1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/statfs.h> 12 #include <linux/buffer_head.h> 13 #include <linux/backing-dev.h> 14 #include <linux/kthread.h> 15 #include <linux/parser.h> 16 #include <linux/mount.h> 17 #include <linux/seq_file.h> 18 #include <linux/proc_fs.h> 19 #include <linux/random.h> 20 #include <linux/exportfs.h> 21 #include <linux/blkdev.h> 22 #include <linux/quotaops.h> 23 #include <linux/f2fs_fs.h> 24 #include <linux/sysfs.h> 25 #include <linux/quota.h> 26 27 #include "f2fs.h" 28 #include "node.h" 29 #include "segment.h" 30 #include "xattr.h" 31 #include "gc.h" 32 #include "trace.h" 33 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/f2fs.h> 36 37 static struct kmem_cache *f2fs_inode_cachep; 38 39 #ifdef CONFIG_F2FS_FAULT_INJECTION 40 41 const char *f2fs_fault_name[FAULT_MAX] = { 42 [FAULT_KMALLOC] = "kmalloc", 43 [FAULT_KVMALLOC] = "kvmalloc", 44 [FAULT_PAGE_ALLOC] = "page alloc", 45 [FAULT_PAGE_GET] = "page get", 46 [FAULT_ALLOC_BIO] = "alloc bio", 47 [FAULT_ALLOC_NID] = "alloc nid", 48 [FAULT_ORPHAN] = "orphan", 49 [FAULT_BLOCK] = "no more block", 50 [FAULT_DIR_DEPTH] = "too big dir depth", 51 [FAULT_EVICT_INODE] = "evict_inode fail", 52 [FAULT_TRUNCATE] = "truncate fail", 53 [FAULT_READ_IO] = "read IO error", 54 [FAULT_CHECKPOINT] = "checkpoint error", 55 [FAULT_DISCARD] = "discard error", 56 [FAULT_WRITE_IO] = "write IO error", 57 }; 58 59 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 60 unsigned int type) 61 { 62 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 63 64 if (rate) { 65 atomic_set(&ffi->inject_ops, 0); 66 ffi->inject_rate = rate; 67 } 68 69 if (type) 70 ffi->inject_type = type; 71 72 if (!rate && !type) 73 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 74 } 75 #endif 76 77 /* f2fs-wide shrinker description */ 78 static struct shrinker f2fs_shrinker_info = { 79 .scan_objects = f2fs_shrink_scan, 80 .count_objects = f2fs_shrink_count, 81 .seeks = DEFAULT_SEEKS, 82 }; 83 84 enum { 85 Opt_gc_background, 86 Opt_disable_roll_forward, 87 Opt_norecovery, 88 Opt_discard, 89 Opt_nodiscard, 90 Opt_noheap, 91 Opt_heap, 92 Opt_user_xattr, 93 Opt_nouser_xattr, 94 Opt_acl, 95 Opt_noacl, 96 Opt_active_logs, 97 Opt_disable_ext_identify, 98 Opt_inline_xattr, 99 Opt_noinline_xattr, 100 Opt_inline_xattr_size, 101 Opt_inline_data, 102 Opt_inline_dentry, 103 Opt_noinline_dentry, 104 Opt_flush_merge, 105 Opt_noflush_merge, 106 Opt_nobarrier, 107 Opt_fastboot, 108 Opt_extent_cache, 109 Opt_noextent_cache, 110 Opt_noinline_data, 111 Opt_data_flush, 112 Opt_reserve_root, 113 Opt_resgid, 114 Opt_resuid, 115 Opt_mode, 116 Opt_io_size_bits, 117 Opt_fault_injection, 118 Opt_fault_type, 119 Opt_lazytime, 120 Opt_nolazytime, 121 Opt_quota, 122 Opt_noquota, 123 Opt_usrquota, 124 Opt_grpquota, 125 Opt_prjquota, 126 Opt_usrjquota, 127 Opt_grpjquota, 128 Opt_prjjquota, 129 Opt_offusrjquota, 130 Opt_offgrpjquota, 131 Opt_offprjjquota, 132 Opt_jqfmt_vfsold, 133 Opt_jqfmt_vfsv0, 134 Opt_jqfmt_vfsv1, 135 Opt_whint, 136 Opt_alloc, 137 Opt_fsync, 138 Opt_test_dummy_encryption, 139 Opt_checkpoint, 140 Opt_err, 141 }; 142 143 static match_table_t f2fs_tokens = { 144 {Opt_gc_background, "background_gc=%s"}, 145 {Opt_disable_roll_forward, "disable_roll_forward"}, 146 {Opt_norecovery, "norecovery"}, 147 {Opt_discard, "discard"}, 148 {Opt_nodiscard, "nodiscard"}, 149 {Opt_noheap, "no_heap"}, 150 {Opt_heap, "heap"}, 151 {Opt_user_xattr, "user_xattr"}, 152 {Opt_nouser_xattr, "nouser_xattr"}, 153 {Opt_acl, "acl"}, 154 {Opt_noacl, "noacl"}, 155 {Opt_active_logs, "active_logs=%u"}, 156 {Opt_disable_ext_identify, "disable_ext_identify"}, 157 {Opt_inline_xattr, "inline_xattr"}, 158 {Opt_noinline_xattr, "noinline_xattr"}, 159 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 160 {Opt_inline_data, "inline_data"}, 161 {Opt_inline_dentry, "inline_dentry"}, 162 {Opt_noinline_dentry, "noinline_dentry"}, 163 {Opt_flush_merge, "flush_merge"}, 164 {Opt_noflush_merge, "noflush_merge"}, 165 {Opt_nobarrier, "nobarrier"}, 166 {Opt_fastboot, "fastboot"}, 167 {Opt_extent_cache, "extent_cache"}, 168 {Opt_noextent_cache, "noextent_cache"}, 169 {Opt_noinline_data, "noinline_data"}, 170 {Opt_data_flush, "data_flush"}, 171 {Opt_reserve_root, "reserve_root=%u"}, 172 {Opt_resgid, "resgid=%u"}, 173 {Opt_resuid, "resuid=%u"}, 174 {Opt_mode, "mode=%s"}, 175 {Opt_io_size_bits, "io_bits=%u"}, 176 {Opt_fault_injection, "fault_injection=%u"}, 177 {Opt_fault_type, "fault_type=%u"}, 178 {Opt_lazytime, "lazytime"}, 179 {Opt_nolazytime, "nolazytime"}, 180 {Opt_quota, "quota"}, 181 {Opt_noquota, "noquota"}, 182 {Opt_usrquota, "usrquota"}, 183 {Opt_grpquota, "grpquota"}, 184 {Opt_prjquota, "prjquota"}, 185 {Opt_usrjquota, "usrjquota=%s"}, 186 {Opt_grpjquota, "grpjquota=%s"}, 187 {Opt_prjjquota, "prjjquota=%s"}, 188 {Opt_offusrjquota, "usrjquota="}, 189 {Opt_offgrpjquota, "grpjquota="}, 190 {Opt_offprjjquota, "prjjquota="}, 191 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 192 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 193 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 194 {Opt_whint, "whint_mode=%s"}, 195 {Opt_alloc, "alloc_mode=%s"}, 196 {Opt_fsync, "fsync_mode=%s"}, 197 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 198 {Opt_checkpoint, "checkpoint=%s"}, 199 {Opt_err, NULL}, 200 }; 201 202 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) 203 { 204 struct va_format vaf; 205 va_list args; 206 207 va_start(args, fmt); 208 vaf.fmt = fmt; 209 vaf.va = &args; 210 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); 211 va_end(args); 212 } 213 214 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 215 { 216 block_t limit = (sbi->user_block_count << 1) / 1000; 217 218 /* limit is 0.2% */ 219 if (test_opt(sbi, RESERVE_ROOT) && 220 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 221 F2FS_OPTION(sbi).root_reserved_blocks = limit; 222 f2fs_msg(sbi->sb, KERN_INFO, 223 "Reduce reserved blocks for root = %u", 224 F2FS_OPTION(sbi).root_reserved_blocks); 225 } 226 if (!test_opt(sbi, RESERVE_ROOT) && 227 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 228 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 229 !gid_eq(F2FS_OPTION(sbi).s_resgid, 230 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 231 f2fs_msg(sbi->sb, KERN_INFO, 232 "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 233 from_kuid_munged(&init_user_ns, 234 F2FS_OPTION(sbi).s_resuid), 235 from_kgid_munged(&init_user_ns, 236 F2FS_OPTION(sbi).s_resgid)); 237 } 238 239 static void init_once(void *foo) 240 { 241 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 242 243 inode_init_once(&fi->vfs_inode); 244 } 245 246 #ifdef CONFIG_QUOTA 247 static const char * const quotatypes[] = INITQFNAMES; 248 #define QTYPE2NAME(t) (quotatypes[t]) 249 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 250 substring_t *args) 251 { 252 struct f2fs_sb_info *sbi = F2FS_SB(sb); 253 char *qname; 254 int ret = -EINVAL; 255 256 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 257 f2fs_msg(sb, KERN_ERR, 258 "Cannot change journaled " 259 "quota options when quota turned on"); 260 return -EINVAL; 261 } 262 if (f2fs_sb_has_quota_ino(sbi)) { 263 f2fs_msg(sb, KERN_INFO, 264 "QUOTA feature is enabled, so ignore qf_name"); 265 return 0; 266 } 267 268 qname = match_strdup(args); 269 if (!qname) { 270 f2fs_msg(sb, KERN_ERR, 271 "Not enough memory for storing quotafile name"); 272 return -ENOMEM; 273 } 274 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 275 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 276 ret = 0; 277 else 278 f2fs_msg(sb, KERN_ERR, 279 "%s quota file already specified", 280 QTYPE2NAME(qtype)); 281 goto errout; 282 } 283 if (strchr(qname, '/')) { 284 f2fs_msg(sb, KERN_ERR, 285 "quotafile must be on filesystem root"); 286 goto errout; 287 } 288 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 289 set_opt(sbi, QUOTA); 290 return 0; 291 errout: 292 kvfree(qname); 293 return ret; 294 } 295 296 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 297 { 298 struct f2fs_sb_info *sbi = F2FS_SB(sb); 299 300 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 301 f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options" 302 " when quota turned on"); 303 return -EINVAL; 304 } 305 kvfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 306 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 307 return 0; 308 } 309 310 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 311 { 312 /* 313 * We do the test below only for project quotas. 'usrquota' and 314 * 'grpquota' mount options are allowed even without quota feature 315 * to support legacy quotas in quota files. 316 */ 317 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 318 f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. " 319 "Cannot enable project quota enforcement."); 320 return -1; 321 } 322 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 323 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 324 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 325 if (test_opt(sbi, USRQUOTA) && 326 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 327 clear_opt(sbi, USRQUOTA); 328 329 if (test_opt(sbi, GRPQUOTA) && 330 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 331 clear_opt(sbi, GRPQUOTA); 332 333 if (test_opt(sbi, PRJQUOTA) && 334 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 335 clear_opt(sbi, PRJQUOTA); 336 337 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 338 test_opt(sbi, PRJQUOTA)) { 339 f2fs_msg(sbi->sb, KERN_ERR, "old and new quota " 340 "format mixing"); 341 return -1; 342 } 343 344 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 345 f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format " 346 "not specified"); 347 return -1; 348 } 349 } 350 351 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 352 f2fs_msg(sbi->sb, KERN_INFO, 353 "QUOTA feature is enabled, so ignore jquota_fmt"); 354 F2FS_OPTION(sbi).s_jquota_fmt = 0; 355 } 356 return 0; 357 } 358 #endif 359 360 static int parse_options(struct super_block *sb, char *options) 361 { 362 struct f2fs_sb_info *sbi = F2FS_SB(sb); 363 substring_t args[MAX_OPT_ARGS]; 364 char *p, *name; 365 int arg = 0; 366 kuid_t uid; 367 kgid_t gid; 368 #ifdef CONFIG_QUOTA 369 int ret; 370 #endif 371 372 if (!options) 373 return 0; 374 375 while ((p = strsep(&options, ",")) != NULL) { 376 int token; 377 if (!*p) 378 continue; 379 /* 380 * Initialize args struct so we know whether arg was 381 * found; some options take optional arguments. 382 */ 383 args[0].to = args[0].from = NULL; 384 token = match_token(p, f2fs_tokens, args); 385 386 switch (token) { 387 case Opt_gc_background: 388 name = match_strdup(&args[0]); 389 390 if (!name) 391 return -ENOMEM; 392 if (strlen(name) == 2 && !strncmp(name, "on", 2)) { 393 set_opt(sbi, BG_GC); 394 clear_opt(sbi, FORCE_FG_GC); 395 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) { 396 clear_opt(sbi, BG_GC); 397 clear_opt(sbi, FORCE_FG_GC); 398 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) { 399 set_opt(sbi, BG_GC); 400 set_opt(sbi, FORCE_FG_GC); 401 } else { 402 kvfree(name); 403 return -EINVAL; 404 } 405 kvfree(name); 406 break; 407 case Opt_disable_roll_forward: 408 set_opt(sbi, DISABLE_ROLL_FORWARD); 409 break; 410 case Opt_norecovery: 411 /* this option mounts f2fs with ro */ 412 set_opt(sbi, DISABLE_ROLL_FORWARD); 413 if (!f2fs_readonly(sb)) 414 return -EINVAL; 415 break; 416 case Opt_discard: 417 set_opt(sbi, DISCARD); 418 break; 419 case Opt_nodiscard: 420 if (f2fs_sb_has_blkzoned(sbi)) { 421 f2fs_msg(sb, KERN_WARNING, 422 "discard is required for zoned block devices"); 423 return -EINVAL; 424 } 425 clear_opt(sbi, DISCARD); 426 break; 427 case Opt_noheap: 428 set_opt(sbi, NOHEAP); 429 break; 430 case Opt_heap: 431 clear_opt(sbi, NOHEAP); 432 break; 433 #ifdef CONFIG_F2FS_FS_XATTR 434 case Opt_user_xattr: 435 set_opt(sbi, XATTR_USER); 436 break; 437 case Opt_nouser_xattr: 438 clear_opt(sbi, XATTR_USER); 439 break; 440 case Opt_inline_xattr: 441 set_opt(sbi, INLINE_XATTR); 442 break; 443 case Opt_noinline_xattr: 444 clear_opt(sbi, INLINE_XATTR); 445 break; 446 case Opt_inline_xattr_size: 447 if (args->from && match_int(args, &arg)) 448 return -EINVAL; 449 set_opt(sbi, INLINE_XATTR_SIZE); 450 F2FS_OPTION(sbi).inline_xattr_size = arg; 451 break; 452 #else 453 case Opt_user_xattr: 454 f2fs_msg(sb, KERN_INFO, 455 "user_xattr options not supported"); 456 break; 457 case Opt_nouser_xattr: 458 f2fs_msg(sb, KERN_INFO, 459 "nouser_xattr options not supported"); 460 break; 461 case Opt_inline_xattr: 462 f2fs_msg(sb, KERN_INFO, 463 "inline_xattr options not supported"); 464 break; 465 case Opt_noinline_xattr: 466 f2fs_msg(sb, KERN_INFO, 467 "noinline_xattr options not supported"); 468 break; 469 #endif 470 #ifdef CONFIG_F2FS_FS_POSIX_ACL 471 case Opt_acl: 472 set_opt(sbi, POSIX_ACL); 473 break; 474 case Opt_noacl: 475 clear_opt(sbi, POSIX_ACL); 476 break; 477 #else 478 case Opt_acl: 479 f2fs_msg(sb, KERN_INFO, "acl options not supported"); 480 break; 481 case Opt_noacl: 482 f2fs_msg(sb, KERN_INFO, "noacl options not supported"); 483 break; 484 #endif 485 case