1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/statfs.h> 12 #include <linux/buffer_head.h> 13 #include <linux/backing-dev.h> 14 #include <linux/kthread.h> 15 #include <linux/parser.h> 16 #include <linux/mount.h> 17 #include <linux/seq_file.h> 18 #include <linux/proc_fs.h> 19 #include <linux/random.h> 20 #include <linux/exportfs.h> 21 #include <linux/blkdev.h> 22 #include <linux/quotaops.h> 23 #include <linux/f2fs_fs.h> 24 #include <linux/sysfs.h> 25 #include <linux/quota.h> 26 #include <linux/unicode.h> 27 #include <linux/part_stat.h> 28 #include <linux/zstd.h> 29 #include <linux/lz4.h> 30 31 #include "f2fs.h" 32 #include "node.h" 33 #include "segment.h" 34 #include "xattr.h" 35 #include "gc.h" 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/f2fs.h> 39 40 static struct kmem_cache *f2fs_inode_cachep; 41 42 #ifdef CONFIG_F2FS_FAULT_INJECTION 43 44 const char *f2fs_fault_name[FAULT_MAX] = { 45 [FAULT_KMALLOC] = "kmalloc", 46 [FAULT_KVMALLOC] = "kvmalloc", 47 [FAULT_PAGE_ALLOC] = "page alloc", 48 [FAULT_PAGE_GET] = "page get", 49 [FAULT_ALLOC_NID] = "alloc nid", 50 [FAULT_ORPHAN] = "orphan", 51 [FAULT_BLOCK] = "no more block", 52 [FAULT_DIR_DEPTH] = "too big dir depth", 53 [FAULT_EVICT_INODE] = "evict_inode fail", 54 [FAULT_TRUNCATE] = "truncate fail", 55 [FAULT_READ_IO] = "read IO error", 56 [FAULT_CHECKPOINT] = "checkpoint error", 57 [FAULT_DISCARD] = "discard error", 58 [FAULT_WRITE_IO] = "write IO error", 59 }; 60 61 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 62 unsigned int type) 63 { 64 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 65 66 if (rate) { 67 atomic_set(&ffi->inject_ops, 0); 68 ffi->inject_rate = rate; 69 } 70 71 if (type) 72 ffi->inject_type = type; 73 74 if (!rate && !type) 75 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 76 } 77 #endif 78 79 /* f2fs-wide shrinker description */ 80 static struct shrinker f2fs_shrinker_info = { 81 .scan_objects = f2fs_shrink_scan, 82 .count_objects = f2fs_shrink_count, 83 .seeks = DEFAULT_SEEKS, 84 }; 85 86 enum { 87 Opt_gc_background, 88 Opt_disable_roll_forward, 89 Opt_norecovery, 90 Opt_discard, 91 Opt_nodiscard, 92 Opt_noheap, 93 Opt_heap, 94 Opt_user_xattr, 95 Opt_nouser_xattr, 96 Opt_acl, 97 Opt_noacl, 98 Opt_active_logs, 99 Opt_disable_ext_identify, 100 Opt_inline_xattr, 101 Opt_noinline_xattr, 102 Opt_inline_xattr_size, 103 Opt_inline_data, 104 Opt_inline_dentry, 105 Opt_noinline_dentry, 106 Opt_flush_merge, 107 Opt_noflush_merge, 108 Opt_nobarrier, 109 Opt_fastboot, 110 Opt_extent_cache, 111 Opt_noextent_cache, 112 Opt_noinline_data, 113 Opt_data_flush, 114 Opt_reserve_root, 115 Opt_resgid, 116 Opt_resuid, 117 Opt_mode, 118 Opt_io_size_bits, 119 Opt_fault_injection, 120 Opt_fault_type, 121 Opt_lazytime, 122 Opt_nolazytime, 123 Opt_quota, 124 Opt_noquota, 125 Opt_usrquota, 126 Opt_grpquota, 127 Opt_prjquota, 128 Opt_usrjquota, 129 Opt_grpjquota, 130 Opt_prjjquota, 131 Opt_offusrjquota, 132 Opt_offgrpjquota, 133 Opt_offprjjquota, 134 Opt_jqfmt_vfsold, 135 Opt_jqfmt_vfsv0, 136 Opt_jqfmt_vfsv1, 137 Opt_whint, 138 Opt_alloc, 139 Opt_fsync, 140 Opt_test_dummy_encryption, 141 Opt_inlinecrypt, 142 Opt_checkpoint_disable, 143 Opt_checkpoint_disable_cap, 144 Opt_checkpoint_disable_cap_perc, 145 Opt_checkpoint_enable, 146 Opt_checkpoint_merge, 147 Opt_nocheckpoint_merge, 148 Opt_compress_algorithm, 149 Opt_compress_log_size, 150 Opt_compress_extension, 151 Opt_compress_chksum, 152 Opt_compress_mode, 153 Opt_atgc, 154 Opt_err, 155 }; 156 157 static match_table_t f2fs_tokens = { 158 {Opt_gc_background, "background_gc=%s"}, 159 {Opt_disable_roll_forward, "disable_roll_forward"}, 160 {Opt_norecovery, "norecovery"}, 161 {Opt_discard, "discard"}, 162 {Opt_nodiscard, "nodiscard"}, 163 {Opt_noheap, "no_heap"}, 164 {Opt_heap, "heap"}, 165 {Opt_user_xattr, "user_xattr"}, 166 {Opt_nouser_xattr, "nouser_xattr"}, 167 {Opt_acl, "acl"}, 168 {Opt_noacl, "noacl"}, 169 {Opt_active_logs, "active_logs=%u"}, 170 {Opt_disable_ext_identify, "disable_ext_identify"}, 171 {Opt_inline_xattr, "inline_xattr"}, 172 {Opt_noinline_xattr, "noinline_xattr"}, 173 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 174 {Opt_inline_data, "inline_data"}, 175 {Opt_inline_dentry, "inline_dentry"}, 176 {Opt_noinline_dentry, "noinline_dentry"}, 177 {Opt_flush_merge, "flush_merge"}, 178 {Opt_noflush_merge, "noflush_merge"}, 179 {Opt_nobarrier, "nobarrier"}, 180 {Opt_fastboot, "fastboot"}, 181 {Opt_extent_cache, "extent_cache"}, 182 {Opt_noextent_cache, "noextent_cache"}, 183 {Opt_noinline_data, "noinline_data"}, 184 {Opt_data_flush, "data_flush"}, 185 {Opt_reserve_root, "reserve_root=%u"}, 186 {Opt_resgid, "resgid=%u"}, 187 {Opt_resuid, "resuid=%u"}, 188 {Opt_mode, "mode=%s"}, 189 {Opt_io_size_bits, "io_bits=%u"}, 190 {Opt_fault_injection, "fault_injection=%u"}, 191 {Opt_fault_type, "fault_type=%u"}, 192 {Opt_lazytime, "lazytime"}, 193 {Opt_nolazytime, "nolazytime"}, 194 {Opt_quota, "quota"}, 195 {Opt_noquota, "noquota"}, 196 {Opt_usrquota, "usrquota"}, 197 {Opt_grpquota, "grpquota"}, 198 {Opt_prjquota, "prjquota"}, 199 {Opt_usrjquota, "usrjquota=%s"}, 200 {Opt_grpjquota, "grpjquota=%s"}, 201 {Opt_prjjquota, "prjjquota=%s"}, 202 {Opt_offusrjquota, "usrjquota="}, 203 {Opt_offgrpjquota, "grpjquota="}, 204 {Opt_offprjjquota, "prjjquota="}, 205 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 206 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 207 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 208 {Opt_whint, "whint_mode=%s"}, 209 {Opt_alloc, "alloc_mode=%s"}, 210 {Opt_fsync, "fsync_mode=%s"}, 211 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 212 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 213 {Opt_inlinecrypt, "inlinecrypt"}, 214 {Opt_checkpoint_disable, "checkpoint=disable"}, 215 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"}, 216 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"}, 217 {Opt_checkpoint_enable, "checkpoint=enable"}, 218 {Opt_checkpoint_merge, "checkpoint_merge"}, 219 {Opt_nocheckpoint_merge, "nocheckpoint_merge"}, 220 {Opt_compress_algorithm, "compress_algorithm=%s"}, 221 {Opt_compress_log_size, "compress_log_size=%u"}, 222 {Opt_compress_extension, "compress_extension=%s"}, 223 {Opt_compress_chksum, "compress_chksum"}, 224 {Opt_compress_mode, "compress_mode=%s"}, 225 {Opt_atgc, "atgc"}, 226 {Opt_err, NULL}, 227 }; 228 229 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...) 230 { 231 struct va_format vaf; 232 va_list args; 233 int level; 234 235 va_start(args, fmt); 236 237 level = printk_get_level(fmt); 238 vaf.fmt = printk_skip_level(fmt); 239 vaf.va = &args; 240 printk("%c%cF2FS-fs (%s): %pV\n", 241 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 242 243 va_end(args); 244 } 245 246 #ifdef CONFIG_UNICODE 247 static const struct f2fs_sb_encodings { 248 __u16 magic; 249 char *name; 250 char *version; 251 } f2fs_sb_encoding_map[] = { 252 {F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"}, 253 }; 254 255 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb, 256 const struct f2fs_sb_encodings **encoding, 257 __u16 *flags) 258 { 259 __u16 magic = le16_to_cpu(sb->s_encoding); 260 int i; 261 262 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++) 263 if (magic == f2fs_sb_encoding_map[i].magic) 264 break; 265 266 if (i >= ARRAY_SIZE(f2fs_sb_encoding_map)) 267 return -EINVAL; 268 269 *encoding = &f2fs_sb_encoding_map[i]; 270 *flags = le16_to_cpu(sb->s_encoding_flags); 271 272 return 0; 273 } 274 #endif 275 276 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 277 { 278 block_t limit = min((sbi->user_block_count << 1) / 1000, 279 sbi->user_block_count - sbi->reserved_blocks); 280 281 /* limit is 0.2% */ 282 if (test_opt(sbi, RESERVE_ROOT) && 283 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 284 F2FS_OPTION(sbi).root_reserved_blocks = limit; 285 f2fs_info(sbi, "Reduce reserved blocks for root = %u", 286 F2FS_OPTION(sbi).root_reserved_blocks); 287 } 288 if (!test_opt(sbi, RESERVE_ROOT) && 289 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 290 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 291 !gid_eq(F2FS_OPTION(sbi).s_resgid, 292 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 293 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 294 from_kuid_munged(&init_user_ns, 295 F2FS_OPTION(sbi).s_resuid), 296 from_kgid_munged(&init_user_ns, 297 F2FS_OPTION(sbi).s_resgid)); 298 } 299 300 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi) 301 { 302 if (!F2FS_OPTION(sbi).unusable_cap_perc) 303 return; 304 305 if (F2FS_OPTION(sbi).unusable_cap_perc == 100) 306 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count; 307 else 308 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) * 309 F2FS_OPTION(sbi).unusable_cap_perc; 310 311 f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%", 312 F2FS_OPTION(sbi).unusable_cap, 313 F2FS_OPTION(sbi).unusable_cap_perc); 314 } 315 316 static void init_once(void *foo) 317 { 318 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 319 320 inode_init_once(&fi->vfs_inode); 321 } 322 323 #ifdef CONFIG_QUOTA 324 static const char * const quotatypes[] = INITQFNAMES; 325 #define QTYPE2NAME(t) (quotatypes[t]) 326 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 327 substring_t *args) 328 { 329 struct f2fs_sb_info *sbi = F2FS_SB(sb); 330 char *qname; 331 int ret = -EINVAL; 332 333 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 334 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 335 return -EINVAL; 336 } 337 if (f2fs_sb_has_quota_ino(sbi)) { 338 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name"); 339 return 0; 340 } 341 342 qname = match_strdup(args); 343 if (!qname) { 344 f2fs_err(sbi, "Not enough memory for storing quotafile name"); 345 return -ENOMEM; 346 } 347 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 348 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 349 ret = 0; 350 else 351 f2fs_err(sbi, "%s quota file already specified", 352 QTYPE2NAME(qtype)); 353 goto errout; 354 } 355 if (strchr(qname, '/')) { 356 f2fs_err(sbi, "quotafile must be on filesystem root"); 357 goto errout; 358 } 359 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 360 set_opt(sbi, QUOTA); 361 return 0; 362 errout: 363 kfree(qname); 364 return ret; 365 } 366 367 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 368 { 369 struct f2fs_sb_info *sbi = F2FS_SB(sb); 370 371 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 372 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 373 return -EINVAL; 374 } 375 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 376 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 377 return 0; 378 } 379 380 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 381 { 382 /* 383 * We do the test below only for project quotas. 'usrquota' and 384 * 'grpquota' mount options are allowed even without quota feature 385 * to support legacy quotas in quota files. 386 */ 387 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 388 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement."); 389 return -1; 390 } 391 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 392 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 393 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 394 if (test_opt(sbi, USRQUOTA) && 395 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 396 clear_opt(sbi, USRQUOTA); 397 398 if (test_opt(sbi, GRPQUOTA) && 399 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 400 clear_opt(sbi, GRPQUOTA); 401 402 if (test_opt(sbi, PRJQUOTA) && 403 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 404 clear_opt(sbi, PRJQUOTA); 405 406 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 407 test_opt(sbi, PRJQUOTA)) { 408 f2fs_err(sbi, "old and new quota format mixing"); 409 return -1; 410 } 411 412 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 413 f2fs_err(sbi, "journaled quota format not specified"); 414 return -1; 415 } 416 } 417 418 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 419 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt"); 420 F2FS_OPTION(sbi).s_jquota_fmt = 0; 421 } 422 return 0; 423 } 424 #endif 425 426 static int f2fs_set_test_dummy_encryption(struct super_block *sb, 427 const char *opt, 428 const substring_t *arg, 429 bool is_remount) 430 { 431 struct f2fs_sb_info *sbi = F2FS_SB(sb); 432 #ifdef CONFIG_FS_ENCRYPTION 433 int err; 434 435 if (!f2fs_sb_has_encrypt(sbi)) { 436 f2fs_err(sbi, "Encrypt feature is off"); 437 return -EINVAL; 438 } 439 440 /* 441 * This mount option is just for testing, and it's not worthwhile to 442 * implement the extra complexity (e.g. RCU protection) that would be 443 * needed to allow it to be set or changed during remount. We do allow 444 * it to be specified during remount, but only if there is no change. 445 */ 446 if (is_remount && !F2FS_OPTION(sbi).dummy_enc_policy.policy) { 447 f2fs_warn(sbi, "Can't set test_dummy_encryption on remount"); 448 return -EINVAL; 449 } 450 err = fscrypt_set_test_dummy_encryption( 451 sb, arg->from, &F2FS_OPTION(sbi).dummy_enc_policy); 452 if (err) { 453 if (err == -EEXIST) 454 f2fs_warn(sbi, 455 "Can't change test_dummy_encryption on remount"); 456 else if (err == -EINVAL) 457 f2fs_warn(sbi, "Value of option \"%s\" is unrecognized", 458 opt); 459 else 460 f2fs_warn(sbi, "Error processing option \"%s\" [%d]", 461 opt, err); 462 return -EINVAL; 463 } 464 f2fs_warn(sbi, "Test dummy encryption mode enabled"); 465 #else 466 f2fs_warn(sbi, "Test dummy encryption mount option ignored"); 467 #endif 468 return 0; 469 } 470 471 #ifdef CONFIG_F2FS_FS_COMPRESSION 472 #ifdef CONFIG_F2FS_FS_LZ4 473 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str) 474 { 475 #ifdef CONFIG_F2FS_FS_LZ4HC 476 unsigned int level; 477 #endif 478 479 if (strlen(str) == 3) { 480 F2FS_OPTION(sbi).compress_level = 0; 481 return 0; 482 } 483 484 #ifdef CONFIG_F2FS_FS_LZ4HC 485 str += 3; 486 487 if (str[0] != ':') { 488 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 489 return -EINVAL; 490 } 491 if (kstrtouint(str + 1, 10, &level)) 492 return -EINVAL; 493 494 if (level < LZ4HC_MIN_CLEVEL || level > LZ4HC_MAX_CLEVEL) { 495 f2fs_info(sbi, "invalid lz4hc compress level: %d", level); 496 return -EINVAL; 497 } 498 499 F2FS_OPTION(sbi).compress_level = level; 500 return 0; 501 #else 502 f2fs_info(sbi, "kernel doesn't support lz4hc compression"); 503 return -EINVAL; 504 #endif 505 } 506 #endif 507 508 #ifdef CONFIG_F2FS_FS_ZSTD 509 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str) 510 { 511 unsigned int level; 512 int len = 4; 513 514 if (strlen(str) == len) { 515 F2FS_OPTION(sbi).compress_level = 0; 516 return 0; 517 } 518 519 str += len; 520 521 if (str[0] != ':') { 522 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 523 return -EINVAL; 524 } 525 if (kstrtouint(str + 1, 10, &level)) 526 return -EINVAL; 527 528 if (!level || level > ZSTD_maxCLevel()) { 529 f2fs_info(sbi, "invalid zstd compress level: %d", level); 530 return -EINVAL; 531 } 532 533 F2FS_OPTION(sbi).compress_level = level; 534 return 0; 535 } 536 #endif 537 #endif 538 539 static int parse_options(struct super_block *sb, char *options, bool is_remount) 540 { 541 struct f2fs_sb_info *sbi = F2FS_SB(sb); 542 substring_t args[MAX_OPT_ARGS]; 543 #ifdef CONFIG_F2FS_FS_COMPRESSION 544 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 545 int ext_cnt; 546 #endif 547 char *p, *name; 548 int arg = 0; 549 kuid_t uid; 550 kgid_t gid; 551 int ret; 552 553 if (!options) 554 return 0; 555 556 while ((p = strsep(&options, ",")) != NULL) { 557 int token; 558 if (!*p) 559 continue; 560 /* 561 * Initialize args struct so we know whether arg was 562 * found; some options take optional arguments. 