xref: /openbmc/linux/fs/f2fs/super.c (revision 8f8d5745bb520c76b81abef4a2cb3023d0313bfd)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/statfs.h>
12 #include <linux/buffer_head.h>
13 #include <linux/backing-dev.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "xattr.h"
31 #include "gc.h"
32 #include "trace.h"
33 
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/f2fs.h>
36 
37 static struct kmem_cache *f2fs_inode_cachep;
38 
39 #ifdef CONFIG_F2FS_FAULT_INJECTION
40 
41 const char *f2fs_fault_name[FAULT_MAX] = {
42 	[FAULT_KMALLOC]		= "kmalloc",
43 	[FAULT_KVMALLOC]	= "kvmalloc",
44 	[FAULT_PAGE_ALLOC]	= "page alloc",
45 	[FAULT_PAGE_GET]	= "page get",
46 	[FAULT_ALLOC_BIO]	= "alloc bio",
47 	[FAULT_ALLOC_NID]	= "alloc nid",
48 	[FAULT_ORPHAN]		= "orphan",
49 	[FAULT_BLOCK]		= "no more block",
50 	[FAULT_DIR_DEPTH]	= "too big dir depth",
51 	[FAULT_EVICT_INODE]	= "evict_inode fail",
52 	[FAULT_TRUNCATE]	= "truncate fail",
53 	[FAULT_READ_IO]		= "read IO error",
54 	[FAULT_CHECKPOINT]	= "checkpoint error",
55 	[FAULT_DISCARD]		= "discard error",
56 	[FAULT_WRITE_IO]	= "write IO error",
57 };
58 
59 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
60 							unsigned int type)
61 {
62 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
63 
64 	if (rate) {
65 		atomic_set(&ffi->inject_ops, 0);
66 		ffi->inject_rate = rate;
67 	}
68 
69 	if (type)
70 		ffi->inject_type = type;
71 
72 	if (!rate && !type)
73 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
74 }
75 #endif
76 
77 /* f2fs-wide shrinker description */
78 static struct shrinker f2fs_shrinker_info = {
79 	.scan_objects = f2fs_shrink_scan,
80 	.count_objects = f2fs_shrink_count,
81 	.seeks = DEFAULT_SEEKS,
82 };
83 
84 enum {
85 	Opt_gc_background,
86 	Opt_disable_roll_forward,
87 	Opt_norecovery,
88 	Opt_discard,
89 	Opt_nodiscard,
90 	Opt_noheap,
91 	Opt_heap,
92 	Opt_user_xattr,
93 	Opt_nouser_xattr,
94 	Opt_acl,
95 	Opt_noacl,
96 	Opt_active_logs,
97 	Opt_disable_ext_identify,
98 	Opt_inline_xattr,
99 	Opt_noinline_xattr,
100 	Opt_inline_xattr_size,
101 	Opt_inline_data,
102 	Opt_inline_dentry,
103 	Opt_noinline_dentry,
104 	Opt_flush_merge,
105 	Opt_noflush_merge,
106 	Opt_nobarrier,
107 	Opt_fastboot,
108 	Opt_extent_cache,
109 	Opt_noextent_cache,
110 	Opt_noinline_data,
111 	Opt_data_flush,
112 	Opt_reserve_root,
113 	Opt_resgid,
114 	Opt_resuid,
115 	Opt_mode,
116 	Opt_io_size_bits,
117 	Opt_fault_injection,
118 	Opt_fault_type,
119 	Opt_lazytime,
120 	Opt_nolazytime,
121 	Opt_quota,
122 	Opt_noquota,
123 	Opt_usrquota,
124 	Opt_grpquota,
125 	Opt_prjquota,
126 	Opt_usrjquota,
127 	Opt_grpjquota,
128 	Opt_prjjquota,
129 	Opt_offusrjquota,
130 	Opt_offgrpjquota,
131 	Opt_offprjjquota,
132 	Opt_jqfmt_vfsold,
133 	Opt_jqfmt_vfsv0,
134 	Opt_jqfmt_vfsv1,
135 	Opt_whint,
136 	Opt_alloc,
137 	Opt_fsync,
138 	Opt_test_dummy_encryption,
139 	Opt_checkpoint,
140 	Opt_err,
141 };
142 
143 static match_table_t f2fs_tokens = {
144 	{Opt_gc_background, "background_gc=%s"},
145 	{Opt_disable_roll_forward, "disable_roll_forward"},
146 	{Opt_norecovery, "norecovery"},
147 	{Opt_discard, "discard"},
148 	{Opt_nodiscard, "nodiscard"},
149 	{Opt_noheap, "no_heap"},
150 	{Opt_heap, "heap"},
151 	{Opt_user_xattr, "user_xattr"},
152 	{Opt_nouser_xattr, "nouser_xattr"},
153 	{Opt_acl, "acl"},
154 	{Opt_noacl, "noacl"},
155 	{Opt_active_logs, "active_logs=%u"},
156 	{Opt_disable_ext_identify, "disable_ext_identify"},
157 	{Opt_inline_xattr, "inline_xattr"},
158 	{Opt_noinline_xattr, "noinline_xattr"},
159 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
160 	{Opt_inline_data, "inline_data"},
161 	{Opt_inline_dentry, "inline_dentry"},
162 	{Opt_noinline_dentry, "noinline_dentry"},
163 	{Opt_flush_merge, "flush_merge"},
164 	{Opt_noflush_merge, "noflush_merge"},
165 	{Opt_nobarrier, "nobarrier"},
166 	{Opt_fastboot, "fastboot"},
167 	{Opt_extent_cache, "extent_cache"},
168 	{Opt_noextent_cache, "noextent_cache"},
169 	{Opt_noinline_data, "noinline_data"},
170 	{Opt_data_flush, "data_flush"},
171 	{Opt_reserve_root, "reserve_root=%u"},
172 	{Opt_resgid, "resgid=%u"},
173 	{Opt_resuid, "resuid=%u"},
174 	{Opt_mode, "mode=%s"},
175 	{Opt_io_size_bits, "io_bits=%u"},
176 	{Opt_fault_injection, "fault_injection=%u"},
177 	{Opt_fault_type, "fault_type=%u"},
178 	{Opt_lazytime, "lazytime"},
179 	{Opt_nolazytime, "nolazytime"},
180 	{Opt_quota, "quota"},
181 	{Opt_noquota, "noquota"},
182 	{Opt_usrquota, "usrquota"},
183 	{Opt_grpquota, "grpquota"},
184 	{Opt_prjquota, "prjquota"},
185 	{Opt_usrjquota, "usrjquota=%s"},
186 	{Opt_grpjquota, "grpjquota=%s"},
187 	{Opt_prjjquota, "prjjquota=%s"},
188 	{Opt_offusrjquota, "usrjquota="},
189 	{Opt_offgrpjquota, "grpjquota="},
190 	{Opt_offprjjquota, "prjjquota="},
191 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
192 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
193 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
194 	{Opt_whint, "whint_mode=%s"},
195 	{Opt_alloc, "alloc_mode=%s"},
196 	{Opt_fsync, "fsync_mode=%s"},
197 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
198 	{Opt_checkpoint, "checkpoint=%s"},
199 	{Opt_err, NULL},
200 };
201 
202 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
203 {
204 	struct va_format vaf;
205 	va_list args;
206 
207 	va_start(args, fmt);
208 	vaf.fmt = fmt;
209 	vaf.va = &args;
210 	printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
211 	va_end(args);
212 }
213 
214 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
215 {
216 	block_t limit = (sbi->user_block_count << 1) / 1000;
217 
218 	/* limit is 0.2% */
219 	if (test_opt(sbi, RESERVE_ROOT) &&
220 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
221 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
222 		f2fs_msg(sbi->sb, KERN_INFO,
223 			"Reduce reserved blocks for root = %u",
224 			F2FS_OPTION(sbi).root_reserved_blocks);
225 	}
226 	if (!test_opt(sbi, RESERVE_ROOT) &&
227 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
228 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
229 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
230 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
231 		f2fs_msg(sbi->sb, KERN_INFO,
232 			"Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
233 				from_kuid_munged(&init_user_ns,
234 					F2FS_OPTION(sbi).s_resuid),
235 				from_kgid_munged(&init_user_ns,
236 					F2FS_OPTION(sbi).s_resgid));
237 }
238 
239 static void init_once(void *foo)
240 {
241 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
242 
243 	inode_init_once(&fi->vfs_inode);
244 }
245 
246 #ifdef CONFIG_QUOTA
247 static const char * const quotatypes[] = INITQFNAMES;
248 #define QTYPE2NAME(t) (quotatypes[t])
249 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
250 							substring_t *args)
251 {
252 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
253 	char *qname;
254 	int ret = -EINVAL;
255 
256 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
257 		f2fs_msg(sb, KERN_ERR,
258 			"Cannot change journaled "
259 			"quota options when quota turned on");
260 		return -EINVAL;
261 	}
262 	if (f2fs_sb_has_quota_ino(sbi)) {
263 		f2fs_msg(sb, KERN_INFO,
264 			"QUOTA feature is enabled, so ignore qf_name");
265 		return 0;
266 	}
267 
268 	qname = match_strdup(args);
269 	if (!qname) {
270 		f2fs_msg(sb, KERN_ERR,
271 			"Not enough memory for storing quotafile name");
272 		return -ENOMEM;
273 	}
274 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
275 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
276 			ret = 0;
277 		else
278 			f2fs_msg(sb, KERN_ERR,
279 				 "%s quota file already specified",
280 				 QTYPE2NAME(qtype));
281 		goto errout;
282 	}
283 	if (strchr(qname, '/')) {
284 		f2fs_msg(sb, KERN_ERR,
285 			"quotafile must be on filesystem root");
286 		goto errout;
287 	}
288 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
289 	set_opt(sbi, QUOTA);
290 	return 0;
291 errout:
292 	kvfree(qname);
293 	return ret;
294 }
295 
296 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
297 {
298 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
299 
300 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
301 		f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options"
302 			" when quota turned on");
303 		return -EINVAL;
304 	}
305 	kvfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
306 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
307 	return 0;
308 }
309 
310 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
311 {
312 	/*
313 	 * We do the test below only for project quotas. 'usrquota' and
314 	 * 'grpquota' mount options are allowed even without quota feature
315 	 * to support legacy quotas in quota files.
316 	 */
317 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
318 		f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. "
319 			 "Cannot enable project quota enforcement.");
320 		return -1;
321 	}
322 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
323 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
324 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
325 		if (test_opt(sbi, USRQUOTA) &&
326 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
327 			clear_opt(sbi, USRQUOTA);
328 
329 		if (test_opt(sbi, GRPQUOTA) &&
330 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
331 			clear_opt(sbi, GRPQUOTA);
332 
333 		if (test_opt(sbi, PRJQUOTA) &&
334 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
335 			clear_opt(sbi, PRJQUOTA);
336 
337 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
338 				test_opt(sbi, PRJQUOTA)) {
339 			f2fs_msg(sbi->sb, KERN_ERR, "old and new quota "
340 					"format mixing");
341 			return -1;
342 		}
343 
344 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
345 			f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format "
346 					"not specified");
347 			return -1;
348 		}
349 	}
350 
351 	if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
352 		f2fs_msg(sbi->sb, KERN_INFO,
353 			"QUOTA feature is enabled, so ignore jquota_fmt");
354 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
355 	}
356 	return 0;
357 }
358 #endif
359 
360 static int parse_options(struct super_block *sb, char *options)
361 {
362 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
363 	substring_t args[MAX_OPT_ARGS];
364 	char *p, *name;
365 	int arg = 0;
366 	kuid_t uid;
367 	kgid_t gid;
368 #ifdef CONFIG_QUOTA
369 	int ret;
370 #endif
371 
372 	if (!options)
373 		return 0;
374 
375 	while ((p = strsep(&options, ",")) != NULL) {
376 		int token;
377 		if (!*p)
378 			continue;
379 		/*
380 		 * Initialize args struct so we know whether arg was
381 		 * found; some options take optional arguments.
