xref: /openbmc/linux/fs/f2fs/super.c (revision a13f2ef1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/statfs.h>
12 #include <linux/buffer_head.h>
13 #include <linux/backing-dev.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 #include <linux/unicode.h>
27 #include <linux/part_stat.h>
28 
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "gc.h"
34 #include "trace.h"
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/f2fs.h>
38 
39 static struct kmem_cache *f2fs_inode_cachep;
40 
41 #ifdef CONFIG_F2FS_FAULT_INJECTION
42 
43 const char *f2fs_fault_name[FAULT_MAX] = {
44 	[FAULT_KMALLOC]		= "kmalloc",
45 	[FAULT_KVMALLOC]	= "kvmalloc",
46 	[FAULT_PAGE_ALLOC]	= "page alloc",
47 	[FAULT_PAGE_GET]	= "page get",
48 	[FAULT_ALLOC_BIO]	= "alloc bio",
49 	[FAULT_ALLOC_NID]	= "alloc nid",
50 	[FAULT_ORPHAN]		= "orphan",
51 	[FAULT_BLOCK]		= "no more block",
52 	[FAULT_DIR_DEPTH]	= "too big dir depth",
53 	[FAULT_EVICT_INODE]	= "evict_inode fail",
54 	[FAULT_TRUNCATE]	= "truncate fail",
55 	[FAULT_READ_IO]		= "read IO error",
56 	[FAULT_CHECKPOINT]	= "checkpoint error",
57 	[FAULT_DISCARD]		= "discard error",
58 	[FAULT_WRITE_IO]	= "write IO error",
59 };
60 
61 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
62 							unsigned int type)
63 {
64 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
65 
66 	if (rate) {
67 		atomic_set(&ffi->inject_ops, 0);
68 		ffi->inject_rate = rate;
69 	}
70 
71 	if (type)
72 		ffi->inject_type = type;
73 
74 	if (!rate && !type)
75 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
76 }
77 #endif
78 
79 /* f2fs-wide shrinker description */
80 static struct shrinker f2fs_shrinker_info = {
81 	.scan_objects = f2fs_shrink_scan,
82 	.count_objects = f2fs_shrink_count,
83 	.seeks = DEFAULT_SEEKS,
84 };
85 
86 enum {
87 	Opt_gc_background,
88 	Opt_disable_roll_forward,
89 	Opt_norecovery,
90 	Opt_discard,
91 	Opt_nodiscard,
92 	Opt_noheap,
93 	Opt_heap,
94 	Opt_user_xattr,
95 	Opt_nouser_xattr,
96 	Opt_acl,
97 	Opt_noacl,
98 	Opt_active_logs,
99 	Opt_disable_ext_identify,
100 	Opt_inline_xattr,
101 	Opt_noinline_xattr,
102 	Opt_inline_xattr_size,
103 	Opt_inline_data,
104 	Opt_inline_dentry,
105 	Opt_noinline_dentry,
106 	Opt_flush_merge,
107 	Opt_noflush_merge,
108 	Opt_nobarrier,
109 	Opt_fastboot,
110 	Opt_extent_cache,
111 	Opt_noextent_cache,
112 	Opt_noinline_data,
113 	Opt_data_flush,
114 	Opt_reserve_root,
115 	Opt_resgid,
116 	Opt_resuid,
117 	Opt_mode,
118 	Opt_io_size_bits,
119 	Opt_fault_injection,
120 	Opt_fault_type,
121 	Opt_lazytime,
122 	Opt_nolazytime,
123 	Opt_quota,
124 	Opt_noquota,
125 	Opt_usrquota,
126 	Opt_grpquota,
127 	Opt_prjquota,
128 	Opt_usrjquota,
129 	Opt_grpjquota,
130 	Opt_prjjquota,
131 	Opt_offusrjquota,
132 	Opt_offgrpjquota,
133 	Opt_offprjjquota,
134 	Opt_jqfmt_vfsold,
135 	Opt_jqfmt_vfsv0,
136 	Opt_jqfmt_vfsv1,
137 	Opt_whint,
138 	Opt_alloc,
139 	Opt_fsync,
140 	Opt_test_dummy_encryption,
141 	Opt_checkpoint_disable,
142 	Opt_checkpoint_disable_cap,
143 	Opt_checkpoint_disable_cap_perc,
144 	Opt_checkpoint_enable,
145 	Opt_compress_algorithm,
146 	Opt_compress_log_size,
147 	Opt_compress_extension,
148 	Opt_err,
149 };
150 
151 static match_table_t f2fs_tokens = {
152 	{Opt_gc_background, "background_gc=%s"},
153 	{Opt_disable_roll_forward, "disable_roll_forward"},
154 	{Opt_norecovery, "norecovery"},
155 	{Opt_discard, "discard"},
156 	{Opt_nodiscard, "nodiscard"},
157 	{Opt_noheap, "no_heap"},
158 	{Opt_heap, "heap"},
159 	{Opt_user_xattr, "user_xattr"},
160 	{Opt_nouser_xattr, "nouser_xattr"},
161 	{Opt_acl, "acl"},
162 	{Opt_noacl, "noacl"},
163 	{Opt_active_logs, "active_logs=%u"},
164 	{Opt_disable_ext_identify, "disable_ext_identify"},
165 	{Opt_inline_xattr, "inline_xattr"},
166 	{Opt_noinline_xattr, "noinline_xattr"},
167 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
168 	{Opt_inline_data, "inline_data"},
169 	{Opt_inline_dentry, "inline_dentry"},
170 	{Opt_noinline_dentry, "noinline_dentry"},
171 	{Opt_flush_merge, "flush_merge"},
172 	{Opt_noflush_merge, "noflush_merge"},
173 	{Opt_nobarrier, "nobarrier"},
174 	{Opt_fastboot, "fastboot"},
175 	{Opt_extent_cache, "extent_cache"},
176 	{Opt_noextent_cache, "noextent_cache"},
177 	{Opt_noinline_data, "noinline_data"},
178 	{Opt_data_flush, "data_flush"},
179 	{Opt_reserve_root, "reserve_root=%u"},
180 	{Opt_resgid, "resgid=%u"},
181 	{Opt_resuid, "resuid=%u"},
182 	{Opt_mode, "mode=%s"},
183 	{Opt_io_size_bits, "io_bits=%u"},
184 	{Opt_fault_injection, "fault_injection=%u"},
185 	{Opt_fault_type, "fault_type=%u"},
186 	{Opt_lazytime, "lazytime"},
187 	{Opt_nolazytime, "nolazytime"},
188 	{Opt_quota, "quota"},
189 	{Opt_noquota, "noquota"},
190 	{Opt_usrquota, "usrquota"},
191 	{Opt_grpquota, "grpquota"},
192 	{Opt_prjquota, "prjquota"},
193 	{Opt_usrjquota, "usrjquota=%s"},
194 	{Opt_grpjquota, "grpjquota=%s"},
195 	{Opt_prjjquota, "prjjquota=%s"},
196 	{Opt_offusrjquota, "usrjquota="},
197 	{Opt_offgrpjquota, "grpjquota="},
198 	{Opt_offprjjquota, "prjjquota="},
199 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
200 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
201 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
202 	{Opt_whint, "whint_mode=%s"},
203 	{Opt_alloc, "alloc_mode=%s"},
204 	{Opt_fsync, "fsync_mode=%s"},
205 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
206 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
207 	{Opt_checkpoint_disable, "checkpoint=disable"},
208 	{Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
209 	{Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
210 	{Opt_checkpoint_enable, "checkpoint=enable"},
211 	{Opt_compress_algorithm, "compress_algorithm=%s"},
212 	{Opt_compress_log_size, "compress_log_size=%u"},
213 	{Opt_compress_extension, "compress_extension=%s"},
214 	{Opt_err, NULL},
215 };
216 
217 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
218 {
219 	struct va_format vaf;
220 	va_list args;
221 	int level;
222 
223 	va_start(args, fmt);
224 
225 	level = printk_get_level(fmt);
226 	vaf.fmt = printk_skip_level(fmt);
227 	vaf.va = &args;
228 	printk("%c%cF2FS-fs (%s): %pV\n",
229 	       KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
230 
231 	va_end(args);
232 }
233 
234 #ifdef CONFIG_UNICODE
235 static const struct f2fs_sb_encodings {
236 	__u16 magic;
237 	char *name;
238 	char *version;
239 } f2fs_sb_encoding_map[] = {
240 	{F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"},
241 };
242 
243 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb,
244 				 const struct f2fs_sb_encodings **encoding,
245 				 __u16 *flags)
246 {
247 	__u16 magic = le16_to_cpu(sb->s_encoding);
248 	int i;
249 
250 	for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
251 		if (magic == f2fs_sb_encoding_map[i].magic)
252 			break;
253 
254 	if (i >= ARRAY_SIZE(f2fs_sb_encoding_map))
255 		return -EINVAL;
256 
257 	*encoding = &f2fs_sb_encoding_map[i];
258 	*flags = le16_to_cpu(sb->s_encoding_flags);
259 
260 	return 0;
261 }
262 #endif
263 
264 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
265 {
266 	block_t limit = min((sbi->user_block_count << 1) / 1000,
267 			sbi->user_block_count - sbi->reserved_blocks);
268 
269 	/* limit is 0.2% */
270 	if (test_opt(sbi, RESERVE_ROOT) &&
271 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
272 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
273 		f2fs_info(sbi, "Reduce reserved blocks for root = %u",
274 			  F2FS_OPTION(sbi).root_reserved_blocks);
275 	}
276 	if (!test_opt(sbi, RESERVE_ROOT) &&
277 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
278 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
279 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
280 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
281 		f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
282 			  from_kuid_munged(&init_user_ns,
283 					   F2FS_OPTION(sbi).s_resuid),
284 			  from_kgid_munged(&init_user_ns,
285 					   F2FS_OPTION(sbi).s_resgid));
286 }
287 
288 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
289 {
290 	if (!F2FS_OPTION(sbi).unusable_cap_perc)
291 		return;
292 
293 	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
294 		F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
295 	else
296 		F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
297 					F2FS_OPTION(sbi).unusable_cap_perc;
298 
299 	f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
300 			F2FS_OPTION(sbi).unusable_cap,
301 			F2FS_OPTION(sbi).unusable_cap_perc);
302 }
303 
304 static void init_once(void *foo)
305 {
306 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
307 
308 	inode_init_once(&fi->vfs_inode);
309 }
310 
311 #ifdef CONFIG_QUOTA
312 static const char * const quotatypes[] = INITQFNAMES;
313 #define QTYPE2NAME(t) (quotatypes[t])
314 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
315 							substring_t *args)
316 {
317 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
318 	char *qname;
319 	int ret = -EINVAL;
320 
321 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
322 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
323 		return -EINVAL;
324 	}
325 	if (f2fs_sb_has_quota_ino(sbi)) {
326 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
327 		return 0;
328 	}
329 
330 	qname = match_strdup(args);
331 	if (!qname) {
332 		f2fs_err(sbi, "Not enough memory for storing quotafile name");
333 		return -ENOMEM;
334 	}
335 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
336 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
337 			ret = 0;
338 		else
339 			f2fs_err(sbi, "%s quota file already specified",
340 				 QTYPE2NAME(qtype));
341 		goto errout;
342 	}
343 	if (strchr(qname, '/')) {
344 		f2fs_err(sbi, "quotafile must be on filesystem root");
345 		goto errout;
346 	}
347 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
348 	set_opt(sbi, QUOTA);
349 	return 0;
350 errout:
351 	kvfree(qname);
352 	return ret;
353 }
354 
355 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
356 {
357 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
358 
359 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
360 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
361 		return -EINVAL;
362 	}
363 	kvfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
364 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
365 	return 0;
366 }
367 
368 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
369 {
370 	/*
371 	 * We do the test below only for project quotas. 'usrquota' and
372 	 * 'grpquota' mount options are allowed even without quota feature
373 	 * to support legacy quotas in quota files.
374 	 */
375 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
376 		f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
377 		return -1;
378 	}
379 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
380 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
381 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
382 		if (test_opt(sbi, USRQUOTA) &&
383 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
384 			clear_opt(sbi, USRQUOTA);
385 
386 		if (test_opt(sbi, GRPQUOTA) &&
387 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
388 			clear_opt(sbi, GRPQUOTA);
389 
390 		if (test_opt(sbi, PRJQUOTA) &&
391 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
392 			clear_opt(sbi, PRJQUOTA);
393 
394 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
395 				test_opt(sbi, PRJQUOTA)) {
396 			f2fs_err(sbi, "old and new quota format mixing");
397 			return -1;
398 		}
399 
400 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
401 			f2fs_err(sbi, "journaled quota format not specified");
402 			return -1;
403 		}
404 	}
405 
406 	if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
407 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
408 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
409 	}
410 	return 0;
411 }
412 #endif
413 
414 static int f2fs_set_test_dummy_encryption(struct super_block *sb,
415 					  const char *opt,
416 					  const substring_t *arg,
417 					  bool is_remount)
418 {
419 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
420 #ifdef CONFIG_FS_ENCRYPTION
421 	int err;
422 
423 	if (!f2fs_sb_has_encrypt(sbi)) {
424 		f2fs_err(sbi, "Encrypt feature is off");
425 		return -EINVAL;
426 	}
427 
428 	/*
429 	 * This mount option is just for testing, and it's not worthwhile to
430 	 * implement the extra complexity (e.g. RCU protection) that would be
431 	 * needed to allow it to be set or changed during remount.  We do allow
432 	 * it to be specified during remount, but only if there is no change.
433 	 */
434 	if (is_remount && !F2FS_OPTION(sbi).dummy_enc_ctx.ctx) {
435 		f2fs_warn(sbi, "Can't set test_dummy_encryption on remount");
436 		return -EINVAL;
437 	}
438 	err = fscrypt_set_test_dummy_encryption(
439 		sb, arg, &F2FS_OPTION(sbi).dummy_enc_ctx);
440 	if (err) {
441 		if (err == -EEXIST)
442 			f2fs_warn(sbi,
443 				  "Can't change test_dummy_encryption on remount");
444 		else if (err == -EINVAL)
445 			f2fs_warn(sbi, "Value of option \"%s\" is unrecognized",
446 				  opt);
447 		else
448 			f2fs_warn(sbi, "Error processing option \"%s\" [%d]",
449 				  opt, err);
450 		return -EINVAL;
451 	}
452 	f2fs_warn(sbi, "Test dummy encryption mode enabled");
453 #else
454 	f2fs_warn(sbi, "Test dummy encryption mount option ignored");
455 #endif
456 	return 0;
457 }
458 
459 static int parse_options(struct super_block *sb, char *options, bool is_remount)
460 {
461 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
462 	substring_t args[MAX_OPT_ARGS];
463 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
464 	char *p, *name;
465 	int arg = 0, ext_cnt;
466 	kuid_t uid;
467 	kgid_t gid;
468 	int ret;
469 
470 	if (!options)
471 		return 0;
472 
473 	while ((p = strsep(&options, ",")) != NULL) {
474 		int token;
475 		if (!*p)
476 			continue;
477 		/*
478 		 * Initialize args struct so we know whether arg was
479 		 * found; some options take optional arguments.