563 */ 564 args[0].to = args[0].from = NULL; 565 token = match_token(p, f2fs_tokens, args); 566 567 switch (token) { 568 case Opt_gc_background: 569 name = match_strdup(&args[0]); 570 571 if (!name) 572 return -ENOMEM; 573 if (!strcmp(name, "on")) { 574 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 575 } else if (!strcmp(name, "off")) { 576 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF; 577 } else if (!strcmp(name, "sync")) { 578 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC; 579 } else { 580 kfree(name); 581 return -EINVAL; 582 } 583 kfree(name); 584 break; 585 case Opt_disable_roll_forward: 586 set_opt(sbi, DISABLE_ROLL_FORWARD); 587 break; 588 case Opt_norecovery: 589 /* this option mounts f2fs with ro */ 590 set_opt(sbi, NORECOVERY); 591 if (!f2fs_readonly(sb)) 592 return -EINVAL; 593 break; 594 case Opt_discard: 595 set_opt(sbi, DISCARD); 596 break; 597 case Opt_nodiscard: 598 if (f2fs_sb_has_blkzoned(sbi)) { 599 f2fs_warn(sbi, "discard is required for zoned block devices"); 600 return -EINVAL; 601 } 602 clear_opt(sbi, DISCARD); 603 break; 604 case Opt_noheap: 605 set_opt(sbi, NOHEAP); 606 break; 607 case Opt_heap: 608 clear_opt(sbi, NOHEAP); 609 break; 610 #ifdef CONFIG_F2FS_FS_XATTR 611 case Opt_user_xattr: 612 set_opt(sbi, XATTR_USER); 613 break; 614 case Opt_nouser_xattr: 615 clear_opt(sbi, XATTR_USER); 616 break; 617 case Opt_inline_xattr: 618 set_opt(sbi, INLINE_XATTR); 619 break; 620 case Opt_noinline_xattr: 621 clear_opt(sbi, INLINE_XATTR); 622 break; 623 case Opt_inline_xattr_size: 624 if (args->from && match_int(args, &arg)) 625 return -EINVAL; 626 set_opt(sbi, INLINE_XATTR_SIZE); 627 F2FS_OPTION(sbi).inline_xattr_size = arg; 628 break; 629 #else 630 case Opt_user_xattr: 631 f2fs_info(sbi, "user_xattr options not supported"); 632 break; 633 case Opt_nouser_xattr: 634 f2fs_info(sbi, "nouser_xattr options not supported"); 635 break; 636 case Opt_inline_xattr: 637 f2fs_info(sbi, "inline_xattr options not supported"); 638 break; 639 case Opt_noinline_xattr: 640 f2fs_info(sbi, "noinline_xattr options not supported"); 641 break; 642 #endif 643 #ifdef CONFIG_F2FS_FS_POSIX_ACL 644 case Opt_acl: 645 set_opt(sbi, POSIX_ACL); 646 break; 647 case Opt_noacl: 648 clear_opt(sbi, POSIX_ACL); 649 break; 650 #else 651 case Opt_acl: 652 f2fs_info(sbi, "acl options not supported"); 653 break; 654 case Opt_noacl: 655 f2fs_info(sbi, "noacl options not supported"); 656 break; 657 #endif 658 case Opt_active_logs: 659 if (args->from && match_int(args, &arg)) 660 return -EINVAL; 661 if (arg != 2 && arg != 4 && 662 arg != NR_CURSEG_PERSIST_TYPE) 663 return -EINVAL; 664 F2FS_OPTION(sbi).active_logs = arg; 665 break; 666 case Opt_disable_ext_identify: 667 set_opt(sbi, DISABLE_EXT_IDENTIFY); 668 break; 669 case Opt_inline_data: 670 set_opt(sbi, INLINE_DATA); 671 break; 672 case Opt_inline_dentry: 673 set_opt(sbi, INLINE_DENTRY); 674 break; 675 case Opt_noinline_dentry: 676 clear_opt(sbi, INLINE_DENTRY); 677 break; 678 case Opt_flush_merge: 679 set_opt(sbi, FLUSH_MERGE); 680 break; 681 case Opt_noflush_merge: 682 clear_opt(sbi, FLUSH_MERGE); 683 break; 684 case Opt_nobarrier: 685 set_opt(sbi, NOBARRIER); 686 break; 687 case Opt_fastboot: 688 set_opt(sbi, FASTBOOT); 689 break; 690 case Opt_extent_cache: 691 set_opt(sbi, EXTENT_CACHE); 692 break; 693 case Opt_noextent_cache: 694 clear_opt(sbi, EXTENT_CACHE); 695 break; 696 case Opt_noinline_data: 697 clear_opt(sbi, INLINE_DATA); 698 break; 699 case Opt_data_flush: 700 set_opt(sbi, DATA_FLUSH); 701 break; 702 case Opt_reserve_root: 703 if (args->from && match_int(args, &arg)) 704 return -EINVAL; 705 if (test_opt(sbi, RESERVE_ROOT)) { 706 f2fs_info(sbi, "Preserve previous reserve_root=%u", 707 F2FS_OPTION(sbi).root_reserved_blocks); 708 } else { 709 F2FS_OPTION(sbi).root_reserved_blocks = arg; 710 set_opt(sbi, RESERVE_ROOT); 711 } 712 break; 713 case Opt_resuid: 714 if (args->from && match_int(args, &arg)) 715 return -EINVAL; 716 uid = make_kuid(current_user_ns(), arg); 717 if (!uid_valid(uid)) { 718 f2fs_err(sbi, "Invalid uid value %d", arg); 719 return -EINVAL; 720 } 721 F2FS_OPTION(sbi).s_resuid = uid; 722 break; 723 case Opt_resgid: 724 if (args->from && match_int(args, &arg)) 725 return -EINVAL; 726 gid = make_kgid(current_user_ns(), arg); 727 if (!gid_valid(gid)) { 728 f2fs_err(sbi, "Invalid gid value %d", arg); 729 return -EINVAL; 730 } 731 F2FS_OPTION(sbi).s_resgid = gid; 732 break; 733 case Opt_mode: 734 name = match_strdup(&args[0]); 735 736 if (!name) 737 return -ENOMEM; 738 if (!strcmp(name, "adaptive")) { 739 if (f2fs_sb_has_blkzoned(sbi)) { 740 f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature"); 741 kfree(name); 742 return -EINVAL; 743 } 744 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 745 } else if (!strcmp(name, "lfs")) { 746 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 747 } else { 748 kfree(name); 749 return -EINVAL; 750 } 751 kfree(name); 752 break; 753 case Opt_io_size_bits: 754 if (args->from && match_int(args, &arg)) 755 return -EINVAL; 756 if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_VECS)) { 757 f2fs_warn(sbi, "Not support %d, larger than %d", 758 1 << arg, BIO_MAX_VECS); 759 return -EINVAL; 760 } 761 F2FS_OPTION(sbi).write_io_size_bits = arg; 762 break; 763 #ifdef CONFIG_F2FS_FAULT_INJECTION 764 case Opt_fault_injection: 765 if (args->from && match_int(args, &arg)) 766 return -EINVAL; 767 f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE); 768 set_opt(sbi, FAULT_INJECTION); 769 break; 770 771 case Opt_fault_type: 772 if (args->from && match_int(args, &arg)) 773 return -EINVAL; 774 f2fs_build_fault_attr(sbi, 0, arg); 775 set_opt(sbi, FAULT_INJECTION); 776 break; 777 #else 778 case Opt_fault_injection: 779 f2fs_info(sbi, "fault_injection options not supported"); 780 break; 781 782 case Opt_fault_type: 783 f2fs_info(sbi, "fault_type options not supported"); 784 break; 785 #endif 786 case Opt_lazytime: 787 sb->s_flags |= SB_LAZYTIME; 788 break; 789 case Opt_nolazytime: 790 sb->s_flags &= ~SB_LAZYTIME; 791 break; 792 #ifdef CONFIG_QUOTA 793 case Opt_quota: 794 case Opt_usrquota: 795 set_opt(sbi, USRQUOTA); 796 break; 797 case Opt_grpquota: 798 set_opt(sbi, GRPQUOTA); 799 break; 800 case Opt_prjquota: 801 set_opt(sbi, PRJQUOTA); 802 break; 803 case Opt_usrjquota: 804 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 805 if (ret) 806 return ret; 807 break; 808 case Opt_grpjquota: 809 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 810 if (ret) 811 return ret; 812 break; 813 case Opt_prjjquota: 814 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 815 if (ret) 816 return ret; 817 break; 818 case Opt_offusrjquota: 819 ret = f2fs_clear_qf_name(sb, USRQUOTA); 820 if (ret) 821 return ret; 822 break; 823 case Opt_offgrpjquota: 824 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 825 if (ret) 826 return ret; 827 break; 828 case Opt_offprjjquota: 829 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 830 if (ret) 831 return ret; 832 break; 833 case Opt_jqfmt_vfsold: 834 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 835 break; 836 case Opt_jqfmt_vfsv0: 837 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 838 break; 839 case Opt_jqfmt_vfsv1: 840 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 841 break; 842 case Opt_noquota: 843 clear_opt(sbi, QUOTA); 844 clear_opt(sbi, USRQUOTA); 845 clear_opt(sbi, GRPQUOTA); 846 clear_opt(sbi, PRJQUOTA); 847 break; 848 #else 849 case Opt_quota: 850 case Opt_usrquota: 851 case Opt_grpquota: 852 case Opt_prjquota: 853 case Opt_usrjquota: 854 case Opt_grpjquota: 855 case Opt_prjjquota: 856 case Opt_offusrjquota: 857 case Opt_offgrpjquota: 858 case Opt_offprjjquota: 859 case Opt_jqfmt_vfsold: 860 case Opt_jqfmt_vfsv0: 861 case Opt_jqfmt_vfsv1: 862 case Opt_noquota: 863 f2fs_info(sbi, "quota operations not supported"); 864 break; 865 #endif 866 case Opt_whint: 867 name = match_strdup(&args[0]); 868 if (!name) 869 return -ENOMEM; 870 if (!strcmp(name, "user-based")) { 871 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER; 872 } else if (!strcmp(name, "off")) { 873 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 874 } else if (!strcmp(name, "fs-based")) { 875 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS; 876 } else { 877 kfree(name); 878 return -EINVAL; 879 } 880 kfree(name); 881 break; 882 case Opt_alloc: 883 name = match_strdup(&args[0]); 884 if (!name) 885 return -ENOMEM; 886 887 if (!strcmp(name, "default")) { 888 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 889 } else if (!strcmp(name, "reuse")) { 890 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 891 } else { 892 kfree(name); 893 return -EINVAL; 894 } 895 kfree(name); 896 break; 897 case Opt_fsync: 898 name = match_strdup(&args[0]); 899 if (!name) 900 return -ENOMEM; 901 if (!strcmp(name, "posix")) { 902 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 903 } else if (!strcmp(name, "strict")) { 904 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 905 } else if (!strcmp(name, "nobarrier")) { 906 F2FS_OPTION(sbi).fsync_mode = 907 FSYNC_MODE_NOBARRIER; 908 } else { 909 kfree(name); 910 return -EINVAL; 911 } 912 kfree(name); 913 break; 914 case Opt_test_dummy_encryption: 915 ret = f2fs_set_test_dummy_encryption(sb, p, &args[0], 916 is_remount); 917 if (ret) 918 return ret; 919 break; 920 case Opt_inlinecrypt: 921 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 922 sb->s_flags |= SB_INLINECRYPT; 923 #else 924 f2fs_info(sbi, "inline encryption not supported"); 925 #endif 926 break; 927 case Opt_checkpoint_disable_cap_perc: 928 if (args->from && match_int(args, &arg)) 929 return -EINVAL; 930 if (arg < 0 || arg > 100) 931 return -EINVAL; 932 F2FS_OPTION(sbi).unusable_cap_perc = arg; 933 set_opt(sbi, DISABLE_CHECKPOINT); 934 break; 935 case Opt_checkpoint_disable_cap: 936 if (args->from && match_int(args, &arg)) 937 return -EINVAL; 938 F2FS_OPTION(sbi).unusable_cap = arg; 939 set_opt(sbi, DISABLE_CHECKPOINT); 940 break; 941 case Opt_checkpoint_disable: 942 set_opt(sbi, DISABLE_CHECKPOINT); 943 break; 944 case Opt_checkpoint_enable: 945 clear_opt(sbi, DISABLE_CHECKPOINT); 946 break; 947 case Opt_checkpoint_merge: 948 set_opt(sbi, MERGE_CHECKPOINT); 949 break; 950 case Opt_nocheckpoint_merge: 951 clear_opt(sbi, MERGE_CHECKPOINT); 952 break; 953 #ifdef CONFIG_F2FS_FS_COMPRESSION 954 case Opt_compress_algorithm: 955 if (!f2fs_sb_has_compression(sbi)) { 956 f2fs_info(sbi, "Image doesn't support compression"); 957 break; 958 } 959 name = match_strdup(&args[0]); 960 if (!name) 961 return -ENOMEM; 962 if (!strcmp(name, "lzo")) { 963 #ifdef CONFIG_F2FS_FS_LZO 964 F2FS_OPTION(sbi).compress_level = 0; 965 F2FS_OPTION(sbi).compress_algorithm = 966 COMPRESS_LZO; 967 #else 968 f2fs_info(sbi, "kernel doesn't support lzo compression"); 969 #endif 970 } else if (!strncmp(name, "lz4", 3)) { 971 #ifdef CONFIG_F2FS_FS_LZ4 972 ret = f2fs_set_lz4hc_level(sbi, name); 973 if (ret) { 974 kfree(name); 975 return -EINVAL; 976 } 977 F2FS_OPTION(sbi).compress_algorithm = 978 COMPRESS_LZ4; 979 #else 980 f2fs_info(sbi, "kernel doesn't support lz4 compression"); 981 #endif 982 } else if (!strncmp(name, "zstd", 4)) { 983 #ifdef CONFIG_F2FS_FS_ZSTD 984 ret = f2fs_set_zstd_level(sbi, name); 985 if (ret) { 986 kfree(name); 987 return -EINVAL; 988 } 989 F2FS_OPTION(sbi).compress_algorithm = 990 COMPRESS_ZSTD; 991 #else 992 f2fs_info(sbi, "kernel doesn't support zstd compression"); 993 #endif 994 } else if (!strcmp(name, "lzo-rle")) { 995 #ifdef CONFIG_F2FS_FS_LZORLE 996 F2FS_OPTION(sbi).compress_level = 0; 997 F2FS_OPTION(sbi).compress_algorithm = 998 COMPRESS_LZORLE; 999 #else 1000 f2fs_info(sbi, "kernel doesn't support lzorle compression"); 1001 #endif 1002 } else { 1003 kfree(name); 1004 return -EINVAL; 1005 } 1006 kfree(name); 1007 break; 1008 case Opt_compress_log_size: 1009 if (!f2fs_sb_has_compression(sbi)) { 1010 f2fs_info(sbi, "Image doesn't support compression"); 1011 break; 1012 } 1013 if (args->from && match_int(args, &arg)) 1014 return -EINVAL; 1015 if (arg < MIN_COMPRESS_LOG_SIZE || 1016 arg > MAX_COMPRESS_LOG_SIZE) { 1017 f2fs_err(sbi, 1018 "Compress cluster log size is out of range"); 1019 return -EINVAL; 1020 } 1021 F2FS_OPTION(sbi).compress_log_size = arg; 1022 break; 1023 case Opt_compress_extension: 1024 if (!f2fs_sb_has_compression(sbi)) { 1025 f2fs_info(sbi, "Image doesn't support compression"); 1026 break; 1027 } 1028 name = match_strdup(&args[0]); 1029 if (!name) 1030 return -ENOMEM; 1031 1032 ext = F2FS_OPTION(sbi).extensions; 1033 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 1034 1035 if (strlen(name) >= F2FS_EXTENSION_LEN || 1036 ext_cnt >= COMPRESS_EXT_NUM) { 1037 f2fs_err(sbi, 1038 "invalid extension length/number"); 1039 kfree(name); 1040 return -EINVAL; 1041 } 1042 1043 strcpy(ext[ext_cnt], name); 1044 F2FS_OPTION(sbi).compress_ext_cnt++; 1045 kfree(name); 1046 break; 1047 case Opt_compress_chksum: 1048 F2FS_OPTION(sbi).compress_chksum = true; 1049 break; 1050 case Opt_compress_mode: 1051 name = match_strdup(&args[0]); 1052 if (!name) 1053 return -ENOMEM; 1054 if (!strcmp(name, "fs")) { 1055 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 1056 } else if (!strcmp(name, "user")) { 1057 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER; 1058 } else { 1059 kfree(name); 1060 return -EINVAL; 1061 } 1062 kfree(name); 1063 break; 1064 #else 1065 case Opt_compress_algorithm: 1066 case Opt_compress_log_size: 1067 case Opt_compress_extension: 1068 case Opt_compress_chksum: 1069 case Opt_compress_mode: 1070 f2fs_info(sbi, "compression options not supported"); 1071 break; 1072 #endif 1073 case Opt_atgc: 1074 set_opt(sbi, ATGC); 1075 break; 1076 default: 1077 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value", 1078 p); 1079 return -EINVAL; 1080 } 1081 } 1082 #ifdef CONFIG_QUOTA 1083 if (f2fs_check_quota_options(sbi)) 1084 return -EINVAL; 1085 #else 1086 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 1087 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1088 return -EINVAL; 1089 } 1090 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 1091 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1092 return -EINVAL; 1093 } 1094 #endif 1095 #ifndef CONFIG_UNICODE 1096 if (f2fs_sb_has_casefold(sbi)) { 1097 f2fs_err(sbi, 1098 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 1099 return -EINVAL; 1100 } 1101 #endif 1102 /* 1103 * The BLKZONED feature indicates that the drive was formatted with 1104 * zone alignment optimization. This is optional for host-aware 1105 * devices, but mandatory for host-managed zoned block devices. 