Opt_active_logs: 486 if (args->from && match_int(args, &arg)) 487 return -EINVAL; 488 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 489 return -EINVAL; 490 F2FS_OPTION(sbi).active_logs = arg; 491 break; 492 case Opt_disable_ext_identify: 493 set_opt(sbi, DISABLE_EXT_IDENTIFY); 494 break; 495 case Opt_inline_data: 496 set_opt(sbi, INLINE_DATA); 497 break; 498 case Opt_inline_dentry: 499 set_opt(sbi, INLINE_DENTRY); 500 break; 501 case Opt_noinline_dentry: 502 clear_opt(sbi, INLINE_DENTRY); 503 break; 504 case Opt_flush_merge: 505 set_opt(sbi, FLUSH_MERGE); 506 break; 507 case Opt_noflush_merge: 508 clear_opt(sbi, FLUSH_MERGE); 509 break; 510 case Opt_nobarrier: 511 set_opt(sbi, NOBARRIER); 512 break; 513 case Opt_fastboot: 514 set_opt(sbi, FASTBOOT); 515 break; 516 case Opt_extent_cache: 517 set_opt(sbi, EXTENT_CACHE); 518 break; 519 case Opt_noextent_cache: 520 clear_opt(sbi, EXTENT_CACHE); 521 break; 522 case Opt_noinline_data: 523 clear_opt(sbi, INLINE_DATA); 524 break; 525 case Opt_data_flush: 526 set_opt(sbi, DATA_FLUSH); 527 break; 528 case Opt_reserve_root: 529 if (args->from && match_int(args, &arg)) 530 return -EINVAL; 531 if (test_opt(sbi, RESERVE_ROOT)) { 532 f2fs_msg(sb, KERN_INFO, 533 "Preserve previous reserve_root=%u", 534 F2FS_OPTION(sbi).root_reserved_blocks); 535 } else { 536 F2FS_OPTION(sbi).root_reserved_blocks = arg; 537 set_opt(sbi, RESERVE_ROOT); 538 } 539 break; 540 case Opt_resuid: 541 if (args->from && match_int(args, &arg)) 542 return -EINVAL; 543 uid = make_kuid(current_user_ns(), arg); 544 if (!uid_valid(uid)) { 545 f2fs_msg(sb, KERN_ERR, 546 "Invalid uid value %d", arg); 547 return -EINVAL; 548 } 549 F2FS_OPTION(sbi).s_resuid = uid; 550 break; 551 case Opt_resgid: 552 if (args->from && match_int(args, &arg)) 553 return -EINVAL; 554 gid = make_kgid(current_user_ns(), arg); 555 if (!gid_valid(gid)) { 556 f2fs_msg(sb, KERN_ERR, 557 "Invalid gid value %d", arg); 558 return -EINVAL; 559 } 560 F2FS_OPTION(sbi).s_resgid = gid; 561 break; 562 case Opt_mode: 563 name = match_strdup(&args[0]); 564 565 if (!name) 566 return -ENOMEM; 567 if (strlen(name) == 8 && 568 !strncmp(name, "adaptive", 8)) { 569 if (f2fs_sb_has_blkzoned(sbi)) { 570 f2fs_msg(sb, KERN_WARNING, 571 "adaptive mode is not allowed with " 572 "zoned block device feature"); 573 kvfree(name); 574 return -EINVAL; 575 } 576 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 577 } else if (strlen(name) == 3 && 578 !strncmp(name, "lfs", 3)) { 579 set_opt_mode(sbi, F2FS_MOUNT_LFS); 580 } else { 581 kvfree(name); 582 return -EINVAL; 583 } 584 kvfree(name); 585 break; 586 case Opt_io_size_bits: 587 if (args->from && match_int(args, &arg)) 588 return -EINVAL; 589 if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) { 590 f2fs_msg(sb, KERN_WARNING, 591 "Not support %d, larger than %d", 592 1 << arg, BIO_MAX_PAGES); 593 return -EINVAL; 594 } 595 F2FS_OPTION(sbi).write_io_size_bits = arg; 596 break; 597 #ifdef CONFIG_F2FS_FAULT_INJECTION 598 case Opt_fault_injection: 599 if (args->from && match_int(args, &arg)) 600 return -EINVAL; 601 f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE); 602 set_opt(sbi, FAULT_INJECTION); 603 break; 604 605 case Opt_fault_type: 606 if (args->from && match_int(args, &arg)) 607 return -EINVAL; 608 f2fs_build_fault_attr(sbi, 0, arg); 609 set_opt(sbi, FAULT_INJECTION); 610 break; 611 #else 612 case Opt_fault_injection: 613 f2fs_msg(sb, KERN_INFO, 614 "fault_injection options not supported"); 615 break; 616 617 case Opt_fault_type: 618 f2fs_msg(sb, KERN_INFO, 619 "fault_type options not supported"); 620 break; 621 #endif 622 case Opt_lazytime: 623 sb->s_flags |= SB_LAZYTIME; 624 break; 625 case Opt_nolazytime: 626 sb->s_flags &= ~SB_LAZYTIME; 627 break; 628 #ifdef CONFIG_QUOTA 629 case Opt_quota: 630 case Opt_usrquota: 631 set_opt(sbi, USRQUOTA); 632 break; 633 case Opt_grpquota: 634 set_opt(sbi, GRPQUOTA); 635 break; 636 case Opt_prjquota: 637 set_opt(sbi, PRJQUOTA); 638 break; 639 case Opt_usrjquota: 640 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 641 if (ret) 642 return ret; 643 break; 644 case Opt_grpjquota: 645 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 646 if (ret) 647 return ret; 648 break; 649 case Opt_prjjquota: 650 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 651 if (ret) 652 return ret; 653 break; 654 case Opt_offusrjquota: 655 ret = f2fs_clear_qf_name(sb, USRQUOTA); 656 if (ret) 657 return ret; 658 break; 659 case Opt_offgrpjquota: 660 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 661 if (ret) 662 return ret; 663 break; 664 case Opt_offprjjquota: 665 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 666 if (ret) 667 return ret; 668 break; 669 case Opt_jqfmt_vfsold: 670 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 671 break; 672 case Opt_jqfmt_vfsv0: 673 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 674 break; 675 case Opt_jqfmt_vfsv1: 676 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 677 break; 678 case Opt_noquota: 679 clear_opt(sbi, QUOTA); 680 clear_opt(sbi, USRQUOTA); 681 clear_opt(sbi, GRPQUOTA); 682 clear_opt(sbi, PRJQUOTA); 683 break; 684 #else 685 case Opt_quota: 686 case Opt_usrquota: 687 case Opt_grpquota: 688 case Opt_prjquota: 689 case Opt_usrjquota: 690 case Opt_grpjquota: 691 case Opt_prjjquota: 692 case Opt_offusrjquota: 693 case Opt_offgrpjquota: 694 case Opt_offprjjquota: 695 case Opt_jqfmt_vfsold: 696 case Opt_jqfmt_vfsv0: 697 case Opt_jqfmt_vfsv1: 698 case Opt_noquota: 699 f2fs_msg(sb, KERN_INFO, 700 "quota operations not supported"); 701 break; 702 #endif 703 case Opt_whint: 704 name = match_strdup(&args[0]); 705 if (!name) 706 return -ENOMEM; 707 if (strlen(name) == 10 && 708 !strncmp(name, "user-based", 10)) { 709 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER; 710 } else if (strlen(name) == 3 && 711 !strncmp(name, "off", 3)) { 712 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 713 } else if (strlen(name) == 8 && 714 !strncmp(name, "fs-based", 8)) { 715 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS; 716 } else { 717 kvfree(name); 718 return -EINVAL; 719 } 720 kvfree(name); 721 break; 722 case Opt_alloc: 723 name = match_strdup(&args[0]); 724 if (!name) 725 return -ENOMEM; 726 727 if (strlen(name) == 7 && 728 !strncmp(name, "default", 7)) { 729 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 730 } else if (strlen(name) == 5 && 731 !strncmp(name, "reuse", 5)) { 732 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 733 } else { 734 kvfree(name); 735 return -EINVAL; 736 } 737 kvfree(name); 738 break; 739 case Opt_fsync: 740 name = match_strdup(&args[0]); 741 if (!name) 742 return -ENOMEM; 743 if (strlen(name) == 5 && 744 !strncmp(name, "posix", 5)) { 745 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 746 } else if (strlen(name) == 6 && 747 !strncmp(name, "strict", 6)) { 748 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 749 } else if (strlen(name) == 9 && 750 !strncmp(name, "nobarrier", 9)) { 751 F2FS_OPTION(sbi).fsync_mode = 752 FSYNC_MODE_NOBARRIER; 753 } else { 754 kvfree(name); 755 return -EINVAL; 756 } 757 kvfree(name); 758 break; 759 case Opt_test_dummy_encryption: 760 #ifdef CONFIG_FS_ENCRYPTION 761 if (!f2fs_sb_has_encrypt(sbi)) { 762 f2fs_msg(sb, KERN_ERR, "Encrypt feature is off"); 763 return -EINVAL; 764 } 765 766 F2FS_OPTION(sbi).test_dummy_encryption = true; 767 f2fs_msg(sb, KERN_INFO, 768 "Test dummy encryption mode enabled"); 769 #else 770 f2fs_msg(sb, KERN_INFO, 771 "Test dummy encryption mount option ignored"); 772 #endif 773 break; 774 case Opt_checkpoint: 775 name = match_strdup(&args[0]); 776 if (!name) 777 return -ENOMEM; 778 779 if (strlen(name) == 6 && 780 !strncmp(name, "enable", 6)) { 781 clear_opt(sbi, DISABLE_CHECKPOINT); 782 } else if (strlen(name) == 7 && 783 !strncmp(name, "disable", 7)) { 784 set_opt(sbi, DISABLE_CHECKPOINT); 785 } else { 786 kvfree(name); 787 return -EINVAL; 788 } 789 kvfree(name); 790 break; 791 default: 792 f2fs_msg(sb, KERN_ERR, 793 "Unrecognized mount option \"%s\" or missing value", 794 p); 795 return -EINVAL; 796 } 797 } 798 #ifdef CONFIG_QUOTA 799 if (f2fs_check_quota_options(sbi)) 800 return -EINVAL; 801 #else 802 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 803 f2fs_msg(sbi->sb, KERN_INFO, 804 "Filesystem with quota feature cannot be mounted RDWR " 805 "without CONFIG_QUOTA"); 806 return -EINVAL; 807 } 808 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 809 f2fs_msg(sb, KERN_ERR, 810 "Filesystem with project quota feature cannot be " 811 "mounted RDWR without CONFIG_QUOTA"); 812 return -EINVAL; 813 } 814 #endif 815 816 if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) { 817 f2fs_msg(sb, KERN_ERR, 818 "Should set mode=lfs with %uKB-sized IO", 819 F2FS_IO_SIZE_KB(sbi)); 820 return -EINVAL; 821 } 822 823 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 824 int min_size, max_size; 825 826 if (!f2fs_sb_has_extra_attr(sbi) || 827 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 828 f2fs_msg(sb, KERN_ERR, 829 "extra_attr or flexible_inline_xattr " 830 "feature is off"); 831 return -EINVAL; 832 } 833 if (!test_opt(sbi, INLINE_XATTR)) { 834 f2fs_msg(sb, KERN_ERR, 835 "inline_xattr_size option should be " 836 "set with inline_xattr option"); 837 return -EINVAL; 838 } 839 840 min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32); 841 max_size = MAX_INLINE_XATTR_SIZE; 842 843 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 844 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 845 f2fs_msg(sb, KERN_ERR, 846 "inline xattr size is out of range: %d ~ %d", 847 min_size, max_size); 848 return -EINVAL; 849 } 850 } 851 852 if (test_opt(sbi, DISABLE_CHECKPOINT) && test_opt(sbi, LFS)) { 853 f2fs_msg(sb, KERN_ERR, 854 "LFS not compatible with checkpoint=disable\n"); 855 return -EINVAL; 856 } 857 858 /* Not pass down write hints if the number of active logs is lesser 859 * than NR_CURSEG_TYPE. 860 */ 861 if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE) 862 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 863 return 0; 864 } 865 866 static struct inode *f2fs_alloc_inode(struct super_block *sb) 867 { 868 struct f2fs_inode_info *fi; 869 870 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 871 if (!fi) 872 return NULL; 873 874 init_once((void *) fi); 875 876 /* Initialize f2fs-specific inode info */ 877 atomic_set(&fi->dirty_pages, 0); 878 init_rwsem(&fi->i_sem); 879 INIT_LIST_HEAD(&fi->dirty_list); 880 INIT_LIST_HEAD(&fi->gdirty_list); 881 INIT_LIST_HEAD(&fi->inmem_ilist); 882 INIT_LIST_HEAD(&fi->inmem_pages); 883 mutex_init(&fi->inmem_lock); 884 init_rwsem(&fi->i_gc_rwsem[READ]); 885 init_rwsem(&fi->i_gc_rwsem[WRITE]); 886 init_rwsem(&fi->i_mmap_sem); 887 init_rwsem(&fi->i_xattr_sem); 888 889 /* Will be used by directory only */ 890 fi->i_dir_level = F2FS_SB(sb)->dir_level; 891 892 return &fi->vfs_inode; 893 } 894 895 static int f2fs_drop_inode(struct inode *inode) 896 { 897 int ret; 898 /* 899 * This is to avoid a deadlock condition like below. 900 * writeback_single_inode(inode) 901 * - f2fs_write_data_page 902 * - f2fs_gc -> iput -> evict 903 * - inode_wait_for_writeback(inode) 904 */ 905 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 906 if (!inode->i_nlink && !is_bad_inode(inode)) { 907 /* to avoid evict_inode call simultaneously */ 908 atomic_inc(&inode->i_count); 909 spin_unlock(&inode->i_lock); 910 911 /* some remained atomic pages should discarded */ 912 if (f2fs_is_atomic_file(inode)) 913 f2fs_drop_inmem_pages(inode); 914 915 /* should remain fi->extent_tree for writepage */ 916 f2fs_destroy_extent_node(inode); 917 918 sb_start_intwrite(inode->i_sb); 919 f2fs_i_size_write(inode, 0); 920 921 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 922 inode, NULL, 0, DATA); 923 truncate_inode_pages_final(inode->i_mapping); 924 925 if (F2FS_HAS_BLOCKS(inode)) 926 f2fs_truncate(inode); 927 928 sb_end_intwrite(inode->i_sb); 929 930 spin_lock(&inode->i_lock); 931 atomic_dec(&inode->i_count); 932 } 933 trace_f2fs_drop_inode(inode, 0); 934 return 0; 935 } 936 ret = generic_drop_inode(inode); 937 trace_f2fs_drop_inode(inode, ret); 938 return ret; 939 } 940 941 int f2fs_inode_dirtied(struct inode *inode, bool sync) 942 { 943 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 944 int ret = 0; 945 946 spin_lock(&sbi->inode_lock[DIRTY_META]); 947 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 948 ret = 1; 949 } else { 950 set_inode_flag(inode, FI_DIRTY_INODE); 951 stat_inc_dirty_inode(sbi, DIRTY_META); 952 } 953 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 954 list_add_tail(&F2FS_I(inode)->gdirty_list, 955 &sbi->inode_list[DIRTY_META]); 956 inc_page_count(sbi, F2FS_DIRTY_IMETA); 957 } 958 spin_unlock(&sbi->inode_lock[DIRTY_META]); 959 return ret; 960 } 961 962 void f2fs_inode_synced(struct inode *inode) 963 { 964 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 965 966 spin_lock(&sbi->inode_lock[DIRTY_META]); 967 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 968 spin_unlock(&sbi->inode_lock[DIRTY_META]); 969 return; 970 } 971 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 972 list_del_init(&F2FS_I(inode)->gdirty_list); 973 dec_page_count(sbi, F2FS_DIRTY_IMETA); 974 } 975 clear_inode_flag(inode, FI_DIRTY_INODE); 976 clear_inode_flag(inode, FI_AUTO_RECOVER); 977 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 978 spin_unlock(&sbi->inode_lock[DIRTY_META]); 979 } 980 981 /* 982 * f2fs_dirty_inode() is called from __mark_inode_dirty() 983 * 984 * We should call set_dirty_inode to write the dirty inode through write_inode. 