1 /* 2 * fs/f2fs/super.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/fs.h> 14 #include <linux/statfs.h> 15 #include <linux/buffer_head.h> 16 #include <linux/backing-dev.h> 17 #include <linux/kthread.h> 18 #include <linux/parser.h> 19 #include <linux/mount.h> 20 #include <linux/seq_file.h> 21 #include <linux/proc_fs.h> 22 #include <linux/random.h> 23 #include <linux/exportfs.h> 24 #include <linux/blkdev.h> 25 #include <linux/quotaops.h> 26 #include <linux/f2fs_fs.h> 27 #include <linux/sysfs.h> 28 #include <linux/quota.h> 29 30 #include "f2fs.h" 31 #include "node.h" 32 #include "segment.h" 33 #include "xattr.h" 34 #include "gc.h" 35 #include "trace.h" 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/f2fs.h> 39 40 static struct kmem_cache *f2fs_inode_cachep; 41 42 #ifdef CONFIG_F2FS_FAULT_INJECTION 43 44 char *fault_name[FAULT_MAX] = { 45 [FAULT_KMALLOC] = "kmalloc", 46 [FAULT_KVMALLOC] = "kvmalloc", 47 [FAULT_PAGE_ALLOC] = "page alloc", 48 [FAULT_PAGE_GET] = "page get", 49 [FAULT_ALLOC_BIO] = "alloc bio", 50 [FAULT_ALLOC_NID] = "alloc nid", 51 [FAULT_ORPHAN] = "orphan", 52 [FAULT_BLOCK] = "no more block", 53 [FAULT_DIR_DEPTH] = "too big dir depth", 54 [FAULT_EVICT_INODE] = "evict_inode fail", 55 [FAULT_TRUNCATE] = "truncate fail", 56 [FAULT_IO] = "IO error", 57 [FAULT_CHECKPOINT] = "checkpoint error", 58 }; 59 60 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, 61 unsigned int rate) 62 { 63 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 64 65 if (rate) { 66 atomic_set(&ffi->inject_ops, 0); 67 ffi->inject_rate = rate; 68 ffi->inject_type = (1 << FAULT_MAX) - 1; 69 } else { 70 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 71 } 72 } 73 #endif 74 75 /* f2fs-wide shrinker description */ 76 static struct shrinker f2fs_shrinker_info = { 77 .scan_objects = f2fs_shrink_scan, 78 .count_objects = f2fs_shrink_count, 79 .seeks = DEFAULT_SEEKS, 80 }; 81 82 enum { 83 Opt_gc_background, 84 Opt_disable_roll_forward, 85 Opt_norecovery, 86 Opt_discard, 87 Opt_nodiscard, 88 Opt_noheap, 89 Opt_heap, 90 Opt_user_xattr, 91 Opt_nouser_xattr, 92 Opt_acl, 93 Opt_noacl, 94 Opt_active_logs, 95 Opt_disable_ext_identify, 96 Opt_inline_xattr, 97 Opt_noinline_xattr, 98 Opt_inline_xattr_size, 99 Opt_inline_data, 100 Opt_inline_dentry, 101 Opt_noinline_dentry, 102 Opt_flush_merge, 103 Opt_noflush_merge, 104 Opt_nobarrier, 105 Opt_fastboot, 106 Opt_extent_cache, 107 Opt_noextent_cache, 108 Opt_noinline_data, 109 Opt_data_flush, 110 Opt_reserve_root, 111 Opt_resgid, 112 Opt_resuid, 113 Opt_mode, 114 Opt_io_size_bits, 115 Opt_fault_injection, 116 Opt_lazytime, 117 Opt_nolazytime, 118 Opt_quota, 119 Opt_noquota, 120 Opt_usrquota, 121 Opt_grpquota, 122 Opt_prjquota, 123 Opt_usrjquota, 124 Opt_grpjquota, 125 Opt_prjjquota, 126 Opt_offusrjquota, 127 Opt_offgrpjquota, 128 Opt_offprjjquota, 129 Opt_jqfmt_vfsold, 130 Opt_jqfmt_vfsv0, 131 Opt_jqfmt_vfsv1, 132 Opt_whint, 133 Opt_alloc, 134 Opt_fsync, 135 Opt_test_dummy_encryption, 136 Opt_err, 137 }; 138 139 static match_table_t f2fs_tokens = { 140 {Opt_gc_background, "background_gc=%s"}, 141 {Opt_disable_roll_forward, "disable_roll_forward"}, 142 {Opt_norecovery, "norecovery"}, 143 {Opt_discard, "discard"}, 144 {Opt_nodiscard, "nodiscard"}, 145 {Opt_noheap, "no_heap"}, 146 {Opt_heap, "heap"}, 147 {Opt_user_xattr, "user_xattr"}, 148 {Opt_nouser_xattr, "nouser_xattr"}, 149 {Opt_acl, "acl"}, 150 {Opt_noacl, "noacl"}, 151 {Opt_active_logs, "active_logs=%u"}, 152 {Opt_disable_ext_identify, "disable_ext_identify"}, 153 {Opt_inline_xattr, "inline_xattr"}, 154 {Opt_noinline_xattr, "noinline_xattr"}, 155 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 156 {Opt_inline_data, "inline_data"}, 157 {Opt_inline_dentry, "inline_dentry"}, 158 {Opt_noinline_dentry, "noinline_dentry"}, 159 {Opt_flush_merge, "flush_merge"}, 160 {Opt_noflush_merge, "noflush_merge"}, 161 {Opt_nobarrier, "nobarrier"}, 162 {Opt_fastboot, "fastboot"}, 163 {Opt_extent_cache, "extent_cache"}, 164 {Opt_noextent_cache, "noextent_cache"}, 165 {Opt_noinline_data, "noinline_data"}, 166 {Opt_data_flush, "data_flush"}, 167 {Opt_reserve_root, "reserve_root=%u"}, 168 {Opt_resgid, "resgid=%u"}, 169 {Opt_resuid, "resuid=%u"}, 170 {Opt_mode, "mode=%s"}, 171 {Opt_io_size_bits, "io_bits=%u"}, 172 {Opt_fault_injection, "fault_injection=%u"}, 173 {Opt_lazytime, "lazytime"}, 174 {Opt_nolazytime, "nolazytime"}, 175 {Opt_quota, "quota"}, 176 {Opt_noquota, "noquota"}, 177 {Opt_usrquota, "usrquota"}, 178 {Opt_grpquota, "grpquota"}, 179 {Opt_prjquota, "prjquota"}, 180 {Opt_usrjquota, "usrjquota=%s"}, 181 {Opt_grpjquota, "grpjquota=%s"}, 182 {Opt_prjjquota, "prjjquota=%s"}, 183 {Opt_offusrjquota, "usrjquota="}, 184 {Opt_offgrpjquota, "grpjquota="}, 185 {Opt_offprjjquota, "prjjquota="}, 186 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 187 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 188 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 189 {Opt_whint, "whint_mode=%s"}, 190 {Opt_alloc, "alloc_mode=%s"}, 191 {Opt_fsync, "fsync_mode=%s"}, 192 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 193 {Opt_err, NULL}, 194 }; 195 196 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) 197 { 198 struct va_format vaf; 199 va_list args; 200 201 va_start(args, fmt); 202 vaf.fmt = fmt; 203 vaf.va = &args; 204 printk_ratelimited("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); 205 va_end(args); 206 } 207 208 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 209 { 210 block_t limit = (sbi->user_block_count << 1) / 1000; 211 212 /* limit is 0.2% */ 213 if (test_opt(sbi, RESERVE_ROOT) && 214 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 215 F2FS_OPTION(sbi).root_reserved_blocks = limit; 216 f2fs_msg(sbi->sb, KERN_INFO, 217 "Reduce reserved blocks for root = %u", 218 F2FS_OPTION(sbi).root_reserved_blocks); 219 } 220 if (!test_opt(sbi, RESERVE_ROOT) && 221 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 222 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 223 !gid_eq(F2FS_OPTION(sbi).s_resgid, 224 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 225 f2fs_msg(sbi->sb, KERN_INFO, 226 "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 227 from_kuid_munged(&init_user_ns, 228 F2FS_OPTION(sbi).s_resuid), 229 from_kgid_munged(&init_user_ns, 230 F2FS_OPTION(sbi).s_resgid)); 231 } 232 233 static void init_once(void *foo) 234 { 235 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 236 237 inode_init_once(&fi->vfs_inode); 238 } 239 240 #ifdef CONFIG_QUOTA 241 static const char * const quotatypes[] = INITQFNAMES; 242 #define QTYPE2NAME(t) (quotatypes[t]) 243 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 244 substring_t *args) 245 { 246 struct f2fs_sb_info *sbi = F2FS_SB(sb); 247 char *qname; 248 int ret = -EINVAL; 249 250 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 251 f2fs_msg(sb, KERN_ERR, 252 "Cannot change journaled " 253 "quota options when quota turned on"); 254 return -EINVAL; 255 } 256 if (f2fs_sb_has_quota_ino(sb)) { 257 f2fs_msg(sb, KERN_INFO, 258 "QUOTA feature is enabled, so ignore qf_name"); 259 return 0; 260 } 261 262 qname = match_strdup(args); 263 if (!qname) { 264 f2fs_msg(sb, KERN_ERR, 265 "Not enough memory for storing quotafile name"); 266 return -EINVAL; 267 } 268 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 269 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 270 ret = 0; 271 else 272 f2fs_msg(sb, KERN_ERR, 273 "%s quota file already specified", 274 QTYPE2NAME(qtype)); 275 goto errout; 276 } 277 if (strchr(qname, '/')) { 278 f2fs_msg(sb, KERN_ERR, 279 "quotafile must be on filesystem root"); 280 goto errout; 281 } 282 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 283 set_opt(sbi, QUOTA); 284 return 0; 285 errout: 286 kfree(qname); 287 return ret; 288 } 289 290 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 291 { 292 struct f2fs_sb_info *sbi = F2FS_SB(sb); 293 294 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 295 f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options" 296 " when quota turned on"); 297 return -EINVAL; 298 } 299 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 300 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 301 return 0; 302 } 303 304 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 305 { 306 /* 307 * We do the test below only for project quotas. 'usrquota' and 308 * 'grpquota' mount options are allowed even without quota feature 309 * to support legacy quotas in quota files. 310 */ 311 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi->sb)) { 312 f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. " 313 "Cannot enable project quota enforcement."); 314 return -1; 315 } 316 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 317 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 318 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 319 if (test_opt(sbi, USRQUOTA) && 320 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 321 clear_opt(sbi, USRQUOTA); 322 323 if (test_opt(sbi, GRPQUOTA) && 324 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 325 clear_opt(sbi, GRPQUOTA); 326 327 if (test_opt(sbi, PRJQUOTA) && 328 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 329 clear_opt(sbi, PRJQUOTA); 330 331 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 332 test_opt(sbi, PRJQUOTA)) { 333 f2fs_msg(sbi->sb, KERN_ERR, "old and new quota " 334 "format mixing"); 335 return -1; 336 } 337 338 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 339 f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format " 340 "not specified"); 341 return -1; 342 } 343 } 344 345 if (f2fs_sb_has_quota_ino(sbi->sb) && F2FS_OPTION(sbi).s_jquota_fmt) { 346 f2fs_msg(sbi->sb, KERN_INFO, 347 "QUOTA feature is enabled, so ignore jquota_fmt"); 348 F2FS_OPTION(sbi).s_jquota_fmt = 0; 349 } 350 if (f2fs_sb_has_quota_ino(sbi->sb) && f2fs_readonly(sbi->sb)) { 351 f2fs_msg(sbi->sb, KERN_INFO, 352 "Filesystem with quota feature cannot be mounted RDWR " 353 "without CONFIG_QUOTA"); 354 return -1; 355 } 356 return 0; 357 } 358 #endif 359 360 static int parse_options(struct super_block *sb, char *options) 361 { 362 struct f2fs_sb_info *sbi = F2FS_SB(sb); 363 struct request_queue *q; 364 substring_t args[MAX_OPT_ARGS]; 365 char *p, *name; 366 int arg = 0; 367 kuid_t uid; 368 kgid_t gid; 369 #ifdef CONFIG_QUOTA 370 int ret; 371 #endif 372 373 if (!options) 374 return 0; 375 376 while ((p = strsep(&options, ",")) != NULL) { 377 int token; 378 if (!*p) 379 continue; 380 /* 381 * Initialize args struct so we know whether arg was 382 * found; some options take optional arguments. 