xref: /openbmc/linux/fs/f2fs/super.c (revision 90a53e44)
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/quotaops.h>
26 #include <linux/f2fs_fs.h>
27 #include <linux/sysfs.h>
28 #include <linux/quota.h>
29 
30 #include "f2fs.h"
31 #include "node.h"
32 #include "segment.h"
33 #include "xattr.h"
34 #include "gc.h"
35 #include "trace.h"
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/f2fs.h>
39 
40 static struct kmem_cache *f2fs_inode_cachep;
41 
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 
44 char *fault_name[FAULT_MAX] = {
45 	[FAULT_KMALLOC]		= "kmalloc",
46 	[FAULT_PAGE_ALLOC]	= "page alloc",
47 	[FAULT_ALLOC_NID]	= "alloc nid",
48 	[FAULT_ORPHAN]		= "orphan",
49 	[FAULT_BLOCK]		= "no more block",
50 	[FAULT_DIR_DEPTH]	= "too big dir depth",
51 	[FAULT_EVICT_INODE]	= "evict_inode fail",
52 	[FAULT_TRUNCATE]	= "truncate fail",
53 	[FAULT_IO]		= "IO error",
54 	[FAULT_CHECKPOINT]	= "checkpoint error",
55 };
56 
57 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
58 						unsigned int rate)
59 {
60 	struct f2fs_fault_info *ffi = &sbi->fault_info;
61 
62 	if (rate) {
63 		atomic_set(&ffi->inject_ops, 0);
64 		ffi->inject_rate = rate;
65 		ffi->inject_type = (1 << FAULT_MAX) - 1;
66 	} else {
67 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
68 	}
69 }
70 #endif
71 
72 /* f2fs-wide shrinker description */
73 static struct shrinker f2fs_shrinker_info = {
74 	.scan_objects = f2fs_shrink_scan,
75 	.count_objects = f2fs_shrink_count,
76 	.seeks = DEFAULT_SEEKS,
77 };
78 
79 enum {
80 	Opt_gc_background,
81 	Opt_disable_roll_forward,
82 	Opt_norecovery,
83 	Opt_discard,
84 	Opt_nodiscard,
85 	Opt_noheap,
86 	Opt_heap,
87 	Opt_user_xattr,
88 	Opt_nouser_xattr,
89 	Opt_acl,
90 	Opt_noacl,
91 	Opt_active_logs,
92 	Opt_disable_ext_identify,
93 	Opt_inline_xattr,
94 	Opt_noinline_xattr,
95 	Opt_inline_data,
96 	Opt_inline_dentry,
97 	Opt_noinline_dentry,
98 	Opt_flush_merge,
99 	Opt_noflush_merge,
100 	Opt_nobarrier,
101 	Opt_fastboot,
102 	Opt_extent_cache,
103 	Opt_noextent_cache,
104 	Opt_noinline_data,
105 	Opt_data_flush,
106 	Opt_mode,
107 	Opt_io_size_bits,
108 	Opt_fault_injection,
109 	Opt_lazytime,
110 	Opt_nolazytime,
111 	Opt_quota,
112 	Opt_noquota,
113 	Opt_usrquota,
114 	Opt_grpquota,
115 	Opt_prjquota,
116 	Opt_usrjquota,
117 	Opt_grpjquota,
118 	Opt_prjjquota,
119 	Opt_offusrjquota,
120 	Opt_offgrpjquota,
121 	Opt_offprjjquota,
122 	Opt_jqfmt_vfsold,
123 	Opt_jqfmt_vfsv0,
124 	Opt_jqfmt_vfsv1,
125 	Opt_err,
126 };
127 
128 static match_table_t f2fs_tokens = {
129 	{Opt_gc_background, "background_gc=%s"},
130 	{Opt_disable_roll_forward, "disable_roll_forward"},
131 	{Opt_norecovery, "norecovery"},
132 	{Opt_discard, "discard"},
133 	{Opt_nodiscard, "nodiscard"},
134 	{Opt_noheap, "no_heap"},
135 	{Opt_heap, "heap"},
136 	{Opt_user_xattr, "user_xattr"},
137 	{Opt_nouser_xattr, "nouser_xattr"},
138 	{Opt_acl, "acl"},
139 	{Opt_noacl, "noacl"},
140 	{Opt_active_logs, "active_logs=%u"},
141 	{Opt_disable_ext_identify, "disable_ext_identify"},
142 	{Opt_inline_xattr, "inline_xattr"},
143 	{Opt_noinline_xattr, "noinline_xattr"},
144 	{Opt_inline_data, "inline_data"},
145 	{Opt_inline_dentry, "inline_dentry"},
146 	{Opt_noinline_dentry, "noinline_dentry"},
147 	{Opt_flush_merge, "flush_merge"},
148 	{Opt_noflush_merge, "noflush_merge"},
149 	{Opt_nobarrier, "nobarrier"},
150 	{Opt_fastboot, "fastboot"},
151 	{Opt_extent_cache, "extent_cache"},
152 	{Opt_noextent_cache, "noextent_cache"},
153 	{Opt_noinline_data, "noinline_data"},
154 	{Opt_data_flush, "data_flush"},
155 	{Opt_mode, "mode=%s"},
156 	{Opt_io_size_bits, "io_bits=%u"},
157 	{Opt_fault_injection, "fault_injection=%u"},
158 	{Opt_lazytime, "lazytime"},
159 	{Opt_nolazytime, "nolazytime"},
160 	{Opt_quota, "quota"},
161 	{Opt_noquota, "noquota"},
162 	{Opt_usrquota, "usrquota"},
163 	{Opt_grpquota, "grpquota"},
164 	{Opt_prjquota, "prjquota"},
165 	{Opt_usrjquota, "usrjquota=%s"},
166 	{Opt_grpjquota, "grpjquota=%s"},
167 	{Opt_prjjquota, "prjjquota=%s"},
168 	{Opt_offusrjquota, "usrjquota="},
169 	{Opt_offgrpjquota, "grpjquota="},
170 	{Opt_offprjjquota, "prjjquota="},
171 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
172 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
173 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
174 	{Opt_err, NULL},
175 };
176 
177 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
178 {
179 	struct va_format vaf;
180 	va_list args;
181 
182 	va_start(args, fmt);
183 	vaf.fmt = fmt;
184 	vaf.va = &args;
185 	printk_ratelimited("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
186 	va_end(args);
187 }
188 
189 static void init_once(void *foo)
190 {
191 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
192 
193 	inode_init_once(&fi->vfs_inode);
194 }
195 
196 #ifdef CONFIG_QUOTA
197 static const char * const quotatypes[] = INITQFNAMES;
198 #define QTYPE2NAME(t) (quotatypes[t])
199 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
200 							substring_t *args)
201 {
202 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
203 	char *qname;
204 	int ret = -EINVAL;
205 
206 	if (sb_any_quota_loaded(sb) && !sbi->s_qf_names[qtype]) {
207 		f2fs_msg(sb, KERN_ERR,
208 			"Cannot change journaled "
209 			"quota options when quota turned on");
210 		return -EINVAL;
211 	}
212 	qname = match_strdup(args);
213 	if (!qname) {
214 		f2fs_msg(sb, KERN_ERR,
215 			"Not enough memory for storing quotafile name");
216 		return -EINVAL;
217 	}
218 	if (sbi->s_qf_names[qtype]) {
219 		if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
220 			ret = 0;
221 		else
222 			f2fs_msg(sb, KERN_ERR,
223 				 "%s quota file already specified",
224 				 QTYPE2NAME(qtype));
225 		goto errout;
226 	}
227 	if (strchr(qname, '/')) {
228 		f2fs_msg(sb, KERN_ERR,
229 			"quotafile must be on filesystem root");
230 		goto errout;
231 	}
232 	sbi->s_qf_names[qtype] = qname;
233 	set_opt(sbi, QUOTA);
234 	return 0;
235 errout:
236 	kfree(qname);
237 	return ret;
238 }
239 
240 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
241 {
242 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
243 
244 	if (sb_any_quota_loaded(sb) && sbi->s_qf_names[qtype]) {
245 		f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options"
246 			" when quota turned on");
247 		return -EINVAL;
248 	}
249 	kfree(sbi->s_qf_names[qtype]);
250 	sbi->s_qf_names[qtype] = NULL;
251 	return 0;
252 }
253 
254 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
255 {
256 	/*
257 	 * We do the test below only for project quotas. 'usrquota' and
258 	 * 'grpquota' mount options are allowed even without quota feature
259 	 * to support legacy quotas in quota files.
260 	 */
261 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi->sb)) {
262 		f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. "
263 			 "Cannot enable project quota enforcement.");
264 		return -1;
265 	}
266 	if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA] ||
267 			sbi->s_qf_names[PRJQUOTA]) {
268 		if (test_opt(sbi, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
269 			clear_opt(sbi, USRQUOTA);
270 
271 		if (test_opt(sbi, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
272 			clear_opt(sbi, GRPQUOTA);
273 
274 		if (test_opt(sbi, PRJQUOTA) && sbi->s_qf_names[PRJQUOTA])
275 			clear_opt(sbi, PRJQUOTA);
276 
277 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
278 				test_opt(sbi, PRJQUOTA)) {
279 			f2fs_msg(sbi->sb, KERN_ERR, "old and new quota "
280 					"format mixing");
281 			return -1;
282 		}
283 
284 		if (!sbi->s_jquota_fmt) {
285 			f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format "
286 					"not specified");
287 			return -1;
288 		}
289 	}
290 	return 0;
291 }
292 #endif
293 
294 static int parse_options(struct super_block *sb, char *options)
295 {
296 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
297 	struct request_queue *q;
298 	substring_t args[MAX_OPT_ARGS];
299 	char *p, *name;
300 	int arg = 0;
301 #ifdef CONFIG_QUOTA
302 	int ret;
303 #endif
304 
305 	if (!options)
306 		return 0;
307 
308 	while ((p = strsep(&options, ",")) != NULL) {
309 		int token;
310 		if (!*p)
311 			continue;
312 		/*
313 		 * Initialize args struct so we know whether arg was
314 		 * found; some options take optional arguments.
