xref: /openbmc/linux/fs/f2fs/super.c (revision 7f9321ff)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/statfs.h>
12 #include <linux/buffer_head.h>
13 #include <linux/backing-dev.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 #include <linux/unicode.h>
27 #include <linux/part_stat.h>
28 #include <linux/zstd.h>
29 #include <linux/lz4.h>
30 
31 #include "f2fs.h"
32 #include "node.h"
33 #include "segment.h"
34 #include "xattr.h"
35 #include "gc.h"
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/f2fs.h>
39 
40 static struct kmem_cache *f2fs_inode_cachep;
41 
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 
44 const char *f2fs_fault_name[FAULT_MAX] = {
45 	[FAULT_KMALLOC]		= "kmalloc",
46 	[FAULT_KVMALLOC]	= "kvmalloc",
47 	[FAULT_PAGE_ALLOC]	= "page alloc",
48 	[FAULT_PAGE_GET]	= "page get",
49 	[FAULT_ALLOC_NID]	= "alloc nid",
50 	[FAULT_ORPHAN]		= "orphan",
51 	[FAULT_BLOCK]		= "no more block",
52 	[FAULT_DIR_DEPTH]	= "too big dir depth",
53 	[FAULT_EVICT_INODE]	= "evict_inode fail",
54 	[FAULT_TRUNCATE]	= "truncate fail",
55 	[FAULT_READ_IO]		= "read IO error",
56 	[FAULT_CHECKPOINT]	= "checkpoint error",
57 	[FAULT_DISCARD]		= "discard error",
58 	[FAULT_WRITE_IO]	= "write IO error",
59 };
60 
61 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
62 							unsigned int type)
63 {
64 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
65 
66 	if (rate) {
67 		atomic_set(&ffi->inject_ops, 0);
68 		ffi->inject_rate = rate;
69 	}
70 
71 	if (type)
72 		ffi->inject_type = type;
73 
74 	if (!rate && !type)
75 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
76 }
77 #endif
78 
79 /* f2fs-wide shrinker description */
80 static struct shrinker f2fs_shrinker_info = {
81 	.scan_objects = f2fs_shrink_scan,
82 	.count_objects = f2fs_shrink_count,
83 	.seeks = DEFAULT_SEEKS,
84 };
85 
86 enum {
87 	Opt_gc_background,
88 	Opt_disable_roll_forward,
89 	Opt_norecovery,
90 	Opt_discard,
91 	Opt_nodiscard,
92 	Opt_noheap,
93 	Opt_heap,
94 	Opt_user_xattr,
95 	Opt_nouser_xattr,
96 	Opt_acl,
97 	Opt_noacl,
98 	Opt_active_logs,
99 	Opt_disable_ext_identify,
100 	Opt_inline_xattr,
101 	Opt_noinline_xattr,
102 	Opt_inline_xattr_size,
103 	Opt_inline_data,
104 	Opt_inline_dentry,
105 	Opt_noinline_dentry,
106 	Opt_flush_merge,
107 	Opt_noflush_merge,
108 	Opt_nobarrier,
109 	Opt_fastboot,
110 	Opt_extent_cache,
111 	Opt_noextent_cache,
112 	Opt_noinline_data,
113 	Opt_data_flush,
114 	Opt_reserve_root,
115 	Opt_resgid,
116 	Opt_resuid,
117 	Opt_mode,
118 	Opt_io_size_bits,
119 	Opt_fault_injection,
120 	Opt_fault_type,
121 	Opt_lazytime,
122 	Opt_nolazytime,
123 	Opt_quota,
124 	Opt_noquota,
125 	Opt_usrquota,
126 	Opt_grpquota,
127 	Opt_prjquota,
128 	Opt_usrjquota,
129 	Opt_grpjquota,
130 	Opt_prjjquota,
131 	Opt_offusrjquota,
132 	Opt_offgrpjquota,
133 	Opt_offprjjquota,
134 	Opt_jqfmt_vfsold,
135 	Opt_jqfmt_vfsv0,
136 	Opt_jqfmt_vfsv1,
137 	Opt_whint,
138 	Opt_alloc,
139 	Opt_fsync,
140 	Opt_test_dummy_encryption,
141 	Opt_inlinecrypt,
142 	Opt_checkpoint_disable,
143 	Opt_checkpoint_disable_cap,
144 	Opt_checkpoint_disable_cap_perc,
145 	Opt_checkpoint_enable,
146 	Opt_checkpoint_merge,
147 	Opt_nocheckpoint_merge,
148 	Opt_compress_algorithm,
149 	Opt_compress_log_size,
150 	Opt_compress_extension,
151 	Opt_compress_chksum,
152 	Opt_compress_mode,
153 	Opt_atgc,
154 	Opt_err,
155 };
156 
157 static match_table_t f2fs_tokens = {
158 	{Opt_gc_background, "background_gc=%s"},
159 	{Opt_disable_roll_forward, "disable_roll_forward"},
160 	{Opt_norecovery, "norecovery"},
161 	{Opt_discard, "discard"},
162 	{Opt_nodiscard, "nodiscard"},
163 	{Opt_noheap, "no_heap"},
164 	{Opt_heap, "heap"},
165 	{Opt_user_xattr, "user_xattr"},
166 	{Opt_nouser_xattr, "nouser_xattr"},
167 	{Opt_acl, "acl"},
168 	{Opt_noacl, "noacl"},
169 	{Opt_active_logs, "active_logs=%u"},
170 	{Opt_disable_ext_identify, "disable_ext_identify"},
171 	{Opt_inline_xattr, "inline_xattr"},
172 	{Opt_noinline_xattr, "noinline_xattr"},
173 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
174 	{Opt_inline_data, "inline_data"},
175 	{Opt_inline_dentry, "inline_dentry"},
176 	{Opt_noinline_dentry, "noinline_dentry"},
177 	{Opt_flush_merge, "flush_merge"},
178 	{Opt_noflush_merge, "noflush_merge"},
179 	{Opt_nobarrier, "nobarrier"},
180 	{Opt_fastboot, "fastboot"},
181 	{Opt_extent_cache, "extent_cache"},
182 	{Opt_noextent_cache, "noextent_cache"},
183 	{Opt_noinline_data, "noinline_data"},
184 	{Opt_data_flush, "data_flush"},
185 	{Opt_reserve_root, "reserve_root=%u"},
186 	{Opt_resgid, "resgid=%u"},
187 	{Opt_resuid, "resuid=%u"},
188 	{Opt_mode, "mode=%s"},
189 	{Opt_io_size_bits, "io_bits=%u"},
190 	{Opt_fault_injection, "fault_injection=%u"},
191 	{Opt_fault_type, "fault_type=%u"},
192 	{Opt_lazytime, "lazytime"},
193 	{Opt_nolazytime, "nolazytime"},
194 	{Opt_quota, "quota"},
195 	{Opt_noquota, "noquota"},
196 	{Opt_usrquota, "usrquota"},
197 	{Opt_grpquota, "grpquota"},
198 	{Opt_prjquota, "prjquota"},
199 	{Opt_usrjquota, "usrjquota=%s"},
200 	{Opt_grpjquota, "grpjquota=%s"},
201 	{Opt_prjjquota, "prjjquota=%s"},
202 	{Opt_offusrjquota, "usrjquota="},
203 	{Opt_offgrpjquota, "grpjquota="},
204 	{Opt_offprjjquota, "prjjquota="},
205 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
206 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
207 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
208 	{Opt_whint, "whint_mode=%s"},
209 	{Opt_alloc, "alloc_mode=%s"},
210 	{Opt_fsync, "fsync_mode=%s"},
211 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