383 */ 384 args[0].to = args[0].from = NULL; 385 token = match_token(p, f2fs_tokens, args); 386 387 switch (token) { 388 case Opt_gc_background: 389 name = match_strdup(&args[0]); 390 391 if (!name) 392 return -ENOMEM; 393 if (strlen(name) == 2 && !strncmp(name, "on", 2)) { 394 set_opt(sbi, BG_GC); 395 clear_opt(sbi, FORCE_FG_GC); 396 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) { 397 clear_opt(sbi, BG_GC); 398 clear_opt(sbi, FORCE_FG_GC); 399 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) { 400 set_opt(sbi, BG_GC); 401 set_opt(sbi, FORCE_FG_GC); 402 } else { 403 kfree(name); 404 return -EINVAL; 405 } 406 kfree(name); 407 break; 408 case Opt_disable_roll_forward: 409 set_opt(sbi, DISABLE_ROLL_FORWARD); 410 break; 411 case Opt_norecovery: 412 /* this option mounts f2fs with ro */ 413 set_opt(sbi, DISABLE_ROLL_FORWARD); 414 if (!f2fs_readonly(sb)) 415 return -EINVAL; 416 break; 417 case Opt_discard: 418 q = bdev_get_queue(sb->s_bdev); 419 if (blk_queue_discard(q)) { 420 set_opt(sbi, DISCARD); 421 } else if (!f2fs_sb_has_blkzoned(sb)) { 422 f2fs_msg(sb, KERN_WARNING, 423 "mounting with \"discard\" option, but " 424 "the device does not support discard"); 425 } 426 break; 427 case Opt_nodiscard: 428 if (f2fs_sb_has_blkzoned(sb)) { 429 f2fs_msg(sb, KERN_WARNING, 430 "discard is required for zoned block devices"); 431 return -EINVAL; 432 } 433 clear_opt(sbi, DISCARD); 434 break; 435 case Opt_noheap: 436 set_opt(sbi, NOHEAP); 437 break; 438 case Opt_heap: 439 clear_opt(sbi, NOHEAP); 440 break; 441 #ifdef CONFIG_F2FS_FS_XATTR 442 case Opt_user_xattr: 443 set_opt(sbi, XATTR_USER); 444 break; 445 case Opt_nouser_xattr: 446 clear_opt(sbi, XATTR_USER); 447 break; 448 case Opt_inline_xattr: 449 set_opt(sbi, INLINE_XATTR); 450 break; 451 case Opt_noinline_xattr: 452 clear_opt(sbi, INLINE_XATTR); 453 break; 454 case Opt_inline_xattr_size: 455 if (args->from && match_int(args, &arg)) 456 return -EINVAL; 457 set_opt(sbi, INLINE_XATTR_SIZE); 458 F2FS_OPTION(sbi).inline_xattr_size = arg; 459 break; 460 #else 461 case Opt_user_xattr: 462 f2fs_msg(sb, KERN_INFO, 463 "user_xattr options not supported"); 464 break; 465 case Opt_nouser_xattr: 466 f2fs_msg(sb, KERN_INFO, 467 "nouser_xattr options not supported"); 468 break; 469 case Opt_inline_xattr: 470 f2fs_msg(sb, KERN_INFO, 471 "inline_xattr options not supported"); 472 break; 473 case Opt_noinline_xattr: 474 f2fs_msg(sb, KERN_INFO, 475 "noinline_xattr options not supported"); 476 break; 477 #endif 478 #ifdef CONFIG_F2FS_FS_POSIX_ACL 479 case Opt_acl: 480 set_opt(sbi, POSIX_ACL); 481 break; 482 case Opt_noacl: 483 clear_opt(sbi, POSIX_ACL); 484 break; 485 #else 486 case Opt_acl: 487 f2fs_msg(sb, KERN_INFO, "acl options not supported"); 488 break; 489 case Opt_noacl: 490 f2fs_msg(sb, KERN_INFO, "noacl options not supported"); 491 break; 492 #endif 493 case Opt_active_logs: 494 if (args->from && match_int(args, &arg)) 495 return -EINVAL; 496 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 497 return -EINVAL; 498 F2FS_OPTION(sbi).active_logs = arg; 499 break; 500 case Opt_disable_ext_identify: 501 set_opt(sbi, DISABLE_EXT_IDENTIFY); 502 break; 503 case Opt_inline_data: 504 set_opt(sbi, INLINE_DATA); 505 break; 506 case Opt_inline_dentry: 507 set_opt(sbi, INLINE_DENTRY); 508 break; 509 case Opt_noinline_dentry: 510 clear_opt(sbi, INLINE_DENTRY); 511 break; 512 case Opt_flush_merge: 513 set_opt(sbi, FLUSH_MERGE); 514 break; 515 case Opt_noflush_merge: 516 clear_opt(sbi, FLUSH_MERGE); 517 break; 518 case Opt_nobarrier: 519 set_opt(sbi, NOBARRIER); 520 break; 521 case Opt_fastboot: 522 set_opt(sbi, FASTBOOT); 523 break; 524 case Opt_extent_cache: 525 set_opt(sbi, EXTENT_CACHE); 526 break; 527 case Opt_noextent_cache: 528 clear_opt(sbi, EXTENT_CACHE); 529 break; 530 case Opt_noinline_data: 531 clear_opt(sbi, INLINE_DATA); 532 break; 533 case Opt_data_flush: 534 set_opt(sbi, DATA_FLUSH); 535 break; 536 case Opt_reserve_root: 537 if (args->from && match_int(args, &arg)) 538 return -EINVAL; 539 if (test_opt(sbi, RESERVE_ROOT)) { 540 f2fs_msg(sb, KERN_INFO, 541 "Preserve previous reserve_root=%u", 542 F2FS_OPTION(sbi).root_reserved_blocks); 543 } else { 544 F2FS_OPTION(sbi).root_reserved_blocks = arg; 545 set_opt(sbi, RESERVE_ROOT); 546 } 547 break; 548 case Opt_resuid: 549 if (args->from && match_int(args, &arg)) 550 return -EINVAL; 551 uid = make_kuid(current_user_ns(), arg); 552 if (!uid_valid(uid)) { 553 f2fs_msg(sb, KERN_ERR, 554 "Invalid uid value %d", arg); 555 return -EINVAL; 556 } 557 F2FS_OPTION(sbi).s_resuid = uid; 558 break; 559 case Opt_resgid: 560 if (args->from && match_int(args, &arg)) 561 return -EINVAL; 562 gid = make_kgid(current_user_ns(), arg); 563 if (!gid_valid(gid)) { 564 f2fs_msg(sb, KERN_ERR, 565 "Invalid gid value %d", arg); 566 return -EINVAL; 567 } 568 F2FS_OPTION(sbi).s_resgid = gid; 569 break; 570 case Opt_mode: 571 name = match_strdup(&args[0]); 572 573 if (!name) 574 return -ENOMEM; 575 if (strlen(name) == 8 && 576 !strncmp(name, "adaptive", 8)) { 577 if (f2fs_sb_has_blkzoned(sb)) { 578 f2fs_msg(sb, KERN_WARNING, 579 "adaptive mode is not allowed with " 580 "zoned block device feature"); 581 kfree(name); 582 return -EINVAL; 583 } 584 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 585 } else if (strlen(name) == 3 && 586 !strncmp(name, "lfs", 3)) { 587 set_opt_mode(sbi, F2FS_MOUNT_LFS); 588 } else { 589 kfree(name); 590 return -EINVAL; 591 } 592 kfree(name); 593 break; 594 case Opt_io_size_bits: 595 if (args->from && match_int(args, &arg)) 596 return -EINVAL; 597 if (arg > __ilog2_u32(BIO_MAX_PAGES)) { 598 f2fs_msg(sb, KERN_WARNING, 599 "Not support %d, larger than %d", 600 1 << arg, BIO_MAX_PAGES); 601 return -EINVAL; 602 } 603 F2FS_OPTION(sbi).write_io_size_bits = arg; 604 break; 605 case Opt_fault_injection: 606 if (args->from && match_int(args, &arg)) 607 return -EINVAL; 608 #ifdef CONFIG_F2FS_FAULT_INJECTION 609 f2fs_build_fault_attr(sbi, arg); 610 set_opt(sbi, FAULT_INJECTION); 611 #else 612 f2fs_msg(sb, KERN_INFO, 613 "FAULT_INJECTION was not selected"); 614 #endif 615 break; 616 case Opt_lazytime: 617 sb->s_flags |= SB_LAZYTIME; 618 break; 619 case Opt_nolazytime: 620 sb->s_flags &= ~SB_LAZYTIME; 621 break; 622 #ifdef CONFIG_QUOTA 623 case Opt_quota: 624 case Opt_usrquota: 625 set_opt(sbi, USRQUOTA); 626 break; 627 case Opt_grpquota: 628 set_opt(sbi, GRPQUOTA); 629 break; 630 case Opt_prjquota: 631 set_opt(sbi, PRJQUOTA); 632 break; 633 case Opt_usrjquota: 634 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 635 if (ret) 636 return ret; 637 break; 638 case Opt_grpjquota: 639 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 640 if (ret) 641 return ret; 642 break; 643 case Opt_prjjquota: 644 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 645 if (ret) 646 return ret; 647 break; 648 case Opt_offusrjquota: 649 ret = f2fs_clear_qf_name(sb, USRQUOTA); 650 if (ret) 651 return ret; 652 break; 653 case Opt_offgrpjquota: 654 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 655 if (ret) 656 return ret; 657 break; 658 case Opt_offprjjquota: 659 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 660 if (ret) 661 return ret; 662 break; 663 case Opt_jqfmt_vfsold: 664 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 665 break; 666 case Opt_jqfmt_vfsv0: 667 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 668 break; 669 case Opt_jqfmt_vfsv1: 670 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 671 break; 672 case Opt_noquota: 673 clear_opt(sbi, QUOTA); 674 clear_opt(sbi, USRQUOTA); 675 clear_opt(sbi, GRPQUOTA); 676 clear_opt(sbi, PRJQUOTA); 677 break; 678 #else 679 case Opt_quota: 680 case Opt_usrquota: 681 case Opt_grpquota: 682 case Opt_prjquota: 683 case Opt_usrjquota: 684 case Opt_grpjquota: 685 case Opt_prjjquota: 686 case Opt_offusrjquota: 687 case Opt_offgrpjquota: 688 case Opt_offprjjquota: 689 case Opt_jqfmt_vfsold: 690 case Opt_jqfmt_vfsv0: 691 case Opt_jqfmt_vfsv1: 692 case Opt_noquota: 693 f2fs_msg(sb, KERN_INFO, 694 "quota operations not supported"); 695 break; 696 #endif 697 case Opt_whint: 698 name = match_strdup(&args[0]); 699 if (!name) 700 return -ENOMEM; 701 if (strlen(name) == 10 && 702 !strncmp(name, "user-based", 10)) { 703 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER; 704 } else if (strlen(name) == 3 && 705 !strncmp(name, "off", 3)) { 706 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 707 } else if (strlen(name) == 8 && 708 !strncmp(name, "fs-based", 8)) { 709 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS; 710 } else { 711 kfree(name); 712 return -EINVAL; 713 } 714 kfree(name); 715 break; 716 case Opt_alloc: 717 name = match_strdup(&args[0]); 718 if (!name) 719 return -ENOMEM; 720 721 if (strlen(name) == 7 && 722 !strncmp(name, "default", 7)) { 723 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 724 } else if (strlen(name) == 5 && 725 !strncmp(name, "reuse", 5)) { 726 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 727 } else { 728 kfree(name); 729 return -EINVAL; 730 } 731 kfree(name); 732 break; 733 case Opt_fsync: 734 name = match_strdup(&args[0]); 735 if (!name) 736 return -ENOMEM; 737 if (strlen(name) == 5 && 738 !strncmp(name, "posix", 5)) { 739 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 740 } else if (strlen(name) == 6 && 741 !strncmp(name, "strict", 6)) { 742 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 743 } else { 744 kfree(name); 745 return -EINVAL; 746 } 747 kfree(name); 748 break; 749 case Opt_test_dummy_encryption: 750 #ifdef CONFIG_F2FS_FS_ENCRYPTION 751 if (!f2fs_sb_has_encrypt(sb)) { 752 f2fs_msg(sb, KERN_ERR, "Encrypt feature is off"); 753 return -EINVAL; 754 } 755 756 F2FS_OPTION(sbi).test_dummy_encryption = true; 757 f2fs_msg(sb, KERN_INFO, 758 "Test dummy encryption mode enabled"); 759 #else 760 f2fs_msg(sb, KERN_INFO, 761 "Test dummy encryption mount option ignored"); 762 #endif 763 break; 764 default: 765 f2fs_msg(sb, KERN_ERR, 766 "Unrecognized mount option \"%s\" or missing value", 767 p); 768 return -EINVAL; 769 } 770 } 771 #ifdef CONFIG_QUOTA 772 if (f2fs_check_quota_options(sbi)) 773 return -EINVAL; 774 #endif 775 776 if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) { 777 f2fs_msg(sb, KERN_ERR, 778 "Should set mode=lfs with %uKB-sized IO", 779 F2FS_IO_SIZE_KB(sbi)); 780 return -EINVAL; 781 } 782 783 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 784 if (!f2fs_sb_has_extra_attr(sb) || 785 !f2fs_sb_has_flexible_inline_xattr(sb)) { 786 f2fs_msg(sb, KERN_ERR, 787 "extra_attr or flexible_inline_xattr " 788 "feature is off"); 789 return -EINVAL; 790 } 791 if (!test_opt(sbi, INLINE_XATTR)) { 792 f2fs_msg(sb, KERN_ERR, 793 "inline_xattr_size option should be " 794 "set with inline_xattr option"); 795 return -EINVAL; 796 } 797 if (!F2FS_OPTION(sbi).inline_xattr_size || 798 F2FS_OPTION(sbi).inline_xattr_size >= 799 DEF_ADDRS_PER_INODE - 800 F2FS_TOTAL_EXTRA_ATTR_SIZE - 801 DEF_INLINE_RESERVED_SIZE - 802 DEF_MIN_INLINE_SIZE) { 803 f2fs_msg(sb, KERN_ERR, 804 "inline xattr size is out of range"); 805 return -EINVAL; 806 } 807 } 808 809 /* Not pass down write hints if the number of active logs is lesser 810 * than NR_CURSEG_TYPE. 811 */ 812 if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE) 813 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 814 return 0; 815 } 816 817 static struct inode *f2fs_alloc_inode(struct super_block *sb) 818 { 819 struct f2fs_inode_info *fi; 820 821 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 822 if (!fi) 823 return NULL; 824 825 init_once((void *) fi); 826 827 /* Initialize f2fs-specific inode info */ 828 atomic_set(&fi->dirty_pages, 0); 829 fi->i_current_depth = 1; 830 init_rwsem(&fi->i_sem); 831 INIT_LIST_HEAD(&fi->dirty_list); 832 INIT_LIST_HEAD(&fi->gdirty_list); 833 INIT_LIST_HEAD(&fi->inmem_ilist); 834 INIT_LIST_HEAD(&fi->inmem_pages); 835 mutex_init(&fi->inmem_lock); 836 init_rwsem(&fi->dio_rwsem[READ]); 837 init_rwsem(&fi->dio_rwsem[WRITE]); 838 init_rwsem(&fi->i_mmap_sem); 839 init_rwsem(&fi->i_xattr_sem); 840 841 /* Will be used by directory only */ 842 fi->i_dir_level = F2FS_SB(sb)->dir_level; 843 844 return &fi->vfs_inode; 845 } 846 847 static int f2fs_drop_inode(struct inode *inode) 848 { 849 int ret; 850 /* 851 * This is to avoid a deadlock condition like below. 