480 		 */
481 		args[0].to = args[0].from = NULL;
482 		token = match_token(p, f2fs_tokens, args);
483 
484 		switch (token) {
485 		case Opt_gc_background:
486 			name = match_strdup(&args[0]);
487 
488 			if (!name)
489 				return -ENOMEM;
490 			if (!strcmp(name, "on")) {
491 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
492 			} else if (!strcmp(name, "off")) {
493 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF;
494 			} else if (!strcmp(name, "sync")) {
495 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC;
496 			} else {
497 				kvfree(name);
498 				return -EINVAL;
499 			}
500 			kvfree(name);
501 			break;
502 		case Opt_disable_roll_forward:
503 			set_opt(sbi, DISABLE_ROLL_FORWARD);
504 			break;
505 		case Opt_norecovery:
506 			/* this option mounts f2fs with ro */
507 			set_opt(sbi, NORECOVERY);
508 			if (!f2fs_readonly(sb))
509 				return -EINVAL;
510 			break;
511 		case Opt_discard:
512 			set_opt(sbi, DISCARD);
513 			break;
514 		case Opt_nodiscard:
515 			if (f2fs_sb_has_blkzoned(sbi)) {
516 				f2fs_warn(sbi, "discard is required for zoned block devices");
517 				return -EINVAL;
518 			}
519 			clear_opt(sbi, DISCARD);
520 			break;
521 		case Opt_noheap:
522 			set_opt(sbi, NOHEAP);
523 			break;
524 		case Opt_heap:
525 			clear_opt(sbi, NOHEAP);
526 			break;
527 #ifdef CONFIG_F2FS_FS_XATTR
528 		case Opt_user_xattr:
529 			set_opt(sbi, XATTR_USER);
530 			break;
531 		case Opt_nouser_xattr:
532 			clear_opt(sbi, XATTR_USER);
533 			break;
534 		case Opt_inline_xattr:
535 			set_opt(sbi, INLINE_XATTR);
536 			break;
537 		case Opt_noinline_xattr:
538 			clear_opt(sbi, INLINE_XATTR);
539 			break;
540 		case Opt_inline_xattr_size:
541 			if (args->from && match_int(args, &arg))
542 				return -EINVAL;
543 			set_opt(sbi, INLINE_XATTR_SIZE);
544 			F2FS_OPTION(sbi).inline_xattr_size = arg;
545 			break;
546 #else
547 		case Opt_user_xattr:
548 			f2fs_info(sbi, "user_xattr options not supported");
549 			break;
550 		case Opt_nouser_xattr:
551 			f2fs_info(sbi, "nouser_xattr options not supported");
552 			break;
553 		case Opt_inline_xattr:
554 			f2fs_info(sbi, "inline_xattr options not supported");
555 			break;
556 		case Opt_noinline_xattr:
557 			f2fs_info(sbi, "noinline_xattr options not supported");
558 			break;
559 #endif
560 #ifdef CONFIG_F2FS_FS_POSIX_ACL
561 		case Opt_acl:
562 			set_opt(sbi, POSIX_ACL);
563 			break;
564 		case Opt_noacl:
565 			clear_opt(sbi, POSIX_ACL);
566 			break;
567 #else
568 		case Opt_acl:
569 			f2fs_info(sbi, "acl options not supported");
570 			break;
571 		case Opt_noacl:
572 			f2fs_info(sbi, "noacl options not supported");
573 			break;
574 #endif
575 		case Opt_active_logs:
576 			if (args->from && match_int(args, &arg))
577 				return -EINVAL;
578 			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
579 				return -EINVAL;
580 			F2FS_OPTION(sbi).active_logs = arg;
581 			break;
582 		case Opt_disable_ext_identify:
583 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
584 			break;
585 		case Opt_inline_data:
586 			set_opt(sbi, INLINE_DATA);
587 			break;
588 		case Opt_inline_dentry:
589 			set_opt(sbi, INLINE_DENTRY);
590 			break;
591 		case Opt_noinline_dentry:
592 			clear_opt(sbi, INLINE_DENTRY);
593 			break;
594 		case Opt_flush_merge:
595 			set_opt(sbi, FLUSH_MERGE);
596 			break;
597 		case Opt_noflush_merge:
598 			clear_opt(sbi, FLUSH_MERGE);
599 			break;
600 		case Opt_nobarrier:
601 			set_opt(sbi, NOBARRIER);
602 			break;
603 		case Opt_fastboot:
604 			set_opt(sbi, FASTBOOT);
605 			break;
606 		case Opt_extent_cache:
607 			set_opt(sbi, EXTENT_CACHE);
608 			break;
609 		case Opt_noextent_cache:
610 			clear_opt(sbi, EXTENT_CACHE);
611 			break;
612 		case Opt_noinline_data:
613 			clear_opt(sbi, INLINE_DATA);
614 			break;
615 		case Opt_data_flush:
616 			set_opt(sbi, DATA_FLUSH);
617 			break;
618 		case Opt_reserve_root:
619 			if (args->from && match_int(args, &arg))
620 				return -EINVAL;
621 			if (test_opt(sbi, RESERVE_ROOT)) {
622 				f2fs_info(sbi, "Preserve previous reserve_root=%u",
623 					  F2FS_OPTION(sbi).root_reserved_blocks);
624 			} else {
625 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
626 				set_opt(sbi, RESERVE_ROOT);
627 			}
628 			break;
629 		case Opt_resuid:
630 			if (args->from && match_int(args, &arg))
631 				return -EINVAL;
632 			uid = make_kuid(current_user_ns(), arg);
633 			if (!uid_valid(uid)) {
634 				f2fs_err(sbi, "Invalid uid value %d", arg);
635 				return -EINVAL;
636 			}
637 			F2FS_OPTION(sbi).s_resuid = uid;
638 			break;
639 		case Opt_resgid:
640 			if (args->from && match_int(args, &arg))
641 				return -EINVAL;
642 			gid = make_kgid(current_user_ns(), arg);
643 			if (!gid_valid(gid)) {
644 				f2fs_err(sbi, "Invalid gid value %d", arg);
645 				return -EINVAL;
646 			}
647 			F2FS_OPTION(sbi).s_resgid = gid;
648 			break;
649 		case Opt_mode:
650 			name = match_strdup(&args[0]);
651 
652 			if (!name)
653 				return -ENOMEM;
654 			if (!strcmp(name, "adaptive")) {
655 				if (f2fs_sb_has_blkzoned(sbi)) {
656 					f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
657 					kvfree(name);
658 					return -EINVAL;
659 				}
660 				F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
661 			} else if (!strcmp(name, "lfs")) {
662 				F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
663 			} else {
664 				kvfree(name);
665 				return -EINVAL;
666 			}
667 			kvfree(name);
668 			break;
669 		case Opt_io_size_bits:
670 			if (args->from && match_int(args, &arg))
671 				return -EINVAL;
672 			if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) {
673 				f2fs_warn(sbi, "Not support %d, larger than %d",
674 					  1 << arg, BIO_MAX_PAGES);
675 				return -EINVAL;
676 			}
677 			F2FS_OPTION(sbi).write_io_size_bits = arg;
678 			break;
679 #ifdef CONFIG_F2FS_FAULT_INJECTION
680 		case Opt_fault_injection:
681 			if (args->from && match_int(args, &arg))
682 				return -EINVAL;
683 			f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
684 			set_opt(sbi, FAULT_INJECTION);
685 			break;
686 
687 		case Opt_fault_type:
688 			if (args->from && match_int(args, &arg))
689 				return -EINVAL;
690 			f2fs_build_fault_attr(sbi, 0, arg);
691 			set_opt(sbi, FAULT_INJECTION);
692 			break;
693 #else
694 		case Opt_fault_injection:
695 			f2fs_info(sbi, "fault_injection options not supported");
696 			break;
697 
698 		case Opt_fault_type:
699 			f2fs_info(sbi, "fault_type options not supported");
700 			break;
701 #endif
702 		case Opt_lazytime:
703 			sb->s_flags |= SB_LAZYTIME;
704 			break;
705 		case Opt_nolazytime:
706 			sb->s_flags &= ~SB_LAZYTIME;
707 			break;
708 #ifdef CONFIG_QUOTA
709 		case Opt_quota:
710 		case Opt_usrquota:
711 			set_opt(sbi, USRQUOTA);
712 			break;
713 		case Opt_grpquota:
714 			set_opt(sbi, GRPQUOTA);
715 			break;
716 		case Opt_prjquota:
717 			set_opt(sbi, PRJQUOTA);
718 			break;
719 		case Opt_usrjquota:
720 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
721 			if (ret)
722 				return ret;
723 			break;
724 		case Opt_grpjquota:
725 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
726 			if (ret)
727 				return ret;
728 			break;
729 		case Opt_prjjquota:
730 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
731 			if (ret)
732 				return ret;
733 			break;
734 		case Opt_offusrjquota:
735 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
736 			if (ret)
737 				return ret;
738 			break;
739 		case Opt_offgrpjquota:
740 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
741 			if (ret)
742 				return ret;
743 			break;
744 		case Opt_offprjjquota:
745 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
746 			if (ret)
747 				return ret;
748 			break;
749 		case Opt_jqfmt_vfsold:
750 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
751 			break;
752 		case Opt_jqfmt_vfsv0:
753 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
754 			break;
755 		case Opt_jqfmt_vfsv1:
756 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
757 			break;
758 		case Opt_noquota:
759 			clear_opt(sbi, QUOTA);
760 			clear_opt(sbi, USRQUOTA);
761 			clear_opt(sbi, GRPQUOTA);
762 			clear_opt(sbi, PRJQUOTA);
763 			break;
764 #else
765 		case Opt_quota:
766 		case Opt_usrquota:
767 		case Opt_grpquota:
768 		case Opt_prjquota:
769 		case Opt_usrjquota:
770 		case Opt_grpjquota:
771 		case Opt_prjjquota:
772 		case Opt_offusrjquota:
773 		case Opt_offgrpjquota:
774 		case Opt_offprjjquota:
775 		case Opt_jqfmt_vfsold:
776 		case Opt_jqfmt_vfsv0:
777 		case Opt_jqfmt_vfsv1:
778 		case Opt_noquota:
779 			f2fs_info(sbi, "quota operations not supported");
780 			break;
781 #endif
782 		case Opt_whint:
783 			name = match_strdup(&args[0]);
784 			if (!name)
785 				return -ENOMEM;
786 			if (!strcmp(name, "user-based")) {
787 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
788 			} else if (!strcmp(name, "off")) {
789 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
790 			} else if (!strcmp(name, "fs-based")) {
791 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
792 			} else {
793 				kvfree(name);
794 				return -EINVAL;
795 			}
796 			kvfree(name);
797 			break;
798 		case Opt_alloc:
799 			name = match_strdup(&args[0]);
800 			if (!name)
801 				return -ENOMEM;
802 
803 			if (!strcmp(name, "default")) {
804 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
805 			} else if (!strcmp(name, "reuse")) {
806 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
807 			} else {
808 				kvfree(name);
809 				return -EINVAL;
810 			}
811 			kvfree(name);
812 			break;
813 		case Opt_fsync:
814 			name = match_strdup(&args[0]);
815 			if (!name)
816 				return -ENOMEM;
817 			if (!strcmp(name, "posix")) {
818 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
819 			} else if (!strcmp(name, "strict")) {
820 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
821 			} else if (!strcmp(name, "nobarrier")) {
822 				F2FS_OPTION(sbi).fsync_mode =
823 							FSYNC_MODE_NOBARRIER;
824 			} else {
825 				kvfree(name);
826 				return -EINVAL;
827 			}
828 			kvfree(name);
829 			break;
830 		case Opt_test_dummy_encryption:
831 			ret = f2fs_set_test_dummy_encryption(sb, p, &args[0],
832 							     is_remount);
833 			if (ret)
834 				return ret;
835 			break;
836 		case Opt_checkpoint_disable_cap_perc:
837 			if (args->from && match_int(args, &arg))
838 				return -EINVAL;
839 			if (arg < 0 || arg > 100)
840 				return -EINVAL;
841 			F2FS_OPTION(sbi).unusable_cap_perc = arg;
842 			set_opt(sbi, DISABLE_CHECKPOINT);
843 			break;
844 		case Opt_checkpoint_disable_cap:
845 			if (args->from && match_int(args, &arg))
846 				return -EINVAL;
847 			F2FS_OPTION(sbi).unusable_cap = arg;
848 			set_opt(sbi, DISABLE_CHECKPOINT);
849 			break;
850 		case Opt_checkpoint_disable:
851 			set_opt(sbi, DISABLE_CHECKPOINT);
852 			break;
853 		case Opt_checkpoint_enable:
854 			clear_opt(sbi, DISABLE_CHECKPOINT);
855 			break;
856 		case Opt_compress_algorithm:
857 			if (!f2fs_sb_has_compression(sbi)) {
858 				f2fs_err(sbi, "Compression feature if off");
859 				return -EINVAL;
860 			}
861 			name = match_strdup(&args[0]);
862 			if (!name)
863 				return -ENOMEM;
864 			if (!strcmp(name, "lzo")) {
865 				F2FS_OPTION(sbi).compress_algorithm =
866 								COMPRESS_LZO;
867 			} else if (!strcmp(name, "lz4")) {
868 				F2FS_OPTION(sbi).compress_algorithm =
869 								COMPRESS_LZ4;
870 			} else if (!strcmp(name, "zstd")) {
871 				F2FS_OPTION(sbi).compress_algorithm =
872 								COMPRESS_ZSTD;
873 			} else if (!strcmp(name, "lzo-rle")) {
874 				F2FS_OPTION(sbi).compress_algorithm =
875 								COMPRESS_LZORLE;
876 			} else {
877 				kfree(name);
878 				return -EINVAL;
879 			}
880 			kfree(name);
881 			break;
882 		case Opt_compress_log_size:
883 			if (!f2fs_sb_has_compression(sbi)) {
884 				f2fs_err(sbi, "Compression feature is off");
885 				return -EINVAL;
886 			}
887 			if (args->from && match_int(args, &arg))
888 				return -EINVAL;
889 			if (arg < MIN_COMPRESS_LOG_SIZE ||
890 				arg > MAX_COMPRESS_LOG_SIZE) {
891 				f2fs_err(sbi,
892 					"Compress cluster log size is out of range");
893 				return -EINVAL;
894 			}
895 			F2FS_OPTION(sbi).compress_log_size = arg;
896 			break;
897 		case Opt_compress_extension:
898 			if (!f2fs_sb_has_compression(sbi)) {
899 				f2fs_err(sbi, "Compression feature is off");
900 				return -EINVAL;
901 			}
902 			name = match_strdup(&args[0]);
903 			if (!name)
904 				return -ENOMEM;
905 
906 			ext = F2FS_OPTION(sbi).extensions;
907 			ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
908 
909 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
910 				ext_cnt >= COMPRESS_EXT_NUM) {
911 				f2fs_err(sbi,
912 					"invalid extension length/number");
913 				kfree(name);
914 				return -EINVAL;
915 			}
916 
917 			strcpy(ext[ext_cnt], name);
918 			F2FS_OPTION(sbi).compress_ext_cnt++;
919 			kfree(name);
920 			break;
921 		default:
922 			f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
923 				 p);
924 			return -EINVAL;
925 		}
926 	}
927 #ifdef CONFIG_QUOTA
928 	if (f2fs_check_quota_options(sbi))
929 		return -EINVAL;
930 #else
931 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
932 		f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
933 		return -EINVAL;
934 	}
935 	if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
936 		f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
937 		return -EINVAL;
938 	}
939 #endif
940 #ifndef CONFIG_UNICODE
941 	if (f2fs_sb_has_casefold(sbi)) {
942 		f2fs_err(sbi,
943 			"Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
944 		return -EINVAL;
945 	}
946 #endif
947 
948 	if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) {
949 		f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
950 			 F2FS_IO_SIZE_KB(sbi));
951 		return -EINVAL;
952 	}
953 
954 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
955 		int min_size, max_size;
956 
957 		if (!f2fs_sb_has_extra_attr(sbi) ||
958 			!f2fs_sb_has_flexible_inline_xattr(sbi)) {
959 			f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
960 			return -EINVAL;
961 		}
962 		if (!test_opt(sbi, INLINE_XATTR)) {
963 			f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
964 			return -EINVAL;
965 		}
966 
967 		min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
968 		max_size = MAX_INLINE_XATTR_SIZE;
969 
970 		if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
971 				F2FS_OPTION(sbi).inline_xattr_size > max_size) {
972 			f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
973 				 min_size, max_size);
974 			return -EINVAL;
975 		}
976 	}
977 
978 	if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) {
979 		f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n");
980 		return -EINVAL;
981 	}
982 
983 	/* Not pass down write hints if the number of active logs is lesser
984 	 * than NR_CURSEG_TYPE.
985 	 */
986 	if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
987 		F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
988 	return 0;
989 }
990 
991 static struct inode *f2fs_alloc_inode(struct super_block *sb)
992 {
993 	struct f2fs_inode_info *fi;
994 
995 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
996 	if (!fi)
997 		return NULL;
998 
999 	init_once((void *) fi);
1000 
1001 	/* Initialize f2fs-specific inode info */
1002 	atomic_set(&fi->dirty_pages, 0);
1003 	init_rwsem(&fi->i_sem);
1004 	spin_lock_init(&fi->i_size_lock);
1005 	INIT_LIST_HEAD(&fi->dirty_list);
1006 	INIT_LIST_HEAD(&fi->gdirty_list);
1007 	INIT_LIST_HEAD(&fi->inmem_ilist);
1008 	INIT_LIST_HEAD(&fi->inmem_pages);
1009 	mutex_init(&fi->inmem_lock);
1010 	init_rwsem(&fi->i_gc_rwsem[READ]);
1011 	init_rwsem(&fi->i_gc_rwsem[WRITE]);
1012 	init_rwsem(&fi->i_mmap_sem);
1013 	init_rwsem(&fi->i_xattr_sem);
1014 
1015 	/* Will be used by directory only */
1016 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
1017 
1018 	return &fi->vfs_inode;
1019 }
1020 
1021 static int f2fs_drop_inode(struct inode *inode)
1022 {
1023 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1024 	int ret;
1025 
1026 	/*
1027 	 * during filesystem shutdown, if checkpoint is disabled,
1028 	 * drop useless meta/node dirty pages.