382 		 */
383 		args[0].to = args[0].from = NULL;
384 		token = match_token(p, f2fs_tokens, args);
385 
386 		switch (token) {
387 		case Opt_gc_background:
388 			name = match_strdup(&args[0]);
389 
390 			if (!name)
391 				return -ENOMEM;
392 			if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
393 				set_opt(sbi, BG_GC);
394 				clear_opt(sbi, FORCE_FG_GC);
395 			} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
396 				clear_opt(sbi, BG_GC);
397 				clear_opt(sbi, FORCE_FG_GC);
398 			} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
399 				set_opt(sbi, BG_GC);
400 				set_opt(sbi, FORCE_FG_GC);
401 			} else {
402 				kvfree(name);
403 				return -EINVAL;
404 			}
405 			kvfree(name);
406 			break;
407 		case Opt_disable_roll_forward:
408 			set_opt(sbi, DISABLE_ROLL_FORWARD);
409 			break;
410 		case Opt_norecovery:
411 			/* this option mounts f2fs with ro */
412 			set_opt(sbi, DISABLE_ROLL_FORWARD);
413 			if (!f2fs_readonly(sb))
414 				return -EINVAL;
415 			break;
416 		case Opt_discard:
417 			set_opt(sbi, DISCARD);
418 			break;
419 		case Opt_nodiscard:
420 			if (f2fs_sb_has_blkzoned(sbi)) {
421 				f2fs_msg(sb, KERN_WARNING,
422 					"discard is required for zoned block devices");
423 				return -EINVAL;
424 			}
425 			clear_opt(sbi, DISCARD);
426 			break;
427 		case Opt_noheap:
428 			set_opt(sbi, NOHEAP);
429 			break;
430 		case Opt_heap:
431 			clear_opt(sbi, NOHEAP);
432 			break;
433 #ifdef CONFIG_F2FS_FS_XATTR
434 		case Opt_user_xattr:
435 			set_opt(sbi, XATTR_USER);
436 			break;
437 		case Opt_nouser_xattr:
438 			clear_opt(sbi, XATTR_USER);
439 			break;
440 		case Opt_inline_xattr:
441 			set_opt(sbi, INLINE_XATTR);
442 			break;
443 		case Opt_noinline_xattr:
444 			clear_opt(sbi, INLINE_XATTR);
445 			break;
446 		case Opt_inline_xattr_size:
447 			if (args->from && match_int(args, &arg))
448 				return -EINVAL;
449 			set_opt(sbi, INLINE_XATTR_SIZE);
450 			F2FS_OPTION(sbi).inline_xattr_size = arg;
451 			break;
452 #else
453 		case Opt_user_xattr:
454 			f2fs_msg(sb, KERN_INFO,
455 				"user_xattr options not supported");
456 			break;
457 		case Opt_nouser_xattr:
458 			f2fs_msg(sb, KERN_INFO,
459 				"nouser_xattr options not supported");
460 			break;
461 		case Opt_inline_xattr:
462 			f2fs_msg(sb, KERN_INFO,
463 				"inline_xattr options not supported");
464 			break;
465 		case Opt_noinline_xattr:
466 			f2fs_msg(sb, KERN_INFO,
467 				"noinline_xattr options not supported");
468 			break;
469 #endif
470 #ifdef CONFIG_F2FS_FS_POSIX_ACL
471 		case Opt_acl:
472 			set_opt(sbi, POSIX_ACL);
473 			break;
474 		case Opt_noacl:
475 			clear_opt(sbi, POSIX_ACL);
476 			break;
477 #else
478 		case Opt_acl:
479 			f2fs_msg(sb, KERN_INFO, "acl options not supported");
480 			break;
481 		case Opt_noacl:
482 			f2fs_msg(sb, KERN_INFO, "noacl options not supported");
483 			break;
484 #endif
485 		case Opt_active_logs:
486 			if (args->from && match_int(args, &arg))
487 				return -EINVAL;
488 			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
489 				return -EINVAL;
490 			F2FS_OPTION(sbi).active_logs = arg;
491 			break;
492 		case Opt_disable_ext_identify:
493 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
494 			break;
495 		case Opt_inline_data:
496 			set_opt(sbi, INLINE_DATA);
497 			break;
498 		case Opt_inline_dentry:
499 			set_opt(sbi, INLINE_DENTRY);
500 			break;
501 		case Opt_noinline_dentry:
502 			clear_opt(sbi, INLINE_DENTRY);
503 			break;
504 		case Opt_flush_merge:
505 			set_opt(sbi, FLUSH_MERGE);
506 			break;
507 		case Opt_noflush_merge:
508 			clear_opt(sbi, FLUSH_MERGE);
509 			break;
510 		case Opt_nobarrier:
511 			set_opt(sbi, NOBARRIER);
512 			break;
513 		case Opt_fastboot:
514 			set_opt(sbi, FASTBOOT);
515 			break;
516 		case Opt_extent_cache:
517 			set_opt(sbi, EXTENT_CACHE);
518 			break;
519 		case Opt_noextent_cache:
520 			clear_opt(sbi, EXTENT_CACHE);
521 			break;
522 		case Opt_noinline_data:
523 			clear_opt(sbi, INLINE_DATA);
524 			break;
525 		case Opt_data_flush:
526 			set_opt(sbi, DATA_FLUSH);
527 			break;
528 		case Opt_reserve_root:
529 			if (args->from && match_int(args, &arg))
530 				return -EINVAL;
531 			if (test_opt(sbi, RESERVE_ROOT)) {
532 				f2fs_msg(sb, KERN_INFO,
533 					"Preserve previous reserve_root=%u",
534 					F2FS_OPTION(sbi).root_reserved_blocks);
535 			} else {
536 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
537 				set_opt(sbi, RESERVE_ROOT);
538 			}
539 			break;
540 		case Opt_resuid:
541 			if (args->from && match_int(args, &arg))
542 				return -EINVAL;
543 			uid = make_kuid(current_user_ns(), arg);
544 			if (!uid_valid(uid)) {
545 				f2fs_msg(sb, KERN_ERR,
546 					"Invalid uid value %d", arg);
547 				return -EINVAL;
548 			}
549 			F2FS_OPTION(sbi).s_resuid = uid;
550 			break;
551 		case Opt_resgid:
552 			if (args->from && match_int(args, &arg))
553 				return -EINVAL;
554 			gid = make_kgid(current_user_ns(), arg);
555 			if (!gid_valid(gid)) {
556 				f2fs_msg(sb, KERN_ERR,
557 					"Invalid gid value %d", arg);
558 				return -EINVAL;
559 			}
560 			F2FS_OPTION(sbi).s_resgid = gid;
561 			break;
562 		case Opt_mode:
563 			name = match_strdup(&args[0]);
564 
565 			if (!name)
566 				return -ENOMEM;
567 			if (strlen(name) == 8 &&
568 					!strncmp(name, "adaptive", 8)) {
569 				if (f2fs_sb_has_blkzoned(sbi)) {
570 					f2fs_msg(sb, KERN_WARNING,
571 						 "adaptive mode is not allowed with "
572 						 "zoned block device feature");
573 					kvfree(name);
574 					return -EINVAL;
575 				}
576 				set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
577 			} else if (strlen(name) == 3 &&
578 					!strncmp(name, "lfs", 3)) {
579 				set_opt_mode(sbi, F2FS_MOUNT_LFS);
580 			} else {
581 				kvfree(name);
582 				return -EINVAL;
583 			}
584 			kvfree(name);
585 			break;
586 		case Opt_io_size_bits:
587 			if (args->from && match_int(args, &arg))
588 				return -EINVAL;
589 			if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) {
590 				f2fs_msg(sb, KERN_WARNING,
591 					"Not support %d, larger than %d",
592 					1 << arg, BIO_MAX_PAGES);
593 				return -EINVAL;
594 			}
595 			F2FS_OPTION(sbi).write_io_size_bits = arg;
596 			break;
597 #ifdef CONFIG_F2FS_FAULT_INJECTION
598 		case Opt_fault_injection:
599 			if (args->from && match_int(args, &arg))
600 				return -EINVAL;
601 			f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
602 			set_opt(sbi, FAULT_INJECTION);
603 			break;
604 
605 		case Opt_fault_type:
606 			if (args->from && match_int(args, &arg))
607 				return -EINVAL;
608 			f2fs_build_fault_attr(sbi, 0, arg);
609 			set_opt(sbi, FAULT_INJECTION);
610 			break;
611 #else
612 		case Opt_fault_injection:
613 			f2fs_msg(sb, KERN_INFO,
614 				"fault_injection options not supported");
615 			break;
616 
617 		case Opt_fault_type:
618 			f2fs_msg(sb, KERN_INFO,
619 				"fault_type options not supported");
620 			break;
621 #endif
622 		case Opt_lazytime:
623 			sb->s_flags |= SB_LAZYTIME;
624 			break;
625 		case Opt_nolazytime:
626 			sb->s_flags &= ~SB_LAZYTIME;
627 			break;
628 #ifdef CONFIG_QUOTA
629 		case Opt_quota:
630 		case Opt_usrquota:
631 			set_opt(sbi, USRQUOTA);
632 			break;
633 		case Opt_grpquota:
634 			set_opt(sbi, GRPQUOTA);
635 			break;
636 		case Opt_prjquota:
637 			set_opt(sbi, PRJQUOTA);
638 			break;
639 		case Opt_usrjquota:
640 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
641 			if (ret)
642 				return ret;
643 			break;
644 		case Opt_grpjquota:
645 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
646 			if (ret)
647 				return ret;
648 			break;
649 		case Opt_prjjquota:
650 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
651 			if (ret)
652 				return ret;
653 			break;
654 		case Opt_offusrjquota:
655 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
656 			if (ret)
657 				return ret;
658 			break;
659 		case Opt_offgrpjquota:
660 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
661 			if (ret)
662 				return ret;
663 			break;
664 		case Opt_offprjjquota:
665 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
666 			if (ret)
667 				return ret;
668 			break;
669 		case Opt_jqfmt_vfsold:
670 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
671 			break;
672 		case Opt_jqfmt_vfsv0:
673 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
674 			break;
675 		case Opt_jqfmt_vfsv1:
676 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
677 			break;
678 		case Opt_noquota:
679 			clear_opt(sbi, QUOTA);
680 			clear_opt(sbi, USRQUOTA);
681 			clear_opt(sbi, GRPQUOTA);
682 			clear_opt(sbi, PRJQUOTA);
683 			break;
684 #else
685 		case Opt_quota:
686 		case Opt_usrquota:
687 		case Opt_grpquota:
688 		case Opt_prjquota:
689 		case Opt_usrjquota:
690 		case Opt_grpjquota:
691 		case Opt_prjjquota:
692 		case Opt_offusrjquota:
693 		case Opt_offgrpjquota:
694 		case Opt_offprjjquota:
695 		case Opt_jqfmt_vfsold:
696 		case Opt_jqfmt_vfsv0:
697 		case Opt_jqfmt_vfsv1:
698 		case Opt_noquota:
699 			f2fs_msg(sb, KERN_INFO,
700 					"quota operations not supported");
701 			break;
702 #endif
703 		case Opt_whint:
704 			name = match_strdup(&args[0]);
705 			if (!name)
706 				return -ENOMEM;
707 			if (strlen(name) == 10 &&
708 					!strncmp(name, "user-based", 10)) {
709 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
710 			} else if (strlen(name) == 3 &&
711 					!strncmp(name, "off", 3)) {
712 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
713 			} else if (strlen(name) == 8 &&
714 					!strncmp(name, "fs-based", 8)) {
715 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
716 			} else {
717 				kvfree(name);
718 				return -EINVAL;
719 			}
720 			kvfree(name);
721 			break;
722 		case Opt_alloc:
723 			name = match_strdup(&args[0]);
724 			if (!name)
725 				return -ENOMEM;
726 
727 			if (strlen(name) == 7 &&
728 					!strncmp(name, "default", 7)) {
729 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
730 			} else if (strlen(name) == 5 &&
731 					!strncmp(name, "reuse", 5)) {
732 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
733 			} else {
734 				kvfree(name);
735 				return -EINVAL;
736 			}
737 			kvfree(name);
738 			break;
739 		case Opt_fsync:
740 			name = match_strdup(&args[0]);
741 			if (!name)
742 				return -ENOMEM;
743 			if (strlen(name) == 5 &&
744 					!strncmp(name, "posix", 5)) {
745 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
746 			} else if (strlen(name) == 6 &&
747 					!strncmp(name, "strict", 6)) {
748 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
749 			} else if (strlen(name) == 9 &&
750 					!strncmp(name, "nobarrier", 9)) {
751 				F2FS_OPTION(sbi).fsync_mode =
752 							FSYNC_MODE_NOBARRIER;
753 			} else {
754 				kvfree(name);
755 				return -EINVAL;
756 			}
757 			kvfree(name);
758 			break;
759 		case Opt_test_dummy_encryption:
760 #ifdef CONFIG_FS_ENCRYPTION
761 			if (!f2fs_sb_has_encrypt(sbi)) {
762 				f2fs_msg(sb, KERN_ERR, "Encrypt feature is off");
763 				return -EINVAL;
764 			}
765 
766 			F2FS_OPTION(sbi).test_dummy_encryption = true;
767 			f2fs_msg(sb, KERN_INFO,
768 					"Test dummy encryption mode enabled");
769 #else
770 			f2fs_msg(sb, KERN_INFO,
771 					"Test dummy encryption mount option ignored");
772 #endif
773 			break;
774 		case Opt_checkpoint:
775 			name = match_strdup(&args[0]);
776 			if (!name)
777 				return -ENOMEM;
778 
779 			if (strlen(name) == 6 &&
780 					!strncmp(name, "enable", 6)) {
781 				clear_opt(sbi, DISABLE_CHECKPOINT);
782 			} else if (strlen(name) == 7 &&
783 					!strncmp(name, "disable", 7)) {
784 				set_opt(sbi, DISABLE_CHECKPOINT);
785 			} else {
786 				kvfree(name);
787 				return -EINVAL;
788 			}
789 			kvfree(name);
790 			break;
791 		default:
792 			f2fs_msg(sb, KERN_ERR,
793 				"Unrecognized mount option \"%s\" or missing value",
794 				p);
795 			return -EINVAL;
796 		}
797 	}
798 #ifdef CONFIG_QUOTA
799 	if (f2fs_check_quota_options(sbi))
800 		return -EINVAL;
801 #else
802 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
803 		f2fs_msg(sbi->sb, KERN_INFO,
804 			 "Filesystem with quota feature cannot be mounted RDWR "
805 			 "without CONFIG_QUOTA");
806 		return -EINVAL;
807 	}
808 	if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
809 		f2fs_msg(sb, KERN_ERR,
810 			"Filesystem with project quota feature cannot be "
811 			"mounted RDWR without CONFIG_QUOTA");
812 		return -EINVAL;
813 	}
814 #endif
815 
816 	if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
817 		f2fs_msg(sb, KERN_ERR,
818 				"Should set mode=lfs with %uKB-sized IO",
819 				F2FS_IO_SIZE_KB(sbi));
820 		return -EINVAL;
821 	}
822 
823 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
824 		int min_size, max_size;
825 
826 		if (!f2fs_sb_has_extra_attr(sbi) ||
827 			!f2fs_sb_has_flexible_inline_xattr(sbi)) {
828 			f2fs_msg(sb, KERN_ERR,
829 					"extra_attr or flexible_inline_xattr "
830 					"feature is off");
831 			return -EINVAL;
832 		}
833 		if (!test_opt(sbi, INLINE_XATTR)) {
834 			f2fs_msg(sb, KERN_ERR,
835 					"inline_xattr_size option should be "
836 					"set with inline_xattr option");
837 			return -EINVAL;
838 		}
839 
840 		min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
841 		max_size = MAX_INLINE_XATTR_SIZE;
842 
843 		if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
844 				F2FS_OPTION(sbi).inline_xattr_size > max_size) {
845 			f2fs_msg(sb, KERN_ERR,
846 				"inline xattr size is out of range: %d ~ %d",
847 				min_size, max_size);
848 			return -EINVAL;
849 		}
850 	}
851 
852 	if (test_opt(sbi, DISABLE_CHECKPOINT) && test_opt(sbi, LFS)) {
853 		f2fs_msg(sb, KERN_ERR,
854 				"LFS not compatible with checkpoint=disable\n");
855 		return -EINVAL;
856 	}
857 
858 	/* Not pass down write hints if the number of active logs is lesser
859 	 * than NR_CURSEG_TYPE.
860 	 */
861 	if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
862 		F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
863 	return 0;
864 }
865 
866 static struct inode *f2fs_alloc_inode(struct super_block *sb)
867 {
868 	struct f2fs_inode_info *fi;
869 
870 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
871 	if (!fi)
872 		return NULL;
873 
874 	init_once((void *) fi);
875 
876 	/* Initialize f2fs-specific inode info */
877 	atomic_set(&fi->dirty_pages, 0);
878 	init_rwsem(&fi->i_sem);
879 	INIT_LIST_HEAD(&fi->dirty_list);
880 	INIT_LIST_HEAD(&fi->gdirty_list);
881 	INIT_LIST_HEAD(&fi->inmem_ilist);
882 	INIT_LIST_HEAD(&fi->inmem_pages);
883 	mutex_init(&fi->inmem_lock);
884 	init_rwsem(&fi->i_gc_rwsem[READ]);
885 	init_rwsem(&fi->i_gc_rwsem[WRITE]);
886 	init_rwsem(&fi->i_mmap_sem);
887 	init_rwsem(&fi->i_xattr_sem);
888 
889 	/* Will be used by directory only */
890 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
891 
892 	return &fi->vfs_inode;
893 }
894 
895 static int f2fs_drop_inode(struct inode *inode)
896 {
897 	int ret;
898 	/*
899 	 * This is to avoid a deadlock condition like below.
