs_register_sysfs(sbi);
4393 	if (err)
4394 		goto free_compress_inode;
4395 
4396 #ifdef CONFIG_QUOTA
4397 	/* Enable quota usage during mount */
4398 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
4399 		err = f2fs_enable_quotas(sb);
4400 		if (err)
4401 			f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
4402 	}
4403 #endif
4404 	/* if there are any orphan inodes, free them */
4405 	err = f2fs_recover_orphan_inodes(sbi);
4406 	if (err)
4407 		goto free_meta;
4408 
4409 	if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
4410 		goto reset_checkpoint;
4411 
4412 	/* recover fsynced data */
4413 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
4414 			!test_opt(sbi, NORECOVERY)) {
4415 		/*
4416 		 * mount should be failed, when device has readonly mode, and
4417 		 * previous checkpoint was not done by clean system shutdown.
4418 		 */
4419 		if (f2fs_hw_is_readonly(sbi)) {
4420 			if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4421 				err = f2fs_recover_fsync_data(sbi, true);
4422 				if (err > 0) {
4423 					err = -EROFS;
4424 					f2fs_err(sbi, "Need to recover fsync data, but "
4425 						"write access unavailable, please try "
4426 						"mount w/ disable_roll_forward or norecovery");
4427 				}
4428 				if (err < 0)
4429 					goto free_meta;
4430 			}
4431 			f2fs_info(sbi, "write access unavailable, skipping recovery");
4432 			goto reset_checkpoint;
4433 		}
4434 
4435 		if (need_fsck)
4436 			set_sbi_flag(sbi, SBI_NEED_FSCK);
4437 
4438 		if (skip_recovery)
4439 			goto reset_checkpoint;
4440 
4441 		err = f2fs_recover_fsync_data(sbi, false);
4442 		if (err < 0) {
4443 			if (err != -ENOMEM)
4444 				skip_recovery = true;
4445 			need_fsck = true;
4446 			f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
4447 				 err);
4448 			goto free_meta;
4449 		}
4450 	} else {
4451 		err = f2fs_recover_fsync_data(sbi, true);
4452 
4453 		if (!f2fs_readonly(sb) && err > 0) {
4454 			err = -EINVAL;
4455 			f2fs_err(sbi, "Need to recover fsync data");
4456 			goto free_meta;
4457 		}
4458 	}
4459 
4460 	/*
4461 	 * If the f2fs is not readonly and fsync data recovery succeeds,
4462 	 * check zoned block devices' write pointer consistency.
4463 	 */
4464 	if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
4465 		err = f2fs_check_write_pointer(sbi);
4466 		if (err)
4467 			goto free_meta;
4468 	}
4469 
4470 reset_checkpoint:
4471 	f2fs_init_inmem_curseg(sbi);
4472 
4473 	/* f2fs_recover_fsync_data() cleared this already */
4474 	clear_sbi_flag(sbi, SBI_POR_DOING);
4475 
4476 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
4477 		err = f2fs_disable_checkpoint(sbi);
4478 		if (err)
4479 			goto sync_free_meta;
4480 	} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
4481 		f2fs_enable_checkpoint(sbi);
4482 	}
4483 
4484 	/*
4485 	 * If filesystem is not mounted as read-only then
4486 	 * do start the gc_thread.
4487 	 */
4488 	if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF ||
4489 		test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) {
4490 		/* After POR, we can run background GC thread.*/
4491 		err = f2fs_start_gc_thread(sbi);
4492 		if (err)
4493 			goto sync_free_meta;
4494 	}
4495 	kvfree(options);
4496 
4497 	/* recover broken superblock */
4498 	if (recovery) {
4499 		err = f2fs_commit_super(sbi, true);
4500 		f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
4501 			  sbi->valid_super_block ? 1 : 2, err);
4502 	}
4503 
4504 	f2fs_join_shrinker(sbi);
4505 
4506 	f2fs_tuning_parameters(sbi);
4507 
4508 	f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
4509 		    cur_cp_version(F2FS_CKPT(sbi)));
4510 	f2fs_update_time(sbi, CP_TIME);
4511 	f2fs_update_time(sbi, REQ_TIME);
4512 	clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
4513 	return 0;
4514 
4515 sync_free_meta:
4516 	/* safe to flush all the data */
4517 	sync_filesystem(sbi->sb);
4518 	retry_cnt = 0;
4519 
4520 free_meta:
4521 #ifdef CONFIG_QUOTA
4522 	f2fs_truncate_quota_inode_pages(sb);
4523 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
4524 		f2fs_quota_off_umount(sbi->sb);
4525 #endif
4526 	/*
4527 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
4528 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
4529 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
4530 	 * falls into an infinite loop in f2fs_sync_meta_pages().