852 * writeback_single_inode(inode) 853 * - f2fs_write_data_page 854 * - f2fs_gc -> iput -> evict 855 * - inode_wait_for_writeback(inode) 856 */ 857 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 858 if (!inode->i_nlink && !is_bad_inode(inode)) { 859 /* to avoid evict_inode call simultaneously */ 860 atomic_inc(&inode->i_count); 861 spin_unlock(&inode->i_lock); 862 863 /* some remained atomic pages should discarded */ 864 if (f2fs_is_atomic_file(inode)) 865 drop_inmem_pages(inode); 866 867 /* should remain fi->extent_tree for writepage */ 868 f2fs_destroy_extent_node(inode); 869 870 sb_start_intwrite(inode->i_sb); 871 f2fs_i_size_write(inode, 0); 872 873 if (F2FS_HAS_BLOCKS(inode)) 874 f2fs_truncate(inode); 875 876 sb_end_intwrite(inode->i_sb); 877 878 spin_lock(&inode->i_lock); 879 atomic_dec(&inode->i_count); 880 } 881 trace_f2fs_drop_inode(inode, 0); 882 return 0; 883 } 884 ret = generic_drop_inode(inode); 885 trace_f2fs_drop_inode(inode, ret); 886 return ret; 887 } 888 889 int f2fs_inode_dirtied(struct inode *inode, bool sync) 890 { 891 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 892 int ret = 0; 893 894 spin_lock(&sbi->inode_lock[DIRTY_META]); 895 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 896 ret = 1; 897 } else { 898 set_inode_flag(inode, FI_DIRTY_INODE); 899 stat_inc_dirty_inode(sbi, DIRTY_META); 900 } 901 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 902 list_add_tail(&F2FS_I(inode)->gdirty_list, 903 &sbi->inode_list[DIRTY_META]); 904 inc_page_count(sbi, F2FS_DIRTY_IMETA); 905 } 906 spin_unlock(&sbi->inode_lock[DIRTY_META]); 907 return ret; 908 } 909 910 void f2fs_inode_synced(struct inode *inode) 911 { 912 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 913 914 spin_lock(&sbi->inode_lock[DIRTY_META]); 915 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 916 spin_unlock(&sbi->inode_lock[DIRTY_META]); 917 return; 918 } 919 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 920 list_del_init(&F2FS_I(inode)->gdirty_list); 921 dec_page_count(sbi, F2FS_DIRTY_IMETA); 922 } 923 clear_inode_flag(inode, FI_DIRTY_INODE); 924 clear_inode_flag(inode, FI_AUTO_RECOVER); 925 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 926 spin_unlock(&sbi->inode_lock[DIRTY_META]); 927 } 928 929 /* 930 * f2fs_dirty_inode() is called from __mark_inode_dirty() 931 * 932 * We should call set_dirty_inode to write the dirty inode through write_inode. 933 */ 934 static void f2fs_dirty_inode(struct inode *inode, int flags) 935 { 936 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 937 938 if (inode->i_ino == F2FS_NODE_INO(sbi) || 939 inode->i_ino == F2FS_META_INO(sbi)) 940 return; 941 942 if (flags == I_DIRTY_TIME) 943 return; 944 945 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 946 clear_inode_flag(inode, FI_AUTO_RECOVER); 947 948 f2fs_inode_dirtied(inode, false); 949 } 950 951 static void f2fs_i_callback(struct rcu_head *head) 952 { 953 struct inode *inode = container_of(head, struct inode, i_rcu); 954 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 955 } 956 957 static void f2fs_destroy_inode(struct inode *inode) 958 { 959 call_rcu(&inode->i_rcu, f2fs_i_callback); 960 } 961 962 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 963 { 964 percpu_counter_destroy(&sbi->alloc_valid_block_count); 965 percpu_counter_destroy(&sbi->total_valid_inode_count); 966 } 967 968 static void destroy_device_list(struct f2fs_sb_info *sbi) 969 { 970 int i; 971 972 for (i = 0; i < sbi->s_ndevs; i++) { 973 blkdev_put(FDEV(i).bdev, FMODE_EXCL); 974 #ifdef CONFIG_BLK_DEV_ZONED 975 kfree(FDEV(i).blkz_type); 976 #endif 977 } 978 kfree(sbi->devs); 979 } 980 981 static void f2fs_put_super(struct super_block *sb) 982 { 983 struct f2fs_sb_info *sbi = F2FS_SB(sb); 984 int i; 985 bool dropped; 986 987 f2fs_quota_off_umount(sb); 988 989 /* prevent remaining shrinker jobs */ 990 mutex_lock(&sbi->umount_mutex); 991 992 /* 993 * We don't need to do checkpoint when superblock is clean. 994 * But, the previous checkpoint was not done by umount, it needs to do 995 * clean checkpoint again. 996 */ 997 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 998 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 999 struct cp_control cpc = { 1000 .reason = CP_UMOUNT, 1001 }; 1002 write_checkpoint(sbi, &cpc); 1003 } 1004 1005 /* be sure to wait for any on-going discard commands */ 1006 dropped = f2fs_wait_discard_bios(sbi); 1007 1008 if (f2fs_discard_en(sbi) && !sbi->discard_blks && !dropped) { 1009 struct cp_control cpc = { 1010 .reason = CP_UMOUNT | CP_TRIMMED, 1011 }; 1012 write_checkpoint(sbi, &cpc); 1013 } 1014 1015 /* write_checkpoint can update stat informaion */ 1016 f2fs_destroy_stats(sbi); 1017 1018 /* 1019 * normally superblock is clean, so we need to release this. 1020 * In addition, EIO will skip do checkpoint, we need this as well. 1021 */ 1022 release_ino_entry(sbi, true); 1023 1024 f2fs_leave_shrinker(sbi); 1025 mutex_unlock(&sbi->umount_mutex); 1026 1027 /* our cp_error case, we can wait for any writeback page */ 1028 f2fs_flush_merged_writes(sbi); 1029 1030 iput(sbi->node_inode); 1031 iput(sbi->meta_inode); 1032 1033 /* destroy f2fs internal modules */ 1034 destroy_node_manager(sbi); 1035 destroy_segment_manager(sbi); 1036 1037 kfree(sbi->ckpt); 1038 1039 f2fs_unregister_sysfs(sbi); 1040 1041 sb->s_fs_info = NULL; 1042 if (sbi->s_chksum_driver) 1043 crypto_free_shash(sbi->s_chksum_driver); 1044 kfree(sbi->raw_super); 1045 1046 destroy_device_list(sbi); 1047 mempool_destroy(sbi->write_io_dummy); 1048 #ifdef CONFIG_QUOTA 1049 for (i = 0; i < MAXQUOTAS; i++) 1050 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 1051 #endif 1052 destroy_percpu_info(sbi); 1053 for (i = 0; i < NR_PAGE_TYPE; i++) 1054 kfree(sbi->write_io[i]); 1055 kfree(sbi); 1056 } 1057 1058 int f2fs_sync_fs(struct super_block *sb, int sync) 1059 { 1060 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1061 int err = 0; 1062 1063 if (unlikely(f2fs_cp_error(sbi))) 1064 return 0; 1065 1066 trace_f2fs_sync_fs(sb, sync); 1067 1068 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1069 return -EAGAIN; 1070 1071 if (sync) { 1072 struct cp_control cpc; 1073 1074 cpc.reason = __get_cp_reason(sbi); 1075 1076 mutex_lock(&sbi->gc_mutex); 1077 err = write_checkpoint(sbi, &cpc); 1078 mutex_unlock(&sbi->gc_mutex); 1079 } 1080 f2fs_trace_ios(NULL, 1); 1081 1082 return err; 1083 } 1084 1085 static int f2fs_freeze(struct super_block *sb) 1086 { 1087 if (f2fs_readonly(sb)) 1088 return 0; 1089 1090 /* IO error happened before */ 1091 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1092 return -EIO; 1093 1094 /* must be clean, since sync_filesystem() was already called */ 1095 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1096 return -EINVAL; 1097 return 0; 1098 } 1099 1100 static int f2fs_unfreeze(struct super_block *sb) 1101 { 1102 return 0; 1103 } 1104 1105 #ifdef CONFIG_QUOTA 1106 static int f2fs_statfs_project(struct super_block *sb, 1107 kprojid_t projid, struct kstatfs *buf) 1108 { 1109 struct kqid qid; 1110 struct dquot *dquot; 1111 u64 limit; 1112 u64 curblock; 1113 1114 qid = make_kqid_projid(projid); 1115 dquot = dqget(sb, qid); 1116 if (IS_ERR(dquot)) 1117 return PTR_ERR(dquot); 1118 spin_lock(&dq_data_lock); 1119 1120 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 1121 dquot->dq_dqb.dqb_bsoftlimit : 1122 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 1123 if (limit && buf->f_blocks > limit) { 1124 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 1125 buf->f_blocks = limit; 1126 buf->f_bfree = buf->f_bavail = 1127 (buf->f_blocks > curblock) ? 1128 (buf->f_blocks - curblock) : 0; 1129 } 1130 1131 limit = dquot->dq_dqb.dqb_isoftlimit ? 1132 dquot->dq_dqb.dqb_isoftlimit : 1133 dquot->dq_dqb.dqb_ihardlimit; 1134 if (limit && buf->f_files > limit) { 1135 buf->f_files = limit; 1136 buf->f_ffree = 1137 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1138 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1139 } 1140 1141 spin_unlock(&dq_data_lock); 1142 dqput(dquot); 1143 return 0; 1144 } 1145 #endif 1146 1147 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1148 { 1149 struct super_block *sb = dentry->d_sb; 1150 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1151 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1152 block_t total_count, user_block_count, start_count; 1153 u64 avail_node_count; 1154 1155 total_count = le64_to_cpu(sbi->raw_super->block_count); 1156 user_block_count = sbi->user_block_count; 1157 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1158 buf->f_type = F2FS_SUPER_MAGIC; 1159 buf->f_bsize = sbi->blocksize; 1160 1161 buf->f_blocks = total_count - start_count; 1162 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1163 sbi->current_reserved_blocks; 1164 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1165 buf->f_bavail = buf->f_bfree - 1166 F2FS_OPTION(sbi).root_reserved_blocks; 1167 else 1168 buf->f_bavail = 0; 1169 1170 avail_node_count = sbi->total_node_count - sbi->nquota_files - 1171 F2FS_RESERVED_NODE_NUM; 1172 1173 if (avail_node_count > user_block_count) { 1174 buf->f_files = user_block_count; 1175 buf->f_ffree = buf->f_bavail; 1176 } else { 1177 buf->f_files = avail_node_count; 1178 buf->f_ffree = min(avail_node_count - valid_node_count(sbi), 1179 buf->f_bavail); 1180 } 1181 1182 buf->f_namelen = F2FS_NAME_LEN; 1183 buf->f_fsid.val[0] = (u32)id; 1184 buf->f_fsid.val[1] = (u32)(id >> 32); 1185 1186 #ifdef CONFIG_QUOTA 1187 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1188 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1189 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1190 } 1191 #endif 1192 return 0; 1193 } 1194 1195 static inline void f2fs_show_quota_options(struct seq_file *seq, 1196 struct super_block *sb) 1197 { 1198 #ifdef CONFIG_QUOTA 1199 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1200 1201 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1202 char *fmtname = ""; 1203 1204 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1205 case QFMT_VFS_OLD: 1206 fmtname = "vfsold"; 1207 break; 1208 case QFMT_VFS_V0: 1209 fmtname = "vfsv0"; 1210 break; 1211 case QFMT_VFS_V1: 1212 fmtname = "vfsv1"; 1213 break; 1214 } 1215 seq_printf(seq, ",jqfmt=%s", fmtname); 1216 } 1217 1218 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1219 seq_show_option(seq, "usrjquota", 1220 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1221 1222 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1223 seq_show_option(seq, "grpjquota", 1224 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1225 1226 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1227 seq_show_option(seq, "prjjquota", 1228 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1229 #endif 1230 } 