1029 	 */
1030 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1031 		if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1032 			inode->i_ino == F2FS_META_INO(sbi)) {
1033 			trace_f2fs_drop_inode(inode, 1);
1034 			return 1;
1035 		}
1036 	}
1037 
1038 	/*
1039 	 * This is to avoid a deadlock condition like below.
1040 	 * writeback_single_inode(inode)
1041 	 *  - f2fs_write_data_page
1042 	 *    - f2fs_gc -> iput -> evict
1043 	 *       - inode_wait_for_writeback(inode)
1044 	 */
1045 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1046 		if (!inode->i_nlink && !is_bad_inode(inode)) {
1047 			/* to avoid evict_inode call simultaneously */
1048 			atomic_inc(&inode->i_count);
1049 			spin_unlock(&inode->i_lock);
1050 
1051 			/* some remained atomic pages should discarded */
1052 			if (f2fs_is_atomic_file(inode))
1053 				f2fs_drop_inmem_pages(inode);
1054 
1055 			/* should remain fi->extent_tree for writepage */
1056 			f2fs_destroy_extent_node(inode);
1057 
1058 			sb_start_intwrite(inode->i_sb);
1059 			f2fs_i_size_write(inode, 0);
1060 
1061 			f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1062 					inode, NULL, 0, DATA);
1063 			truncate_inode_pages_final(inode->i_mapping);
1064 
1065 			if (F2FS_HAS_BLOCKS(inode))
1066 				f2fs_truncate(inode);
1067 
1068 			sb_end_intwrite(inode->i_sb);
1069 
1070 			spin_lock(&inode->i_lock);
1071 			atomic_dec(&inode->i_count);
1072 		}
1073 		trace_f2fs_drop_inode(inode, 0);
1074 		return 0;
1075 	}
1076 	ret = generic_drop_inode(inode);
1077 	if (!ret)
1078 		ret = fscrypt_drop_inode(inode);
1079 	trace_f2fs_drop_inode(inode, ret);
1080 	return ret;
1081 }
1082 
1083 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1084 {
1085 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1086 	int ret = 0;
1087 
1088 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1089 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1090 		ret = 1;
1091 	} else {
1092 		set_inode_flag(inode, FI_DIRTY_INODE);
1093 		stat_inc_dirty_inode(sbi, DIRTY_META);
1094 	}
1095 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1096 		list_add_tail(&F2FS_I(inode)->gdirty_list,
1097 				&sbi->inode_list[DIRTY_META]);
1098 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
1099 	}
1100 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1101 	return ret;
1102 }
1103 
1104 void f2fs_inode_synced(struct inode *inode)
1105 {
1106 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1107 
1108 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1109 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1110 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1111 		return;
1112 	}
1113 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1114 		list_del_init(&F2FS_I(inode)->gdirty_list);
1115 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
1116 	}
1117 	clear_inode_flag(inode, FI_DIRTY_INODE);
1118 	clear_inode_flag(inode, FI_AUTO_RECOVER);
1119 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1120 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1121 }
1122 
1123 /*
1124  * f2fs_dirty_inode() is called from __mark_inode_dirty()
1125  *
1126  * We should call set_dirty_inode to write the dirty inode through write_inode.
1127  */
1128 static void f2fs_dirty_inode(struct inode *inode, int flags)
1129 {
1130 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1131 
1132 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1133 			inode->i_ino == F2FS_META_INO(sbi))
1134 		return;
1135 
1136 	if (flags == I_DIRTY_TIME)
1137 		return;
1138 
1139 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1140 		clear_inode_flag(inode, FI_AUTO_RECOVER);
1141 
1142 	f2fs_inode_dirtied(inode, false);
1143 }
1144 
1145 static void f2fs_free_inode(struct inode *inode)
1146 {
1147 	fscrypt_free_inode(inode);
1148 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1149 }
1150 
1151 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1152 {
1153 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
1154 	percpu_counter_destroy(&sbi->total_valid_inode_count);
1155 }
1156 
1157 static void destroy_device_list(struct f2fs_sb_info *sbi)
1158 {
1159 	int i;
1160 
1161 	for (i = 0; i < sbi->s_ndevs; i++) {
1162 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1163 #ifdef CONFIG_BLK_DEV_ZONED
1164 		kvfree(FDEV(i).blkz_seq);
1165 #endif
1166 	}
1167 	kvfree(sbi->devs);
1168 }
1169 
1170 static void f2fs_put_super(struct super_block *sb)
1171 {
1172 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1173 	int i;
1174 	bool dropped;
1175 
1176 	f2fs_quota_off_umount(sb);
1177 
1178 	/* prevent remaining shrinker jobs */
1179 	mutex_lock(&sbi->umount_mutex);
1180 
1181 	/*
1182 	 * We don't need to do checkpoint when superblock is clean.
1183 	 * But, the previous checkpoint was not done by umount, it needs to do
1184 	 * clean checkpoint again.
1185 	 */
1186 	if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1187 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1188 		struct cp_control cpc = {
1189 			.reason = CP_UMOUNT,
1190 		};
1191 		f2fs_write_checkpoint(sbi, &cpc);
1192 	}
1193 
1194 	/* be sure to wait for any on-going discard commands */
1195 	dropped = f2fs_issue_discard_timeout(sbi);
1196 
1197 	if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1198 					!sbi->discard_blks && !dropped) {
1199 		struct cp_control cpc = {
1200 			.reason = CP_UMOUNT | CP_TRIMMED,
1201 		};
1202 		f2fs_write_checkpoint(sbi, &cpc);
1203 	}
1204 
1205 	/*
1206 	 * normally superblock is clean, so we need to release this.
1207 	 * In addition, EIO will skip do checkpoint, we need this as well.
1208 	 */
1209 	f2fs_release_ino_entry(sbi, true);
1210 
1211 	f2fs_leave_shrinker(sbi);
1212 	mutex_unlock(&sbi->umount_mutex);
1213 
1214 	/* our cp_error case, we can wait for any writeback page */
1215 	f2fs_flush_merged_writes(sbi);
1216 
1217 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1218 
1219 	f2fs_bug_on(sbi, sbi->fsync_node_num);
1220 
1221 	iput(sbi->node_inode);
1222 	sbi->node_inode = NULL;
1223 
1224 	iput(sbi->meta_inode);
1225 	sbi->meta_inode = NULL;
1226 
1227 	/*
1228 	 * iput() can update stat information, if f2fs_write_checkpoint()
1229 	 * above failed with error.
1230 	 */
1231 	f2fs_destroy_stats(sbi);
1232 
1233 	/* destroy f2fs internal modules */
1234 	f2fs_destroy_node_manager(sbi);
1235 	f2fs_destroy_segment_manager(sbi);
1236 
1237 	f2fs_destroy_post_read_wq(sbi);
1238 
1239 	kvfree(sbi->ckpt);
1240 
1241 	f2fs_unregister_sysfs(sbi);
1242 
1243 	sb->s_fs_info = NULL;
1244 	if (sbi->s_chksum_driver)
1245 		crypto_free_shash(sbi->s_chksum_driver);
1246 	kvfree(sbi->raw_super);
1247 
1248 	destroy_device_list(sbi);
1249 	f2fs_destroy_xattr_caches(sbi);
1250 	mempool_destroy(sbi->write_io_dummy);
1251 #ifdef CONFIG_QUOTA
1252 	for (i = 0; i < MAXQUOTAS; i++)
1253 		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1254 #endif
1255 	fscrypt_free_dummy_context(&F2FS_OPTION(sbi).dummy_enc_ctx);
1256 	destroy_percpu_info(sbi);
1257 	for (i = 0; i < NR_PAGE_TYPE; i++)
1258 		kvfree(sbi->write_io[i]);
1259 #ifdef CONFIG_UNICODE
1260 	utf8_unload(sbi->s_encoding);
1261 #endif
1262 	kvfree(sbi);
1263 }
1264 
1265 int f2fs_sync_fs(struct super_block *sb, int sync)
1266 {
1267 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1268 	int err = 0;
1269 
1270 	if (unlikely(f2fs_cp_error(sbi)))
1271 		return 0;
1272 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1273 		return 0;
1274 
1275 	trace_f2fs_sync_fs(sb, sync);
1276 
1277 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1278 		return -EAGAIN;
1279 
1280 	if (sync) {
1281 		struct cp_control cpc;
1282 
1283 		cpc.reason = __get_cp_reason(sbi);
1284 
1285 		down_write(&sbi->gc_lock);
1286 		err = f2fs_write_checkpoint(sbi, &cpc);
1287 		up_write(&sbi->gc_lock);
1288 	}
1289 	f2fs_trace_ios(NULL, 1);
1290 
1291 	return err;
1292 }
1293 
1294 static int f2fs_freeze(struct super_block *sb)
1295 {
1296 	if (f2fs_readonly(sb))
1297 		return 0;
1298 
1299 	/* IO error happened before */
1300 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1301 		return -EIO;
1302 
1303 	/* must be clean, since sync_filesystem() was already called */
1304 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1305 		return -EINVAL;
1306 	return 0;
1307 }
1308 
1309 static int f2fs_unfreeze(struct super_block *sb)
1310 {
1311 	return 0;
1312 }
1313 
1314 #ifdef CONFIG_QUOTA
1315 static int f2fs_statfs_project(struct super_block *sb,
1316 				kprojid_t projid, struct kstatfs *buf)
1317 {
1318 	struct kqid qid;
1319 	struct dquot *dquot;
1320 	u64 limit;
1321 	u64 curblock;
1322 
1323 	qid = make_kqid_projid(projid);
1324 	dquot = dqget(sb, qid);
1325 	if (IS_ERR(dquot))
1326 		return PTR_ERR(dquot);
1327 	spin_lock(&dquot->dq_dqb_lock);
1328 
1329 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1330 					dquot->dq_dqb.dqb_bhardlimit);
1331 	if (limit)
1332 		limit >>= sb->s_blocksize_bits;
1333 
1334 	if (limit && buf->f_blocks > limit) {
1335 		curblock = (dquot->dq_dqb.dqb_curspace +
1336 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1337 		buf->f_blocks = limit;
1338 		buf->f_bfree = buf->f_bavail =
1339 			(buf->f_blocks > curblock) ?
1340 			 (buf->f_blocks - curblock) : 0;
1341 	}
1342 
1343 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1344 					dquot->dq_dqb.dqb_ihardlimit);
1345 
1346 	if (limit && buf->f_files > limit) {
1347 		buf->f_files = limit;
1348 		buf->f_ffree =
1349 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1350 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1351 	}
1352 
1353 	spin_unlock(&dquot->dq_dqb_lock);
1354 	dqput(dquot);
1355 	return 0;
1356 }
1357 #endif
1358 
1359 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1360 {
1361 	struct super_block *sb = dentry->d_sb;
1362 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1363 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1364 	block_t total_count, user_block_count, start_count;
1365 	u64 avail_node_count;
1366 
1367 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1368 	user_block_count = sbi->user_block_count;
1369 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1370 	buf->f_type = F2FS_SUPER_MAGIC;
1371 	buf->f_bsize = sbi->blocksize;
1372 
1373 	buf->f_blocks = total_count - start_count;
1374 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1375 						sbi->current_reserved_blocks;
1376 
1377 	spin_lock(&sbi->stat_lock);
1378 	if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1379 		buf->f_bfree = 0;
1380 	else
1381 		buf->f_bfree -= sbi->unusable_block_count;
1382 	spin_unlock(&sbi->stat_lock);
1383 
1384 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1385 		buf->f_bavail = buf->f_bfree -
1386 				F2FS_OPTION(sbi).root_reserved_blocks;
1387 	else
1388 		buf->f_bavail = 0;
1389 
1390 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1391 
1392 	if (avail_node_count > user_block_count) {
1393 		buf->f_files = user_block_count;
1394 		buf->f_ffree = buf->f_bavail;
1395 	} else {
1396 		buf->f_files = avail_node_count;
1397 		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1398 					buf->f_bavail);
1399 	}
1400 
1401 	buf->f_namelen = F2FS_NAME_LEN;
1402 	buf->f_fsid.val[0] = (u32)id;
1403 	buf->f_fsid.val[1] = (u32)(id >> 32);
1404 
1405 #ifdef CONFIG_QUOTA
1406 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1407 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1408 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1409 	}
1410 #endif
1411 	return 0;
1412 }
1413 
1414 static inline void f2fs_show_quota_options(struct seq_file *seq,
1415 					   struct super_block *sb)
1416 {
1417 #ifdef CONFIG_QUOTA
1418 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1419 
1420 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1421 		char *fmtname = "";
1422 
1423 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1424 		case QFMT_VFS_OLD:
1425 			fmtname = "vfsold";
1426 			break;
1427 		case QFMT_VFS_V0:
1428 			fmtname = "vfsv0";
1429 			break;
1430 		case QFMT_VFS_V1:
1431 			fmtname = "vfsv1";
1432 			break;
1433 		}
1434 		seq_printf(seq, ",jqfmt=%s", fmtname);
1435 	}
1436 
1437 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1438 		seq_show_option(seq, "usrjquota",
1439 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1440 
1441 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1442 		seq_show_option(seq, "grpjquota",
1443 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1444 
1445 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1446 		seq_show_option(seq, "prjjquota",
1447 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1448 #endif
1449 }
1450 
1451 static inline void f2fs_show_compress_options(struct seq_file *seq,
1452 							struct super_block *sb)
1453 {
1454 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1455 	char *algtype = "";
1456 	int i;
1457 
1458 	if (!f2fs_sb_has_compression(sbi))
1459 		return;
1460 
1461 	switch (F2FS_OPTION(sbi).compress_algorithm) {
1462 	case COMPRESS_LZO:
1463 		algtype = "lzo";
1464 		break;
1465 	case COMPRESS_LZ4:
1466 		algtype = "lz4";
1467 		break;