4531 	 */
4532 	truncate_inode_pages_final(META_MAPPING(sbi));
4533 	/* evict some inodes being cached by GC */
4534 	evict_inodes(sb);
4535 	f2fs_unregister_sysfs(sbi);
4536 free_compress_inode:
4537 	f2fs_destroy_compress_inode(sbi);
4538 free_root_inode:
4539 	dput(sb->s_root);
4540 	sb->s_root = NULL;
4541 free_node_inode:
4542 	f2fs_release_ino_entry(sbi, true);
4543 	truncate_inode_pages_final(NODE_MAPPING(sbi));
4544 	iput(sbi->node_inode);
4545 	sbi->node_inode = NULL;
4546 free_stats:
4547 	f2fs_destroy_stats(sbi);
4548 free_nm:
4549 	/* stop discard thread before destroying node manager */
4550 	f2fs_stop_discard_thread(sbi);
4551 	f2fs_destroy_node_manager(sbi);
4552 free_sm:
4553 	f2fs_destroy_segment_manager(sbi);
4554 stop_ckpt_thread:
4555 	f2fs_stop_ckpt_thread(sbi);
4556 	f2fs_destroy_post_read_wq(sbi);
4557 free_devices:
4558 	destroy_device_list(sbi);
4559 	kvfree(sbi->ckpt);
4560 free_meta_inode:
4561 	make_bad_inode(sbi->meta_inode);
4562 	iput(sbi->meta_inode);
4563 	sbi->meta_inode = NULL;
4564 free_page_array_cache:
4565 	f2fs_destroy_page_array_cache(sbi);
4566 free_xattr_cache:
4567 	f2fs_destroy_xattr_caches(sbi);
4568 free_io_dummy:
4569 	mempool_destroy(sbi->write_io_dummy);
4570 free_percpu:
4571 	destroy_percpu_info(sbi);
4572 free_iostat:
4573 	f2fs_destroy_iostat(sbi);
4574 free_bio_info:
4575 	for (i = 0; i < NR_PAGE_TYPE; i++)
4576 		kvfree(sbi->write_io[i]);
4577 
4578 #if IS_ENABLED(CONFIG_UNICODE)
4579 	utf8_unload(sb->s_encoding);
4580 	sb->s_encoding = NULL;
4581 #endif
4582 free_options:
4583 #ifdef CONFIG_QUOTA
4584 	for (i = 0; i < MAXQUOTAS; i++)
4585 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
4586 #endif
4587 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
4588 	kvfree(options);
4589 free_sb_buf:
4590 	kfree(raw_super);
4591 free_sbi:
4592 	if (sbi->s_chksum_driver)
4593 		crypto_free_shash(sbi->s_chksum_driver);
4594 	kfree(sbi);
4595 
4596 	/* give only one another chance */
4597 	if (retry_cnt > 0 && skip_recovery) {
4598 		retry_cnt--;
4599 		shrink_dcache_sb(sb);
4600 		goto try_onemore;
4601 	}
4602 	return err;
4603 }
4604 
4605 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
4606 			const char *dev_name, void *data)
4607 {
4608 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
4609 }
4610 
4611 static void kill_f2fs_super(struct super_block *sb)
4612 {
4613 	if (sb->s_root) {
4614 		struct f2fs_sb_info *sbi = F2FS_SB(sb);
4615 
4616 		set_sbi_flag(sbi, SBI_IS_CLOSE);
4617 		f2fs_stop_gc_thread(sbi);
4618 		f2fs_stop_discard_thread(sbi);
4619 
4620 #ifdef CONFIG_F2FS_FS_COMPRESSION
4621 		/*
4622 		 * latter evict_inode() can bypass checking and invalidating
4623 		 * compress inode cache.
4624 		 */
4625 		if (test_opt(sbi, COMPRESS_CACHE))
4626 			truncate_inode_pages_final(COMPRESS_MAPPING(sbi));
4627 #endif
4628 
4629 		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
4630 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4631 			struct cp_control cpc = {
4632 				.reason = CP_UMOUNT,
4633 			};
4634 			f2fs_write_checkpoint(sbi, &cpc);
4635 		}
4636 
4637 		if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
4638 			sb->s_flags &= ~SB_RDONLY;
4639 	}
4640 	kill_block_super(sb);
4641 }
4642 
4643 static struct file_system_type f2fs_fs_type = {
4644 	.owner		= THIS_MODULE,
4645 	.name		= "f2fs",
4646 	.mount		= f2fs_mount,
4647 	.kill_sb	= kill_f2fs_super,
4648 	.fs_flags	= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
4649 };
4650 MODULE_ALIAS_FS("f2fs");
4651 
4652 static int __init init_inodecache(void)
4653 {
4654 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
4655 			sizeof(struct f2fs_inode_info), 0,
4656 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
4657 	return f2fs_inode_cachep ? 0 : -ENOMEM;
4658 }
4659 
4660 static void destroy_inodecache(void)
4661 {
4662 	/*
4663 	 * Make sure all delayed rcu free inodes are flushed before we
4664 	 * destroy cache.