1231 1232 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1233 { 1234 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1235 1236 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) { 1237 if (test_opt(sbi, FORCE_FG_GC)) 1238 seq_printf(seq, ",background_gc=%s", "sync"); 1239 else 1240 seq_printf(seq, ",background_gc=%s", "on"); 1241 } else { 1242 seq_printf(seq, ",background_gc=%s", "off"); 1243 } 1244 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1245 seq_puts(seq, ",disable_roll_forward"); 1246 if (test_opt(sbi, DISCARD)) 1247 seq_puts(seq, ",discard"); 1248 if (test_opt(sbi, NOHEAP)) 1249 seq_puts(seq, ",no_heap"); 1250 else 1251 seq_puts(seq, ",heap"); 1252 #ifdef CONFIG_F2FS_FS_XATTR 1253 if (test_opt(sbi, XATTR_USER)) 1254 seq_puts(seq, ",user_xattr"); 1255 else 1256 seq_puts(seq, ",nouser_xattr"); 1257 if (test_opt(sbi, INLINE_XATTR)) 1258 seq_puts(seq, ",inline_xattr"); 1259 else 1260 seq_puts(seq, ",noinline_xattr"); 1261 if (test_opt(sbi, INLINE_XATTR_SIZE)) 1262 seq_printf(seq, ",inline_xattr_size=%u", 1263 F2FS_OPTION(sbi).inline_xattr_size); 1264 #endif 1265 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1266 if (test_opt(sbi, POSIX_ACL)) 1267 seq_puts(seq, ",acl"); 1268 else 1269 seq_puts(seq, ",noacl"); 1270 #endif 1271 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 1272 seq_puts(seq, ",disable_ext_identify"); 1273 if (test_opt(sbi, INLINE_DATA)) 1274 seq_puts(seq, ",inline_data"); 1275 else 1276 seq_puts(seq, ",noinline_data"); 1277 if (test_opt(sbi, INLINE_DENTRY)) 1278 seq_puts(seq, ",inline_dentry"); 1279 else 1280 seq_puts(seq, ",noinline_dentry"); 1281 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 1282 seq_puts(seq, ",flush_merge"); 1283 if (test_opt(sbi, NOBARRIER)) 1284 seq_puts(seq, ",nobarrier"); 1285 if (test_opt(sbi, FASTBOOT)) 1286 seq_puts(seq, ",fastboot"); 1287 if (test_opt(sbi, EXTENT_CACHE)) 1288 seq_puts(seq, ",extent_cache"); 1289 else 1290 seq_puts(seq, ",noextent_cache"); 1291 if (test_opt(sbi, DATA_FLUSH)) 1292 seq_puts(seq, ",data_flush"); 1293 1294 seq_puts(seq, ",mode="); 1295 if (test_opt(sbi, ADAPTIVE)) 1296 seq_puts(seq, "adaptive"); 1297 else if (test_opt(sbi, LFS)) 1298 seq_puts(seq, "lfs"); 1299 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 1300 if (test_opt(sbi, RESERVE_ROOT)) 1301 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 1302 F2FS_OPTION(sbi).root_reserved_blocks, 1303 from_kuid_munged(&init_user_ns, 1304 F2FS_OPTION(sbi).s_resuid), 1305 from_kgid_munged(&init_user_ns, 1306 F2FS_OPTION(sbi).s_resgid)); 1307 if (F2FS_IO_SIZE_BITS(sbi)) 1308 seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi)); 1309 #ifdef CONFIG_F2FS_FAULT_INJECTION 1310 if (test_opt(sbi, FAULT_INJECTION)) 1311 seq_printf(seq, ",fault_injection=%u", 1312 F2FS_OPTION(sbi).fault_info.inject_rate); 1313 #endif 1314 #ifdef CONFIG_QUOTA 1315 if (test_opt(sbi, QUOTA)) 1316 seq_puts(seq, ",quota"); 1317 if (test_opt(sbi, USRQUOTA)) 1318 seq_puts(seq, ",usrquota"); 1319 if (test_opt(sbi, GRPQUOTA)) 1320 seq_puts(seq, ",grpquota"); 1321 if (test_opt(sbi, PRJQUOTA)) 1322 seq_puts(seq, ",prjquota"); 1323 #endif 1324 f2fs_show_quota_options(seq, sbi->sb); 1325 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) 1326 seq_printf(seq, ",whint_mode=%s", "user-based"); 1327 else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) 1328 seq_printf(seq, ",whint_mode=%s", "fs-based"); 1329 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1330 if (F2FS_OPTION(sbi).test_dummy_encryption) 1331 seq_puts(seq, ",test_dummy_encryption"); 1332 #endif 1333 1334 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 1335 seq_printf(seq, ",alloc_mode=%s", "default"); 1336 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 1337 seq_printf(seq, ",alloc_mode=%s", "reuse"); 1338 1339 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 1340 seq_printf(seq, ",fsync_mode=%s", "posix"); 1341 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 1342 seq_printf(seq, ",fsync_mode=%s", "strict"); 1343 return 0; 1344 } 1345 1346 static void default_options(struct f2fs_sb_info *sbi) 1347 { 1348 /* init some FS parameters */ 1349 F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE; 1350 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 1351 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 1352 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 1353 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1354 F2FS_OPTION(sbi).test_dummy_encryption = false; 1355 sbi->readdir_ra = 1; 1356 1357 set_opt(sbi, BG_GC); 1358 set_opt(sbi, INLINE_XATTR); 1359 set_opt(sbi, INLINE_DATA); 1360 set_opt(sbi, INLINE_DENTRY); 1361 set_opt(sbi, EXTENT_CACHE); 1362 set_opt(sbi, NOHEAP); 1363 sbi->sb->s_flags |= SB_LAZYTIME; 1364 set_opt(sbi, FLUSH_MERGE); 1365 if (f2fs_sb_has_blkzoned(sbi->sb)) { 1366 set_opt_mode(sbi, F2FS_MOUNT_LFS); 1367 set_opt(sbi, DISCARD); 1368 } else { 1369 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 1370 } 1371 1372 #ifdef CONFIG_F2FS_FS_XATTR 1373 set_opt(sbi, XATTR_USER); 1374 #endif 1375 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1376 set_opt(sbi, POSIX_ACL); 1377 #endif 1378 1379 #ifdef CONFIG_F2FS_FAULT_INJECTION 1380 f2fs_build_fault_attr(sbi, 0); 1381 #endif 1382 } 1383 1384 #ifdef CONFIG_QUOTA 1385 static int f2fs_enable_quotas(struct super_block *sb); 1386 #endif 1387 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 1388 { 1389 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1390 struct f2fs_mount_info org_mount_opt; 1391 unsigned long old_sb_flags; 1392 int err; 1393 bool need_restart_gc = false; 1394 bool need_stop_gc = false; 1395 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 1396 #ifdef CONFIG_QUOTA 1397 int i, j; 1398 #endif 1399 1400 /* 1401 * Save the old mount options in case we 1402 * need to restore them. 1403 */ 1404 org_mount_opt = sbi->mount_opt; 1405 old_sb_flags = sb->s_flags; 1406 1407 #ifdef CONFIG_QUOTA 1408 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 1409 for (i = 0; i < MAXQUOTAS; i++) { 1410 if (F2FS_OPTION(sbi).s_qf_names[i]) { 1411 org_mount_opt.s_qf_names[i] = 1412 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 1413 GFP_KERNEL); 1414 if (!org_mount_opt.s_qf_names[i]) { 1415 for (j = 0; j < i; j++) 1416 kfree(org_mount_opt.s_qf_names[j]); 1417 return -ENOMEM; 1418 } 1419 } else { 1420 org_mount_opt.s_qf_names[i] = NULL; 1421 } 1422 } 1423 #endif 1424 1425 /* recover superblocks we couldn't write due to previous RO mount */ 1426 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 1427 err = f2fs_commit_super(sbi, false); 1428 f2fs_msg(sb, KERN_INFO, 1429 "Try to recover all the superblocks, ret: %d", err); 1430 if (!err) 1431 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1432 } 1433 1434 default_options(sbi); 1435 1436 /* parse mount options */ 1437 err = parse_options(sb, data); 1438 if (err) 1439 goto restore_opts; 1440 1441 /* 1442 * Previous and new state of filesystem is RO, 1443 * so skip checking GC and FLUSH_MERGE conditions. 1444 */ 1445 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 1446 goto skip; 1447 1448 #ifdef CONFIG_QUOTA 1449 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 1450 err = dquot_suspend(sb, -1); 1451 if (err < 0) 1452 goto restore_opts; 1453 } else if (f2fs_readonly(sb) && !(*flags & MS_RDONLY)) { 1454 /* dquot_resume needs RW */ 1455 sb->s_flags &= ~SB_RDONLY; 1456 if (sb_any_quota_suspended(sb)) { 1457 dquot_resume(sb, -1); 1458 } else if (f2fs_sb_has_quota_ino(sb)) { 1459 err = f2fs_enable_quotas(sb); 1460 if (err) 1461 goto restore_opts; 1462 } 1463 } 1464 #endif 1465 /* disallow enable/disable extent_cache dynamically */ 1466 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 1467 err = -EINVAL; 1468 f2fs_msg(sbi->sb, KERN_WARNING, 1469 "switch extent_cache option is not allowed"); 1470 goto restore_opts; 1471 } 1472 1473 /* 1474 * We stop the GC thread if FS is mounted as RO 1475 * or if background_gc = off is passed in mount 1476 * option. Also sync the filesystem. 1477 */ 1478 if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) { 1479 if (sbi->gc_thread) { 1480 stop_gc_thread(sbi); 1481 need_restart_gc = true; 1482 } 1483 } else if (!sbi->gc_thread) { 1484 err = start_gc_thread(sbi); 1485 if (err) 1486 goto restore_opts; 1487 need_stop_gc = true; 1488 } 1489 1490 if (*flags & SB_RDONLY || 1491 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) { 1492 writeback_inodes_sb(sb, WB_REASON_SYNC); 1493 sync_inodes_sb(sb); 1494 1495 set_sbi_flag(sbi, SBI_IS_DIRTY); 1496 set_sbi_flag(sbi, SBI_IS_CLOSE); 1497 f2fs_sync_fs(sb, 1); 1498 clear_sbi_flag(sbi, SBI_IS_CLOSE); 1499 } 1500 1501 /* 1502 * We stop issue flush thread if FS is mounted as RO 1503 * or if flush_merge is not passed in mount option. 1504 */ 1505 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 1506 clear_opt(sbi, FLUSH_MERGE); 1507 destroy_flush_cmd_control(sbi, false); 1508 } else { 1509 err = create_flush_cmd_control(sbi); 1510 if (err) 1511 goto restore_gc; 1512 } 1513 skip: 1514 #ifdef CONFIG_QUOTA 1515 /* Release old quota file names */ 1516 for (i = 0; i < MAXQUOTAS; i++) 1517 kfree(org_mount_opt.s_qf_names[i]); 1518 #endif 1519 /* Update the POSIXACL Flag */ 1520 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 1521 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 1522 1523 limit_reserve_root(sbi); 1524 return 0; 1525 restore_gc: 1526 if (need_restart_gc) { 1527 if (start_gc_thread(sbi)) 1528 f2fs_msg(sbi->sb, KERN_WARNING, 1529 "background gc thread has stopped"); 1530 } else if (need_stop_gc) { 1531 stop_gc_thread(sbi); 1532 } 1533 restore_opts: 1534 #ifdef CONFIG_QUOTA 1535 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 1536 for (i = 0; i < MAXQUOTAS; i++) { 1537 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 1538 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 1539 } 1540 #endif 1541 sbi->mount_opt = org_mount_opt; 1542 sb->s_flags = old_sb_flags; 1543 return err; 1544 } 1545 1546 #ifdef CONFIG_QUOTA 1547 /* Read data from quotafile */ 1548 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 1549 size_t len, loff_t off) 1550 { 1551 struct inode *inode = sb_dqopt(sb)->files[type]; 1552 struct address_space *mapping = inode->i_mapping; 1553 block_t blkidx = F2FS_BYTES_TO_BLK(off); 1554 int offset = off & (sb->s_blocksize - 1); 1555 int tocopy; 1556 size_t toread; 1557 loff_t i_size = i_size_read(inode); 1558 struct page *page; 1559 char *kaddr; 1560 1561 if (off > i_size) 1562 return 0; 1563 1564 if (off + len > i_size) 1565 len = i_size - off; 1566 toread = len; 1567 while (toread > 0) { 1568 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 1569 repeat: 1570 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 1571 if (IS_ERR(page)) { 1572 if (PTR_ERR(page) == -ENOMEM) { 1573 congestion_wait(BLK_RW_ASYNC, HZ/50); 1574 goto repeat; 1575 } 1576 return PTR_ERR(page); 1577 } 1578 1579 lock_page(page); 1580 1581 if (unlikely(page->mapping != mapping)) { 1582 f2fs_put_page(page, 1); 1583 goto repeat; 1584 } 1585 if (unlikely(!PageUptodate(page))) { 1586 f2fs_put_page(page, 1); 1587 return -EIO; 1588 } 1589 1590 kaddr = kmap_atomic(page); 1591 memcpy(data, kaddr + offset, tocopy); 