900 	 * writeback_single_inode(inode)
901 	 *  - f2fs_write_data_page
902 	 *    - f2fs_gc -> iput -> evict
903 	 *       - inode_wait_for_writeback(inode)
904 	 */
905 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
906 		if (!inode->i_nlink && !is_bad_inode(inode)) {
907 			/* to avoid evict_inode call simultaneously */
908 			atomic_inc(&inode->i_count);
909 			spin_unlock(&inode->i_lock);
910 
911 			/* some remained atomic pages should discarded */
912 			if (f2fs_is_atomic_file(inode))
913 				f2fs_drop_inmem_pages(inode);
914 
915 			/* should remain fi->extent_tree for writepage */
916 			f2fs_destroy_extent_node(inode);
917 
918 			sb_start_intwrite(inode->i_sb);
919 			f2fs_i_size_write(inode, 0);
920 
921 			f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
922 					inode, NULL, 0, DATA);
923 			truncate_inode_pages_final(inode->i_mapping);
924 
925 			if (F2FS_HAS_BLOCKS(inode))
926 				f2fs_truncate(inode);
927 
928 			sb_end_intwrite(inode->i_sb);
929 
930 			spin_lock(&inode->i_lock);
931 			atomic_dec(&inode->i_count);
932 		}
933 		trace_f2fs_drop_inode(inode, 0);
934 		return 0;
935 	}
936 	ret = generic_drop_inode(inode);
937 	trace_f2fs_drop_inode(inode, ret);
938 	return ret;
939 }
940 
941 int f2fs_inode_dirtied(struct inode *inode, bool sync)
942 {
943 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
944 	int ret = 0;
945 
946 	spin_lock(&sbi->inode_lock[DIRTY_META]);
947 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
948 		ret = 1;
949 	} else {
950 		set_inode_flag(inode, FI_DIRTY_INODE);
951 		stat_inc_dirty_inode(sbi, DIRTY_META);
952 	}
953 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
954 		list_add_tail(&F2FS_I(inode)->gdirty_list,
955 				&sbi->inode_list[DIRTY_META]);
956 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
957 	}
958 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
959 	return ret;
960 }
961 
962 void f2fs_inode_synced(struct inode *inode)
963 {
964 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
965 
966 	spin_lock(&sbi->inode_lock[DIRTY_META]);
967 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
968 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
969 		return;
970 	}
971 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
972 		list_del_init(&F2FS_I(inode)->gdirty_list);
973 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
974 	}
975 	clear_inode_flag(inode, FI_DIRTY_INODE);
976 	clear_inode_flag(inode, FI_AUTO_RECOVER);
977 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
978 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
979 }
980 
981 /*
982  * f2fs_dirty_inode() is called from __mark_inode_dirty()
983  *
984  * We should call set_dirty_inode to write the dirty inode through write_inode.
985  */
986 static void f2fs_dirty_inode(struct inode *inode, int flags)
987 {
988 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
989 
990 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
991 			inode->i_ino == F2FS_META_INO(sbi))
992 		return;
993 
994 	if (flags == I_DIRTY_TIME)
995 		return;
996 
997 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
998 		clear_inode_flag(inode, FI_AUTO_RECOVER);
999 
1000 	f2fs_inode_dirtied(inode, false);
1001 }
1002 
1003 static void f2fs_i_callback(struct rcu_head *head)
1004 {
1005 	struct inode *inode = container_of(head, struct inode, i_rcu);
1006 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1007 }
1008 
1009 static void f2fs_destroy_inode(struct inode *inode)
1010 {
1011 	call_rcu(&inode->i_rcu, f2fs_i_callback);
1012 }
1013 
1014 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1015 {
1016 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
1017 	percpu_counter_destroy(&sbi->total_valid_inode_count);
1018 }
1019 
1020 static void destroy_device_list(struct f2fs_sb_info *sbi)
1021 {
1022 	int i;
1023 
1024 	for (i = 0; i < sbi->s_ndevs; i++) {
1025 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1026 #ifdef CONFIG_BLK_DEV_ZONED
1027 		kvfree(FDEV(i).blkz_type);
1028 #endif
1029 	}
1030 	kvfree(sbi->devs);
1031 }
1032 
1033 static void f2fs_put_super(struct super_block *sb)
1034 {
1035 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1036 	int i;
1037 	bool dropped;
1038 
1039 	f2fs_quota_off_umount(sb);
1040 
1041 	/* prevent remaining shrinker jobs */
1042 	mutex_lock(&sbi->umount_mutex);
1043 
1044 	/*
1045 	 * We don't need to do checkpoint when superblock is clean.
1046 	 * But, the previous checkpoint was not done by umount, it needs to do
1047 	 * clean checkpoint again.
1048 	 */
1049 	if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1050 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1051 		struct cp_control cpc = {
1052 			.reason = CP_UMOUNT,
1053 		};
1054 		f2fs_write_checkpoint(sbi, &cpc);
1055 	}
1056 
1057 	/* be sure to wait for any on-going discard commands */
1058 	dropped = f2fs_issue_discard_timeout(sbi);
1059 
1060 	if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1061 					!sbi->discard_blks && !dropped) {
1062 		struct cp_control cpc = {
1063 			.reason = CP_UMOUNT | CP_TRIMMED,
1064 		};
1065 		f2fs_write_checkpoint(sbi, &cpc);
1066 	}
1067 
1068 	/*
1069 	 * normally superblock is clean, so we need to release this.
1070 	 * In addition, EIO will skip do checkpoint, we need this as well.
1071 	 */
1072 	f2fs_release_ino_entry(sbi, true);
1073 
1074 	f2fs_leave_shrinker(sbi);
1075 	mutex_unlock(&sbi->umount_mutex);
1076 
1077 	/* our cp_error case, we can wait for any writeback page */
1078 	f2fs_flush_merged_writes(sbi);
1079 
1080 	f2fs_wait_on_all_pages_writeback(sbi);
1081 
1082 	f2fs_bug_on(sbi, sbi->fsync_node_num);
1083 
1084 	iput(sbi->node_inode);
1085 	sbi->node_inode = NULL;
1086 
1087 	iput(sbi->meta_inode);
1088 	sbi->meta_inode = NULL;
1089 
1090 	/*
1091 	 * iput() can update stat information, if f2fs_write_checkpoint()
1092 	 * above failed with error.
1093 	 */
1094 	f2fs_destroy_stats(sbi);
1095 
1096 	/* destroy f2fs internal modules */
1097 	f2fs_destroy_node_manager(sbi);
1098 	f2fs_destroy_segment_manager(sbi);
1099 
1100 	kvfree(sbi->ckpt);
1101 
1102 	f2fs_unregister_sysfs(sbi);
1103 
1104 	sb->s_fs_info = NULL;
1105 	if (sbi->s_chksum_driver)
1106 		crypto_free_shash(sbi->s_chksum_driver);
1107 	kvfree(sbi->raw_super);
1108 
1109 	destroy_device_list(sbi);
1110 	mempool_destroy(sbi->write_io_dummy);
1111 #ifdef CONFIG_QUOTA
1112 	for (i = 0; i < MAXQUOTAS; i++)
1113 		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1114 #endif
1115 	destroy_percpu_info(sbi);
1116 	for (i = 0; i < NR_PAGE_TYPE; i++)
1117 		kvfree(sbi->write_io[i]);
1118 	kvfree(sbi);
1119 }
1120 
1121 int f2fs_sync_fs(struct super_block *sb, int sync)
1122 {
1123 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1124 	int err = 0;
1125 
1126 	if (unlikely(f2fs_cp_error(sbi)))
1127 		return 0;
1128 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1129 		return 0;
1130 
1131 	trace_f2fs_sync_fs(sb, sync);
1132 
1133 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1134 		return -EAGAIN;
1135 
1136 	if (sync) {
1137 		struct cp_control cpc;
1138 
1139 		cpc.reason = __get_cp_reason(sbi);
1140 
1141 		mutex_lock(&sbi->gc_mutex);
1142 		err = f2fs_write_checkpoint(sbi, &cpc);
1143 		mutex_unlock(&sbi->gc_mutex);
1144 	}
1145 	f2fs_trace_ios(NULL, 1);
1146 
1147 	return err;
1148 }
1149 
1150 static int f2fs_freeze(struct super_block *sb)
1151 {
1152 	if (f2fs_readonly(sb))
1153 		return 0;
1154 
1155 	/* IO error happened before */
1156 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1157 		return -EIO;
1158 
1159 	/* must be clean, since sync_filesystem() was already called */
1160 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1161 		return -EINVAL;
1162 	return 0;
1163 }
1164 
1165 static int f2fs_unfreeze(struct super_block *sb)
1166 {
1167 	return 0;
1168 }
1169 
1170 #ifdef CONFIG_QUOTA
1171 static int f2fs_statfs_project(struct super_block *sb,
1172 				kprojid_t projid, struct kstatfs *buf)
1173 {
1174 	struct kqid qid;
1175 	struct dquot *dquot;
1176 	u64 limit;
1177 	u64 curblock;
1178 
1179 	qid = make_kqid_projid(projid);
1180 	dquot = dqget(sb, qid);
1181 	if (IS_ERR(dquot))
1182 		return PTR_ERR(dquot);
1183 	spin_lock(&dquot->dq_dqb_lock);
1184 
1185 	limit = (dquot->dq_dqb.dqb_bsoftlimit ?
1186 		 dquot->dq_dqb.dqb_bsoftlimit :
1187 		 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
1188 	if (limit && buf->f_blocks > limit) {
1189 		curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
1190 		buf->f_blocks = limit;
1191 		buf->f_bfree = buf->f_bavail =
1192 			(buf->f_blocks > curblock) ?
1193 			 (buf->f_blocks - curblock) : 0;
1194 	}
1195 
1196 	limit = dquot->dq_dqb.dqb_isoftlimit ?
1197 		dquot->dq_dqb.dqb_isoftlimit :
1198 		dquot->dq_dqb.dqb_ihardlimit;
1199 	if (limit && buf->f_files > limit) {
1200 		buf->f_files = limit;
1201 		buf->f_ffree =
1202 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1203 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1204 	}
1205 
1206 	spin_unlock(&dquot->dq_dqb_lock);
1207 	dqput(dquot);
1208 	return 0;
1209 }
1210 #endif
1211 
1212 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1213 {
1214 	struct super_block *sb = dentry->d_sb;
1215 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1216 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1217 	block_t total_count, user_block_count, start_count;
1218 	u64 avail_node_count;
1219 
1220 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1221 	user_block_count = sbi->user_block_count;
1222 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1223 	buf->f_type = F2FS_SUPER_MAGIC;
1224 	buf->f_bsize = sbi->blocksize;
1225 
1226 	buf->f_blocks = total_count - start_count;
1227 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1228 						sbi->current_reserved_blocks;
1229 	if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1230 		buf->f_bfree = 0;
1231 	else
1232 		buf->f_bfree -= sbi->unusable_block_count;
1233 
1234 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1235 		buf->f_bavail = buf->f_bfree -
1236 				F2FS_OPTION(sbi).root_reserved_blocks;
1237 	else
1238 		buf->f_bavail = 0;
1239 
1240 	avail_node_count = sbi->total_node_count - sbi->nquota_files -
1241 						F2FS_RESERVED_NODE_NUM;
1242 
1243 	if (avail_node_count > user_block_count) {
1244 		buf->f_files = user_block_count;
1245 		buf->f_ffree = buf->f_bavail;
1246 	} else {
1247 		buf->f_files = avail_node_count;
1248 		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1249 					buf->f_bavail);
1250 	}
1251 
1252 	buf->f_namelen = F2FS_NAME_LEN;
1253 	buf->f_fsid.val[0] = (u32)id;
1254 	buf->f_fsid.val[1] = (u32)(id >> 32);
1255 
1256 #ifdef CONFIG_QUOTA
1257 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1258 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1259 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1260 	}
1261 #endif
1262 	return 0;
1263 }
1264 
1265 static inline void f2fs_show_quota_options(struct seq_file *seq,
1266 					   struct super_block *sb)
1267 {
1268 #ifdef CONFIG_QUOTA
1269 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1270 
1271 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1272 		char *fmtname = "";
1273 
1274 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1275 		case QFMT_VFS_OLD:
1276 			fmtname = "vfsold";
1277 			break;
1278 		case QFMT_VFS_V0:
1279 			fmtname = "vfsv0";
1280 			break;
1281 		case QFMT_VFS_V1:
1282 			fmtname = "vfsv1";
1283 			break;
1284 		}
1285 		seq_printf(seq, ",jqfmt=%s", fmtname);
1286 	}
1287 
1288 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1289 		seq_show_option(seq, "usrjquota",
1290 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1291 
1292 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1293 		seq_show_option(seq, "grpjquota",
1294 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1295 
1296 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1297 		seq_show_option(seq, "prjjquota",
1298 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1299 #endif
1300 }
1301 
1302 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1303 {
1304 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1305 
1306 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1307 		if (test_opt(sbi, FORCE_FG_GC))
1308 			seq_printf(seq, ",background_gc=%s", "sync");
1309 		else
1310 			seq_printf(seq, ",background_gc=%s", "on");
1311 	} else {
1312 		seq_printf(seq, ",background_gc=%s", "off");
1313 	}
1314 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1315 		seq_puts(seq, ",disable_roll_forward");
1316 	if (test_opt(sbi, DISCARD))
1317 		seq_puts(seq, ",discard");
1318 	if (test_opt(sbi, NOHEAP))
1319 		seq_puts(seq, ",no_heap");
1320 	else
1321 		seq_puts(seq, ",heap");
1322 #ifdef CONFIG_F2FS_FS_XATTR
1323 	if (test_opt(sbi, XATTR_USER))
1324 		seq_puts(seq, ",user_xattr");
1325 	else
1326 		seq_puts(seq, ",nouser_xattr");
1327 	if (test_opt(sbi, INLINE_XATTR))
1328 		seq_puts(seq, ",inline_xattr");
1329 	else
1330 		seq_puts(seq, ",noinline_xattr");
1331 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1332 		seq_printf(seq, ",inline_xattr_size=%u",
1333 					F2FS_OPTION(sbi).inline_xattr_size);
1334 #endif
1335 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1336 	if (test_opt(sbi, POSIX_ACL))
1337 		seq_puts(seq, ",acl");
1338 	else
1339 		seq_puts(seq, ",noacl");
1340 #endif
1341 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1342 		seq_puts(seq, ",disable_ext_identify");
1343 	if (test_opt(sbi, INLINE_DATA))
1344 		seq_puts(seq, ",inline_data");
1345 	else
1346 		seq_puts(seq, ",noinline_data");
1347 	if (test_opt(sbi, INLINE_DENTRY))
1348 		seq_puts(seq, ",inline_dentry");
1349 	else
1350 		seq_puts(seq, ",noinline_dentry");
1351 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1352 		seq_puts(seq, ",flush_merge");
1353 	if (test_opt(sbi, NOBARRIER))
1354 		seq_puts(seq, ",nobarrier");
1355 	if (test_opt(sbi, FASTBOOT))
1356 		seq_puts(seq, ",fastboot");
1357 	if (test_opt(sbi, EXTENT_CACHE))
1358 		seq_puts(seq, ",extent_cache");
1359 	else
1360 		seq_puts(seq, ",noextent_cache");
1361 	if (test_opt(sbi, DATA_FLUSH))
1362 		seq_puts(seq, ",data_flush");
1363 
1364 	seq_puts(seq, ",mode=");
1365 	if (test_opt(sbi, ADAPTIVE))
1366 		seq_puts(seq, "adaptive");
1367 	else if (test_opt(sbi, LFS))
1368 		seq_puts(seq, "lfs");
1369 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1370 	if (test_opt(sbi, RESERVE_ROOT))
1371 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1372 				F2FS_OPTION(sbi).root_reserved_blocks,
1373 				from_kuid_munged(&init_user_ns,
1374 					F2FS_OPTION(sbi).s_resuid),
1375 				from_kgid_munged(&init_user_ns,
1376 					F2FS_OPTION(sbi).s_resgid));
1377 	if (F2FS_IO_SIZE_BITS(sbi))
1378 		seq_printf(seq, ",io_bits=%u",
1379 				F2FS_OPTION(sbi).write_io_size_bits);
1380 #ifdef CONFIG_F2FS_FAULT_INJECTION
1381 	if (test_opt(sbi, FAULT_INJECTION)) {
1382 		seq_printf(seq, ",fault_injection=%u",
1383 				F2FS_OPTION(sbi).fault_info.inject_rate);
1384 		seq_printf(seq, ",fault_type=%u",
1385 				F2FS_OPTION(sbi).fault_info.inject_type);
1386 	}
1387 #endif
1388 #ifdef CONFIG_QUOTA
1389 	if (test_opt(sbi, QUOTA))
1390 		seq_puts(seq, ",quota");
1391 	if (test_opt(sbi, USRQUOTA))
1392 		seq_puts(seq, ",usrquota");
1393 	if (test_opt(sbi, GRPQUOTA))
1394 		seq_puts(seq, ",grpquota");
1395 	if (test_opt(sbi, PRJQUOTA))
1396 		seq_puts(seq, ",prjquota");
1397 #endif
1398 	f2fs_show_quota_options(seq, sbi->sb);
1399 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1400 		seq_printf(seq, ",whint_mode=%s", "user-based");
1401 	else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1402 		seq_printf(seq, ",whint_mode=%s", "fs-based");
1403 #ifdef CONFIG_FS_ENCRYPTION
1404 	if (F2FS_OPTION(sbi).test_dummy_encryption)
1405 		seq_puts(seq, ",test_dummy_encryption");
1406 #endif
1407 
1408 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1409 		seq_printf(seq, ",alloc_mode=%s", "default");