315 		 */
316 		args[0].to = args[0].from = NULL;
317 		token = match_token(p, f2fs_tokens, args);
318 
319 		switch (token) {
320 		case Opt_gc_background:
321 			name = match_strdup(&args[0]);
322 
323 			if (!name)
324 				return -ENOMEM;
325 			if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
326 				set_opt(sbi, BG_GC);
327 				clear_opt(sbi, FORCE_FG_GC);
328 			} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
329 				clear_opt(sbi, BG_GC);
330 				clear_opt(sbi, FORCE_FG_GC);
331 			} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
332 				set_opt(sbi, BG_GC);
333 				set_opt(sbi, FORCE_FG_GC);
334 			} else {
335 				kfree(name);
336 				return -EINVAL;
337 			}
338 			kfree(name);
339 			break;
340 		case Opt_disable_roll_forward:
341 			set_opt(sbi, DISABLE_ROLL_FORWARD);
342 			break;
343 		case Opt_norecovery:
344 			/* this option mounts f2fs with ro */
345 			set_opt(sbi, DISABLE_ROLL_FORWARD);
346 			if (!f2fs_readonly(sb))
347 				return -EINVAL;
348 			break;
349 		case Opt_discard:
350 			q = bdev_get_queue(sb->s_bdev);
351 			if (blk_queue_discard(q)) {
352 				set_opt(sbi, DISCARD);
353 			} else if (!f2fs_sb_mounted_blkzoned(sb)) {
354 				f2fs_msg(sb, KERN_WARNING,
355 					"mounting with \"discard\" option, but "
356 					"the device does not support discard");
357 			}
358 			break;
359 		case Opt_nodiscard:
360 			if (f2fs_sb_mounted_blkzoned(sb)) {
361 				f2fs_msg(sb, KERN_WARNING,
362 					"discard is required for zoned block devices");
363 				return -EINVAL;
364 			}
365 			clear_opt(sbi, DISCARD);
366 			break;
367 		case Opt_noheap:
368 			set_opt(sbi, NOHEAP);
369 			break;
370 		case Opt_heap:
371 			clear_opt(sbi, NOHEAP);
372 			break;
373 #ifdef CONFIG_F2FS_FS_XATTR
374 		case Opt_user_xattr:
375 			set_opt(sbi, XATTR_USER);
376 			break;
377 		case Opt_nouser_xattr:
378 			clear_opt(sbi, XATTR_USER);
379 			break;
380 		case Opt_inline_xattr:
381 			set_opt(sbi, INLINE_XATTR);
382 			break;
383 		case Opt_noinline_xattr:
384 			clear_opt(sbi, INLINE_XATTR);
385 			break;
386 #else
387 		case Opt_user_xattr:
388 			f2fs_msg(sb, KERN_INFO,
389 				"user_xattr options not supported");
390 			break;
391 		case Opt_nouser_xattr:
392 			f2fs_msg(sb, KERN_INFO,
393 				"nouser_xattr options not supported");
394 			break;
395 		case Opt_inline_xattr:
396 			f2fs_msg(sb, KERN_INFO,
397 				"inline_xattr options not supported");
398 			break;
399 		case Opt_noinline_xattr:
400 			f2fs_msg(sb, KERN_INFO,
401 				"noinline_xattr options not supported");
402 			break;
403 #endif
404 #ifdef CONFIG_F2FS_FS_POSIX_ACL
405 		case Opt_acl:
406 			set_opt(sbi, POSIX_ACL);
407 			break;
408 		case Opt_noacl:
409 			clear_opt(sbi, POSIX_ACL);
410 			break;
411 #else
412 		case Opt_acl:
413 			f2fs_msg(sb, KERN_INFO, "acl options not supported");
414 			break;
415 		case Opt_noacl:
416 			f2fs_msg(sb, KERN_INFO, "noacl options not supported");
417 			break;
418 #endif
419 		case Opt_active_logs:
420 			if (args->from && match_int(args, &arg))
421 				return -EINVAL;
422 			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
423 				return -EINVAL;
424 			sbi->active_logs = arg;
425 			break;
426 		case Opt_disable_ext_identify:
427 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
428 			break;
429 		case Opt_inline_data:
430 			set_opt(sbi, INLINE_DATA);
431 			break;
432 		case Opt_inline_dentry:
433 			set_opt(sbi, INLINE_DENTRY);
434 			break;
435 		case Opt_noinline_dentry:
436 			clear_opt(sbi, INLINE_DENTRY);
437 			break;
438 		case Opt_flush_merge:
439 			set_opt(sbi, FLUSH_MERGE);
440 			break;
441 		case Opt_noflush_merge:
442 			clear_opt(sbi, FLUSH_MERGE);
443 			break;
444 		case Opt_nobarrier:
445 			set_opt(sbi, NOBARRIER);
446 			break;
447 		case Opt_fastboot:
448 			set_opt(sbi, FASTBOOT);
449 			break;
450 		case Opt_extent_cache:
451 			set_opt(sbi, EXTENT_CACHE);
452 			break;
453 		case Opt_noextent_cache:
454 			clear_opt(sbi, EXTENT_CACHE);
455 			break;
456 		case Opt_noinline_data:
457 			clear_opt(sbi, INLINE_DATA);
458 			break;
459 		case Opt_data_flush:
460 			set_opt(sbi, DATA_FLUSH);
461 			break;
462 		case Opt_mode:
463 			name = match_strdup(&args[0]);
464 
465 			if (!name)
466 				return -ENOMEM;
467 			if (strlen(name) == 8 &&
468 					!strncmp(name, "adaptive", 8)) {
469 				if (f2fs_sb_mounted_blkzoned(sb)) {
470 					f2fs_msg(sb, KERN_WARNING,
471 						 "adaptive mode is not allowed with "
472 						 "zoned block device feature");
473 					kfree(name);
474 					return -EINVAL;
475 				}
476 				set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
477 			} else if (strlen(name) == 3 &&
478 					!strncmp(name, "lfs", 3)) {
479 				set_opt_mode(sbi, F2FS_MOUNT_LFS);
480 			} else {
481 				kfree(name);
482 				return -EINVAL;
483 			}
484 			kfree(name);
485 			break;
486 		case Opt_io_size_bits:
487 			if (args->from && match_int(args, &arg))
488 				return -EINVAL;
489 			if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
490 				f2fs_msg(sb, KERN_WARNING,
491 					"Not support %d, larger than %d",
492 					1 << arg, BIO_MAX_PAGES);
493 				return -EINVAL;
494 			}
495 			sbi->write_io_size_bits = arg;
496 			break;
497 		case Opt_fault_injection:
498 			if (args->from && match_int(args, &arg))
499 				return -EINVAL;
500 #ifdef CONFIG_F2FS_FAULT_INJECTION
501 			f2fs_build_fault_attr(sbi, arg);
502 			set_opt(sbi, FAULT_INJECTION);
503 #else
504 			f2fs_msg(sb, KERN_INFO,
505 				"FAULT_INJECTION was not selected");
506 #endif
507 			break;
508 		case Opt_lazytime:
509 			sb->s_flags |= MS_LAZYTIME;
510 			break;
511 		case Opt_nolazytime:
512 			sb->s_flags &= ~MS_LAZYTIME;
513 			break;
514 #ifdef CONFIG_QUOTA
515 		case Opt_quota:
516 		case Opt_usrquota:
517 			set_opt(sbi, USRQUOTA);
518 			break;
519 		case Opt_grpquota:
520 			set_opt(sbi, GRPQUOTA);
521 			break;
522 		case Opt_prjquota:
523 			set_opt(sbi, PRJQUOTA);
524 			break;
525 		case Opt_usrjquota:
526 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
527 			if (ret)
528 				return ret;
529 			break;
530 		case Opt_grpjquota:
531 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
532 			if (ret)
533 				return ret;
534 			break;
535 		case Opt_prjjquota:
536 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
537 			if (ret)
538 				return ret;
539 			break;
540 		case Opt_offusrjquota:
541 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
542 			if (ret)
543 				return ret;
544 			break;
545 		case Opt_offgrpjquota:
546 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
547 			if (ret)
548 				return ret;
549 			break;
550 		case Opt_offprjjquota:
551 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
552 			if (ret)
553 				return ret;
554 			break;
555 		case Opt_jqfmt_vfsold:
556 			sbi->s_jquota_fmt = QFMT_VFS_OLD;
557 			break;
558 		case Opt_jqfmt_vfsv0:
559 			sbi->s_jquota_fmt = QFMT_VFS_V0;
560 			break;
561 		case Opt_jqfmt_vfsv1:
562 			sbi->s_jquota_fmt = QFMT_VFS_V1;
563 			break;
564 		case Opt_noquota:
565 			clear_opt(sbi, QUOTA);
566 			clear_opt(sbi, USRQUOTA);
567 			clear_opt(sbi, GRPQUOTA);
568 			clear_opt(sbi, PRJQUOTA);
569 			break;
570 #else
571 		case Opt_quota:
572 		case Opt_usrquota:
573 		case Opt_grpquota:
574 		case Opt_prjquota:
575 		case Opt_usrjquota:
576 		case Opt_grpjquota:
577 		case Opt_prjjquota:
578 		case Opt_offusrjquota:
579 		case Opt_offgrpjquota:
580 		case Opt_offprjjquota:
581 		case Opt_jqfmt_vfsold:
582 		case Opt_jqfmt_vfsv0:
583 		case Opt_jqfmt_vfsv1:
584 		case Opt_noquota:
585 			f2fs_msg(sb, KERN_INFO,
586 					"quota operations not supported");
587 			break;
588 #endif
589 		default:
590 			f2fs_msg(sb, KERN_ERR,
591 				"Unrecognized mount option \"%s\" or missing value",
592 				p);
593 			return -EINVAL;
594 		}
595 	}
596 #ifdef CONFIG_QUOTA
597 	if (f2fs_check_quota_options(sbi))
598 		return -EINVAL;
599 #endif
600 
601 	if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
602 		f2fs_msg(sb, KERN_ERR,
603 				"Should set mode=lfs with %uKB-sized IO",
604 				F2FS_IO_SIZE_KB(sbi));
605 		return -EINVAL;
606 	}
607 	return 0;
608 }
609 
610 static struct inode *f2fs_alloc_inode(struct super_block *sb)
611 {
612 	struct f2fs_inode_info *fi;
613 
614 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
615 	if (!fi)
616 		return NULL;
617 
618 	init_once((void *) fi);
619 
620 	/* Initialize f2fs-specific inode info */
621 	fi->vfs_inode.i_version = 1;
622 	atomic_set(&fi->dirty_pages, 0);
623 	fi->i_current_depth = 1;
624 	fi->i_advise = 0;
625 	init_rwsem(&fi->i_sem);
626 	INIT_LIST_HEAD(&fi->dirty_list);
627 	INIT_LIST_HEAD(&fi->gdirty_list);
628 	INIT_LIST_HEAD(&fi->inmem_pages);
629 	mutex_init(&fi->inmem_lock);
630 	init_rwsem(&fi->dio_rwsem[READ]);
631 	init_rwsem(&fi->dio_rwsem[WRITE]);
632 	init_rwsem(&fi->i_mmap_sem);
633 	init_rwsem(&fi->i_xattr_sem);
634 
635 #ifdef CONFIG_QUOTA
636 	memset(&fi->i_dquot, 0, sizeof(fi->i_dquot));
637 	fi->i_reserved_quota = 0;
638 #endif
639 	/* Will be used by directory only */
640 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
641 
642 	return &fi->vfs_inode;
643 }
644 
645 static int f2fs_drop_inode(struct inode *inode)
646 {
647 	int ret;
648 	/*
649 	 * This is to avoid a deadlock condition like below.
650 	 * writeback_single_inode(inode)
651 	 *  - f2fs_write_data_page
652 	 *    - f2fs_gc -> iput -> evict
653 	 *       - inode_wait_for_writeback(inode)
654 	 */
655 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
656 		if (!inode->i_nlink && !is_bad_inode(inode)) {
657 			/* to avoid evict_inode call simultaneously */
658 			atomic_inc(&inode->i_count);
659 			spin_unlock(&inode->i_lock);
660 
661 			/* some remained atomic pages should discarded */
662 			if (f2fs_is_atomic_file(inode))
663 				drop_inmem_pages(inode);
664 
665 			/* should remain fi->extent_tree for writepage */
666 			f2fs_destroy_extent_node(inode);
667 
668 			sb_start_intwrite(inode->i_sb);
669 			f2fs_i_size_write(inode, 0);
670 
671 			if (F2FS_HAS_BLOCKS(inode))
672 				f2fs_truncate(inode);
673 
674 			sb_end_intwrite(inode->i_sb);
675 
676 			fscrypt_put_encryption_info(inode, NULL);
677 			spin_lock(&inode->i_lock);
678 			atomic_dec(&inode->i_count);
679 		}
680 		trace_f2fs_drop_inode(inode, 0);
681 		return 0;
682 	}
683 	ret = generic_drop_inode(inode);
684 	trace_f2fs_drop_inode(inode, ret);
685 	return ret;
686 }
687 
688 int f2fs_inode_dirtied(struct inode *inode, bool sync)
689 {
690 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
691 	int ret = 0;
692 
693 	spin_lock(&sbi->inode_lock[DIRTY_META]);
694 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
695 		ret = 1;
696 	} else {
697 		set_inode_flag(inode, FI_DIRTY_INODE);
698 		stat_inc_dirty_inode(sbi, DIRTY_META);
699 	}
700 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
701 		list_add_tail(&F2FS_I(inode)->gdirty_list,
702 				&sbi->inode_list[DIRTY_META]);
703 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
704 	}
705 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
706 	return ret;
707 }
708 
709 void f2fs_inode_synced(struct inode *inode)
710 {
711 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
712 
713 	spin_lock(&sbi->inode_lock[DIRTY_META]);
714 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
715 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
716 		return;
717 	}
718 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
719 		list_del_init(&F2FS_I(inode)->gdirty_list);
720 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
721 	}
722 	clear_inode_flag(inode, FI_DIRTY_INODE);
723 	clear_inode_flag(inode, FI_AUTO_RECOVER);
724 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
725 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
726 }
727 
728 /*
729  * f2fs_dirty_inode() is called from __mark_inode_dirty()
730  *
731  * We should call set_dirty_inode to write the dirty inode through write_inode.