212 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
213 	{Opt_inlinecrypt, "inlinecrypt"},
214 	{Opt_checkpoint_disable, "checkpoint=disable"},
215 	{Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
216 	{Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
217 	{Opt_checkpoint_enable, "checkpoint=enable"},
218 	{Opt_checkpoint_merge, "checkpoint_merge"},
219 	{Opt_nocheckpoint_merge, "nocheckpoint_merge"},
220 	{Opt_compress_algorithm, "compress_algorithm=%s"},
221 	{Opt_compress_log_size, "compress_log_size=%u"},
222 	{Opt_compress_extension, "compress_extension=%s"},
223 	{Opt_compress_chksum, "compress_chksum"},
224 	{Opt_compress_mode, "compress_mode=%s"},
225 	{Opt_atgc, "atgc"},
226 	{Opt_err, NULL},
227 };
228 
229 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
230 {
231 	struct va_format vaf;
232 	va_list args;
233 	int level;
234 
235 	va_start(args, fmt);
236 
237 	level = printk_get_level(fmt);
238 	vaf.fmt = printk_skip_level(fmt);
239 	vaf.va = &args;
240 	printk("%c%cF2FS-fs (%s): %pV\n",
241 	       KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
242 
243 	va_end(args);
244 }
245 
246 #ifdef CONFIG_UNICODE
247 static const struct f2fs_sb_encodings {
248 	__u16 magic;
249 	char *name;
250 	char *version;
251 } f2fs_sb_encoding_map[] = {
252 	{F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"},
253 };
254 
255 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb,
256 				 const struct f2fs_sb_encodings **encoding,
257 				 __u16 *flags)
258 {
259 	__u16 magic = le16_to_cpu(sb->s_encoding);
260 	int i;
261 
262 	for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
263 		if (magic == f2fs_sb_encoding_map[i].magic)
264 			break;
265 
266 	if (i >= ARRAY_SIZE(f2fs_sb_encoding_map))
267 		return -EINVAL;
268 
269 	*encoding = &f2fs_sb_encoding_map[i];
270 	*flags = le16_to_cpu(sb->s_encoding_flags);
271 
272 	return 0;
273 }
274 #endif
275 
276 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
277 {
278 	block_t limit = min((sbi->user_block_count << 1) / 1000,
279 			sbi->user_block_count - sbi->reserved_blocks);
280 
281 	/* limit is 0.2% */
282 	if (test_opt(sbi, RESERVE_ROOT) &&
283 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
284 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
285 		f2fs_info(sbi, "Reduce reserved blocks for root = %u",
286 			  F2FS_OPTION(sbi).root_reserved_blocks);
287 	}
288 	if (!test_opt(sbi, RESERVE_ROOT) &&
289 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
290 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
291 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
292 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
293 		f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
294 			  from_kuid_munged(&init_user_ns,
295 					   F2FS_OPTION(sbi).s_resuid),
296 			  from_kgid_munged(&init_user_ns,
297 					   F2FS_OPTION(sbi).s_resgid));
298 }
299 
300 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
301 {
302 	if (!F2FS_OPTION(sbi).unusable_cap_perc)
303 		return;
304 
305 	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
306 		F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
307 	else
308 		F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
309 					F2FS_OPTION(sbi).unusable_cap_perc;
310 
311 	f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
312 			F2FS_OPTION(sbi).unusable_cap,
313 			F2FS_OPTION(sbi).unusable_cap_perc);
314 }
315 
316 static void init_once(void *foo)
317 {
318 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
319 
320 	inode_init_once(&fi->vfs_inode);
321 }
322 
323 #ifdef CONFIG_QUOTA
324 static const char * const quotatypes[] = INITQFNAMES;
325 #define QTYPE2NAME(t) (quotatypes[t])
326 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
327 							substring_t *args)
328 {
329 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
330 	char *qname;
331 	int ret = -EINVAL;
332 
333 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
334 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
335 		return -EINVAL;
336 	}
337 	if (f2fs_sb_has_quota_ino(sbi)) {
338 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
339 		return 0;
340 	}
341 
342 	qname = match_strdup(args);
343 	if (!qname) {
344 		f2fs_err(sbi, "Not enough memory for storing quotafile name");
345 		return -ENOMEM;
346 	}
347 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
348 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
349 			ret = 0;
350 		else
351 			f2fs_err(sbi, "%s quota file already specified",
352 				 QTYPE2NAME(qtype));
353 		goto errout;
354 	}
355 	if (strchr(qname, '/')) {
356 		f2fs_err(sbi, "quotafile must be on filesystem root");
357 		goto errout;
358 	}
359 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
360 	set_opt(sbi, QUOTA);
361 	return 0;
362 errout:
363 	kfree(qname);
364 	return ret;
365 }
366 
367 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
368 {
369 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
370 
371 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
372 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
373 		return -EINVAL;
374 	}
375 	kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
376 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
377 	return 0;
378 }
379 
380 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
381 {
382 	/*
383 	 * We do the test below only for project quotas. 'usrquota' and
384 	 * 'grpquota' mount options are allowed even without quota feature
385 	 * to support legacy quotas in quota files.