1106 */ 1107 #ifndef CONFIG_BLK_DEV_ZONED 1108 if (f2fs_sb_has_blkzoned(sbi)) { 1109 f2fs_err(sbi, "Zoned block device support is not enabled"); 1110 return -EINVAL; 1111 } 1112 #endif 1113 1114 if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) { 1115 f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO", 1116 F2FS_IO_SIZE_KB(sbi)); 1117 return -EINVAL; 1118 } 1119 1120 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 1121 int min_size, max_size; 1122 1123 if (!f2fs_sb_has_extra_attr(sbi) || 1124 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 1125 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off"); 1126 return -EINVAL; 1127 } 1128 if (!test_opt(sbi, INLINE_XATTR)) { 1129 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option"); 1130 return -EINVAL; 1131 } 1132 1133 min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32); 1134 max_size = MAX_INLINE_XATTR_SIZE; 1135 1136 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 1137 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 1138 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d", 1139 min_size, max_size); 1140 return -EINVAL; 1141 } 1142 } 1143 1144 if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) { 1145 f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n"); 1146 return -EINVAL; 1147 } 1148 1149 /* Not pass down write hints if the number of active logs is lesser 1150 * than NR_CURSEG_PERSIST_TYPE. 1151 */ 1152 if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE) 1153 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 1154 return 0; 1155 } 1156 1157 static struct inode *f2fs_alloc_inode(struct super_block *sb) 1158 { 1159 struct f2fs_inode_info *fi; 1160 1161 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 1162 if (!fi) 1163 return NULL; 1164 1165 init_once((void *) fi); 1166 1167 /* Initialize f2fs-specific inode info */ 1168 atomic_set(&fi->dirty_pages, 0); 1169 atomic_set(&fi->i_compr_blocks, 0); 1170 init_rwsem(&fi->i_sem); 1171 spin_lock_init(&fi->i_size_lock); 1172 INIT_LIST_HEAD(&fi->dirty_list); 1173 INIT_LIST_HEAD(&fi->gdirty_list); 1174 INIT_LIST_HEAD(&fi->inmem_ilist); 1175 INIT_LIST_HEAD(&fi->inmem_pages); 1176 mutex_init(&fi->inmem_lock); 1177 init_rwsem(&fi->i_gc_rwsem[READ]); 1178 init_rwsem(&fi->i_gc_rwsem[WRITE]); 1179 init_rwsem(&fi->i_mmap_sem); 1180 init_rwsem(&fi->i_xattr_sem); 1181 1182 /* Will be used by directory only */ 1183 fi->i_dir_level = F2FS_SB(sb)->dir_level; 1184 1185 return &fi->vfs_inode; 1186 } 1187 1188 static int f2fs_drop_inode(struct inode *inode) 1189 { 1190 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1191 int ret; 1192 1193 /* 1194 * during filesystem shutdown, if checkpoint is disabled, 1195 * drop useless meta/node dirty pages. 1196 */ 1197 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1198 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1199 inode->i_ino == F2FS_META_INO(sbi)) { 1200 trace_f2fs_drop_inode(inode, 1); 1201 return 1; 1202 } 1203 } 1204 1205 /* 1206 * This is to avoid a deadlock condition like below. 1207 * writeback_single_inode(inode) 1208 * - f2fs_write_data_page 1209 * - f2fs_gc -> iput -> evict 1210 * - inode_wait_for_writeback(inode) 1211 */ 1212 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 1213 if (!inode->i_nlink && !is_bad_inode(inode)) { 1214 /* to avoid evict_inode call simultaneously */ 1215 atomic_inc(&inode->i_count); 1216 spin_unlock(&inode->i_lock); 1217 1218 /* some remained atomic pages should discarded */ 1219 if (f2fs_is_atomic_file(inode)) 1220 f2fs_drop_inmem_pages(inode); 1221 1222 /* should remain fi->extent_tree for writepage */ 1223 f2fs_destroy_extent_node(inode); 1224 1225 sb_start_intwrite(inode->i_sb); 1226 f2fs_i_size_write(inode, 0); 1227 1228 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 1229 inode, NULL, 0, DATA); 1230 truncate_inode_pages_final(inode->i_mapping); 1231 1232 if (F2FS_HAS_BLOCKS(inode)) 1233 f2fs_truncate(inode); 1234 1235 sb_end_intwrite(inode->i_sb); 1236 1237 spin_lock(&inode->i_lock); 1238 atomic_dec(&inode->i_count); 1239 } 1240 trace_f2fs_drop_inode(inode, 0); 1241 return 0; 1242 } 1243 ret = generic_drop_inode(inode); 1244 if (!ret) 1245 ret = fscrypt_drop_inode(inode); 1246 trace_f2fs_drop_inode(inode, ret); 1247 return ret; 1248 } 1249 1250 int f2fs_inode_dirtied(struct inode *inode, bool sync) 1251 { 1252 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1253 int ret = 0; 1254 1255 spin_lock(&sbi->inode_lock[DIRTY_META]); 1256 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1257 ret = 1; 1258 } else { 1259 set_inode_flag(inode, FI_DIRTY_INODE); 1260 stat_inc_dirty_inode(sbi, DIRTY_META); 1261 } 1262 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 1263 list_add_tail(&F2FS_I(inode)->gdirty_list, 1264 &sbi->inode_list[DIRTY_META]); 1265 inc_page_count(sbi, F2FS_DIRTY_IMETA); 1266 } 1267 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1268 return ret; 1269 } 1270 1271 void f2fs_inode_synced(struct inode *inode) 1272 { 1273 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1274 1275 spin_lock(&sbi->inode_lock[DIRTY_META]); 1276 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1277 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1278 return; 1279 } 1280 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 1281 list_del_init(&F2FS_I(inode)->gdirty_list); 1282 dec_page_count(sbi, F2FS_DIRTY_IMETA); 1283 } 1284 clear_inode_flag(inode, FI_DIRTY_INODE); 1285 clear_inode_flag(inode, FI_AUTO_RECOVER); 1286 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 1287 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1288 } 1289 1290 /* 1291 * f2fs_dirty_inode() is called from __mark_inode_dirty() 1292 * 1293 * We should call set_dirty_inode to write the dirty inode through write_inode. 1294 */ 1295 static void f2fs_dirty_inode(struct inode *inode, int flags) 1296 { 1297 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1298 1299 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1300 inode->i_ino == F2FS_META_INO(sbi)) 1301 return; 1302 1303 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1304 clear_inode_flag(inode, FI_AUTO_RECOVER); 1305 1306 f2fs_inode_dirtied(inode, false); 1307 } 1308 1309 static void f2fs_free_inode(struct inode *inode) 1310 { 1311 fscrypt_free_inode(inode); 1312 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1313 } 1314 1315 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1316 { 1317 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1318 percpu_counter_destroy(&sbi->total_valid_inode_count); 1319 } 1320 1321 static void destroy_device_list(struct f2fs_sb_info *sbi) 1322 { 1323 int i; 1324 1325 for (i = 0; i < sbi->s_ndevs; i++) { 1326 blkdev_put(FDEV(i).bdev, FMODE_EXCL); 1327 #ifdef CONFIG_BLK_DEV_ZONED 1328 kvfree(FDEV(i).blkz_seq); 1329 kfree(FDEV(i).zone_capacity_blocks); 1330 #endif 1331 } 1332 kvfree(sbi->devs); 1333 } 1334 1335 static void f2fs_put_super(struct super_block *sb) 1336 { 1337 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1338 int i; 1339 bool dropped; 1340 1341 /* unregister procfs/sysfs entries in advance to avoid race case */ 1342 f2fs_unregister_sysfs(sbi); 1343 1344 f2fs_quota_off_umount(sb); 1345 1346 /* prevent remaining shrinker jobs */ 1347 mutex_lock(&sbi->umount_mutex); 1348 1349 /* 1350 * flush all issued checkpoints and stop checkpoint issue thread. 1351 * after then, all checkpoints should be done by each process context. 1352 */ 1353 f2fs_stop_ckpt_thread(sbi); 1354 1355 /* 1356 * We don't need to do checkpoint when superblock is clean. 1357 * But, the previous checkpoint was not done by umount, it needs to do 1358 * clean checkpoint again. 1359 */ 1360 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1361 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1362 struct cp_control cpc = { 1363 .reason = CP_UMOUNT, 1364 }; 1365 f2fs_write_checkpoint(sbi, &cpc); 1366 } 1367 1368 /* be sure to wait for any on-going discard commands */ 1369 dropped = f2fs_issue_discard_timeout(sbi); 1370 1371 if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) && 1372 !sbi->discard_blks && !dropped) { 1373 struct cp_control cpc = { 1374 .reason = CP_UMOUNT | CP_TRIMMED, 1375 }; 1376 f2fs_write_checkpoint(sbi, &cpc); 1377 } 1378 1379 /* 1380 * normally superblock is clean, so we need to release this. 1381 * In addition, EIO will skip do checkpoint, we need this as well. 1382 */ 1383 f2fs_release_ino_entry(sbi, true); 1384 1385 f2fs_leave_shrinker(sbi); 1386 mutex_unlock(&sbi->umount_mutex); 1387 1388 /* our cp_error case, we can wait for any writeback page */ 1389 f2fs_flush_merged_writes(sbi); 1390 1391 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1392 1393 f2fs_bug_on(sbi, sbi->fsync_node_num); 1394 1395 iput(sbi->node_inode); 1396 sbi->node_inode = NULL; 1397 1398 iput(sbi->meta_inode); 1399 sbi->meta_inode = NULL; 1400 1401 /* 1402 * iput() can update stat information, if f2fs_write_checkpoint() 1403 * above failed with error. 1404 */ 1405 f2fs_destroy_stats(sbi); 1406 1407 /* destroy f2fs internal modules */ 1408 f2fs_destroy_node_manager(sbi); 1409 f2fs_destroy_segment_manager(sbi); 1410 1411 f2fs_destroy_post_read_wq(sbi); 1412 1413 kvfree(sbi->ckpt); 1414 1415 sb->s_fs_info = NULL; 1416 if (sbi->s_chksum_driver) 1417 crypto_free_shash(sbi->s_chksum_driver); 1418 kfree(sbi->raw_super); 1419 1420 destroy_device_list(sbi); 1421 f2fs_destroy_page_array_cache(sbi); 1422 f2fs_destroy_xattr_caches(sbi); 1423 mempool_destroy(sbi->write_io_dummy); 1424 #ifdef CONFIG_QUOTA 1425 for (i = 0; i < MAXQUOTAS; i++) 1426 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 1427 #endif 1428 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 1429 destroy_percpu_info(sbi); 1430 for (i = 0; i < NR_PAGE_TYPE; i++) 1431 kvfree(sbi->write_io[i]); 1432 #ifdef CONFIG_UNICODE 1433 utf8_unload(sb->s_encoding); 1434 #endif 1435 kfree(sbi); 1436 } 1437 1438 int f2fs_sync_fs(struct super_block *sb, int sync) 1439 { 1440 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1441 int err = 0; 1442 1443 if (unlikely(f2fs_cp_error(sbi))) 1444 return 0; 1445 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1446 return 0; 1447 1448 trace_f2fs_sync_fs(sb, sync); 1449 1450 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1451 return -EAGAIN; 1452 1453 if (sync) 1454 err = f2fs_issue_checkpoint(sbi); 1455 1456 return err; 1457 } 1458 1459 static int f2fs_freeze(struct super_block *sb) 1460 { 1461 if (f2fs_readonly(sb)) 1462 return 0; 1463 1464 /* IO error happened before */ 1465 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1466 return -EIO; 1467 1468 /* must be clean, since sync_filesystem() was already called */ 1469 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1470 return -EINVAL; 1471 1472 /* ensure no checkpoint required */ 1473 if (!llist_empty(&F2FS_SB(sb)->cprc_info.issue_list)) 1474 return -EINVAL; 1475 return 0; 1476 } 1477 1478 static int f2fs_unfreeze(struct super_block *sb) 1479 { 1480 return 0; 1481 } 1482 1483 #ifdef CONFIG_QUOTA 1484 static int f2fs_statfs_project(struct super_block *sb, 1485 kprojid_t projid, struct kstatfs *buf) 1486 { 1487 struct kqid qid; 1488 struct dquot *dquot; 1489 u64 limit; 1490 u64 curblock; 1491 1492 qid = make_kqid_projid(projid); 1493 dquot = dqget(sb, qid); 1494 if (IS_ERR(dquot)) 1495 return PTR_ERR(dquot); 1496 spin_lock(&dquot->dq_dqb_lock); 1497 1498 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 1499 dquot->dq_dqb.dqb_bhardlimit); 1500 if (limit) 1501 limit >>= sb->s_blocksize_bits; 1502 1503 if (limit && buf->f_blocks > limit) { 1504 curblock = (dquot->dq_dqb.dqb_curspace + 1505 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 1506 buf->f_blocks = limit; 1507 buf->f_bfree = buf->f_bavail = 1508 (buf->f_blocks > curblock) ? 1509 (buf->f_blocks - curblock) : 0; 1510 } 1511 1512 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 1513 dquot->dq_dqb.dqb_ihardlimit); 1514 1515 if (limit && buf->f_files > limit) { 1516 buf->f_files = limit; 1517 buf->f_ffree = 1518 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1519 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1520 } 1521 1522 spin_unlock(&dquot->dq_dqb_lock); 1523 dqput(dquot); 1524 return 0; 1525 } 1526 #endif 1527 1528 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1529 { 1530 struct super_block *sb = dentry->d_sb; 1531 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1532 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1533 block_t total_count, user_block_count, start_count; 1534 u64 avail_node_count; 1535 1536 total_count = le64_to_cpu(sbi->raw_super->block_count); 1537 user_block_count = sbi->user_block_count; 1538 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1539 buf->f_type = F2FS_SUPER_MAGIC; 1540 buf->f_bsize = sbi->blocksize; 1541 1542 buf->f_blocks = total_count - start_count; 1543 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1544 sbi->current_reserved_blocks; 1545 1546 spin_lock(&sbi->stat_lock); 1547 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1548 buf->f_bfree = 0; 1549 else 1550 buf->f_bfree -= sbi->unusable_block_count; 1551 spin_unlock(&sbi->stat_lock); 1552 1553 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1554 buf->f_bavail = buf->f_bfree - 1555 F2FS_OPTION(sbi).root_reserved_blocks; 1556 else 1557 buf->f_bavail = 0; 1558 1559 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 1560 1561 if (avail_node_count > user_block_count) { 1562 buf->f_files = user_block_count; 1563 buf->f_ffree = buf->f_bavail; 1564 } else { 1565 buf->f_files = avail_node_count; 1566 buf->f_ffree = min(avail_node_count - valid_node_count(sbi), 1567 buf->f_bavail); 1568 } 1569 1570 buf->f_namelen = F2FS_NAME_LEN; 1571 buf->f_fsid = u64_to_fsid(id); 1572 1573 #ifdef CONFIG_QUOTA 1574 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1575 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1576 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1577 } 1578 #endif 1579 return 0; 1580 } 1581 1582 static inline void f2fs_show_quota_options(struct seq_file *seq, 1583 struct super_block *sb) 1584 { 1585 #ifdef CONFIG_QUOTA 1586 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1587 1588 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1589 char *fmtname = ""; 1590 1591 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1592 case QFMT_VFS_OLD: 1593 fmtname = "vfsold"; 1594 break; 1595 case QFMT_VFS_V0: 1596 fmtname = "vfsv0"; 1597 break; 1598 case QFMT_VFS_V1: 1599 fmtname = "vfsv1"; 1600 break; 1601 } 1602 seq_printf(seq, ",jqfmt=%s", fmtname); 1603 } 1604 1605 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1606 seq_show_option(seq, "usrjquota", 1607 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1608 1609 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1610 seq_show_option(seq, "grpjquota", 1611 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1612 1613 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1614 seq_show_option(seq, "prjjquota", 1615 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1616 #endif 1617 } 1618 1619 static inline void f2fs_show_compress_options(struct seq_file *seq, 1620 struct super_block *sb) 1621 { 1622 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1623 char *algtype = ""; 1624 int i; 1625 1626 if (!f2fs_sb_has_compression(sbi)) 1627 return; 1628 1629 switch (F2FS_OPTION(sbi).compress_algorithm) { 1630 case COMPRESS_LZO: 1631 algtype = "lzo"; 1632 break; 1633 case COMPRESS_LZ4: 1634 algtype = "lz4"; 1635 break; 1636 case COMPRESS_ZSTD: 1637 algtype = "zstd"; 1638 break; 1639 case COMPRESS_LZORLE: 1640 algtype = "lzo-rle"; 1641 break; 1642 } 1643 seq_printf(seq, ",compress_algorithm=%s", algtype); 1644 1645 if (F2FS_OPTION(sbi).compress_level) 1646 seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level); 1647 1648 seq_printf(seq, ",compress_log_size=%u", 1649 F2FS_OPTION(sbi).compress_log_size); 1650 1651 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) { 1652 seq_printf(seq, ",compress_extension=%s", 1653 F2FS_OPTION(sbi).extensions[i]); 1654 } 1655 1656 if (F2FS_OPTION(sbi).compress_chksum) 1657 seq_puts(seq, ",compress_chksum"); 1658 1659 if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS) 1660 seq_printf(seq, ",compress_mode=%s", "fs"); 1661 else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER) 1662 seq_printf(seq, ",compress_mode=%s", "user"); 1663 } 1664 1665 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1666 { 1667 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1668 1669 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC) 1670 seq_printf(seq, ",background_gc=%s", "sync"); 1671 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON) 1672 