732  */
733 static void f2fs_dirty_inode(struct inode *inode, int flags)
734 {
735 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
736 
737 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
738 			inode->i_ino == F2FS_META_INO(sbi))
739 		return;
740 
741 	if (flags == I_DIRTY_TIME)
742 		return;
743 
744 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
745 		clear_inode_flag(inode, FI_AUTO_RECOVER);
746 
747 	f2fs_inode_dirtied(inode, false);
748 }
749 
750 static void f2fs_i_callback(struct rcu_head *head)
751 {
752 	struct inode *inode = container_of(head, struct inode, i_rcu);
753 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
754 }
755 
756 static void f2fs_destroy_inode(struct inode *inode)
757 {
758 	call_rcu(&inode->i_rcu, f2fs_i_callback);
759 }
760 
761 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
762 {
763 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
764 	percpu_counter_destroy(&sbi->total_valid_inode_count);
765 }
766 
767 static void destroy_device_list(struct f2fs_sb_info *sbi)
768 {
769 	int i;
770 
771 	for (i = 0; i < sbi->s_ndevs; i++) {
772 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
773 #ifdef CONFIG_BLK_DEV_ZONED
774 		kfree(FDEV(i).blkz_type);
775 #endif
776 	}
777 	kfree(sbi->devs);
778 }
779 
780 static void f2fs_put_super(struct super_block *sb)
781 {
782 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
783 	int i;
784 
785 	f2fs_quota_off_umount(sb);
786 
787 	/* prevent remaining shrinker jobs */
788 	mutex_lock(&sbi->umount_mutex);
789 
790 	/*
791 	 * We don't need to do checkpoint when superblock is clean.
792 	 * But, the previous checkpoint was not done by umount, it needs to do
793 	 * clean checkpoint again.
794 	 */
795 	if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
796 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
797 		struct cp_control cpc = {
798 			.reason = CP_UMOUNT,
799 		};
800 		write_checkpoint(sbi, &cpc);
801 	}
802 
803 	/* be sure to wait for any on-going discard commands */
804 	f2fs_wait_discard_bios(sbi);
805 
806 	if (f2fs_discard_en(sbi) && !sbi->discard_blks) {
807 		struct cp_control cpc = {
808 			.reason = CP_UMOUNT | CP_TRIMMED,
809 		};
810 		write_checkpoint(sbi, &cpc);
811 	}
812 
813 	/* write_checkpoint can update stat informaion */
814 	f2fs_destroy_stats(sbi);
815 
816 	/*
817 	 * normally superblock is clean, so we need to release this.
818 	 * In addition, EIO will skip do checkpoint, we need this as well.
819 	 */
820 	release_ino_entry(sbi, true);
821 
822 	f2fs_leave_shrinker(sbi);
823 	mutex_unlock(&sbi->umount_mutex);
824 
825 	/* our cp_error case, we can wait for any writeback page */
826 	f2fs_flush_merged_writes(sbi);
827 
828 	iput(sbi->node_inode);
829 	iput(sbi->meta_inode);
830 
831 	/* destroy f2fs internal modules */
832 	destroy_node_manager(sbi);
833 	destroy_segment_manager(sbi);
834 
835 	kfree(sbi->ckpt);
836 
837 	f2fs_unregister_sysfs(sbi);
838 
839 	sb->s_fs_info = NULL;
840 	if (sbi->s_chksum_driver)
841 		crypto_free_shash(sbi->s_chksum_driver);
842 	kfree(sbi->raw_super);
843 
844 	destroy_device_list(sbi);
845 	mempool_destroy(sbi->write_io_dummy);
846 #ifdef CONFIG_QUOTA
847 	for (i = 0; i < MAXQUOTAS; i++)
848 		kfree(sbi->s_qf_names[i]);
849 #endif
850 	destroy_percpu_info(sbi);
851 	for (i = 0; i < NR_PAGE_TYPE; i++)
852 		kfree(sbi->write_io[i]);
853 	kfree(sbi);
854 }
855 
856 int f2fs_sync_fs(struct super_block *sb, int sync)
857 {
858 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
859 	int err = 0;
860 
861 	trace_f2fs_sync_fs(sb, sync);
862 
863 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
864 		return -EAGAIN;
865 
866 	if (sync) {
867 		struct cp_control cpc;
868 
869 		cpc.reason = __get_cp_reason(sbi);
870 
871 		mutex_lock(&sbi->gc_mutex);
872 		err = write_checkpoint(sbi, &cpc);
873 		mutex_unlock(&sbi->gc_mutex);
874 	}
875 	f2fs_trace_ios(NULL, 1);
876 
877 	return err;
878 }
879 
880 static int f2fs_freeze(struct super_block *sb)
881 {
882 	if (f2fs_readonly(sb))
883 		return 0;
884 
885 	/* IO error happened before */
886 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
887 		return -EIO;
888 
889 	/* must be clean, since sync_filesystem() was already called */
890 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
891 		return -EINVAL;
892 	return 0;
893 }
894 
895 static int f2fs_unfreeze(struct super_block *sb)
896 {
897 	return 0;
898 }
899 
900 #ifdef CONFIG_QUOTA
901 static int f2fs_statfs_project(struct super_block *sb,
902 				kprojid_t projid, struct kstatfs *buf)
903 {
904 	struct kqid qid;
905 	struct dquot *dquot;
906 	u64 limit;
907 	u64 curblock;
908 
909 	qid = make_kqid_projid(projid);
910 	dquot = dqget(sb, qid);
911 	if (IS_ERR(dquot))
912 		return PTR_ERR(dquot);
913 	spin_lock(&dq_data_lock);
914 
915 	limit = (dquot->dq_dqb.dqb_bsoftlimit ?
916 		 dquot->dq_dqb.dqb_bsoftlimit :
917 		 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
918 	if (limit && buf->f_blocks > limit) {
919 		curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
920 		buf->f_blocks = limit;
921 		buf->f_bfree = buf->f_bavail =
922 			(buf->f_blocks > curblock) ?
923 			 (buf->f_blocks - curblock) : 0;
924 	}
925 
926 	limit = dquot->dq_dqb.dqb_isoftlimit ?
927 		dquot->dq_dqb.dqb_isoftlimit :
928 		dquot->dq_dqb.dqb_ihardlimit;
929 	if (limit && buf->f_files > limit) {
930 		buf->f_files = limit;
931 		buf->f_ffree =
932 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
933 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
934 	}
935 
936 	spin_unlock(&dq_data_lock);
937 	dqput(dquot);
938 	return 0;
939 }
940 #endif
941 
942 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
943 {
944 	struct super_block *sb = dentry->d_sb;
945 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
946 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
947 	block_t total_count, user_block_count, start_count, ovp_count;
948 	u64 avail_node_count;
949 
950 	total_count = le64_to_cpu(sbi->raw_super->block_count);
951 	user_block_count = sbi->user_block_count;
952 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
953 	ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
954 	buf->f_type = F2FS_SUPER_MAGIC;
955 	buf->f_bsize = sbi->blocksize;
956 
957 	buf->f_blocks = total_count - start_count;
958 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count;
959 	buf->f_bavail = user_block_count - valid_user_blocks(sbi) -
960 						sbi->reserved_blocks;
961 
962 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
963 
964 	if (avail_node_count > user_block_count) {
965 		buf->f_files = user_block_count;
966 		buf->f_ffree = buf->f_bavail;
967 	} else {
968 		buf->f_files = avail_node_count;
969 		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
970 					buf->f_bavail);
971 	}
972 
973 	buf->f_namelen = F2FS_NAME_LEN;
974 	buf->f_fsid.val[0] = (u32)id;
975 	buf->f_fsid.val[1] = (u32)(id >> 32);
976 
977 #ifdef CONFIG_QUOTA
978 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
979 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
980 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
981 	}
982 #endif
983 	return 0;
984 }
985 
986 static inline void f2fs_show_quota_options(struct seq_file *seq,
987 					   struct super_block *sb)
988 {
989 #ifdef CONFIG_QUOTA
990 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
991 
992 	if (sbi->s_jquota_fmt) {
993 		char *fmtname = "";
994 
995 		switch (sbi->s_jquota_fmt) {
996 		case QFMT_VFS_OLD:
997 			fmtname = "vfsold";
998 			break;
999 		case QFMT_VFS_V0:
1000 			fmtname = "vfsv0";
1001 			break;
1002 		case QFMT_VFS_V1:
1003 			fmtname = "vfsv1";
1004 			break;
1005 		}
1006 		seq_printf(seq, ",jqfmt=%s", fmtname);
1007 	}
1008 
1009 	if (sbi->s_qf_names[USRQUOTA])
1010 		seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1011 
1012 	if (sbi->s_qf_names[GRPQUOTA])
1013 		seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1014 
1015 	if (sbi->s_qf_names[PRJQUOTA])
1016 		seq_show_option(seq, "prjjquota", sbi->s_qf_names[PRJQUOTA]);
1017 #endif
1018 }
1019 
1020 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1021 {
1022 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1023 
1024 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1025 		if (test_opt(sbi, FORCE_FG_GC))
1026 			seq_printf(seq, ",background_gc=%s", "sync");
1027 		else
1028 			seq_printf(seq, ",background_gc=%s", "on");
1029 	} else {
1030 		seq_printf(seq, ",background_gc=%s", "off");
1031 	}
1032 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1033 		seq_puts(seq, ",disable_roll_forward");
1034 	if (test_opt(sbi, DISCARD))
1035 		seq_puts(seq, ",discard");
1036 	if (test_opt(sbi, NOHEAP))
1037 		seq_puts(seq, ",no_heap");
1038 	else
1039 		seq_puts(seq, ",heap");
1040 #ifdef CONFIG_F2FS_FS_XATTR
1041 	if (test_opt(sbi, XATTR_USER))
1042 		seq_puts(seq, ",user_xattr");
1043 	else
1044 		seq_puts(seq, ",nouser_xattr");
1045 	if (test_opt(sbi, INLINE_XATTR))
1046 		seq_puts(seq, ",inline_xattr");
1047 	else
1048 		seq_puts(seq, ",noinline_xattr");
1049 #endif
1050 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1051 	if (test_opt(sbi, POSIX_ACL))
1052 		seq_puts(seq, ",acl");
1053 	else
1054 		seq_puts(seq, ",noacl");
1055 #endif
1056 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1057 		seq_puts(seq, ",disable_ext_identify");
1058 	if (test_opt(sbi, INLINE_DATA))
1059 		seq_puts(seq, ",inline_data");
1060 	else
1061 		seq_puts(seq, ",noinline_data");
1062 	if (test_opt(sbi, INLINE_DENTRY))
1063 		seq_puts(seq, ",inline_dentry");
1064 	else
1065 		seq_puts(seq, ",noinline_dentry");
1066 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1067 		seq_puts(seq, ",flush_merge");
1068 	if (test_opt(sbi, NOBARRIER))
1069 		seq_puts(seq, ",nobarrier");
1070 	if (test_opt(sbi, FASTBOOT))
1071 		seq_puts(seq, ",fastboot");
1072 	if (test_opt(sbi, EXTENT_CACHE))
1073 		seq_puts(seq, ",extent_cache");
1074 	else
1075 		seq_puts(seq, ",noextent_cache");
1076 	if (test_opt(sbi, DATA_FLUSH))
1077 		seq_puts(seq, ",data_flush");
1078 
1079 	seq_puts(seq, ",mode=");
1080 	if (test_opt(sbi, ADAPTIVE))
1081 		seq_puts(seq, "adaptive");
1082 	else if (test_opt(sbi, LFS))