386 	 */
387 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
388 		f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
389 		return -1;
390 	}
391 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
392 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
393 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
394 		if (test_opt(sbi, USRQUOTA) &&
395 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
396 			clear_opt(sbi, USRQUOTA);
397 
398 		if (test_opt(sbi, GRPQUOTA) &&
399 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
400 			clear_opt(sbi, GRPQUOTA);
401 
402 		if (test_opt(sbi, PRJQUOTA) &&
403 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
404 			clear_opt(sbi, PRJQUOTA);
405 
406 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
407 				test_opt(sbi, PRJQUOTA)) {
408 			f2fs_err(sbi, "old and new quota format mixing");
409 			return -1;
410 		}
411 
412 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
413 			f2fs_err(sbi, "journaled quota format not specified");
414 			return -1;
415 		}
416 	}
417 
418 	if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
419 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
420 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
421 	}
422 	return 0;
423 }
424 #endif
425 
426 static int f2fs_set_test_dummy_encryption(struct super_block *sb,
427 					  const char *opt,
428 					  const substring_t *arg,
429 					  bool is_remount)
430 {
431 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
432 #ifdef CONFIG_FS_ENCRYPTION
433 	int err;
434 
435 	if (!f2fs_sb_has_encrypt(sbi)) {
436 		f2fs_err(sbi, "Encrypt feature is off");
437 		return -EINVAL;
438 	}
439 
440 	/*
441 	 * This mount option is just for testing, and it's not worthwhile to
442 	 * implement the extra complexity (e.g. RCU protection) that would be
443 	 * needed to allow it to be set or changed during remount.  We do allow
444 	 * it to be specified during remount, but only if there is no change.
445 	 */
446 	if (is_remount && !F2FS_OPTION(sbi).dummy_enc_policy.policy) {
447 		f2fs_warn(sbi, "Can't set test_dummy_encryption on remount");
448 		return -EINVAL;
449 	}
450 	err = fscrypt_set_test_dummy_encryption(
451 		sb, arg->from, &F2FS_OPTION(sbi).dummy_enc_policy);
452 	if (err) {
453 		if (err == -EEXIST)
454 			f2fs_warn(sbi,
455 				  "Can't change test_dummy_encryption on remount");
456 		else if (err == -EINVAL)
457 			f2fs_warn(sbi, "Value of option \"%s\" is unrecognized",
458 				  opt);
459 		else
460 			f2fs_warn(sbi, "Error processing option \"%s\" [%d]",
461 				  opt, err);
462 		return -EINVAL;
463 	}
464 	f2fs_warn(sbi, "Test dummy encryption mode enabled");
465 #else
466 	f2fs_warn(sbi, "Test dummy encryption mount option ignored");
467 #endif
468 	return 0;
469 }
470 
471 #ifdef CONFIG_F2FS_FS_COMPRESSION
472 #ifdef CONFIG_F2FS_FS_LZ4
473 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str)
474 {
475 #ifdef CONFIG_F2FS_FS_LZ4HC
476 	unsigned int level;
477 #endif
478 
479 	if (strlen(str) == 3) {
480 		F2FS_OPTION(sbi).compress_level = 0;
481 		return 0;
482 	}
483 
484 #ifdef CONFIG_F2FS_FS_LZ4HC
485 	str += 3;
486 
487 	if (str[0] != ':') {
488 		f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
489 		return -EINVAL;
490 	}
491 	if (kstrtouint(str + 1, 10, &level))
492 		return -EINVAL;
493 
494 	if (level < LZ4HC_MIN_CLEVEL || level > LZ4HC_MAX_CLEVEL) {
495 		f2fs_info(sbi, "invalid lz4hc compress level: %d", level);
496 		return -EINVAL;
497 	}
498 
499 	F2FS_OPTION(sbi).compress_level = level;
500 	return 0;
501 #else
502 	f2fs_info(sbi, "kernel doesn't support lz4hc compression");
503 	return -EINVAL;
504 #endif
505 }
506 #endif
507 
508 #ifdef CONFIG_F2FS_FS_ZSTD
509 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str)
510 {
511 	unsigned int level;
512 	int len = 4;
513 
514 	if (strlen(str) == len) {
515 		F2FS_OPTION(sbi).compress_level = 0;
516 		return 0;
517 	}
518 
519 	str += len;
520 
521 	if (str[0] != ':') {
522 		f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
523 		return -EINVAL;
524 	}
525 	if (kstrtouint(str + 1, 10, &level))
526 		return -EINVAL;
527 
528 	if (!level || level > ZSTD_maxCLevel()) {
529 		f2fs_info(sbi, "invalid zstd compress level: %d", level);
530 		return -EINVAL;
531 	}
532 
533 	F2FS_OPTION(sbi).compress_level = level;
534 	return 0;
535 }
536 #endif
537 #endif
538 
539 static int parse_options(struct super_block *sb, char *options, bool is_remount)
540 {
541 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
542 	substring_t args[MAX_OPT_ARGS];
543 #ifdef CONFIG_F2FS_FS_COMPRESSION
544 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
545 	int ext_cnt;
546 #endif
547 	char *p, *name;
548 	int arg = 0;
549 	kuid_t uid;
550 	kgid_t gid;
551 	int ret;
552 
553 	if (!options)
554 		return 0;
555 
556 	while ((p = strsep(&options, ",")) != NULL) {
557 		int token;
558 		if (!*p)
559 			continue;
560 		/*
561 		 * Initialize args struct so we know whether arg was
562 		 * found; some options take optional arguments.