985 */ 986 static void f2fs_dirty_inode(struct inode *inode, int flags) 987 { 988 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 989 990 if (inode->i_ino == F2FS_NODE_INO(sbi) || 991 inode->i_ino == F2FS_META_INO(sbi)) 992 return; 993 994 if (flags == I_DIRTY_TIME) 995 return; 996 997 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 998 clear_inode_flag(inode, FI_AUTO_RECOVER); 999 1000 f2fs_inode_dirtied(inode, false); 1001 } 1002 1003 static void f2fs_i_callback(struct rcu_head *head) 1004 { 1005 struct inode *inode = container_of(head, struct inode, i_rcu); 1006 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1007 } 1008 1009 static void f2fs_destroy_inode(struct inode *inode) 1010 { 1011 call_rcu(&inode->i_rcu, f2fs_i_callback); 1012 } 1013 1014 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1015 { 1016 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1017 percpu_counter_destroy(&sbi->total_valid_inode_count); 1018 } 1019 1020 static void destroy_device_list(struct f2fs_sb_info *sbi) 1021 { 1022 int i; 1023 1024 for (i = 0; i < sbi->s_ndevs; i++) { 1025 blkdev_put(FDEV(i).bdev, FMODE_EXCL); 1026 #ifdef CONFIG_BLK_DEV_ZONED 1027 kvfree(FDEV(i).blkz_type); 1028 #endif 1029 } 1030 kvfree(sbi->devs); 1031 } 1032 1033 static void f2fs_put_super(struct super_block *sb) 1034 { 1035 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1036 int i; 1037 bool dropped; 1038 1039 f2fs_quota_off_umount(sb); 1040 1041 /* prevent remaining shrinker jobs */ 1042 mutex_lock(&sbi->umount_mutex); 1043 1044 /* 1045 * We don't need to do checkpoint when superblock is clean. 1046 * But, the previous checkpoint was not done by umount, it needs to do 1047 * clean checkpoint again. 1048 */ 1049 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1050 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1051 struct cp_control cpc = { 1052 .reason = CP_UMOUNT, 1053 }; 1054 f2fs_write_checkpoint(sbi, &cpc); 1055 } 1056 1057 /* be sure to wait for any on-going discard commands */ 1058 dropped = f2fs_issue_discard_timeout(sbi); 1059 1060 if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) && 1061 !sbi->discard_blks && !dropped) { 1062 struct cp_control cpc = { 1063 .reason = CP_UMOUNT | CP_TRIMMED, 1064 }; 1065 f2fs_write_checkpoint(sbi, &cpc); 1066 } 1067 1068 /* 1069 * normally superblock is clean, so we need to release this. 1070 * In addition, EIO will skip do checkpoint, we need this as well. 1071 */ 1072 f2fs_release_ino_entry(sbi, true); 1073 1074 f2fs_leave_shrinker(sbi); 1075 mutex_unlock(&sbi->umount_mutex); 1076 1077 /* our cp_error case, we can wait for any writeback page */ 1078 f2fs_flush_merged_writes(sbi); 1079 1080 f2fs_wait_on_all_pages_writeback(sbi); 1081 1082 f2fs_bug_on(sbi, sbi->fsync_node_num); 1083 1084 iput(sbi->node_inode); 1085 sbi->node_inode = NULL; 1086 1087 iput(sbi->meta_inode); 1088 sbi->meta_inode = NULL; 1089 1090 /* 1091 * iput() can update stat information, if f2fs_write_checkpoint() 1092 * above failed with error. 1093 */ 1094 f2fs_destroy_stats(sbi); 1095 1096 /* destroy f2fs internal modules */ 1097 f2fs_destroy_node_manager(sbi); 1098 f2fs_destroy_segment_manager(sbi); 1099 1100 kvfree(sbi->ckpt); 1101 1102 f2fs_unregister_sysfs(sbi); 1103 1104 sb->s_fs_info = NULL; 1105 if (sbi->s_chksum_driver) 1106 crypto_free_shash(sbi->s_chksum_driver); 1107 kvfree(sbi->raw_super); 1108 1109 destroy_device_list(sbi); 1110 mempool_destroy(sbi->write_io_dummy); 1111 #ifdef CONFIG_QUOTA 1112 for (i = 0; i < MAXQUOTAS; i++) 1113 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 1114 #endif 1115 destroy_percpu_info(sbi); 1116 for (i = 0; i < NR_PAGE_TYPE; i++) 1117 kvfree(sbi->write_io[i]); 1118 kvfree(sbi); 1119 } 1120 1121 int f2fs_sync_fs(struct super_block *sb, int sync) 1122 { 1123 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1124 int err = 0; 1125 1126 if (unlikely(f2fs_cp_error(sbi))) 1127 return 0; 1128 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1129 return 0; 1130 1131 trace_f2fs_sync_fs(sb, sync); 1132 1133 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1134 return -EAGAIN; 1135 1136 if (sync) { 1137 struct cp_control cpc; 1138 1139 cpc.reason = __get_cp_reason(sbi); 1140 1141 mutex_lock(&sbi->gc_mutex); 1142 err = f2fs_write_checkpoint(sbi, &cpc); 1143 mutex_unlock(&sbi->gc_mutex); 1144 } 1145 f2fs_trace_ios(NULL, 1); 1146 1147 return err; 1148 } 1149 1150 static int f2fs_freeze(struct super_block *sb) 1151 { 1152 if (f2fs_readonly(sb)) 1153 return 0; 1154 1155 /* IO error happened before */ 1156 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1157 return -EIO; 1158 1159 /* must be clean, since sync_filesystem() was already called */ 1160 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1161 return -EINVAL; 1162 return 0; 1163 } 1164 1165 static int f2fs_unfreeze(struct super_block *sb) 1166 { 1167 return 0; 1168 } 1169 1170 #ifdef CONFIG_QUOTA 1171 static int f2fs_statfs_project(struct super_block *sb, 1172 kprojid_t projid, struct kstatfs *buf) 1173 { 1174 struct kqid qid; 1175 struct dquot *dquot; 1176 u64 limit; 1177 u64 curblock; 1178 1179 qid = make_kqid_projid(projid); 1180 dquot = dqget(sb, qid); 1181 if (IS_ERR(dquot)) 1182 return PTR_ERR(dquot); 1183 spin_lock(&dquot->dq_dqb_lock); 1184 1185 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 1186 dquot->dq_dqb.dqb_bsoftlimit : 1187 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 1188 if (limit && buf->f_blocks > limit) { 1189 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 1190 buf->f_blocks = limit; 1191 buf->f_bfree = buf->f_bavail = 1192 (buf->f_blocks > curblock) ? 1193 (buf->f_blocks - curblock) : 0; 1194 } 1195 1196 limit = dquot->dq_dqb.dqb_isoftlimit ? 1197 dquot->dq_dqb.dqb_isoftlimit : 1198 dquot->dq_dqb.dqb_ihardlimit; 1199 if (limit && buf->f_files > limit) { 1200 buf->f_files = limit; 1201 buf->f_ffree = 1202 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1203 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1204 } 1205 1206 spin_unlock(&dquot->dq_dqb_lock); 1207 dqput(dquot); 1208 return 0; 1209 } 1210 #endif 1211 1212 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1213 { 1214 struct super_block *sb = dentry->d_sb; 1215 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1216 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1217 block_t total_count, user_block_count, start_count; 1218 u64 avail_node_count; 1219 1220 total_count = le64_to_cpu(sbi->raw_super->block_count); 1221 user_block_count = sbi->user_block_count; 1222 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1223 buf->f_type = F2FS_SUPER_MAGIC; 1224 buf->f_bsize = sbi->blocksize; 1225 1226 buf->f_blocks = total_count - start_count; 1227 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1228 sbi->current_reserved_blocks; 1229 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1230 buf->f_bfree = 0; 1231 else 1232 buf->f_bfree -= sbi->unusable_block_count; 1233 1234 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1235 buf->f_bavail = buf->f_bfree - 1236 F2FS_OPTION(sbi).root_reserved_blocks; 1237 else 1238 buf->f_bavail = 0; 1239 1240 avail_node_count = sbi->total_node_count - sbi->nquota_files - 1241 F2FS_RESERVED_NODE_NUM; 1242 1243 if (avail_node_count > user_block_count) { 1244 buf->f_files = user_block_count; 1245 buf->f_ffree = buf->f_bavail; 1246 } else { 1247 buf->f_files = avail_node_count; 1248 buf->f_ffree = min(avail_node_count - valid_node_count(sbi), 1249 buf->f_bavail); 1250 } 1251 1252 buf->f_namelen = F2FS_NAME_LEN; 1253 buf->f_fsid.val[0] = (u32)id; 1254 buf->f_fsid.val[1] = (u32)(id >> 32); 1255 1256 #ifdef CONFIG_QUOTA 1257 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1258 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1259 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1260 } 1261 #endif 1262 return 0; 1263 } 1264 1265 static inline void f2fs_show_quota_options(struct seq_file *seq, 1266 struct super_block *sb) 1267 { 1268 #ifdef CONFIG_QUOTA 1269 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1270 1271 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1272 char *fmtname = ""; 1273 1274 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1275 case QFMT_VFS_OLD: 1276 fmtname = "vfsold"; 1277 break; 1278 case QFMT_VFS_V0: 1279 fmtname = "vfsv0"; 1280 break; 1281 case QFMT_VFS_V1: 1282 fmtname = "vfsv1"; 1283 break; 1284 } 1285 seq_printf(seq, ",jqfmt=%s", fmtname); 1286 } 1287 1288 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1289 seq_show_option(seq, "usrjquota", 1290 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1291 1292 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1293 seq_show_option(seq, "grpjquota", 1294 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1295 1296 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1297 seq_show_option(seq, "prjjquota", 1298 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1299 #endif 1300 } 1301 1302 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1303 { 1304 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1305 1306 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) { 1307 if (test_opt(sbi, FORCE_FG_GC)) 1308 seq_printf(seq, ",background_gc=%s", "sync"); 1309 else 1310 seq_printf(seq, ",background_gc=%s", "on"); 1311 } else { 1312 seq_printf(seq, ",background_gc=%s", "off"); 1313 } 1314 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1315 seq_puts(seq, ",disable_roll_forward"); 1316 if (test_opt(sbi, DISCARD)) 1317 seq_puts(seq, ",discard"); 1318 if (test_opt(sbi, NOHEAP)) 1319 seq_puts(seq, ",no_heap"); 1320 else 1321 seq_puts(seq, ",heap"); 1322 #ifdef CONFIG_F2FS_FS_XATTR 1323 if (test_opt(sbi, XATTR_USER)) 1324 seq_puts(seq, ",user_xattr"); 1325 else 1326 seq_puts(seq, ",nouser_xattr"); 1327 if (test_opt(sbi, INLINE_XATTR)) 1328 seq_puts(seq, ",inline_xattr"); 1329 else 1330 seq_puts(seq, ",noinline_xattr"); 1331 if (test_opt(sbi, INLINE_XATTR_SIZE)) 1332 seq_printf(seq, ",inline_xattr_size=%u", 1333 F2FS_OPTION(sbi).inline_xattr_size); 1334 #endif 1335 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1336 if (test_opt(sbi, POSIX_ACL)) 1337 seq_puts(seq, ",acl"); 1338 else 1339 seq_puts(seq, ",noacl"); 1340 #endif 1341 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 1342 seq_puts(seq, ",disable_ext_identify"); 1343 if (test_opt(sbi, INLINE_DATA)) 1344 seq_puts(seq, ",inline_data"); 1345 else 1346 seq_puts(seq, ",noinline_data"); 1347 if (test_opt(sbi, INLINE_DENTRY)) 1348 seq_puts(seq, ",inline_dentry"); 1349 else 1350 seq_puts(seq, ",noinline_dentry"); 1351 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 1352 seq_puts(seq, ",flush_merge"); 1353 if (test_opt(sbi, NOBARRIER)) 1354 seq_puts(seq, ",nobarrier"); 1355 if (test_opt(sbi, FASTBOOT)) 1356 seq_puts(seq, ",fastboot"); 1357 if (test_opt(sbi, EXTENT_CACHE)) 1358 seq_puts(seq, ",extent_cache"); 1359 else 1360 seq_puts(seq, ",noextent_cache"); 1361 if (test_opt(sbi, DATA_FLUSH)) 1362 seq_puts(seq, ",data_flush"); 1363 1364 seq_puts(seq, ",mode="); 1365 if (test_opt(sbi, ADAPTIVE)) 1366 seq_puts(seq, "adaptive"); 1367 else if (test_opt(sbi, LFS)) 1368 seq_puts(seq, "lfs"); 1369 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 1370 if (test_opt(sbi, RESERVE_ROOT)) 1371 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 1372 F2FS_OPTION(sbi).root_reserved_blocks, 1373 from_kuid_munged(&init_user_ns, 1374 F2FS_OPTION(sbi).s_resuid), 1375 from_kgid_munged(&init_user_ns, 1376 F2FS_OPTION(sbi).s_resgid)); 1377 if (F2FS_IO_SIZE_BITS(sbi)) 1378 seq_printf(seq, ",io_bits=%u", 1379 F2FS_OPTION(sbi).write_io_size_bits); 1380 #ifdef CONFIG_F2FS_FAULT_INJECTION 1381 if (test_opt(sbi, FAULT_INJECTION)) { 1382 seq_printf(seq, ",fault_injection=%u", 1383 F2FS_OPTION(sbi).fault_info.inject_rate); 1384 seq_printf(seq, ",fault_type=%u", 1385 F2FS_OPTION(sbi).fault_info.inject_type); 1386 } 1387 #endif 1388 #ifdef CONFIG_QUOTA 1389 if (test_opt(sbi, QUOTA)) 1390 seq_puts(seq, ",quota"); 1391 if (test_opt(sbi, USRQUOTA)) 1392 seq_puts(seq, ",usrquota"); 1393 if (test_opt(sbi, GRPQUOTA)) 1394 seq_puts(seq, ",grpquota"); 1395 if (test_opt(sbi, PRJQUOTA)) 1396 seq_puts(seq, ",prjquota"); 1397 #endif 1398 f2fs_show_quota_options(seq, sbi->sb); 1399 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) 1400 seq_printf(seq, ",whint_mode=%s", "user-based"); 1401 else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) 1402 seq_printf(seq, ",whint_mode=%s", "fs-based"); 1403 #ifdef CONFIG_FS_ENCRYPTION 1404 if (F2FS_OPTION(sbi).test_dummy_encryption) 1405 seq_puts(seq, ",test_dummy_encryption"); 1406 #endif 1407 1408 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 