1592 kunmap_atomic(kaddr); 1593 f2fs_put_page(page, 1); 1594 1595 offset = 0; 1596 toread -= tocopy; 1597 data += tocopy; 1598 blkidx++; 1599 } 1600 return len; 1601 } 1602 1603 /* Write to quotafile */ 1604 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 1605 const char *data, size_t len, loff_t off) 1606 { 1607 struct inode *inode = sb_dqopt(sb)->files[type]; 1608 struct address_space *mapping = inode->i_mapping; 1609 const struct address_space_operations *a_ops = mapping->a_ops; 1610 int offset = off & (sb->s_blocksize - 1); 1611 size_t towrite = len; 1612 struct page *page; 1613 char *kaddr; 1614 int err = 0; 1615 int tocopy; 1616 1617 while (towrite > 0) { 1618 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 1619 towrite); 1620 retry: 1621 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0, 1622 &page, NULL); 1623 if (unlikely(err)) { 1624 if (err == -ENOMEM) { 1625 congestion_wait(BLK_RW_ASYNC, HZ/50); 1626 goto retry; 1627 } 1628 break; 1629 } 1630 1631 kaddr = kmap_atomic(page); 1632 memcpy(kaddr + offset, data, tocopy); 1633 kunmap_atomic(kaddr); 1634 flush_dcache_page(page); 1635 1636 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 1637 page, NULL); 1638 offset = 0; 1639 towrite -= tocopy; 1640 off += tocopy; 1641 data += tocopy; 1642 cond_resched(); 1643 } 1644 1645 if (len == towrite) 1646 return err; 1647 inode->i_mtime = inode->i_ctime = current_time(inode); 1648 f2fs_mark_inode_dirty_sync(inode, false); 1649 return len - towrite; 1650 } 1651 1652 static struct dquot **f2fs_get_dquots(struct inode *inode) 1653 { 1654 return F2FS_I(inode)->i_dquot; 1655 } 1656 1657 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 1658 { 1659 return &F2FS_I(inode)->i_reserved_quota; 1660 } 1661 1662 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 1663 { 1664 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 1665 F2FS_OPTION(sbi).s_jquota_fmt, type); 1666 } 1667 1668 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 1669 { 1670 int enabled = 0; 1671 int i, err; 1672 1673 if (f2fs_sb_has_quota_ino(sbi->sb) && rdonly) { 1674 err = f2fs_enable_quotas(sbi->sb); 1675 if (err) { 1676 f2fs_msg(sbi->sb, KERN_ERR, 1677 "Cannot turn on quota_ino: %d", err); 1678 return 0; 1679 } 1680 return 1; 1681 } 1682 1683 for (i = 0; i < MAXQUOTAS; i++) { 1684 if (F2FS_OPTION(sbi).s_qf_names[i]) { 1685 err = f2fs_quota_on_mount(sbi, i); 1686 if (!err) { 1687 enabled = 1; 1688 continue; 1689 } 1690 f2fs_msg(sbi->sb, KERN_ERR, 1691 "Cannot turn on quotas: %d on %d", err, i); 1692 } 1693 } 1694 return enabled; 1695 } 1696 1697 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 1698 unsigned int flags) 1699 { 1700 struct inode *qf_inode; 1701 unsigned long qf_inum; 1702 int err; 1703 1704 BUG_ON(!f2fs_sb_has_quota_ino(sb)); 1705 1706 qf_inum = f2fs_qf_ino(sb, type); 1707 if (!qf_inum) 1708 return -EPERM; 1709 1710 qf_inode = f2fs_iget(sb, qf_inum); 1711 if (IS_ERR(qf_inode)) { 1712 f2fs_msg(sb, KERN_ERR, 1713 "Bad quota inode %u:%lu", type, qf_inum); 1714 return PTR_ERR(qf_inode); 1715 } 1716 1717 /* Don't account quota for quota files to avoid recursion */ 1718 qf_inode->i_flags |= S_NOQUOTA; 1719 err = dquot_enable(qf_inode, type, format_id, flags); 1720 iput(qf_inode); 1721 return err; 1722 } 1723 1724 static int f2fs_enable_quotas(struct super_block *sb) 1725 { 1726 int type, err = 0; 1727 unsigned long qf_inum; 1728 bool quota_mopt[MAXQUOTAS] = { 1729 test_opt(F2FS_SB(sb), USRQUOTA), 1730 test_opt(F2FS_SB(sb), GRPQUOTA), 1731 test_opt(F2FS_SB(sb), PRJQUOTA), 1732 }; 1733 1734 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY; 1735 for (type = 0; type < MAXQUOTAS; type++) { 1736 qf_inum = f2fs_qf_ino(sb, type); 1737 if (qf_inum) { 1738 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 1739 DQUOT_USAGE_ENABLED | 1740 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 1741 if (err) { 1742 f2fs_msg(sb, KERN_ERR, 1743 "Failed to enable quota tracking " 1744 "(type=%d, err=%d). Please run " 1745 "fsck to fix.", type, err); 1746 for (type--; type >= 0; type--) 1747 dquot_quota_off(sb, type); 1748 return err; 1749 } 1750 } 1751 } 1752 return 0; 1753 } 1754 1755 static int f2fs_quota_sync(struct super_block *sb, int type) 1756 { 1757 struct quota_info *dqopt = sb_dqopt(sb); 1758 int cnt; 1759 int ret; 1760 1761 ret = dquot_writeback_dquots(sb, type); 1762 if (ret) 1763 return ret; 1764 1765 /* 1766 * Now when everything is written we can discard the pagecache so 1767 * that userspace sees the changes. 1768 */ 1769 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 1770 if (type != -1 && cnt != type) 1771 continue; 1772 if (!sb_has_quota_active(sb, cnt)) 1773 continue; 1774 1775 ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping); 1776 if (ret) 1777 return ret; 1778 1779 inode_lock(dqopt->files[cnt]); 1780 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0); 1781 inode_unlock(dqopt->files[cnt]); 1782 } 1783 return 0; 1784 } 1785 1786 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 1787 const struct path *path) 1788 { 1789 struct inode *inode; 1790 int err; 1791 1792 err = f2fs_quota_sync(sb, type); 1793 if (err) 1794 return err; 1795 1796 err = dquot_quota_on(sb, type, format_id, path); 1797 if (err) 1798 return err; 1799 1800 inode = d_inode(path->dentry); 1801 1802 inode_lock(inode); 1803 F2FS_I(inode)->i_flags |= FS_NOATIME_FL | FS_IMMUTABLE_FL; 1804 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 1805 S_NOATIME | S_IMMUTABLE); 1806 inode_unlock(inode); 1807 f2fs_mark_inode_dirty_sync(inode, false); 1808 1809 return 0; 1810 } 1811 1812 static int f2fs_quota_off(struct super_block *sb, int type) 1813 { 1814 struct inode *inode = sb_dqopt(sb)->files[type]; 1815 int err; 1816 1817 if (!inode || !igrab(inode)) 1818 return dquot_quota_off(sb, type); 1819 1820 f2fs_quota_sync(sb, type); 1821 1822 err = dquot_quota_off(sb, type); 1823 if (err || f2fs_sb_has_quota_ino(sb)) 1824 goto out_put; 1825 1826 inode_lock(inode); 1827 F2FS_I(inode)->i_flags &= ~(FS_NOATIME_FL | FS_IMMUTABLE_FL); 1828 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 1829 inode_unlock(inode); 1830 f2fs_mark_inode_dirty_sync(inode, false); 1831 out_put: 1832 iput(inode); 1833 return err; 1834 } 1835 1836 void f2fs_quota_off_umount(struct super_block *sb) 1837 { 1838 int type; 1839 1840 for (type = 0; type < MAXQUOTAS; type++) 1841 f2fs_quota_off(sb, type); 1842 } 1843 1844 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 1845 { 1846 *projid = F2FS_I(inode)->i_projid; 1847 return 0; 1848 } 1849 1850 static const struct dquot_operations f2fs_quota_operations = { 1851 .get_reserved_space = f2fs_get_reserved_space, 1852 .write_dquot = dquot_commit, 1853 .acquire_dquot = dquot_acquire, 1854 .release_dquot = dquot_release, 1855 .mark_dirty = dquot_mark_dquot_dirty, 1856 .write_info = dquot_commit_info, 1857 .alloc_dquot = dquot_alloc, 1858 .destroy_dquot = dquot_destroy, 1859 .get_projid = f2fs_get_projid, 1860 .get_next_id = dquot_get_next_id, 1861 }; 1862 1863 static const struct quotactl_ops f2fs_quotactl_ops = { 1864 .quota_on = f2fs_quota_on, 1865 .quota_off = f2fs_quota_off, 1866 .quota_sync = f2fs_quota_sync, 1867 .get_state = dquot_get_state, 1868 .set_info = dquot_set_dqinfo, 1869 .get_dqblk = dquot_get_dqblk, 1870 .set_dqblk = dquot_set_dqblk, 1871 .get_nextdqblk = dquot_get_next_dqblk, 1872 }; 1873 #else 1874 void f2fs_quota_off_umount(struct super_block *sb) 1875 { 1876 } 1877 #endif 1878 1879 static const struct super_operations f2fs_sops = { 1880 .alloc_inode = f2fs_alloc_inode, 1881 .drop_inode = f2fs_drop_inode, 1882 .destroy_inode = f2fs_destroy_inode, 1883 .write_inode = f2fs_write_inode, 1884 .dirty_inode = f2fs_dirty_inode, 1885 .show_options = f2fs_show_options, 1886 #ifdef CONFIG_QUOTA 1887 .quota_read = f2fs_quota_read, 1888 .quota_write = f2fs_quota_write, 1889 .get_dquots = f2fs_get_dquots, 1890 #endif 1891 .evict_inode = f2fs_evict_inode, 1892 .put_super = f2fs_put_super, 1893 .sync_fs = f2fs_sync_fs, 1894 .freeze_fs = f2fs_freeze, 1895 .unfreeze_fs = f2fs_unfreeze, 1896 .statfs = f2fs_statfs, 1897 .remount_fs = f2fs_remount, 1898 }; 1899 1900 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1901 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 1902 { 1903 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 1904 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 1905 ctx, len, NULL); 1906 } 1907 1908 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 1909 void *fs_data) 1910 { 1911 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1912 1913 /* 1914 * Encrypting the root directory is not allowed because fsck 1915 * expects lost+found directory to exist and remain unencrypted 1916 * if LOST_FOUND feature is enabled. 1917 * 1918 */ 1919 if (f2fs_sb_has_lost_found(sbi->sb) && 1920 inode->i_ino == F2FS_ROOT_INO(sbi)) 1921 return -EPERM; 1922 1923 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 1924 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 1925 ctx, len, fs_data, XATTR_CREATE); 1926 } 1927 1928 static bool f2fs_dummy_context(struct inode *inode) 1929 { 1930 return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode)); 1931 } 1932 1933 static unsigned f2fs_max_namelen(struct inode *inode) 1934 { 1935 return S_ISLNK(inode->i_mode) ? 1936 inode->i_sb->s_blocksize : F2FS_NAME_LEN; 1937 } 1938 1939 static const struct fscrypt_operations f2fs_cryptops = { 1940 .key_prefix = "f2fs:", 1941 .get_context = f2fs_get_context, 1942 .set_context = f2fs_set_context, 1943 .dummy_context = f2fs_dummy_context, 1944 .empty_dir = f2fs_empty_dir, 1945 .max_namelen = f2fs_max_namelen, 1946 }; 1947 #endif 1948 1949 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 1950 u64 ino, u32 generation) 1951 { 1952 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1953 struct inode *inode; 1954 1955 if (check_nid_range(sbi, ino)) 1956 return ERR_PTR(-ESTALE); 1957 1958 /* 1959 * f2fs_iget isn't quite right if the inode is currently unallocated! 