563 		 */
564 		args[0].to = args[0].from = NULL;
565 		token = match_token(p, f2fs_tokens, args);
566 
567 		switch (token) {
568 		case Opt_gc_background:
569 			name = match_strdup(&args[0]);
570 
571 			if (!name)
572 				return -ENOMEM;
573 			if (!strcmp(name, "on")) {
574 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
575 			} else if (!strcmp(name, "off")) {
576 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF;
577 			} else if (!strcmp(name, "sync")) {
578 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC;
579 			} else {
580 				kfree(name);
581 				return -EINVAL;
582 			}
583 			kfree(name);
584 			break;
585 		case Opt_disable_roll_forward:
586 			set_opt(sbi, DISABLE_ROLL_FORWARD);
587 			break;
588 		case Opt_norecovery:
589 			/* this option mounts f2fs with ro */
590 			set_opt(sbi, NORECOVERY);
591 			if (!f2fs_readonly(sb))
592 				return -EINVAL;
593 			break;
594 		case Opt_discard:
595 			set_opt(sbi, DISCARD);
596 			break;
597 		case Opt_nodiscard:
598 			if (f2fs_sb_has_blkzoned(sbi)) {
599 				f2fs_warn(sbi, "discard is required for zoned block devices");
600 				return -EINVAL;
601 			}
602 			clear_opt(sbi, DISCARD);
603 			break;
604 		case Opt_noheap:
605 			set_opt(sbi, NOHEAP);
606 			break;
607 		case Opt_heap:
608 			clear_opt(sbi, NOHEAP);
609 			break;
610 #ifdef CONFIG_F2FS_FS_XATTR
611 		case Opt_user_xattr:
612 			set_opt(sbi, XATTR_USER);
613 			break;
614 		case Opt_nouser_xattr:
615 			clear_opt(sbi, XATTR_USER);
616 			break;
617 		case Opt_inline_xattr:
618 			set_opt(sbi, INLINE_XATTR);
619 			break;
620 		case Opt_noinline_xattr:
621 			clear_opt(sbi, INLINE_XATTR);
622 			break;
623 		case Opt_inline_xattr_size:
624 			if (args->from && match_int(args, &arg))
625 				return -EINVAL;
626 			set_opt(sbi, INLINE_XATTR_SIZE);
627 			F2FS_OPTION(sbi).inline_xattr_size = arg;
628 			break;
629 #else
630 		case Opt_user_xattr:
631 			f2fs_info(sbi, "user_xattr options not supported");
632 			break;
633 		case Opt_nouser_xattr:
634 			f2fs_info(sbi, "nouser_xattr options not supported");
635 			break;
636 		case Opt_inline_xattr:
637 			f2fs_info(sbi, "inline_xattr options not supported");
638 			break;
639 		case Opt_noinline_xattr:
640 			f2fs_info(sbi, "noinline_xattr options not supported");
641 			break;
642 #endif
643 #ifdef CONFIG_F2FS_FS_POSIX_ACL
644 		case Opt_acl:
645 			set_opt(sbi, POSIX_ACL);
646 			break;
647 		case Opt_noacl:
648 			clear_opt(sbi, POSIX_ACL);
649 			break;
650 #else
651 		case Opt_acl:
652 			f2fs_info(sbi, "acl options not supported");
653 			break;
654 		case Opt_noacl:
655 			f2fs_info(sbi, "noacl options not supported");
656 			break;
657 #endif
658 		case Opt_active_logs:
659 			if (args->from && match_int(args, &arg))
660 				return -EINVAL;
661 			if (arg != 2 && arg != 4 &&
662 				arg != NR_CURSEG_PERSIST_TYPE)
663 				return -EINVAL;
664 			F2FS_OPTION(sbi).active_logs = arg;
665 			break;
666 		case Opt_disable_ext_identify:
667 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
668 			break;
669 		case Opt_inline_data:
670 			set_opt(sbi, INLINE_DATA);
671 			break;
672 		case Opt_inline_dentry:
673 			set_opt(sbi, INLINE_DENTRY);
674 			break;
675 		case Opt_noinline_dentry:
676 			clear_opt(sbi, INLINE_DENTRY);
677 			break;
678 		case Opt_flush_merge:
679 			set_opt(sbi, FLUSH_MERGE);
680 			break;
681 		case Opt_noflush_merge:
682 			clear_opt(sbi, FLUSH_MERGE);
683 			break;
684 		case Opt_nobarrier:
685 			set_opt(sbi, NOBARRIER);
686 			break;
687 		case Opt_fastboot:
688 			set_opt(sbi, FASTBOOT);
689 			break;
690 		case Opt_extent_cache:
691 			set_opt(sbi, EXTENT_CACHE);
692 			break;
693 		case Opt_noextent_cache:
694 			clear_opt(sbi, EXTENT_CACHE);
695 			break;
696 		case Opt_noinline_data:
697 			clear_opt(sbi, INLINE_DATA);
698 			break;
699 		case Opt_data_flush:
700 			set_opt(sbi, DATA_FLUSH);
701 			break;
702 		case Opt_reserve_root:
703 			if (args->from && match_int(args, &arg))
704 				return -EINVAL;
705 			if (test_opt(sbi, RESERVE_ROOT)) {
706 				f2fs_info(sbi, "Preserve previous reserve_root=%u",
707 					  F2FS_OPTION(sbi).root_reserved_blocks);
708 			} else {
709 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
710 				set_opt(sbi, RESERVE_ROOT);
711 			}
712 			break;
713 		case Opt_resuid:
714 			if (args->from && match_int(args, &arg))
715 				return -EINVAL;
716 			uid = make_kuid(current_user_ns(), arg);
717 			if (!uid_valid(uid)) {
718 				f2fs_err(sbi, "Invalid uid value %d", arg);
719 				return -EINVAL;
720 			}
721 			F2FS_OPTION(sbi).s_resuid = uid;
722 			break;
723 		case Opt_resgid:
724 			if (args->from && match_int(args, &arg))
725 				return -EINVAL;
726 			gid = make_kgid(current_user_ns(), arg);
727 			if (!gid_valid(gid)) {
728 				f2fs_err(sbi, "Invalid gid value %d", arg);
729 				return -EINVAL;
730 			}
731 			F2FS_OPTION(sbi).s_resgid = gid;
732 			break;
733 		case Opt_mode:
734 			name = match_strdup(&args[0]);
735 
736 			if (!name)
737 				return -ENOMEM;
738 			if (!strcmp(name, "adaptive")) {
739 				if (f2fs_sb_has_blkzoned(sbi)) {
740 					f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
741 					kfree(name);
742 					return -EINVAL;
743 				}
744 				F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
745 			} else if (!strcmp(name, "lfs")) {
746 				F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
747 			} else {
748 				kfree(name);
749 				return -EINVAL;
750 			}
751 			kfree(name);
752 			break;
753 		case Opt_io_size_bits:
754 			if (args->from && match_int(args, &arg))
755 				return -EINVAL;
756 			if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_VECS)) {
757 				f2fs_warn(sbi, "Not support %d, larger than %d",
758 					  1 << arg, BIO_MAX_VECS);
759 				return -EINVAL;
760 			}
761 			F2FS_OPTION(sbi).write_io_size_bits = arg;
762 			break;