1409 seq_printf(seq, ",alloc_mode=%s", "default"); 1410 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 1411 seq_printf(seq, ",alloc_mode=%s", "reuse"); 1412 1413 if (test_opt(sbi, DISABLE_CHECKPOINT)) 1414 seq_puts(seq, ",checkpoint=disable"); 1415 1416 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 1417 seq_printf(seq, ",fsync_mode=%s", "posix"); 1418 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 1419 seq_printf(seq, ",fsync_mode=%s", "strict"); 1420 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 1421 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 1422 return 0; 1423 } 1424 1425 static void default_options(struct f2fs_sb_info *sbi) 1426 { 1427 /* init some FS parameters */ 1428 F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE; 1429 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 1430 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 1431 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 1432 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1433 F2FS_OPTION(sbi).test_dummy_encryption = false; 1434 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 1435 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 1436 1437 set_opt(sbi, BG_GC); 1438 set_opt(sbi, INLINE_XATTR); 1439 set_opt(sbi, INLINE_DATA); 1440 set_opt(sbi, INLINE_DENTRY); 1441 set_opt(sbi, EXTENT_CACHE); 1442 set_opt(sbi, NOHEAP); 1443 clear_opt(sbi, DISABLE_CHECKPOINT); 1444 sbi->sb->s_flags |= SB_LAZYTIME; 1445 set_opt(sbi, FLUSH_MERGE); 1446 set_opt(sbi, DISCARD); 1447 if (f2fs_sb_has_blkzoned(sbi)) 1448 set_opt_mode(sbi, F2FS_MOUNT_LFS); 1449 else 1450 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 1451 1452 #ifdef CONFIG_F2FS_FS_XATTR 1453 set_opt(sbi, XATTR_USER); 1454 #endif 1455 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1456 set_opt(sbi, POSIX_ACL); 1457 #endif 1458 1459 f2fs_build_fault_attr(sbi, 0, 0); 1460 } 1461 1462 #ifdef CONFIG_QUOTA 1463 static int f2fs_enable_quotas(struct super_block *sb); 1464 #endif 1465 1466 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 1467 { 1468 unsigned int s_flags = sbi->sb->s_flags; 1469 struct cp_control cpc; 1470 int err = 0; 1471 int ret; 1472 1473 if (s_flags & SB_RDONLY) { 1474 f2fs_msg(sbi->sb, KERN_ERR, 1475 "checkpoint=disable on readonly fs"); 1476 return -EINVAL; 1477 } 1478 sbi->sb->s_flags |= SB_ACTIVE; 1479 1480 f2fs_update_time(sbi, DISABLE_TIME); 1481 1482 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 1483 mutex_lock(&sbi->gc_mutex); 1484 err = f2fs_gc(sbi, true, false, NULL_SEGNO); 1485 if (err == -ENODATA) { 1486 err = 0; 1487 break; 1488 } 1489 if (err && err != -EAGAIN) 1490 break; 1491 } 1492 1493 ret = sync_filesystem(sbi->sb); 1494 if (ret || err) { 1495 err = ret ? ret: err; 1496 goto restore_flag; 1497 } 1498 1499 if (f2fs_disable_cp_again(sbi)) { 1500 err = -EAGAIN; 1501 goto restore_flag; 1502 } 1503 1504 mutex_lock(&sbi->gc_mutex); 1505 cpc.reason = CP_PAUSE; 1506 set_sbi_flag(sbi, SBI_CP_DISABLED); 1507 f2fs_write_checkpoint(sbi, &cpc); 1508 1509 sbi->unusable_block_count = 0; 1510 mutex_unlock(&sbi->gc_mutex); 1511 restore_flag: 1512 sbi->sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 1513 return err; 1514 } 1515 1516 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 1517 { 1518 mutex_lock(&sbi->gc_mutex); 1519 f2fs_dirty_to_prefree(sbi); 1520 1521 clear_sbi_flag(sbi, SBI_CP_DISABLED); 1522 set_sbi_flag(sbi, SBI_IS_DIRTY); 1523 mutex_unlock(&sbi->gc_mutex); 1524 1525 f2fs_sync_fs(sbi->sb, 1); 1526 } 1527 1528 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 1529 { 1530 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1531 struct f2fs_mount_info org_mount_opt; 1532 unsigned long old_sb_flags; 1533 int err; 1534 bool need_restart_gc = false; 1535 bool need_stop_gc = false; 1536 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 1537 bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT); 1538 bool checkpoint_changed; 1539 #ifdef CONFIG_QUOTA 1540 int i, j; 1541 #endif 1542 1543 /* 1544 * Save the old mount options in case we 1545 * need to restore them. 1546 */ 1547 org_mount_opt = sbi->mount_opt; 1548 old_sb_flags = sb->s_flags; 1549 1550 #ifdef CONFIG_QUOTA 1551 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 1552 for (i = 0; i < MAXQUOTAS; i++) { 1553 if (F2FS_OPTION(sbi).s_qf_names[i]) { 1554 org_mount_opt.s_qf_names[i] = 1555 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 1556 GFP_KERNEL); 1557 if (!org_mount_opt.s_qf_names[i]) { 1558 for (j = 0; j < i; j++) 1559 kvfree(org_mount_opt.s_qf_names[j]); 1560 return -ENOMEM; 1561 } 1562 } else { 1563 org_mount_opt.s_qf_names[i] = NULL; 1564 } 1565 } 1566 #endif 1567 1568 /* recover superblocks we couldn't write due to previous RO mount */ 1569 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 1570 err = f2fs_commit_super(sbi, false); 1571 f2fs_msg(sb, KERN_INFO, 1572 "Try to recover all the superblocks, ret: %d", err); 1573 if (!err) 1574 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1575 } 1576 1577 default_options(sbi); 1578 1579 /* parse mount options */ 1580 err = parse_options(sb, data); 1581 if (err) 1582 goto restore_opts; 1583 checkpoint_changed = 1584 disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT); 1585 1586 /* 1587 * Previous and new state of filesystem is RO, 1588 * so skip checking GC and FLUSH_MERGE conditions. 1589 */ 1590 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 1591 goto skip; 1592 1593 #ifdef CONFIG_QUOTA 1594 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 1595 err = dquot_suspend(sb, -1); 1596 if (err < 0) 1597 goto restore_opts; 1598 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 1599 /* dquot_resume needs RW */ 1600 sb->s_flags &= ~SB_RDONLY; 1601 if (sb_any_quota_suspended(sb)) { 1602 dquot_resume(sb, -1); 1603 } else if (f2fs_sb_has_quota_ino(sbi)) { 1604 err = f2fs_enable_quotas(sb); 1605 if (err) 1606 goto restore_opts; 1607 } 1608 } 1609 #endif 1610 /* disallow enable/disable extent_cache dynamically */ 1611 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 1612 err = -EINVAL; 1613 f2fs_msg(sbi->sb, KERN_WARNING, 1614 "switch extent_cache option is not allowed"); 1615 goto restore_opts; 1616 } 1617 1618 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 1619 err = -EINVAL; 1620 f2fs_msg(sbi->sb, KERN_WARNING, 1621 "disabling checkpoint not compatible with read-only"); 1622 goto restore_opts; 1623 } 1624 1625 /* 1626 * We stop the GC thread if FS is mounted as RO 1627 * or if background_gc = off is passed in mount 1628 * option. Also sync the filesystem. 1629 */ 1630 if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) { 1631 if (sbi->gc_thread) { 1632 f2fs_stop_gc_thread(sbi); 1633 need_restart_gc = true; 1634 } 1635 } else if (!sbi->gc_thread) { 1636 err = f2fs_start_gc_thread(sbi); 1637 if (err) 1638 goto restore_opts; 1639 need_stop_gc = true; 1640 } 1641 1642 if (*flags & SB_RDONLY || 1643 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) { 1644 writeback_inodes_sb(sb, WB_REASON_SYNC); 1645 sync_inodes_sb(sb); 1646 1647 set_sbi_flag(sbi, SBI_IS_DIRTY); 1648 set_sbi_flag(sbi, SBI_IS_CLOSE); 1649 f2fs_sync_fs(sb, 1); 1650 clear_sbi_flag(sbi, SBI_IS_CLOSE); 1651 } 1652 1653 if (checkpoint_changed) { 1654 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 1655 err = f2fs_disable_checkpoint(sbi); 1656 if (err) 1657 goto restore_gc; 1658 } else { 1659 f2fs_enable_checkpoint(sbi); 1660 } 1661 } 1662 1663 /* 1664 * We stop issue flush thread if FS is mounted as RO 1665 * or if flush_merge is not passed in mount option. 1666 */ 1667 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 1668 clear_opt(sbi, FLUSH_MERGE); 1669 f2fs_destroy_flush_cmd_control(sbi, false); 1670 } else { 1671 err = f2fs_create_flush_cmd_control(sbi); 1672 if (err) 1673 goto restore_gc; 1674 } 1675 skip: 1676 #ifdef CONFIG_QUOTA 1677 /* Release old quota file names */ 1678 for (i = 0; i < MAXQUOTAS; i++) 1679 kvfree(org_mount_opt.s_qf_names[i]); 1680 #endif 1681 /* Update the POSIXACL Flag */ 1682 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 1683 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 1684 1685 limit_reserve_root(sbi); 1686 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 1687 return 0; 1688 restore_gc: 1689 if (need_restart_gc) { 1690 if (f2fs_start_gc_thread(sbi)) 1691 f2fs_msg(sbi->sb, KERN_WARNING, 1692 "background gc thread has stopped"); 1693 } else if (need_stop_gc) { 1694 f2fs_stop_gc_thread(sbi); 1695 } 1696 restore_opts: 1697 #ifdef CONFIG_QUOTA 1698 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 1699 for (i = 0; i < MAXQUOTAS; i++) { 1700 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 1701 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 1702 } 1703 #endif 1704 sbi->mount_opt = org_mount_opt; 1705 sb->s_flags = old_sb_flags; 1706 return err; 1707 } 1708 1709 #ifdef CONFIG_QUOTA 1710 /* Read data from quotafile */ 1711 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 1712 size_t len, loff_t off) 1713 { 1714 struct inode *inode = sb_dqopt(sb)->files[type]; 1715 struct address_space *mapping = inode->i_mapping; 1716 block_t blkidx = F2FS_BYTES_TO_BLK(off); 1717 int offset = off & (sb->s_blocksize - 1); 1718 int tocopy; 1719 size_t toread; 1720 loff_t i_size = i_size_read(inode); 1721 struct page *page; 1722 char *kaddr; 1723 1724 if (off > i_size) 1725 return 0; 1726 1727 if (off + len > i_size) 1728 len = i_size - off; 1729 toread = len; 1730 while (toread > 0) { 1731 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 1732 repeat: 1733 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 1734 if (IS_ERR(page)) { 1735 if (PTR_ERR(page) == -ENOMEM) { 1736 congestion_wait(BLK_RW_ASYNC, HZ/50); 1737 goto repeat; 1738 } 1739 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1740 return PTR_ERR(page); 1741 } 1742 1743 lock_page(page); 1744 1745 if (unlikely(page->mapping != mapping)) { 1746 f2fs_put_page(page, 1); 1747 goto repeat; 1748 } 1749 if (unlikely(!PageUptodate(page))) { 1750 f2fs_put_page(page, 1); 1751 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1752 return -EIO; 1753 } 1754 1755 kaddr = kmap_atomic(page); 1756 memcpy(data, kaddr + offset, tocopy); 1757 kunmap_atomic(kaddr); 1758 f2fs_put_page(page, 1); 1759 1760 offset = 0; 1761 toread -= tocopy; 1762 data += tocopy; 1763 blkidx++; 1764 } 1765 return len; 1766 } 1767 1768 /* Write to quotafile */ 1769 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 1770 const char *data, size_t len, loff_t off) 1771 { 1772 struct inode *inode = sb_dqopt(sb)->files[type]; 1773 struct address_space *mapping = inode->i_mapping; 1774 const struct address_space_operations *a_ops = mapping->a_ops; 1775 int offset = off & (sb->s_blocksize - 1); 1776 size_t towrite = len; 1777 struct page *page; 1778 char *kaddr; 1779 int err = 0; 1780 int tocopy; 1781 1782 while (towrite > 0) { 1783 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 1784 towrite); 1785 retry: 1786 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0, 1787 &page, NULL); 1788 if (unlikely(err)) { 1789 if (err == -ENOMEM) { 1790 congestion_wait(BLK_RW_ASYNC, HZ/50); 1791 goto retry; 1792 } 1793 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1794 break; 1795 } 1796 1797 kaddr = kmap_atomic(page); 1798 memcpy(kaddr + offset, data, tocopy); 1799 kunmap_atomic(kaddr); 1800 flush_dcache_page(page); 1801 1802 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 1803 page, NULL); 1804 offset = 0; 1805 towrite -= tocopy; 1806 off += tocopy; 1807 data += tocopy; 1808 cond_resched(); 1809 } 1810 1811 if (len == towrite) 1812 return err; 1813 inode->i_mtime = inode->i_ctime = current_time(inode); 1814 f2fs_mark_inode_dirty_sync(inode, false); 1815 return len - towrite; 1816 } 1817 1818 static struct dquot **f2fs_get_dquots(struct inode *inode) 1819 { 1820 return F2FS_I(inode)->i_dquot; 1821 } 1822 1823 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 1824 { 1825 return &F2FS_I(inode)->i_reserved_quota; 1826 } 1827 1828 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 1829 { 1830 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 1831 f2fs_msg(sbi->sb, KERN_ERR, 1832 "quota sysfile may be corrupted, skip loading it"); 1833 return 0; 1834 } 1835 1836 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 1837 F2FS_OPTION(sbi).s_jquota_fmt, type); 1838 } 1839 1840 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 1841 { 1842 int enabled = 0; 1843 int i, err; 1844 1845 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 1846 err = f2fs_enable_quotas(sbi->sb); 1847 if (err) { 1848 f2fs_msg(sbi->sb, KERN_ERR, 1849 "Cannot turn on quota_ino: %d", err); 1850 return 0; 1851 } 1852 return 1; 1853 } 1854 1855 for (i = 0; i < MAXQUOTAS; i++) { 1856 if (F2FS_OPTION(sbi).s_qf_names[i]) { 1857 err = f2fs_quota_on_mount(sbi, i); 1858 if (!err) { 1859 enabled = 1; 1860 continue; 1861 } 1862 f2fs_msg(sbi->sb, KERN_ERR, 1863 "Cannot turn on quotas: %d on %d", err, i); 1864 } 1865 } 1866 return enabled; 1867 } 1868 1869 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 1870 unsigned int flags) 1871 { 1872 