1960 * However f2fs_iget currently does appropriate checks to handle stale 1961 * inodes so everything is OK. 1962 */ 1963 inode = f2fs_iget(sb, ino); 1964 if (IS_ERR(inode)) 1965 return ERR_CAST(inode); 1966 if (unlikely(generation && inode->i_generation != generation)) { 1967 /* we didn't find the right inode.. */ 1968 iput(inode); 1969 return ERR_PTR(-ESTALE); 1970 } 1971 return inode; 1972 } 1973 1974 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1975 int fh_len, int fh_type) 1976 { 1977 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1978 f2fs_nfs_get_inode); 1979 } 1980 1981 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 1982 int fh_len, int fh_type) 1983 { 1984 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1985 f2fs_nfs_get_inode); 1986 } 1987 1988 static const struct export_operations f2fs_export_ops = { 1989 .fh_to_dentry = f2fs_fh_to_dentry, 1990 .fh_to_parent = f2fs_fh_to_parent, 1991 .get_parent = f2fs_get_parent, 1992 }; 1993 1994 static loff_t max_file_blocks(void) 1995 { 1996 loff_t result = 0; 1997 loff_t leaf_count = ADDRS_PER_BLOCK; 1998 1999 /* 2000 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 2001 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 2002 * space in inode.i_addr, it will be more safe to reassign 2003 * result as zero. 2004 */ 2005 2006 /* two direct node blocks */ 2007 result += (leaf_count * 2); 2008 2009 /* two indirect node blocks */ 2010 leaf_count *= NIDS_PER_BLOCK; 2011 result += (leaf_count * 2); 2012 2013 /* one double indirect node block */ 2014 leaf_count *= NIDS_PER_BLOCK; 2015 result += leaf_count; 2016 2017 return result; 2018 } 2019 2020 static int __f2fs_commit_super(struct buffer_head *bh, 2021 struct f2fs_super_block *super) 2022 { 2023 lock_buffer(bh); 2024 if (super) 2025 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 2026 set_buffer_dirty(bh); 2027 unlock_buffer(bh); 2028 2029 /* it's rare case, we can do fua all the time */ 2030 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 2031 } 2032 2033 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 2034 struct buffer_head *bh) 2035 { 2036 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2037 (bh->b_data + F2FS_SUPER_OFFSET); 2038 struct super_block *sb = sbi->sb; 2039 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2040 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 2041 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 2042 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 2043 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2044 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2045 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 2046 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 2047 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 2048 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 2049 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2050 u32 segment_count = le32_to_cpu(raw_super->segment_count); 2051 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2052 u64 main_end_blkaddr = main_blkaddr + 2053 (segment_count_main << log_blocks_per_seg); 2054 u64 seg_end_blkaddr = segment0_blkaddr + 2055 (segment_count << log_blocks_per_seg); 2056 2057 if (segment0_blkaddr != cp_blkaddr) { 2058 f2fs_msg(sb, KERN_INFO, 2059 "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 2060 segment0_blkaddr, cp_blkaddr); 2061 return true; 2062 } 2063 2064 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 2065 sit_blkaddr) { 2066 f2fs_msg(sb, KERN_INFO, 2067 "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 2068 cp_blkaddr, sit_blkaddr, 2069 segment_count_ckpt << log_blocks_per_seg); 2070 return true; 2071 } 2072 2073 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 2074 nat_blkaddr) { 2075 f2fs_msg(sb, KERN_INFO, 2076 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 2077 sit_blkaddr, nat_blkaddr, 2078 segment_count_sit << log_blocks_per_seg); 2079 return true; 2080 } 2081 2082 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 2083 ssa_blkaddr) { 2084 f2fs_msg(sb, KERN_INFO, 2085 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 2086 nat_blkaddr, ssa_blkaddr, 2087 segment_count_nat << log_blocks_per_seg); 2088 return true; 2089 } 2090 2091 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 2092 main_blkaddr) { 2093 f2fs_msg(sb, KERN_INFO, 2094 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 2095 ssa_blkaddr, main_blkaddr, 2096 segment_count_ssa << log_blocks_per_seg); 2097 return true; 2098 } 2099 2100 if (main_end_blkaddr > seg_end_blkaddr) { 2101 f2fs_msg(sb, KERN_INFO, 2102 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)", 2103 main_blkaddr, 2104 segment0_blkaddr + 2105 (segment_count << log_blocks_per_seg), 2106 segment_count_main << log_blocks_per_seg); 2107 return true; 2108 } else if (main_end_blkaddr < seg_end_blkaddr) { 2109 int err = 0; 2110 char *res; 2111 2112 /* fix in-memory information all the time */ 2113 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 2114 segment0_blkaddr) >> log_blocks_per_seg); 2115 2116 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 2117 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2118 res = "internally"; 2119 } else { 2120 err = __f2fs_commit_super(bh, NULL); 2121 res = err ? "failed" : "done"; 2122 } 2123 f2fs_msg(sb, KERN_INFO, 2124 "Fix alignment : %s, start(%u) end(%u) block(%u)", 2125 res, main_blkaddr, 2126 segment0_blkaddr + 2127 (segment_count << log_blocks_per_seg), 2128 segment_count_main << log_blocks_per_seg); 2129 if (err) 2130 return true; 2131 } 2132 return false; 2133 } 2134 2135 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 2136 struct buffer_head *bh) 2137 { 2138 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2139 (bh->b_data + F2FS_SUPER_OFFSET); 2140 struct super_block *sb = sbi->sb; 2141 unsigned int blocksize; 2142 2143 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { 2144 f2fs_msg(sb, KERN_INFO, 2145 "Magic Mismatch, valid(0x%x) - read(0x%x)", 2146 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 2147 return 1; 2148 } 2149 2150 /* Currently, support only 4KB page cache size */ 2151 if (F2FS_BLKSIZE != PAGE_SIZE) { 2152 f2fs_msg(sb, KERN_INFO, 2153 "Invalid page_cache_size (%lu), supports only 4KB\n", 2154 PAGE_SIZE); 2155 return 1; 2156 } 2157 2158 /* Currently, support only 4KB block size */ 2159 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 2160 if (blocksize != F2FS_BLKSIZE) { 2161 f2fs_msg(sb, KERN_INFO, 2162 "Invalid blocksize (%u), supports only 4KB\n", 2163 blocksize); 2164 return 1; 2165 } 2166 2167 /* check log blocks per segment */ 2168 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 2169 f2fs_msg(sb, KERN_INFO, 2170 "Invalid log blocks per segment (%u)\n", 2171 le32_to_cpu(raw_super->log_blocks_per_seg)); 2172 return 1; 2173 } 2174 2175 /* Currently, support 512/1024/2048/4096 bytes sector size */ 2176 if (le32_to_cpu(raw_super->log_sectorsize) > 2177 F2FS_MAX_LOG_SECTOR_SIZE || 2178 le32_to_cpu(raw_super->log_sectorsize) < 2179 F2FS_MIN_LOG_SECTOR_SIZE) { 2180 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)", 2181 le32_to_cpu(raw_super->log_sectorsize)); 2182 return 1; 2183 } 2184 if (le32_to_cpu(raw_super->log_sectors_per_block) + 2185 le32_to_cpu(raw_super->log_sectorsize) != 2186 F2FS_MAX_LOG_SECTOR_SIZE) { 2187 f2fs_msg(sb, KERN_INFO, 2188 "Invalid log sectors per block(%u) log sectorsize(%u)", 2189 le32_to_cpu(raw_super->log_sectors_per_block), 2190 le32_to_cpu(raw_super->log_sectorsize)); 2191 return 1; 2192 } 2193 2194 /* check reserved ino info */ 2195 if (le32_to_cpu(raw_super->node_ino) != 1 || 2196 le32_to_cpu(raw_super->meta_ino) != 2 || 2197 le32_to_cpu(raw_super->root_ino) != 3) { 2198 f2fs_msg(sb, KERN_INFO, 2199 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 2200 le32_to_cpu(raw_super->node_ino), 2201 le32_to_cpu(raw_super->meta_ino), 2202 le32_to_cpu(raw_super->root_ino)); 2203 return 1; 2204 } 2205 2206 if (le32_to_cpu(raw_super->segment_count) > F2FS_MAX_SEGMENT) { 2207 f2fs_msg(sb, KERN_INFO, 2208 "Invalid segment count (%u)", 2209 le32_to_cpu(raw_super->segment_count)); 2210 return 1; 2211 } 2212 2213 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 2214 if (sanity_check_area_boundary(sbi, bh)) 2215 return 1; 2216 2217 return 0; 2218 } 2219 2220 int sanity_check_ckpt(struct f2fs_sb_info *sbi) 2221 { 2222 unsigned int total, fsmeta; 2223 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2224 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2225 unsigned int ovp_segments, reserved_segments; 2226 unsigned int main_segs, blocks_per_seg; 2227 int i; 2228 2229 total = le32_to_cpu(raw_super->segment_count); 2230 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 2231 fsmeta += le32_to_cpu(raw_super->segment_count_sit); 2232 fsmeta += le32_to_cpu(raw_super->segment_count_nat); 2233 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 2234 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 2235 2236 if (unlikely(fsmeta >= total)) 2237 return 1; 2238 2239 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2240 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2241 2242 if (unlikely(fsmeta < F2FS_MIN_SEGMENTS || 2243 ovp_segments == 0 || reserved_segments == 0)) { 2244 f2fs_msg(sbi->sb, KERN_ERR, 2245 "Wrong layout: check mkfs.f2fs version"); 2246 return 1; 2247 } 2248 2249 main_segs = le32_to_cpu(raw_super->segment_count_main); 2250 blocks_per_seg = sbi->blocks_per_seg; 2251 2252 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 2253 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 2254 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 2255 return 1; 2256 } 2257 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 2258 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 2259 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 2260 return 1; 2261 } 2262 2263 if (unlikely(f2fs_cp_error(sbi))) { 2264 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); 2265 return 1; 2266 } 2267 return 0; 2268 } 2269 2270 static void init_sb_info(struct f2fs_sb_info *sbi) 2271 { 2272 struct f2fs_super_block *raw_super = sbi->raw_super; 2273 int i, j; 2274 2275 sbi->log_sectors_per_block = 2276 le32_to_cpu(raw_super->log_sectors_per_block); 2277 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 2278 sbi->blocksize = 1 << sbi->log_blocksize; 2279 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2280 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 2281 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 2282 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 2283 sbi->total_sections = le32_to_cpu(raw_super->section_count); 2284 sbi->total_node_count = 2285 (le32_to_cpu(raw_super->segment_count_nat) / 2) 2286 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 2287 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 2288 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 2289 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 2290 sbi->cur_victim_sec = NULL_SECNO; 2291 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 2292 2293 sbi->dir_level = DEF_DIR_LEVEL; 2294 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 2295 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 2296 clear_sbi_flag(sbi, SBI_NEED_FSCK); 2297 2298 for (i = 0; i < NR_COUNT_TYPE; i++) 2299 atomic_set(&sbi->nr_pages[i], 0); 2300 2301 atomic_set(&sbi->wb_sync_req, 0); 2302 2303 INIT_LIST_HEAD(&sbi->s_list); 2304 mutex_init(&sbi->umount_mutex); 2305 for (i = 0; i < NR_PAGE_TYPE - 1; i++) 2306 for (j = HOT; j < NR_TEMP_TYPE; j++) 2307 mutex_init(&sbi->wio_mutex[i][j]); 2308 spin_lock_init(&sbi->cp_lock); 2309 2310 sbi->dirty_device = 0; 2311 spin_lock_init(&sbi->dev_lock); 2312 2313 init_rwsem(&sbi->sb_lock); 2314 } 2315 2316 static int init_percpu_info(struct f2fs_sb_info *sbi) 2317 { 2318 int err; 2319 2320 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 2321 if (err) 2322 return err; 2323 2324 return percpu_counter_init(&sbi->total_valid_inode_count, 0, 2325 GFP_KERNEL); 2326 } 2327 2328 #ifdef CONFIG_BLK_DEV_ZONED 2329 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 2330 { 2331 struct block_device *bdev = FDEV(devi).bdev; 2332 sector_t nr_sectors = bdev->bd_part->nr_sects; 2333 sector_t sector = 0; 2334 struct blk_zone *zones; 2335 unsigned int i, nr_zones; 2336 unsigned int n = 0; 2337 int err = -EIO; 2338 2339 if (!f2fs_sb_has_blkzoned(sbi->sb)) 2340 return 0; 2341 2342 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 2343 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev))) 2344 return -EINVAL; 2345 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)); 2346 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz != 2347 __ilog2_u32(sbi->blocks_per_blkz)) 2348 return -EINVAL; 2349 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz); 2350 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >> 2351 sbi->log_blocks_per_blkz; 2352 if (nr_sectors & (bdev_zone_sectors(bdev) - 1)) 2353 FDEV(devi).nr_blkz++; 2354 2355 FDEV(devi).blkz_type = f2fs_kmalloc(sbi, FDEV(devi).nr_blkz, 2356 GFP_KERNEL); 2357 if (!FDEV(devi).blkz_type) 2358 return -ENOMEM; 2359 2360 #define F2FS_REPORT_NR_ZONES 4096 2361 2362 zones = f2fs_kzalloc(sbi, sizeof(struct blk_zone) * 2363 F2FS_REPORT_NR_ZONES, GFP_KERNEL); 2364 if (!zones) 2365 return -ENOMEM; 2366 2367 /* Get block zones type */ 2368 while (zones && sector < nr_sectors) { 2369 2370 nr_zones = F2FS_REPORT_NR_ZONES; 2371 err = blkdev_report_zones(bdev, sector, 2372 zones, &nr_zones, 2373 GFP_KERNEL); 2374 if (err) 2375 break; 2376 if (!nr_zones) { 2377 err = -EIO; 2378 break; 2379 } 2380 2381 for (i = 0; i < nr_zones; i++) { 2382 FDEV(devi).blkz_type[n] = zones[i].type; 2383 sector += zones[i].len; 2384 n++; 2385 } 2386 } 2387 2388 kfree(zones); 2389 2390 return err; 2391 } 2392 #endif 2393 2394 /* 2395 * Read f2fs raw super block. 