1410 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1411 		seq_printf(seq, ",alloc_mode=%s", "reuse");
1412 
1413 	if (test_opt(sbi, DISABLE_CHECKPOINT))
1414 		seq_puts(seq, ",checkpoint=disable");
1415 
1416 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1417 		seq_printf(seq, ",fsync_mode=%s", "posix");
1418 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1419 		seq_printf(seq, ",fsync_mode=%s", "strict");
1420 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1421 		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1422 	return 0;
1423 }
1424 
1425 static void default_options(struct f2fs_sb_info *sbi)
1426 {
1427 	/* init some FS parameters */
1428 	F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1429 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1430 	F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1431 	F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1432 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1433 	F2FS_OPTION(sbi).test_dummy_encryption = false;
1434 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1435 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1436 
1437 	set_opt(sbi, BG_GC);
1438 	set_opt(sbi, INLINE_XATTR);
1439 	set_opt(sbi, INLINE_DATA);
1440 	set_opt(sbi, INLINE_DENTRY);
1441 	set_opt(sbi, EXTENT_CACHE);
1442 	set_opt(sbi, NOHEAP);
1443 	clear_opt(sbi, DISABLE_CHECKPOINT);
1444 	sbi->sb->s_flags |= SB_LAZYTIME;
1445 	set_opt(sbi, FLUSH_MERGE);
1446 	set_opt(sbi, DISCARD);
1447 	if (f2fs_sb_has_blkzoned(sbi))
1448 		set_opt_mode(sbi, F2FS_MOUNT_LFS);
1449 	else
1450 		set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1451 
1452 #ifdef CONFIG_F2FS_FS_XATTR
1453 	set_opt(sbi, XATTR_USER);
1454 #endif
1455 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1456 	set_opt(sbi, POSIX_ACL);
1457 #endif
1458 
1459 	f2fs_build_fault_attr(sbi, 0, 0);
1460 }
1461 
1462 #ifdef CONFIG_QUOTA
1463 static int f2fs_enable_quotas(struct super_block *sb);
1464 #endif
1465 
1466 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
1467 {
1468 	unsigned int s_flags = sbi->sb->s_flags;
1469 	struct cp_control cpc;
1470 	int err = 0;
1471 	int ret;
1472 
1473 	if (s_flags & SB_RDONLY) {
1474 		f2fs_msg(sbi->sb, KERN_ERR,
1475 				"checkpoint=disable on readonly fs");
1476 		return -EINVAL;
1477 	}
1478 	sbi->sb->s_flags |= SB_ACTIVE;
1479 
1480 	f2fs_update_time(sbi, DISABLE_TIME);
1481 
1482 	while (!f2fs_time_over(sbi, DISABLE_TIME)) {
1483 		mutex_lock(&sbi->gc_mutex);
1484 		err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1485 		if (err == -ENODATA) {
1486 			err = 0;
1487 			break;
1488 		}
1489 		if (err && err != -EAGAIN)
1490 			break;
1491 	}
1492 
1493 	ret = sync_filesystem(sbi->sb);
1494 	if (ret || err) {
1495 		err = ret ? ret: err;
1496 		goto restore_flag;
1497 	}
1498 
1499 	if (f2fs_disable_cp_again(sbi)) {
1500 		err = -EAGAIN;
1501 		goto restore_flag;
1502 	}
1503 
1504 	mutex_lock(&sbi->gc_mutex);
1505 	cpc.reason = CP_PAUSE;
1506 	set_sbi_flag(sbi, SBI_CP_DISABLED);
1507 	f2fs_write_checkpoint(sbi, &cpc);
1508 
1509 	sbi->unusable_block_count = 0;
1510 	mutex_unlock(&sbi->gc_mutex);
1511 restore_flag:
1512 	sbi->sb->s_flags = s_flags;	/* Restore MS_RDONLY status */
1513 	return err;
1514 }
1515 
1516 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
1517 {
1518 	mutex_lock(&sbi->gc_mutex);
1519 	f2fs_dirty_to_prefree(sbi);
1520 
1521 	clear_sbi_flag(sbi, SBI_CP_DISABLED);
1522 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1523 	mutex_unlock(&sbi->gc_mutex);
1524 
1525 	f2fs_sync_fs(sbi->sb, 1);
1526 }
1527 
1528 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1529 {
1530 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1531 	struct f2fs_mount_info org_mount_opt;
1532 	unsigned long old_sb_flags;
1533 	int err;
1534 	bool need_restart_gc = false;
1535 	bool need_stop_gc = false;
1536 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1537 	bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT);
1538 	bool checkpoint_changed;
1539 #ifdef CONFIG_QUOTA
1540 	int i, j;
1541 #endif
1542 
1543 	/*
1544 	 * Save the old mount options in case we
1545 	 * need to restore them.
1546 	 */
1547 	org_mount_opt = sbi->mount_opt;
1548 	old_sb_flags = sb->s_flags;
1549 
1550 #ifdef CONFIG_QUOTA
1551 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1552 	for (i = 0; i < MAXQUOTAS; i++) {
1553 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1554 			org_mount_opt.s_qf_names[i] =
1555 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1556 				GFP_KERNEL);
1557 			if (!org_mount_opt.s_qf_names[i]) {
1558 				for (j = 0; j < i; j++)
1559 					kvfree(org_mount_opt.s_qf_names[j]);
1560 				return -ENOMEM;
1561 			}
1562 		} else {
1563 			org_mount_opt.s_qf_names[i] = NULL;
1564 		}
1565 	}
1566 #endif
1567 
1568 	/* recover superblocks we couldn't write due to previous RO mount */
1569 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1570 		err = f2fs_commit_super(sbi, false);
1571 		f2fs_msg(sb, KERN_INFO,
1572 			"Try to recover all the superblocks, ret: %d", err);
1573 		if (!err)
1574 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1575 	}
1576 
1577 	default_options(sbi);
1578 
1579 	/* parse mount options */
1580 	err = parse_options(sb, data);
1581 	if (err)
1582 		goto restore_opts;
1583 	checkpoint_changed =
1584 			disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT);
1585 
1586 	/*
1587 	 * Previous and new state of filesystem is RO,
1588 	 * so skip checking GC and FLUSH_MERGE conditions.
1589 	 */
1590 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1591 		goto skip;
1592 
1593 #ifdef CONFIG_QUOTA
1594 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1595 		err = dquot_suspend(sb, -1);
1596 		if (err < 0)
1597 			goto restore_opts;
1598 	} else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
1599 		/* dquot_resume needs RW */
1600 		sb->s_flags &= ~SB_RDONLY;
1601 		if (sb_any_quota_suspended(sb)) {
1602 			dquot_resume(sb, -1);
1603 		} else if (f2fs_sb_has_quota_ino(sbi)) {
1604 			err = f2fs_enable_quotas(sb);
1605 			if (err)
1606 				goto restore_opts;
1607 		}
1608 	}
1609 #endif
1610 	/* disallow enable/disable extent_cache dynamically */
1611 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1612 		err = -EINVAL;
1613 		f2fs_msg(sbi->sb, KERN_WARNING,
1614 				"switch extent_cache option is not allowed");
1615 		goto restore_opts;
1616 	}
1617 
1618 	if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
1619 		err = -EINVAL;
1620 		f2fs_msg(sbi->sb, KERN_WARNING,
1621 			"disabling checkpoint not compatible with read-only");
1622 		goto restore_opts;
1623 	}
1624 
1625 	/*
1626 	 * We stop the GC thread if FS is mounted as RO
1627 	 * or if background_gc = off is passed in mount
1628 	 * option. Also sync the filesystem.
1629 	 */
1630 	if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) {
1631 		if (sbi->gc_thread) {
1632 			f2fs_stop_gc_thread(sbi);
1633 			need_restart_gc = true;
1634 		}
1635 	} else if (!sbi->gc_thread) {
1636 		err = f2fs_start_gc_thread(sbi);
1637 		if (err)
1638 			goto restore_opts;
1639 		need_stop_gc = true;
1640 	}
1641 
1642 	if (*flags & SB_RDONLY ||
1643 		F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1644 		writeback_inodes_sb(sb, WB_REASON_SYNC);
1645 		sync_inodes_sb(sb);
1646 
1647 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1648 		set_sbi_flag(sbi, SBI_IS_CLOSE);
1649 		f2fs_sync_fs(sb, 1);
1650 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
1651 	}
1652 
1653 	if (checkpoint_changed) {
1654 		if (test_opt(sbi, DISABLE_CHECKPOINT)) {
1655 			err = f2fs_disable_checkpoint(sbi);
1656 			if (err)
1657 				goto restore_gc;
1658 		} else {
1659 			f2fs_enable_checkpoint(sbi);
1660 		}
1661 	}
1662 
1663 	/*
1664 	 * We stop issue flush thread if FS is mounted as RO
1665 	 * or if flush_merge is not passed in mount option.
1666 	 */
1667 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1668 		clear_opt(sbi, FLUSH_MERGE);
1669 		f2fs_destroy_flush_cmd_control(sbi, false);
1670 	} else {
1671 		err = f2fs_create_flush_cmd_control(sbi);
1672 		if (err)
1673 			goto restore_gc;
1674 	}
1675 skip:
1676 #ifdef CONFIG_QUOTA
1677 	/* Release old quota file names */
1678 	for (i = 0; i < MAXQUOTAS; i++)
1679 		kvfree(org_mount_opt.s_qf_names[i]);
1680 #endif
1681 	/* Update the POSIXACL Flag */
1682 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1683 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1684 
1685 	limit_reserve_root(sbi);
1686 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
1687 	return 0;
1688 restore_gc:
1689 	if (need_restart_gc) {
1690 		if (f2fs_start_gc_thread(sbi))
1691 			f2fs_msg(sbi->sb, KERN_WARNING,
1692 				"background gc thread has stopped");
1693 	} else if (need_stop_gc) {
1694 		f2fs_stop_gc_thread(sbi);
1695 	}
1696 restore_opts:
1697 #ifdef CONFIG_QUOTA
1698 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1699 	for (i = 0; i < MAXQUOTAS; i++) {
1700 		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1701 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1702 	}
1703 #endif
1704 	sbi->mount_opt = org_mount_opt;
1705 	sb->s_flags = old_sb_flags;
1706 	return err;
1707 }
1708 
1709 #ifdef CONFIG_QUOTA
1710 /* Read data from quotafile */
1711 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1712 			       size_t len, loff_t off)
1713 {
1714 	struct inode *inode = sb_dqopt(sb)->files[type];
1715 	struct address_space *mapping = inode->i_mapping;
1716 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
1717 	int offset = off & (sb->s_blocksize - 1);
1718 	int tocopy;
1719 	size_t toread;
1720 	loff_t i_size = i_size_read(inode);
1721 	struct page *page;
1722 	char *kaddr;
1723 
1724 	if (off > i_size)
1725 		return 0;
1726 
1727 	if (off + len > i_size)
1728 		len = i_size - off;
1729 	toread = len;
1730 	while (toread > 0) {
1731 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1732 repeat:
1733 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1734 		if (IS_ERR(page)) {
1735 			if (PTR_ERR(page) == -ENOMEM) {
1736 				congestion_wait(BLK_RW_ASYNC, HZ/50);
1737 				goto repeat;
1738 			}
1739 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1740 			return PTR_ERR(page);
1741 		}
1742 
1743 		lock_page(page);
1744 
1745 		if (unlikely(page->mapping != mapping)) {
1746 			f2fs_put_page(page, 1);
1747 			goto repeat;
1748 		}
1749 		if (unlikely(!PageUptodate(page))) {
1750 			f2fs_put_page(page, 1);
1751 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1752 			return -EIO;
1753 		}
1754 
1755 		kaddr = kmap_atomic(page);
1756 		memcpy(data, kaddr + offset, tocopy);
1757 		kunmap_atomic(kaddr);
1758 		f2fs_put_page(page, 1);
1759 
1760 		offset = 0;
1761 		toread -= tocopy;
1762 		data += tocopy;
1763 		blkidx++;
1764 	}
1765 	return len;
1766 }
1767 
1768 /* Write to quotafile */
1769 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1770 				const char *data, size_t len, loff_t off)
1771 {
1772 	struct inode *inode = sb_dqopt(sb)->files[type];
1773 	struct address_space *mapping = inode->i_mapping;
1774 	const struct address_space_operations *a_ops = mapping->a_ops;
1775 	int offset = off & (sb->s_blocksize - 1);
1776 	size_t towrite = len;
1777 	struct page *page;
1778 	char *kaddr;
1779 	int err = 0;
1780 	int tocopy;
1781 
1782 	while (towrite > 0) {
1783 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1784 								towrite);
1785 retry:
1786 		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1787 							&page, NULL);
1788 		if (unlikely(err)) {
1789 			if (err == -ENOMEM) {
1790 				congestion_wait(BLK_RW_ASYNC, HZ/50);
1791 				goto retry;
1792 			}
1793 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1794 			break;
1795 		}
1796 
1797 		kaddr = kmap_atomic(page);
1798 		memcpy(kaddr + offset, data, tocopy);
1799 		kunmap_atomic(kaddr);
1800 		flush_dcache_page(page);
1801 
1802 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1803 						page, NULL);
1804 		offset = 0;
1805 		towrite -= tocopy;
1806 		off += tocopy;
1807 		data += tocopy;
1808 		cond_resched();
1809 	}
1810 
1811 	if (len == towrite)
1812 		return err;
1813 	inode->i_mtime = inode->i_ctime = current_time(inode);
1814 	f2fs_mark_inode_dirty_sync(inode, false);
1815 	return len - towrite;
1816 }
1817 
1818 static struct dquot **f2fs_get_dquots(struct inode *inode)
1819 {
1820 	return F2FS_I(inode)->i_dquot;
1821 }
1822 
1823 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1824 {
1825 	return &F2FS_I(inode)->i_reserved_quota;
1826 }
1827 
1828 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1829 {
1830 	if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
1831 		f2fs_msg(sbi->sb, KERN_ERR,
1832 			"quota sysfile may be corrupted, skip loading it");
1833 		return 0;
1834 	}
1835 
1836 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
1837 					F2FS_OPTION(sbi).s_jquota_fmt, type);
1838 }
1839 
1840 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1841 {
1842 	int enabled = 0;
1843 	int i, err;
1844 
1845 	if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
1846 		err = f2fs_enable_quotas(sbi->sb);
1847 		if (err) {
1848 			f2fs_msg(sbi->sb, KERN_ERR,
1849 					"Cannot turn on quota_ino: %d", err);
1850 			return 0;
1851 		}
1852 		return 1;
1853 	}
1854 
1855 	for (i = 0; i < MAXQUOTAS; i++) {
1856 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1857 			err = f2fs_quota_on_mount(sbi, i);
1858 			if (!err) {
1859 				enabled = 1;
1860 				continue;
1861 			}
1862 			f2fs_msg(sbi->sb, KERN_ERR,
1863 				"Cannot turn on quotas: %d on %d", err, i);
1864 		}
1865 	}
1866 	return enabled;
1867 }
1868 
1869 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
1870 			     unsigned int flags)
1871 {
1872 	struct inode *qf_inode;
1873 	unsigned long qf_inum;
1874 	int err;
1875 
1876 	BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
1877 
1878 	qf_inum = f2fs_qf_ino(sb, type);
1879 	if (!qf_inum)
1880 		return -EPERM;
1881 
1882 	qf_inode = f2fs_iget(sb, qf_inum);
1883 	if (IS_ERR(qf_inode)) {
1884 		f2fs_msg(sb, KERN_ERR,
1885 			"Bad quota inode %u:%lu", type, qf_inum);
1886 		return PTR_ERR(qf_inode);
1887 	}
1888 
1889 	/* Don't account quota for quota files to avoid recursion */
1890 	qf_inode->i_flags |= S_NOQUOTA;
1891 	err = dquot_enable(qf_inode, type, format_id, flags);
1892 	iput(qf_inode);
1893 	return err;
1894 }
1895 
1896 static int f2fs_enable_quotas(struct super_block *sb)
1897 {
1898 	int type, err = 0;
1899 	unsigned long qf_inum;
1900 	bool quota_mopt[MAXQUOTAS] = {
1901 		test_opt(F2FS_SB(sb), USRQUOTA),
1902 		test_opt(F2FS_SB(sb), GRPQUOTA),
1903 		test_opt(F2FS_SB(sb), PRJQUOTA),
1904 	};
1905 
1906 	if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
1907 		f2fs_msg(sb, KERN_ERR,
1908 			"quota file may be corrupted, skip loading it");
1909 		return 0;
1910 	}
1911 
1912 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
1913 
1914 	for (type = 0; type < MAXQUOTAS; type++) {
1915 		qf_inum = f2fs_qf_ino(sb, type);
1916 		if (qf_inum) {
1917 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
1918 				DQUOT_USAGE_ENABLED |
1919 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
1920 			if (err) {
1921 				f2fs_msg(sb, KERN_ERR,
1922 					"Failed to enable quota tracking "
1923 					"(type=%d, err=%d). Please run "
1924 					"fsck to fix.", type, err);
1925 				for (type--; type >= 0; type--)
1926 					dquot_quota_off(sb, type);
1927 				set_sbi_flag(F2FS_SB(sb),
1928 						SBI_QUOTA_NEED_REPAIR);
1929 				return err;
1930 			}
1931 		}
1932 	}
1933 	return 0;
1934 }
1935 
1936 int f2fs_quota_sync(struct super_block *sb, int type)
1937 {
1938 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1939 	struct quota_info *dqopt = sb_dqopt(sb);
1940 	int cnt;
1941 	int ret;
1942 
1943 	ret = dquot_writeback_dquots(sb, type);
1944 	if (ret)
1945 		goto out;
1946 
1947 	/*
1948 	 * Now when everything is written we can discard the pagecache so
1949 	 * that userspace sees the changes.