4665 	 */
4666 	rcu_barrier();
4667 	kmem_cache_destroy(f2fs_inode_cachep);
4668 }
4669 
4670 static int __init init_f2fs_fs(void)
4671 {
4672 	int err;
4673 
4674 	if (PAGE_SIZE != F2FS_BLKSIZE) {
4675 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
4676 				PAGE_SIZE, F2FS_BLKSIZE);
4677 		return -EINVAL;
4678 	}
4679 
4680 	err = init_inodecache();
4681 	if (err)
4682 		goto fail;
4683 	err = f2fs_create_node_manager_caches();
4684 	if (err)
4685 		goto free_inodecache;
4686 	err = f2fs_create_segment_manager_caches();
4687 	if (err)
4688 		goto free_node_manager_caches;
4689 	err = f2fs_create_checkpoint_caches();
4690 	if (err)
4691 		goto free_segment_manager_caches;
4692 	err = f2fs_create_recovery_cache();
4693 	if (err)
4694 		goto free_checkpoint_caches;
4695 	err = f2fs_create_extent_cache();
4696 	if (err)
4697 		goto free_recovery_cache;
4698 	err = f2fs_create_garbage_collection_cache();
4699 	if (err)
4700 		goto free_extent_cache;
4701 	err = f2fs_init_sysfs();
4702 	if (err)
4703 		goto free_garbage_collection_cache;
4704 	err = register_shrinker(&f2fs_shrinker_info, "f2fs-shrinker");
4705 	if (err)
4706 		goto free_sysfs;
4707 	err = register_filesystem(&f2fs_fs_type);
4708 	if (err)
4709 		goto free_shrinker;
4710 	f2fs_create_root_stats();
4711 	err = f2fs_init_post_read_processing();
4712 	if (err)
4713 		goto free_root_stats;
4714 	err = f2fs_init_iostat_processing();
4715 	if (err)
4716 		goto free_post_read;
4717 	err = f2fs_init_bio_entry_cache();
4718 	if (err)
4719 		goto free_iostat;
4720 	err = f2fs_init_bioset();
4721 	if (err)
4722 		goto free_bio_entry_cache;
4723 	err = f2fs_init_compress_mempool();
4724 	if (err)
4725 		goto free_bioset;
4726 	err = f2fs_init_compress_cache();
4727 	if (err)
4728 		goto free_compress_mempool;
4729 	err = f2fs_create_casefold_cache();
4730 	if (err)
4731 		goto free_compress_cache;
4732 	return 0;
4733 free_compress_cache:
4734 	f2fs_destroy_compress_cache();
4735 free_compress_mempool:
4736 	f2fs_destroy_compress_mempool();
4737 free_bioset:
4738 	f2fs_destroy_bioset();
4739 free_bio_entry_cache:
4740 	f2fs_destroy_bio_entry_cache();
4741 free_iostat:
4742 	f2fs_destroy_iostat_processing();
4743 free_post_read:
4744 	f2fs_destroy_post_read_processing();
4745 free_root_stats:
4746 	f2fs_destroy_root_stats();
4747 	unregister_filesystem(&f2fs_fs_type);
4748 free_shrinker:
4749 	unregister_shrinker(&f2fs_shrinker_info);
4750 free_sysfs:
4751 	f2fs_exit_sysfs();
4752 free_garbage_collection_cache:
4753 	f2fs_destroy_garbage_collection_cache();
4754 free_extent_cache:
4755 	f2fs_destroy_extent_cache();
4756 free_recovery_cache:
4757 	f2fs_destroy_recovery_cache();
4758 free_checkpoint_caches:
4759 	f2fs_destroy_checkpoint_caches();
4760 free_segment_manager_caches:
4761 	f2fs_destroy_segment_manager_caches();
4762 free_node_manager_caches:
4763 	f2fs_destroy_node_manager_caches();
4764 free_inodecache:
4765 	destroy_inodecache();
4766 fail:
4767 	return err;
4768 }
4769 
4770 static void __exit exit_f2fs_fs(void)
4771 {
4772 	f2fs_destroy_casefold_cache();
4773 	f2fs_destroy_compress_cache();
4774 	f2fs_destroy_compress_mempool();
4775 	f2fs_destroy_bioset();
4776 	f2fs_destroy_bio_entry_cache();
4777 	f2fs_destroy_iostat_processing();
4778 	f2fs_destroy_post_read_processing();
4779 	f2fs_destroy_root_stats();
4780 	unregister_filesystem(&f2fs_fs_type);
4781 	unregister_shrinker(&f2fs_shrinker_info);
4782 	f2fs_exit_sysfs();
4783 	f2fs_destroy_garbage_collection_cache();
4784 	f2fs_destroy_extent_cache();
4785 	f2fs_destroy_recovery_cache();
4786 	f2fs_destroy_checkpoint_caches();
4787 	f2fs_destroy_segment_manager_caches();
4788 	f2fs_destroy_node_manager_caches();
4789 	destroy_inodecache();
4790 }
4791 
4792 module_init(init_f2fs_fs)
4793 module_exit(exit_f2fs_fs)
4794 
4795 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
4796 MODULE_DESCRIPTION("Flash Friendly File System");
4797 MODULE_LICENSE("GPL");
4798 MODULE_SOFTDEP("pre: crc32");
4799 
4800