seq_printf(seq, ",background_gc=%s", "on"); 1673 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) 1674 seq_printf(seq, ",background_gc=%s", "off"); 1675 1676 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1677 seq_puts(seq, ",disable_roll_forward"); 1678 if (test_opt(sbi, NORECOVERY)) 1679 seq_puts(seq, ",norecovery"); 1680 if (test_opt(sbi, DISCARD)) 1681 seq_puts(seq, ",discard"); 1682 else 1683 seq_puts(seq, ",nodiscard"); 1684 if (test_opt(sbi, NOHEAP)) 1685 seq_puts(seq, ",no_heap"); 1686 else 1687 seq_puts(seq, ",heap"); 1688 #ifdef CONFIG_F2FS_FS_XATTR 1689 if (test_opt(sbi, XATTR_USER)) 1690 seq_puts(seq, ",user_xattr"); 1691 else 1692 seq_puts(seq, ",nouser_xattr"); 1693 if (test_opt(sbi, INLINE_XATTR)) 1694 seq_puts(seq, ",inline_xattr"); 1695 else 1696 seq_puts(seq, ",noinline_xattr"); 1697 if (test_opt(sbi, INLINE_XATTR_SIZE)) 1698 seq_printf(seq, ",inline_xattr_size=%u", 1699 F2FS_OPTION(sbi).inline_xattr_size); 1700 #endif 1701 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1702 if (test_opt(sbi, POSIX_ACL)) 1703 seq_puts(seq, ",acl"); 1704 else 1705 seq_puts(seq, ",noacl"); 1706 #endif 1707 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 1708 seq_puts(seq, ",disable_ext_identify"); 1709 if (test_opt(sbi, INLINE_DATA)) 1710 seq_puts(seq, ",inline_data"); 1711 else 1712 seq_puts(seq, ",noinline_data"); 1713 if (test_opt(sbi, INLINE_DENTRY)) 1714 seq_puts(seq, ",inline_dentry"); 1715 else 1716 seq_puts(seq, ",noinline_dentry"); 1717 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 1718 seq_puts(seq, ",flush_merge"); 1719 if (test_opt(sbi, NOBARRIER)) 1720 seq_puts(seq, ",nobarrier"); 1721 if (test_opt(sbi, FASTBOOT)) 1722 seq_puts(seq, ",fastboot"); 1723 if (test_opt(sbi, EXTENT_CACHE)) 1724 seq_puts(seq, ",extent_cache"); 1725 else 1726 seq_puts(seq, ",noextent_cache"); 1727 if (test_opt(sbi, DATA_FLUSH)) 1728 seq_puts(seq, ",data_flush"); 1729 1730 seq_puts(seq, ",mode="); 1731 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE) 1732 seq_puts(seq, "adaptive"); 1733 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS) 1734 seq_puts(seq, "lfs"); 1735 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 1736 if (test_opt(sbi, RESERVE_ROOT)) 1737 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 1738 F2FS_OPTION(sbi).root_reserved_blocks, 1739 from_kuid_munged(&init_user_ns, 1740 F2FS_OPTION(sbi).s_resuid), 1741 from_kgid_munged(&init_user_ns, 1742 F2FS_OPTION(sbi).s_resgid)); 1743 if (F2FS_IO_SIZE_BITS(sbi)) 1744 seq_printf(seq, ",io_bits=%u", 1745 F2FS_OPTION(sbi).write_io_size_bits); 1746 #ifdef CONFIG_F2FS_FAULT_INJECTION 1747 if (test_opt(sbi, FAULT_INJECTION)) { 1748 seq_printf(seq, ",fault_injection=%u", 1749 F2FS_OPTION(sbi).fault_info.inject_rate); 1750 seq_printf(seq, ",fault_type=%u", 1751 F2FS_OPTION(sbi).fault_info.inject_type); 1752 } 1753 #endif 1754 #ifdef CONFIG_QUOTA 1755 if (test_opt(sbi, QUOTA)) 1756 seq_puts(seq, ",quota"); 1757 if (test_opt(sbi, USRQUOTA)) 1758 seq_puts(seq, ",usrquota"); 1759 if (test_opt(sbi, GRPQUOTA)) 1760 seq_puts(seq, ",grpquota"); 1761 if (test_opt(sbi, PRJQUOTA)) 1762 seq_puts(seq, ",prjquota"); 1763 #endif 1764 f2fs_show_quota_options(seq, sbi->sb); 1765 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) 1766 seq_printf(seq, ",whint_mode=%s", "user-based"); 1767 else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) 1768 seq_printf(seq, ",whint_mode=%s", "fs-based"); 1769 1770 fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb); 1771 1772 if (sbi->sb->s_flags & SB_INLINECRYPT) 1773 seq_puts(seq, ",inlinecrypt"); 1774 1775 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 1776 seq_printf(seq, ",alloc_mode=%s", "default"); 1777 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 1778 seq_printf(seq, ",alloc_mode=%s", "reuse"); 1779 1780 if (test_opt(sbi, DISABLE_CHECKPOINT)) 1781 seq_printf(seq, ",checkpoint=disable:%u", 1782 F2FS_OPTION(sbi).unusable_cap); 1783 if (test_opt(sbi, MERGE_CHECKPOINT)) 1784 seq_puts(seq, ",checkpoint_merge"); 1785 else 1786 seq_puts(seq, ",nocheckpoint_merge"); 1787 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 1788 seq_printf(seq, ",fsync_mode=%s", "posix"); 1789 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 1790 seq_printf(seq, ",fsync_mode=%s", "strict"); 1791 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 1792 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 1793 1794 #ifdef CONFIG_F2FS_FS_COMPRESSION 1795 f2fs_show_compress_options(seq, sbi->sb); 1796 #endif 1797 1798 if (test_opt(sbi, ATGC)) 1799 seq_puts(seq, ",atgc"); 1800 return 0; 1801 } 1802 1803 static void default_options(struct f2fs_sb_info *sbi) 1804 { 1805 /* init some FS parameters */ 1806 F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE; 1807 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 1808 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 1809 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 1810 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1811 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 1812 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 1813 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4; 1814 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE; 1815 F2FS_OPTION(sbi).compress_ext_cnt = 0; 1816 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 1817 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 1818 1819 sbi->sb->s_flags &= ~SB_INLINECRYPT; 1820 1821 set_opt(sbi, INLINE_XATTR); 1822 set_opt(sbi, INLINE_DATA); 1823 set_opt(sbi, INLINE_DENTRY); 1824 set_opt(sbi, EXTENT_CACHE); 1825 set_opt(sbi, NOHEAP); 1826 clear_opt(sbi, DISABLE_CHECKPOINT); 1827 F2FS_OPTION(sbi).unusable_cap = 0; 1828 sbi->sb->s_flags |= SB_LAZYTIME; 1829 set_opt(sbi, FLUSH_MERGE); 1830 set_opt(sbi, DISCARD); 1831 if (f2fs_sb_has_blkzoned(sbi)) 1832 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 1833 else 1834 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 1835 1836 #ifdef CONFIG_F2FS_FS_XATTR 1837 set_opt(sbi, XATTR_USER); 1838 #endif 1839 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1840 set_opt(sbi, POSIX_ACL); 1841 #endif 1842 1843 f2fs_build_fault_attr(sbi, 0, 0); 1844 } 1845 1846 #ifdef CONFIG_QUOTA 1847 static int f2fs_enable_quotas(struct super_block *sb); 1848 #endif 1849 1850 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 1851 { 1852 unsigned int s_flags = sbi->sb->s_flags; 1853 struct cp_control cpc; 1854 int err = 0; 1855 int ret; 1856 block_t unusable; 1857 1858 if (s_flags & SB_RDONLY) { 1859 f2fs_err(sbi, "checkpoint=disable on readonly fs"); 1860 return -EINVAL; 1861 } 1862 sbi->sb->s_flags |= SB_ACTIVE; 1863 1864 f2fs_update_time(sbi, DISABLE_TIME); 1865 1866 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 1867 down_write(&sbi->gc_lock); 1868 err = f2fs_gc(sbi, true, false, NULL_SEGNO); 1869 if (err == -ENODATA) { 1870 err = 0; 1871 break; 1872 } 1873 if (err && err != -EAGAIN) 1874 break; 1875 } 1876 1877 ret = sync_filesystem(sbi->sb); 1878 if (ret || err) { 1879 err = ret ? ret: err; 1880 goto restore_flag; 1881 } 1882 1883 unusable = f2fs_get_unusable_blocks(sbi); 1884 if (f2fs_disable_cp_again(sbi, unusable)) { 1885 err = -EAGAIN; 1886 goto restore_flag; 1887 } 1888 1889 down_write(&sbi->gc_lock); 1890 cpc.reason = CP_PAUSE; 1891 set_sbi_flag(sbi, SBI_CP_DISABLED); 1892 err = f2fs_write_checkpoint(sbi, &cpc); 1893 if (err) 1894 goto out_unlock; 1895 1896 spin_lock(&sbi->stat_lock); 1897 sbi->unusable_block_count = unusable; 1898 spin_unlock(&sbi->stat_lock); 1899 1900 out_unlock: 1901 up_write(&sbi->gc_lock); 1902 restore_flag: 1903 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 1904 return err; 1905 } 1906 1907 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 1908 { 1909 /* we should flush all the data to keep data consistency */ 1910 sync_inodes_sb(sbi->sb); 1911 1912 down_write(&sbi->gc_lock); 1913 f2fs_dirty_to_prefree(sbi); 1914 1915 clear_sbi_flag(sbi, SBI_CP_DISABLED); 1916 set_sbi_flag(sbi, SBI_IS_DIRTY); 1917 up_write(&sbi->gc_lock); 1918 1919 f2fs_sync_fs(sbi->sb, 1); 1920 } 1921 1922 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 1923 { 1924 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1925 struct f2fs_mount_info org_mount_opt; 1926 unsigned long old_sb_flags; 1927 int err; 1928 bool need_restart_gc = false; 1929 bool need_stop_gc = false; 1930 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 1931 bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT); 1932 bool no_io_align = !F2FS_IO_ALIGNED(sbi); 1933 bool no_atgc = !test_opt(sbi, ATGC); 1934 bool checkpoint_changed; 1935 #ifdef CONFIG_QUOTA 1936 int i, j; 1937 #endif 1938 1939 /* 1940 * Save the old mount options in case we 1941 * need to restore them. 1942 */ 1943 org_mount_opt = sbi->mount_opt; 1944 old_sb_flags = sb->s_flags; 1945 1946 #ifdef CONFIG_QUOTA 1947 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 1948 for (i = 0; i < MAXQUOTAS; i++) { 1949 if (F2FS_OPTION(sbi).s_qf_names[i]) { 1950 org_mount_opt.s_qf_names[i] = 1951 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 1952 GFP_KERNEL); 1953 if (!org_mount_opt.s_qf_names[i]) { 1954 for (j = 0; j < i; j++) 1955 kfree(org_mount_opt.s_qf_names[j]); 1956 return -ENOMEM; 1957 } 1958 } else { 1959 org_mount_opt.s_qf_names[i] = NULL; 1960 } 1961 } 1962 #endif 1963 1964 /* recover superblocks we couldn't write due to previous RO mount */ 1965 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 1966 err = f2fs_commit_super(sbi, false); 1967 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d", 1968 err); 1969 if (!err) 1970 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1971 } 1972 1973 default_options(sbi); 1974 1975 /* parse mount options */ 1976 err = parse_options(sb, data, true); 1977 if (err) 1978 goto restore_opts; 1979 checkpoint_changed = 1980 disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT); 1981 1982 /* 1983 * Previous and new state of filesystem is RO, 1984 * so skip checking GC and FLUSH_MERGE conditions. 1985 */ 1986 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 1987 goto skip; 1988 1989 #ifdef CONFIG_QUOTA 1990 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 1991 err = dquot_suspend(sb, -1); 1992 if (err < 0) 1993 goto restore_opts; 1994 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 1995 /* dquot_resume needs RW */ 1996 sb->s_flags &= ~SB_RDONLY; 1997 if (sb_any_quota_suspended(sb)) { 1998 dquot_resume(sb, -1); 1999 } else if (f2fs_sb_has_quota_ino(sbi)) { 2000 err = f2fs_enable_quotas(sb); 2001 if (err) 2002 goto restore_opts; 2003 } 2004 } 2005 #endif 2006 /* disallow enable atgc dynamically */ 2007 if (no_atgc == !!test_opt(sbi, ATGC)) { 2008 err = -EINVAL; 2009 f2fs_warn(sbi, "switch atgc option is not allowed"); 2010 goto restore_opts; 2011 } 2012 2013 /* disallow enable/disable extent_cache dynamically */ 2014 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 2015 err = -EINVAL; 2016 f2fs_warn(sbi, "switch extent_cache option is not allowed"); 2017 goto restore_opts; 2018 } 2019 2020 if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) { 2021 err = -EINVAL; 2022 f2fs_warn(sbi, "switch io_bits option is not allowed"); 2023 goto restore_opts; 2024 } 2025 2026 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 2027 err = -EINVAL; 2028 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only"); 2029 goto restore_opts; 2030 } 2031 2032 /* 2033 * We stop the GC thread if FS is mounted as RO 2034 * or if background_gc = off is passed in mount 2035 * option. Also sync the filesystem. 2036 */ 2037 if ((*flags & SB_RDONLY) || 2038 F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) { 2039 if (sbi->gc_thread) { 2040 f2fs_stop_gc_thread(sbi); 2041 need_restart_gc = true; 2042 } 2043 } else if (!sbi->gc_thread) { 2044 err = f2fs_start_gc_thread(sbi); 2045 if (err) 2046 goto restore_opts; 2047 need_stop_gc = true; 2048 } 2049 2050 if (*flags & SB_RDONLY || 2051 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) { 2052 sync_inodes_sb(sb); 2053 2054 set_sbi_flag(sbi, SBI_IS_DIRTY); 2055 set_sbi_flag(sbi, SBI_IS_CLOSE); 2056 f2fs_sync_fs(sb, 1); 2057 clear_sbi_flag(sbi, SBI_IS_CLOSE); 2058 } 2059 2060 if (checkpoint_changed) { 2061 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2062 err = f2fs_disable_checkpoint(sbi); 2063 if (err) 2064 goto restore_gc; 2065 } else { 2066 f2fs_enable_checkpoint(sbi); 2067 } 2068 } 2069 2070 if (!test_opt(sbi, DISABLE_CHECKPOINT) && 2071 test_opt(sbi, MERGE_CHECKPOINT)) { 2072 err = f2fs_start_ckpt_thread(sbi); 2073 if (err) { 2074 f2fs_err(sbi, 2075 "Failed to start F2FS issue_checkpoint_thread (%d)", 2076 err); 2077 goto restore_gc; 2078 } 2079 } else { 2080 f2fs_stop_ckpt_thread(sbi); 2081 } 2082 2083 /* 2084 * We stop issue flush thread if FS is mounted as RO 2085 * or if flush_merge is not passed in mount option. 2086 */ 2087 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 2088 clear_opt(sbi, FLUSH_MERGE); 2089 f2fs_destroy_flush_cmd_control(sbi, false); 2090 } else { 2091 err = f2fs_create_flush_cmd_control(sbi); 2092 if (err) 2093 goto restore_gc; 2094 } 2095 skip: 2096 #ifdef CONFIG_QUOTA 2097 /* Release old quota file names */ 2098 for (i = 0; i < MAXQUOTAS; i++) 2099 kfree(org_mount_opt.s_qf_names[i]); 2100 #endif 2101 /* Update the POSIXACL Flag */ 2102 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 2103 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 2104 2105 limit_reserve_root(sbi); 2106 adjust_unusable_cap_perc(sbi); 2107 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 2108 return 0; 2109 restore_gc: 2110 if (need_restart_gc) { 2111 if (f2fs_start_gc_thread(sbi)) 2112 f2fs_warn(sbi, "background gc thread has stopped"); 2113 } else if (need_stop_gc) { 2114 f2fs_stop_gc_thread(sbi); 2115 } 2116 restore_opts: 2117 #ifdef CONFIG_QUOTA 2118 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 2119 for (i = 0; i < MAXQUOTAS; i++) { 2120 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 2121 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 2122 } 2123 #endif 2124 sbi->mount_opt = org_mount_opt; 2125 sb->s_flags = old_sb_flags; 2126 return err; 2127 } 2128 2129 #ifdef CONFIG_QUOTA 2130 /* Read data from quotafile */ 2131 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 2132 size_t len, loff_t off) 2133 { 2134 struct inode *inode = sb_dqopt(sb)->files[type]; 2135 struct address_space *mapping = inode->i_mapping; 2136 block_t blkidx = F2FS_BYTES_TO_BLK(off); 2137 int offset = off & (sb->s_blocksize - 1); 2138 int tocopy; 2139 size_t toread; 2140 loff_t i_size = i_size_read(inode); 2141 struct page *page; 2142 char *kaddr; 2143 2144 if (off > i_size) 2145 return 0; 2146 2147 if (off + len > i_size) 2148 len = i_size - off; 2149 toread = len; 2150 while (toread > 0) { 2151 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 2152 repeat: 2153 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 2154 if (IS_ERR(page)) { 2155 if (PTR_ERR(page) == -ENOMEM) { 2156 congestion_wait(BLK_RW_ASYNC, 2157 DEFAULT_IO_TIMEOUT); 2158 goto repeat; 2159 } 2160 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2161 return PTR_ERR(page); 2162 } 2163 2164 lock_page(page); 2165 2166 if (unlikely(page->mapping != mapping)) { 2167 f2fs_put_page(page, 1); 2168 goto repeat; 2169 } 2170 if (unlikely(!PageUptodate(page))) { 2171 f2fs_put_page(page, 1); 2172 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2173 return -EIO; 2174 } 2175 2176 kaddr = kmap_atomic(page); 2177 memcpy(data, kaddr + offset, tocopy); 2178 kunmap_atomic(kaddr); 2179 f2fs_put_page(page, 1); 2180 2181 offset = 0; 2182 toread -= tocopy; 2183 data += tocopy; 2184 blkidx++; 2185 } 2186 