2396 * Because we have two copies of super block, so read both of them 2397 * to get the first valid one. If any one of them is broken, we pass 2398 * them recovery flag back to the caller. 2399 */ 2400 static int read_raw_super_block(struct f2fs_sb_info *sbi, 2401 struct f2fs_super_block **raw_super, 2402 int *valid_super_block, int *recovery) 2403 { 2404 struct super_block *sb = sbi->sb; 2405 int block; 2406 struct buffer_head *bh; 2407 struct f2fs_super_block *super; 2408 int err = 0; 2409 2410 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 2411 if (!super) 2412 return -ENOMEM; 2413 2414 for (block = 0; block < 2; block++) { 2415 bh = sb_bread(sb, block); 2416 if (!bh) { 2417 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock", 2418 block + 1); 2419 err = -EIO; 2420 continue; 2421 } 2422 2423 /* sanity checking of raw super */ 2424 if (sanity_check_raw_super(sbi, bh)) { 2425 f2fs_msg(sb, KERN_ERR, 2426 "Can't find valid F2FS filesystem in %dth superblock", 2427 block + 1); 2428 err = -EINVAL; 2429 brelse(bh); 2430 continue; 2431 } 2432 2433 if (!*raw_super) { 2434 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 2435 sizeof(*super)); 2436 *valid_super_block = block; 2437 *raw_super = super; 2438 } 2439 brelse(bh); 2440 } 2441 2442 /* Fail to read any one of the superblocks*/ 2443 if (err < 0) 2444 *recovery = 1; 2445 2446 /* No valid superblock */ 2447 if (!*raw_super) 2448 kfree(super); 2449 else 2450 err = 0; 2451 2452 return err; 2453 } 2454 2455 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 2456 { 2457 struct buffer_head *bh; 2458 int err; 2459 2460 if ((recover && f2fs_readonly(sbi->sb)) || 2461 bdev_read_only(sbi->sb->s_bdev)) { 2462 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2463 return -EROFS; 2464 } 2465 2466 /* write back-up superblock first */ 2467 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 2468 if (!bh) 2469 return -EIO; 2470 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 2471 brelse(bh); 2472 2473 /* if we are in recovery path, skip writing valid superblock */ 2474 if (recover || err) 2475 return err; 2476 2477 /* write current valid superblock */ 2478 bh = sb_bread(sbi->sb, sbi->valid_super_block); 2479 if (!bh) 2480 return -EIO; 2481 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 2482 brelse(bh); 2483 return err; 2484 } 2485 2486 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 2487 { 2488 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2489 unsigned int max_devices = MAX_DEVICES; 2490 int i; 2491 2492 /* Initialize single device information */ 2493 if (!RDEV(0).path[0]) { 2494 if (!bdev_is_zoned(sbi->sb->s_bdev)) 2495 return 0; 2496 max_devices = 1; 2497 } 2498 2499 /* 2500 * Initialize multiple devices information, or single 2501 * zoned block device information. 2502 */ 2503 sbi->devs = f2fs_kzalloc(sbi, sizeof(struct f2fs_dev_info) * 2504 max_devices, GFP_KERNEL); 2505 if (!sbi->devs) 2506 return -ENOMEM; 2507 2508 for (i = 0; i < max_devices; i++) { 2509 2510 if (i > 0 && !RDEV(i).path[0]) 2511 break; 2512 2513 if (max_devices == 1) { 2514 /* Single zoned block device mount */ 2515 FDEV(0).bdev = 2516 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev, 2517 sbi->sb->s_mode, sbi->sb->s_type); 2518 } else { 2519 /* Multi-device mount */ 2520 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 2521 FDEV(i).total_segments = 2522 le32_to_cpu(RDEV(i).total_segments); 2523 if (i == 0) { 2524 FDEV(i).start_blk = 0; 2525 FDEV(i).end_blk = FDEV(i).start_blk + 2526 (FDEV(i).total_segments << 2527 sbi->log_blocks_per_seg) - 1 + 2528 le32_to_cpu(raw_super->segment0_blkaddr); 2529 } else { 2530 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 2531 FDEV(i).end_blk = FDEV(i).start_blk + 2532 (FDEV(i).total_segments << 2533 sbi->log_blocks_per_seg) - 1; 2534 } 2535 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 2536 sbi->sb->s_mode, sbi->sb->s_type); 2537 } 2538 if (IS_ERR(FDEV(i).bdev)) 2539 return PTR_ERR(FDEV(i).bdev); 2540 2541 /* to release errored devices */ 2542 sbi->s_ndevs = i + 1; 2543 2544 #ifdef CONFIG_BLK_DEV_ZONED 2545 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 2546 !f2fs_sb_has_blkzoned(sbi->sb)) { 2547 f2fs_msg(sbi->sb, KERN_ERR, 2548 "Zoned block device feature not enabled\n"); 2549 return -EINVAL; 2550 } 2551 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 2552 if (init_blkz_info(sbi, i)) { 2553 f2fs_msg(sbi->sb, KERN_ERR, 2554 "Failed to initialize F2FS blkzone information"); 2555 return -EINVAL; 2556 } 2557 if (max_devices == 1) 2558 break; 2559 f2fs_msg(sbi->sb, KERN_INFO, 2560 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 2561 i, FDEV(i).path, 2562 FDEV(i).total_segments, 2563 FDEV(i).start_blk, FDEV(i).end_blk, 2564 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 2565 "Host-aware" : "Host-managed"); 2566 continue; 2567 } 2568 #endif 2569 f2fs_msg(sbi->sb, KERN_INFO, 2570 "Mount Device [%2d]: %20s, %8u, %8x - %8x", 2571 i, FDEV(i).path, 2572 FDEV(i).total_segments, 2573 FDEV(i).start_blk, FDEV(i).end_blk); 2574 } 2575 f2fs_msg(sbi->sb, KERN_INFO, 2576 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi)); 2577 return 0; 2578 } 2579 2580 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 2581 { 2582 struct f2fs_sm_info *sm_i = SM_I(sbi); 2583 2584 /* adjust parameters according to the volume size */ 2585 if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) { 2586 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 2587 sm_i->dcc_info->discard_granularity = 1; 2588 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE; 2589 } 2590 } 2591 2592 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 2593 { 2594 struct f2fs_sb_info *sbi; 2595 struct f2fs_super_block *raw_super; 2596 struct inode *root; 2597 int err; 2598 bool retry = true, need_fsck = false; 2599 char *options = NULL; 2600 int recovery, i, valid_super_block; 2601 struct curseg_info *seg_i; 2602 2603 try_onemore: 2604 err = -EINVAL; 2605 raw_super = NULL; 2606 valid_super_block = -1; 2607 recovery = 0; 2608 2609 /* allocate memory for f2fs-specific super block info */ 2610 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 2611 if (!sbi) 2612 return -ENOMEM; 2613 2614 sbi->sb = sb; 2615 2616 /* Load the checksum driver */ 2617 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 2618 if (IS_ERR(sbi->s_chksum_driver)) { 2619 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver."); 2620 err = PTR_ERR(sbi->s_chksum_driver); 2621 sbi->s_chksum_driver = NULL; 2622 goto free_sbi; 2623 } 2624 2625 /* set a block size */ 2626 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 2627 f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); 2628 goto free_sbi; 2629 } 2630 2631 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 2632 &recovery); 2633 if (err) 2634 goto free_sbi; 2635 2636 sb->s_fs_info = sbi; 2637 sbi->raw_super = raw_super; 2638 2639 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 2640 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 2641 2642 /* precompute checksum seed for metadata */ 2643 if (f2fs_sb_has_inode_chksum(sb)) 2644 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 2645 sizeof(raw_super->uuid)); 2646 2647 /* 2648 * The BLKZONED feature indicates that the drive was formatted with 2649 * zone alignment optimization. This is optional for host-aware 2650 * devices, but mandatory for host-managed zoned block devices. 2651 */ 2652 #ifndef CONFIG_BLK_DEV_ZONED 2653 if (f2fs_sb_has_blkzoned(sb)) { 2654 f2fs_msg(sb, KERN_ERR, 2655 "Zoned block device support is not enabled\n"); 2656 err = -EOPNOTSUPP; 2657 goto free_sb_buf; 2658 } 2659 #endif 2660 default_options(sbi); 2661 /* parse mount options */ 2662 options = kstrdup((const char *)data, GFP_KERNEL); 2663 if (data && !options) { 2664 err = -ENOMEM; 2665 goto free_sb_buf; 2666 } 2667 2668 err = parse_options(sb, options); 2669 if (err) 2670 goto free_options; 2671 2672 sbi->max_file_blocks = max_file_blocks(); 2673 sb->s_maxbytes = sbi->max_file_blocks << 2674 le32_to_cpu(raw_super->log_blocksize); 2675 sb->s_max_links = F2FS_LINK_MAX; 2676 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 2677 2678 #ifdef CONFIG_QUOTA 2679 sb->dq_op = &f2fs_quota_operations; 2680 if (f2fs_sb_has_quota_ino(sb)) 2681 sb->s_qcop = &dquot_quotactl_sysfile_ops; 2682 else 2683 sb->s_qcop = &f2fs_quotactl_ops; 2684 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 2685 2686 if (f2fs_sb_has_quota_ino(sbi->sb)) { 2687 for (i = 0; i < MAXQUOTAS; i++) { 2688 if (f2fs_qf_ino(sbi->sb, i)) 2689 sbi->nquota_files++; 2690 } 2691 } 2692 #endif 2693 2694 sb->s_op = &f2fs_sops; 2695 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2696 sb->s_cop = &f2fs_cryptops; 2697 #endif 2698 sb->s_xattr = f2fs_xattr_handlers; 2699 sb->s_export_op = &f2fs_export_ops; 2700 sb->s_magic = F2FS_SUPER_MAGIC; 2701 sb->s_time_gran = 1; 2702 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 2703 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 2704 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 2705 sb->s_iflags |= SB_I_CGROUPWB; 2706 2707 /* init f2fs-specific super block info */ 2708 sbi->valid_super_block = valid_super_block; 2709 mutex_init(&sbi->gc_mutex); 2710 mutex_init(&sbi->cp_mutex); 2711 init_rwsem(&sbi->node_write); 2712 init_rwsem(&sbi->node_change); 2713 2714 /* disallow all the data/node/meta page writes */ 2715 set_sbi_flag(sbi, SBI_POR_DOING); 2716 spin_lock_init(&sbi->stat_lock); 2717 2718 /* init iostat info */ 2719 spin_lock_init(&sbi->iostat_lock); 2720 sbi->iostat_enable = false; 2721 2722 for (i = 0; i < NR_PAGE_TYPE; i++) { 2723 int n = (i == META) ? 