1468 	case COMPRESS_ZSTD:
1469 		algtype = "zstd";
1470 		break;
1471 	case COMPRESS_LZORLE:
1472 		algtype = "lzo-rle";
1473 		break;
1474 	}
1475 	seq_printf(seq, ",compress_algorithm=%s", algtype);
1476 
1477 	seq_printf(seq, ",compress_log_size=%u",
1478 			F2FS_OPTION(sbi).compress_log_size);
1479 
1480 	for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1481 		seq_printf(seq, ",compress_extension=%s",
1482 			F2FS_OPTION(sbi).extensions[i]);
1483 	}
1484 }
1485 
1486 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1487 {
1488 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1489 
1490 	if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
1491 		seq_printf(seq, ",background_gc=%s", "sync");
1492 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
1493 		seq_printf(seq, ",background_gc=%s", "on");
1494 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
1495 		seq_printf(seq, ",background_gc=%s", "off");
1496 
1497 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1498 		seq_puts(seq, ",disable_roll_forward");
1499 	if (test_opt(sbi, NORECOVERY))
1500 		seq_puts(seq, ",norecovery");
1501 	if (test_opt(sbi, DISCARD))
1502 		seq_puts(seq, ",discard");
1503 	else
1504 		seq_puts(seq, ",nodiscard");
1505 	if (test_opt(sbi, NOHEAP))
1506 		seq_puts(seq, ",no_heap");
1507 	else
1508 		seq_puts(seq, ",heap");
1509 #ifdef CONFIG_F2FS_FS_XATTR
1510 	if (test_opt(sbi, XATTR_USER))
1511 		seq_puts(seq, ",user_xattr");
1512 	else
1513 		seq_puts(seq, ",nouser_xattr");
1514 	if (test_opt(sbi, INLINE_XATTR))
1515 		seq_puts(seq, ",inline_xattr");
1516 	else
1517 		seq_puts(seq, ",noinline_xattr");
1518 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1519 		seq_printf(seq, ",inline_xattr_size=%u",
1520 					F2FS_OPTION(sbi).inline_xattr_size);
1521 #endif
1522 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1523 	if (test_opt(sbi, POSIX_ACL))
1524 		seq_puts(seq, ",acl");
1525 	else
1526 		seq_puts(seq, ",noacl");
1527 #endif
1528 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1529 		seq_puts(seq, ",disable_ext_identify");
1530 	if (test_opt(sbi, INLINE_DATA))
1531 		seq_puts(seq, ",inline_data");
1532 	else
1533 		seq_puts(seq, ",noinline_data");
1534 	if (test_opt(sbi, INLINE_DENTRY))
1535 		seq_puts(seq, ",inline_dentry");
1536 	else
1537 		seq_puts(seq, ",noinline_dentry");
1538 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1539 		seq_puts(seq, ",flush_merge");
1540 	if (test_opt(sbi, NOBARRIER))
1541 		seq_puts(seq, ",nobarrier");
1542 	if (test_opt(sbi, FASTBOOT))
1543 		seq_puts(seq, ",fastboot");
1544 	if (test_opt(sbi, EXTENT_CACHE))
1545 		seq_puts(seq, ",extent_cache");
1546 	else
1547 		seq_puts(seq, ",noextent_cache");
1548 	if (test_opt(sbi, DATA_FLUSH))
1549 		seq_puts(seq, ",data_flush");
1550 
1551 	seq_puts(seq, ",mode=");
1552 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
1553 		seq_puts(seq, "adaptive");
1554 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
1555 		seq_puts(seq, "lfs");
1556 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1557 	if (test_opt(sbi, RESERVE_ROOT))
1558 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1559 				F2FS_OPTION(sbi).root_reserved_blocks,
1560 				from_kuid_munged(&init_user_ns,
1561 					F2FS_OPTION(sbi).s_resuid),
1562 				from_kgid_munged(&init_user_ns,
1563 					F2FS_OPTION(sbi).s_resgid));
1564 	if (F2FS_IO_SIZE_BITS(sbi))
1565 		seq_printf(seq, ",io_bits=%u",
1566 				F2FS_OPTION(sbi).write_io_size_bits);
1567 #ifdef CONFIG_F2FS_FAULT_INJECTION
1568 	if (test_opt(sbi, FAULT_INJECTION)) {
1569 		seq_printf(seq, ",fault_injection=%u",
1570 				F2FS_OPTION(sbi).fault_info.inject_rate);
1571 		seq_printf(seq, ",fault_type=%u",
1572 				F2FS_OPTION(sbi).fault_info.inject_type);
1573 	}
1574 #endif
1575 #ifdef CONFIG_QUOTA
1576 	if (test_opt(sbi, QUOTA))
1577 		seq_puts(seq, ",quota");
1578 	if (test_opt(sbi, USRQUOTA))
1579 		seq_puts(seq, ",usrquota");
1580 	if (test_opt(sbi, GRPQUOTA))
1581 		seq_puts(seq, ",grpquota");
1582 	if (test_opt(sbi, PRJQUOTA))
1583 		seq_puts(seq, ",prjquota");
1584 #endif
1585 	f2fs_show_quota_options(seq, sbi->sb);
1586 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1587 		seq_printf(seq, ",whint_mode=%s", "user-based");
1588 	else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1589 		seq_printf(seq, ",whint_mode=%s", "fs-based");
1590 
1591 	fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
1592 
1593 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1594 		seq_printf(seq, ",alloc_mode=%s", "default");
1595 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1596 		seq_printf(seq, ",alloc_mode=%s", "reuse");
1597 
1598 	if (test_opt(sbi, DISABLE_CHECKPOINT))
1599 		seq_printf(seq, ",checkpoint=disable:%u",
1600 				F2FS_OPTION(sbi).unusable_cap);
1601 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1602 		seq_printf(seq, ",fsync_mode=%s", "posix");
1603 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1604 		seq_printf(seq, ",fsync_mode=%s", "strict");
1605 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1606 		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1607 
1608 	f2fs_show_compress_options(seq, sbi->sb);
1609 	return 0;
1610 }
1611 
1612 static void default_options(struct f2fs_sb_info *sbi)
1613 {
1614 	/* init some FS parameters */
1615 	F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1616 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1617 	F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1618 	F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1619 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1620 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1621 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1622 	F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
1623 	F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
1624 	F2FS_OPTION(sbi).compress_ext_cnt = 0;
1625 	F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
1626 
1627 	set_opt(sbi, INLINE_XATTR);
1628 	set_opt(sbi, INLINE_DATA);
1629 	set_opt(sbi, INLINE_DENTRY);
1630 	set_opt(sbi, EXTENT_CACHE);
1631 	set_opt(sbi, NOHEAP);
1632 	clear_opt(sbi, DISABLE_CHECKPOINT);
1633 	F2FS_OPTION(sbi).unusable_cap = 0;
1634 	sbi->sb->s_flags |= SB_LAZYTIME;
1635 	set_opt(sbi, FLUSH_MERGE);
1636 	set_opt(sbi, DISCARD);
1637 	if (f2fs_sb_has_blkzoned(sbi))
1638 		F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
1639 	else
1640 		F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
1641 
1642 #ifdef CONFIG_F2FS_FS_XATTR
1643 	set_opt(sbi, XATTR_USER);
1644 #endif
1645 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1646 	set_opt(sbi, POSIX_ACL);
1647 #endif
1648 
1649 	f2fs_build_fault_attr(sbi, 0, 0);
1650 }
1651 
1652 #ifdef CONFIG_QUOTA
1653 static int f2fs_enable_quotas(struct super_block *sb);
1654 #endif
1655 
1656 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
1657 {
1658 	unsigned int s_flags = sbi->sb->s_flags;
1659 	struct cp_control cpc;
1660 	int err = 0;
1661 	int ret;
1662 	block_t unusable;
1663 
1664 	if (s_flags & SB_RDONLY) {
1665 		f2fs_err(sbi, "checkpoint=disable on readonly fs");
1666 		return -EINVAL;
1667 	}
1668 	sbi->sb->s_flags |= SB_ACTIVE;
1669 
1670 	f2fs_update_time(sbi, DISABLE_TIME);
1671 
1672 	while (!f2fs_time_over(sbi, DISABLE_TIME)) {
1673 		down_write(&sbi->gc_lock);
1674 		err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1675 		if (err == -ENODATA) {
1676 			err = 0;
1677 			break;
1678 		}
1679 		if (err && err != -EAGAIN)
1680 			break;
1681 	}
1682 
1683 	ret = sync_filesystem(sbi->sb);
1684 	if (ret || err) {
1685 		err = ret ? ret: err;
1686 		goto restore_flag;
1687 	}
1688 
1689 	unusable = f2fs_get_unusable_blocks(sbi);
1690 	if (f2fs_disable_cp_again(sbi, unusable)) {
1691 		err = -EAGAIN;
1692 		goto restore_flag;
1693 	}
1694 
1695 	down_write(&sbi->gc_lock);
1696 	cpc.reason = CP_PAUSE;
1697 	set_sbi_flag(sbi, SBI_CP_DISABLED);
1698 	err = f2fs_write_checkpoint(sbi, &cpc);
1699 	if (err)
1700 		goto out_unlock;
1701 
1702 	spin_lock(&sbi->stat_lock);
1703 	sbi->unusable_block_count = unusable;
1704 	spin_unlock(&sbi->stat_lock);
1705 
1706 out_unlock:
1707 	up_write(&sbi->gc_lock);
1708 restore_flag:
1709 	sbi->sb->s_flags = s_flags;	/* Restore SB_RDONLY status */
1710 	return err;
1711 }
1712 
1713 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
1714 {
1715 	down_write(&sbi->gc_lock);
1716 	f2fs_dirty_to_prefree(sbi);
1717 
1718 	clear_sbi_flag(sbi, SBI_CP_DISABLED);
1719 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1720 	up_write(&sbi->gc_lock);
1721 
1722 	f2fs_sync_fs(sbi->sb, 1);
1723 }
1724 
1725 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1726 {
1727 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1728 	struct f2fs_mount_info org_mount_opt;
1729 	unsigned long old_sb_flags;
1730 	int err;
1731 	bool need_restart_gc = false;
1732 	bool need_stop_gc = false;
1733 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1734 	bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT);
1735 	bool no_io_align = !F2FS_IO_ALIGNED(sbi);
1736 	bool checkpoint_changed;
1737 #ifdef CONFIG_QUOTA
1738 	int i, j;
1739 #endif
1740 
1741 	/*
1742 	 * Save the old mount options in case we
1743 	 * need to restore them.
1744 	 */
1745 	org_mount_opt = sbi->mount_opt;
1746 	old_sb_flags = sb->s_flags;
1747 
1748 #ifdef CONFIG_QUOTA
1749 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1750 	for (i = 0; i < MAXQUOTAS; i++) {
1751 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1752 			org_mount_opt.s_qf_names[i] =
1753 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1754 				GFP_KERNEL);
1755 			if (!org_mount_opt.s_qf_names[i]) {
1756 				for (j = 0; j < i; j++)
1757 					kvfree(org_mount_opt.s_qf_names[j]);
1758 				return -ENOMEM;
1759 			}
1760 		} else {
1761 			org_mount_opt.s_qf_names[i] = NULL;
1762 		}
1763 	}
1764 #endif
1765 
1766 	/* recover superblocks we couldn't write due to previous RO mount */
1767 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1768 		err = f2fs_commit_super(sbi, false);
1769 		f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
1770 			  err);
1771 		if (!err)
1772 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1773 	}
1774 
1775 	default_options(sbi);
1776 
1777 	/* parse mount options */
1778 	err = parse_options(sb, data, true);
1779 	if (err)
1780 		goto restore_opts;
1781 	checkpoint_changed =
1782 			disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT);
1783 
1784 	/*
1785 	 * Previous and new state of filesystem is RO,
1786 	 * so skip checking GC and FLUSH_MERGE conditions.
1787 	 */
1788 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1789 		goto skip;
1790 
1791 #ifdef CONFIG_QUOTA
1792 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1793 		err = dquot_suspend(sb, -1);
1794 		if (err < 0)
1795 			goto restore_opts;
1796 	} else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
1797 		/* dquot_resume needs RW */
1798 		sb->s_flags &= ~SB_RDONLY;
1799 		if (sb_any_quota_suspended(sb)) {
1800 			dquot_resume(sb, -1);
1801 		} else if (f2fs_sb_has_quota_ino(sbi)) {
1802 			err = f2fs_enable_quotas(sb);
1803 			if (err)
1804 				goto restore_opts;
1805 		}
1806 	}
1807 #endif
1808 	/* disallow enable/disable extent_cache dynamically */
1809 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1810 		err = -EINVAL;
1811 		f2fs_warn(sbi, "switch extent_cache option is not allowed");
1812 		goto restore_opts;
1813 	}
1814 
1815 	if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
1816 		err = -EINVAL;
1817 		f2fs_warn(sbi, "switch io_bits option is not allowed");
1818 		goto restore_opts;
1819 	}
1820 
1821 	if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
1822 		err = -EINVAL;
1823 		f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
1824 		goto restore_opts;
1825 	}
1826 
1827 	/*
1828 	 * We stop the GC thread if FS is mounted as RO
1829 	 * or if background_gc = off is passed in mount
1830 	 * option. Also sync the filesystem.
1831 	 */
1832 	if ((*flags & SB_RDONLY) ||
1833 			F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) {
1834 		if (sbi->gc_thread) {
1835 			f2fs_stop_gc_thread(sbi);
1836 			need_restart_gc = true;
1837 		}
1838 	} else if (!sbi->gc_thread) {
1839 		err = f2fs_start_gc_thread(sbi);
1840 		if (err)
1841 			goto restore_opts;
1842 		need_stop_gc = true;
1843 	}
1844 
1845 	if (*flags & SB_RDONLY ||
1846 		F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1847 		writeback_inodes_sb(sb, WB_REASON_SYNC);
1848 		sync_inodes_sb(sb);
1849 
1850 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1851 		set_sbi_flag(sbi, SBI_IS_CLOSE);
1852 		f2fs_sync_fs(sb, 1);
1853 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
1854 	}
1855 
1856 	if (checkpoint_changed) {
1857 		if (test_opt(sbi, DISABLE_CHECKPOINT)) {
1858 			err = f2fs_disable_checkpoint(sbi);
1859 			if (err)
1860 				goto restore_gc;
1861 		} else {
1862 			f2fs_enable_checkpoint(sbi);
1863 		}
1864 	}
1865 
1866 	/*
1867 	 * We stop issue flush thread if FS is mounted as RO
1868 	 * or if flush_merge is not passed in mount option.