return len; 2187 } 2188 2189 /* Write to quotafile */ 2190 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 2191 const char *data, size_t len, loff_t off) 2192 { 2193 struct inode *inode = sb_dqopt(sb)->files[type]; 2194 struct address_space *mapping = inode->i_mapping; 2195 const struct address_space_operations *a_ops = mapping->a_ops; 2196 int offset = off & (sb->s_blocksize - 1); 2197 size_t towrite = len; 2198 struct page *page; 2199 void *fsdata = NULL; 2200 char *kaddr; 2201 int err = 0; 2202 int tocopy; 2203 2204 while (towrite > 0) { 2205 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 2206 towrite); 2207 retry: 2208 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0, 2209 &page, &fsdata); 2210 if (unlikely(err)) { 2211 if (err == -ENOMEM) { 2212 congestion_wait(BLK_RW_ASYNC, 2213 DEFAULT_IO_TIMEOUT); 2214 goto retry; 2215 } 2216 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2217 break; 2218 } 2219 2220 kaddr = kmap_atomic(page); 2221 memcpy(kaddr + offset, data, tocopy); 2222 kunmap_atomic(kaddr); 2223 flush_dcache_page(page); 2224 2225 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 2226 page, fsdata); 2227 offset = 0; 2228 towrite -= tocopy; 2229 off += tocopy; 2230 data += tocopy; 2231 cond_resched(); 2232 } 2233 2234 if (len == towrite) 2235 return err; 2236 inode->i_mtime = inode->i_ctime = current_time(inode); 2237 f2fs_mark_inode_dirty_sync(inode, false); 2238 return len - towrite; 2239 } 2240 2241 static struct dquot **f2fs_get_dquots(struct inode *inode) 2242 { 2243 return F2FS_I(inode)->i_dquot; 2244 } 2245 2246 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 2247 { 2248 return &F2FS_I(inode)->i_reserved_quota; 2249 } 2250 2251 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 2252 { 2253 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 2254 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it"); 2255 return 0; 2256 } 2257 2258 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 2259 F2FS_OPTION(sbi).s_jquota_fmt, type); 2260 } 2261 2262 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 2263 { 2264 int enabled = 0; 2265 int i, err; 2266 2267 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 2268 err = f2fs_enable_quotas(sbi->sb); 2269 if (err) { 2270 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err); 2271 return 0; 2272 } 2273 return 1; 2274 } 2275 2276 for (i = 0; i < MAXQUOTAS; i++) { 2277 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2278 err = f2fs_quota_on_mount(sbi, i); 2279 if (!err) { 2280 enabled = 1; 2281 continue; 2282 } 2283 f2fs_err(sbi, "Cannot turn on quotas: %d on %d", 2284 err, i); 2285 } 2286 } 2287 return enabled; 2288 } 2289 2290 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 2291 unsigned int flags) 2292 { 2293 struct inode *qf_inode; 2294 unsigned long qf_inum; 2295 int err; 2296 2297 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 2298 2299 qf_inum = f2fs_qf_ino(sb, type); 2300 if (!qf_inum) 2301 return -EPERM; 2302 2303 qf_inode = f2fs_iget(sb, qf_inum); 2304 if (IS_ERR(qf_inode)) { 2305 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum); 2306 return PTR_ERR(qf_inode); 2307 } 2308 2309 /* Don't account quota for quota files to avoid recursion */ 2310 qf_inode->i_flags |= S_NOQUOTA; 2311 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 2312 iput(qf_inode); 2313 return err; 2314 } 2315 2316 static int f2fs_enable_quotas(struct super_block *sb) 2317 { 2318 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2319 int type, err = 0; 2320 unsigned long qf_inum; 2321 bool quota_mopt[MAXQUOTAS] = { 2322 test_opt(sbi, USRQUOTA), 2323 test_opt(sbi, GRPQUOTA), 2324 test_opt(sbi, PRJQUOTA), 2325 }; 2326 2327 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 2328 f2fs_err(sbi, "quota file may be corrupted, skip loading it"); 2329 return 0; 2330 } 2331 2332 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 2333 2334 for (type = 0; type < MAXQUOTAS; type++) { 2335 qf_inum = f2fs_qf_ino(sb, type); 2336 if (qf_inum) { 2337 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 2338 DQUOT_USAGE_ENABLED | 2339 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 2340 if (err) { 2341 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.", 2342 type, err); 2343 for (type--; type >= 0; type--) 2344 dquot_quota_off(sb, type); 2345 set_sbi_flag(F2FS_SB(sb), 2346 SBI_QUOTA_NEED_REPAIR); 2347 return err; 2348 } 2349 } 2350 } 2351 return 0; 2352 } 2353 2354 int f2fs_quota_sync(struct super_block *sb, int type) 2355 { 2356 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2357 struct quota_info *dqopt = sb_dqopt(sb); 2358 int cnt; 2359 int ret; 2360 2361 /* 2362 * do_quotactl 2363 * f2fs_quota_sync 2364 * down_read(quota_sem) 2365 * dquot_writeback_dquots() 2366 * f2fs_dquot_commit 2367 * block_operation 2368 * down_read(quota_sem) 2369 */ 2370 f2fs_lock_op(sbi); 2371 2372 down_read(&sbi->quota_sem); 2373 ret = dquot_writeback_dquots(sb, type); 2374 if (ret) 2375 goto out; 2376 2377 /* 2378 * Now when everything is written we can discard the pagecache so 2379 * that userspace sees the changes. 2380 */ 2381 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 2382 struct address_space *mapping; 2383 2384 if (type != -1 && cnt != type) 2385 continue; 2386 if (!sb_has_quota_active(sb, cnt)) 2387 continue; 2388 2389 mapping = dqopt->files[cnt]->i_mapping; 2390 2391 ret = filemap_fdatawrite(mapping); 2392 if (ret) 2393 goto out; 2394 2395 /* if we are using journalled quota */ 2396 if (is_journalled_quota(sbi)) 2397 continue; 2398 2399 ret = filemap_fdatawait(mapping); 2400 if (ret) 2401 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2402 2403 inode_lock(dqopt->files[cnt]); 2404 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0); 2405 inode_unlock(dqopt->files[cnt]); 2406 } 2407 out: 2408 if (ret) 2409 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2410 up_read(&sbi->quota_sem); 2411 f2fs_unlock_op(sbi); 2412 return ret; 2413 } 2414 2415 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 2416 const struct path *path) 2417 { 2418 struct inode *inode; 2419 int err; 2420 2421 /* if quota sysfile exists, deny enabling quota with specific file */ 2422 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) { 2423 f2fs_err(F2FS_SB(sb), "quota sysfile already exists"); 2424 return -EBUSY; 2425 } 2426 2427 err = f2fs_quota_sync(sb, type); 2428 if (err) 2429 return err; 2430 2431 err = dquot_quota_on(sb, type, format_id, path); 2432 if (err) 2433 return err; 2434 2435 inode = d_inode(path->dentry); 2436 2437 inode_lock(inode); 2438 F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL; 2439 f2fs_set_inode_flags(inode); 2440 inode_unlock(inode); 2441 f2fs_mark_inode_dirty_sync(inode, false); 2442 2443 return 0; 2444 } 2445 2446 static int __f2fs_quota_off(struct super_block *sb, int type) 2447 { 2448 struct inode *inode = sb_dqopt(sb)->files[type]; 2449 int err; 2450 2451 if (!inode || !igrab(inode)) 2452 return dquot_quota_off(sb, type); 2453 2454 err = f2fs_quota_sync(sb, type); 2455 if (err) 2456 goto out_put; 2457 2458 err = dquot_quota_off(sb, type); 2459 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 2460 goto out_put; 2461 2462 inode_lock(inode); 2463 F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL); 2464 f2fs_set_inode_flags(inode); 2465 inode_unlock(inode); 2466 f2fs_mark_inode_dirty_sync(inode, false); 2467 out_put: 2468 iput(inode); 2469 return err; 2470 } 2471 2472 static int f2fs_quota_off(struct super_block *sb, int type) 2473 { 2474 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2475 int err; 2476 2477 err = __f2fs_quota_off(sb, type); 2478 2479 /* 2480 * quotactl can shutdown journalled quota, result in inconsistence 2481 * between quota record and fs data by following updates, tag the 2482 * flag to let fsck be aware of it. 2483 */ 2484 if (is_journalled_quota(sbi)) 2485 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2486 return err; 2487 } 2488 2489 void f2fs_quota_off_umount(struct super_block *sb) 2490 { 2491 int type; 2492 int err; 2493 2494 for (type = 0; type < MAXQUOTAS; type++) { 2495 err = __f2fs_quota_off(sb, type); 2496 if (err) { 2497 int ret = dquot_quota_off(sb, type); 2498 2499 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.", 2500 type, err, ret); 2501 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2502 } 2503 } 2504 /* 2505 * In case of checkpoint=disable, we must flush quota blocks. 2506 * This can cause NULL exception for node_inode in end_io, since 2507 * put_super already dropped it. 2508 */ 2509 sync_filesystem(sb); 2510 } 2511 2512 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 2513 { 2514 struct quota_info *dqopt = sb_dqopt(sb); 2515 int type; 2516 2517 for (type = 0; type < MAXQUOTAS; type++) { 2518 if (!dqopt->files[type]) 2519 continue; 2520 f2fs_inode_synced(dqopt->files[type]); 2521 } 2522 } 2523 2524 static int f2fs_dquot_commit(struct dquot *dquot) 2525 { 2526 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2527 int ret; 2528 2529 down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING); 2530 ret = dquot_commit(dquot); 2531 if (ret < 0) 2532 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2533 up_read(&sbi->quota_sem); 2534 return ret; 2535 } 2536 2537 static int f2fs_dquot_acquire(struct dquot *dquot) 2538 { 2539 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2540 int ret; 2541 2542 down_read(&sbi->quota_sem); 2543 ret = dquot_acquire(dquot); 2544 if (ret < 0) 2545 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2546 up_read(&sbi->quota_sem); 2547 return ret; 2548 } 2549 2550 static int f2fs_dquot_release(struct dquot *dquot) 2551 { 2552 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2553 int ret = dquot_release(dquot); 2554 2555 if (ret < 0) 2556 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2557 return ret; 2558 } 2559 2560 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 2561 { 2562 struct super_block *sb = dquot->dq_sb; 2563 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2564 int ret = dquot_mark_dquot_dirty(dquot); 2565 2566 /* if we are using journalled quota */ 2567 if (is_journalled_quota(sbi)) 2568 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 2569 2570 return ret; 2571 } 2572 2573 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 2574 { 2575 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2576 int ret = dquot_commit_info(sb, type); 2577 2578 if (ret < 0) 2579 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2580 return ret; 2581 } 2582 2583 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 2584 { 2585 *projid = F2FS_I(inode)->i_projid; 2586 return 0; 2587 } 2588 2589 static const struct dquot_operations f2fs_quota_operations = { 2590 .get_reserved_space = f2fs_get_reserved_space, 2591 .write_dquot = f2fs_dquot_commit, 2592 .acquire_dquot = f2fs_dquot_acquire, 2593 .release_dquot = f2fs_dquot_release, 2594 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 2595 .write_info = f2fs_dquot_commit_info, 2596 .alloc_dquot = dquot_alloc, 2597 .destroy_dquot = dquot_destroy, 2598 .get_projid = f2fs_get_projid, 2599 .get_next_id = dquot_get_next_id, 2600 }; 2601 2602 static const struct quotactl_ops f2fs_quotactl_ops = { 2603 .quota_on = f2fs_quota_on, 2604 .quota_off = f2fs_quota_off, 2605 .quota_sync = f2fs_quota_sync, 2606 .get_state = dquot_get_state, 2607 .set_info = dquot_set_dqinfo, 2608 .get_dqblk = dquot_get_dqblk, 2609 .set_dqblk = dquot_set_dqblk, 2610 .get_nextdqblk = dquot_get_next_dqblk, 2611 }; 2612 #else 2613 int f2fs_quota_sync(struct super_block *sb, int type) 2614 { 2615 return 0; 2616 } 2617 2618 void f2fs_quota_off_umount(struct super_block *sb) 2619 { 2620 } 2621 #endif 2622 2623 static const struct super_operations f2fs_sops = { 2624 .alloc_inode = f2fs_alloc_inode, 2625 .free_inode = f2fs_free_inode, 2626 .drop_inode = f2fs_drop_inode, 2627 .write_inode = f2fs_write_inode, 2628 .dirty_inode = f2fs_dirty_inode, 2629 .show_options = f2fs_show_options, 2630 #ifdef CONFIG_QUOTA 2631 .quota_read = f2fs_quota_read, 2632 .quota_write = f2fs_quota_write, 2633 .get_dquots = f2fs_get_dquots, 2634 #endif 2635 .evict_inode = f2fs_evict_inode, 2636 .put_super = f2fs_put_super, 2637 .sync_fs = f2fs_sync_fs, 2638 .freeze_fs = f2fs_freeze, 2639 .unfreeze_fs = f2fs_unfreeze, 2640 .statfs = f2fs_statfs, 2641 .remount_fs = f2fs_remount, 2642 }; 2643 2644 #ifdef CONFIG_FS_ENCRYPTION 2645 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 2646 { 2647 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2648 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2649 ctx, len, NULL); 2650 } 2651 2652 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 2653 void *fs_data) 2654 { 2655 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2656 2657 /* 2658 * Encrypting the root directory is not allowed because fsck 2659 * expects lost+found directory to exist and remain unencrypted 2660 * if LOST_FOUND feature is enabled. 2661 * 2662 */ 2663 if (f2fs_sb_has_lost_found(sbi) && 2664 inode->i_ino == F2FS_ROOT_INO(sbi)) 2665 return -EPERM; 2666 2667 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2668 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2669 ctx, len, fs_data, XATTR_CREATE); 2670 } 2671 2672 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb) 2673 { 2674 return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy; 2675 } 2676 2677 static bool f2fs_has_stable_inodes(struct super_block *sb) 2678 { 2679 return true; 2680 } 2681 2682 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb, 2683 int *ino_bits_ret, int *lblk_bits_ret) 2684 { 2685 *ino_bits_ret = 8 * sizeof(nid_t); 2686 *lblk_bits_ret = 8 * sizeof(block_t); 2687 } 2688 2689 static int f2fs_get_num_devices(struct super_block *sb) 2690 { 2691 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2692 2693 if (f2fs_is_multi_device(sbi)) 2694 return sbi->s_ndevs; 2695 return 1; 2696 } 2697 2698 static void f2fs_get_devices(struct super_block *sb, 2699 struct request_queue **devs) 2700 { 2701 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2702 int i; 2703 2704 for (i = 0; i < sbi->s_ndevs; i++) 2705 devs[i] = bdev_get_queue(FDEV(i).bdev); 2706 } 2707 2708 static const struct fscrypt_operations f2fs_cryptops = { 2709 .key_prefix = "f2fs:", 2710 .get_context = f2fs_get_context, 2711 .set_context = f2fs_set_context, 2712 .get_dummy_policy = f2fs_get_dummy_policy, 2713 .empty_dir = f2fs_empty_dir, 2714 .max_namelen = F2FS_NAME_LEN, 2715 .has_stable_inodes = f2fs_has_stable_inodes, 2716 .get_ino_and_lblk_bits = f2fs_get_ino_and_lblk_bits, 2717 .get_num_devices = f2fs_get_num_devices, 2718 .get_devices = f2fs_get_devices, 2719 }; 2720 #endif 2721 2722 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 2723 u64 ino, u32 generation) 2724 { 2725 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2726 struct inode *inode; 2727 2728 if (f2fs_check_nid_range(sbi, ino)) 2729 return ERR_PTR(-ESTALE); 2730 2731 /* 2732 * f2fs_iget isn't quite right if the inode is currently unallocated! 