1950 	 */
1951 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1952 		struct address_space *mapping;
1953 
1954 		if (type != -1 && cnt != type)
1955 			continue;
1956 		if (!sb_has_quota_active(sb, cnt))
1957 			continue;
1958 
1959 		mapping = dqopt->files[cnt]->i_mapping;
1960 
1961 		ret = filemap_fdatawrite(mapping);
1962 		if (ret)
1963 			goto out;
1964 
1965 		/* if we are using journalled quota */
1966 		if (is_journalled_quota(sbi))
1967 			continue;
1968 
1969 		ret = filemap_fdatawait(mapping);
1970 		if (ret)
1971 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1972 
1973 		inode_lock(dqopt->files[cnt]);
1974 		truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1975 		inode_unlock(dqopt->files[cnt]);
1976 	}
1977 out:
1978 	if (ret)
1979 		set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1980 	return ret;
1981 }
1982 
1983 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1984 							const struct path *path)
1985 {
1986 	struct inode *inode;
1987 	int err;
1988 
1989 	err = f2fs_quota_sync(sb, type);
1990 	if (err)
1991 		return err;
1992 
1993 	err = dquot_quota_on(sb, type, format_id, path);
1994 	if (err)
1995 		return err;
1996 
1997 	inode = d_inode(path->dentry);
1998 
1999 	inode_lock(inode);
2000 	F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2001 	f2fs_set_inode_flags(inode);
2002 	inode_unlock(inode);
2003 	f2fs_mark_inode_dirty_sync(inode, false);
2004 
2005 	return 0;
2006 }
2007 
2008 static int f2fs_quota_off(struct super_block *sb, int type)
2009 {
2010 	struct inode *inode = sb_dqopt(sb)->files[type];
2011 	int err;
2012 
2013 	if (!inode || !igrab(inode))
2014 		return dquot_quota_off(sb, type);
2015 
2016 	err = f2fs_quota_sync(sb, type);
2017 	if (err)
2018 		goto out_put;
2019 
2020 	err = dquot_quota_off(sb, type);
2021 	if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2022 		goto out_put;
2023 
2024 	inode_lock(inode);
2025 	F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2026 	f2fs_set_inode_flags(inode);
2027 	inode_unlock(inode);
2028 	f2fs_mark_inode_dirty_sync(inode, false);
2029 out_put:
2030 	iput(inode);
2031 	return err;
2032 }
2033 
2034 void f2fs_quota_off_umount(struct super_block *sb)
2035 {
2036 	int type;
2037 	int err;
2038 
2039 	for (type = 0; type < MAXQUOTAS; type++) {
2040 		err = f2fs_quota_off(sb, type);
2041 		if (err) {
2042 			int ret = dquot_quota_off(sb, type);
2043 
2044 			f2fs_msg(sb, KERN_ERR,
2045 				"Fail to turn off disk quota "
2046 				"(type: %d, err: %d, ret:%d), Please "
2047 				"run fsck to fix it.", type, err, ret);
2048 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2049 		}
2050 	}
2051 	/*
2052 	 * In case of checkpoint=disable, we must flush quota blocks.
2053 	 * This can cause NULL exception for node_inode in end_io, since
2054 	 * put_super already dropped it.
2055 	 */
2056 	sync_filesystem(sb);
2057 }
2058 
2059 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2060 {
2061 	struct quota_info *dqopt = sb_dqopt(sb);
2062 	int type;
2063 
2064 	for (type = 0; type < MAXQUOTAS; type++) {
2065 		if (!dqopt->files[type])
2066 			continue;
2067 		f2fs_inode_synced(dqopt->files[type]);
2068 	}
2069 }
2070 
2071 static int f2fs_dquot_commit(struct dquot *dquot)
2072 {
2073 	int ret;
2074 
2075 	ret = dquot_commit(dquot);
2076 	if (ret < 0)
2077 		set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR);
2078 	return ret;
2079 }
2080 
2081 static int f2fs_dquot_acquire(struct dquot *dquot)
2082 {
2083 	int ret;
2084 
2085 	ret = dquot_acquire(dquot);
2086 	if (ret < 0)
2087 		set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR);
2088 
2089 	return ret;
2090 }
2091 
2092 static int f2fs_dquot_release(struct dquot *dquot)
2093 {
2094 	int ret;
2095 
2096 	ret = dquot_release(dquot);
2097 	if (ret < 0)
2098 		set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR);
2099 	return ret;
2100 }
2101 
2102 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2103 {
2104 	struct super_block *sb = dquot->dq_sb;
2105 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2106 	int ret;
2107 
2108 	ret = dquot_mark_dquot_dirty(dquot);
2109 
2110 	/* if we are using journalled quota */
2111 	if (is_journalled_quota(sbi))
2112 		set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2113 
2114 	return ret;
2115 }
2116 
2117 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2118 {
2119 	int ret;
2120 
2121 	ret = dquot_commit_info(sb, type);
2122 	if (ret < 0)
2123 		set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2124 	return ret;
2125 }
2126 
2127 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2128 {
2129 	*projid = F2FS_I(inode)->i_projid;
2130 	return 0;
2131 }
2132 
2133 static const struct dquot_operations f2fs_quota_operations = {
2134 	.get_reserved_space = f2fs_get_reserved_space,
2135 	.write_dquot	= f2fs_dquot_commit,
2136 	.acquire_dquot	= f2fs_dquot_acquire,
2137 	.release_dquot	= f2fs_dquot_release,
2138 	.mark_dirty	= f2fs_dquot_mark_dquot_dirty,
2139 	.write_info	= f2fs_dquot_commit_info,
2140 	.alloc_dquot	= dquot_alloc,
2141 	.destroy_dquot	= dquot_destroy,
2142 	.get_projid	= f2fs_get_projid,
2143 	.get_next_id	= dquot_get_next_id,
2144 };
2145 
2146 static const struct quotactl_ops f2fs_quotactl_ops = {
2147 	.quota_on	= f2fs_quota_on,
2148 	.quota_off	= f2fs_quota_off,
2149 	.quota_sync	= f2fs_quota_sync,
2150 	.get_state	= dquot_get_state,
2151 	.set_info	= dquot_set_dqinfo,
2152 	.get_dqblk	= dquot_get_dqblk,
2153 	.set_dqblk	= dquot_set_dqblk,
2154 	.get_nextdqblk	= dquot_get_next_dqblk,
2155 };
2156 #else
2157 int f2fs_quota_sync(struct super_block *sb, int type)
2158 {
2159 	return 0;
2160 }
2161 
2162 void f2fs_quota_off_umount(struct super_block *sb)
2163 {
2164 }
2165 #endif
2166 
2167 static const struct super_operations f2fs_sops = {
2168 	.alloc_inode	= f2fs_alloc_inode,
2169 	.drop_inode	= f2fs_drop_inode,
2170 	.destroy_inode	= f2fs_destroy_inode,
2171 	.write_inode	= f2fs_write_inode,
2172 	.dirty_inode	= f2fs_dirty_inode,
2173 	.show_options	= f2fs_show_options,
2174 #ifdef CONFIG_QUOTA
2175 	.quota_read	= f2fs_quota_read,
2176 	.quota_write	= f2fs_quota_write,
2177 	.get_dquots	= f2fs_get_dquots,
2178 #endif
2179 	.evict_inode	= f2fs_evict_inode,
2180 	.put_super	= f2fs_put_super,
2181 	.sync_fs	= f2fs_sync_fs,
2182 	.freeze_fs	= f2fs_freeze,
2183 	.unfreeze_fs	= f2fs_unfreeze,
2184 	.statfs		= f2fs_statfs,
2185 	.remount_fs	= f2fs_remount,
2186 };
2187 
2188 #ifdef CONFIG_FS_ENCRYPTION
2189 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2190 {
2191 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2192 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2193 				ctx, len, NULL);
2194 }
2195 
2196 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2197 							void *fs_data)
2198 {
2199 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2200 
2201 	/*
2202 	 * Encrypting the root directory is not allowed because fsck
2203 	 * expects lost+found directory to exist and remain unencrypted
2204 	 * if LOST_FOUND feature is enabled.
2205 	 *
2206 	 */
2207 	if (f2fs_sb_has_lost_found(sbi) &&
2208 			inode->i_ino == F2FS_ROOT_INO(sbi))
2209 		return -EPERM;
2210 
2211 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2212 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2213 				ctx, len, fs_data, XATTR_CREATE);
2214 }
2215 
2216 static bool f2fs_dummy_context(struct inode *inode)
2217 {
2218 	return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode));
2219 }
2220 
2221 static const struct fscrypt_operations f2fs_cryptops = {
2222 	.key_prefix	= "f2fs:",
2223 	.get_context	= f2fs_get_context,
2224 	.set_context	= f2fs_set_context,
2225 	.dummy_context	= f2fs_dummy_context,
2226 	.empty_dir	= f2fs_empty_dir,
2227 	.max_namelen	= F2FS_NAME_LEN,
2228 };
2229 #endif
2230 
2231 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2232 		u64 ino, u32 generation)
2233 {
2234 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2235 	struct inode *inode;
2236 
2237 	if (f2fs_check_nid_range(sbi, ino))
2238 		return ERR_PTR(-ESTALE);
2239 
2240 	/*
2241 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
2242 	 * However f2fs_iget currently does appropriate checks to handle stale
2243 	 * inodes so everything is OK.
2244 	 */
2245 	inode = f2fs_iget(sb, ino);
2246 	if (IS_ERR(inode))
2247 		return ERR_CAST(inode);
2248 	if (unlikely(generation && inode->i_generation != generation)) {
2249 		/* we didn't find the right inode.. */
2250 		iput(inode);
2251 		return ERR_PTR(-ESTALE);
2252 	}
2253 	return inode;
2254 }
2255 
2256 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2257 		int fh_len, int fh_type)
2258 {
2259 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2260 				    f2fs_nfs_get_inode);
2261 }
2262 
2263 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2264 		int fh_len, int fh_type)
2265 {
2266 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2267 				    f2fs_nfs_get_inode);
2268 }
2269 
2270 static const struct export_operations f2fs_export_ops = {
2271 	.fh_to_dentry = f2fs_fh_to_dentry,
2272 	.fh_to_parent = f2fs_fh_to_parent,
2273 	.get_parent = f2fs_get_parent,
2274 };
2275 
2276 static loff_t max_file_blocks(void)
2277 {
2278 	loff_t result = 0;
2279 	loff_t leaf_count = ADDRS_PER_BLOCK;
2280 
2281 	/*
2282 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2283 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2284 	 * space in inode.i_addr, it will be more safe to reassign
2285 	 * result as zero.