763 #ifdef CONFIG_F2FS_FAULT_INJECTION
764 		case Opt_fault_injection:
765 			if (args->from && match_int(args, &arg))
766 				return -EINVAL;
767 			f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
768 			set_opt(sbi, FAULT_INJECTION);
769 			break;
770 
771 		case Opt_fault_type:
772 			if (args->from && match_int(args, &arg))
773 				return -EINVAL;
774 			f2fs_build_fault_attr(sbi, 0, arg);
775 			set_opt(sbi, FAULT_INJECTION);
776 			break;
777 #else
778 		case Opt_fault_injection:
779 			f2fs_info(sbi, "fault_injection options not supported");
780 			break;
781 
782 		case Opt_fault_type:
783 			f2fs_info(sbi, "fault_type options not supported");
784 			break;
785 #endif
786 		case Opt_lazytime:
787 			sb->s_flags |= SB_LAZYTIME;
788 			break;
789 		case Opt_nolazytime:
790 			sb->s_flags &= ~SB_LAZYTIME;
791 			break;
792 #ifdef CONFIG_QUOTA
793 		case Opt_quota:
794 		case Opt_usrquota:
795 			set_opt(sbi, USRQUOTA);
796 			break;
797 		case Opt_grpquota:
798 			set_opt(sbi, GRPQUOTA);
799 			break;
800 		case Opt_prjquota:
801 			set_opt(sbi, PRJQUOTA);
802 			break;
803 		case Opt_usrjquota:
804 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
805 			if (ret)
806 				return ret;
807 			break;
808 		case Opt_grpjquota:
809 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
810 			if (ret)
811 				return ret;
812 			break;
813 		case Opt_prjjquota:
814 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
815 			if (ret)
816 				return ret;
817 			break;
818 		case Opt_offusrjquota:
819 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
820 			if (ret)
821 				return ret;
822 			break;
823 		case Opt_offgrpjquota:
824 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
825 			if (ret)
826 				return ret;
827 			break;
828 		case Opt_offprjjquota:
829 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
830 			if (ret)
831 				return ret;
832 			break;
833 		case Opt_jqfmt_vfsold:
834 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
835 			break;
836 		case Opt_jqfmt_vfsv0:
837 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
838 			break;
839 		case Opt_jqfmt_vfsv1:
840 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
841 			break;
842 		case Opt_noquota:
843 			clear_opt(sbi, QUOTA);
844 			clear_opt(sbi, USRQUOTA);
845 			clear_opt(sbi, GRPQUOTA);
846 			clear_opt(sbi, PRJQUOTA);
847 			break;
848 #else
849 		case Opt_quota:
850 		case Opt_usrquota:
851 		case Opt_grpquota:
852 		case Opt_prjquota:
853 		case Opt_usrjquota:
854 		case Opt_grpjquota:
855 		case Opt_prjjquota:
856 		case Opt_offusrjquota:
857 		case Opt_offgrpjquota:
858 		case Opt_offprjjquota:
859 		case Opt_jqfmt_vfsold:
860 		case Opt_jqfmt_vfsv0:
861 		case Opt_jqfmt_vfsv1:
862 		case Opt_noquota:
863 			f2fs_info(sbi, "quota operations not supported");
864 			break;
865 #endif
866 		case Opt_whint:
867 			name = match_strdup(&args[0]);
868 			if (!name)
869 				return -ENOMEM;
870 			if (!strcmp(name, "user-based")) {
871 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
872 			} else if (!strcmp(name, "off")) {
873 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
874 			} else if (!strcmp(name, "fs-based")) {
875 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
876 			} else {
877 				kfree(name);
878 				return -EINVAL;
879 			}
880 			kfree(name);
881 			break;
882 		case Opt_alloc:
883 			name = match_strdup(&args[0]);
884 			if (!name)
885 				return -ENOMEM;
886 
887 			if (!strcmp(name, "default")) {
888 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
889 			} else if (!strcmp(name, "reuse")) {
890 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
891 			} else {
892 				kfree(name);
893 				return -EINVAL;
894 			}
895 			kfree(name);
896 			break;
897 		case Opt_fsync:
898 			name = match_strdup(&args[0]);
899 			if (!name)
900 				return -ENOMEM;
901 			if (!strcmp(name, "posix")) {
902 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
903 			} else if (!strcmp(name, "strict")) {
904 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
905 			} else if (!strcmp(name, "nobarrier")) {
906 				F2FS_OPTION(sbi).fsync_mode =
907 							FSYNC_MODE_NOBARRIER;
908 			} else {
909 				kfree(name);
910 				return -EINVAL;
911 			}
912 			kfree(name);
913 			break;
914 		case Opt_test_dummy_encryption:
915 			ret = f2fs_set_test_dummy_encryption(sb, p, &args[0],
916 							     is_remount);
917 			if (ret)
918 				return ret;
919 			break;
920 		case Opt_inlinecrypt:
921 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
922 			sb->s_flags |= SB_INLINECRYPT;
923 #else
924 			f2fs_info(sbi, "inline encryption not supported");
925 #endif
926 			break;
927 		case Opt_checkpoint_disable_cap_perc:
928 			if (args->from && match_int(args, &arg))
929 				return -EINVAL;
930 			if (arg < 0 || arg > 100)
931 				return -EINVAL;
932 			F2FS_OPTION(sbi).unusable_cap_perc = arg;
933 			set_opt(sbi, DISABLE_CHECKPOINT);
934 			break;
935 		case Opt_checkpoint_disable_cap:
936 			if (args->from && match_int(args, &arg))
937 				return -EINVAL;
938 			F2FS_OPTION(sbi).unusable_cap = arg;
939 			set_opt(sbi, DISABLE_CHECKPOINT);
940 			break;
941 		case Opt_checkpoint_disable:
942 			set_opt(sbi, DISABLE_CHECKPOINT);
943 			break;
944 		case Opt_checkpoint_enable:
945 			clear_opt(sbi, DISABLE_CHECKPOINT);
946 			break;
947 		case Opt_checkpoint_merge:
948 			set_opt(sbi, MERGE_CHECKPOINT);
949 			break;
950 		case Opt_nocheckpoint_merge:
951 			clear_opt(sbi, MERGE_CHECKPOINT);
952 			break;
953 #ifdef CONFIG_F2FS_FS_COMPRESSION
954 		case Opt_compress_algorithm:
955 			if (!f2fs_sb_has_compression(sbi)) {
956 				f2fs_info(sbi, "Image doesn't support compression");
957 				break;
958 			}
959 			name = match_strdup(&args[0]);
960 			if (!name)
961 				return -ENOMEM;
962 			if (!strcmp(name, "lzo")) {
963 #ifdef CONFIG_F2FS_FS_LZO