struct inode *qf_inode; 1873 unsigned long qf_inum; 1874 int err; 1875 1876 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 1877 1878 qf_inum = f2fs_qf_ino(sb, type); 1879 if (!qf_inum) 1880 return -EPERM; 1881 1882 qf_inode = f2fs_iget(sb, qf_inum); 1883 if (IS_ERR(qf_inode)) { 1884 f2fs_msg(sb, KERN_ERR, 1885 "Bad quota inode %u:%lu", type, qf_inum); 1886 return PTR_ERR(qf_inode); 1887 } 1888 1889 /* Don't account quota for quota files to avoid recursion */ 1890 qf_inode->i_flags |= S_NOQUOTA; 1891 err = dquot_enable(qf_inode, type, format_id, flags); 1892 iput(qf_inode); 1893 return err; 1894 } 1895 1896 static int f2fs_enable_quotas(struct super_block *sb) 1897 { 1898 int type, err = 0; 1899 unsigned long qf_inum; 1900 bool quota_mopt[MAXQUOTAS] = { 1901 test_opt(F2FS_SB(sb), USRQUOTA), 1902 test_opt(F2FS_SB(sb), GRPQUOTA), 1903 test_opt(F2FS_SB(sb), PRJQUOTA), 1904 }; 1905 1906 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 1907 f2fs_msg(sb, KERN_ERR, 1908 "quota file may be corrupted, skip loading it"); 1909 return 0; 1910 } 1911 1912 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 1913 1914 for (type = 0; type < MAXQUOTAS; type++) { 1915 qf_inum = f2fs_qf_ino(sb, type); 1916 if (qf_inum) { 1917 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 1918 DQUOT_USAGE_ENABLED | 1919 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 1920 if (err) { 1921 f2fs_msg(sb, KERN_ERR, 1922 "Failed to enable quota tracking " 1923 "(type=%d, err=%d). Please run " 1924 "fsck to fix.", type, err); 1925 for (type--; type >= 0; type--) 1926 dquot_quota_off(sb, type); 1927 set_sbi_flag(F2FS_SB(sb), 1928 SBI_QUOTA_NEED_REPAIR); 1929 return err; 1930 } 1931 } 1932 } 1933 return 0; 1934 } 1935 1936 int f2fs_quota_sync(struct super_block *sb, int type) 1937 { 1938 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1939 struct quota_info *dqopt = sb_dqopt(sb); 1940 int cnt; 1941 int ret; 1942 1943 ret = dquot_writeback_dquots(sb, type); 1944 if (ret) 1945 goto out; 1946 1947 /* 1948 * Now when everything is written we can discard the pagecache so 1949 * that userspace sees the changes. 1950 */ 1951 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 1952 struct address_space *mapping; 1953 1954 if (type != -1 && cnt != type) 1955 continue; 1956 if (!sb_has_quota_active(sb, cnt)) 1957 continue; 1958 1959 mapping = dqopt->files[cnt]->i_mapping; 1960 1961 ret = filemap_fdatawrite(mapping); 1962 if (ret) 1963 goto out; 1964 1965 /* if we are using journalled quota */ 1966 if (is_journalled_quota(sbi)) 1967 continue; 1968 1969 ret = filemap_fdatawait(mapping); 1970 if (ret) 1971 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1972 1973 inode_lock(dqopt->files[cnt]); 1974 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0); 1975 inode_unlock(dqopt->files[cnt]); 1976 } 1977 out: 1978 if (ret) 1979 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1980 return ret; 1981 } 1982 1983 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 1984 const struct path *path) 1985 { 1986 struct inode *inode; 1987 int err; 1988 1989 err = f2fs_quota_sync(sb, type); 1990 if (err) 1991 return err; 1992 1993 err = dquot_quota_on(sb, type, format_id, path); 1994 if (err) 1995 return err; 1996 1997 inode = d_inode(path->dentry); 1998 1999 inode_lock(inode); 2000 F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL; 2001 f2fs_set_inode_flags(inode); 2002 inode_unlock(inode); 2003 f2fs_mark_inode_dirty_sync(inode, false); 2004 2005 return 0; 2006 } 2007 2008 static int f2fs_quota_off(struct super_block *sb, int type) 2009 { 2010 struct inode *inode = sb_dqopt(sb)->files[type]; 2011 int err; 2012 2013 if (!inode || !igrab(inode)) 2014 return dquot_quota_off(sb, type); 2015 2016 err = f2fs_quota_sync(sb, type); 2017 if (err) 2018 goto out_put; 2019 2020 err = dquot_quota_off(sb, type); 2021 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 2022 goto out_put; 2023 2024 inode_lock(inode); 2025 F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL); 2026 f2fs_set_inode_flags(inode); 2027 inode_unlock(inode); 2028 f2fs_mark_inode_dirty_sync(inode, false); 2029 out_put: 2030 iput(inode); 2031 return err; 2032 } 2033 2034 void f2fs_quota_off_umount(struct super_block *sb) 2035 { 2036 int type; 2037 int err; 2038 2039 for (type = 0; type < MAXQUOTAS; type++) { 2040 err = f2fs_quota_off(sb, type); 2041 if (err) { 2042 int ret = dquot_quota_off(sb, type); 2043 2044 f2fs_msg(sb, KERN_ERR, 2045 "Fail to turn off disk quota " 2046 "(type: %d, err: %d, ret:%d), Please " 2047 "run fsck to fix it.", type, err, ret); 2048 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2049 } 2050 } 2051 /* 2052 * In case of checkpoint=disable, we must flush quota blocks. 2053 * This can cause NULL exception for node_inode in end_io, since 2054 * put_super already dropped it. 2055 */ 2056 sync_filesystem(sb); 2057 } 2058 2059 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 2060 { 2061 struct quota_info *dqopt = sb_dqopt(sb); 2062 int type; 2063 2064 for (type = 0; type < MAXQUOTAS; type++) { 2065 if (!dqopt->files[type]) 2066 continue; 2067 f2fs_inode_synced(dqopt->files[type]); 2068 } 2069 } 2070 2071 static int f2fs_dquot_commit(struct dquot *dquot) 2072 { 2073 int ret; 2074 2075 ret = dquot_commit(dquot); 2076 if (ret < 0) 2077 set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR); 2078 return ret; 2079 } 2080 2081 static int f2fs_dquot_acquire(struct dquot *dquot) 2082 { 2083 int ret; 2084 2085 ret = dquot_acquire(dquot); 2086 if (ret < 0) 2087 set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR); 2088 2089 return ret; 2090 } 2091 2092 static int f2fs_dquot_release(struct dquot *dquot) 2093 { 2094 int ret; 2095 2096 ret = dquot_release(dquot); 2097 if (ret < 0) 2098 set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR); 2099 return ret; 2100 } 2101 2102 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 2103 { 2104 struct super_block *sb = dquot->dq_sb; 2105 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2106 int ret; 2107 2108 ret = dquot_mark_dquot_dirty(dquot); 2109 2110 /* if we are using journalled quota */ 2111 if (is_journalled_quota(sbi)) 2112 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 2113 2114 return ret; 2115 } 2116 2117 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 2118 { 2119 int ret; 2120 2121 ret = dquot_commit_info(sb, type); 2122 if (ret < 0) 2123 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2124 return ret; 2125 } 2126 2127 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 2128 { 2129 *projid = F2FS_I(inode)->i_projid; 2130 return 0; 2131 } 2132 2133 static const struct dquot_operations f2fs_quota_operations = { 2134 .get_reserved_space = f2fs_get_reserved_space, 2135 .write_dquot = f2fs_dquot_commit, 2136 .acquire_dquot = f2fs_dquot_acquire, 2137 .release_dquot = f2fs_dquot_release, 2138 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 2139 .write_info = f2fs_dquot_commit_info, 2140 .alloc_dquot = dquot_alloc, 2141 .destroy_dquot = dquot_destroy, 2142 .get_projid = f2fs_get_projid, 2143 .get_next_id = dquot_get_next_id, 2144 }; 2145 2146 static const struct quotactl_ops f2fs_quotactl_ops = { 2147 .quota_on = f2fs_quota_on, 2148 .quota_off = f2fs_quota_off, 2149 .quota_sync = f2fs_quota_sync, 2150 .get_state = dquot_get_state, 2151 .set_info = dquot_set_dqinfo, 2152 .get_dqblk = dquot_get_dqblk, 2153 .set_dqblk = dquot_set_dqblk, 2154 .get_nextdqblk = dquot_get_next_dqblk, 2155 }; 2156 #else 2157 int f2fs_quota_sync(struct super_block *sb, int type) 2158 { 2159 return 0; 2160 } 2161 2162 void f2fs_quota_off_umount(struct super_block *sb) 2163 { 2164 } 2165 #endif 2166 2167 static const struct super_operations f2fs_sops = { 2168 .alloc_inode = f2fs_alloc_inode, 2169 .drop_inode = f2fs_drop_inode, 2170 .destroy_inode = f2fs_destroy_inode, 2171 .write_inode = f2fs_write_inode, 2172 .dirty_inode = f2fs_dirty_inode, 2173 .show_options = f2fs_show_options, 2174 #ifdef CONFIG_QUOTA 2175 .quota_read = f2fs_quota_read, 2176 .quota_write = f2fs_quota_write, 2177 .get_dquots = f2fs_get_dquots, 2178 #endif 2179 .evict_inode = f2fs_evict_inode, 2180 .put_super = f2fs_put_super, 2181 .sync_fs = f2fs_sync_fs, 2182 .freeze_fs = f2fs_freeze, 2183 .unfreeze_fs = f2fs_unfreeze, 2184 .statfs = f2fs_statfs, 2185 .remount_fs = f2fs_remount, 2186 }; 2187 2188 #ifdef CONFIG_FS_ENCRYPTION 2189 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 2190 { 2191 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2192 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2193 ctx, len, NULL); 2194 } 2195 2196 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 2197 void *fs_data) 2198 { 2199 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2200 2201 /* 2202 * Encrypting the root directory is not allowed because fsck 2203 * expects lost+found directory to exist and remain unencrypted 2204 * if LOST_FOUND feature is enabled. 2205 * 2206 */ 2207 if (f2fs_sb_has_lost_found(sbi) && 2208 inode->i_ino == F2FS_ROOT_INO(sbi)) 2209 return -EPERM; 2210 2211 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2212 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2213 ctx, len, fs_data, XATTR_CREATE); 2214 } 2215 2216 static bool f2fs_dummy_context(struct inode *inode) 2217 { 2218 return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode)); 2219 } 2220 2221 static const struct fscrypt_operations f2fs_cryptops = { 2222 .key_prefix = "f2fs:", 2223 .get_context = f2fs_get_context, 2224 .set_context = f2fs_set_context, 2225 .dummy_context = f2fs_dummy_context, 2226 .empty_dir = f2fs_empty_dir, 2227 .max_namelen = F2FS_NAME_LEN, 2228 }; 2229 #endif 2230 2231 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 2232 u64 ino, u32 generation) 2233 { 2234 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2235 struct inode *inode; 2236 2237 if (f2fs_check_nid_range(sbi, ino)) 2238 return ERR_PTR(-ESTALE); 2239 2240 /* 2241 * f2fs_iget isn't quite right if the inode is currently unallocated! 2242 * However f2fs_iget currently does appropriate checks to handle stale 2243 * inodes so everything is OK. 2244 */ 2245 inode = f2fs_iget(sb, ino); 2246 if (IS_ERR(inode)) 2247 return ERR_CAST(inode); 2248 if (unlikely(generation && inode->i_generation != generation)) { 2249 /* we didn't find the right inode.. */ 2250 iput(inode); 2251 return ERR_PTR(-ESTALE); 2252 } 2253 return inode; 2254 } 2255 2256 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 2257 int fh_len, int fh_type) 2258 { 2259 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 2260 f2fs_nfs_get_inode); 2261 } 2262 2263 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 2264 int fh_len, int fh_type) 2265 { 2266 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 2267 f2fs_nfs_get_inode); 2268 } 2269 2270 static const struct export_operations f2fs_export_ops = { 2271 .fh_to_dentry = f2fs_fh_to_dentry, 2272 .fh_to_parent = f2fs_fh_to_parent, 2273 .get_parent = f2fs_get_parent, 2274 }; 2275 2276 static loff_t max_file_blocks(void) 2277 { 2278 loff_t result = 0; 2279 loff_t leaf_count = ADDRS_PER_BLOCK; 2280 2281 /* 2282 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 2283 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 2284 * space in inode.i_addr, it will be more safe to reassign 2285 * result as zero. 2286 */ 2287 2288 /* two direct node blocks */ 2289 result += (leaf_count * 2); 2290 2291 /* two indirect node blocks */ 2292 leaf_count *= NIDS_PER_BLOCK; 2293 result += (leaf_count * 2); 2294 2295 /* one double indirect node block */ 2296 leaf_count *= NIDS_PER_BLOCK; 2297 result += leaf_count; 2298 2299 return result; 2300 } 2301 2302 static int __f2fs_commit_super(struct buffer_head *bh, 2303 struct f2fs_super_block *super) 2304 { 2305 lock_buffer(bh); 2306 if (super) 2307 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 2308 set_buffer_dirty(bh); 2309 unlock_buffer(bh); 2310 2311 /* it's rare case, we can do fua all the time */ 2312 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 2313 } 2314 2315 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 2316 struct buffer_head *bh) 2317 { 2318 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2319 (bh->b_data + F2FS_SUPER_OFFSET); 2320 struct super_block *sb = sbi->sb; 2321 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2322 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 2323 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 2324 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 2325 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2326 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2327 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 2328 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 2329 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 2330 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 2331 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2332 u32 segment_count = le32_to_cpu(raw_super->segment_count); 2333 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2334 u64 main_end_blkaddr = main_blkaddr + 2335 (segment_count_main << log_blocks_per_seg); 