1869 	 */
1870 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1871 		clear_opt(sbi, FLUSH_MERGE);
1872 		f2fs_destroy_flush_cmd_control(sbi, false);
1873 	} else {
1874 		err = f2fs_create_flush_cmd_control(sbi);
1875 		if (err)
1876 			goto restore_gc;
1877 	}
1878 skip:
1879 #ifdef CONFIG_QUOTA
1880 	/* Release old quota file names */
1881 	for (i = 0; i < MAXQUOTAS; i++)
1882 		kvfree(org_mount_opt.s_qf_names[i]);
1883 #endif
1884 	/* Update the POSIXACL Flag */
1885 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1886 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1887 
1888 	limit_reserve_root(sbi);
1889 	adjust_unusable_cap_perc(sbi);
1890 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
1891 	return 0;
1892 restore_gc:
1893 	if (need_restart_gc) {
1894 		if (f2fs_start_gc_thread(sbi))
1895 			f2fs_warn(sbi, "background gc thread has stopped");
1896 	} else if (need_stop_gc) {
1897 		f2fs_stop_gc_thread(sbi);
1898 	}
1899 restore_opts:
1900 #ifdef CONFIG_QUOTA
1901 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1902 	for (i = 0; i < MAXQUOTAS; i++) {
1903 		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1904 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1905 	}
1906 #endif
1907 	sbi->mount_opt = org_mount_opt;
1908 	sb->s_flags = old_sb_flags;
1909 	return err;
1910 }
1911 
1912 #ifdef CONFIG_QUOTA
1913 /* Read data from quotafile */
1914 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1915 			       size_t len, loff_t off)
1916 {
1917 	struct inode *inode = sb_dqopt(sb)->files[type];
1918 	struct address_space *mapping = inode->i_mapping;
1919 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
1920 	int offset = off & (sb->s_blocksize - 1);
1921 	int tocopy;
1922 	size_t toread;
1923 	loff_t i_size = i_size_read(inode);
1924 	struct page *page;
1925 	char *kaddr;
1926 
1927 	if (off > i_size)
1928 		return 0;
1929 
1930 	if (off + len > i_size)
1931 		len = i_size - off;
1932 	toread = len;
1933 	while (toread > 0) {
1934 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1935 repeat:
1936 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1937 		if (IS_ERR(page)) {
1938 			if (PTR_ERR(page) == -ENOMEM) {
1939 				congestion_wait(BLK_RW_ASYNC,
1940 						DEFAULT_IO_TIMEOUT);
1941 				goto repeat;
1942 			}
1943 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1944 			return PTR_ERR(page);
1945 		}
1946 
1947 		lock_page(page);
1948 
1949 		if (unlikely(page->mapping != mapping)) {
1950 			f2fs_put_page(page, 1);
1951 			goto repeat;
1952 		}
1953 		if (unlikely(!PageUptodate(page))) {
1954 			f2fs_put_page(page, 1);
1955 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1956 			return -EIO;
1957 		}
1958 
1959 		kaddr = kmap_atomic(page);
1960 		memcpy(data, kaddr + offset, tocopy);
1961 		kunmap_atomic(kaddr);
1962 		f2fs_put_page(page, 1);
1963 
1964 		offset = 0;
1965 		toread -= tocopy;
1966 		data += tocopy;
1967 		blkidx++;
1968 	}
1969 	return len;
1970 }
1971 
1972 /* Write to quotafile */
1973 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1974 				const char *data, size_t len, loff_t off)
1975 {
1976 	struct inode *inode = sb_dqopt(sb)->files[type];
1977 	struct address_space *mapping = inode->i_mapping;
1978 	const struct address_space_operations *a_ops = mapping->a_ops;
1979 	int offset = off & (sb->s_blocksize - 1);
1980 	size_t towrite = len;
1981 	struct page *page;
1982 	void *fsdata = NULL;
1983 	char *kaddr;
1984 	int err = 0;
1985 	int tocopy;
1986 
1987 	while (towrite > 0) {
1988 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1989 								towrite);
1990 retry:
1991 		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1992 							&page, &fsdata);
1993 		if (unlikely(err)) {
1994 			if (err == -ENOMEM) {
1995 				congestion_wait(BLK_RW_ASYNC,
1996 						DEFAULT_IO_TIMEOUT);
1997 				goto retry;
1998 			}
1999 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2000 			break;
2001 		}
2002 
2003 		kaddr = kmap_atomic(page);
2004 		memcpy(kaddr + offset, data, tocopy);
2005 		kunmap_atomic(kaddr);
2006 		flush_dcache_page(page);
2007 
2008 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
2009 						page, fsdata);
2010 		offset = 0;
2011 		towrite -= tocopy;
2012 		off += tocopy;
2013 		data += tocopy;
2014 		cond_resched();
2015 	}
2016 
2017 	if (len == towrite)
2018 		return err;
2019 	inode->i_mtime = inode->i_ctime = current_time(inode);
2020 	f2fs_mark_inode_dirty_sync(inode, false);
2021 	return len - towrite;
2022 }
2023 
2024 static struct dquot **f2fs_get_dquots(struct inode *inode)
2025 {
2026 	return F2FS_I(inode)->i_dquot;
2027 }
2028 
2029 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
2030 {
2031 	return &F2FS_I(inode)->i_reserved_quota;
2032 }
2033 
2034 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
2035 {
2036 	if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
2037 		f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
2038 		return 0;
2039 	}
2040 
2041 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
2042 					F2FS_OPTION(sbi).s_jquota_fmt, type);
2043 }
2044 
2045 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
2046 {
2047 	int enabled = 0;
2048 	int i, err;
2049 
2050 	if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
2051 		err = f2fs_enable_quotas(sbi->sb);
2052 		if (err) {
2053 			f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2054 			return 0;
2055 		}
2056 		return 1;
2057 	}
2058 
2059 	for (i = 0; i < MAXQUOTAS; i++) {
2060 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2061 			err = f2fs_quota_on_mount(sbi, i);
2062 			if (!err) {
2063 				enabled = 1;
2064 				continue;
2065 			}
2066 			f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2067 				 err, i);
2068 		}
2069 	}
2070 	return enabled;
2071 }
2072 
2073 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2074 			     unsigned int flags)
2075 {
2076 	struct inode *qf_inode;
2077 	unsigned long qf_inum;
2078 	int err;
2079 
2080 	BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2081 
2082 	qf_inum = f2fs_qf_ino(sb, type);
2083 	if (!qf_inum)
2084 		return -EPERM;
2085 
2086 	qf_inode = f2fs_iget(sb, qf_inum);
2087 	if (IS_ERR(qf_inode)) {
2088 		f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2089 		return PTR_ERR(qf_inode);
2090 	}
2091 
2092 	/* Don't account quota for quota files to avoid recursion */
2093 	qf_inode->i_flags |= S_NOQUOTA;
2094 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2095 	iput(qf_inode);
2096 	return err;
2097 }
2098 
2099 static int f2fs_enable_quotas(struct super_block *sb)
2100 {
2101 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2102 	int type, err = 0;
2103 	unsigned long qf_inum;
2104 	bool quota_mopt[MAXQUOTAS] = {
2105 		test_opt(sbi, USRQUOTA),
2106 		test_opt(sbi, GRPQUOTA),
2107 		test_opt(sbi, PRJQUOTA),
2108 	};
2109 
2110 	if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2111 		f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2112 		return 0;
2113 	}
2114 
2115 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2116 
2117 	for (type = 0; type < MAXQUOTAS; type++) {
2118 		qf_inum = f2fs_qf_ino(sb, type);
2119 		if (qf_inum) {
2120 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2121 				DQUOT_USAGE_ENABLED |
2122 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2123 			if (err) {
2124 				f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2125 					 type, err);
2126 				for (type--; type >= 0; type--)
2127 					dquot_quota_off(sb, type);
2128 				set_sbi_flag(F2FS_SB(sb),
2129 						SBI_QUOTA_NEED_REPAIR);
2130 				return err;
2131 			}
2132 		}
2133 	}
2134 	return 0;
2135 }
2136 
2137 int f2fs_quota_sync(struct super_block *sb, int type)
2138 {
2139 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2140 	struct quota_info *dqopt = sb_dqopt(sb);
2141 	int cnt;
2142 	int ret;
2143 
2144 	/*
2145 	 * do_quotactl
2146 	 *  f2fs_quota_sync
2147 	 *  down_read(quota_sem)
2148 	 *  dquot_writeback_dquots()
2149 	 *  f2fs_dquot_commit
2150 	 *                            block_operation
2151 	 *                            down_read(quota_sem)
2152 	 */
2153 	f2fs_lock_op(sbi);
2154 
2155 	down_read(&sbi->quota_sem);
2156 	ret = dquot_writeback_dquots(sb, type);
2157 	if (ret)
2158 		goto out;
2159 
2160 	/*
2161 	 * Now when everything is written we can discard the pagecache so
2162 	 * that userspace sees the changes.
2163 	 */
2164 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2165 		struct address_space *mapping;
2166 
2167 		if (type != -1 && cnt != type)
2168 			continue;
2169 		if (!sb_has_quota_active(sb, cnt))
2170 			continue;
2171 
2172 		mapping = dqopt->files[cnt]->i_mapping;
2173 
2174 		ret = filemap_fdatawrite(mapping);
2175 		if (ret)
2176 			goto out;
2177 
2178 		/* if we are using journalled quota */
2179 		if (is_journalled_quota(sbi))
2180 			continue;
2181 
2182 		ret = filemap_fdatawait(mapping);
2183 		if (ret)
2184 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2185 
2186 		inode_lock(dqopt->files[cnt]);
2187 		truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
2188 		inode_unlock(dqopt->files[cnt]);
2189 	}
2190 out:
2191 	if (ret)
2192 		set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2193 	up_read(&sbi->quota_sem);
2194 	f2fs_unlock_op(sbi);
2195 	return ret;
2196 }
2197 
2198 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2199 							const struct path *path)
2200 {
2201 	struct inode *inode;
2202 	int err;
2203 
2204 	/* if quota sysfile exists, deny enabling quota with specific file */
2205 	if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2206 		f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2207 		return -EBUSY;
2208 	}
2209 
2210 	err = f2fs_quota_sync(sb, type);
2211 	if (err)
2212 		return err;
2213 
2214 	err = dquot_quota_on(sb, type, format_id, path);
2215 	if (err)
2216 		return err;
2217 
2218 	inode = d_inode(path->dentry);
2219 
2220 	inode_lock(inode);
2221 	F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2222 	f2fs_set_inode_flags(inode);
2223 	inode_unlock(inode);
2224 	f2fs_mark_inode_dirty_sync(inode, false);
2225 
2226 	return 0;
2227 }
2228 
2229 static int __f2fs_quota_off(struct super_block *sb, int type)
2230 {
2231 	struct inode *inode = sb_dqopt(sb)->files[type];
2232 	int err;
2233 
2234 	if (!inode || !igrab(inode))
2235 		return dquot_quota_off(sb, type);
2236 
2237 	err = f2fs_quota_sync(sb, type);
2238 	if (err)
2239 		goto out_put;
2240 
2241 	err = dquot_quota_off(sb, type);
2242 	if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2243 		goto out_put;
2244 
2245 	inode_lock(inode);
2246 	F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2247 	f2fs_set_inode_flags(inode);
2248 	inode_unlock(inode);
2249 	f2fs_mark_inode_dirty_sync(inode, false);
2250 out_put:
2251 	iput(inode);
2252 	return err;
2253 }
2254 
2255 static int f2fs_quota_off(struct super_block *sb, int type)
2256 {
2257 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2258 	int err;
2259 
2260 	err = __f2fs_quota_off(sb, type);
2261 
2262 	/*
2263 	 * quotactl can shutdown journalled quota, result in inconsistence
2264 	 * between quota record and fs data by following updates, tag the
2265 	 * flag to let fsck be aware of it.
2266 	 */
2267 	if (is_journalled_quota(sbi))
2268 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2269 	return err;
2270 }
2271 
2272 void f2fs_quota_off_umount(struct super_block *sb)
2273 {
2274 	int type;
2275 	int err;
2276 
2277 	for (type = 0; type < MAXQUOTAS; type++) {
2278 		err = __f2fs_quota_off(sb, type);
2279 		if (err) {
2280 			int ret = dquot_quota_off(sb, type);
2281 
2282 			f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2283 				 type, err, ret);
2284 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2285 		}
2286 	}
2287 	/*
2288 	 * In case of checkpoint=disable, we must flush quota blocks.
2289 	 * This can cause NULL exception for node_inode in end_io, since
2290 	 * put_super already dropped it.
2291 	 */
2292 	sync_filesystem(sb);
2293 }
2294 
2295 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2296 {
2297 	struct quota_info *dqopt = sb_dqopt(sb);
2298 	int type;
2299 
2300 	for (type = 0; type < MAXQUOTAS; type++) {
2301 		if (!dqopt->files[type])
2302 			continue;
2303 		f2fs_inode_synced(dqopt->files[type]);
2304 	}
2305 }
2306 
2307 static int f2fs_dquot_commit(struct dquot *dquot)
2308 {
2309 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2310 	int ret;
2311 
2312 	down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
2313 	ret = dquot_commit(dquot);
2314 	if (ret < 0)
2315 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2316 	up_read(&sbi->quota_sem);
2317 	return ret;
2318 }
2319 
2320 static int f2fs_dquot_acquire(struct dquot *dquot)
2321 {
2322 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2323 	int ret;
2324 
2325 	down_read(&sbi->quota_sem);
2326 	ret = dquot_acquire(dquot);
2327 	if (ret < 0)
2328 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2329 	up_read(&sbi->quota_sem);
2330 	return ret;
2331 }
2332 
2333 static int f2fs_dquot_release(struct dquot *dquot)
2334 {
2335 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2336 	int ret = dquot_release(dquot);
2337 
2338 	if (ret < 0)
2339 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2340 	return ret;
2341 }
2342 
2343 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2344 {
2345 	struct super_block *sb = dquot->dq_sb;
2346 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2347 	int ret = dquot_mark_dquot_dirty(dquot);
2348 
2349 	/* if we are using journalled quota */
2350 	if (is_journalled_quota(sbi))
2351 		set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2352 
2353 	return ret;
2354 }
2355 
2356 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2357 {
2358 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2359 	int ret = dquot_commit_info(sb, type);
2360 
2361 	if (ret < 0)
2362 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2363 	return ret;
2364 }
2365 
2366 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2367 {
2368 	*projid = F2FS_I(inode)->i_projid;
2369 	return 0;
2370 }
2371 
2372 static const struct dquot_operations f2fs_quota_operations = {
2373 	.get_reserved_space = f2fs_get_reserved_space,
2374 	.write_dquot	= f2fs_dquot_commit,
2375 	.acquire_dquot	= f2fs_dquot_acquire,
2376 	.release_dquot	= f2fs_dquot_release,
2377 	.mark_dirty	= f2fs_dquot_mark_dquot_dirty,
2378 	.write_info	= f2fs_dquot_commit_info,
2379 	.alloc_dquot	= dquot_alloc,
2380 	.destroy_dquot	= dquot_destroy,
2381 	.get_projid	= f2fs_get_projid,
2382 	.get_next_id	= dquot_get_next_id,
2383 };
2384 
2385 static const struct quotactl_ops f2fs_quotactl_ops = {
2386 	.quota_on	= f2fs_quota_on,
2387 	.quota_off	= f2fs_quota_off,
2388 	.quota_sync	= f2fs_quota_sync,
2389 	.get_state	= dquot_get_state,
2390 	.set_info	= dquot_set_dqinfo,
2391 	.get_dqblk	= dquot_get_dqblk,
2392 	.set_dqblk	= dquot_set_dqblk,
2393 	.get_nextdqblk	= dquot_get_next_dqblk,
2394 };
2395 #else
2396 int f2fs_quota_sync(struct super_block *sb, int type)
2397 {
2398 	return 0;
2399 }
2400 
2401 void f2fs_quota_off_umount(struct super_block *sb)
2402 {
2403 }
2404 #endif
2405 
2406 static const struct super_operations f2fs_sops = {
2407 	.alloc_inode	= f2fs_alloc_inode,
2408 	.free_inode	= f2fs_free_inode,
2409 	.drop_inode	= f2fs_drop_inode,
2410 	.write_inode	= f2fs_write_inode,
2411 	.dirty_inode	= f2fs_dirty_inode,
2412 	.show_options	= f2fs_show_options,
2413 #ifdef CONFIG_QUOTA
2414 	.quota_read	= f2fs_quota_read,
2415 	.quota_write	= f2fs_quota_write,
2416 	.get_dquots	= f2fs_get_dquots,
2417 #endif
2418 	.evict_inode	= f2fs_evict_inode,
2419 	.put_super	= f2fs_put_super,
2420 	.sync_fs	= f2fs_sync_fs,
2421 	.freeze_fs	= f2fs_freeze,
2422 	.unfreeze_fs	= f2fs_unfreeze,
2423 	.statfs		= f2fs_statfs,
2424 	.remount_fs	= f2fs_remount,
2425 };
2426 
2427 #ifdef CONFIG_FS_ENCRYPTION
2428 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2429 {
2430 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2431 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2432 				ctx, len, NULL);
2433 }
2434 
2435 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2436 							void *fs_data)
2437 {
2438 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2439 
2440 	/*
2441 	 * Encrypting the root directory is not allowed because fsck
2442 	 * expects lost+found directory to exist and remain unencrypted
2443 	 * if LOST_FOUND feature is enabled.
2444 	 *
2445 	 */
2446 	if (f2fs_sb_has_lost_found(sbi) &&
2447 			inode->i_ino == F2FS_ROOT_INO(sbi))
2448 		return -EPERM;
2449 
2450 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2451 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2452 				ctx, len, fs_data, XATTR_CREATE);
2453 }
2454 
2455 static const union fscrypt_context *
2456 f2fs_get_dummy_context(struct super_block *sb)
2457 {
2458 	return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_ctx.ctx;
2459 }
2460 
2461 static bool f2fs_has_stable_inodes(struct super_block *sb)
2462 {
2463 	return true;
2464 }
2465 
2466 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
2467 				       int *ino_bits_ret, int *lblk_bits_ret)
2468 {
2469 	*ino_bits_ret = 8 * sizeof(nid_t);
2470 	*lblk_bits_ret = 8 * sizeof(block_t);
2471 }
2472 
2473 static const struct fscrypt_operations f2fs_cryptops = {
2474 	.key_prefix		= "f2fs:",
2475 	.get_context		= f2fs_get_context,
2476 	.set_context		= f2fs_set_context,
2477 	.get_dummy_context	= f2fs_get_dummy_context,
2478 	.empty_dir		= f2fs_empty_dir,
2479 	.max_namelen		= F2FS_NAME_LEN,
2480 	.has_stable_inodes	= f2fs_has_stable_inodes,
2481 	.get_ino_and_lblk_bits	= f2fs_get_ino_and_lblk_bits,
2482 };
2483 #endif
2484 
2485 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2486 		u64 ino, u32 generation)
2487 {
2488 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2489 	struct inode *inode;
2490 
2491 	if (f2fs_check_nid_range(sbi, ino))
2492 		return ERR_PTR(-ESTALE);
2493 
2494 	/*
2495 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
2496 	 * However f2fs_iget currently does appropriate checks to handle stale
2497 	 * inodes so everything is OK.
2498 	 */
2499 	inode = f2fs_iget(sb, ino);
2500 	if (IS_ERR(inode))
2501 		return ERR_CAST(inode);
2502 	if (unlikely(generation && inode->i_generation != generation)) {
2503 		/* we didn't find the right inode.. */
2504 		iput(inode);
2505 		return ERR_PTR(-ESTALE);
2506 	}
2507 	return inode;
2508 }
2509 
2510 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2511 		int fh_len, int fh_type)
2512 {
2513 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2514 				    f2fs_nfs_get_inode);
2515 }
2516 
2517 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2518 		int fh_len, int fh_type)
2519 {
2520 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2521 				    f2fs_nfs_get_inode);
2522 }
2523 
2524 static const struct export_operations f2fs_export_ops = {
2525 	.fh_to_dentry = f2fs_fh_to_dentry,
2526 	.fh_to_parent = f2fs_fh_to_parent,
2527 	.get_parent = f2fs_get_parent,
2528 };
2529 
2530 static loff_t max_file_blocks(void)
2531 {
2532 	loff_t result = 0;
2533 	loff_t leaf_count = DEF_ADDRS_PER_BLOCK;
2534 
2535 	/*
2536 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2537 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2538 	 * space in inode.i_addr, it will be more safe to reassign
2539 	 * result as zero.