2286 	 */
2287 
2288 	/* two direct node blocks */
2289 	result += (leaf_count * 2);
2290 
2291 	/* two indirect node blocks */
2292 	leaf_count *= NIDS_PER_BLOCK;
2293 	result += (leaf_count * 2);
2294 
2295 	/* one double indirect node block */
2296 	leaf_count *= NIDS_PER_BLOCK;
2297 	result += leaf_count;
2298 
2299 	return result;
2300 }
2301 
2302 static int __f2fs_commit_super(struct buffer_head *bh,
2303 			struct f2fs_super_block *super)
2304 {
2305 	lock_buffer(bh);
2306 	if (super)
2307 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2308 	set_buffer_dirty(bh);
2309 	unlock_buffer(bh);
2310 
2311 	/* it's rare case, we can do fua all the time */
2312 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2313 }
2314 
2315 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2316 					struct buffer_head *bh)
2317 {
2318 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2319 					(bh->b_data + F2FS_SUPER_OFFSET);
2320 	struct super_block *sb = sbi->sb;
2321 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2322 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2323 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2324 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2325 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2326 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2327 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2328 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2329 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2330 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2331 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2332 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
2333 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2334 	u64 main_end_blkaddr = main_blkaddr +
2335 				(segment_count_main << log_blocks_per_seg);
2336 	u64 seg_end_blkaddr = segment0_blkaddr +
2337 				(segment_count << log_blocks_per_seg);
2338 
2339 	if (segment0_blkaddr != cp_blkaddr) {
2340 		f2fs_msg(sb, KERN_INFO,
2341 			"Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2342 			segment0_blkaddr, cp_blkaddr);
2343 		return true;
2344 	}
2345 
2346 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2347 							sit_blkaddr) {
2348 		f2fs_msg(sb, KERN_INFO,
2349 			"Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2350 			cp_blkaddr, sit_blkaddr,
2351 			segment_count_ckpt << log_blocks_per_seg);
2352 		return true;
2353 	}
2354 
2355 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2356 							nat_blkaddr) {
2357 		f2fs_msg(sb, KERN_INFO,
2358 			"Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2359 			sit_blkaddr, nat_blkaddr,
2360 			segment_count_sit << log_blocks_per_seg);
2361 		return true;
2362 	}
2363 
2364 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2365 							ssa_blkaddr) {
2366 		f2fs_msg(sb, KERN_INFO,
2367 			"Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2368 			nat_blkaddr, ssa_blkaddr,
2369 			segment_count_nat << log_blocks_per_seg);
2370 		return true;
2371 	}
2372 
2373 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2374 							main_blkaddr) {
2375 		f2fs_msg(sb, KERN_INFO,
2376 			"Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2377 			ssa_blkaddr, main_blkaddr,
2378 			segment_count_ssa << log_blocks_per_seg);
2379 		return true;
2380 	}
2381 
2382 	if (main_end_blkaddr > seg_end_blkaddr) {
2383 		f2fs_msg(sb, KERN_INFO,
2384 			"Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2385 			main_blkaddr,
2386 			segment0_blkaddr +
2387 				(segment_count << log_blocks_per_seg),
2388 			segment_count_main << log_blocks_per_seg);
2389 		return true;
2390 	} else if (main_end_blkaddr < seg_end_blkaddr) {
2391 		int err = 0;
2392 		char *res;
2393 
2394 		/* fix in-memory information all the time */
2395 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2396 				segment0_blkaddr) >> log_blocks_per_seg);
2397 
2398 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2399 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2400 			res = "internally";
2401 		} else {
2402 			err = __f2fs_commit_super(bh, NULL);
2403 			res = err ? "failed" : "done";
2404 		}
2405 		f2fs_msg(sb, KERN_INFO,
2406 			"Fix alignment : %s, start(%u) end(%u) block(%u)",
2407 			res, main_blkaddr,
2408 			segment0_blkaddr +
2409 				(segment_count << log_blocks_per_seg),
2410 			segment_count_main << log_blocks_per_seg);
2411 		if (err)
2412 			return true;
2413 	}
2414 	return false;
2415 }
2416 
2417 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2418 				struct buffer_head *bh)
2419 {
2420 	block_t segment_count, segs_per_sec, secs_per_zone;
2421 	block_t total_sections, blocks_per_seg;
2422 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2423 					(bh->b_data + F2FS_SUPER_OFFSET);
2424 	struct super_block *sb = sbi->sb;
2425 	unsigned int blocksize;
2426 	size_t crc_offset = 0;
2427 	__u32 crc = 0;
2428 
2429 	/* Check checksum_offset and crc in superblock */
2430 	if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
2431 		crc_offset = le32_to_cpu(raw_super->checksum_offset);
2432 		if (crc_offset !=
2433 			offsetof(struct f2fs_super_block, crc)) {
2434 			f2fs_msg(sb, KERN_INFO,
2435 				"Invalid SB checksum offset: %zu",
2436 				crc_offset);
2437 			return 1;
2438 		}
2439 		crc = le32_to_cpu(raw_super->crc);
2440 		if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
2441 			f2fs_msg(sb, KERN_INFO,
2442 				"Invalid SB checksum value: %u", crc);
2443 			return 1;
2444 		}
2445 	}
2446 
2447 	if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
2448 		f2fs_msg(sb, KERN_INFO,
2449 			"Magic Mismatch, valid(0x%x) - read(0x%x)",
2450 			F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2451 		return 1;
2452 	}
2453 
2454 	/* Currently, support only 4KB page cache size */
2455 	if (F2FS_BLKSIZE != PAGE_SIZE) {
2456 		f2fs_msg(sb, KERN_INFO,
2457 			"Invalid page_cache_size (%lu), supports only 4KB\n",
2458 			PAGE_SIZE);
2459 		return 1;
2460 	}
2461 
2462 	/* Currently, support only 4KB block size */
2463 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2464 	if (blocksize != F2FS_BLKSIZE) {
2465 		f2fs_msg(sb, KERN_INFO,
2466 			"Invalid blocksize (%u), supports only 4KB\n",
2467 			blocksize);
2468 		return 1;
2469 	}
2470 
2471 	/* check log blocks per segment */
2472 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2473 		f2fs_msg(sb, KERN_INFO,
2474 			"Invalid log blocks per segment (%u)\n",
2475 			le32_to_cpu(raw_super->log_blocks_per_seg));
2476 		return 1;
2477 	}
2478 
2479 	/* Currently, support 512/1024/2048/4096 bytes sector size */
2480 	if (le32_to_cpu(raw_super->log_sectorsize) >
2481 				F2FS_MAX_LOG_SECTOR_SIZE ||
2482 		le32_to_cpu(raw_super->log_sectorsize) <
2483 				F2FS_MIN_LOG_SECTOR_SIZE) {
2484 		f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
2485 			le32_to_cpu(raw_super->log_sectorsize));
2486 		return 1;
2487 	}
2488 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
2489 		le32_to_cpu(raw_super->log_sectorsize) !=
2490 			F2FS_MAX_LOG_SECTOR_SIZE) {
2491 		f2fs_msg(sb, KERN_INFO,
2492 			"Invalid log sectors per block(%u) log sectorsize(%u)",
2493 			le32_to_cpu(raw_super->log_sectors_per_block),
2494 			le32_to_cpu(raw_super->log_sectorsize));
2495 		return 1;
2496 	}
2497 
2498 	segment_count = le32_to_cpu(raw_super->segment_count);
2499 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2500 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2501 	total_sections = le32_to_cpu(raw_super->section_count);
2502 
2503 	/* blocks_per_seg should be 512, given the above check */
2504 	blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2505 
2506 	if (segment_count > F2FS_MAX_SEGMENT ||
2507 				segment_count < F2FS_MIN_SEGMENTS) {
2508 		f2fs_msg(sb, KERN_INFO,
2509 			"Invalid segment count (%u)",
2510 			segment_count);
2511 		return 1;
2512 	}
2513 
2514 	if (total_sections > segment_count ||
2515 			total_sections < F2FS_MIN_SEGMENTS ||
2516 			segs_per_sec > segment_count || !segs_per_sec) {
2517 		f2fs_msg(sb, KERN_INFO,
2518 			"Invalid segment/section count (%u, %u x %u)",
2519 			segment_count, total_sections, segs_per_sec);
2520 		return 1;
2521 	}
2522 
2523 	if ((segment_count / segs_per_sec) < total_sections) {
2524 		f2fs_msg(sb, KERN_INFO,
2525 			"Small segment_count (%u < %u * %u)",
2526 			segment_count, segs_per_sec, total_sections);
2527 		return 1;
2528 	}
2529 
2530 	if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
2531 		f2fs_msg(sb, KERN_INFO,
2532 			"Wrong segment_count / block_count (%u > %llu)",
2533 			segment_count, le64_to_cpu(raw_super->block_count));
2534 		return 1;
2535 	}
2536 
2537 	if (secs_per_zone > total_sections || !secs_per_zone) {
2538 		f2fs_msg(sb, KERN_INFO,
2539 			"Wrong secs_per_zone / total_sections (%u, %u)",
2540 			secs_per_zone, total_sections);
2541 		return 1;
2542 	}
2543 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2544 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2545 			(le32_to_cpu(raw_super->extension_count) +
2546 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2547 		f2fs_msg(sb, KERN_INFO,
2548 			"Corrupted extension count (%u + %u > %u)",
2549 			le32_to_cpu(raw_super->extension_count),
2550 			raw_super->hot_ext_count,
2551 			F2FS_MAX_EXTENSION);
2552 		return 1;
2553 	}
2554 
2555 	if (le32_to_cpu(raw_super->cp_payload) >
2556 				(blocks_per_seg - F2FS_CP_PACKS)) {
2557 		f2fs_msg(sb, KERN_INFO,
2558 			"Insane cp_payload (%u > %u)",
2559 			le32_to_cpu(raw_super->cp_payload),
2560 			blocks_per_seg - F2FS_CP_PACKS);
2561 		return 1;
2562 	}
2563 
2564 	/* check reserved ino info */
2565 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
2566 		le32_to_cpu(raw_super->meta_ino) != 2 ||
2567 		le32_to_cpu(raw_super->root_ino) != 3) {
2568 		f2fs_msg(sb, KERN_INFO,
2569 			"Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2570 			le32_to_cpu(raw_super->node_ino),
2571 			le32_to_cpu(raw_super->meta_ino),
2572 			le32_to_cpu(raw_super->root_ino));
2573 		return 1;
2574 	}
2575 
2576 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2577 	if (sanity_check_area_boundary(sbi, bh))
2578 		return 1;
2579 
2580 	return 0;
2581 }
2582 
2583 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
2584 {
2585 	unsigned int total, fsmeta;
2586 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2587 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2588 	unsigned int ovp_segments, reserved_segments;
2589 	unsigned int main_segs, blocks_per_seg;
2590 	unsigned int sit_segs, nat_segs;
2591 	unsigned int sit_bitmap_size, nat_bitmap_size;
2592 	unsigned int log_blocks_per_seg;
2593 	unsigned int segment_count_main;
2594 	unsigned int cp_pack_start_sum, cp_payload;
2595 	block_t user_block_count;
2596 	int i, j;
2597 
2598 	total = le32_to_cpu(raw_super->segment_count);
2599 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2600 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2601 	fsmeta += sit_segs;
2602 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2603 	fsmeta += nat_segs;
2604 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2605 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2606 
2607 	if (unlikely(fsmeta >= total))
2608 		return 1;
2609 
2610 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2611 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2612 
2613 	if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2614 			ovp_segments == 0 || reserved_segments == 0)) {
2615 		f2fs_msg(sbi->sb, KERN_ERR,
2616 			"Wrong layout: check mkfs.f2fs version");
2617 		return 1;
2618 	}
2619 
2620 	user_block_count = le64_to_cpu(ckpt->user_block_count);
2621 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2622 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2623 	if (!user_block_count || user_block_count >=
2624 			segment_count_main << log_blocks_per_seg) {
2625 		f2fs_msg(sbi->sb, KERN_ERR,
2626 			"Wrong user_block_count: %u", user_block_count);
2627 		return 1;
2628 	}
2629 
2630 	main_segs = le32_to_cpu(raw_super->segment_count_main);
2631 	blocks_per_seg = sbi->blocks_per_seg;
2632 
2633 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2634 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2635 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2636 			return 1;
2637 		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
2638 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2639 				le32_to_cpu(ckpt->cur_node_segno[j])) {
2640 				f2fs_msg(sbi->sb, KERN_ERR,
2641 					"Node segment (%u, %u) has the same "
2642 					"segno: %u", i, j,
2643 					le32_to_cpu(ckpt->cur_node_segno[i]));
2644 				return 1;
2645 			}
2646 		}
2647 	}
2648 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2649 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2650 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2651 			return 1;
2652 		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
2653 			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
2654 				le32_to_cpu(ckpt->cur_data_segno[j])) {
2655 				f2fs_msg(sbi->sb, KERN_ERR,
2656 					"Data segment (%u, %u) has the same "
2657 					"segno: %u", i, j,
2658 					le32_to_cpu(ckpt->cur_data_segno[i]));
2659 				return 1;
2660 			}
2661 		}
2662 	}
2663 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2664 		for (j = i; j < NR_CURSEG_DATA_TYPE; j++) {
2665 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2666 				le32_to_cpu(ckpt->cur_data_segno[j])) {
2667 				f2fs_msg(sbi->sb, KERN_ERR,
2668 					"Data segment (%u) and Data segment (%u)"
2669 					" has the same segno: %u", i, j,
2670 					le32_to_cpu(ckpt->cur_node_segno[i]));
2671 				return 1;
2672 			}
2673 		}
2674 	}
2675 
2676 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2677 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2678 
2679 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
2680 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
2681 		f2fs_msg(sbi->sb, KERN_ERR,
2682 			"Wrong bitmap size: sit: %u, nat:%u",
2683 			sit_bitmap_size, nat_bitmap_size);
2684 		return 1;
2685 	}
2686 
2687 	cp_pack_start_sum = __start_sum_addr(sbi);
2688 	cp_payload = __cp_payload(sbi);
2689 	if (cp_pack_start_sum < cp_payload + 1 ||
2690 		cp_pack_start_sum > blocks_per_seg - 1 -
2691 			NR_CURSEG_TYPE) {
2692 		f2fs_msg(sbi->sb, KERN_ERR,
2693 			"Wrong cp_pack_start_sum: %u",
2694 			cp_pack_start_sum);
2695 		return 1;
2696 	}
2697 
2698 	if (unlikely(f2fs_cp_error(sbi))) {
2699 		f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
2700 		return 1;
2701 	}
2702 	return 0;
2703 }
2704 
2705 static void init_sb_info(struct f2fs_sb_info *sbi)
2706 {
2707 	struct f2fs_super_block *raw_super = sbi->raw_super;
2708 	int i;
2709 
2710 	sbi->log_sectors_per_block =
2711 		le32_to_cpu(raw_super->log_sectors_per_block);
2712 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2713 	sbi->blocksize = 1 << sbi->log_blocksize;
2714 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2715 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2716 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2717 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2718 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
2719 	sbi->total_node_count =
2720 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
2721 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2722 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2723 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2724 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2725 	sbi->cur_victim_sec = NULL_SECNO;
2726 	sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
2727 	sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
2728 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2729 	sbi->migration_granularity = sbi->segs_per_sec;
2730 
2731 	sbi->dir_level = DEF_DIR_LEVEL;
2732 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2733 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2734 	sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
2735 	sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
2736 	sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
2737 	sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
2738 				DEF_UMOUNT_DISCARD_TIMEOUT;
2739 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
2740 
2741 	for (i = 0; i < NR_COUNT_TYPE; i++)
2742 		atomic_set(&sbi->nr_pages[i], 0);
2743 
2744 	for (i = 0; i < META; i++)
2745 		atomic_set(&sbi->wb_sync_req[i], 0);
2746 
2747 	INIT_LIST_HEAD(&sbi->s_list);
2748 	mutex_init(&sbi->umount_mutex);
2749 	init_rwsem(&sbi->io_order_lock);
2750 	spin_lock_init(&sbi->cp_lock);
2751 
2752 	sbi->dirty_device = 0;
2753 	spin_lock_init(&sbi->dev_lock);
2754 
2755 	init_rwsem(&sbi->sb_lock);
2756 }
2757 
2758 static int init_percpu_info(struct f2fs_sb_info *sbi)
2759 {
2760 	int err;
2761 
2762 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2763 	if (err)
2764 		return err;
2765 
2766 	err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
2767 								GFP_KERNEL);
2768 	if (err)
2769 		percpu_counter_destroy(&sbi->alloc_valid_block_count);
2770 
2771 	return err;
2772 }
2773 
2774 #ifdef CONFIG_BLK_DEV_ZONED
2775 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2776 {
2777 	struct block_device *bdev = FDEV(devi).bdev;
2778 	sector_t nr_sectors = bdev->bd_part->nr_sects;
2779 	sector_t sector = 0;
2780 	struct blk_zone *zones;
2781 	unsigned int i, nr_zones;
2782 	unsigned int n = 0;
2783 	int err = -EIO;
2784 
2785 	if (!f2fs_sb_has_blkzoned(sbi))
2786 		return 0;
2787 
2788 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
2789 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
2790 		return -EINVAL;
2791 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2792 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2793 				__ilog2_u32(sbi->blocks_per_blkz))
2794 		return -EINVAL;
2795 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2796 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2797 					sbi->log_blocks_per_blkz;
2798 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2799 		FDEV(devi).nr_blkz++;
2800 
2801 	FDEV(devi).blkz_type = f2fs_kmalloc(sbi, FDEV(devi).nr_blkz,
2802 								GFP_KERNEL);
2803 	if (!FDEV(devi).blkz_type)
2804 		return -ENOMEM;
2805 
2806 #define F2FS_REPORT_NR_ZONES   4096
2807 
2808 	zones = f2fs_kzalloc(sbi,
2809 			     array_size(F2FS_REPORT_NR_ZONES,
2810 					sizeof(struct blk_zone)),
2811 			     GFP_KERNEL);
2812 	if (!zones)
2813 		return -ENOMEM;
2814 
2815 	/* Get block zones type */
2816 	while (zones && sector < nr_sectors) {
2817 
2818 		nr_zones = F2FS_REPORT_NR_ZONES;
2819 		err = blkdev_report_zones(bdev, sector,
2820 					  zones, &nr_zones,
2821 					  GFP_KERNEL);
2822 		if (err)
2823 			break;
2824 		if (!nr_zones) {
2825 			err = -EIO;
2826 			break;
2827 		}
2828 
2829 		for (i = 0; i < nr_zones; i++) {
2830 			FDEV(devi).blkz_type[n] = zones[i].type;
2831 			sector += zones[i].len;
2832 			n++;
2833 		}
2834 	}
2835 
2836 	kvfree(zones);
2837 
2838 	return err;
2839 }
2840 #endif
2841 
2842 /*
2843  * Read f2fs raw super block.