964 				F2FS_OPTION(sbi).compress_level = 0;
965 				F2FS_OPTION(sbi).compress_algorithm =
966 								COMPRESS_LZO;
967 #else
968 				f2fs_info(sbi, "kernel doesn't support lzo compression");
969 #endif
970 			} else if (!strncmp(name, "lz4", 3)) {
971 #ifdef CONFIG_F2FS_FS_LZ4
972 				ret = f2fs_set_lz4hc_level(sbi, name);
973 				if (ret) {
974 					kfree(name);
975 					return -EINVAL;
976 				}
977 				F2FS_OPTION(sbi).compress_algorithm =
978 								COMPRESS_LZ4;
979 #else
980 				f2fs_info(sbi, "kernel doesn't support lz4 compression");
981 #endif
982 			} else if (!strncmp(name, "zstd", 4)) {
983 #ifdef CONFIG_F2FS_FS_ZSTD
984 				ret = f2fs_set_zstd_level(sbi, name);
985 				if (ret) {
986 					kfree(name);
987 					return -EINVAL;
988 				}
989 				F2FS_OPTION(sbi).compress_algorithm =
990 								COMPRESS_ZSTD;
991 #else
992 				f2fs_info(sbi, "kernel doesn't support zstd compression");
993 #endif
994 			} else if (!strcmp(name, "lzo-rle")) {
995 #ifdef CONFIG_F2FS_FS_LZORLE
996 				F2FS_OPTION(sbi).compress_level = 0;
997 				F2FS_OPTION(sbi).compress_algorithm =
998 								COMPRESS_LZORLE;
999 #else
1000 				f2fs_info(sbi, "kernel doesn't support lzorle compression");
1001 #endif
1002 			} else {
1003 				kfree(name);
1004 				return -EINVAL;
1005 			}
1006 			kfree(name);
1007 			break;
1008 		case Opt_compress_log_size:
1009 			if (!f2fs_sb_has_compression(sbi)) {
1010 				f2fs_info(sbi, "Image doesn't support compression");
1011 				break;
1012 			}
1013 			if (args->from && match_int(args, &arg))
1014 				return -EINVAL;
1015 			if (arg < MIN_COMPRESS_LOG_SIZE ||
1016 				arg > MAX_COMPRESS_LOG_SIZE) {
1017 				f2fs_err(sbi,
1018 					"Compress cluster log size is out of range");
1019 				return -EINVAL;
1020 			}
1021 			F2FS_OPTION(sbi).compress_log_size = arg;
1022 			break;
1023 		case Opt_compress_extension:
1024 			if (!f2fs_sb_has_compression(sbi)) {
1025 				f2fs_info(sbi, "Image doesn't support compression");
1026 				break;
1027 			}
1028 			name = match_strdup(&args[0]);
1029 			if (!name)
1030 				return -ENOMEM;
1031 
1032 			ext = F2FS_OPTION(sbi).extensions;
1033 			ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
1034 
1035 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
1036 				ext_cnt >= COMPRESS_EXT_NUM) {
1037 				f2fs_err(sbi,
1038 					"invalid extension length/number");
1039 				kfree(name);
1040 				return -EINVAL;
1041 			}
1042 
1043 			strcpy(ext[ext_cnt], name);
1044 			F2FS_OPTION(sbi).compress_ext_cnt++;
1045 			kfree(name);
1046 			break;
1047 		case Opt_compress_chksum:
1048 			F2FS_OPTION(sbi).compress_chksum = true;
1049 			break;
1050 		case Opt_compress_mode:
1051 			name = match_strdup(&args[0]);
1052 			if (!name)
1053 				return -ENOMEM;
1054 			if (!strcmp(name, "fs")) {
1055 				F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
1056 			} else if (!strcmp(name, "user")) {
1057 				F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER;
1058 			} else {
1059 				kfree(name);
1060 				return -EINVAL;
1061 			}
1062 			kfree(name);
1063 			break;
1064 #else
1065 		case Opt_compress_algorithm:
1066 		case Opt_compress_log_size:
1067 		case Opt_compress_extension:
1068 		case Opt_compress_chksum:
1069 		case Opt_compress_mode:
1070 			f2fs_info(sbi, "compression options not supported");
1071 			break;
1072 #endif
1073 		case Opt_atgc:
1074 			set_opt(sbi, ATGC);
1075 			break;
1076 		default:
1077 			f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
1078 				 p);
1079 			return -EINVAL;
1080 		}
1081 	}
1082 #ifdef CONFIG_QUOTA
1083 	if (f2fs_check_quota_options(sbi))
1084 		return -EINVAL;
1085 #else
1086 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
1087 		f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1088 		return -EINVAL;
1089 	}
1090 	if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
1091 		f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1092 		return -EINVAL;
1093 	}
1094 #endif
1095 #ifndef CONFIG_UNICODE
1096 	if (f2fs_sb_has_casefold(sbi)) {
1097 		f2fs_err(sbi,
1098 			"Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
1099 		return -EINVAL;
1100 	}
1101 #endif
1102 	/*
1103 	 * The BLKZONED feature indicates that the drive was formatted with
1104 	 * zone alignment optimization. This is optional for host-aware
1105 	 * devices, but mandatory for host-managed zoned block devices.
1106 	 */
1107 #ifndef CONFIG_BLK_DEV_ZONED
1108 	if (f2fs_sb_has_blkzoned(sbi)) {
1109 		f2fs_err(sbi, "Zoned block device support is not enabled");
1110 		return -EINVAL;
1111 	}
1112 #endif
1113 
1114 	if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) {
1115 		f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
1116 			 F2FS_IO_SIZE_KB(sbi));
1117 		return -EINVAL;
1118 	}
1119 
1120 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
1121 		int min_size, max_size;
1122 
1123 		if (!f2fs_sb_has_extra_attr(sbi) ||
1124 			!f2fs_sb_has_flexible_inline_xattr(sbi)) {
1125 			f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
1126 			return -EINVAL;
1127 		}
1128 		if (!test_opt(sbi, INLINE_XATTR)) {
1129 			f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
1130 			return -EINVAL;
1131 		}
1132 
1133 		min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
1134 		max_size = MAX_INLINE_XATTR_SIZE;
1135 
1136 		if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
1137 				F2FS_OPTION(sbi).inline_xattr_size > max_size) {
1138 			f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
1139 				 min_size, max_size);
1140 			return -EINVAL;
1141 		}
1142 	}
1143 
1144 	if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) {
1145 		f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n");
1146 		return -EINVAL;
1147 	}
1148 
1149 	/* Not pass down write hints if the number of active logs is lesser
1150 	 * than NR_CURSEG_PERSIST_TYPE.