1083 		seq_puts(seq, "lfs");
1084 	seq_printf(seq, ",active_logs=%u", sbi->active_logs);
1085 	if (F2FS_IO_SIZE_BITS(sbi))
1086 		seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi));
1087 #ifdef CONFIG_F2FS_FAULT_INJECTION
1088 	if (test_opt(sbi, FAULT_INJECTION))
1089 		seq_printf(seq, ",fault_injection=%u",
1090 				sbi->fault_info.inject_rate);
1091 #endif
1092 #ifdef CONFIG_QUOTA
1093 	if (test_opt(sbi, QUOTA))
1094 		seq_puts(seq, ",quota");
1095 	if (test_opt(sbi, USRQUOTA))
1096 		seq_puts(seq, ",usrquota");
1097 	if (test_opt(sbi, GRPQUOTA))
1098 		seq_puts(seq, ",grpquota");
1099 	if (test_opt(sbi, PRJQUOTA))
1100 		seq_puts(seq, ",prjquota");
1101 #endif
1102 	f2fs_show_quota_options(seq, sbi->sb);
1103 
1104 	return 0;
1105 }
1106 
1107 static void default_options(struct f2fs_sb_info *sbi)
1108 {
1109 	/* init some FS parameters */
1110 	sbi->active_logs = NR_CURSEG_TYPE;
1111 
1112 	set_opt(sbi, BG_GC);
1113 	set_opt(sbi, INLINE_XATTR);
1114 	set_opt(sbi, INLINE_DATA);
1115 	set_opt(sbi, INLINE_DENTRY);
1116 	set_opt(sbi, EXTENT_CACHE);
1117 	set_opt(sbi, NOHEAP);
1118 	sbi->sb->s_flags |= MS_LAZYTIME;
1119 	set_opt(sbi, FLUSH_MERGE);
1120 	if (f2fs_sb_mounted_blkzoned(sbi->sb)) {
1121 		set_opt_mode(sbi, F2FS_MOUNT_LFS);
1122 		set_opt(sbi, DISCARD);
1123 	} else {
1124 		set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1125 	}
1126 
1127 #ifdef CONFIG_F2FS_FS_XATTR
1128 	set_opt(sbi, XATTR_USER);
1129 #endif
1130 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1131 	set_opt(sbi, POSIX_ACL);
1132 #endif
1133 
1134 #ifdef CONFIG_F2FS_FAULT_INJECTION
1135 	f2fs_build_fault_attr(sbi, 0);
1136 #endif
1137 }
1138 
1139 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1140 {
1141 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1142 	struct f2fs_mount_info org_mount_opt;
1143 	unsigned long old_sb_flags;
1144 	int err, active_logs;
1145 	bool need_restart_gc = false;
1146 	bool need_stop_gc = false;
1147 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1148 #ifdef CONFIG_F2FS_FAULT_INJECTION
1149 	struct f2fs_fault_info ffi = sbi->fault_info;
1150 #endif
1151 #ifdef CONFIG_QUOTA
1152 	int s_jquota_fmt;
1153 	char *s_qf_names[MAXQUOTAS];
1154 	int i, j;
1155 #endif
1156 
1157 	/*
1158 	 * Save the old mount options in case we
1159 	 * need to restore them.
1160 	 */
1161 	org_mount_opt = sbi->mount_opt;
1162 	old_sb_flags = sb->s_flags;
1163 	active_logs = sbi->active_logs;
1164 
1165 #ifdef CONFIG_QUOTA
1166 	s_jquota_fmt = sbi->s_jquota_fmt;
1167 	for (i = 0; i < MAXQUOTAS; i++) {
1168 		if (sbi->s_qf_names[i]) {
1169 			s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
1170 							 GFP_KERNEL);
1171 			if (!s_qf_names[i]) {
1172 				for (j = 0; j < i; j++)
1173 					kfree(s_qf_names[j]);
1174 				return -ENOMEM;
1175 			}
1176 		} else {
1177 			s_qf_names[i] = NULL;
1178 		}
1179 	}
1180 #endif
1181 
1182 	/* recover superblocks we couldn't write due to previous RO mount */
1183 	if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1184 		err = f2fs_commit_super(sbi, false);
1185 		f2fs_msg(sb, KERN_INFO,
1186 			"Try to recover all the superblocks, ret: %d", err);
1187 		if (!err)
1188 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1189 	}
1190 
1191 	default_options(sbi);
1192 
1193 	/* parse mount options */
1194 	err = parse_options(sb, data);
1195 	if (err)
1196 		goto restore_opts;
1197 
1198 	/*
1199 	 * Previous and new state of filesystem is RO,
1200 	 * so skip checking GC and FLUSH_MERGE conditions.
1201 	 */
1202 	if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1203 		goto skip;
1204 
1205 	if (!f2fs_readonly(sb) && (*flags & MS_RDONLY)) {
1206 		err = dquot_suspend(sb, -1);
1207 		if (err < 0)
1208 			goto restore_opts;
1209 	} else {
1210 		/* dquot_resume needs RW */
1211 		sb->s_flags &= ~MS_RDONLY;
1212 		dquot_resume(sb, -1);
1213 	}
1214 
1215 	/* disallow enable/disable extent_cache dynamically */
1216 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1217 		err = -EINVAL;
1218 		f2fs_msg(sbi->sb, KERN_WARNING,
1219 				"switch extent_cache option is not allowed");
1220 		goto restore_opts;
1221 	}
1222 
1223 	/*
1224 	 * We stop the GC thread if FS is mounted as RO
1225 	 * or if background_gc = off is passed in mount
1226 	 * option. Also sync the filesystem.
1227 	 */
1228 	if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1229 		if (sbi->gc_thread) {
1230 			stop_gc_thread(sbi);
1231 			need_restart_gc = true;
1232 		}
1233 	} else if (!sbi->gc_thread) {
1234 		err = start_gc_thread(sbi);
1235 		if (err)
1236 			goto restore_opts;
1237 		need_stop_gc = true;
1238 	}
1239 
1240 	if (*flags & MS_RDONLY) {
1241 		writeback_inodes_sb(sb, WB_REASON_SYNC);
1242 		sync_inodes_sb(sb);
1243 
1244 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1245 		set_sbi_flag(sbi, SBI_IS_CLOSE);
1246 		f2fs_sync_fs(sb, 1);
1247 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
1248 	}
1249 
1250 	/*
1251 	 * We stop issue flush thread if FS is mounted as RO
1252 	 * or if flush_merge is not passed in mount option.
1253 	 */
1254 	if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1255 		clear_opt(sbi, FLUSH_MERGE);
1256 		destroy_flush_cmd_control(sbi, false);
1257 	} else {
1258 		err = create_flush_cmd_control(sbi);
1259 		if (err)
1260 			goto restore_gc;
1261 	}
1262 skip:
1263 #ifdef CONFIG_QUOTA
1264 	/* Release old quota file names */
1265 	for (i = 0; i < MAXQUOTAS; i++)
1266 		kfree(s_qf_names[i]);
1267 #endif
1268 	/* Update the POSIXACL Flag */
1269 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1270 		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1271 
1272 	return 0;
1273 restore_gc:
1274 	if (need_restart_gc) {
1275 		if (start_gc_thread(sbi))
1276 			f2fs_msg(sbi->sb, KERN_WARNING,
1277 				"background gc thread has stopped");
1278 	} else if (need_stop_gc) {
1279 		stop_gc_thread(sbi);
1280 	}
1281 restore_opts:
1282 #ifdef CONFIG_QUOTA
1283 	sbi->s_jquota_fmt = s_jquota_fmt;
1284 	for (i = 0; i < MAXQUOTAS; i++) {
1285 		kfree(sbi->s_qf_names[i]);
1286 		sbi->s_qf_names[i] = s_qf_names[i];
1287 	}
1288 #endif
1289 	sbi->mount_opt = org_mount_opt;
1290 	sbi->active_logs = active_logs;
1291 	sb->s_flags = old_sb_flags;
1292 #ifdef CONFIG_F2FS_FAULT_INJECTION
1293 	sbi->fault_info = ffi;
1294 #endif
1295 	return err;
1296 }
1297 
1298 #ifdef CONFIG_QUOTA
1299 /* Read data from quotafile */
1300 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1301 			       size_t len, loff_t off)
1302 {
1303 	struct inode *inode = sb_dqopt(sb)->files[type];
1304 	struct address_space *mapping = inode->i_mapping;
1305 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
1306 	int offset = off & (sb->s_blocksize - 1);
1307 	int tocopy;
1308 	size_t toread;
1309 	loff_t i_size = i_size_read(inode);
1310 	struct page *page;
1311 	char *kaddr;
1312 
1313 	if (off > i_size)
1314 		return 0;
1315 
1316 	if (off + len > i_size)
1317 		len = i_size - off;
1318 	toread = len;
1319 	while (toread > 0) {
1320 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1321 repeat:
1322 		page = read_mapping_page(mapping, blkidx, NULL);
1323 		if (IS_ERR(page))
1324 			return PTR_ERR(page);
1325 
1326 		lock_page(page);
1327 
1328 		if (unlikely(page->mapping != mapping)) {
1329 			f2fs_put_page(page, 1);
1330 			goto repeat;
1331 		}
1332 		if (unlikely(!PageUptodate(page))) {
1333 			f2fs_put_page(page, 1);
1334 			return -EIO;
1335 		}
1336 
1337 		kaddr = kmap_atomic(page);
1338 		memcpy(data, kaddr + offset, tocopy);
1339 		kunmap_atomic(kaddr);
1340 		f2fs_put_page(page, 1);
1341 
1342 		offset = 0;
1343 		toread -= tocopy;
1344 		data += tocopy;
1345 		blkidx++;
1346 	}
1347 	return len;
1348 }
1349 
1350 /* Write to quotafile */
1351 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1352 				const char *data, size_t len, loff_t off)
1353 {
1354 	struct inode *inode = sb_dqopt(sb)->files[type];
1355 	struct address_space *mapping = inode->i_mapping;
1356 	const struct address_space_operations *a_ops = mapping->a_ops;
1357 	int offset = off & (sb->s_blocksize - 1);
1358 	size_t towrite = len;
1359 	struct page *page;
1360 	char *kaddr;
1361 	int err = 0;
1362 	int tocopy;
1363 
1364 	while (towrite > 0) {
1365 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1366 								towrite);
1367 
1368 		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1369 							&page, NULL);
1370 		if (unlikely(err))
1371 			break;
1372 
1373 		kaddr = kmap_atomic(page);
1374 		memcpy(kaddr + offset, data, tocopy);
1375 		kunmap_atomic(kaddr);
1376 		flush_dcache_page(page);
1377 
1378 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1379 						page, NULL);
1380 		offset = 0;
1381 		towrite -= tocopy;
1382 		off += tocopy;
1383 		data += tocopy;
1384 		cond_resched();
1385 	}
1386 
1387 	if (len == towrite)
1388 		return 0;
1389 	inode->i_version++;
1390 	inode->i_mtime = inode->i_ctime = current_time(inode);
1391 	f2fs_mark_inode_dirty_sync(inode, false);
1392 	return len - towrite;
1393 }
1394 
1395 static struct dquot **f2fs_get_dquots(struct inode *inode)
1396 {
1397 	return F2FS_I(inode)->i_dquot;
1398 }
1399 
1400 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1401 {
1402 	return &F2FS_I(inode)->i_reserved_quota;
1403 }
1404 
1405 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1406 {
1407 	return dquot_quota_on_mount(sbi->sb, sbi->s_qf_names[type],
1408 						sbi->s_jquota_fmt, type);
1409 }
1410 
1411 void f2fs_enable_quota_files(struct f2fs_sb_info *sbi)
1412 {
1413 	int i, ret;
1414 
1415 	for (i = 0; i < MAXQUOTAS; i++) {
1416 		if (sbi->s_qf_names[i]) {
1417 			ret = f2fs_quota_on_mount(sbi, i);
1418 			if (ret < 0)
1419 				f2fs_msg(sbi->sb, KERN_ERR,
1420 					"Cannot turn on journaled "
1421 					"quota: error %d", ret);
1422 		}
1423 	}
1424 }
1425 
1426 static int f2fs_quota_sync(struct super_block *sb, int type)
1427 {
1428 	struct quota_info *dqopt = sb_dqopt(sb);
1429 	int cnt;
1430 	int ret;
1431 
1432 	ret = dquot_writeback_dquots(sb, type);
1433 	if (ret)
1434 		return ret;
1435 
1436 	/*
1437 	 * Now when everything is written we can discard the pagecache so
1438 	 * that userspace sees the changes.