2540 	 */
2541 
2542 	/* two direct node blocks */
2543 	result += (leaf_count * 2);
2544 
2545 	/* two indirect node blocks */
2546 	leaf_count *= NIDS_PER_BLOCK;
2547 	result += (leaf_count * 2);
2548 
2549 	/* one double indirect node block */
2550 	leaf_count *= NIDS_PER_BLOCK;
2551 	result += leaf_count;
2552 
2553 	return result;
2554 }
2555 
2556 static int __f2fs_commit_super(struct buffer_head *bh,
2557 			struct f2fs_super_block *super)
2558 {
2559 	lock_buffer(bh);
2560 	if (super)
2561 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2562 	set_buffer_dirty(bh);
2563 	unlock_buffer(bh);
2564 
2565 	/* it's rare case, we can do fua all the time */
2566 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2567 }
2568 
2569 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2570 					struct buffer_head *bh)
2571 {
2572 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2573 					(bh->b_data + F2FS_SUPER_OFFSET);
2574 	struct super_block *sb = sbi->sb;
2575 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2576 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2577 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2578 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2579 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2580 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2581 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2582 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2583 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2584 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2585 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2586 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
2587 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2588 	u64 main_end_blkaddr = main_blkaddr +
2589 				(segment_count_main << log_blocks_per_seg);
2590 	u64 seg_end_blkaddr = segment0_blkaddr +
2591 				(segment_count << log_blocks_per_seg);
2592 
2593 	if (segment0_blkaddr != cp_blkaddr) {
2594 		f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2595 			  segment0_blkaddr, cp_blkaddr);
2596 		return true;
2597 	}
2598 
2599 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2600 							sit_blkaddr) {
2601 		f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2602 			  cp_blkaddr, sit_blkaddr,
2603 			  segment_count_ckpt << log_blocks_per_seg);
2604 		return true;
2605 	}
2606 
2607 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2608 							nat_blkaddr) {
2609 		f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2610 			  sit_blkaddr, nat_blkaddr,
2611 			  segment_count_sit << log_blocks_per_seg);
2612 		return true;
2613 	}
2614 
2615 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2616 							ssa_blkaddr) {
2617 		f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2618 			  nat_blkaddr, ssa_blkaddr,
2619 			  segment_count_nat << log_blocks_per_seg);
2620 		return true;
2621 	}
2622 
2623 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2624 							main_blkaddr) {
2625 		f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2626 			  ssa_blkaddr, main_blkaddr,
2627 			  segment_count_ssa << log_blocks_per_seg);
2628 		return true;
2629 	}
2630 
2631 	if (main_end_blkaddr > seg_end_blkaddr) {
2632 		f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2633 			  main_blkaddr,
2634 			  segment0_blkaddr +
2635 			  (segment_count << log_blocks_per_seg),
2636 			  segment_count_main << log_blocks_per_seg);
2637 		return true;
2638 	} else if (main_end_blkaddr < seg_end_blkaddr) {
2639 		int err = 0;
2640 		char *res;
2641 
2642 		/* fix in-memory information all the time */
2643 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2644 				segment0_blkaddr) >> log_blocks_per_seg);
2645 
2646 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2647 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2648 			res = "internally";
2649 		} else {
2650 			err = __f2fs_commit_super(bh, NULL);
2651 			res = err ? "failed" : "done";
2652 		}
2653 		f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%u) block(%u)",
2654 			  res, main_blkaddr,
2655 			  segment0_blkaddr +
2656 			  (segment_count << log_blocks_per_seg),
2657 			  segment_count_main << log_blocks_per_seg);
2658 		if (err)
2659 			return true;
2660 	}
2661 	return false;
2662 }
2663 
2664 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2665 				struct buffer_head *bh)
2666 {
2667 	block_t segment_count, segs_per_sec, secs_per_zone;
2668 	block_t total_sections, blocks_per_seg;
2669 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2670 					(bh->b_data + F2FS_SUPER_OFFSET);
2671 	unsigned int blocksize;
2672 	size_t crc_offset = 0;
2673 	__u32 crc = 0;
2674 
2675 	if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
2676 		f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
2677 			  F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2678 		return -EINVAL;
2679 	}
2680 
2681 	/* Check checksum_offset and crc in superblock */
2682 	if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
2683 		crc_offset = le32_to_cpu(raw_super->checksum_offset);
2684 		if (crc_offset !=
2685 			offsetof(struct f2fs_super_block, crc)) {
2686 			f2fs_info(sbi, "Invalid SB checksum offset: %zu",
2687 				  crc_offset);
2688 			return -EFSCORRUPTED;
2689 		}
2690 		crc = le32_to_cpu(raw_super->crc);
2691 		if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
2692 			f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
2693 			return -EFSCORRUPTED;
2694 		}
2695 	}
2696 
2697 	/* Currently, support only 4KB page cache size */
2698 	if (F2FS_BLKSIZE != PAGE_SIZE) {
2699 		f2fs_info(sbi, "Invalid page_cache_size (%lu), supports only 4KB",
2700 			  PAGE_SIZE);
2701 		return -EFSCORRUPTED;
2702 	}
2703 
2704 	/* Currently, support only 4KB block size */
2705 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2706 	if (blocksize != F2FS_BLKSIZE) {
2707 		f2fs_info(sbi, "Invalid blocksize (%u), supports only 4KB",
2708 			  blocksize);
2709 		return -EFSCORRUPTED;
2710 	}
2711 
2712 	/* check log blocks per segment */
2713 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2714 		f2fs_info(sbi, "Invalid log blocks per segment (%u)",
2715 			  le32_to_cpu(raw_super->log_blocks_per_seg));
2716 		return -EFSCORRUPTED;
2717 	}
2718 
2719 	/* Currently, support 512/1024/2048/4096 bytes sector size */
2720 	if (le32_to_cpu(raw_super->log_sectorsize) >
2721 				F2FS_MAX_LOG_SECTOR_SIZE ||
2722 		le32_to_cpu(raw_super->log_sectorsize) <
2723 				F2FS_MIN_LOG_SECTOR_SIZE) {
2724 		f2fs_info(sbi, "Invalid log sectorsize (%u)",
2725 			  le32_to_cpu(raw_super->log_sectorsize));
2726 		return -EFSCORRUPTED;
2727 	}
2728 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
2729 		le32_to_cpu(raw_super->log_sectorsize) !=
2730 			F2FS_MAX_LOG_SECTOR_SIZE) {
2731 		f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
2732 			  le32_to_cpu(raw_super->log_sectors_per_block),
2733 			  le32_to_cpu(raw_super->log_sectorsize));
2734 		return -EFSCORRUPTED;
2735 	}
2736 
2737 	segment_count = le32_to_cpu(raw_super->segment_count);
2738 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2739 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2740 	total_sections = le32_to_cpu(raw_super->section_count);
2741 
2742 	/* blocks_per_seg should be 512, given the above check */
2743 	blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2744 
2745 	if (segment_count > F2FS_MAX_SEGMENT ||
2746 				segment_count < F2FS_MIN_SEGMENTS) {
2747 		f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
2748 		return -EFSCORRUPTED;
2749 	}
2750 
2751 	if (total_sections > segment_count ||
2752 			total_sections < F2FS_MIN_SEGMENTS ||
2753 			segs_per_sec > segment_count || !segs_per_sec) {
2754 		f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
2755 			  segment_count, total_sections, segs_per_sec);
2756 		return -EFSCORRUPTED;
2757 	}
2758 
2759 	if ((segment_count / segs_per_sec) < total_sections) {
2760 		f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
2761 			  segment_count, segs_per_sec, total_sections);
2762 		return -EFSCORRUPTED;
2763 	}
2764 
2765 	if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
2766 		f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
2767 			  segment_count, le64_to_cpu(raw_super->block_count));
2768 		return -EFSCORRUPTED;
2769 	}
2770 
2771 	if (RDEV(0).path[0]) {
2772 		block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
2773 		int i = 1;
2774 
2775 		while (i < MAX_DEVICES && RDEV(i).path[0]) {
2776 			dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
2777 			i++;
2778 		}
2779 		if (segment_count != dev_seg_count) {
2780 			f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
2781 					segment_count, dev_seg_count);
2782 			return -EFSCORRUPTED;
2783 		}
2784 	}
2785 
2786 	if (secs_per_zone > total_sections || !secs_per_zone) {
2787 		f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
2788 			  secs_per_zone, total_sections);
2789 		return -EFSCORRUPTED;
2790 	}
2791 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2792 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2793 			(le32_to_cpu(raw_super->extension_count) +
2794 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2795 		f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
2796 			  le32_to_cpu(raw_super->extension_count),
2797 			  raw_super->hot_ext_count,
2798 			  F2FS_MAX_EXTENSION);
2799 		return -EFSCORRUPTED;
2800 	}
2801 
2802 	if (le32_to_cpu(raw_super->cp_payload) >
2803 				(blocks_per_seg - F2FS_CP_PACKS)) {
2804 		f2fs_info(sbi, "Insane cp_payload (%u > %u)",
2805 			  le32_to_cpu(raw_super->cp_payload),
2806 			  blocks_per_seg - F2FS_CP_PACKS);
2807 		return -EFSCORRUPTED;
2808 	}
2809 
2810 	/* check reserved ino info */
2811 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
2812 		le32_to_cpu(raw_super->meta_ino) != 2 ||
2813 		le32_to_cpu(raw_super->root_ino) != 3) {
2814 		f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2815 			  le32_to_cpu(raw_super->node_ino),
2816 			  le32_to_cpu(raw_super->meta_ino),
2817 			  le32_to_cpu(raw_super->root_ino));
2818 		return -EFSCORRUPTED;
2819 	}
2820 
2821 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2822 	if (sanity_check_area_boundary(sbi, bh))
2823 		return -EFSCORRUPTED;
2824 
2825 	return 0;
2826 }
2827 
2828 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
2829 {
2830 	unsigned int total, fsmeta;
2831 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2832 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2833 	unsigned int ovp_segments, reserved_segments;
2834 	unsigned int main_segs, blocks_per_seg;
2835 	unsigned int sit_segs, nat_segs;
2836 	unsigned int sit_bitmap_size, nat_bitmap_size;
2837 	unsigned int log_blocks_per_seg;
2838 	unsigned int segment_count_main;
2839 	unsigned int cp_pack_start_sum, cp_payload;
2840 	block_t user_block_count, valid_user_blocks;
2841 	block_t avail_node_count, valid_node_count;
2842 	int i, j;
2843 
2844 	total = le32_to_cpu(raw_super->segment_count);
2845 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2846 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2847 	fsmeta += sit_segs;
2848 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2849 	fsmeta += nat_segs;
2850 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2851 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2852 
2853 	if (unlikely(fsmeta >= total))
2854 		return 1;
2855 
2856 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2857 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2858 
2859 	if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2860 			ovp_segments == 0 || reserved_segments == 0)) {
2861 		f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
2862 		return 1;
2863 	}
2864 
2865 	user_block_count = le64_to_cpu(ckpt->user_block_count);
2866 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2867 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2868 	if (!user_block_count || user_block_count >=
2869 			segment_count_main << log_blocks_per_seg) {
2870 		f2fs_err(sbi, "Wrong user_block_count: %u",
2871 			 user_block_count);
2872 		return 1;
2873 	}
2874 
2875 	valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
2876 	if (valid_user_blocks > user_block_count) {
2877 		f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
2878 			 valid_user_blocks, user_block_count);
2879 		return 1;
2880 	}
2881 
2882 	valid_node_count = le32_to_cpu(ckpt->valid_node_count);
2883 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
2884 	if (valid_node_count > avail_node_count) {
2885 		f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
2886 			 valid_node_count, avail_node_count);
2887 		return 1;
2888 	}
2889 
2890 	main_segs = le32_to_cpu(raw_super->segment_count_main);
2891 	blocks_per_seg = sbi->blocks_per_seg;
2892 
2893 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2894 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2895 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2896 			return 1;
2897 		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
2898 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2899 				le32_to_cpu(ckpt->cur_node_segno[j])) {
2900 				f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
2901 					 i, j,
2902 					 le32_to_cpu(ckpt->cur_node_segno[i]));
2903 				return 1;
2904 			}
2905 		}
2906 	}
2907 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2908 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2909 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2910 			return 1;
2911 		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
2912 			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
2913 				le32_to_cpu(ckpt->cur_data_segno[j])) {
2914 				f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
2915 					 i, j,
2916 					 le32_to_cpu(ckpt->cur_data_segno[i]));
2917 				return 1;
2918 			}
2919 		}
2920 	}
2921 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2922 		for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
2923 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2924 				le32_to_cpu(ckpt->cur_data_segno[j])) {
2925 				f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
2926 					 i, j,
2927 					 le32_to_cpu(ckpt->cur_node_segno[i]));
2928 				return 1;
2929 			}
2930 		}
2931 	}
2932 
2933 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2934 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2935 
2936 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
2937 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
2938 		f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
2939 			 sit_bitmap_size, nat_bitmap_size);
2940 		return 1;
2941 	}
2942 
2943 	cp_pack_start_sum = __start_sum_addr(sbi);
2944 	cp_payload = __cp_payload(sbi);
2945 	if (cp_pack_start_sum < cp_payload + 1 ||
2946 		cp_pack_start_sum > blocks_per_seg - 1 -
2947 			NR_CURSEG_TYPE) {
2948 		f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
2949 			 cp_pack_start_sum);
2950 		return 1;
2951 	}
2952 
2953 	if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
2954 		le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
2955 		f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
2956 			  "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
2957 			  "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
2958 			  le32_to_cpu(ckpt->checksum_offset));
2959 		return 1;
2960 	}
2961 
2962 	if (unlikely(f2fs_cp_error(sbi))) {
2963 		f2fs_err(sbi, "A bug case: need to run fsck");
2964 		return 1;
2965 	}
2966 	return 0;
2967 }
2968 
2969 static void init_sb_info(struct f2fs_sb_info *sbi)
2970 {
2971 	struct f2fs_super_block *raw_super = sbi->raw_super;
2972 	int i;
2973 
2974 	sbi->log_sectors_per_block =
2975 		le32_to_cpu(raw_super->log_sectors_per_block);
2976 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2977 	sbi->blocksize = 1 << sbi->log_blocksize;
2978 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2979 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2980 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2981 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2982 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
2983 	sbi->total_node_count =
2984 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
2985 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2986 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2987 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2988 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2989 	sbi->cur_victim_sec = NULL_SECNO;
2990 	sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
2991 	sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
2992 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2993 	sbi->migration_granularity = sbi->segs_per_sec;
2994 
2995 	sbi->dir_level = DEF_DIR_LEVEL;
2996 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2997 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2998 	sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
2999 	sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
3000 	sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
3001 	sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
3002 				DEF_UMOUNT_DISCARD_TIMEOUT;
3003 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
3004 
3005 	for (i = 0; i < NR_COUNT_TYPE; i++)
3006 		atomic_set(&sbi->nr_pages[i], 0);
3007 
3008 	for (i = 0; i < META; i++)
3009 		atomic_set(&sbi->wb_sync_req[i], 0);
3010 
3011 	INIT_LIST_HEAD(&sbi->s_list);
3012 	mutex_init(&sbi->umount_mutex);
3013 	init_rwsem(&sbi->io_order_lock);
3014 	spin_lock_init(&sbi->cp_lock);
3015 
3016 	sbi->dirty_device = 0;
3017 	spin_lock_init(&sbi->dev_lock);
3018 
3019 	init_rwsem(&sbi->sb_lock);
3020 	init_rwsem(&sbi->pin_sem);
3021 }
3022 
3023 static int init_percpu_info(struct f2fs_sb_info *sbi)
3024 {
3025 	int err;
3026 
3027 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
3028 	if (err)
3029 		return err;
3030 
3031 	err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
3032 								GFP_KERNEL);
3033 	if (err)
3034 		percpu_counter_destroy(&sbi->alloc_valid_block_count);
3035 
3036 	return err;
3037 }
3038 
3039 #ifdef CONFIG_BLK_DEV_ZONED
3040 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
3041 			       void *data)
3042 {
3043 	struct f2fs_dev_info *dev = data;
3044 
3045 	if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL)
3046 		set_bit(idx, dev->blkz_seq);
3047 	return 0;
3048 }
3049 
3050 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
3051 {
3052 	struct block_device *bdev = FDEV(devi).bdev;
3053 	sector_t nr_sectors = bdev->bd_part->nr_sects;
3054 	int ret;
3055 
3056 	if (!f2fs_sb_has_blkzoned(sbi))
3057 		return 0;
3058 
3059 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3060 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
3061 		return -EINVAL;
3062 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
3063 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
3064 				__ilog2_u32(sbi->blocks_per_blkz))
3065 		return -EINVAL;
3066 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
3067 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
3068 					sbi->log_blocks_per_blkz;
3069 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
3070 		FDEV(devi).nr_blkz++;
3071 
3072 	FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
3073 					BITS_TO_LONGS(FDEV(devi).nr_blkz)
3074 					* sizeof(unsigned long),
3075 					GFP_KERNEL);
3076 	if (!FDEV(devi).blkz_seq)
3077 		return -ENOMEM;
3078 
3079 	/* Get block zones type */
3080 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3081 				  &FDEV(devi));
3082 	if (ret < 0)
3083 		return ret;
3084 
3085 	return 0;
3086 }
3087 #endif
3088 
3089 /*
3090  * Read f2fs raw super block.