2336 u64 seg_end_blkaddr = segment0_blkaddr + 2337 (segment_count << log_blocks_per_seg); 2338 2339 if (segment0_blkaddr != cp_blkaddr) { 2340 f2fs_msg(sb, KERN_INFO, 2341 "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 2342 segment0_blkaddr, cp_blkaddr); 2343 return true; 2344 } 2345 2346 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 2347 sit_blkaddr) { 2348 f2fs_msg(sb, KERN_INFO, 2349 "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 2350 cp_blkaddr, sit_blkaddr, 2351 segment_count_ckpt << log_blocks_per_seg); 2352 return true; 2353 } 2354 2355 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 2356 nat_blkaddr) { 2357 f2fs_msg(sb, KERN_INFO, 2358 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 2359 sit_blkaddr, nat_blkaddr, 2360 segment_count_sit << log_blocks_per_seg); 2361 return true; 2362 } 2363 2364 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 2365 ssa_blkaddr) { 2366 f2fs_msg(sb, KERN_INFO, 2367 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 2368 nat_blkaddr, ssa_blkaddr, 2369 segment_count_nat << log_blocks_per_seg); 2370 return true; 2371 } 2372 2373 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 2374 main_blkaddr) { 2375 f2fs_msg(sb, KERN_INFO, 2376 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 2377 ssa_blkaddr, main_blkaddr, 2378 segment_count_ssa << log_blocks_per_seg); 2379 return true; 2380 } 2381 2382 if (main_end_blkaddr > seg_end_blkaddr) { 2383 f2fs_msg(sb, KERN_INFO, 2384 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)", 2385 main_blkaddr, 2386 segment0_blkaddr + 2387 (segment_count << log_blocks_per_seg), 2388 segment_count_main << log_blocks_per_seg); 2389 return true; 2390 } else if (main_end_blkaddr < seg_end_blkaddr) { 2391 int err = 0; 2392 char *res; 2393 2394 /* fix in-memory information all the time */ 2395 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 2396 segment0_blkaddr) >> log_blocks_per_seg); 2397 2398 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 2399 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2400 res = "internally"; 2401 } else { 2402 err = __f2fs_commit_super(bh, NULL); 2403 res = err ? "failed" : "done"; 2404 } 2405 f2fs_msg(sb, KERN_INFO, 2406 "Fix alignment : %s, start(%u) end(%u) block(%u)", 2407 res, main_blkaddr, 2408 segment0_blkaddr + 2409 (segment_count << log_blocks_per_seg), 2410 segment_count_main << log_blocks_per_seg); 2411 if (err) 2412 return true; 2413 } 2414 return false; 2415 } 2416 2417 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 2418 struct buffer_head *bh) 2419 { 2420 block_t segment_count, segs_per_sec, secs_per_zone; 2421 block_t total_sections, blocks_per_seg; 2422 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2423 (bh->b_data + F2FS_SUPER_OFFSET); 2424 struct super_block *sb = sbi->sb; 2425 unsigned int blocksize; 2426 size_t crc_offset = 0; 2427 __u32 crc = 0; 2428 2429 /* Check checksum_offset and crc in superblock */ 2430 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 2431 crc_offset = le32_to_cpu(raw_super->checksum_offset); 2432 if (crc_offset != 2433 offsetof(struct f2fs_super_block, crc)) { 2434 f2fs_msg(sb, KERN_INFO, 2435 "Invalid SB checksum offset: %zu", 2436 crc_offset); 2437 return 1; 2438 } 2439 crc = le32_to_cpu(raw_super->crc); 2440 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 2441 f2fs_msg(sb, KERN_INFO, 2442 "Invalid SB checksum value: %u", crc); 2443 return 1; 2444 } 2445 } 2446 2447 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { 2448 f2fs_msg(sb, KERN_INFO, 2449 "Magic Mismatch, valid(0x%x) - read(0x%x)", 2450 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 2451 return 1; 2452 } 2453 2454 /* Currently, support only 4KB page cache size */ 2455 if (F2FS_BLKSIZE != PAGE_SIZE) { 2456 f2fs_msg(sb, KERN_INFO, 2457 "Invalid page_cache_size (%lu), supports only 4KB\n", 2458 PAGE_SIZE); 2459 return 1; 2460 } 2461 2462 /* Currently, support only 4KB block size */ 2463 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 2464 if (blocksize != F2FS_BLKSIZE) { 2465 f2fs_msg(sb, KERN_INFO, 2466 "Invalid blocksize (%u), supports only 4KB\n", 2467 blocksize); 2468 return 1; 2469 } 2470 2471 /* check log blocks per segment */ 2472 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 2473 f2fs_msg(sb, KERN_INFO, 2474 "Invalid log blocks per segment (%u)\n", 2475 le32_to_cpu(raw_super->log_blocks_per_seg)); 2476 return 1; 2477 } 2478 2479 /* Currently, support 512/1024/2048/4096 bytes sector size */ 2480 if (le32_to_cpu(raw_super->log_sectorsize) > 2481 F2FS_MAX_LOG_SECTOR_SIZE || 2482 le32_to_cpu(raw_super->log_sectorsize) < 2483 F2FS_MIN_LOG_SECTOR_SIZE) { 2484 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)", 2485 le32_to_cpu(raw_super->log_sectorsize)); 2486 return 1; 2487 } 2488 if (le32_to_cpu(raw_super->log_sectors_per_block) + 2489 le32_to_cpu(raw_super->log_sectorsize) != 2490 F2FS_MAX_LOG_SECTOR_SIZE) { 2491 f2fs_msg(sb, KERN_INFO, 2492 "Invalid log sectors per block(%u) log sectorsize(%u)", 2493 le32_to_cpu(raw_super->log_sectors_per_block), 2494 le32_to_cpu(raw_super->log_sectorsize)); 2495 return 1; 2496 } 2497 2498 segment_count = le32_to_cpu(raw_super->segment_count); 2499 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 2500 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 2501 total_sections = le32_to_cpu(raw_super->section_count); 2502 2503 /* blocks_per_seg should be 512, given the above check */ 2504 blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg); 2505 2506 if (segment_count > F2FS_MAX_SEGMENT || 2507 segment_count < F2FS_MIN_SEGMENTS) { 2508 f2fs_msg(sb, KERN_INFO, 2509 "Invalid segment count (%u)", 2510 segment_count); 2511 return 1; 2512 } 2513 2514 if (total_sections > segment_count || 2515 total_sections < F2FS_MIN_SEGMENTS || 2516 segs_per_sec > segment_count || !segs_per_sec) { 2517 f2fs_msg(sb, KERN_INFO, 2518 "Invalid segment/section count (%u, %u x %u)", 2519 segment_count, total_sections, segs_per_sec); 2520 return 1; 2521 } 2522 2523 if ((segment_count / segs_per_sec) < total_sections) { 2524 f2fs_msg(sb, KERN_INFO, 2525 "Small segment_count (%u < %u * %u)", 2526 segment_count, segs_per_sec, total_sections); 2527 return 1; 2528 } 2529 2530 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 2531 f2fs_msg(sb, KERN_INFO, 2532 "Wrong segment_count / block_count (%u > %llu)", 2533 segment_count, le64_to_cpu(raw_super->block_count)); 2534 return 1; 2535 } 2536 2537 if (secs_per_zone > total_sections || !secs_per_zone) { 2538 f2fs_msg(sb, KERN_INFO, 2539 "Wrong secs_per_zone / total_sections (%u, %u)", 2540 secs_per_zone, total_sections); 2541 return 1; 2542 } 2543 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 2544 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 2545 (le32_to_cpu(raw_super->extension_count) + 2546 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 2547 f2fs_msg(sb, KERN_INFO, 2548 "Corrupted extension count (%u + %u > %u)", 2549 le32_to_cpu(raw_super->extension_count), 2550 raw_super->hot_ext_count, 2551 F2FS_MAX_EXTENSION); 2552 return 1; 2553 } 2554 2555 if (le32_to_cpu(raw_super->cp_payload) > 2556 (blocks_per_seg - F2FS_CP_PACKS)) { 2557 f2fs_msg(sb, KERN_INFO, 2558 "Insane cp_payload (%u > %u)", 2559 le32_to_cpu(raw_super->cp_payload), 2560 blocks_per_seg - F2FS_CP_PACKS); 2561 return 1; 2562 } 2563 2564 /* check reserved ino info */ 2565 if (le32_to_cpu(raw_super->node_ino) != 1 || 2566 le32_to_cpu(raw_super->meta_ino) != 2 || 2567 le32_to_cpu(raw_super->root_ino) != 3) { 2568 f2fs_msg(sb, KERN_INFO, 2569 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 2570 le32_to_cpu(raw_super->node_ino), 2571 le32_to_cpu(raw_super->meta_ino), 2572 le32_to_cpu(raw_super->root_ino)); 2573 return 1; 2574 } 2575 2576 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 2577 if (sanity_check_area_boundary(sbi, bh)) 2578 return 1; 2579 2580 return 0; 2581 } 2582 2583 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 2584 { 2585 unsigned int total, fsmeta; 2586 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2587 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2588 unsigned int ovp_segments, reserved_segments; 2589 unsigned int main_segs, blocks_per_seg; 2590 unsigned int sit_segs, nat_segs; 2591 unsigned int sit_bitmap_size, nat_bitmap_size; 2592 unsigned int log_blocks_per_seg; 2593 unsigned int segment_count_main; 2594 unsigned int cp_pack_start_sum, cp_payload; 2595 block_t user_block_count; 2596 int i, j; 2597 2598 total = le32_to_cpu(raw_super->segment_count); 2599 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 2600 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 2601 fsmeta += sit_segs; 2602 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 2603 fsmeta += nat_segs; 2604 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 2605 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 2606 2607 if (unlikely(fsmeta >= total)) 2608 return 1; 2609 2610 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2611 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2612 2613 if (unlikely(fsmeta < F2FS_MIN_SEGMENTS || 2614 ovp_segments == 0 || reserved_segments == 0)) { 2615 f2fs_msg(sbi->sb, KERN_ERR, 2616 "Wrong layout: check mkfs.f2fs version"); 2617 return 1; 2618 } 2619 2620 user_block_count = le64_to_cpu(ckpt->user_block_count); 2621 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2622 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2623 if (!user_block_count || user_block_count >= 2624 segment_count_main << log_blocks_per_seg) { 2625 f2fs_msg(sbi->sb, KERN_ERR, 2626 "Wrong user_block_count: %u", user_block_count); 2627 return 1; 2628 } 2629 2630 main_segs = le32_to_cpu(raw_super->segment_count_main); 2631 blocks_per_seg = sbi->blocks_per_seg; 2632 2633 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 2634 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 2635 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 2636 return 1; 2637 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 2638 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 2639 le32_to_cpu(ckpt->cur_node_segno[j])) { 2640 f2fs_msg(sbi->sb, KERN_ERR, 2641 "Node segment (%u, %u) has the same " 2642 "segno: %u", i, j, 2643 le32_to_cpu(ckpt->cur_node_segno[i])); 2644 return 1; 2645 } 2646 } 2647 } 2648 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 2649 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 2650 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 2651 return 1; 2652 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 2653 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 2654 le32_to_cpu(ckpt->cur_data_segno[j])) { 2655 f2fs_msg(sbi->sb, KERN_ERR, 2656 "Data segment (%u, %u) has the same " 2657 "segno: %u", i, j, 2658 le32_to_cpu(ckpt->cur_data_segno[i])); 2659 return 1; 2660 } 2661 } 2662 } 2663 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 2664 for (j = i; j < NR_CURSEG_DATA_TYPE; j++) { 2665 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 2666 le32_to_cpu(ckpt->cur_data_segno[j])) { 2667 f2fs_msg(sbi->sb, KERN_ERR, 2668 "Data segment (%u) and Data segment (%u)" 2669 " has the same segno: %u", i, j, 2670 le32_to_cpu(ckpt->cur_node_segno[i])); 2671 return 1; 2672 } 2673 } 2674 } 2675 2676 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 2677 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 2678 2679 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 2680 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 2681 f2fs_msg(sbi->sb, KERN_ERR, 2682 "Wrong bitmap size: sit: %u, nat:%u", 2683 sit_bitmap_size, nat_bitmap_size); 2684 return 1; 2685 } 2686 2687 cp_pack_start_sum = __start_sum_addr(sbi); 2688 cp_payload = __cp_payload(sbi); 2689 if (cp_pack_start_sum < cp_payload + 1 || 2690 cp_pack_start_sum > blocks_per_seg - 1 - 2691 NR_CURSEG_TYPE) { 2692 f2fs_msg(sbi->sb, KERN_ERR, 2693 "Wrong cp_pack_start_sum: %u", 2694 cp_pack_start_sum); 2695 return 1; 2696 } 2697 2698 if (unlikely(f2fs_cp_error(sbi))) { 2699 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); 2700 return 1; 2701 } 2702 return 0; 2703 } 2704 2705 static void init_sb_info(struct f2fs_sb_info *sbi) 2706 { 2707 struct f2fs_super_block *raw_super = sbi->raw_super; 2708 int i; 2709 2710 sbi->log_sectors_per_block = 2711 le32_to_cpu(raw_super->log_sectors_per_block); 2712 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 2713 sbi->blocksize = 1 << sbi->log_blocksize; 2714 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2715 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 2716 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 2717 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 2718 sbi->total_sections = le32_to_cpu(raw_super->section_count); 2719 sbi->total_node_count = 2720 (le32_to_cpu(raw_super->segment_count_nat) / 2) 2721 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 2722 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 2723 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 2724 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 2725 sbi->cur_victim_sec = NULL_SECNO; 2726 