2844  * Because we have two copies of super block, so read both of them
2845  * to get the first valid one. If any one of them is broken, we pass
2846  * them recovery flag back to the caller.
2847  */
2848 static int read_raw_super_block(struct f2fs_sb_info *sbi,
2849 			struct f2fs_super_block **raw_super,
2850 			int *valid_super_block, int *recovery)
2851 {
2852 	struct super_block *sb = sbi->sb;
2853 	int block;
2854 	struct buffer_head *bh;
2855 	struct f2fs_super_block *super;
2856 	int err = 0;
2857 
2858 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2859 	if (!super)
2860 		return -ENOMEM;
2861 
2862 	for (block = 0; block < 2; block++) {
2863 		bh = sb_bread(sb, block);
2864 		if (!bh) {
2865 			f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
2866 				block + 1);
2867 			err = -EIO;
2868 			continue;
2869 		}
2870 
2871 		/* sanity checking of raw super */
2872 		if (sanity_check_raw_super(sbi, bh)) {
2873 			f2fs_msg(sb, KERN_ERR,
2874 				"Can't find valid F2FS filesystem in %dth superblock",
2875 				block + 1);
2876 			err = -EINVAL;
2877 			brelse(bh);
2878 			continue;
2879 		}
2880 
2881 		if (!*raw_super) {
2882 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2883 							sizeof(*super));
2884 			*valid_super_block = block;
2885 			*raw_super = super;
2886 		}
2887 		brelse(bh);
2888 	}
2889 
2890 	/* Fail to read any one of the superblocks*/
2891 	if (err < 0)
2892 		*recovery = 1;
2893 
2894 	/* No valid superblock */
2895 	if (!*raw_super)
2896 		kvfree(super);
2897 	else
2898 		err = 0;
2899 
2900 	return err;
2901 }
2902 
2903 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2904 {
2905 	struct buffer_head *bh;
2906 	__u32 crc = 0;
2907 	int err;
2908 
2909 	if ((recover && f2fs_readonly(sbi->sb)) ||
2910 				bdev_read_only(sbi->sb->s_bdev)) {
2911 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2912 		return -EROFS;
2913 	}
2914 
2915 	/* we should update superblock crc here */
2916 	if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
2917 		crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
2918 				offsetof(struct f2fs_super_block, crc));
2919 		F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
2920 	}
2921 
2922 	/* write back-up superblock first */
2923 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
2924 	if (!bh)
2925 		return -EIO;
2926 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2927 	brelse(bh);
2928 
2929 	/* if we are in recovery path, skip writing valid superblock */
2930 	if (recover || err)
2931 		return err;
2932 
2933 	/* write current valid superblock */
2934 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
2935 	if (!bh)
2936 		return -EIO;
2937 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2938 	brelse(bh);
2939 	return err;
2940 }
2941 
2942 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
2943 {
2944 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2945 	unsigned int max_devices = MAX_DEVICES;
2946 	int i;
2947 
2948 	/* Initialize single device information */
2949 	if (!RDEV(0).path[0]) {
2950 		if (!bdev_is_zoned(sbi->sb->s_bdev))
2951 			return 0;
2952 		max_devices = 1;
2953 	}
2954 
2955 	/*
2956 	 * Initialize multiple devices information, or single
2957 	 * zoned block device information.
2958 	 */
2959 	sbi->devs = f2fs_kzalloc(sbi,
2960 				 array_size(max_devices,
2961 					    sizeof(struct f2fs_dev_info)),
2962 				 GFP_KERNEL);
2963 	if (!sbi->devs)
2964 		return -ENOMEM;
2965 
2966 	for (i = 0; i < max_devices; i++) {
2967 
2968 		if (i > 0 && !RDEV(i).path[0])
2969 			break;
2970 
2971 		if (max_devices == 1) {
2972 			/* Single zoned block device mount */
2973 			FDEV(0).bdev =
2974 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
2975 					sbi->sb->s_mode, sbi->sb->s_type);
2976 		} else {
2977 			/* Multi-device mount */
2978 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
2979 			FDEV(i).total_segments =
2980 				le32_to_cpu(RDEV(i).total_segments);
2981 			if (i == 0) {
2982 				FDEV(i).start_blk = 0;
2983 				FDEV(i).end_blk = FDEV(i).start_blk +
2984 				    (FDEV(i).total_segments <<
2985 				    sbi->log_blocks_per_seg) - 1 +
2986 				    le32_to_cpu(raw_super->segment0_blkaddr);
2987 			} else {
2988 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
2989 				FDEV(i).end_blk = FDEV(i).start_blk +
2990 					(FDEV(i).total_segments <<
2991 					sbi->log_blocks_per_seg) - 1;
2992 			}
2993 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
2994 					sbi->sb->s_mode, sbi->sb->s_type);
2995 		}
2996 		if (IS_ERR(FDEV(i).bdev))
2997 			return PTR_ERR(FDEV(i).bdev);
2998 
2999 		/* to release errored devices */
3000 		sbi->s_ndevs = i + 1;
3001 
3002 #ifdef CONFIG_BLK_DEV_ZONED
3003 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3004 				!f2fs_sb_has_blkzoned(sbi)) {
3005 			f2fs_msg(sbi->sb, KERN_ERR,
3006 				"Zoned block device feature not enabled\n");
3007 			return -EINVAL;
3008 		}
3009 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3010 			if (init_blkz_info(sbi, i)) {
3011 				f2fs_msg(sbi->sb, KERN_ERR,
3012 					"Failed to initialize F2FS blkzone information");
3013 				return -EINVAL;
3014 			}
3015 			if (max_devices == 1)
3016 				break;
3017 			f2fs_msg(sbi->sb, KERN_INFO,
3018 				"Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3019 				i, FDEV(i).path,
3020 				FDEV(i).total_segments,
3021 				FDEV(i).start_blk, FDEV(i).end_blk,
3022 				bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3023 				"Host-aware" : "Host-managed");
3024 			continue;
3025 		}
3026 #endif
3027 		f2fs_msg(sbi->sb, KERN_INFO,
3028 			"Mount Device [%2d]: %20s, %8u, %8x - %8x",
3029 				i, FDEV(i).path,
3030 				FDEV(i).total_segments,
3031 				FDEV(i).start_blk, FDEV(i).end_blk);
3032 	}
3033 	f2fs_msg(sbi->sb, KERN_INFO,
3034 			"IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3035 	return 0;
3036 }
3037 
3038 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3039 {
3040 	struct f2fs_sm_info *sm_i = SM_I(sbi);
3041 
3042 	/* adjust parameters according to the volume size */
3043 	if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3044 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3045 		sm_i->dcc_info->discard_granularity = 1;
3046 		sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3047 	}
3048 
3049 	sbi->readdir_ra = 1;
3050 }
3051 
3052 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3053 {
3054 	struct f2fs_sb_info *sbi;
3055 	struct f2fs_super_block *raw_super;
3056 	struct inode *root;
3057 	int err;
3058 	bool skip_recovery = false, need_fsck = false;
3059 	char *options = NULL;
3060 	int recovery, i, valid_super_block;
3061 	struct curseg_info *seg_i;
3062 	int retry_cnt = 1;
3063 
3064 try_onemore:
3065 	err = -EINVAL;
3066 	raw_super = NULL;
3067 	valid_super_block = -1;
3068 	recovery = 0;
3069 
3070 	/* allocate memory for f2fs-specific super block info */
3071 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3072 	if (!sbi)
3073 		return -ENOMEM;
3074 
3075 	sbi->sb = sb;
3076 
3077 	/* Load the checksum driver */
3078 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3079 	if (IS_ERR(sbi->s_chksum_driver)) {
3080 		f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
3081 		err = PTR_ERR(sbi->s_chksum_driver);
3082 		sbi->s_chksum_driver = NULL;
3083 		goto free_sbi;
3084 	}
3085 
3086 	/* set a block size */
3087 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3088 		f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
3089 		goto free_sbi;
3090 	}
3091 
3092 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3093 								&recovery);
3094 	if (err)
3095 		goto free_sbi;
3096 
3097 	sb->s_fs_info = sbi;
3098 	sbi->raw_super = raw_super;
3099 
3100 	/* precompute checksum seed for metadata */
3101 	if (f2fs_sb_has_inode_chksum(sbi))
3102 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3103 						sizeof(raw_super->uuid));
3104 
3105 	/*
3106 	 * The BLKZONED feature indicates that the drive was formatted with
3107 	 * zone alignment optimization. This is optional for host-aware
3108 	 * devices, but mandatory for host-managed zoned block devices.