1151 	 */
1152 	if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
1153 		F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1154 	return 0;
1155 }
1156 
1157 static struct inode *f2fs_alloc_inode(struct super_block *sb)
1158 {
1159 	struct f2fs_inode_info *fi;
1160 
1161 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
1162 	if (!fi)
1163 		return NULL;
1164 
1165 	init_once((void *) fi);
1166 
1167 	/* Initialize f2fs-specific inode info */
1168 	atomic_set(&fi->dirty_pages, 0);
1169 	atomic_set(&fi->i_compr_blocks, 0);
1170 	init_rwsem(&fi->i_sem);
1171 	spin_lock_init(&fi->i_size_lock);
1172 	INIT_LIST_HEAD(&fi->dirty_list);
1173 	INIT_LIST_HEAD(&fi->gdirty_list);
1174 	INIT_LIST_HEAD(&fi->inmem_ilist);
1175 	INIT_LIST_HEAD(&fi->inmem_pages);
1176 	mutex_init(&fi->inmem_lock);
1177 	init_rwsem(&fi->i_gc_rwsem[READ]);
1178 	init_rwsem(&fi->i_gc_rwsem[WRITE]);
1179 	init_rwsem(&fi->i_mmap_sem);
1180 	init_rwsem(&fi->i_xattr_sem);
1181 
1182 	/* Will be used by directory only */
1183 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
1184 
1185 	return &fi->vfs_inode;
1186 }
1187 
1188 static int f2fs_drop_inode(struct inode *inode)
1189 {
1190 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1191 	int ret;
1192 
1193 	/*
1194 	 * during filesystem shutdown, if checkpoint is disabled,
1195 	 * drop useless meta/node dirty pages.
1196 	 */
1197 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1198 		if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1199 			inode->i_ino == F2FS_META_INO(sbi)) {
1200 			trace_f2fs_drop_inode(inode, 1);
1201 			return 1;
1202 		}
1203 	}
1204 
1205 	/*
1206 	 * This is to avoid a deadlock condition like below.
1207 	 * writeback_single_inode(inode)
1208 	 *  - f2fs_write_data_page
1209 	 *    - f2fs_gc -> iput -> evict
1210 	 *       - inode_wait_for_writeback(inode)
1211 	 */
1212 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1213 		if (!inode->i_nlink && !is_bad_inode(inode)) {
1214 			/* to avoid evict_inode call simultaneously */
1215 			atomic_inc(&inode->i_count);
1216 			spin_unlock(&inode->i_lock);
1217 
1218 			/* some remained atomic pages should discarded */
1219 			if (f2fs_is_atomic_file(inode))
1220 				f2fs_drop_inmem_pages(inode);
1221 
1222 			/* should remain fi->extent_tree for writepage */
1223 			f2fs_destroy_extent_node(inode);
1224 
1225 			sb_start_intwrite(inode->i_sb);
1226 			f2fs_i_size_write(inode, 0);
1227 
1228 			f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1229 					inode, NULL, 0, DATA);
1230 			truncate_inode_pages_final(inode->i_mapping);
1231 
1232 			if (F2FS_HAS_BLOCKS(inode))
1233 				f2fs_truncate(inode);
1234 
1235 			sb_end_intwrite(inode->i_sb);
1236 
1237 			spin_lock(&inode->i_lock);
1238 			atomic_dec(&inode->i_count);
1239 		}
1240 		trace_f2fs_drop_inode(inode, 0);
1241 		return 0;
1242 	}
1243 	ret = generic_drop_inode(inode);
1244 	if (!ret)
1245 		ret = fscrypt_drop_inode(inode);
1246 	trace_f2fs_drop_inode(inode, ret);
1247 	return ret;
1248 }
1249 
1250 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1251 {
1252 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1253 	int ret = 0;
1254 
1255 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1256 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1257 		ret = 1;
1258 	} else {
1259 		set_inode_flag(inode, FI_DIRTY_INODE);
1260 		stat_inc_dirty_inode(sbi, DIRTY_META);
1261 	}
1262 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1263 		list_add_tail(&F2FS_I(inode)->gdirty_list,
1264 				&sbi->inode_list[DIRTY_META]);
1265 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
1266 	}
1267 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1268 	return ret;
1269 }
1270 
1271 void f2fs_inode_synced(struct inode *inode)
1272 {
1273 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1274 
1275 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1276 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1277 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1278 		return;
1279 	}
1280 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1281 		list_del_init(&F2FS_I(inode)->gdirty_list);
1282 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
1283 	}
1284 	clear_inode_flag(inode, FI_DIRTY_INODE);
1285 	clear_inode_flag(inode, FI_AUTO_RECOVER);
1286 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1287 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1288 }
1289 
1290 /*
1291  * f2fs_dirty_inode() is called from __mark_inode_dirty()
1292  *
1293  * We should call set_dirty_inode to write the dirty inode through write_inode.
1294  */
1295 static void f2fs_dirty_inode(struct inode *inode, int flags)
1296 {
1297 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1298 
1299 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1300 			inode->i_ino == F2FS_META_INO(sbi))
1301 		return;
1302 
1303 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1304 		clear_inode_flag(inode, FI_AUTO_RECOVER);
1305 
1306 	f2fs_inode_dirtied(inode, false);
1307 }
1308 
1309 static void f2fs_free_inode(struct inode *inode)
1310 {
1311 	fscrypt_free_inode(inode);
1312 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1313 }
1314 
1315 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1316 {
1317 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
1318 	percpu_counter_destroy(&sbi->total_valid_inode_count);
1319 }
1320 
1321 static void destroy_device_list(struct f2fs_sb_info *sbi)
1322 {
1323 	int i;
1324 
1325 	for (i = 0; i < sbi->s_ndevs; i++) {
1326 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1327 #ifdef CONFIG_BLK_DEV_ZONED
1328 		kvfree(FDEV(i).blkz_seq);
1329 		kfree(FDEV(i).zone_capacity_blocks);
1330 #endif
1331 	}
1332 	kvfree(sbi->devs);
1333 }
1334 
1335 static void f2fs_put_super(struct super_block *sb)
1336 {
1337 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1338 	int i;
1339 	bool dropped;
1340 
1341 	/* unregister procfs/sysfs entries in advance to avoid race case */
1342 	f2fs_unregister_sysfs(sbi);
1343 
1344 	f2fs_quota_off_umount(sb);
1345 
1346 	/* prevent remaining shrinker jobs */
1347 	mutex_lock(&sbi->umount_mutex);
1348 
1349 	/*
1350 	 * flush all issued checkpoints and stop checkpoint issue thread.