3091  * Because we have two copies of super block, so read both of them
3092  * to get the first valid one. If any one of them is broken, we pass
3093  * them recovery flag back to the caller.
3094  */
3095 static int read_raw_super_block(struct f2fs_sb_info *sbi,
3096 			struct f2fs_super_block **raw_super,
3097 			int *valid_super_block, int *recovery)
3098 {
3099 	struct super_block *sb = sbi->sb;
3100 	int block;
3101 	struct buffer_head *bh;
3102 	struct f2fs_super_block *super;
3103 	int err = 0;
3104 
3105 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3106 	if (!super)
3107 		return -ENOMEM;
3108 
3109 	for (block = 0; block < 2; block++) {
3110 		bh = sb_bread(sb, block);
3111 		if (!bh) {
3112 			f2fs_err(sbi, "Unable to read %dth superblock",
3113 				 block + 1);
3114 			err = -EIO;
3115 			*recovery = 1;
3116 			continue;
3117 		}
3118 
3119 		/* sanity checking of raw super */
3120 		err = sanity_check_raw_super(sbi, bh);
3121 		if (err) {
3122 			f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3123 				 block + 1);
3124 			brelse(bh);
3125 			*recovery = 1;
3126 			continue;
3127 		}
3128 
3129 		if (!*raw_super) {
3130 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3131 							sizeof(*super));
3132 			*valid_super_block = block;
3133 			*raw_super = super;
3134 		}
3135 		brelse(bh);
3136 	}
3137 
3138 	/* No valid superblock */
3139 	if (!*raw_super)
3140 		kvfree(super);
3141 	else
3142 		err = 0;
3143 
3144 	return err;
3145 }
3146 
3147 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3148 {
3149 	struct buffer_head *bh;
3150 	__u32 crc = 0;
3151 	int err;
3152 
3153 	if ((recover && f2fs_readonly(sbi->sb)) ||
3154 				bdev_read_only(sbi->sb->s_bdev)) {
3155 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3156 		return -EROFS;
3157 	}
3158 
3159 	/* we should update superblock crc here */
3160 	if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3161 		crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3162 				offsetof(struct f2fs_super_block, crc));
3163 		F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3164 	}
3165 
3166 	/* write back-up superblock first */
3167 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3168 	if (!bh)
3169 		return -EIO;
3170 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3171 	brelse(bh);
3172 
3173 	/* if we are in recovery path, skip writing valid superblock */
3174 	if (recover || err)
3175 		return err;
3176 
3177 	/* write current valid superblock */
3178 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
3179 	if (!bh)
3180 		return -EIO;
3181 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3182 	brelse(bh);
3183 	return err;
3184 }
3185 
3186 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3187 {
3188 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3189 	unsigned int max_devices = MAX_DEVICES;
3190 	int i;
3191 
3192 	/* Initialize single device information */
3193 	if (!RDEV(0).path[0]) {
3194 		if (!bdev_is_zoned(sbi->sb->s_bdev))
3195 			return 0;
3196 		max_devices = 1;
3197 	}
3198 
3199 	/*
3200 	 * Initialize multiple devices information, or single
3201 	 * zoned block device information.
3202 	 */
3203 	sbi->devs = f2fs_kzalloc(sbi,
3204 				 array_size(max_devices,
3205 					    sizeof(struct f2fs_dev_info)),
3206 				 GFP_KERNEL);
3207 	if (!sbi->devs)
3208 		return -ENOMEM;
3209 
3210 	for (i = 0; i < max_devices; i++) {
3211 
3212 		if (i > 0 && !RDEV(i).path[0])
3213 			break;
3214 
3215 		if (max_devices == 1) {
3216 			/* Single zoned block device mount */
3217 			FDEV(0).bdev =
3218 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3219 					sbi->sb->s_mode, sbi->sb->s_type);
3220 		} else {
3221 			/* Multi-device mount */
3222 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3223 			FDEV(i).total_segments =
3224 				le32_to_cpu(RDEV(i).total_segments);
3225 			if (i == 0) {
3226 				FDEV(i).start_blk = 0;
3227 				FDEV(i).end_blk = FDEV(i).start_blk +
3228 				    (FDEV(i).total_segments <<
3229 				    sbi->log_blocks_per_seg) - 1 +
3230 				    le32_to_cpu(raw_super->segment0_blkaddr);
3231 			} else {
3232 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3233 				FDEV(i).end_blk = FDEV(i).start_blk +
3234 					(FDEV(i).total_segments <<
3235 					sbi->log_blocks_per_seg) - 1;
3236 			}
3237 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3238 					sbi->sb->s_mode, sbi->sb->s_type);
3239 		}
3240 		if (IS_ERR(FDEV(i).bdev))
3241 			return PTR_ERR(FDEV(i).bdev);
3242 
3243 		/* to release errored devices */
3244 		sbi->s_ndevs = i + 1;
3245 
3246 #ifdef CONFIG_BLK_DEV_ZONED
3247 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3248 				!f2fs_sb_has_blkzoned(sbi)) {
3249 			f2fs_err(sbi, "Zoned block device feature not enabled\n");
3250 			return -EINVAL;
3251 		}
3252 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3253 			if (init_blkz_info(sbi, i)) {
3254 				f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
3255 				return -EINVAL;
3256 			}
3257 			if (max_devices == 1)
3258 				break;
3259 			f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3260 				  i, FDEV(i).path,
3261 				  FDEV(i).total_segments,
3262 				  FDEV(i).start_blk, FDEV(i).end_blk,
3263 				  bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3264 				  "Host-aware" : "Host-managed");
3265 			continue;
3266 		}
3267 #endif
3268 		f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3269 			  i, FDEV(i).path,
3270 			  FDEV(i).total_segments,
3271 			  FDEV(i).start_blk, FDEV(i).end_blk);
3272 	}
3273 	f2fs_info(sbi,
3274 		  "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3275 	return 0;
3276 }
3277 
3278 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
3279 {
3280 #ifdef CONFIG_UNICODE
3281 	if (f2fs_sb_has_casefold(sbi) && !sbi->s_encoding) {
3282 		const struct f2fs_sb_encodings *encoding_info;
3283 		struct unicode_map *encoding;
3284 		__u16 encoding_flags;
3285 
3286 		if (f2fs_sb_has_encrypt(sbi)) {
3287 			f2fs_err(sbi,
3288 				"Can't mount with encoding and encryption");
3289 			return -EINVAL;
3290 		}
3291 
3292 		if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info,
3293 					  &encoding_flags)) {
3294 			f2fs_err(sbi,
3295 				 "Encoding requested by superblock is unknown");
3296 			return -EINVAL;
3297 		}
3298 
3299 		encoding = utf8_load(encoding_info->version);
3300 		if (IS_ERR(encoding)) {
3301 			f2fs_err(sbi,
3302 				 "can't mount with superblock charset: %s-%s "
3303 				 "not supported by the kernel. flags: 0x%x.",
3304 				 encoding_info->name, encoding_info->version,
3305 				 encoding_flags);
3306 			return PTR_ERR(encoding);
3307 		}
3308 		f2fs_info(sbi, "Using encoding defined by superblock: "
3309 			 "%s-%s with flags 0x%hx", encoding_info->name,
3310 			 encoding_info->version?:"\b", encoding_flags);
3311 
3312 		sbi->s_encoding = encoding;
3313 		sbi->s_encoding_flags = encoding_flags;
3314 		sbi->sb->s_d_op = &f2fs_dentry_ops;
3315 	}
3316 #else
3317 	if (f2fs_sb_has_casefold(sbi)) {
3318 		f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
3319 		return -EINVAL;
3320 	}
3321 #endif
3322 	return 0;
3323 }
3324 
3325 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3326 {
3327 	struct f2fs_sm_info *sm_i = SM_I(sbi);
3328 
3329 	/* adjust parameters according to the volume size */
3330 	if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3331 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3332 		sm_i->dcc_info->discard_granularity = 1;
3333 		sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3334 	}
3335 
3336 	sbi->readdir_ra = 1;
3337 }
3338 
3339 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3340 {
3341 	struct f2fs_sb_info *sbi;
3342 	struct f2fs_super_block *raw_super;
3343 	struct inode *root;
3344 	int err;
3345 	bool skip_recovery = false, need_fsck = false;
3346 	char *options = NULL;
3347 	int recovery, i, valid_super_block;
3348 	struct curseg_info *seg_i;
3349 	int retry_cnt = 1;
3350 
3351 try_onemore:
3352 	err = -EINVAL;
3353 	raw_super = NULL;
3354 	valid_super_block = -1;
3355 	recovery = 0;
3356 
3357 	/* allocate memory for f2fs-specific super block info */
3358 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3359 	if (!sbi)
3360 		return -ENOMEM;
3361 
3362 	sbi->sb = sb;
3363 
3364 	/* Load the checksum driver */
3365 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3366 	if (IS_ERR(sbi->s_chksum_driver)) {
3367 		f2fs_err(sbi, "Cannot load crc32 driver.");
3368 		err = PTR_ERR(sbi->s_chksum_driver);
3369 		sbi->s_chksum_driver = NULL;
3370 		goto free_sbi;
3371 	}
3372 
3373 	/* set a block size */
3374 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3375 		f2fs_err(sbi, "unable to set blocksize");
3376 		goto free_sbi;
3377 	}
3378 
3379 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3380 								&recovery);
3381 	if (err)
3382 		goto free_sbi;
3383 
3384 	sb->s_fs_info = sbi;
3385 	sbi->raw_super = raw_super;
3386 
3387 	/* precompute checksum seed for metadata */
3388 	if (f2fs_sb_has_inode_chksum(sbi))
3389 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3390 						sizeof(raw_super->uuid));
3391 
3392 	/*
3393 	 * The BLKZONED feature indicates that the drive was formatted with
3394 	 * zone alignment optimization. This is optional for host-aware
3395 	 * devices, but mandatory for host-managed zoned block devices.
3396 	 */
3397 #ifndef CONFIG_BLK_DEV_ZONED
3398 	if (f2fs_sb_has_blkzoned(sbi)) {
3399 		f2fs_err(sbi, "Zoned block device support is not enabled");
3400 		err = -EOPNOTSUPP;
3401 		goto free_sb_buf;
3402 	}
3403 #endif
3404 	default_options(sbi);
3405 	/* parse mount options */
3406 	options = kstrdup((const char *)data, GFP_KERNEL);
3407 	if (data && !options) {
3408 		err = -ENOMEM;
3409 		goto free_sb_buf;
3410 	}
3411 
3412 	err = parse_options(sb, options, false);
3413 	if (err)
3414 		goto free_options;
3415 
3416 	sbi->max_file_blocks = max_file_blocks();
3417 	sb->s_maxbytes = sbi->max_file_blocks <<
3418 				le32_to_cpu(raw_super->log_blocksize);
3419 	sb->s_max_links = F2FS_LINK_MAX;
3420 
3421 	err = f2fs_setup_casefold(sbi);
3422 	if (err)
3423 		goto free_options;
3424 
3425 #ifdef CONFIG_QUOTA
3426 	sb->dq_op = &f2fs_quota_operations;
3427 	sb->s_qcop = &f2fs_quotactl_ops;
3428 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3429 
3430 	if (f2fs_sb_has_quota_ino(sbi)) {
3431 		for (i = 0; i < MAXQUOTAS; i++) {
3432 			if (f2fs_qf_ino(sbi->sb, i))
3433 				sbi->nquota_files++;
3434 		}
3435 	}
3436 #endif
3437 
3438 	sb->s_op = &f2fs_sops;
3439 #ifdef CONFIG_FS_ENCRYPTION
3440 	sb->s_cop = &f2fs_cryptops;
3441 #endif
3442 #ifdef CONFIG_FS_VERITY
3443 	sb->s_vop = &f2fs_verityops;
3444 #endif
3445 	sb->s_xattr = f2fs_xattr_handlers;
3446 	sb->s_export_op = &f2fs_export_ops;
3447 	sb->s_magic = F2FS_SUPER_MAGIC;
3448 	sb->s_time_gran = 1;
3449 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3450 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3451 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3452 	sb->s_iflags |= SB_I_CGROUPWB;
3453 
3454 	/* init f2fs-specific super block info */
3455 	sbi->valid_super_block = valid_super_block;
3456 	init_rwsem(&sbi->gc_lock);
3457 	mutex_init(&sbi->writepages);
3458 	mutex_init(&sbi->cp_mutex);
3459 	init_rwsem(&sbi->node_write);
3460 	init_rwsem(&sbi->node_change);
3461 
3462 	/* disallow all the data/node/meta page writes */
3463 	set_sbi_flag(sbi, SBI_POR_DOING);
3464 	spin_lock_init(&sbi->stat_lock);
3465 
3466 	/* init iostat info */
3467 	spin_lock_init(&sbi->iostat_lock);
3468 	sbi->iostat_enable = false;
3469 	sbi->iostat_period_ms = DEFAULT_IOSTAT_PERIOD_MS;
3470 
3471 	for (i = 0; i < NR_PAGE_TYPE; i++) {
3472 		int n = (i == META) ? 1: NR_TEMP_TYPE;
3473 		int j;
3474 
3475 		sbi->write_io[i] =
3476 			f2fs_kmalloc(sbi,
3477 				     array_size(n,
3478 						sizeof(struct f2fs_bio_info)),
3479 				     GFP_KERNEL);
3480 		if (!sbi->write_io[i]) {
3481 			err = -ENOMEM;
3482 			goto free_bio_info;
3483 		}
3484 
3485 		for (j = HOT; j < n; j++) {
3486 			init_rwsem(&sbi->write_io[i][j].io_rwsem);
3487 			sbi->write_io[i][j].sbi = sbi;
3488 			sbi->write_io[i][j].bio = NULL;
3489 			spin_lock_init(&sbi->write_io[i][j].io_lock);
3490 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
3491 			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
3492 			init_rwsem(&sbi->write_io[i][j].bio_list_lock);
3493 		}
3494 	}
3495 
3496 	init_rwsem(&sbi->cp_rwsem);
3497 	init_rwsem(&sbi->quota_sem);
3498 	init_waitqueue_head(&sbi->cp_wait);
3499 	init_sb_info(sbi);
3500 
3501 	err = init_percpu_info(sbi);
3502 	if (err)
3503 		goto free_bio_info;
3504 
3505 	if (F2FS_IO_ALIGNED(sbi)) {
3506 		sbi->write_io_dummy =
3507 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
3508 		if (!sbi->write_io_dummy) {
3509 			err = -ENOMEM;
3510 			goto free_percpu;
3511 		}
3512 	}
3513 
3514 	/* init per sbi slab cache */
3515 	err = f2fs_init_xattr_caches(sbi);
3516 	if (err)
3517 		goto free_io_dummy;
3518 
3519 	/* get an inode for meta space */
3520 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
3521 	if (IS_ERR(sbi->meta_inode)) {
3522 		f2fs_err(sbi, "Failed to read F2FS meta data inode");
3523 		err = PTR_ERR(sbi->meta_inode);
3524 		goto free_xattr_cache;
3525 	}
3526 
3527 	err = f2fs_get_valid_checkpoint(sbi);
3528 	if (err) {
3529 		f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
3530 		goto free_meta_inode;
3531 	}
3532 
3533 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
3534 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3535 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
3536 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3537 		sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
3538 	}
3539 
3540 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
3541 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3542 
3543 	/* Initialize device list */
3544 	err = f2fs_scan_devices(sbi);
3545 	if (err) {
3546 		f2fs_err(sbi, "Failed to find devices");
3547 		goto free_devices;
3548 	}
3549 
3550 	err = f2fs_init_post_read_wq(sbi);
3551 	if (err) {
3552 		f2fs_err(sbi, "Failed to initialize post read workqueue");
3553 		goto free_devices;
3554 	}
3555 
3556 	sbi->total_valid_node_count =
3557 				le32_to_cpu(sbi->ckpt->valid_node_count);
3558 	percpu_counter_set(&sbi->total_valid_inode_count,
3559 				le32_to_cpu(sbi->ckpt->valid_inode_count));
3560 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
3561 	sbi->total_valid_block_count =
3562 				le64_to_cpu(sbi->ckpt->valid_block_count);
3563 	sbi->last_valid_block_count = sbi->total_valid_block_count;
3564 	sbi->reserved_blocks = 0;
3565 	sbi->current_reserved_blocks = 0;
3566 	limit_reserve_root(sbi);
3567 	adjust_unusable_cap_perc(sbi);
3568 
3569 	for (i = 0; i < NR_INODE_TYPE; i++) {
3570 		INIT_LIST_HEAD(&sbi->inode_list[i]);
3571 		spin_lock_init(&sbi->inode_lock[i]);
3572 	}
3573 	mutex_init(&sbi->flush_lock);
3574 
3575 	f2fs_init_extent_cache_info(sbi);
3576 
3577 	f2fs_init_ino_entry_info(sbi);
3578 
3579 	f2fs_init_fsync_node_info(sbi);
3580 
3581 	/* setup f2fs internal modules */
3582 	err = f2fs_build_segment_manager(sbi);
3583 	if (err) {
3584 		f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
3585 			 err);
3586 		goto free_sm;
3587 	}
3588 	err = f2fs_build_node_manager(sbi);
3589 	if (err) {
3590 		f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
3591 			 err);
3592 		goto free_nm;
3593 	}
3594 
3595 	/* For write statistics */
3596 	if (sb->s_bdev->bd_part)
3597 		sbi->sectors_written_start =
3598 			(u64)part_stat_read(sb->s_bdev->bd_part,
3599 					    sectors[STAT_WRITE]);
3600 
3601 	/* Read accumulated write IO statistics if exists */
3602 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
3603 	if (__exist_node_summaries(sbi))
3604 		sbi->kbytes_written =
3605 			le64_to_cpu(seg_i->journal->info.kbytes_written);
3606 
3607 	f2fs_build_gc_manager(sbi);
3608 
3609 	err = f2fs_build_stats(sbi);
3610 	if (err)
3611 		goto free_nm;
3612 
3613 	/* get an inode for node space */
3614 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
3615 	if (IS_ERR(sbi->node_inode)) {
3616 		f2fs_err(sbi, "Failed to read node inode");
3617 		err = PTR_ERR(sbi->node_inode);
3618 		goto free_stats;
3619 	}
3620 
3621 	/* read root inode and dentry */
3622 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
3623 	if (IS_ERR(root)) {
3624 		f2fs_err(sbi, "Failed to read root inode");
3625 		err = PTR_ERR(root);
3626 		goto free_node_inode;
3627 	}
3628 	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
3629 			!root->i_size || !root->i_nlink) {
3630 		iput(root);
3631 		err = -EINVAL;
3632 		goto free_node_inode;
3633 	}
3634 
3635 	sb->s_root = d_make_root(root); /* allocate root dentry */
3636 	if (!sb->s_root) {
3637 		err = -ENOMEM;
3638 		goto free_node_inode;
3639 	}
3640 
3641 	err = f2fs_register_sysfs(sbi);
3642 	if (err)
3643 		goto free_root_inode;
3644 
3645 #ifdef CONFIG_QUOTA
3646 	/* Enable quota usage during mount */
3647 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
3648 		err = f2fs_enable_quotas(sb);
3649 		if (err)
3650 			f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
3651 	}
3652 #endif
3653 	/* if there are any orphan inodes, free them */
3654 	err = f2fs_recover_orphan_inodes(sbi);
3655 	if (err)
3656 		goto free_meta;
3657 
3658 	if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
3659 		goto reset_checkpoint;
3660 
3661 	/* recover fsynced data */
3662 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
3663 			!test_opt(sbi, NORECOVERY)) {
3664 		/*
3665 		 * mount should be failed, when device has readonly mode, and
3666 		 * previous checkpoint was not done by clean system shutdown.