3109 	 */
3110 #ifndef CONFIG_BLK_DEV_ZONED
3111 	if (f2fs_sb_has_blkzoned(sbi)) {
3112 		f2fs_msg(sb, KERN_ERR,
3113 			 "Zoned block device support is not enabled\n");
3114 		err = -EOPNOTSUPP;
3115 		goto free_sb_buf;
3116 	}
3117 #endif
3118 	default_options(sbi);
3119 	/* parse mount options */
3120 	options = kstrdup((const char *)data, GFP_KERNEL);
3121 	if (data && !options) {
3122 		err = -ENOMEM;
3123 		goto free_sb_buf;
3124 	}
3125 
3126 	err = parse_options(sb, options);
3127 	if (err)
3128 		goto free_options;
3129 
3130 	sbi->max_file_blocks = max_file_blocks();
3131 	sb->s_maxbytes = sbi->max_file_blocks <<
3132 				le32_to_cpu(raw_super->log_blocksize);
3133 	sb->s_max_links = F2FS_LINK_MAX;
3134 
3135 #ifdef CONFIG_QUOTA
3136 	sb->dq_op = &f2fs_quota_operations;
3137 	if (f2fs_sb_has_quota_ino(sbi))
3138 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
3139 	else
3140 		sb->s_qcop = &f2fs_quotactl_ops;
3141 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3142 
3143 	if (f2fs_sb_has_quota_ino(sbi)) {
3144 		for (i = 0; i < MAXQUOTAS; i++) {
3145 			if (f2fs_qf_ino(sbi->sb, i))
3146 				sbi->nquota_files++;
3147 		}
3148 	}
3149 #endif
3150 
3151 	sb->s_op = &f2fs_sops;
3152 #ifdef CONFIG_FS_ENCRYPTION
3153 	sb->s_cop = &f2fs_cryptops;
3154 #endif
3155 	sb->s_xattr = f2fs_xattr_handlers;
3156 	sb->s_export_op = &f2fs_export_ops;
3157 	sb->s_magic = F2FS_SUPER_MAGIC;
3158 	sb->s_time_gran = 1;
3159 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3160 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3161 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3162 	sb->s_iflags |= SB_I_CGROUPWB;
3163 
3164 	/* init f2fs-specific super block info */
3165 	sbi->valid_super_block = valid_super_block;
3166 	mutex_init(&sbi->gc_mutex);
3167 	mutex_init(&sbi->writepages);
3168 	mutex_init(&sbi->cp_mutex);
3169 	init_rwsem(&sbi->node_write);
3170 	init_rwsem(&sbi->node_change);
3171 
3172 	/* disallow all the data/node/meta page writes */
3173 	set_sbi_flag(sbi, SBI_POR_DOING);
3174 	spin_lock_init(&sbi->stat_lock);
3175 
3176 	/* init iostat info */
3177 	spin_lock_init(&sbi->iostat_lock);
3178 	sbi->iostat_enable = false;
3179 
3180 	for (i = 0; i < NR_PAGE_TYPE; i++) {
3181 		int n = (i == META) ? 1: NR_TEMP_TYPE;
3182 		int j;
3183 
3184 		sbi->write_io[i] =
3185 			f2fs_kmalloc(sbi,
3186 				     array_size(n,
3187 						sizeof(struct f2fs_bio_info)),
3188 				     GFP_KERNEL);
3189 		if (!sbi->write_io[i]) {
3190 			err = -ENOMEM;
3191 			goto free_bio_info;
3192 		}
3193 
3194 		for (j = HOT; j < n; j++) {
3195 			init_rwsem(&sbi->write_io[i][j].io_rwsem);
3196 			sbi->write_io[i][j].sbi = sbi;
3197 			sbi->write_io[i][j].bio = NULL;
3198 			spin_lock_init(&sbi->write_io[i][j].io_lock);
3199 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
3200 		}
3201 	}
3202 
3203 	init_rwsem(&sbi->cp_rwsem);
3204 	init_waitqueue_head(&sbi->cp_wait);
3205 	init_sb_info(sbi);
3206 
3207 	err = init_percpu_info(sbi);
3208 	if (err)
3209 		goto free_bio_info;
3210 
3211 	if (F2FS_IO_SIZE(sbi) > 1) {
3212 		sbi->write_io_dummy =
3213 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
3214 		if (!sbi->write_io_dummy) {
3215 			err = -ENOMEM;
3216 			goto free_percpu;
3217 		}
3218 	}
3219 
3220 	/* get an inode for meta space */
3221 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
3222 	if (IS_ERR(sbi->meta_inode)) {
3223 		f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
3224 		err = PTR_ERR(sbi->meta_inode);
3225 		goto free_io_dummy;
3226 	}
3227 
3228 	err = f2fs_get_valid_checkpoint(sbi);
3229 	if (err) {
3230 		f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
3231 		goto free_meta_inode;
3232 	}
3233 
3234 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
3235 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3236 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
3237 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3238 		sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
3239 	}
3240 
3241 	/* Initialize device list */
3242 	err = f2fs_scan_devices(sbi);
3243 	if (err) {
3244 		f2fs_msg(sb, KERN_ERR, "Failed to find devices");
3245 		goto free_devices;
3246 	}
3247 
3248 	sbi->total_valid_node_count =
3249 				le32_to_cpu(sbi->ckpt->valid_node_count);
3250 	percpu_counter_set(&sbi->total_valid_inode_count,
3251 				le32_to_cpu(sbi->ckpt->valid_inode_count));
3252 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
3253 	sbi->total_valid_block_count =
3254 				le64_to_cpu(sbi->ckpt->valid_block_count);
3255 	sbi->last_valid_block_count = sbi->total_valid_block_count;
3256 	sbi->reserved_blocks = 0;
3257 	sbi->current_reserved_blocks = 0;
3258 	limit_reserve_root(sbi);
3259 
3260 	for (i = 0; i < NR_INODE_TYPE; i++) {
3261 		INIT_LIST_HEAD(&sbi->inode_list[i]);
3262 		spin_lock_init(&sbi->inode_lock[i]);
3263 	}
3264 
3265 	f2fs_init_extent_cache_info(sbi);
3266 
3267 	f2fs_init_ino_entry_info(sbi);
3268 
3269 	f2fs_init_fsync_node_info(sbi);
3270 
3271 	/* setup f2fs internal modules */
3272 	err = f2fs_build_segment_manager(sbi);
3273 	if (err) {
3274 		f2fs_msg(sb, KERN_ERR,
3275 			"Failed to initialize F2FS segment manager");
3276 		goto free_sm;
3277 	}
3278 	err = f2fs_build_node_manager(sbi);
3279 	if (err) {
3280 		f2fs_msg(sb, KERN_ERR,
3281 			"Failed to initialize F2FS node manager");
3282 		goto free_nm;
3283 	}
3284 
3285 	/* For write statistics */
3286 	if (sb->s_bdev->bd_part)
3287 		sbi->sectors_written_start =
3288 			(u64)part_stat_read(sb->s_bdev->bd_part,
3289 					    sectors[STAT_WRITE]);
3290 
3291 	/* Read accumulated write IO statistics if exists */
3292 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
3293 	if (__exist_node_summaries(sbi))
3294 		sbi->kbytes_written =
3295 			le64_to_cpu(seg_i->journal->info.kbytes_written);
3296 
3297 	f2fs_build_gc_manager(sbi);
3298 
3299 	err = f2fs_build_stats(sbi);
3300 	if (err)
3301 		goto free_nm;
3302 
3303 	/* get an inode for node space */
3304 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
3305 	if (IS_ERR(sbi->node_inode)) {
3306 		f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
3307 		err = PTR_ERR(sbi->node_inode);
3308 		goto free_stats;
3309 	}
3310 
3311 	/* read root inode and dentry */
3312 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
3313 	if (IS_ERR(root)) {
3314 		f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
3315 		err = PTR_ERR(root);
3316 		goto free_node_inode;
3317 	}
3318 	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
3319 			!root->i_size || !root->i_nlink) {
3320 		iput(root);
3321 		err = -EINVAL;
3322 		goto free_node_inode;
3323 	}
3324 
3325 	sb->s_root = d_make_root(root); /* allocate root dentry */
3326 	if (!sb->s_root) {
3327 		err = -ENOMEM;
3328 		goto free_node_inode;
3329 	}
3330 
3331 	err = f2fs_register_sysfs(sbi);
3332 	if (err)
3333 		goto free_root_inode;
3334 
3335 #ifdef CONFIG_QUOTA
3336 	/* Enable quota usage during mount */
3337 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
3338 		err = f2fs_enable_quotas(sb);
3339 		if (err)
3340 			f2fs_msg(sb, KERN_ERR,
3341 				"Cannot turn on quotas: error %d", err);
3342 	}
3343 #endif
3344 	/* if there are nt orphan nodes free them */
3345 	err = f2fs_recover_orphan_inodes(sbi);
3346 	if (err)
3347 		goto free_meta;
3348 
3349 	if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
3350 		goto reset_checkpoint;
3351 
3352 	/* recover fsynced data */
3353 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
3354 		/*
3355 		 * mount should be failed, when device has readonly mode, and
3356 		 * previous checkpoint was not done by clean system shutdown.
3357 		 */
3358 		if (bdev_read_only(sb->s_bdev) &&
3359 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3360 			err = -EROFS;
3361 			goto free_meta;
3362 		}
3363 
3364 		if (need_fsck)
3365 			set_sbi_flag(sbi, SBI_NEED_FSCK);
3366 
3367 		if (skip_recovery)
3368 			goto reset_checkpoint;
3369 
3370 		err = f2fs_recover_fsync_data(sbi, false);
3371 		if (err < 0) {
3372 			if (err != -ENOMEM)
3373 				skip_recovery = true;
3374 			need_fsck = true;
3375 			f2fs_msg(sb, KERN_ERR,
3376 				"Cannot recover all fsync data errno=%d", err);
3377 			goto free_meta;
3378 		}
3379 	} else {
3380 		err = f2fs_recover_fsync_data(sbi, true);
3381 
3382 		if (!f2fs_readonly(sb) && err > 0) {
3383 			err = -EINVAL;
3384 			f2fs_msg(sb, KERN_ERR,
3385 				"Need to recover fsync data");
3386 			goto free_meta;
3387 		}
3388 	}
3389 reset_checkpoint:
3390 	/* f2fs_recover_fsync_data() cleared this already */
3391 	clear_sbi_flag(sbi, SBI_POR_DOING);
3392 
3393 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
3394 		err = f2fs_disable_checkpoint(sbi);
3395 		if (err)
3396 			goto sync_free_meta;
3397 	} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
3398 		f2fs_enable_checkpoint(sbi);
3399 	}
3400 
3401 	/*
3402 	 * If filesystem is not mounted as read-only then
3403 	 * do start the gc_thread.
3404 	 */
3405 	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
3406 		/* After POR, we can run background GC thread.*/
3407 		err = f2fs_start_gc_thread(sbi);
3408 		if (err)
3409 			goto sync_free_meta;
3410 	}
3411 	kvfree(options);
3412 
3413 	/* recover broken superblock */
3414 	if (recovery) {
3415 		err = f2fs_commit_super(sbi, true);
3416 		f2fs_msg(sb, KERN_INFO,
3417 			"Try to recover %dth superblock, ret: %d",
3418 			sbi->valid_super_block ? 1 : 2, err);
3419 	}
3420 
3421 	f2fs_join_shrinker(sbi);
3422 
3423 	f2fs_tuning_parameters(sbi);
3424 
3425 	f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
3426 				cur_cp_version(F2FS_CKPT(sbi)));
3427 	f2fs_update_time(sbi, CP_TIME);
3428 	f2fs_update_time(sbi, REQ_TIME);
3429 	clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3430 	return 0;
3431 
3432 sync_free_meta:
3433 	/* safe to flush all the data */
3434 	sync_filesystem(sbi->sb);
3435 	retry_cnt = 0;
3436 
3437 free_meta:
3438 #ifdef CONFIG_QUOTA
3439 	f2fs_truncate_quota_inode_pages(sb);
3440 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
3441 		f2fs_quota_off_umount(sbi->sb);
3442 #endif
3443 	/*
3444 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3445 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3446 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3447 	 * falls into an infinite loop in f2fs_sync_meta_pages().
3448 	 */
3449 	truncate_inode_pages_final(META_MAPPING(sbi));
3450 	/* evict some inodes being cached by GC */
3451 	evict_inodes(sb);
3452 	f2fs_unregister_sysfs(sbi);
3453 free_root_inode:
3454 	dput(sb->s_root);
3455 	sb->s_root = NULL;
3456 free_node_inode:
3457 	f2fs_release_ino_entry(sbi, true);
3458 	truncate_inode_pages_final(NODE_MAPPING(sbi));
3459 	iput(sbi->node_inode);
3460 	sbi->node_inode = NULL;
3461 free_stats:
3462 	f2fs_destroy_stats(sbi);
3463 free_nm:
3464 	f2fs_destroy_node_manager(sbi);
3465 free_sm:
3466 	f2fs_destroy_segment_manager(sbi);
3467 free_devices:
3468 	destroy_device_list(sbi);
3469 	kvfree(sbi->ckpt);
3470 free_meta_inode:
3471 	make_bad_inode(sbi->meta_inode);
3472 	iput(sbi->meta_inode);
3473 	sbi->meta_inode = NULL;
3474 free_io_dummy:
3475 	mempool_destroy(sbi->write_io_dummy);
3476 free_percpu:
3477 	destroy_percpu_info(sbi);
3478 free_bio_info:
3479 	for (i = 0; i < NR_PAGE_TYPE; i++)
3480 		kvfree(sbi->write_io[i]);
3481 free_options:
3482 #ifdef CONFIG_QUOTA
3483 	for (i = 0; i < MAXQUOTAS; i++)
3484 		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
3485 #endif
3486 	kvfree(options);
3487 free_sb_buf:
3488 	kvfree(raw_super);
3489 free_sbi:
3490 	if (sbi->s_chksum_driver)
3491 		crypto_free_shash(sbi->s_chksum_driver);
3492 	kvfree(sbi);
3493 
3494 	/* give only one another chance */
3495 	if (retry_cnt > 0 && skip_recovery) {
3496 		retry_cnt--;
3497 		shrink_dcache_sb(sb);
3498 		goto try_onemore;
3499 	}
3500 	return err;
3501 }
3502 
3503 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3504 			const char *dev_name, void *data)
3505 {
3506 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3507 }
3508 
3509 static void kill_f2fs_super(struct super_block *sb)
3510 {
3511 	if (sb->s_root) {
3512 		struct f2fs_sb_info *sbi = F2FS_SB(sb);
3513 
3514 		set_sbi_flag(sbi, SBI_IS_CLOSE);
3515 		f2fs_stop_gc_thread(sbi);
3516 		f2fs_stop_discard_thread(sbi);
3517 
3518 		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
3519 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3520 			struct cp_control cpc = {
3521 				.reason = CP_UMOUNT,
3522 			};
3523 			f2fs_write_checkpoint(sbi, &cpc);
3524 		}
3525 
3526 		if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
3527 			sb->s_flags &= ~SB_RDONLY;
3528 	}
3529 	kill_block_super(sb);
3530 }
3531 
3532 static struct file_system_type f2fs_fs_type = {
3533 	.owner		= THIS_MODULE,
3534 	.name		= "f2fs",
3535 	.mount		= f2fs_mount,
3536 	.kill_sb	= kill_f2fs_super,
3537 	.fs_flags	= FS_REQUIRES_DEV,
3538 };
3539 MODULE_ALIAS_FS("f2fs");
3540 
3541 static int __init init_inodecache(void)
3542 {
3543 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3544 			sizeof(struct f2fs_inode_info), 0,
3545 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3546 	if (!f2fs_inode_cachep)
3547 		return -ENOMEM;
3548 	return 0;
3549 }
3550 
3551 static void destroy_inodecache(void)
3552 {
3553 	/*
3554 	 * Make sure all delayed rcu free inodes are flushed before we
3555 	 * destroy cache.
3556 	 */
3557 	rcu_barrier();
3558 	kmem_cache_destroy(f2fs_inode_cachep);
3559 }
3560 
3561 static int __init init_f2fs_fs(void)
3562 {
3563 	int err;
3564 
3565 	if (PAGE_SIZE != F2FS_BLKSIZE) {
3566 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
3567 				PAGE_SIZE, F2FS_BLKSIZE);
3568 		return -EINVAL;
3569 	}
3570 
3571 	f2fs_build_trace_ios();
3572 
3573 	err = init_inodecache();
3574 	if (err)
3575 		goto fail;
3576 	err = f2fs_create_node_manager_caches();
3577 	if (err)
3578 		goto free_inodecache;
3579 	err = f2fs_create_segment_manager_caches();
3580 	if (err)
3581 		goto free_node_manager_caches;
3582 	err = f2fs_create_checkpoint_caches();
3583 	if (err)
3584 		goto free_segment_manager_caches;
3585 	err = f2fs_create_extent_cache();
3586 	if (err)
3587 		goto free_checkpoint_caches;
3588 	err = f2fs_init_sysfs();
3589 	if (err)
3590 		goto free_extent_cache;
3591 	err = register_shrinker(&f2fs_shrinker_info);
3592 	if (err)
3593 		goto free_sysfs;
3594 	err = register_filesystem(&f2fs_fs_type);
3595 	if (err)
3596 		goto free_shrinker;
3597 	f2fs_create_root_stats();
3598 	err = f2fs_init_post_read_processing();
3599 	if (err)
3600 		goto free_root_stats;
3601 	return 0;
3602 
3603 free_root_stats:
3604 	f2fs_destroy_root_stats();
3605 	unregister_filesystem(&f2fs_fs_type);
3606 free_shrinker:
3607 	unregister_shrinker(&f2fs_shrinker_info);
3608 free_sysfs:
3609 	f2fs_exit_sysfs();
3610 free_extent_cache:
3611 	f2fs_destroy_extent_cache();
3612 free_checkpoint_caches:
3613 	f2fs_destroy_checkpoint_caches();
3614 free_segment_manager_caches:
3615 	f2fs_destroy_segment_manager_caches();
3616 free_node_manager_caches:
3617 	f2fs_destroy_node_manager_caches();
3618 free_inodecache:
3619 	destroy_inodecache();
3620 fail:
3621 	return err;
3622 }
3623 
3624 static void __exit exit_f2fs_fs(void)
3625 {
3626 	f2fs_destroy_post_read_processing();
3627 	f2fs_destroy_root_stats();
3628 	unregister_filesystem(&f2fs_fs_type);
3629 	unregister_shrinker(&f2fs_shrinker_info);
3630 	f2fs_exit_sysfs();
3631 	f2fs_destroy_extent_cache();
3632 	f2fs_destroy_checkpoint_caches();
3633 	f2fs_destroy_segment_manager_caches();
3634 	f2fs_destroy_node_manager_caches();
3635 	destroy_inodecache();
3636 	f2fs_destroy_trace_ios();
3637 }
3638 
3639 module_init(init_f2fs_fs)
3640 module_exit(exit_f2fs_fs)
3641 
3642 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
3643 MODULE_DESCRIPTION("Flash Friendly File System");
3644 MODULE_LICENSE("GPL");
3645 
3646