1439 	 */
1440 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1441 		if (type != -1 && cnt != type)
1442 			continue;
1443 		if (!sb_has_quota_active(sb, cnt))
1444 			continue;
1445 
1446 		ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping);
1447 		if (ret)
1448 			return ret;
1449 
1450 		inode_lock(dqopt->files[cnt]);
1451 		truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1452 		inode_unlock(dqopt->files[cnt]);
1453 	}
1454 	return 0;
1455 }
1456 
1457 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1458 							const struct path *path)
1459 {
1460 	struct inode *inode;
1461 	int err;
1462 
1463 	err = f2fs_quota_sync(sb, type);
1464 	if (err)
1465 		return err;
1466 
1467 	err = dquot_quota_on(sb, type, format_id, path);
1468 	if (err)
1469 		return err;
1470 
1471 	inode = d_inode(path->dentry);
1472 
1473 	inode_lock(inode);
1474 	F2FS_I(inode)->i_flags |= FS_NOATIME_FL | FS_IMMUTABLE_FL;
1475 	inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
1476 					S_NOATIME | S_IMMUTABLE);
1477 	inode_unlock(inode);
1478 	f2fs_mark_inode_dirty_sync(inode, false);
1479 
1480 	return 0;
1481 }
1482 
1483 static int f2fs_quota_off(struct super_block *sb, int type)
1484 {
1485 	struct inode *inode = sb_dqopt(sb)->files[type];
1486 	int err;
1487 
1488 	if (!inode || !igrab(inode))
1489 		return dquot_quota_off(sb, type);
1490 
1491 	f2fs_quota_sync(sb, type);
1492 
1493 	err = dquot_quota_off(sb, type);
1494 	if (err)
1495 		goto out_put;
1496 
1497 	inode_lock(inode);
1498 	F2FS_I(inode)->i_flags &= ~(FS_NOATIME_FL | FS_IMMUTABLE_FL);
1499 	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
1500 	inode_unlock(inode);
1501 	f2fs_mark_inode_dirty_sync(inode, false);
1502 out_put:
1503 	iput(inode);
1504 	return err;
1505 }
1506 
1507 void f2fs_quota_off_umount(struct super_block *sb)
1508 {
1509 	int type;
1510 
1511 	for (type = 0; type < MAXQUOTAS; type++)
1512 		f2fs_quota_off(sb, type);
1513 }
1514 
1515 int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
1516 {
1517 	*projid = F2FS_I(inode)->i_projid;
1518 	return 0;
1519 }
1520 
1521 static const struct dquot_operations f2fs_quota_operations = {
1522 	.get_reserved_space = f2fs_get_reserved_space,
1523 	.write_dquot	= dquot_commit,
1524 	.acquire_dquot	= dquot_acquire,
1525 	.release_dquot	= dquot_release,
1526 	.mark_dirty	= dquot_mark_dquot_dirty,
1527 	.write_info	= dquot_commit_info,
1528 	.alloc_dquot	= dquot_alloc,
1529 	.destroy_dquot	= dquot_destroy,
1530 	.get_projid	= f2fs_get_projid,
1531 	.get_next_id	= dquot_get_next_id,
1532 };
1533 
1534 static const struct quotactl_ops f2fs_quotactl_ops = {
1535 	.quota_on	= f2fs_quota_on,
1536 	.quota_off	= f2fs_quota_off,
1537 	.quota_sync	= f2fs_quota_sync,
1538 	.get_state	= dquot_get_state,
1539 	.set_info	= dquot_set_dqinfo,
1540 	.get_dqblk	= dquot_get_dqblk,
1541 	.set_dqblk	= dquot_set_dqblk,
1542 	.get_nextdqblk	= dquot_get_next_dqblk,
1543 };
1544 #else
1545 void f2fs_quota_off_umount(struct super_block *sb)
1546 {
1547 }
1548 #endif
1549 
1550 static const struct super_operations f2fs_sops = {
1551 	.alloc_inode	= f2fs_alloc_inode,
1552 	.drop_inode	= f2fs_drop_inode,
1553 	.destroy_inode	= f2fs_destroy_inode,
1554 	.write_inode	= f2fs_write_inode,
1555 	.dirty_inode	= f2fs_dirty_inode,
1556 	.show_options	= f2fs_show_options,
1557 #ifdef CONFIG_QUOTA
1558 	.quota_read	= f2fs_quota_read,
1559 	.quota_write	= f2fs_quota_write,
1560 	.get_dquots	= f2fs_get_dquots,
1561 #endif
1562 	.evict_inode	= f2fs_evict_inode,
1563 	.put_super	= f2fs_put_super,
1564 	.sync_fs	= f2fs_sync_fs,
1565 	.freeze_fs	= f2fs_freeze,
1566 	.unfreeze_fs	= f2fs_unfreeze,
1567 	.statfs		= f2fs_statfs,
1568 	.remount_fs	= f2fs_remount,
1569 };
1570 
1571 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1572 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1573 {
1574 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1575 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1576 				ctx, len, NULL);
1577 }
1578 
1579 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1580 							void *fs_data)
1581 {
1582 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1583 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1584 				ctx, len, fs_data, XATTR_CREATE);
1585 }
1586 
1587 static unsigned f2fs_max_namelen(struct inode *inode)
1588 {
1589 	return S_ISLNK(inode->i_mode) ?
1590 			inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1591 }
1592 
1593 static const struct fscrypt_operations f2fs_cryptops = {
1594 	.key_prefix	= "f2fs:",
1595 	.get_context	= f2fs_get_context,
1596 	.set_context	= f2fs_set_context,
1597 	.is_encrypted	= f2fs_encrypted_inode,
1598 	.empty_dir	= f2fs_empty_dir,
1599 	.max_namelen	= f2fs_max_namelen,
1600 };
1601 #else
1602 static const struct fscrypt_operations f2fs_cryptops = {
1603 	.is_encrypted	= f2fs_encrypted_inode,
1604 };
1605 #endif
1606 
1607 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1608 		u64 ino, u32 generation)
1609 {
1610 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1611 	struct inode *inode;
1612 
1613 	if (check_nid_range(sbi, ino))
1614 		return ERR_PTR(-ESTALE);
1615 
1616 	/*
1617 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
1618 	 * However f2fs_iget currently does appropriate checks to handle stale
1619 	 * inodes so everything is OK.
1620 	 */
1621 	inode = f2fs_iget(sb, ino);
1622 	if (IS_ERR(inode))
1623 		return ERR_CAST(inode);
1624 	if (unlikely(generation && inode->i_generation != generation)) {
1625 		/* we didn't find the right inode.. */
1626 		iput(inode);
1627 		return ERR_PTR(-ESTALE);
1628 	}
1629 	return inode;
1630 }
1631 
1632 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1633 		int fh_len, int fh_type)
1634 {
1635 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1636 				    f2fs_nfs_get_inode);
1637 }
1638 
1639 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1640 		int fh_len, int fh_type)
1641 {
1642 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1643 				    f2fs_nfs_get_inode);
1644 }
1645 
1646 static const struct export_operations f2fs_export_ops = {
1647 	.fh_to_dentry = f2fs_fh_to_dentry,
1648 	.fh_to_parent = f2fs_fh_to_parent,
1649 	.get_parent = f2fs_get_parent,
1650 };
1651 
1652 static loff_t max_file_blocks(void)
1653 {
1654 	loff_t result = 0;
1655 	loff_t leaf_count = ADDRS_PER_BLOCK;
1656 
1657 	/*
1658 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
1659 	 * F2FS_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
1660 	 * space in inode.i_addr, it will be more safe to reassign
1661 	 * result as zero.