3667 		 */
3668 		if (f2fs_hw_is_readonly(sbi)) {
3669 			if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3670 				err = -EROFS;
3671 				f2fs_err(sbi, "Need to recover fsync data, but write access unavailable");
3672 				goto free_meta;
3673 			}
3674 			f2fs_info(sbi, "write access unavailable, skipping recovery");
3675 			goto reset_checkpoint;
3676 		}
3677 
3678 		if (need_fsck)
3679 			set_sbi_flag(sbi, SBI_NEED_FSCK);
3680 
3681 		if (skip_recovery)
3682 			goto reset_checkpoint;
3683 
3684 		err = f2fs_recover_fsync_data(sbi, false);
3685 		if (err < 0) {
3686 			if (err != -ENOMEM)
3687 				skip_recovery = true;
3688 			need_fsck = true;
3689 			f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
3690 				 err);
3691 			goto free_meta;
3692 		}
3693 	} else {
3694 		err = f2fs_recover_fsync_data(sbi, true);
3695 
3696 		if (!f2fs_readonly(sb) && err > 0) {
3697 			err = -EINVAL;
3698 			f2fs_err(sbi, "Need to recover fsync data");
3699 			goto free_meta;
3700 		}
3701 	}
3702 
3703 	/*
3704 	 * If the f2fs is not readonly and fsync data recovery succeeds,
3705 	 * check zoned block devices' write pointer consistency.
3706 	 */
3707 	if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
3708 		err = f2fs_check_write_pointer(sbi);
3709 		if (err)
3710 			goto free_meta;
3711 	}
3712 
3713 reset_checkpoint:
3714 	/* f2fs_recover_fsync_data() cleared this already */
3715 	clear_sbi_flag(sbi, SBI_POR_DOING);
3716 
3717 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
3718 		err = f2fs_disable_checkpoint(sbi);
3719 		if (err)
3720 			goto sync_free_meta;
3721 	} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
3722 		f2fs_enable_checkpoint(sbi);
3723 	}
3724 
3725 	/*
3726 	 * If filesystem is not mounted as read-only then
3727 	 * do start the gc_thread.
3728 	 */
3729 	if (F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF && !f2fs_readonly(sb)) {
3730 		/* After POR, we can run background GC thread.*/
3731 		err = f2fs_start_gc_thread(sbi);
3732 		if (err)
3733 			goto sync_free_meta;
3734 	}
3735 	kvfree(options);
3736 
3737 	/* recover broken superblock */
3738 	if (recovery) {
3739 		err = f2fs_commit_super(sbi, true);
3740 		f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
3741 			  sbi->valid_super_block ? 1 : 2, err);
3742 	}
3743 
3744 	f2fs_join_shrinker(sbi);
3745 
3746 	f2fs_tuning_parameters(sbi);
3747 
3748 	f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
3749 		    cur_cp_version(F2FS_CKPT(sbi)));
3750 	f2fs_update_time(sbi, CP_TIME);
3751 	f2fs_update_time(sbi, REQ_TIME);
3752 	clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3753 	return 0;
3754 
3755 sync_free_meta:
3756 	/* safe to flush all the data */
3757 	sync_filesystem(sbi->sb);
3758 	retry_cnt = 0;
3759 
3760 free_meta:
3761 #ifdef CONFIG_QUOTA
3762 	f2fs_truncate_quota_inode_pages(sb);
3763 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
3764 		f2fs_quota_off_umount(sbi->sb);
3765 #endif
3766 	/*
3767 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3768 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3769 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3770 	 * falls into an infinite loop in f2fs_sync_meta_pages().
3771 	 */
3772 	truncate_inode_pages_final(META_MAPPING(sbi));
3773 	/* evict some inodes being cached by GC */
3774 	evict_inodes(sb);
3775 	f2fs_unregister_sysfs(sbi);
3776 free_root_inode:
3777 	dput(sb->s_root);
3778 	sb->s_root = NULL;
3779 free_node_inode:
3780 	f2fs_release_ino_entry(sbi, true);
3781 	truncate_inode_pages_final(NODE_MAPPING(sbi));
3782 	iput(sbi->node_inode);
3783 	sbi->node_inode = NULL;
3784 free_stats:
3785 	f2fs_destroy_stats(sbi);
3786 free_nm:
3787 	f2fs_destroy_node_manager(sbi);
3788 free_sm:
3789 	f2fs_destroy_segment_manager(sbi);
3790 	f2fs_destroy_post_read_wq(sbi);
3791 free_devices:
3792 	destroy_device_list(sbi);
3793 	kvfree(sbi->ckpt);
3794 free_meta_inode:
3795 	make_bad_inode(sbi->meta_inode);
3796 	iput(sbi->meta_inode);
3797 	sbi->meta_inode = NULL;
3798 free_xattr_cache:
3799 	f2fs_destroy_xattr_caches(sbi);
3800 free_io_dummy:
3801 	mempool_destroy(sbi->write_io_dummy);
3802 free_percpu:
3803 	destroy_percpu_info(sbi);
3804 free_bio_info:
3805 	for (i = 0; i < NR_PAGE_TYPE; i++)
3806 		kvfree(sbi->write_io[i]);
3807 
3808 #ifdef CONFIG_UNICODE
3809 	utf8_unload(sbi->s_encoding);
3810 #endif
3811 free_options:
3812 #ifdef CONFIG_QUOTA
3813 	for (i = 0; i < MAXQUOTAS; i++)
3814 		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
3815 #endif
3816 	fscrypt_free_dummy_context(&F2FS_OPTION(sbi).dummy_enc_ctx);
3817 	kvfree(options);
3818 free_sb_buf:
3819 	kvfree(raw_super);
3820 free_sbi:
3821 	if (sbi->s_chksum_driver)
3822 		crypto_free_shash(sbi->s_chksum_driver);
3823 	kvfree(sbi);
3824 
3825 	/* give only one another chance */
3826 	if (retry_cnt > 0 && skip_recovery) {
3827 		retry_cnt--;
3828 		shrink_dcache_sb(sb);
3829 		goto try_onemore;
3830 	}
3831 	return err;
3832 }
3833 
3834 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3835 			const char *dev_name, void *data)
3836 {
3837 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3838 }
3839 
3840 static void kill_f2fs_super(struct super_block *sb)
3841 {
3842 	if (sb->s_root) {
3843 		struct f2fs_sb_info *sbi = F2FS_SB(sb);
3844 
3845 		set_sbi_flag(sbi, SBI_IS_CLOSE);
3846 		f2fs_stop_gc_thread(sbi);
3847 		f2fs_stop_discard_thread(sbi);
3848 
3849 		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
3850 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3851 			struct cp_control cpc = {
3852 				.reason = CP_UMOUNT,
3853 			};
3854 			f2fs_write_checkpoint(sbi, &cpc);
3855 		}
3856 
3857 		if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
3858 			sb->s_flags &= ~SB_RDONLY;
3859 	}
3860 	kill_block_super(sb);
3861 }
3862 
3863 static struct file_system_type f2fs_fs_type = {
3864 	.owner		= THIS_MODULE,
3865 	.name		= "f2fs",
3866 	.mount		= f2fs_mount,
3867 	.kill_sb	= kill_f2fs_super,
3868 	.fs_flags	= FS_REQUIRES_DEV,
3869 };
3870 MODULE_ALIAS_FS("f2fs");
3871 
3872 static int __init init_inodecache(void)
3873 {
3874 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3875 			sizeof(struct f2fs_inode_info), 0,
3876 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3877 	if (!f2fs_inode_cachep)
3878 		return -ENOMEM;
3879 	return 0;
3880 }
3881 
3882 static void destroy_inodecache(void)
3883 {
3884 	/*
3885 	 * Make sure all delayed rcu free inodes are flushed before we
3886 	 * destroy cache.
3887 	 */
3888 	rcu_barrier();
3889 	kmem_cache_destroy(f2fs_inode_cachep);
3890 }
3891 
3892 static int __init init_f2fs_fs(void)
3893 {
3894 	int err;
3895 
3896 	if (PAGE_SIZE != F2FS_BLKSIZE) {
3897 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
3898 				PAGE_SIZE, F2FS_BLKSIZE);
3899 		return -EINVAL;
3900 	}
3901 
3902 	f2fs_build_trace_ios();
3903 
3904 	err = init_inodecache();
3905 	if (err)
3906 		goto fail;
3907 	err = f2fs_create_node_manager_caches();
3908 	if (err)
3909 		goto free_inodecache;
3910 	err = f2fs_create_segment_manager_caches();
3911 	if (err)
3912 		goto free_node_manager_caches;
3913 	err = f2fs_create_checkpoint_caches();
3914 	if (err)
3915 		goto free_segment_manager_caches;
3916 	err = f2fs_create_extent_cache();
3917 	if (err)
3918 		goto free_checkpoint_caches;
3919 	err = f2fs_init_sysfs();
3920 	if (err)
3921 		goto free_extent_cache;
3922 	err = register_shrinker(&f2fs_shrinker_info);
3923 	if (err)
3924 		goto free_sysfs;
3925 	err = register_filesystem(&f2fs_fs_type);
3926 	if (err)
3927 		goto free_shrinker;
3928 	f2fs_create_root_stats();
3929 	err = f2fs_init_post_read_processing();
3930 	if (err)
3931 		goto free_root_stats;
3932 	err = f2fs_init_bio_entry_cache();
3933 	if (err)
3934 		goto free_post_read;
3935 	err = f2fs_init_bioset();
3936 	if (err)
3937 		goto free_bio_enrty_cache;
3938 	err = f2fs_init_compress_mempool();
3939 	if (err)
3940 		goto free_bioset;
3941 	return 0;
3942 free_bioset:
3943 	f2fs_destroy_bioset();
3944 free_bio_enrty_cache:
3945 	f2fs_destroy_bio_entry_cache();
3946 free_post_read:
3947 	f2fs_destroy_post_read_processing();
3948 free_root_stats:
3949 	f2fs_destroy_root_stats();
3950 	unregister_filesystem(&f2fs_fs_type);
3951 free_shrinker:
3952 	unregister_shrinker(&f2fs_shrinker_info);
3953 free_sysfs:
3954 	f2fs_exit_sysfs();
3955 free_extent_cache:
3956 	f2fs_destroy_extent_cache();
3957 free_checkpoint_caches:
3958 	f2fs_destroy_checkpoint_caches();
3959 free_segment_manager_caches:
3960 	f2fs_destroy_segment_manager_caches();
3961 free_node_manager_caches:
3962 	f2fs_destroy_node_manager_caches();
3963 free_inodecache:
3964 	destroy_inodecache();
3965 fail:
3966 	return err;
3967 }
3968 
3969 static void __exit exit_f2fs_fs(void)
3970 {
3971 	f2fs_destroy_compress_mempool();
3972 	f2fs_destroy_bioset();
3973 	f2fs_destroy_bio_entry_cache();
3974 	f2fs_destroy_post_read_processing();
3975 	f2fs_destroy_root_stats();
3976 	unregister_filesystem(&f2fs_fs_type);
3977 	unregister_shrinker(&f2fs_shrinker_info);
3978 	f2fs_exit_sysfs();
3979 	f2fs_destroy_extent_cache();
3980 	f2fs_destroy_checkpoint_caches();
3981 	f2fs_destroy_segment_manager_caches();
3982 	f2fs_destroy_node_manager_caches();
3983 	destroy_inodecache();
3984 	f2fs_destroy_trace_ios();
3985 }
3986 
3987 module_init(init_f2fs_fs)
3988 module_exit(exit_f2fs_fs)
3989 
3990 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
3991 MODULE_DESCRIPTION("Flash Friendly File System");
3992 MODULE_LICENSE("GPL");
3993 
3994