1: NR_TEMP_TYPE; 2724 int j; 2725 2726 sbi->write_io[i] = f2fs_kmalloc(sbi, 2727 n * sizeof(struct f2fs_bio_info), 2728 GFP_KERNEL); 2729 if (!sbi->write_io[i]) { 2730 err = -ENOMEM; 2731 goto free_options; 2732 } 2733 2734 for (j = HOT; j < n; j++) { 2735 init_rwsem(&sbi->write_io[i][j].io_rwsem); 2736 sbi->write_io[i][j].sbi = sbi; 2737 sbi->write_io[i][j].bio = NULL; 2738 spin_lock_init(&sbi->write_io[i][j].io_lock); 2739 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 2740 } 2741 } 2742 2743 init_rwsem(&sbi->cp_rwsem); 2744 init_waitqueue_head(&sbi->cp_wait); 2745 init_sb_info(sbi); 2746 2747 err = init_percpu_info(sbi); 2748 if (err) 2749 goto free_bio_info; 2750 2751 if (F2FS_IO_SIZE(sbi) > 1) { 2752 sbi->write_io_dummy = 2753 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); 2754 if (!sbi->write_io_dummy) { 2755 err = -ENOMEM; 2756 goto free_percpu; 2757 } 2758 } 2759 2760 /* get an inode for meta space */ 2761 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 2762 if (IS_ERR(sbi->meta_inode)) { 2763 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); 2764 err = PTR_ERR(sbi->meta_inode); 2765 goto free_io_dummy; 2766 } 2767 2768 err = get_valid_checkpoint(sbi); 2769 if (err) { 2770 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); 2771 goto free_meta_inode; 2772 } 2773 2774 /* Initialize device list */ 2775 err = f2fs_scan_devices(sbi); 2776 if (err) { 2777 f2fs_msg(sb, KERN_ERR, "Failed to find devices"); 2778 goto free_devices; 2779 } 2780 2781 sbi->total_valid_node_count = 2782 le32_to_cpu(sbi->ckpt->valid_node_count); 2783 percpu_counter_set(&sbi->total_valid_inode_count, 2784 le32_to_cpu(sbi->ckpt->valid_inode_count)); 2785 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 2786 sbi->total_valid_block_count = 2787 le64_to_cpu(sbi->ckpt->valid_block_count); 2788 sbi->last_valid_block_count = sbi->total_valid_block_count; 2789 sbi->reserved_blocks = 0; 2790 sbi->current_reserved_blocks = 0; 2791 limit_reserve_root(sbi); 2792 2793 for (i = 0; i < NR_INODE_TYPE; i++) { 2794 INIT_LIST_HEAD(&sbi->inode_list[i]); 2795 spin_lock_init(&sbi->inode_lock[i]); 2796 } 2797 2798 init_extent_cache_info(sbi); 2799 2800 init_ino_entry_info(sbi); 2801 2802 /* setup f2fs internal modules */ 2803 err = build_segment_manager(sbi); 2804 if (err) { 2805 f2fs_msg(sb, KERN_ERR, 2806 "Failed to initialize F2FS segment manager"); 2807 goto free_sm; 2808 } 2809 err = build_node_manager(sbi); 2810 if (err) { 2811 f2fs_msg(sb, KERN_ERR, 2812 "Failed to initialize F2FS node manager"); 2813 goto free_nm; 2814 } 2815 2816 /* For write statistics */ 2817 if (sb->s_bdev->bd_part) 2818 sbi->sectors_written_start = 2819 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]); 2820 2821 /* Read accumulated write IO statistics if exists */ 2822 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 2823 if (__exist_node_summaries(sbi)) 2824 sbi->kbytes_written = 2825 le64_to_cpu(seg_i->journal->info.kbytes_written); 2826 2827 build_gc_manager(sbi); 2828 2829 /* get an inode for node space */ 2830 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 2831 if (IS_ERR(sbi->node_inode)) { 2832 f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); 2833 err = PTR_ERR(sbi->node_inode); 2834 goto free_nm; 2835 } 2836 2837 err = f2fs_build_stats(sbi); 2838 if (err) 2839 goto free_node_inode; 2840 2841 /* read root inode and dentry */ 2842 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 2843 if (IS_ERR(root)) { 2844 f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); 2845 err = PTR_ERR(root); 2846 goto free_stats; 2847 } 2848 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 2849 iput(root); 2850 err = -EINVAL; 2851 goto free_node_inode; 2852 } 2853 2854 sb->s_root = d_make_root(root); /* allocate root dentry */ 2855 if (!sb->s_root) { 2856 err = -ENOMEM; 2857 goto free_root_inode; 2858 } 2859 2860 err = f2fs_register_sysfs(sbi); 2861 if (err) 2862 goto free_root_inode; 2863 2864 #ifdef CONFIG_QUOTA 2865 /* 2866 * Turn on quotas which were not enabled for read-only mounts if 2867 * filesystem has quota feature, so that they are updated correctly. 2868 */ 2869 if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb)) { 2870 err = f2fs_enable_quotas(sb); 2871 if (err) { 2872 f2fs_msg(sb, KERN_ERR, 2873 "Cannot turn on quotas: error %d", err); 2874 goto free_sysfs; 2875 } 2876 } 2877 #endif 2878 /* if there are nt orphan nodes free them */ 2879 err = recover_orphan_inodes(sbi); 2880 if (err) 2881 goto free_meta; 2882 2883 /* recover fsynced data */ 2884 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 2885 /* 2886 * mount should be failed, when device has readonly mode, and 2887 * previous checkpoint was not done by clean system shutdown. 2888 */ 2889 if (bdev_read_only(sb->s_bdev) && 2890 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 2891 err = -EROFS; 2892 goto free_meta; 2893 } 2894 2895 if (need_fsck) 2896 set_sbi_flag(sbi, SBI_NEED_FSCK); 2897 2898 if (!retry) 2899 goto skip_recovery; 2900 2901 err = recover_fsync_data(sbi, false); 2902 if (err < 0) { 2903 need_fsck = true; 2904 f2fs_msg(sb, KERN_ERR, 2905 "Cannot recover all fsync data errno=%d", err); 2906 goto free_meta; 2907 } 2908 } else { 2909 err = recover_fsync_data(sbi, true); 2910 2911 if (!f2fs_readonly(sb) && err > 0) { 2912 err = -EINVAL; 2913 f2fs_msg(sb, KERN_ERR, 2914 "Need to recover fsync data"); 2915 goto free_meta; 2916 } 2917 } 2918 skip_recovery: 2919 /* recover_fsync_data() cleared this already */ 2920 clear_sbi_flag(sbi, SBI_POR_DOING); 2921 2922 /* 2923 * If filesystem is not mounted as read-only then 2924 * do start the gc_thread. 2925 */ 2926 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) { 2927 /* After POR, we can run background GC thread.*/ 2928 err = start_gc_thread(sbi); 2929 if (err) 2930 goto free_meta; 2931 } 2932 kfree(options); 2933 2934 /* recover broken superblock */ 2935 if (recovery) { 2936 err = f2fs_commit_super(sbi, true); 2937 f2fs_msg(sb, KERN_INFO, 2938 "Try to recover %dth superblock, ret: %d", 2939 sbi->valid_super_block ? 1 : 2, err); 2940 } 2941 2942 f2fs_join_shrinker(sbi); 2943 2944 f2fs_tuning_parameters(sbi); 2945 2946 f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx", 2947 cur_cp_version(F2FS_CKPT(sbi))); 2948 f2fs_update_time(sbi, CP_TIME); 2949 f2fs_update_time(sbi, REQ_TIME); 2950 return 0; 2951 2952 free_meta: 2953 #ifdef CONFIG_QUOTA 2954 if (f2fs_sb_has_quota_ino(sb) && !f2fs_readonly(sb)) 2955 f2fs_quota_off_umount(sbi->sb); 2956 #endif 2957 f2fs_sync_inode_meta(sbi); 2958 /* 2959 * Some dirty meta pages can be produced by recover_orphan_inodes() 2960 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 2961 * followed by write_checkpoint() through f2fs_write_node_pages(), which 2962 * falls into an infinite loop in sync_meta_pages(). 2963 */ 2964 truncate_inode_pages_final(META_MAPPING(sbi)); 2965 #ifdef CONFIG_QUOTA 2966 free_sysfs: 2967 #endif 2968 f2fs_unregister_sysfs(sbi); 2969 free_root_inode: 2970 dput(sb->s_root); 2971 sb->s_root = NULL; 2972 free_stats: 2973 f2fs_destroy_stats(sbi); 2974 free_node_inode: 2975 release_ino_entry(sbi, true); 2976 truncate_inode_pages_final(NODE_MAPPING(sbi)); 2977 iput(sbi->node_inode); 2978 free_nm: 2979 destroy_node_manager(sbi); 2980 free_sm: 2981 destroy_segment_manager(sbi); 2982 free_devices: 2983 destroy_device_list(sbi); 2984 kfree(sbi->ckpt); 2985 free_meta_inode: 2986 make_bad_inode(sbi->meta_inode); 2987 iput(sbi->meta_inode); 2988 free_io_dummy: 2989 mempool_destroy(sbi->write_io_dummy); 2990 free_percpu: 2991 destroy_percpu_info(sbi); 2992 free_bio_info: 2993 for (i = 0; i < NR_PAGE_TYPE; i++) 2994 kfree(sbi->write_io[i]); 2995 free_options: 2996 #ifdef CONFIG_QUOTA 2997 for (i = 0; i < MAXQUOTAS; i++) 2998 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 2999 #endif 3000 kfree(options); 3001 free_sb_buf: 3002 kfree(raw_super); 3003 free_sbi: 3004 if (sbi->s_chksum_driver) 3005 crypto_free_shash(sbi->s_chksum_driver); 3006 kfree(sbi); 3007 3008 /* give only one another chance */ 3009 if (retry) { 3010 retry = false; 3011 shrink_dcache_sb(sb); 3012 goto try_onemore; 3013 } 3014 return err; 3015 } 3016 3017 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 3018 const char *dev_name, void *data) 3019 { 3020 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 3021 } 3022 3023 static void kill_f2fs_super(struct super_block *sb) 3024 { 3025 if (sb->s_root) { 3026 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE); 3027 stop_gc_thread(F2FS_SB(sb)); 3028 stop_discard_thread(F2FS_SB(sb)); 3029 } 3030 kill_block_super(sb); 3031 } 3032 3033 static struct file_system_type f2fs_fs_type = { 3034 .owner = THIS_MODULE, 3035 .name = "f2fs", 3036 .mount = f2fs_mount, 3037 .kill_sb = kill_f2fs_super, 3038 .fs_flags = FS_REQUIRES_DEV, 3039 }; 3040 MODULE_ALIAS_FS("f2fs"); 3041 3042 static int __init init_inodecache(void) 3043 { 3044 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 3045 sizeof(struct f2fs_inode_info), 0, 3046 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 3047 if (!f2fs_inode_cachep) 3048 return -ENOMEM; 3049 return 0; 3050 } 3051 3052 static void destroy_inodecache(void) 3053 { 3054 /* 3055 * Make sure all delayed rcu free inodes are flushed before we 3056 * destroy cache. 3057 */ 3058 rcu_barrier(); 3059 kmem_cache_destroy(f2fs_inode_cachep); 3060 } 3061 3062 static int __init init_f2fs_fs(void) 3063 { 3064 int err; 3065 3066 f2fs_build_trace_ios(); 3067 3068 err = init_inodecache(); 3069 if (err) 3070 goto fail; 3071 err = create_node_manager_caches(); 3072 if (err) 3073 goto free_inodecache; 3074 err = create_segment_manager_caches(); 3075 if (err) 3076 goto free_node_manager_caches; 3077 err = create_checkpoint_caches(); 3078 if (err) 3079 goto free_segment_manager_caches; 3080 err = create_extent_cache(); 3081 if (err) 3082 goto free_checkpoint_caches; 3083 err = f2fs_init_sysfs(); 3084 if (err) 3085 goto free_extent_cache; 3086 err = register_shrinker(&f2fs_shrinker_info); 3087 if (err) 3088 goto free_sysfs; 3089 err = register_filesystem(&f2fs_fs_type); 3090 if (err) 3091 goto free_shrinker; 3092 err = f2fs_create_root_stats(); 3093 if (err) 3094 goto free_filesystem; 3095 return 0; 3096 3097 free_filesystem: 3098 unregister_filesystem(&f2fs_fs_type); 3099 free_shrinker: 3100 unregister_shrinker(&f2fs_shrinker_info); 3101 free_sysfs: 3102 f2fs_exit_sysfs(); 3103 free_extent_cache: 3104 destroy_extent_cache(); 3105 free_checkpoint_caches: 3106 destroy_checkpoint_caches(); 3107 free_segment_manager_caches: 3108 destroy_segment_manager_caches(); 3109 free_node_manager_caches: 3110 destroy_node_manager_caches(); 3111 free_inodecache: 3112 destroy_inodecache(); 3113 fail: 3114 return err; 3115 } 3116 3117 static void __exit exit_f2fs_fs(void) 3118 { 3119 f2fs_destroy_root_stats(); 3120 unregister_filesystem(&f2fs_fs_type); 3121 unregister_shrinker(&f2fs_shrinker_info); 3122 f2fs_exit_sysfs(); 3123 destroy_extent_cache(); 3124 destroy_checkpoint_caches(); 3125 destroy_segment_manager_caches(); 3126 destroy_node_manager_caches(); 3127 destroy_inodecache(); 3128 f2fs_destroy_trace_ios(); 3129 } 3130 3131 module_init(init_f2fs_fs) 3132 module_exit(exit_f2fs_fs) 3133 3134 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 3135 MODULE_DESCRIPTION("Flash Friendly File System"); 3136 MODULE_LICENSE("GPL"); 3137 3138