1662 	 */
1663 
1664 	/* two direct node blocks */
1665 	result += (leaf_count * 2);
1666 
1667 	/* two indirect node blocks */
1668 	leaf_count *= NIDS_PER_BLOCK;
1669 	result += (leaf_count * 2);
1670 
1671 	/* one double indirect node block */
1672 	leaf_count *= NIDS_PER_BLOCK;
1673 	result += leaf_count;
1674 
1675 	return result;
1676 }
1677 
1678 static int __f2fs_commit_super(struct buffer_head *bh,
1679 			struct f2fs_super_block *super)
1680 {
1681 	lock_buffer(bh);
1682 	if (super)
1683 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1684 	set_buffer_uptodate(bh);
1685 	set_buffer_dirty(bh);
1686 	unlock_buffer(bh);
1687 
1688 	/* it's rare case, we can do fua all the time */
1689 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
1690 }
1691 
1692 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1693 					struct buffer_head *bh)
1694 {
1695 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1696 					(bh->b_data + F2FS_SUPER_OFFSET);
1697 	struct super_block *sb = sbi->sb;
1698 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1699 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1700 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1701 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1702 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1703 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1704 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1705 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1706 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1707 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1708 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1709 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
1710 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1711 	u64 main_end_blkaddr = main_blkaddr +
1712 				(segment_count_main << log_blocks_per_seg);
1713 	u64 seg_end_blkaddr = segment0_blkaddr +
1714 				(segment_count << log_blocks_per_seg);
1715 
1716 	if (segment0_blkaddr != cp_blkaddr) {
1717 		f2fs_msg(sb, KERN_INFO,
1718 			"Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1719 			segment0_blkaddr, cp_blkaddr);
1720 		return true;
1721 	}
1722 
1723 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1724 							sit_blkaddr) {
1725 		f2fs_msg(sb, KERN_INFO,
1726 			"Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1727 			cp_blkaddr, sit_blkaddr,
1728 			segment_count_ckpt << log_blocks_per_seg);
1729 		return true;
1730 	}
1731 
1732 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1733 							nat_blkaddr) {
1734 		f2fs_msg(sb, KERN_INFO,
1735 			"Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1736 			sit_blkaddr, nat_blkaddr,
1737 			segment_count_sit << log_blocks_per_seg);
1738 		return true;
1739 	}
1740 
1741 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1742 							ssa_blkaddr) {
1743 		f2fs_msg(sb, KERN_INFO,
1744 			"Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1745 			nat_blkaddr, ssa_blkaddr,
1746 			segment_count_nat << log_blocks_per_seg);
1747 		return true;
1748 	}
1749 
1750 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1751 							main_blkaddr) {
1752 		f2fs_msg(sb, KERN_INFO,
1753 			"Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1754 			ssa_blkaddr, main_blkaddr,
1755 			segment_count_ssa << log_blocks_per_seg);
1756 		return true;
1757 	}
1758 
1759 	if (main_end_blkaddr > seg_end_blkaddr) {
1760 		f2fs_msg(sb, KERN_INFO,
1761 			"Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1762 			main_blkaddr,
1763 			segment0_blkaddr +
1764 				(segment_count << log_blocks_per_seg),
1765 			segment_count_main << log_blocks_per_seg);
1766 		return true;
1767 	} else if (main_end_blkaddr < seg_end_blkaddr) {
1768 		int err = 0;
1769 		char *res;
1770 
1771 		/* fix in-memory information all the time */
1772 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1773 				segment0_blkaddr) >> log_blocks_per_seg);
1774 
1775 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1776 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1777 			res = "internally";
1778 		} else {
1779 			err = __f2fs_commit_super(bh, NULL);
1780 			res = err ? "failed" : "done";
1781 		}
1782 		f2fs_msg(sb, KERN_INFO,
1783 			"Fix alignment : %s, start(%u) end(%u) block(%u)",
1784 			res, main_blkaddr,
1785 			segment0_blkaddr +
1786 				(segment_count << log_blocks_per_seg),
1787 			segment_count_main << log_blocks_per_seg);
1788 		if (err)
1789 			return true;
1790 	}
1791 	return false;
1792 }
1793 
1794 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1795 				struct buffer_head *bh)
1796 {
1797 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1798 					(bh->b_data + F2FS_SUPER_OFFSET);
1799 	struct super_block *sb = sbi->sb;
1800 	unsigned int blocksize;
1801 
1802 	if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1803 		f2fs_msg(sb, KERN_INFO,
1804 			"Magic Mismatch, valid(0x%x) - read(0x%x)",
1805 			F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1806 		return 1;
1807 	}
1808 
1809 	/* Currently, support only 4KB page cache size */
1810 	if (F2FS_BLKSIZE != PAGE_SIZE) {
1811 		f2fs_msg(sb, KERN_INFO,
1812 			"Invalid page_cache_size (%lu), supports only 4KB\n",
1813 			PAGE_SIZE);
1814 		return 1;
1815 	}
1816 
1817 	/* Currently, support only 4KB block size */
1818 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1819 	if (blocksize != F2FS_BLKSIZE) {
1820 		f2fs_msg(sb, KERN_INFO,
1821 			"Invalid blocksize (%u), supports only 4KB\n",
1822 			blocksize);
1823 		return 1;
1824 	}
1825 
1826 	/* check log blocks per segment */
1827 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1828 		f2fs_msg(sb, KERN_INFO,
1829 			"Invalid log blocks per segment (%u)\n",
1830 			le32_to_cpu(raw_super->log_blocks_per_seg));
1831 		return 1;
1832 	}
1833 
1834 	/* Currently, support 512/1024/2048/4096 bytes sector size */
1835 	if (le32_to_cpu(raw_super->log_sectorsize) >
1836 				F2FS_MAX_LOG_SECTOR_SIZE ||
1837 		le32_to_cpu(raw_super->log_sectorsize) <
1838 				F2FS_MIN_LOG_SECTOR_SIZE) {
1839 		f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1840 			le32_to_cpu(raw_super->log_sectorsize));
1841 		return 1;
1842 	}
1843 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
1844 		le32_to_cpu(raw_super->log_sectorsize) !=
1845 			F2FS_MAX_LOG_SECTOR_SIZE) {
1846 		f2fs_msg(sb, KERN_INFO,
1847 			"Invalid log sectors per block(%u) log sectorsize(%u)",
1848 			le32_to_cpu(raw_super->log_sectors_per_block),
1849 			le32_to_cpu(raw_super->log_sectorsize));
1850 		return 1;
1851 	}
1852 
1853 	/* check reserved ino info */
1854 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
1855 		le32_to_cpu(raw_super->meta_ino) != 2 ||
1856 		le32_to_cpu(raw_super->root_ino) != 3) {
1857 		f2fs_msg(sb, KERN_INFO,
1858 			"Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1859 			le32_to_cpu(raw_super->node_ino),
1860 			le32_to_cpu(raw_super->meta_ino),
1861 			le32_to_cpu(raw_super->root_ino));
1862 		return 1;
1863 	}
1864 
1865 	if (le32_to_cpu(raw_super->segment_count) > F2FS_MAX_SEGMENT) {
1866 		f2fs_msg(sb, KERN_INFO,
1867 			"Invalid segment count (%u)",
1868 			le32_to_cpu(raw_super->segment_count));
1869 		return 1;
1870 	}
1871 
1872 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1873 	if (sanity_check_area_boundary(sbi, bh))
1874 		return 1;
1875 
1876 	return 0;
1877 }
1878 
1879 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1880 {
1881 	unsigned int total, fsmeta;
1882 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1883 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1884 	unsigned int ovp_segments, reserved_segments;
1885 	unsigned int main_segs, blocks_per_seg;
1886 	int i;
1887 
1888 	total = le32_to_cpu(raw_super->segment_count);
1889 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1890 	fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1891 	fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1892 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1893 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1894 
1895 	if (unlikely(fsmeta >= total))
1896 		return 1;
1897 
1898 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1899 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1900 
1901 	if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
1902 			ovp_segments == 0 || reserved_segments == 0)) {
1903 		f2fs_msg(sbi->sb, KERN_ERR,
1904 			"Wrong layout: check mkfs.f2fs version");
1905 		return 1;
1906 	}
1907 
1908 	main_segs = le32_to_cpu(raw_super->segment_count_main);
1909 	blocks_per_seg = sbi->blocks_per_seg;
1910 
1911 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
1912 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
1913 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
1914 			return 1;
1915 	}
1916 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
1917 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
1918 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
1919 			return 1;
1920 	}
1921 
1922 	if (unlikely(f2fs_cp_error(sbi))) {
1923 		f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1924 		return 1;
1925 	}
1926 	return 0;
1927 }
1928 
1929 static void init_sb_info(struct f2fs_sb_info *sbi)
1930 {
1931 	struct f2fs_super_block *raw_super = sbi->raw_super;
1932 	int i, j;
1933 
1934 	sbi->log_sectors_per_block =
1935 		le32_to_cpu(raw_super->log_sectors_per_block);
1936 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1937 	sbi->blocksize = 1 << sbi->log_blocksize;
1938 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1939 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1940 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1941 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1942 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
1943 	sbi->total_node_count =
1944 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
1945 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1946 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1947 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1948 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1949 	sbi->cur_victim_sec = NULL_SECNO;
1950 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1951 
1952 	sbi->dir_level = DEF_DIR_LEVEL;
1953 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1954 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1955 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
1956 
1957 	for (i = 0; i < NR_COUNT_TYPE; i++)
1958 		atomic_set(&sbi->nr_pages[i], 0);
1959 
1960 	atomic_set(&sbi->wb_sync_req, 0);
1961 
1962 	INIT_LIST_HEAD(&sbi->s_list);
1963 	mutex_init(&sbi->umount_mutex);
1964 	for (i = 0; i < NR_PAGE_TYPE - 1; i++)
1965 		for (j = HOT; j < NR_TEMP_TYPE; j++)
1966 			mutex_init(&sbi->wio_mutex[i][j]);
1967 	spin_lock_init(&sbi->cp_lock);
1968 }
1969 
1970 static int init_percpu_info(struct f2fs_sb_info *sbi)
1971 {
1972 	int err;
1973 
1974 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1975 	if (err)
1976 		return err;
1977 
1978 	return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1979 								GFP_KERNEL);
1980 }
1981 
1982 #ifdef CONFIG_BLK_DEV_ZONED
1983 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
1984 {
1985 	struct block_device *bdev = FDEV(devi).bdev;
1986 	sector_t nr_sectors = bdev->bd_part->nr_sects;
1987 	sector_t sector = 0;
1988 	struct blk_zone *zones;
1989 	unsigned int i, nr_zones;
1990 	unsigned int n = 0;
1991 	int err = -EIO;
1992 
1993 	if (!f2fs_sb_mounted_blkzoned(sbi->sb))
1994 		return 0;
1995 
1996 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
1997 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
1998 		return -EINVAL;
1999 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2000 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2001 				__ilog2_u32(sbi->blocks_per_blkz))
2002 		return -EINVAL;
2003 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2004 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2005 					sbi->log_blocks_per_blkz;
2006 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2007 		FDEV(devi).nr_blkz++;
2008 
2009 	FDEV(devi).blkz_type = kmalloc(FDEV(devi).nr_blkz, GFP_KERNEL);
2010 	if (!FDEV(devi).blkz_type)
2011 		return -ENOMEM;
2012 
2013 #define F2FS_REPORT_NR_ZONES   4096
2014 
2015 	zones = kcalloc(F2FS_REPORT_NR_ZONES, sizeof(struct blk_zone),
2016 			GFP_KERNEL);
2017 	if (!zones)
2018 		return -ENOMEM;
2019 
2020 	/* Get block zones type */
2021 	while (zones && sector < nr_sectors) {
2022 
2023 		nr_zones = F2FS_REPORT_NR_ZONES;
2024 		err = blkdev_report_zones(bdev, sector,
2025 					  zones, &nr_zones,
2026 					  GFP_KERNEL);
2027 		if (err)
2028 			break;
2029 		if (!nr_zones) {
2030 			err = -EIO;
2031 			break;
2032 		}
2033 
2034 		for (i = 0; i < nr_zones; i++) {
2035 			FDEV(devi).blkz_type[n] = zones[i].type;
2036 			sector += zones[i].len;
2037 			n++;
2038 		}
2039 	}
2040 
2041 	kfree(zones);
2042 
2043 	return err;
2044 }
2045 #endif
2046 
2047 /*
2048  * Read f2fs raw super block.
2049  * Because we have two copies of super block, so read both of them
2050  * to get the first valid one. If any one of them is broken, we pass
2051  * them recovery flag back to the caller.