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 2727 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 2728 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 2729 sbi->migration_granularity = sbi->segs_per_sec; 2730 2731 sbi->dir_level = DEF_DIR_LEVEL; 2732 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 2733 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 2734 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 2735 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 2736 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 2737 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 2738 DEF_UMOUNT_DISCARD_TIMEOUT; 2739 clear_sbi_flag(sbi, SBI_NEED_FSCK); 2740 2741 for (i = 0; i < NR_COUNT_TYPE; i++) 2742 atomic_set(&sbi->nr_pages[i], 0); 2743 2744 for (i = 0; i < META; i++) 2745 atomic_set(&sbi->wb_sync_req[i], 0); 2746 2747 INIT_LIST_HEAD(&sbi->s_list); 2748 mutex_init(&sbi->umount_mutex); 2749 init_rwsem(&sbi->io_order_lock); 2750 spin_lock_init(&sbi->cp_lock); 2751 2752 sbi->dirty_device = 0; 2753 spin_lock_init(&sbi->dev_lock); 2754 2755 init_rwsem(&sbi->sb_lock); 2756 } 2757 2758 static int init_percpu_info(struct f2fs_sb_info *sbi) 2759 { 2760 int err; 2761 2762 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 2763 if (err) 2764 return err; 2765 2766 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 2767 GFP_KERNEL); 2768 if (err) 2769 percpu_counter_destroy(&sbi->alloc_valid_block_count); 2770 2771 return err; 2772 } 2773 2774 #ifdef CONFIG_BLK_DEV_ZONED 2775 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 2776 { 2777 struct block_device *bdev = FDEV(devi).bdev; 2778 sector_t nr_sectors = bdev->bd_part->nr_sects; 2779 sector_t sector = 0; 2780 struct blk_zone *zones; 2781 unsigned int i, nr_zones; 2782 unsigned int n = 0; 2783 int err = -EIO; 2784 2785 if (!f2fs_sb_has_blkzoned(sbi)) 2786 return 0; 2787 2788 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 2789 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev))) 2790 return -EINVAL; 2791 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)); 2792 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz != 2793 __ilog2_u32(sbi->blocks_per_blkz)) 2794 return -EINVAL; 2795 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz); 2796 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >> 2797 sbi->log_blocks_per_blkz; 2798 if (nr_sectors & (bdev_zone_sectors(bdev) - 1)) 2799 FDEV(devi).nr_blkz++; 2800 2801 FDEV(devi).blkz_type = f2fs_kmalloc(sbi, FDEV(devi).nr_blkz, 2802 GFP_KERNEL); 2803 if (!FDEV(devi).blkz_type) 2804 return -ENOMEM; 2805 2806 #define F2FS_REPORT_NR_ZONES 4096 2807 2808 zones = f2fs_kzalloc(sbi, 2809 array_size(F2FS_REPORT_NR_ZONES, 2810 sizeof(struct blk_zone)), 2811 GFP_KERNEL); 2812 if (!zones) 2813 return -ENOMEM; 2814 2815 /* Get block zones type */ 2816 while (zones && sector < nr_sectors) { 2817 2818 nr_zones = F2FS_REPORT_NR_ZONES; 2819 err = blkdev_report_zones(bdev, sector, 2820 zones, &nr_zones, 2821 GFP_KERNEL); 2822 if (err) 2823 break; 2824 if (!nr_zones) { 2825 err = -EIO; 2826 break; 2827 } 2828 2829 for (i = 0; i < nr_zones; i++) { 2830 FDEV(devi).blkz_type[n] = zones[i].type; 2831 sector += zones[i].len; 2832 n++; 2833 } 2834 } 2835 2836 kvfree(zones); 2837 2838 return err; 2839 } 2840 #endif 2841 2842 /* 2843 * Read f2fs raw super block. 2844 * Because we have two copies of super block, so read both of them 2845 * to get the first valid one. If any one of them is broken, we pass 2846 * them recovery flag back to the caller. 2847 */ 2848 static int read_raw_super_block(struct f2fs_sb_info *sbi, 2849 struct f2fs_super_block **raw_super, 2850 int *valid_super_block, int *recovery) 2851 { 2852 struct super_block *sb = sbi->sb; 2853 int block; 2854 struct buffer_head *bh; 2855 struct f2fs_super_block *super; 2856 int err = 0; 2857 2858 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 2859 if (!super) 2860 return -ENOMEM; 2861 2862 for (block = 0; block < 2; block++) { 2863 bh = sb_bread(sb, block); 2864 if (!bh) { 2865 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock", 2866 block + 1); 2867 err = -EIO; 2868 continue; 2869 } 2870 2871 /* sanity checking of raw super */ 2872 if (sanity_check_raw_super(sbi, bh)) { 2873 f2fs_msg(sb, KERN_ERR, 2874 "Can't find valid F2FS filesystem in %dth superblock", 2875 block + 1); 2876 err = -EINVAL; 2877 brelse(bh); 2878 continue; 2879 } 2880 2881 if (!*raw_super) { 2882 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 2883 sizeof(*super)); 2884 *valid_super_block = block; 2885 *raw_super = super; 2886 } 2887 brelse(bh); 2888 } 2889 2890 /* Fail to read any one of the superblocks*/ 2891 if (err < 0) 2892 *recovery = 1; 2893 2894 /* No valid superblock */ 2895 if (!*raw_super) 2896 kvfree(super); 2897 else 2898 err = 0; 2899 2900 return err; 2901 } 2902 2903 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 2904 { 2905 struct buffer_head *bh; 2906 __u32 crc = 0; 2907 int err; 2908 2909 if ((recover && f2fs_readonly(sbi->sb)) || 2910 bdev_read_only(sbi->sb->s_bdev)) { 2911 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2912 return -EROFS; 2913 } 2914 2915 /* we should update superblock crc here */ 2916 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 2917 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 2918 offsetof(struct f2fs_super_block, crc)); 2919 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 2920 } 2921 2922 /* write back-up superblock first */ 2923 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 2924 if (!bh) 2925 return -EIO; 2926 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 2927 brelse(bh); 2928 2929 /* if we are in recovery path, skip writing valid superblock */ 2930 if (recover || err) 2931 return err; 2932 2933 /* write current valid superblock */ 2934 bh = sb_bread(sbi->sb, sbi->valid_super_block); 2935 if (!bh) 2936 return -EIO; 2937 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 2938 brelse(bh); 2939 return err; 2940 } 2941 2942 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 2943 { 2944 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2945 unsigned int max_devices = MAX_DEVICES; 2946 int i; 2947 2948 /* Initialize single device information */ 2949 if (!RDEV(0).path[0]) { 2950 if (!bdev_is_zoned(sbi->sb->s_bdev)) 2951 return 0; 2952 max_devices = 1; 2953 } 2954 2955 /* 2956 * Initialize multiple devices information, or single 2957 * zoned block device information. 2958 */ 2959 sbi->devs = f2fs_kzalloc(sbi, 2960 array_size(max_devices, 2961 sizeof(struct f2fs_dev_info)), 2962 GFP_KERNEL); 2963 if (!sbi->devs) 2964 return -ENOMEM; 2965 2966 for (i = 0; i < max_devices; i++) { 2967 2968 if (i > 0 && !RDEV(i).path[0]) 2969 break; 2970 2971 if (max_devices == 1) { 2972 /* Single zoned block device mount */ 2973 FDEV(0).bdev = 2974 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev, 2975 sbi->sb->s_mode, sbi->sb->s_type); 2976 } else { 2977 /* Multi-device mount */ 2978 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 2979 FDEV(i).total_segments = 2980 le32_to_cpu(RDEV(i).total_segments); 2981 if (i == 0) { 2982 FDEV(i).start_blk = 0; 2983 FDEV(i).end_blk = FDEV(i).start_blk + 2984 (FDEV(i).total_segments << 2985 sbi->log_blocks_per_seg) - 1 + 2986 le32_to_cpu(raw_super->segment0_blkaddr); 2987 } else { 2988 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 2989 FDEV(i).end_blk = FDEV(i).start_blk + 2990 (FDEV(i).total_segments << 2991 sbi->log_blocks_per_seg) - 1; 2992 } 2993 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 2994 sbi->sb->s_mode, sbi->sb->s_type); 2995 } 2996 if (IS_ERR(FDEV(i).bdev)) 2997 return PTR_ERR(FDEV(i).bdev); 2998 2999 /* to release errored devices */ 3000 sbi->s_ndevs = i + 1; 3001 3002 #ifdef CONFIG_BLK_DEV_ZONED 3003 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 3004 !f2fs_sb_has_blkzoned(sbi)) { 3005 f2fs_msg(sbi->sb, KERN_ERR, 3006 "Zoned block device feature not enabled\n"); 3007 return -EINVAL; 3008 } 3009 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 3010 if (init_blkz_info(sbi, i)) { 3011 f2fs_msg(sbi->sb, KERN_ERR, 3012 "Failed to initialize F2FS blkzone information"); 3013 return -EINVAL; 3014 } 3015 if (max_devices == 1) 3016 break; 3017 f2fs_msg(sbi->sb, KERN_INFO, 3018 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 3019 i, FDEV(i).path, 3020 FDEV(i).total_segments, 3021 FDEV(i).start_blk, FDEV(i).end_blk, 3022 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 3023 "Host-aware" : "Host-managed"); 3024 continue; 3025 } 3026 #endif 3027 f2fs_msg(sbi->sb, KERN_INFO, 3028 "Mount Device [%2d]: %20s, %8u, %8x - %8x", 3029 i, FDEV(i).path, 3030 FDEV(i).total_segments, 3031 FDEV(i).start_blk, FDEV(i).end_blk); 3032 } 3033 f2fs_msg(sbi->sb, KERN_INFO, 3034 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi)); 3035 return 0; 3036 } 3037 3038 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 3039 { 3040 struct f2fs_sm_info *sm_i = SM_I(sbi); 3041 3042 /* adjust parameters according to the volume size */ 3043 if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) { 3044 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 3045 sm_i->dcc_info->discard_granularity = 1; 3046 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE; 3047 } 3048 3049 sbi->readdir_ra = 1; 3050 } 3051 3052 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 3053 { 3054 struct f2fs_sb_info *sbi; 3055 struct f2fs_super_block *raw_super; 3056 struct inode *root; 3057 int err; 3058 bool skip_recovery = false, need_fsck = false; 3059 char *options = NULL; 3060 int recovery, i, valid_super_block; 3061 struct curseg_info *seg_i; 3062 int retry_cnt = 1; 3063 3064 try_onemore: 3065 err = -EINVAL; 3066 raw_super = NULL; 3067 valid_super_block = -1; 3068 recovery = 0; 3069 3070 /* allocate memory for f2fs-specific super block info */ 3071 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 3072 if (!sbi) 3073 return -ENOMEM; 3074 3075 sbi->sb = sb; 3076 3077 /* Load the checksum driver */ 3078 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 3079 if (IS_ERR(sbi->s_chksum_driver)) { 3080 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver."); 3081 err = PTR_ERR(sbi->s_chksum_driver); 3082 sbi->s_chksum_driver = NULL; 3083 goto free_sbi; 3084 } 3085 3086 /* set a block size */ 3087 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 3088 f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); 3089 goto free_sbi; 3090 } 3091 3092 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 3093 &recovery); 3094 if (err) 3095 goto free_sbi; 3096 3097 sb->s_fs_info = sbi; 3098 sbi->raw_super = raw_super; 3099 3100 /* precompute checksum seed for metadata */ 3101 if (f2fs_sb_has_inode_chksum(sbi)) 3102 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 3103 sizeof(raw_super->uuid)); 3104 3105 /* 3106 * The BLKZONED feature indicates that the drive was formatted with 3107 * zone alignment optimization. This is optional for host-aware 3108 * devices, but mandatory for host-managed zoned block devices. 3109 */ 3110 #ifndef CONFIG_BLK_DEV_ZONED 3111 if (f2fs_sb_has_blkzoned(sbi)) { 3112 f2fs_msg(sb, KERN_ERR, 3113 "Zoned block device support is not enabled\n"); 3114 err = -EOPNOTSUPP; 3115 goto free_sb_buf; 3116 } 3117 #endif 3118 default_options(sbi); 3119 /* parse mount options */ 3120 options = kstrdup((const char *)data, GFP_KERNEL); 3121 if (data && !options) { 3122 err = -ENOMEM; 3123 goto free_sb_buf; 3124 } 3125 3126 err = parse_options(sb, options); 3127 if (err) 3128 goto free_options; 3129 3130 sbi->max_file_blocks = max_file_blocks(); 3131 sb->s_maxbytes = sbi->max_file_blocks << 3132 le32_to_cpu(raw_super->log_blocksize); 3133 sb->s_max_links = F2FS_LINK_MAX; 3134 3135 #ifdef CONFIG_QUOTA 3136 sb->dq_op = &f2fs_quota_operations; 3137 if (f2fs_sb_has_quota_ino(sbi)) 3138 sb->s_qcop = &dquot_quotactl_sysfile_ops; 3139 else 3140 sb->s_qcop = &f2fs_quotactl_ops; 3141 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 3142 3143 if (f2fs_sb_has_quota_ino(sbi)) { 3144 for (i = 0; i < MAXQUOTAS; i++) { 3145 if (f2fs_qf_ino(sbi->sb, i)) 3146 sbi->nquota_files++; 3147 } 3148 } 3149 #endif 3150 3151 sb->s_op = &f2fs_sops; 3152 #ifdef CONFIG_FS_ENCRYPTION 3153 sb->s_cop = &f2fs_cryptops; 3154 #endif 3155 sb->s_xattr = f2fs_xattr_handlers; 3156 sb->s_export_op = &f2fs_export_ops; 3157 sb->s_magic = F2FS_SUPER_MAGIC; 3158 sb->s_time_gran = 1; 3159 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3160 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 3161 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 3162 sb->s_iflags |= SB_I_CGROUPWB; 3163 3164 /* init f2fs-specific super block info */ 3165 sbi->valid_super_block = valid_super_block; 3166 mutex_init(&sbi->gc_mutex); 3167 mutex_init(&sbi->writepages); 3168 mutex_init(&sbi->cp_mutex); 3169 init_rwsem(&sbi->node_write); 3170 init_rwsem(&sbi->node_change); 3171 3172 /* disallow all the data/node/meta page writes */ 3173 set_sbi_flag(sbi, SBI_POR_DOING); 3174 spin_lock_init(&sbi->stat_lock); 3175 3176 /* init iostat info */ 3177 spin_lock_init(&sbi->iostat_lock); 3178 sbi->iostat_enable = false; 3179 3180 for (i = 0; i < NR_PAGE_TYPE; i++) { 3181 int n = (i == META) ? 