2733 * However f2fs_iget currently does appropriate checks to handle stale 2734 * inodes so everything is OK. 2735 */ 2736 inode = f2fs_iget(sb, ino); 2737 if (IS_ERR(inode)) 2738 return ERR_CAST(inode); 2739 if (unlikely(generation && inode->i_generation != generation)) { 2740 /* we didn't find the right inode.. */ 2741 iput(inode); 2742 return ERR_PTR(-ESTALE); 2743 } 2744 return inode; 2745 } 2746 2747 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 2748 int fh_len, int fh_type) 2749 { 2750 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 2751 f2fs_nfs_get_inode); 2752 } 2753 2754 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 2755 int fh_len, int fh_type) 2756 { 2757 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 2758 f2fs_nfs_get_inode); 2759 } 2760 2761 static const struct export_operations f2fs_export_ops = { 2762 .fh_to_dentry = f2fs_fh_to_dentry, 2763 .fh_to_parent = f2fs_fh_to_parent, 2764 .get_parent = f2fs_get_parent, 2765 }; 2766 2767 loff_t max_file_blocks(struct inode *inode) 2768 { 2769 loff_t result = 0; 2770 loff_t leaf_count; 2771 2772 /* 2773 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 2774 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 2775 * space in inode.i_addr, it will be more safe to reassign 2776 * result as zero. 2777 */ 2778 2779 if (inode && f2fs_compressed_file(inode)) 2780 leaf_count = ADDRS_PER_BLOCK(inode); 2781 else 2782 leaf_count = DEF_ADDRS_PER_BLOCK; 2783 2784 /* two direct node blocks */ 2785 result += (leaf_count * 2); 2786 2787 /* two indirect node blocks */ 2788 leaf_count *= NIDS_PER_BLOCK; 2789 result += (leaf_count * 2); 2790 2791 /* one double indirect node block */ 2792 leaf_count *= NIDS_PER_BLOCK; 2793 result += leaf_count; 2794 2795 return result; 2796 } 2797 2798 static int __f2fs_commit_super(struct buffer_head *bh, 2799 struct f2fs_super_block *super) 2800 { 2801 lock_buffer(bh); 2802 if (super) 2803 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 2804 set_buffer_dirty(bh); 2805 unlock_buffer(bh); 2806 2807 /* it's rare case, we can do fua all the time */ 2808 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 2809 } 2810 2811 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 2812 struct buffer_head *bh) 2813 { 2814 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2815 (bh->b_data + F2FS_SUPER_OFFSET); 2816 struct super_block *sb = sbi->sb; 2817 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2818 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 2819 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 2820 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 2821 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2822 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2823 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 2824 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 2825 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 2826 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 2827 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2828 u32 segment_count = le32_to_cpu(raw_super->segment_count); 2829 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2830 u64 main_end_blkaddr = main_blkaddr + 2831 (segment_count_main << log_blocks_per_seg); 2832 u64 seg_end_blkaddr = segment0_blkaddr + 2833 (segment_count << log_blocks_per_seg); 2834 2835 if (segment0_blkaddr != cp_blkaddr) { 2836 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 2837 segment0_blkaddr, cp_blkaddr); 2838 return true; 2839 } 2840 2841 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 2842 sit_blkaddr) { 2843 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 2844 cp_blkaddr, sit_blkaddr, 2845 segment_count_ckpt << log_blocks_per_seg); 2846 return true; 2847 } 2848 2849 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 2850 nat_blkaddr) { 2851 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 2852 sit_blkaddr, nat_blkaddr, 2853 segment_count_sit << log_blocks_per_seg); 2854 return true; 2855 } 2856 2857 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 2858 ssa_blkaddr) { 2859 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 2860 nat_blkaddr, ssa_blkaddr, 2861 segment_count_nat << log_blocks_per_seg); 2862 return true; 2863 } 2864 2865 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 2866 main_blkaddr) { 2867 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 2868 ssa_blkaddr, main_blkaddr, 2869 segment_count_ssa << log_blocks_per_seg); 2870 return true; 2871 } 2872 2873 if (main_end_blkaddr > seg_end_blkaddr) { 2874 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)", 2875 main_blkaddr, seg_end_blkaddr, 2876 segment_count_main << log_blocks_per_seg); 2877 return true; 2878 } else if (main_end_blkaddr < seg_end_blkaddr) { 2879 int err = 0; 2880 char *res; 2881 2882 /* fix in-memory information all the time */ 2883 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 2884 segment0_blkaddr) >> log_blocks_per_seg); 2885 2886 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 2887 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2888 res = "internally"; 2889 } else { 2890 err = __f2fs_commit_super(bh, NULL); 2891 res = err ? "failed" : "done"; 2892 } 2893 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)", 2894 res, main_blkaddr, seg_end_blkaddr, 2895 segment_count_main << log_blocks_per_seg); 2896 if (err) 2897 return true; 2898 } 2899 return false; 2900 } 2901 2902 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 2903 struct buffer_head *bh) 2904 { 2905 block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main; 2906 block_t total_sections, blocks_per_seg; 2907 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2908 (bh->b_data + F2FS_SUPER_OFFSET); 2909 size_t crc_offset = 0; 2910 __u32 crc = 0; 2911 2912 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { 2913 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)", 2914 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 2915 return -EINVAL; 2916 } 2917 2918 /* Check checksum_offset and crc in superblock */ 2919 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 2920 crc_offset = le32_to_cpu(raw_super->checksum_offset); 2921 if (crc_offset != 2922 offsetof(struct f2fs_super_block, crc)) { 2923 f2fs_info(sbi, "Invalid SB checksum offset: %zu", 2924 crc_offset); 2925 return -EFSCORRUPTED; 2926 } 2927 crc = le32_to_cpu(raw_super->crc); 2928 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 2929 f2fs_info(sbi, "Invalid SB checksum value: %u", crc); 2930 return -EFSCORRUPTED; 2931 } 2932 } 2933 2934 /* Currently, support only 4KB block size */ 2935 if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) { 2936 f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u", 2937 le32_to_cpu(raw_super->log_blocksize), 2938 F2FS_BLKSIZE_BITS); 2939 return -EFSCORRUPTED; 2940 } 2941 2942 /* check log blocks per segment */ 2943 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 2944 f2fs_info(sbi, "Invalid log blocks per segment (%u)", 2945 le32_to_cpu(raw_super->log_blocks_per_seg)); 2946 return -EFSCORRUPTED; 2947 } 2948 2949 /* Currently, support 512/1024/2048/4096 bytes sector size */ 2950 if (le32_to_cpu(raw_super->log_sectorsize) > 2951 F2FS_MAX_LOG_SECTOR_SIZE || 2952 le32_to_cpu(raw_super->log_sectorsize) < 2953 F2FS_MIN_LOG_SECTOR_SIZE) { 2954 f2fs_info(sbi, "Invalid log sectorsize (%u)", 2955 le32_to_cpu(raw_super->log_sectorsize)); 2956 return -EFSCORRUPTED; 2957 } 2958 if (le32_to_cpu(raw_super->log_sectors_per_block) + 2959 le32_to_cpu(raw_super->log_sectorsize) != 2960 F2FS_MAX_LOG_SECTOR_SIZE) { 2961 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)", 2962 le32_to_cpu(raw_super->log_sectors_per_block), 2963 le32_to_cpu(raw_super->log_sectorsize)); 2964 return -EFSCORRUPTED; 2965 } 2966 2967 segment_count = le32_to_cpu(raw_super->segment_count); 2968 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2969 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 2970 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 2971 total_sections = le32_to_cpu(raw_super->section_count); 2972 2973 /* blocks_per_seg should be 512, given the above check */ 2974 blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg); 2975 2976 if (segment_count > F2FS_MAX_SEGMENT || 2977 segment_count < F2FS_MIN_SEGMENTS) { 2978 f2fs_info(sbi, "Invalid segment count (%u)", segment_count); 2979 return -EFSCORRUPTED; 2980 } 2981 2982 if (total_sections > segment_count_main || total_sections < 1 || 2983 segs_per_sec > segment_count || !segs_per_sec) { 2984 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)", 2985 segment_count, total_sections, segs_per_sec); 2986 return -EFSCORRUPTED; 2987 } 2988 2989 if (segment_count_main != total_sections * segs_per_sec) { 2990 f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)", 2991 segment_count_main, total_sections, segs_per_sec); 2992 return -EFSCORRUPTED; 2993 } 2994 2995 if ((segment_count / segs_per_sec) < total_sections) { 2996 f2fs_info(sbi, "Small segment_count (%u < %u * %u)", 2997 segment_count, segs_per_sec, total_sections); 2998 return -EFSCORRUPTED; 2999 } 3000 3001 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 3002 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)", 3003 segment_count, le64_to_cpu(raw_super->block_count)); 3004 return -EFSCORRUPTED; 3005 } 3006 3007 if (RDEV(0).path[0]) { 3008 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments); 3009 int i = 1; 3010 3011 while (i < MAX_DEVICES && RDEV(i).path[0]) { 3012 dev_seg_count += le32_to_cpu(RDEV(i).total_segments); 3013 i++; 3014 } 3015 if (segment_count != dev_seg_count) { 3016 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)", 3017 segment_count, dev_seg_count); 3018 return -EFSCORRUPTED; 3019 } 3020 } else { 3021 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) && 3022 !bdev_is_zoned(sbi->sb->s_bdev)) { 3023 f2fs_info(sbi, "Zoned block device path is missing"); 3024 return -EFSCORRUPTED; 3025 } 3026 } 3027 3028 if (secs_per_zone > total_sections || !secs_per_zone) { 3029 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)", 3030 secs_per_zone, total_sections); 3031 return -EFSCORRUPTED; 3032 } 3033 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 3034 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 3035 (le32_to_cpu(raw_super->extension_count) + 3036 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 3037 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)", 3038 le32_to_cpu(raw_super->extension_count), 3039 raw_super->hot_ext_count, 3040 F2FS_MAX_EXTENSION); 3041 return -EFSCORRUPTED; 3042 } 3043 3044 if (le32_to_cpu(raw_super->cp_payload) > 3045 (blocks_per_seg - F2FS_CP_PACKS)) { 3046 f2fs_info(sbi, "Insane cp_payload (%u > %u)", 3047 le32_to_cpu(raw_super->cp_payload), 3048 blocks_per_seg - F2FS_CP_PACKS); 3049 return -EFSCORRUPTED; 3050 } 3051 3052 /* check reserved ino info */ 3053 if (le32_to_cpu(raw_super->node_ino) != 1 || 3054 le32_to_cpu(raw_super->meta_ino) != 2 || 3055 le32_to_cpu(raw_super->root_ino) != 3) { 3056 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 3057 le32_to_cpu(raw_super->node_ino), 3058 le32_to_cpu(raw_super->meta_ino), 3059 le32_to_cpu(raw_super->root_ino)); 3060 return -EFSCORRUPTED; 3061 } 3062 3063 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 3064 if (sanity_check_area_boundary(sbi, bh)) 3065 return -EFSCORRUPTED; 3066 3067 return 0; 3068 } 3069 3070 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 3071 { 3072 unsigned int total, fsmeta; 3073 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3074 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3075 unsigned int ovp_segments, reserved_segments; 3076 unsigned int main_segs, blocks_per_seg; 3077 unsigned int sit_segs, nat_segs; 3078 unsigned int sit_bitmap_size, nat_bitmap_size; 3079 unsigned int log_blocks_per_seg; 3080 unsigned int segment_count_main; 3081 unsigned int cp_pack_start_sum, cp_payload; 3082 block_t user_block_count, valid_user_blocks; 3083 block_t avail_node_count, valid_node_count; 3084 int i, j; 3085 3086 total = le32_to_cpu(raw_super->segment_count); 3087 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 3088 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 3089 fsmeta += sit_segs; 3090 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 3091 fsmeta += nat_segs; 3092 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 3093 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 3094 3095 if (unlikely(fsmeta >= total)) 3096 return 1; 3097 3098 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 3099 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 3100 3101 if (unlikely(fsmeta < F2FS_MIN_META_SEGMENTS || 3102 ovp_segments == 0 || reserved_segments == 0)) { 3103 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version"); 3104 return 1; 3105 } 3106 3107 user_block_count = le64_to_cpu(ckpt->user_block_count); 3108 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3109 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3110 if (!user_block_count || user_block_count >= 3111 segment_count_main << log_blocks_per_seg) { 3112 f2fs_err(sbi, "Wrong user_block_count: %u", 3113 user_block_count); 3114 return 1; 3115 } 3116 3117 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 3118 if (valid_user_blocks > user_block_count) { 3119 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u", 3120 valid_user_blocks, user_block_count); 3121 return 1; 3122 } 3123 3124 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 3125 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 3126 if (valid_node_count > avail_node_count) { 3127 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u", 3128 valid_node_count, avail_node_count); 3129 return 1; 3130 } 3131 3132 main_segs = le32_to_cpu(raw_super->segment_count_main); 3133 blocks_per_seg = sbi->blocks_per_seg; 3134 3135 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3136 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 3137 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 3138 return 1; 3139 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 3140 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3141 le32_to_cpu(ckpt->cur_node_segno[j])) { 3142 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u", 3143 i, j, 3144 le32_to_cpu(ckpt->cur_node_segno[i])); 3145 return 1; 3146 } 3147 } 3148 } 3149 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 3150 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 3151 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 3152 return 1; 3153 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 3154 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 3155 le32_to_cpu(ckpt->cur_data_segno[j])) { 3156 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u", 3157 i, j, 3158 le32_to_cpu(ckpt->cur_data_segno[i])); 3159 return 1; 3160 } 3161 } 3162 } 3163 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3164 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) { 3165 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3166 le32_to_cpu(ckpt->cur_data_segno[j])) { 3167 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u", 3168 i, j, 3169 le32_to_cpu(ckpt->cur_node_segno[i])); 3170 return 1; 3171 } 3172 } 3173 } 3174 3175 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 3176 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 3177 3178 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 3179 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 3180 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u", 3181 sit_bitmap_size, nat_bitmap_size); 3182 return 1; 3183 } 3184 3185 cp_pack_start_sum = __start_sum_addr(sbi); 3186 cp_payload = __cp_payload(sbi); 3187 if (cp_pack_start_sum < cp_payload + 1 || 3188 cp_pack_start_sum > blocks_per_seg - 1 - 3189 NR_CURSEG_PERSIST_TYPE) { 3190 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u", 3191 cp_pack_start_sum); 3192 return 1; 3193 } 3194 3195 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && 3196 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { 3197 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, " 3198 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, " 3199 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"", 3200 le32_to_cpu(ckpt->checksum_offset)); 3201 