2052  */
2053 static int read_raw_super_block(struct f2fs_sb_info *sbi,
2054 			struct f2fs_super_block **raw_super,
2055 			int *valid_super_block, int *recovery)
2056 {
2057 	struct super_block *sb = sbi->sb;
2058 	int block;
2059 	struct buffer_head *bh;
2060 	struct f2fs_super_block *super;
2061 	int err = 0;
2062 
2063 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2064 	if (!super)
2065 		return -ENOMEM;
2066 
2067 	for (block = 0; block < 2; block++) {
2068 		bh = sb_bread(sb, block);
2069 		if (!bh) {
2070 			f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
2071 				block + 1);
2072 			err = -EIO;
2073 			continue;
2074 		}
2075 
2076 		/* sanity checking of raw super */
2077 		if (sanity_check_raw_super(sbi, bh)) {
2078 			f2fs_msg(sb, KERN_ERR,
2079 				"Can't find valid F2FS filesystem in %dth superblock",
2080 				block + 1);
2081 			err = -EINVAL;
2082 			brelse(bh);
2083 			continue;
2084 		}
2085 
2086 		if (!*raw_super) {
2087 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2088 							sizeof(*super));
2089 			*valid_super_block = block;
2090 			*raw_super = super;
2091 		}
2092 		brelse(bh);
2093 	}
2094 
2095 	/* Fail to read any one of the superblocks*/
2096 	if (err < 0)
2097 		*recovery = 1;
2098 
2099 	/* No valid superblock */
2100 	if (!*raw_super)
2101 		kfree(super);
2102 	else
2103 		err = 0;
2104 
2105 	return err;
2106 }
2107 
2108 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2109 {
2110 	struct buffer_head *bh;
2111 	int err;
2112 
2113 	if ((recover && f2fs_readonly(sbi->sb)) ||
2114 				bdev_read_only(sbi->sb->s_bdev)) {
2115 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2116 		return -EROFS;
2117 	}
2118 
2119 	/* write back-up superblock first */
2120 	bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
2121 	if (!bh)
2122 		return -EIO;
2123 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2124 	brelse(bh);
2125 
2126 	/* if we are in recovery path, skip writing valid superblock */
2127 	if (recover || err)
2128 		return err;
2129 
2130 	/* write current valid superblock */
2131 	bh = sb_getblk(sbi->sb, sbi->valid_super_block);
2132 	if (!bh)
2133 		return -EIO;
2134 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2135 	brelse(bh);
2136 	return err;
2137 }
2138 
2139 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
2140 {
2141 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2142 	unsigned int max_devices = MAX_DEVICES;
2143 	int i;
2144 
2145 	/* Initialize single device information */
2146 	if (!RDEV(0).path[0]) {
2147 		if (!bdev_is_zoned(sbi->sb->s_bdev))
2148 			return 0;
2149 		max_devices = 1;
2150 	}
2151 
2152 	/*
2153 	 * Initialize multiple devices information, or single
2154 	 * zoned block device information.
2155 	 */
2156 	sbi->devs = kcalloc(max_devices, sizeof(struct f2fs_dev_info),
2157 				GFP_KERNEL);
2158 	if (!sbi->devs)
2159 		return -ENOMEM;
2160 
2161 	for (i = 0; i < max_devices; i++) {
2162 
2163 		if (i > 0 && !RDEV(i).path[0])
2164 			break;
2165 
2166 		if (max_devices == 1) {
2167 			/* Single zoned block device mount */
2168 			FDEV(0).bdev =
2169 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
2170 					sbi->sb->s_mode, sbi->sb->s_type);
2171 		} else {
2172 			/* Multi-device mount */
2173 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
2174 			FDEV(i).total_segments =
2175 				le32_to_cpu(RDEV(i).total_segments);
2176 			if (i == 0) {
2177 				FDEV(i).start_blk = 0;
2178 				FDEV(i).end_blk = FDEV(i).start_blk +
2179 				    (FDEV(i).total_segments <<
2180 				    sbi->log_blocks_per_seg) - 1 +
2181 				    le32_to_cpu(raw_super->segment0_blkaddr);
2182 			} else {
2183 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
2184 				FDEV(i).end_blk = FDEV(i).start_blk +
2185 					(FDEV(i).total_segments <<
2186 					sbi->log_blocks_per_seg) - 1;
2187 			}
2188 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
2189 					sbi->sb->s_mode, sbi->sb->s_type);
2190 		}
2191 		if (IS_ERR(FDEV(i).bdev))
2192 			return PTR_ERR(FDEV(i).bdev);
2193 
2194 		/* to release errored devices */
2195 		sbi->s_ndevs = i + 1;
2196 
2197 #ifdef CONFIG_BLK_DEV_ZONED
2198 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
2199 				!f2fs_sb_mounted_blkzoned(sbi->sb)) {
2200 			f2fs_msg(sbi->sb, KERN_ERR,
2201 				"Zoned block device feature not enabled\n");
2202 			return -EINVAL;
2203 		}
2204 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
2205 			if (init_blkz_info(sbi, i)) {
2206 				f2fs_msg(sbi->sb, KERN_ERR,
2207 					"Failed to initialize F2FS blkzone information");
2208 				return -EINVAL;
2209 			}
2210 			if (max_devices == 1)
2211 				break;
2212 			f2fs_msg(sbi->sb, KERN_INFO,
2213 				"Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
2214 				i, FDEV(i).path,
2215 				FDEV(i).total_segments,
2216 				FDEV(i).start_blk, FDEV(i).end_blk,
2217 				bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
2218 				"Host-aware" : "Host-managed");
2219 			continue;
2220 		}
2221 #endif
2222 		f2fs_msg(sbi->sb, KERN_INFO,
2223 			"Mount Device [%2d]: %20s, %8u, %8x - %8x",
2224 				i, FDEV(i).path,
2225 				FDEV(i).total_segments,
2226 				FDEV(i).start_blk, FDEV(i).end_blk);
2227 	}
2228 	f2fs_msg(sbi->sb, KERN_INFO,
2229 			"IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
2230 	return 0;
2231 }
2232 
2233 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
2234 {
2235 	struct f2fs_sb_info *sbi;
2236 	struct f2fs_super_block *raw_super;
2237 	struct inode *root;
2238 	int err;
2239 	bool retry = true, need_fsck = false;
2240 	char *options = NULL;
2241 	int recovery, i, valid_super_block;
2242 	struct curseg_info *seg_i;
2243 
2244 try_onemore:
2245 	err = -EINVAL;
2246 	raw_super = NULL;
2247 	valid_super_block = -1;
2248 	recovery = 0;
2249 
2250 	/* allocate memory for f2fs-specific super block info */
2251 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
2252 	if (!sbi)
2253 		return -ENOMEM;
2254 
2255 	sbi->sb = sb;
2256 
2257 	/* Load the checksum driver */
2258 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
2259 	if (IS_ERR(sbi->s_chksum_driver)) {
2260 		f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
2261 		err = PTR_ERR(sbi->s_chksum_driver);
2262 		sbi->s_chksum_driver = NULL;
2263 		goto free_sbi;
2264 	}
2265 
2266 	/* set a block size */
2267 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
2268 		f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
2269 		goto free_sbi;
2270 	}
2271 
2272 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
2273 								&recovery);
2274 	if (err)
2275 		goto free_sbi;
2276 
2277 	sb->s_fs_info = sbi;
2278 	sbi->raw_super = raw_super;
2279 
2280 	/* precompute checksum seed for metadata */
2281 	if (f2fs_sb_has_inode_chksum(sb))
2282 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
2283 						sizeof(raw_super->uuid));
2284 
2285 	/*
2286 	 * The BLKZONED feature indicates that the drive was formatted with
2287 	 * zone alignment optimization. This is optional for host-aware
2288 	 * devices, but mandatory for host-managed zoned block devices.
2289 	 */
2290 #ifndef CONFIG_BLK_DEV_ZONED
2291 	if (f2fs_sb_mounted_blkzoned(sb)) {
2292 		f2fs_msg(sb, KERN_ERR,
2293 			 "Zoned block device support is not enabled\n");
2294 		err = -EOPNOTSUPP;
2295 		goto free_sb_buf;
2296 	}
2297 #endif
2298 	default_options(sbi);
2299 	/* parse mount options */
2300 	options = kstrdup((const char *)data, GFP_KERNEL);
2301 	if (data && !options) {
2302 		err = -ENOMEM;
2303 		goto free_sb_buf;
2304 	}
2305 
2306 	err = parse_options(sb, options);
2307 	if (err)
2308 		goto free_options;
2309 
2310 	sbi->max_file_blocks = max_file_blocks();
2311 	sb->s_maxbytes = sbi->max_file_blocks <<
2312 				le32_to_cpu(raw_super->log_blocksize);
2313 	sb->s_max_links = F2FS_LINK_MAX;
2314 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
2315 
2316 #ifdef CONFIG_QUOTA
2317 	sb->dq_op = &f2fs_quota_operations;
2318 	sb->s_qcop = &f2fs_quotactl_ops;
2319 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
2320 #endif
2321 
2322 	sb->s_op = &f2fs_sops;
2323 	sb->s_cop = &f2fs_cryptops;
2324 	sb->s_xattr = f2fs_xattr_handlers;
2325 	sb->s_export_op = &f2fs_export_ops;
2326 	sb->s_magic = F2FS_SUPER_MAGIC;
2327 	sb->s_time_gran = 1;
2328 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
2329 		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
2330 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
2331 
2332 	/* init f2fs-specific super block info */
2333 	sbi->valid_super_block = valid_super_block;
2334 	mutex_init(&sbi->gc_mutex);
2335 	mutex_init(&sbi->cp_mutex);
2336 	init_rwsem(&sbi->node_write);
2337 	init_rwsem(&sbi->node_change);
2338 
2339 	/* disallow all the data/node/meta page writes */
2340 	set_sbi_flag(sbi, SBI_POR_DOING);
2341 	spin_lock_init(&sbi->stat_lock);
2342 
2343 	/* init iostat info */
2344 	spin_lock_init(&sbi->iostat_lock);
2345 	sbi->iostat_enable = false;
2346 
2347 	for (i = 0; i < NR_PAGE_TYPE; i++) {
2348 		int n = (i == META) ? 1: NR_TEMP_TYPE;
2349 		int j;
2350 
2351 		sbi->write_io[i] = kmalloc(n * sizeof(struct f2fs_bio_info),
2352 								GFP_KERNEL);
2353 		if (!sbi->write_io[i]) {
2354 			err = -ENOMEM;
2355 			goto free_options;
2356 		}
2357 
2358 		for (j = HOT; j < n; j++) {
2359 			init_rwsem(&sbi->write_io[i][j].io_rwsem);
2360 			sbi->write_io[i][j].sbi = sbi;
2361 			sbi->write_io[i][j].bio = NULL;
2362 			spin_lock_init(&sbi->write_io[i][j].io_lock);
2363 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
2364 		}
2365 	}
2366 
2367 	init_rwsem(&sbi->cp_rwsem);
2368 	init_waitqueue_head(&sbi->cp_wait);
2369 	init_sb_info(sbi);
2370 
2371 	err = init_percpu_info(sbi);
2372 	if (err)
2373 		goto free_options;
2374 
2375 	if (F2FS_IO_SIZE(sbi) > 1) {
2376 		sbi->write_io_dummy =
2377 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
2378 		if (!sbi->write_io_dummy) {
2379 			err = -ENOMEM;
2380 			goto free_options;
2381 		}
2382 	}
2383 
2384 	/* get an inode for meta space */
2385 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
2386 	if (IS_ERR(sbi->meta_inode)) {
2387 		f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
2388 		err = PTR_ERR(sbi->meta_inode);
2389 		goto free_io_dummy;
2390 	}
2391 
2392 	err = get_valid_checkpoint(sbi);
2393 	if (err) {
2394 		f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
2395 		goto free_meta_inode;
2396 	}
2397 
2398 	/* Initialize device list */
2399 	err = f2fs_scan_devices(sbi);
2400 	if (err) {
2401 		f2fs_msg(sb, KERN_ERR, "Failed to find devices");
2402 		goto free_devices;
2403 	}
2404 
2405 	sbi->total_valid_node_count =
2406 				le32_to_cpu(sbi->ckpt->valid_node_count);
2407 	percpu_counter_set(&sbi->total_valid_inode_count,
2408 				le32_to_cpu(sbi->ckpt->valid_inode_count));
2409 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
2410 	sbi->total_valid_block_count =
2411 				le64_to_cpu(sbi->ckpt->valid_block_count);
2412 	sbi->last_valid_block_count = sbi->total_valid_block_count;
2413 	sbi->reserved_blocks = 0;
2414 
2415 	for (i = 0; i < NR_INODE_TYPE; i++) {
2416 		INIT_LIST_HEAD(&sbi->inode_list[i]);
2417 		spin_lock_init(&sbi->inode_lock[i]);
2418 	}
2419 
2420 	init_extent_cache_info(sbi);
2421 
2422 	init_ino_entry_info(sbi);
2423 
2424 	/* setup f2fs internal modules */
2425 	err = build_segment_manager(sbi);
2426 	if (err) {
2427 		f2fs_msg(sb, KERN_ERR,
2428 			"Failed to initialize F2FS segment manager");
2429 		goto free_sm;
2430 	}
2431 	err = build_node_manager(sbi);
2432 	if (err) {
2433 		f2fs_msg(sb, KERN_ERR,
2434 			"Failed to initialize F2FS node manager");
2435 		goto free_nm;
2436 	}
2437 
2438 	/* For write statistics */
2439 	if (sb->s_bdev->bd_part)
2440 		sbi->sectors_written_start =
2441 			(u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
2442 
2443 	/* Read accumulated write IO statistics if exists */
2444 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
2445 	if (__exist_node_summaries(sbi))
2446 		sbi->kbytes_written =
2447 			le64_to_cpu(seg_i->journal->info.kbytes_written);
2448 
2449 	build_gc_manager(sbi);
2450 
2451 	/* get an inode for node space */
2452 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
2453 	if (IS_ERR(sbi->node_inode)) {
2454 		f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
2455 		err = PTR_ERR(sbi->node_inode);
2456 		goto free_nm;
2457 	}
2458 
2459 	f2fs_join_shrinker(sbi);
2460 
2461 	err = f2fs_build_stats(sbi);
2462 	if (err)
2463 		goto free_nm;
2464 
2465 	/* read root inode and dentry */
2466 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
2467 	if (IS_ERR(root)) {
2468 		f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
2469 		err = PTR_ERR(root);
2470 		goto free_node_inode;
2471 	}
2472 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
2473 		iput(root);
2474 		err = -EINVAL;
2475 		goto free_node_inode;
2476 	}
2477 
2478 	sb->s_root = d_make_root(root); /* allocate root dentry */
2479 	if (!sb->s_root) {
2480 		err = -ENOMEM;
2481 		goto free_root_inode;
2482 	}
2483 
2484 	err = f2fs_register_sysfs(sbi);
2485 	if (err)
2486 		goto free_root_inode;
2487 
2488 	/* if there are nt orphan nodes free them */
2489 	err = recover_orphan_inodes(sbi);
2490 	if (err)
2491 		goto free_sysfs;
2492 
2493 	/* recover fsynced data */
2494 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
2495 		/*
2496 		 * mount should be failed, when device has readonly mode, and
2497 		 * previous checkpoint was not done by clean system shutdown.