1: NR_TEMP_TYPE; 3182 int j; 3183 3184 sbi->write_io[i] = 3185 f2fs_kmalloc(sbi, 3186 array_size(n, 3187 sizeof(struct f2fs_bio_info)), 3188 GFP_KERNEL); 3189 if (!sbi->write_io[i]) { 3190 err = -ENOMEM; 3191 goto free_bio_info; 3192 } 3193 3194 for (j = HOT; j < n; j++) { 3195 init_rwsem(&sbi->write_io[i][j].io_rwsem); 3196 sbi->write_io[i][j].sbi = sbi; 3197 sbi->write_io[i][j].bio = NULL; 3198 spin_lock_init(&sbi->write_io[i][j].io_lock); 3199 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 3200 } 3201 } 3202 3203 init_rwsem(&sbi->cp_rwsem); 3204 init_waitqueue_head(&sbi->cp_wait); 3205 init_sb_info(sbi); 3206 3207 err = init_percpu_info(sbi); 3208 if (err) 3209 goto free_bio_info; 3210 3211 if (F2FS_IO_SIZE(sbi) > 1) { 3212 sbi->write_io_dummy = 3213 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); 3214 if (!sbi->write_io_dummy) { 3215 err = -ENOMEM; 3216 goto free_percpu; 3217 } 3218 } 3219 3220 /* get an inode for meta space */ 3221 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 3222 if (IS_ERR(sbi->meta_inode)) { 3223 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); 3224 err = PTR_ERR(sbi->meta_inode); 3225 goto free_io_dummy; 3226 } 3227 3228 err = f2fs_get_valid_checkpoint(sbi); 3229 if (err) { 3230 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); 3231 goto free_meta_inode; 3232 } 3233 3234 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 3235 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3236 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 3237 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 3238 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 3239 } 3240 3241 /* Initialize device list */ 3242 err = f2fs_scan_devices(sbi); 3243 if (err) { 3244 f2fs_msg(sb, KERN_ERR, "Failed to find devices"); 3245 goto free_devices; 3246 } 3247 3248 sbi->total_valid_node_count = 3249 le32_to_cpu(sbi->ckpt->valid_node_count); 3250 percpu_counter_set(&sbi->total_valid_inode_count, 3251 le32_to_cpu(sbi->ckpt->valid_inode_count)); 3252 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 3253 sbi->total_valid_block_count = 3254 le64_to_cpu(sbi->ckpt->valid_block_count); 3255 sbi->last_valid_block_count = sbi->total_valid_block_count; 3256 sbi->reserved_blocks = 0; 3257 sbi->current_reserved_blocks = 0; 3258 limit_reserve_root(sbi); 3259 3260 for (i = 0; i < NR_INODE_TYPE; i++) { 3261 INIT_LIST_HEAD(&sbi->inode_list[i]); 3262 spin_lock_init(&sbi->inode_lock[i]); 3263 } 3264 3265 f2fs_init_extent_cache_info(sbi); 3266 3267 f2fs_init_ino_entry_info(sbi); 3268 3269 f2fs_init_fsync_node_info(sbi); 3270 3271 /* setup f2fs internal modules */ 3272 err = f2fs_build_segment_manager(sbi); 3273 if (err) { 3274 f2fs_msg(sb, KERN_ERR, 3275 "Failed to initialize F2FS segment manager"); 3276 goto free_sm; 3277 } 3278 err = f2fs_build_node_manager(sbi); 3279 if (err) { 3280 f2fs_msg(sb, KERN_ERR, 3281 "Failed to initialize F2FS node manager"); 3282 goto free_nm; 3283 } 3284 3285 /* For write statistics */ 3286 if (sb->s_bdev->bd_part) 3287 sbi->sectors_written_start = 3288 (u64)part_stat_read(sb->s_bdev->bd_part, 3289 sectors[STAT_WRITE]); 3290 3291 /* Read accumulated write IO statistics if exists */ 3292 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 3293 if (__exist_node_summaries(sbi)) 3294 sbi->kbytes_written = 3295 le64_to_cpu(seg_i->journal->info.kbytes_written); 3296 3297 f2fs_build_gc_manager(sbi); 3298 3299 err = f2fs_build_stats(sbi); 3300 if (err) 3301 goto free_nm; 3302 3303 /* get an inode for node space */ 3304 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 3305 if (IS_ERR(sbi->node_inode)) { 3306 f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); 3307 err = PTR_ERR(sbi->node_inode); 3308 goto free_stats; 3309 } 3310 3311 /* read root inode and dentry */ 3312 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 3313 if (IS_ERR(root)) { 3314 f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); 3315 err = PTR_ERR(root); 3316 goto free_node_inode; 3317 } 3318 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 3319 !root->i_size || !root->i_nlink) { 3320 iput(root); 3321 err = -EINVAL; 3322 goto free_node_inode; 3323 } 3324 3325 sb->s_root = d_make_root(root); /* allocate root dentry */ 3326 if (!sb->s_root) { 3327 err = -ENOMEM; 3328 goto free_node_inode; 3329 } 3330 3331 err = f2fs_register_sysfs(sbi); 3332 if (err) 3333 goto free_root_inode; 3334 3335 #ifdef CONFIG_QUOTA 3336 /* Enable quota usage during mount */ 3337 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 3338 err = f2fs_enable_quotas(sb); 3339 if (err) 3340 f2fs_msg(sb, KERN_ERR, 3341 "Cannot turn on quotas: error %d", err); 3342 } 3343 #endif 3344 /* if there are nt orphan nodes free them */ 3345 err = f2fs_recover_orphan_inodes(sbi); 3346 if (err) 3347 goto free_meta; 3348 3349 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 3350 goto reset_checkpoint; 3351 3352 /* recover fsynced data */ 3353 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 3354 /* 3355 * mount should be failed, when device has readonly mode, and 3356 * previous checkpoint was not done by clean system shutdown. 3357 */ 3358 if (bdev_read_only(sb->s_bdev) && 3359 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 3360 err = -EROFS; 3361 goto free_meta; 3362 } 3363 3364 if (need_fsck) 3365 set_sbi_flag(sbi, SBI_NEED_FSCK); 3366 3367 if (skip_recovery) 3368 goto reset_checkpoint; 3369 3370 err = f2fs_recover_fsync_data(sbi, false); 3371 if (err < 0) { 3372 if (err != -ENOMEM) 3373 skip_recovery = true; 3374 need_fsck = true; 3375 f2fs_msg(sb, KERN_ERR, 3376 "Cannot recover all fsync data errno=%d", err); 3377 goto free_meta; 3378 } 3379 } else { 3380 err = f2fs_recover_fsync_data(sbi, true); 3381 3382 if (!f2fs_readonly(sb) && err > 0) { 3383 err = -EINVAL; 3384 f2fs_msg(sb, KERN_ERR, 3385 "Need to recover fsync data"); 3386 goto free_meta; 3387 } 3388 } 3389 reset_checkpoint: 3390 /* f2fs_recover_fsync_data() cleared this already */ 3391 clear_sbi_flag(sbi, SBI_POR_DOING); 3392 3393 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 3394 err = f2fs_disable_checkpoint(sbi); 3395 if (err) 3396 goto sync_free_meta; 3397 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 3398 f2fs_enable_checkpoint(sbi); 3399 } 3400 3401 /* 3402 * If filesystem is not mounted as read-only then 3403 * do start the gc_thread. 3404 */ 3405 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) { 3406 /* After POR, we can run background GC thread.*/ 3407 err = f2fs_start_gc_thread(sbi); 3408 if (err) 3409 goto sync_free_meta; 3410 } 3411 kvfree(options); 3412 3413 /* recover broken superblock */ 3414 if (recovery) { 3415 err = f2fs_commit_super(sbi, true); 3416 f2fs_msg(sb, KERN_INFO, 3417 "Try to recover %dth superblock, ret: %d", 3418 sbi->valid_super_block ? 1 : 2, err); 3419 } 3420 3421 f2fs_join_shrinker(sbi); 3422 3423 f2fs_tuning_parameters(sbi); 3424 3425 f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx", 3426 cur_cp_version(F2FS_CKPT(sbi))); 3427 f2fs_update_time(sbi, CP_TIME); 3428 f2fs_update_time(sbi, REQ_TIME); 3429 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 3430 return 0; 3431 3432 sync_free_meta: 3433 /* safe to flush all the data */ 3434 sync_filesystem(sbi->sb); 3435 retry_cnt = 0; 3436 3437 free_meta: 3438 #ifdef CONFIG_QUOTA 3439 f2fs_truncate_quota_inode_pages(sb); 3440 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 3441 f2fs_quota_off_umount(sbi->sb); 3442 #endif 3443 /* 3444 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 3445 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 3446 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 3447 * falls into an infinite loop in f2fs_sync_meta_pages(). 3448 */ 3449 truncate_inode_pages_final(META_MAPPING(sbi)); 3450 /* evict some inodes being cached by GC */ 3451 evict_inodes(sb); 3452 f2fs_unregister_sysfs(sbi); 3453 free_root_inode: 3454 dput(sb->s_root); 3455 sb->s_root = NULL; 3456 free_node_inode: 3457 f2fs_release_ino_entry(sbi, true); 3458 truncate_inode_pages_final(NODE_MAPPING(sbi)); 3459 iput(sbi->node_inode); 3460 sbi->node_inode = NULL; 3461 free_stats: 3462 f2fs_destroy_stats(sbi); 3463 free_nm: 3464 f2fs_destroy_node_manager(sbi); 3465 free_sm: 3466 f2fs_destroy_segment_manager(sbi); 3467 free_devices: 3468 destroy_device_list(sbi); 3469 kvfree(sbi->ckpt); 3470 free_meta_inode: 3471 make_bad_inode(sbi->meta_inode); 3472 iput(sbi->meta_inode); 3473 sbi->meta_inode = NULL; 3474 free_io_dummy: 3475 mempool_destroy(sbi->write_io_dummy); 3476 free_percpu: 3477 destroy_percpu_info(sbi); 3478 free_bio_info: 3479 for (i = 0; i < NR_PAGE_TYPE; i++) 3480 kvfree(sbi->write_io[i]); 3481 free_options: 3482 #ifdef CONFIG_QUOTA 3483 for (i = 0; i < MAXQUOTAS; i++) 3484 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 3485 #endif 3486 kvfree(options); 3487 free_sb_buf: 3488 kvfree(raw_super); 3489 free_sbi: 3490 if (sbi->s_chksum_driver) 3491 crypto_free_shash(sbi->s_chksum_driver); 3492 kvfree(sbi); 3493 3494 /* give only one another chance */ 3495 if (retry_cnt > 0 && skip_recovery) { 3496 retry_cnt--; 3497 shrink_dcache_sb(sb); 3498 goto try_onemore; 3499 } 3500 return err; 3501 } 3502 3503 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 3504 const char *dev_name, void *data) 3505 { 3506 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 3507 } 3508 3509 static void kill_f2fs_super(struct super_block *sb) 3510 { 3511 if (sb->s_root) { 3512 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3513 3514 set_sbi_flag(sbi, SBI_IS_CLOSE); 3515 f2fs_stop_gc_thread(sbi); 3516 f2fs_stop_discard_thread(sbi); 3517 3518 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 3519 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 3520 struct cp_control cpc = { 3521 .reason = CP_UMOUNT, 3522 }; 3523 f2fs_write_checkpoint(sbi, &cpc); 3524 } 3525 3526 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 3527 sb->s_flags &= ~SB_RDONLY; 3528 } 3529 kill_block_super(sb); 3530 } 3531 3532 static struct file_system_type f2fs_fs_type = { 3533 .owner = THIS_MODULE, 3534 .name = "f2fs", 3535 .mount = f2fs_mount, 3536 .kill_sb = kill_f2fs_super, 3537 .fs_flags = FS_REQUIRES_DEV, 3538 }; 3539 MODULE_ALIAS_FS("f2fs"); 3540 3541 static int __init init_inodecache(void) 3542 { 3543 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 3544 sizeof(struct f2fs_inode_info), 0, 3545 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 3546 if (!f2fs_inode_cachep) 3547 return -ENOMEM; 3548 return 0; 3549 } 3550 3551 static void destroy_inodecache(void) 3552 { 3553 /* 3554 * Make sure all delayed rcu free inodes are flushed before we 3555 * destroy cache. 3556 */ 3557 rcu_barrier(); 3558 kmem_cache_destroy(f2fs_inode_cachep); 3559 } 3560 3561 static int __init init_f2fs_fs(void) 3562 { 3563 int err; 3564 3565 if (PAGE_SIZE != F2FS_BLKSIZE) { 3566 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n", 3567 PAGE_SIZE, F2FS_BLKSIZE); 3568 return -EINVAL; 3569 } 3570 3571 f2fs_build_trace_ios(); 3572 3573 err = init_inodecache(); 3574 if (err) 3575 goto fail; 3576 err = f2fs_create_node_manager_caches(); 3577 if (err) 3578 goto free_inodecache; 3579 err = f2fs_create_segment_manager_caches(); 3580 if (err) 3581 goto free_node_manager_caches; 3582 err = f2fs_create_checkpoint_caches(); 3583 if (err) 3584 goto free_segment_manager_caches; 3585 err = f2fs_create_extent_cache(); 3586 if (err) 3587 goto free_checkpoint_caches; 3588 err = f2fs_init_sysfs(); 3589 if (err) 3590 goto free_extent_cache; 3591 err = register_shrinker(&f2fs_shrinker_info); 3592 if (err) 3593 goto free_sysfs; 3594 err = register_filesystem(&f2fs_fs_type); 3595 if (err) 3596 goto free_shrinker; 3597 f2fs_create_root_stats(); 3598 err = f2fs_init_post_read_processing(); 3599 if (err) 3600 goto free_root_stats; 3601 return 0; 3602 3603 free_root_stats: 3604 f2fs_destroy_root_stats(); 3605 unregister_filesystem(&f2fs_fs_type); 3606 free_shrinker: 3607 unregister_shrinker(&f2fs_shrinker_info); 3608 free_sysfs: 3609 f2fs_exit_sysfs(); 3610 free_extent_cache: 3611 f2fs_destroy_extent_cache(); 3612 free_checkpoint_caches: 3613 f2fs_destroy_checkpoint_caches(); 3614 free_segment_manager_caches: 3615 f2fs_destroy_segment_manager_caches(); 3616 free_node_manager_caches: 3617 f2fs_destroy_node_manager_caches(); 3618 free_inodecache: 3619 destroy_inodecache(); 3620 fail: 3621 return err; 3622 } 3623 3624 static void __exit exit_f2fs_fs(void) 3625 { 3626 f2fs_destroy_post_read_processing(); 3627 f2fs_destroy_root_stats(); 3628 unregister_filesystem(&f2fs_fs_type); 3629 unregister_shrinker(&f2fs_shrinker_info); 3630 f2fs_exit_sysfs(); 3631 f2fs_destroy_extent_cache(); 3632 f2fs_destroy_checkpoint_caches(); 3633 f2fs_destroy_segment_manager_caches(); 3634 f2fs_destroy_node_manager_caches(); 3635 destroy_inodecache(); 3636 f2fs_destroy_trace_ios(); 3637 } 3638 3639 module_init(init_f2fs_fs) 3640 module_exit(exit_f2fs_fs) 3641 3642 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 3643 MODULE_DESCRIPTION("Flash Friendly File System"); 3644 MODULE_LICENSE("GPL"); 3645 3646