return 1; 3202 } 3203 3204 if (unlikely(f2fs_cp_error(sbi))) { 3205 f2fs_err(sbi, "A bug case: need to run fsck"); 3206 return 1; 3207 } 3208 return 0; 3209 } 3210 3211 static void init_sb_info(struct f2fs_sb_info *sbi) 3212 { 3213 struct f2fs_super_block *raw_super = sbi->raw_super; 3214 int i; 3215 3216 sbi->log_sectors_per_block = 3217 le32_to_cpu(raw_super->log_sectors_per_block); 3218 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 3219 sbi->blocksize = 1 << sbi->log_blocksize; 3220 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3221 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 3222 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3223 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3224 sbi->total_sections = le32_to_cpu(raw_super->section_count); 3225 sbi->total_node_count = 3226 (le32_to_cpu(raw_super->segment_count_nat) / 2) 3227 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 3228 F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino); 3229 F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino); 3230 F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino); 3231 sbi->cur_victim_sec = NULL_SECNO; 3232 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 3233 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 3234 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 3235 sbi->migration_granularity = sbi->segs_per_sec; 3236 3237 sbi->dir_level = DEF_DIR_LEVEL; 3238 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 3239 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 3240 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 3241 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 3242 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 3243 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 3244 DEF_UMOUNT_DISCARD_TIMEOUT; 3245 clear_sbi_flag(sbi, SBI_NEED_FSCK); 3246 3247 for (i = 0; i < NR_COUNT_TYPE; i++) 3248 atomic_set(&sbi->nr_pages[i], 0); 3249 3250 for (i = 0; i < META; i++) 3251 atomic_set(&sbi->wb_sync_req[i], 0); 3252 3253 INIT_LIST_HEAD(&sbi->s_list); 3254 mutex_init(&sbi->umount_mutex); 3255 init_rwsem(&sbi->io_order_lock); 3256 spin_lock_init(&sbi->cp_lock); 3257 3258 sbi->dirty_device = 0; 3259 spin_lock_init(&sbi->dev_lock); 3260 3261 init_rwsem(&sbi->sb_lock); 3262 init_rwsem(&sbi->pin_sem); 3263 } 3264 3265 static int init_percpu_info(struct f2fs_sb_info *sbi) 3266 { 3267 int err; 3268 3269 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 3270 if (err) 3271 return err; 3272 3273 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 3274 GFP_KERNEL); 3275 if (err) 3276 percpu_counter_destroy(&sbi->alloc_valid_block_count); 3277 3278 return err; 3279 } 3280 3281 #ifdef CONFIG_BLK_DEV_ZONED 3282 3283 struct f2fs_report_zones_args { 3284 struct f2fs_dev_info *dev; 3285 bool zone_cap_mismatch; 3286 }; 3287 3288 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx, 3289 void *data) 3290 { 3291 struct f2fs_report_zones_args *rz_args = data; 3292 3293 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 3294 return 0; 3295 3296 set_bit(idx, rz_args->dev->blkz_seq); 3297 rz_args->dev->zone_capacity_blocks[idx] = zone->capacity >> 3298 F2FS_LOG_SECTORS_PER_BLOCK; 3299 if (zone->len != zone->capacity && !rz_args->zone_cap_mismatch) 3300 rz_args->zone_cap_mismatch = true; 3301 3302 return 0; 3303 } 3304 3305 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 3306 { 3307 struct block_device *bdev = FDEV(devi).bdev; 3308 sector_t nr_sectors = bdev_nr_sectors(bdev); 3309 struct f2fs_report_zones_args rep_zone_arg; 3310 int ret; 3311 3312 if (!f2fs_sb_has_blkzoned(sbi)) 3313 return 0; 3314 3315 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 3316 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev))) 3317 return -EINVAL; 3318 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)); 3319 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz != 3320 __ilog2_u32(sbi->blocks_per_blkz)) 3321 return -EINVAL; 3322 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz); 3323 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >> 3324 sbi->log_blocks_per_blkz; 3325 if (nr_sectors & (bdev_zone_sectors(bdev) - 1)) 3326 FDEV(devi).nr_blkz++; 3327 3328 FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi, 3329 BITS_TO_LONGS(FDEV(devi).nr_blkz) 3330 * sizeof(unsigned long), 3331 GFP_KERNEL); 3332 if (!FDEV(devi).blkz_seq) 3333 return -ENOMEM; 3334 3335 /* Get block zones type and zone-capacity */ 3336 FDEV(devi).zone_capacity_blocks = f2fs_kzalloc(sbi, 3337 FDEV(devi).nr_blkz * sizeof(block_t), 3338 GFP_KERNEL); 3339 if (!FDEV(devi).zone_capacity_blocks) 3340 return -ENOMEM; 3341 3342 rep_zone_arg.dev = &FDEV(devi); 3343 rep_zone_arg.zone_cap_mismatch = false; 3344 3345 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb, 3346 &rep_zone_arg); 3347 if (ret < 0) 3348 return ret; 3349 3350 if (!rep_zone_arg.zone_cap_mismatch) { 3351 kfree(FDEV(devi).zone_capacity_blocks); 3352 FDEV(devi).zone_capacity_blocks = NULL; 3353 } 3354 3355 return 0; 3356 } 3357 #endif 3358 3359 /* 3360 * Read f2fs raw super block. 3361 * Because we have two copies of super block, so read both of them 3362 * to get the first valid one. If any one of them is broken, we pass 3363 * them recovery flag back to the caller. 3364 */ 3365 static int read_raw_super_block(struct f2fs_sb_info *sbi, 3366 struct f2fs_super_block **raw_super, 3367 int *valid_super_block, int *recovery) 3368 { 3369 struct super_block *sb = sbi->sb; 3370 int block; 3371 struct buffer_head *bh; 3372 struct f2fs_super_block *super; 3373 int err = 0; 3374 3375 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 3376 if (!super) 3377 return -ENOMEM; 3378 3379 for (block = 0; block < 2; block++) { 3380 bh = sb_bread(sb, block); 3381 if (!bh) { 3382 f2fs_err(sbi, "Unable to read %dth superblock", 3383 block + 1); 3384 err = -EIO; 3385 *recovery = 1; 3386 continue; 3387 } 3388 3389 /* sanity checking of raw super */ 3390 err = sanity_check_raw_super(sbi, bh); 3391 if (err) { 3392 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock", 3393 block + 1); 3394 brelse(bh); 3395 *recovery = 1; 3396 continue; 3397 } 3398 3399 if (!*raw_super) { 3400 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 3401 sizeof(*super)); 3402 *valid_super_block = block; 3403 *raw_super = super; 3404 } 3405 brelse(bh); 3406 } 3407 3408 /* No valid superblock */ 3409 if (!*raw_super) 3410 kfree(super); 3411 else 3412 err = 0; 3413 3414 return err; 3415 } 3416 3417 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 3418 { 3419 struct buffer_head *bh; 3420 __u32 crc = 0; 3421 int err; 3422 3423 if ((recover && f2fs_readonly(sbi->sb)) || 3424 bdev_read_only(sbi->sb->s_bdev)) { 3425 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3426 return -EROFS; 3427 } 3428 3429 /* we should update superblock crc here */ 3430 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 3431 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 3432 offsetof(struct f2fs_super_block, crc)); 3433 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 3434 } 3435 3436 /* write back-up superblock first */ 3437 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 3438 if (!bh) 3439 return -EIO; 3440 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3441 brelse(bh); 3442 3443 /* if we are in recovery path, skip writing valid superblock */ 3444 if (recover || err) 3445 return err; 3446 3447 /* write current valid superblock */ 3448 bh = sb_bread(sbi->sb, sbi->valid_super_block); 3449 if (!bh) 3450 return -EIO; 3451 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3452 brelse(bh); 3453 return err; 3454 } 3455 3456 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 3457 { 3458 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3459 unsigned int max_devices = MAX_DEVICES; 3460 int i; 3461 3462 /* Initialize single device information */ 3463 if (!RDEV(0).path[0]) { 3464 if (!bdev_is_zoned(sbi->sb->s_bdev)) 3465 return 0; 3466 max_devices = 1; 3467 } 3468 3469 /* 3470 * Initialize multiple devices information, or single 3471 * zoned block device information. 3472 */ 3473 sbi->devs = f2fs_kzalloc(sbi, 3474 array_size(max_devices, 3475 sizeof(struct f2fs_dev_info)), 3476 GFP_KERNEL); 3477 if (!sbi->devs) 3478 return -ENOMEM; 3479 3480 for (i = 0; i < max_devices; i++) { 3481 3482 if (i > 0 && !RDEV(i).path[0]) 3483 break; 3484 3485 if (max_devices == 1) { 3486 /* Single zoned block device mount */ 3487 FDEV(0).bdev = 3488 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev, 3489 sbi->sb->s_mode, sbi->sb->s_type); 3490 } else { 3491 /* Multi-device mount */ 3492 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 3493 FDEV(i).total_segments = 3494 le32_to_cpu(RDEV(i).total_segments); 3495 if (i == 0) { 3496 FDEV(i).start_blk = 0; 3497 FDEV(i).end_blk = FDEV(i).start_blk + 3498 (FDEV(i).total_segments << 3499 sbi->log_blocks_per_seg) - 1 + 3500 le32_to_cpu(raw_super->segment0_blkaddr); 3501 } else { 3502 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 3503 FDEV(i).end_blk = FDEV(i).start_blk + 3504 (FDEV(i).total_segments << 3505 sbi->log_blocks_per_seg) - 1; 3506 } 3507 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 3508 sbi->sb->s_mode, sbi->sb->s_type); 3509 } 3510 if (IS_ERR(FDEV(i).bdev)) 3511 return PTR_ERR(FDEV(i).bdev); 3512 3513 /* to release errored devices */ 3514 sbi->s_ndevs = i + 1; 3515 3516 #ifdef CONFIG_BLK_DEV_ZONED 3517 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 3518 !f2fs_sb_has_blkzoned(sbi)) { 3519 f2fs_err(sbi, "Zoned block device feature not enabled\n"); 3520 return -EINVAL; 3521 } 3522 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 3523 if (init_blkz_info(sbi, i)) { 3524 f2fs_err(sbi, "Failed to initialize F2FS blkzone information"); 3525 return -EINVAL; 3526 } 3527 if (max_devices == 1) 3528 break; 3529 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 3530 i, FDEV(i).path, 3531 FDEV(i).total_segments, 3532 FDEV(i).start_blk, FDEV(i).end_blk, 3533 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 3534 "Host-aware" : "Host-managed"); 3535 continue; 3536 } 3537 #endif 3538 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x", 3539 i, FDEV(i).path, 3540 FDEV(i).total_segments, 3541 FDEV(i).start_blk, FDEV(i).end_blk); 3542 } 3543 f2fs_info(sbi, 3544 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi)); 3545 return 0; 3546 } 3547 3548 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi) 3549 { 3550 #ifdef CONFIG_UNICODE 3551 if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) { 3552 const struct f2fs_sb_encodings *encoding_info; 3553 struct unicode_map *encoding; 3554 __u16 encoding_flags; 3555 3556 if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info, 3557 &encoding_flags)) { 3558 f2fs_err(sbi, 3559 "Encoding requested by superblock is unknown"); 3560 return -EINVAL; 3561 } 3562 3563 encoding = utf8_load(encoding_info->version); 3564 if (IS_ERR(encoding)) { 3565 f2fs_err(sbi, 3566 "can't mount with superblock charset: %s-%s " 3567 "not supported by the kernel. flags: 0x%x.", 3568 encoding_info->name, encoding_info->version, 3569 encoding_flags); 3570 return PTR_ERR(encoding); 3571 } 3572 f2fs_info(sbi, "Using encoding defined by superblock: " 3573 "%s-%s with flags 0x%hx", encoding_info->name, 3574 encoding_info->version?:"\b", encoding_flags); 3575 3576 sbi->sb->s_encoding = encoding; 3577 sbi->sb->s_encoding_flags = encoding_flags; 3578 } 3579 #else 3580 if (f2fs_sb_has_casefold(sbi)) { 3581 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 3582 return -EINVAL; 3583 } 3584 #endif 3585 return 0; 3586 } 3587 3588 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 3589 { 3590 struct f2fs_sm_info *sm_i = SM_I(sbi); 3591 3592 /* adjust parameters according to the volume size */ 3593 if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) { 3594 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 3595 sm_i->dcc_info->discard_granularity = 1; 3596 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE; 3597 } 3598 3599 sbi->readdir_ra = 1; 3600 } 3601 3602 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 3603 { 3604 struct f2fs_sb_info *sbi; 3605 struct f2fs_super_block *raw_super; 3606 struct inode *root; 3607 int err; 3608 bool skip_recovery = false, need_fsck = false; 3609 char *options = NULL; 3610 int recovery, i, valid_super_block; 3611 struct curseg_info *seg_i; 3612 int retry_cnt = 1; 3613 3614 try_onemore: 3615 err = -EINVAL; 3616 raw_super = NULL; 3617 valid_super_block = -1; 3618 recovery = 0; 3619 3620 /* allocate memory for f2fs-specific super block info */ 3621 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 3622 if (!sbi) 3623 return -ENOMEM; 3624 3625 sbi->sb = sb; 3626 3627 /* Load the checksum driver */ 3628 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 3629 if (IS_ERR(sbi->s_chksum_driver)) { 3630 f2fs_err(sbi, "Cannot load crc32 driver."); 3631 err = PTR_ERR(sbi->s_chksum_driver); 3632 sbi->s_chksum_driver = NULL; 3633 goto free_sbi; 3634 } 3635 3636 /* set a block size */ 3637 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 3638 f2fs_err(sbi, "unable to set blocksize"); 3639 goto free_sbi; 3640 } 3641 3642 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 3643 &recovery); 3644 if (err) 3645 goto free_sbi; 3646 3647 sb->s_fs_info = sbi; 3648 sbi->raw_super = raw_super; 3649 3650 /* precompute checksum seed for metadata */ 3651 if (f2fs_sb_has_inode_chksum(sbi)) 3652 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 3653 sizeof(raw_super->uuid)); 3654 3655 default_options(sbi); 3656 /* parse mount options */ 3657 options = kstrdup((const char *)data, GFP_KERNEL); 3658 if (data && !options) { 3659 err = -ENOMEM; 3660 goto free_sb_buf; 3661 } 3662 3663 err = parse_options(sb, options, false); 3664 if (err) 3665 goto free_options; 3666 3667 sb->s_maxbytes = max_file_blocks(NULL) << 3668 le32_to_cpu(raw_super->log_blocksize); 3669 sb->s_max_links = F2FS_LINK_MAX; 3670 3671 err = f2fs_setup_casefold(sbi); 3672 if (err) 3673 goto free_options; 3674 3675 #ifdef CONFIG_QUOTA 3676 sb->dq_op = &f2fs_quota_operations; 3677 sb->s_qcop = &f2fs_quotactl_ops; 3678 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 3679 3680 if (f2fs_sb_has_quota_ino(sbi)) { 3681 for (i = 0; i < MAXQUOTAS; i++) { 3682 if (f2fs_qf_ino(sbi->sb, i)) 3683 sbi->nquota_files++; 3684 } 3685 } 3686 #endif 3687 3688 sb->s_op = &f2fs_sops; 3689 #ifdef CONFIG_FS_ENCRYPTION 3690 sb->s_cop = &f2fs_cryptops; 3691 #endif 3692 #ifdef CONFIG_FS_VERITY 3693 sb->s_vop = &f2fs_verityops; 3694 #endif 3695 sb->s_xattr = f2fs_xattr_handlers; 3696 sb->s_export_op = &f2fs_export_ops; 3697 sb->s_magic = F2FS_SUPER_MAGIC; 3698 sb->s_time_gran = 1; 3699 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3700 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 3701 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 3702 sb->s_iflags |= SB_I_CGROUPWB; 3703 3704 /* init f2fs-specific super block info */ 3705 sbi->valid_super_block = valid_super_block; 3706 init_rwsem(&sbi->gc_lock); 3707 mutex_init(&sbi->writepages); 3708 init_rwsem(&sbi->cp_global_sem); 3709 init_rwsem(&sbi->node_write); 3710 init_rwsem(&sbi->node_change); 3711 3712 /* disallow all the data/node/meta page writes */ 3713 set_sbi_flag(sbi, SBI_POR_DOING); 3714 spin_lock_init(&sbi->stat_lock); 3715 3716 /* init iostat info */ 3717 spin_lock_init(&sbi->iostat_lock); 3718 sbi->iostat_enable = false; 3719 sbi->iostat_period_ms = DEFAULT_IOSTAT_PERIOD_MS; 3720 3721 for (i = 0; i < NR_PAGE_TYPE; i++) { 3722 int n = (i == META) ? 