2498 		 */
2499 		if (bdev_read_only(sb->s_bdev) &&
2500 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
2501 			err = -EROFS;
2502 			goto free_meta;
2503 		}
2504 
2505 		if (need_fsck)
2506 			set_sbi_flag(sbi, SBI_NEED_FSCK);
2507 
2508 		if (!retry)
2509 			goto skip_recovery;
2510 
2511 		err = recover_fsync_data(sbi, false);
2512 		if (err < 0) {
2513 			need_fsck = true;
2514 			f2fs_msg(sb, KERN_ERR,
2515 				"Cannot recover all fsync data errno=%d", err);
2516 			goto free_meta;
2517 		}
2518 	} else {
2519 		err = recover_fsync_data(sbi, true);
2520 
2521 		if (!f2fs_readonly(sb) && err > 0) {
2522 			err = -EINVAL;
2523 			f2fs_msg(sb, KERN_ERR,
2524 				"Need to recover fsync data");
2525 			goto free_sysfs;
2526 		}
2527 	}
2528 skip_recovery:
2529 	/* recover_fsync_data() cleared this already */
2530 	clear_sbi_flag(sbi, SBI_POR_DOING);
2531 
2532 	/*
2533 	 * If filesystem is not mounted as read-only then
2534 	 * do start the gc_thread.
2535 	 */
2536 	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
2537 		/* After POR, we can run background GC thread.*/
2538 		err = start_gc_thread(sbi);
2539 		if (err)
2540 			goto free_meta;
2541 	}
2542 	kfree(options);
2543 
2544 	/* recover broken superblock */
2545 	if (recovery) {
2546 		err = f2fs_commit_super(sbi, true);
2547 		f2fs_msg(sb, KERN_INFO,
2548 			"Try to recover %dth superblock, ret: %d",
2549 			sbi->valid_super_block ? 1 : 2, err);
2550 	}
2551 
2552 	f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
2553 				cur_cp_version(F2FS_CKPT(sbi)));
2554 	f2fs_update_time(sbi, CP_TIME);
2555 	f2fs_update_time(sbi, REQ_TIME);
2556 	return 0;
2557 
2558 free_meta:
2559 	f2fs_sync_inode_meta(sbi);
2560 	/*
2561 	 * Some dirty meta pages can be produced by recover_orphan_inodes()
2562 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
2563 	 * followed by write_checkpoint() through f2fs_write_node_pages(), which
2564 	 * falls into an infinite loop in sync_meta_pages().
2565 	 */
2566 	truncate_inode_pages_final(META_MAPPING(sbi));
2567 free_sysfs:
2568 	f2fs_unregister_sysfs(sbi);
2569 free_root_inode:
2570 	dput(sb->s_root);
2571 	sb->s_root = NULL;
2572 free_node_inode:
2573 	truncate_inode_pages_final(NODE_MAPPING(sbi));
2574 	mutex_lock(&sbi->umount_mutex);
2575 	release_ino_entry(sbi, true);
2576 	f2fs_leave_shrinker(sbi);
2577 	iput(sbi->node_inode);
2578 	mutex_unlock(&sbi->umount_mutex);
2579 	f2fs_destroy_stats(sbi);
2580 free_nm:
2581 	destroy_node_manager(sbi);
2582 free_sm:
2583 	destroy_segment_manager(sbi);
2584 free_devices:
2585 	destroy_device_list(sbi);
2586 	kfree(sbi->ckpt);
2587 free_meta_inode:
2588 	make_bad_inode(sbi->meta_inode);
2589 	iput(sbi->meta_inode);
2590 free_io_dummy:
2591 	mempool_destroy(sbi->write_io_dummy);
2592 free_options:
2593 	for (i = 0; i < NR_PAGE_TYPE; i++)
2594 		kfree(sbi->write_io[i]);
2595 	destroy_percpu_info(sbi);
2596 #ifdef CONFIG_QUOTA
2597 	for (i = 0; i < MAXQUOTAS; i++)
2598 		kfree(sbi->s_qf_names[i]);
2599 #endif
2600 	kfree(options);
2601 free_sb_buf:
2602 	kfree(raw_super);
2603 free_sbi:
2604 	if (sbi->s_chksum_driver)
2605 		crypto_free_shash(sbi->s_chksum_driver);
2606 	kfree(sbi);
2607 
2608 	/* give only one another chance */
2609 	if (retry) {
2610 		retry = false;
2611 		shrink_dcache_sb(sb);
2612 		goto try_onemore;
2613 	}
2614 	return err;
2615 }
2616 
2617 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
2618 			const char *dev_name, void *data)
2619 {
2620 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
2621 }
2622 
2623 static void kill_f2fs_super(struct super_block *sb)
2624 {
2625 	if (sb->s_root) {
2626 		set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
2627 		stop_gc_thread(F2FS_SB(sb));
2628 		stop_discard_thread(F2FS_SB(sb));
2629 	}
2630 	kill_block_super(sb);
2631 }
2632 
2633 static struct file_system_type f2fs_fs_type = {
2634 	.owner		= THIS_MODULE,
2635 	.name		= "f2fs",
2636 	.mount		= f2fs_mount,
2637 	.kill_sb	= kill_f2fs_super,
2638 	.fs_flags	= FS_REQUIRES_DEV,
2639 };
2640 MODULE_ALIAS_FS("f2fs");
2641 
2642 static int __init init_inodecache(void)
2643 {
2644 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
2645 			sizeof(struct f2fs_inode_info), 0,
2646 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
2647 	if (!f2fs_inode_cachep)
2648 		return -ENOMEM;
2649 	return 0;
2650 }
2651 
2652 static void destroy_inodecache(void)
2653 {
2654 	/*
2655 	 * Make sure all delayed rcu free inodes are flushed before we
2656 	 * destroy cache.
2657 	 */
2658 	rcu_barrier();
2659 	kmem_cache_destroy(f2fs_inode_cachep);
2660 }
2661 
2662 static int __init init_f2fs_fs(void)
2663 {
2664 	int err;
2665 
2666 	f2fs_build_trace_ios();
2667 
2668 	err = init_inodecache();
2669 	if (err)
2670 		goto fail;
2671 	err = create_node_manager_caches();
2672 	if (err)
2673 		goto free_inodecache;
2674 	err = create_segment_manager_caches();
2675 	if (err)
2676 		goto free_node_manager_caches;
2677 	err = create_checkpoint_caches();
2678 	if (err)
2679 		goto free_segment_manager_caches;
2680 	err = create_extent_cache();
2681 	if (err)
2682 		goto free_checkpoint_caches;
2683 	err = f2fs_init_sysfs();
2684 	if (err)
2685 		goto free_extent_cache;
2686 	err = register_shrinker(&f2fs_shrinker_info);
2687 	if (err)
2688 		goto free_sysfs;
2689 	err = register_filesystem(&f2fs_fs_type);
2690 	if (err)
2691 		goto free_shrinker;
2692 	err = f2fs_create_root_stats();
2693 	if (err)
2694 		goto free_filesystem;
2695 	return 0;
2696 
2697 free_filesystem:
2698 	unregister_filesystem(&f2fs_fs_type);
2699 free_shrinker:
2700 	unregister_shrinker(&f2fs_shrinker_info);
2701 free_sysfs:
2702 	f2fs_exit_sysfs();
2703 free_extent_cache:
2704 	destroy_extent_cache();
2705 free_checkpoint_caches:
2706 	destroy_checkpoint_caches();
2707 free_segment_manager_caches:
2708 	destroy_segment_manager_caches();
2709 free_node_manager_caches:
2710 	destroy_node_manager_caches();
2711 free_inodecache:
2712 	destroy_inodecache();
2713 fail:
2714 	return err;
2715 }
2716 
2717 static void __exit exit_f2fs_fs(void)
2718 {
2719 	f2fs_destroy_root_stats();
2720 	unregister_filesystem(&f2fs_fs_type);
2721 	unregister_shrinker(&f2fs_shrinker_info);
2722 	f2fs_exit_sysfs();
2723 	destroy_extent_cache();
2724 	destroy_checkpoint_caches();
2725 	destroy_segment_manager_caches();
2726 	destroy_node_manager_caches();
2727 	destroy_inodecache();
2728 	f2fs_destroy_trace_ios();
2729 }
2730 
2731 module_init(init_f2fs_fs)
2732 module_exit(exit_f2fs_fs)
2733 
2734 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2735 MODULE_DESCRIPTION("Flash Friendly File System");
2736 MODULE_LICENSE("GPL");
2737 
2738