1: NR_TEMP_TYPE; 3723 int j; 3724 3725 sbi->write_io[i] = 3726 f2fs_kmalloc(sbi, 3727 array_size(n, 3728 sizeof(struct f2fs_bio_info)), 3729 GFP_KERNEL); 3730 if (!sbi->write_io[i]) { 3731 err = -ENOMEM; 3732 goto free_bio_info; 3733 } 3734 3735 for (j = HOT; j < n; j++) { 3736 init_rwsem(&sbi->write_io[i][j].io_rwsem); 3737 sbi->write_io[i][j].sbi = sbi; 3738 sbi->write_io[i][j].bio = NULL; 3739 spin_lock_init(&sbi->write_io[i][j].io_lock); 3740 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 3741 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list); 3742 init_rwsem(&sbi->write_io[i][j].bio_list_lock); 3743 } 3744 } 3745 3746 init_rwsem(&sbi->cp_rwsem); 3747 init_rwsem(&sbi->quota_sem); 3748 init_waitqueue_head(&sbi->cp_wait); 3749 init_sb_info(sbi); 3750 3751 err = init_percpu_info(sbi); 3752 if (err) 3753 goto free_bio_info; 3754 3755 if (F2FS_IO_ALIGNED(sbi)) { 3756 sbi->write_io_dummy = 3757 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); 3758 if (!sbi->write_io_dummy) { 3759 err = -ENOMEM; 3760 goto free_percpu; 3761 } 3762 } 3763 3764 /* init per sbi slab cache */ 3765 err = f2fs_init_xattr_caches(sbi); 3766 if (err) 3767 goto free_io_dummy; 3768 err = f2fs_init_page_array_cache(sbi); 3769 if (err) 3770 goto free_xattr_cache; 3771 3772 /* get an inode for meta space */ 3773 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 3774 if (IS_ERR(sbi->meta_inode)) { 3775 f2fs_err(sbi, "Failed to read F2FS meta data inode"); 3776 err = PTR_ERR(sbi->meta_inode); 3777 goto free_page_array_cache; 3778 } 3779 3780 err = f2fs_get_valid_checkpoint(sbi); 3781 if (err) { 3782 f2fs_err(sbi, "Failed to get valid F2FS checkpoint"); 3783 goto free_meta_inode; 3784 } 3785 3786 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 3787 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3788 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 3789 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 3790 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 3791 } 3792 3793 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG)) 3794 set_sbi_flag(sbi, SBI_NEED_FSCK); 3795 3796 /* Initialize device list */ 3797 err = f2fs_scan_devices(sbi); 3798 if (err) { 3799 f2fs_err(sbi, "Failed to find devices"); 3800 goto free_devices; 3801 } 3802 3803 err = f2fs_init_post_read_wq(sbi); 3804 if (err) { 3805 f2fs_err(sbi, "Failed to initialize post read workqueue"); 3806 goto free_devices; 3807 } 3808 3809 sbi->total_valid_node_count = 3810 le32_to_cpu(sbi->ckpt->valid_node_count); 3811 percpu_counter_set(&sbi->total_valid_inode_count, 3812 le32_to_cpu(sbi->ckpt->valid_inode_count)); 3813 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 3814 sbi->total_valid_block_count = 3815 le64_to_cpu(sbi->ckpt->valid_block_count); 3816 sbi->last_valid_block_count = sbi->total_valid_block_count; 3817 sbi->reserved_blocks = 0; 3818 sbi->current_reserved_blocks = 0; 3819 limit_reserve_root(sbi); 3820 adjust_unusable_cap_perc(sbi); 3821 3822 for (i = 0; i < NR_INODE_TYPE; i++) { 3823 INIT_LIST_HEAD(&sbi->inode_list[i]); 3824 spin_lock_init(&sbi->inode_lock[i]); 3825 } 3826 mutex_init(&sbi->flush_lock); 3827 3828 f2fs_init_extent_cache_info(sbi); 3829 3830 f2fs_init_ino_entry_info(sbi); 3831 3832 f2fs_init_fsync_node_info(sbi); 3833 3834 /* setup checkpoint request control and start checkpoint issue thread */ 3835 f2fs_init_ckpt_req_control(sbi); 3836 if (!test_opt(sbi, DISABLE_CHECKPOINT) && 3837 test_opt(sbi, MERGE_CHECKPOINT)) { 3838 err = f2fs_start_ckpt_thread(sbi); 3839 if (err) { 3840 f2fs_err(sbi, 3841 "Failed to start F2FS issue_checkpoint_thread (%d)", 3842 err); 3843 goto stop_ckpt_thread; 3844 } 3845 } 3846 3847 /* setup f2fs internal modules */ 3848 err = f2fs_build_segment_manager(sbi); 3849 if (err) { 3850 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)", 3851 err); 3852 goto free_sm; 3853 } 3854 err = f2fs_build_node_manager(sbi); 3855 if (err) { 3856 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)", 3857 err); 3858 goto free_nm; 3859 } 3860 3861 /* For write statistics */ 3862 sbi->sectors_written_start = f2fs_get_sectors_written(sbi); 3863 3864 /* Read accumulated write IO statistics if exists */ 3865 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 3866 if (__exist_node_summaries(sbi)) 3867 sbi->kbytes_written = 3868 le64_to_cpu(seg_i->journal->info.kbytes_written); 3869 3870 f2fs_build_gc_manager(sbi); 3871 3872 err = f2fs_build_stats(sbi); 3873 if (err) 3874 goto free_nm; 3875 3876 /* get an inode for node space */ 3877 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 3878 if (IS_ERR(sbi->node_inode)) { 3879 f2fs_err(sbi, "Failed to read node inode"); 3880 err = PTR_ERR(sbi->node_inode); 3881 goto free_stats; 3882 } 3883 3884 /* read root inode and dentry */ 3885 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 3886 if (IS_ERR(root)) { 3887 f2fs_err(sbi, "Failed to read root inode"); 3888 err = PTR_ERR(root); 3889 goto free_node_inode; 3890 } 3891 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 3892 !root->i_size || !root->i_nlink) { 3893 iput(root); 3894 err = -EINVAL; 3895 goto free_node_inode; 3896 } 3897 3898 sb->s_root = d_make_root(root); /* allocate root dentry */ 3899 if (!sb->s_root) { 3900 err = -ENOMEM; 3901 goto free_node_inode; 3902 } 3903 3904 err = f2fs_register_sysfs(sbi); 3905 if (err) 3906 goto free_root_inode; 3907 3908 #ifdef CONFIG_QUOTA 3909 /* Enable quota usage during mount */ 3910 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 3911 err = f2fs_enable_quotas(sb); 3912 if (err) 3913 f2fs_err(sbi, "Cannot turn on quotas: error %d", err); 3914 } 3915 #endif 3916 /* if there are any orphan inodes, free them */ 3917 err = f2fs_recover_orphan_inodes(sbi); 3918 if (err) 3919 goto free_meta; 3920 3921 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 3922 goto reset_checkpoint; 3923 3924 /* recover fsynced data */ 3925 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) && 3926 !test_opt(sbi, NORECOVERY)) { 3927 /* 3928 * mount should be failed, when device has readonly mode, and 3929 * previous checkpoint was not done by clean system shutdown. 3930 */ 3931 if (f2fs_hw_is_readonly(sbi)) { 3932 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) 3933 f2fs_err(sbi, "Need to recover fsync data, but write access unavailable"); 3934 else 3935 f2fs_info(sbi, "write access unavailable, skipping recovery"); 3936 goto reset_checkpoint; 3937 } 3938 3939 if (need_fsck) 3940 set_sbi_flag(sbi, SBI_NEED_FSCK); 3941 3942 if (skip_recovery) 3943 goto reset_checkpoint; 3944 3945 err = f2fs_recover_fsync_data(sbi, false); 3946 if (err < 0) { 3947 if (err != -ENOMEM) 3948 skip_recovery = true; 3949 need_fsck = true; 3950 f2fs_err(sbi, "Cannot recover all fsync data errno=%d", 3951 err); 3952 goto free_meta; 3953 } 3954 } else { 3955 err = f2fs_recover_fsync_data(sbi, true); 3956 3957 if (!f2fs_readonly(sb) && err > 0) { 3958 err = -EINVAL; 3959 f2fs_err(sbi, "Need to recover fsync data"); 3960 goto free_meta; 3961 } 3962 } 3963 3964 /* 3965 * If the f2fs is not readonly and fsync data recovery succeeds, 3966 * check zoned block devices' write pointer consistency. 3967 */ 3968 if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) { 3969 err = f2fs_check_write_pointer(sbi); 3970 if (err) 3971 goto free_meta; 3972 } 3973 3974 reset_checkpoint: 3975 f2fs_init_inmem_curseg(sbi); 3976 3977 /* f2fs_recover_fsync_data() cleared this already */ 3978 clear_sbi_flag(sbi, SBI_POR_DOING); 3979 3980 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 3981 err = f2fs_disable_checkpoint(sbi); 3982 if (err) 3983 goto sync_free_meta; 3984 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 3985 f2fs_enable_checkpoint(sbi); 3986 } 3987 3988 /* 3989 * If filesystem is not mounted as read-only then 3990 * do start the gc_thread. 3991 */ 3992 if (F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF && !f2fs_readonly(sb)) { 3993 /* After POR, we can run background GC thread.*/ 3994 err = f2fs_start_gc_thread(sbi); 3995 if (err) 3996 goto sync_free_meta; 3997 } 3998 kvfree(options); 3999 4000 /* recover broken superblock */ 4001 if (recovery) { 4002 err = f2fs_commit_super(sbi, true); 4003 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d", 4004 sbi->valid_super_block ? 1 : 2, err); 4005 } 4006 4007 f2fs_join_shrinker(sbi); 4008 4009 f2fs_tuning_parameters(sbi); 4010 4011 f2fs_notice(sbi, "Mounted with checkpoint version = %llx", 4012 cur_cp_version(F2FS_CKPT(sbi))); 4013 f2fs_update_time(sbi, CP_TIME); 4014 f2fs_update_time(sbi, REQ_TIME); 4015 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4016 return 0; 4017 4018 sync_free_meta: 4019 /* safe to flush all the data */ 4020 sync_filesystem(sbi->sb); 4021 retry_cnt = 0; 4022 4023 free_meta: 4024 #ifdef CONFIG_QUOTA 4025 f2fs_truncate_quota_inode_pages(sb); 4026 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 4027 f2fs_quota_off_umount(sbi->sb); 4028 #endif 4029 /* 4030 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 4031 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 4032 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 4033 * falls into an infinite loop in f2fs_sync_meta_pages(). 4034 */ 4035 truncate_inode_pages_final(META_MAPPING(sbi)); 4036 /* evict some inodes being cached by GC */ 4037 evict_inodes(sb); 4038 f2fs_unregister_sysfs(sbi); 4039 free_root_inode: 4040 dput(sb->s_root); 4041 sb->s_root = NULL; 4042 free_node_inode: 4043 f2fs_release_ino_entry(sbi, true); 4044 truncate_inode_pages_final(NODE_MAPPING(sbi)); 4045 iput(sbi->node_inode); 4046 sbi->node_inode = NULL; 4047 free_stats: 4048 f2fs_destroy_stats(sbi); 4049 free_nm: 4050 f2fs_destroy_node_manager(sbi); 4051 free_sm: 4052 f2fs_destroy_segment_manager(sbi); 4053 f2fs_destroy_post_read_wq(sbi); 4054 stop_ckpt_thread: 4055 f2fs_stop_ckpt_thread(sbi); 4056 free_devices: 4057 destroy_device_list(sbi); 4058 kvfree(sbi->ckpt); 4059 free_meta_inode: 4060 make_bad_inode(sbi->meta_inode); 4061 iput(sbi->meta_inode); 4062 sbi->meta_inode = NULL; 4063 free_page_array_cache: 4064 f2fs_destroy_page_array_cache(sbi); 4065 free_xattr_cache: 4066 f2fs_destroy_xattr_caches(sbi); 4067 free_io_dummy: 4068 mempool_destroy(sbi->write_io_dummy); 4069 free_percpu: 4070 destroy_percpu_info(sbi); 4071 free_bio_info: 4072 for (i = 0; i < NR_PAGE_TYPE; i++) 4073 kvfree(sbi->write_io[i]); 4074 4075 #ifdef CONFIG_UNICODE 4076 utf8_unload(sb->s_encoding); 4077 sb->s_encoding = NULL; 4078 #endif 4079 free_options: 4080 #ifdef CONFIG_QUOTA 4081 for (i = 0; i < MAXQUOTAS; i++) 4082 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 4083 #endif 4084 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 4085 kvfree(options); 4086 free_sb_buf: 4087 kfree(raw_super); 4088 free_sbi: 4089 if (sbi->s_chksum_driver) 4090 crypto_free_shash(sbi->s_chksum_driver); 4091 kfree(sbi); 4092 4093 /* give only one another chance */ 4094 if (retry_cnt > 0 && skip_recovery) { 4095 retry_cnt--; 4096 shrink_dcache_sb(sb); 4097 goto try_onemore; 4098 } 4099 return err; 4100 } 4101 4102 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 4103 const char *dev_name, void *data) 4104 { 4105 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 4106 } 4107 4108 static void kill_f2fs_super(struct super_block *sb) 4109 { 4110 if (sb->s_root) { 4111 struct f2fs_sb_info *sbi = F2FS_SB(sb); 4112 4113 set_sbi_flag(sbi, SBI_IS_CLOSE); 4114 f2fs_stop_gc_thread(sbi); 4115 f2fs_stop_discard_thread(sbi); 4116 4117 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 4118 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4119 struct cp_control cpc = { 4120 .reason = CP_UMOUNT, 4121 }; 4122 f2fs_write_checkpoint(sbi, &cpc); 4123 } 4124 4125 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 4126 sb->s_flags &= ~SB_RDONLY; 4127 } 4128 kill_block_super(sb); 4129 } 4130 4131 static struct file_system_type f2fs_fs_type = { 4132 .owner = THIS_MODULE, 4133 .name = "f2fs", 4134 .mount = f2fs_mount, 4135 .kill_sb = kill_f2fs_super, 4136 .fs_flags = FS_REQUIRES_DEV, 4137 }; 4138 MODULE_ALIAS_FS("f2fs"); 4139 4140 static int __init init_inodecache(void) 4141 { 4142 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 4143 sizeof(struct f2fs_inode_info), 0, 4144 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 4145 if (!f2fs_inode_cachep) 4146 return -ENOMEM; 4147 return 0; 4148 } 4149 4150 static void destroy_inodecache(void) 4151 { 4152 /* 4153 * Make sure all delayed rcu free inodes are flushed before we 4154 * destroy cache. 4155 */ 4156 rcu_barrier(); 4157 kmem_cache_destroy(f2fs_inode_cachep); 4158 } 4159 4160 static int __init init_f2fs_fs(void) 4161 { 4162 int err; 4163 4164 if (PAGE_SIZE != F2FS_BLKSIZE) { 4165 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n", 4166 PAGE_SIZE, F2FS_BLKSIZE); 4167 return -EINVAL; 4168 } 4169 4170 err = init_inodecache(); 4171 if (err) 4172 goto fail; 4173 err = f2fs_create_node_manager_caches(); 4174 if (err) 4175 goto free_inodecache; 4176 err = f2fs_create_segment_manager_caches(); 4177 if (err) 4178 goto free_node_manager_caches; 4179 err = f2fs_create_checkpoint_caches(); 4180 if (err) 4181 goto free_segment_manager_caches; 4182 err = f2fs_create_extent_cache(); 4183 if (err) 4184 goto free_checkpoint_caches; 4185 err = f2fs_create_garbage_collection_cache(); 4186 if (err) 4187 goto free_extent_cache; 4188 err = f2fs_init_sysfs(); 4189 if (err) 4190 goto free_garbage_collection_cache; 4191 err = register_shrinker(&f2fs_shrinker_info); 4192 if (err) 4193 goto free_sysfs; 4194 err = register_filesystem(&f2fs_fs_type); 4195 if (err) 4196 goto free_shrinker; 4197 f2fs_create_root_stats(); 4198 err = f2fs_init_post_read_processing(); 4199 if (err) 4200 goto free_root_stats; 4201 err = f2fs_init_bio_entry_cache(); 4202 if (err) 4203 goto free_post_read; 4204 err = f2fs_init_bioset(); 4205 if (err) 4206 goto free_bio_enrty_cache; 4207 err = f2fs_init_compress_mempool(); 4208 if (err) 4209 goto free_bioset; 4210 err = f2fs_init_compress_cache(); 4211 if (err) 4212 goto free_compress_mempool; 4213 return 0; 4214 free_compress_mempool: 4215 f2fs_destroy_compress_mempool(); 4216 free_bioset: 4217 f2fs_destroy_bioset(); 4218 free_bio_enrty_cache: 4219 f2fs_destroy_bio_entry_cache(); 4220 free_post_read: 4221 f2fs_destroy_post_read_processing(); 4222 free_root_stats: 4223 f2fs_destroy_root_stats(); 4224 unregister_filesystem(&f2fs_fs_type); 4225 free_shrinker: 4226 unregister_shrinker(&f2fs_shrinker_info); 4227 free_sysfs: 4228 f2fs_exit_sysfs(); 4229 free_garbage_collection_cache: 4230 f2fs_destroy_garbage_collection_cache(); 4231 free_extent_cache: 4232 f2fs_destroy_extent_cache(); 4233 free_checkpoint_caches: 4234 f2fs_destroy_checkpoint_caches(); 4235 free_segment_manager_caches: 4236 f2fs_destroy_segment_manager_caches(); 4237 free_node_manager_caches: 4238 f2fs_destroy_node_manager_caches(); 4239 free_inodecache: 4240 destroy_inodecache(); 4241 fail: 4242 return err; 4243 } 4244 4245 static void __exit exit_f2fs_fs(void) 4246 { 4247 f2fs_destroy_compress_cache(); 4248 f2fs_destroy_compress_mempool(); 4249 f2fs_destroy_bioset(); 4250 f2fs_destroy_bio_entry_cache(); 4251 f2fs_destroy_post_read_processing(); 4252 f2fs_destroy_root_stats(); 4253 unregister_filesystem(&f2fs_fs_type); 4254 unregister_shrinker(&f2fs_shrinker_info); 4255 f2fs_exit_sysfs(); 4256 f2fs_destroy_garbage_collection_cache(); 4257 f2fs_destroy_extent_cache(); 4258 f2fs_destroy_checkpoint_caches(); 4259 f2fs_destroy_segment_manager_caches(); 4260 f2fs_destroy_node_manager_caches(); 4261 destroy_inodecache(); 4262 } 4263 4264 module_init(init_f2fs_fs) 4265 module_exit(exit_f2fs_fs) 4266 4267 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 4268 MODULE_DESCRIPTION("Flash Friendly File System"); 4269 MODULE_LICENSE("GPL"); 4270 4271