1351 	 * after then, all checkpoints should be done by each process context.
1352 	 */
1353 	f2fs_stop_ckpt_thread(sbi);
1354 
1355 	/*
1356 	 * We don't need to do checkpoint when superblock is clean.
1357 	 * But, the previous checkpoint was not done by umount, it needs to do
1358 	 * clean checkpoint again.
1359 	 */
1360 	if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1361 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1362 		struct cp_control cpc = {
1363 			.reason = CP_UMOUNT,
1364 		};
1365 		f2fs_write_checkpoint(sbi, &cpc);
1366 	}
1367 
1368 	/* be sure to wait for any on-going discard commands */
1369 	dropped = f2fs_issue_discard_timeout(sbi);
1370 
1371 	if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1372 					!sbi->discard_blks && !dropped) {
1373 		struct cp_control cpc = {
1374 			.reason = CP_UMOUNT | CP_TRIMMED,
1375 		};
1376 		f2fs_write_checkpoint(sbi, &cpc);
1377 	}
1378 
1379 	/*
1380 	 * normally superblock is clean, so we need to release this.
1381 	 * In addition, EIO will skip do checkpoint, we need this as well.
1382 	 */
1383 	f2fs_release_ino_entry(sbi, true);
1384 
1385 	f2fs_leave_shrinker(sbi);
1386 	mutex_unlock(&sbi->umount_mutex);
1387 
1388 	/* our cp_error case, we can wait for any writeback page */
1389 	f2fs_flush_merged_writes(sbi);
1390 
1391 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1392 
1393 	f2fs_bug_on(sbi, sbi->fsync_node_num);
1394 
1395 	iput(sbi->node_inode);
1396 	sbi->node_inode = NULL;
1397 
1398 	iput(sbi->meta_inode);
1399 	sbi->meta_inode = NULL;
1400 
1401 	/*
1402 	 * iput() can update stat information, if f2fs_write_checkpoint()
1403 	 * above failed with error.
1404 	 */
1405 	f2fs_destroy_stats(sbi);
1406 
1407 	/* destroy f2fs internal modules */
1408 	f2fs_destroy_node_manager(sbi);
1409 	f2fs_destroy_segment_manager(sbi);
1410 
1411 	f2fs_destroy_post_read_wq(sbi);
1412 
1413 	kvfree(sbi->ckpt);
1414 
1415 	sb->s_fs_info = NULL;
1416 	if (sbi->s_chksum_driver)
1417 		crypto_free_shash(sbi->s_chksum_driver);
1418 	kfree(sbi->raw_super);
1419 
1420 	destroy_device_list(sbi);
1421 	f2fs_destroy_page_array_cache(sbi);
1422 	f2fs_destroy_xattr_caches(sbi);
1423 	mempool_destroy(sbi->write_io_dummy);
1424 #ifdef CONFIG_QUOTA
1425 	for (i = 0; i < MAXQUOTAS; i++)
1426 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1427 #endif
1428 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
1429 	destroy_percpu_info(sbi);
1430 	for (i = 0; i < NR_PAGE_TYPE; i++)
1431 		kvfree(sbi->write_io[i]);
1432 #ifdef CONFIG_UNICODE
1433 	utf8_unload(sb->s_encoding);
1434 #endif
1435 	kfree(sbi);
1436 }
1437 
1438 int f2fs_sync_fs(struct super_block *sb, int sync)
1439 {
1440 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1441 	int err = 0;
1442 
1443 	if (unlikely(f2fs_cp_error(sbi)))
1444 		return 0;
1445 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1446 		return 0;
1447 
1448 	trace_f2fs_sync_fs(sb, sync);
1449 
1450 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1451 		return -EAGAIN;
1452 
1453 	if (sync)
1454 		err = f2fs_issue_checkpoint(sbi);
1455 
1456 	return err;
1457 }
1458 
1459 static int f2fs_freeze(struct super_block *sb)
1460 {
1461 	if (f2fs_readonly(sb))
1462 		return 0;
1463 
1464 	/* IO error happened before */
1465 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1466 		return -EIO;
1467 
1468 	/* must be clean, since sync_filesystem() was already called */
1469 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1470 		return -EINVAL;
1471 
1472 	/* ensure no checkpoint required */
1473 	if (!llist_empty(&F2FS_SB(sb)->cprc_info.issue_list))
1474 		return -EINVAL;
1475 	return 0;
1476 }
1477 
1478 static int f2fs_unfreeze(struct super_block *sb)
1479 {
1480 	return 0;
1481 }
1482 
1483 #ifdef CONFIG_QUOTA
1484 static int f2fs_statfs_project(struct super_block *sb,
1485 				kprojid_t projid, struct kstatfs *buf)
1486 {
1487 	struct kqid qid;
1488 	struct dquot *dquot;
1489 	u64 limit;
1490 	u64 curblock;
1491 
1492 	qid = make_kqid_projid(projid);
1493 	dquot = dqget(sb, qid);
1494 	if (IS_ERR(dquot))
1495 		return PTR_ERR(dquot);
1496 	spin_lock(&dquot->dq_dqb_lock);
1497 
1498 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1499 					dquot->dq_dqb.dqb_bhardlimit);
1500 	if (limit)
1501 		limit >>= sb->s_blocksize_bits;
1502 
1503 	if (limit && buf->f_blocks > limit) {
1504 		curblock = (dquot->dq_dqb.dqb_curspace +
1505 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1506 		buf->f_blocks = limit;
1507 		buf->f_bfree = buf->f_bavail =
1508 			(buf->f_blocks > curblock) ?
1509 			 (buf->f_blocks - curblock) : 0;
1510 	}
1511 
1512 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1513 					dquot->dq_dqb.dqb_ihardlimit);
1514 
1515 	if (limit && buf->f_files > limit) {
1516 		buf->f_files = limit;
1517 		buf->f_ffree =
1518 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1519 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1520 	}
1521 
1522 	spin_unlock(&dquot->dq_dqb_lock);
1523 	dqput(dquot);
1524 	return 0;
1525 }
1526 #endif
1527 
1528 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1529 {
1530 	struct super_block *sb = dentry->d_sb;
1531 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1532 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1533 	block_t total_count, user_block_count, start_count;
1534 	u64 avail_node_count;
1535 
1536 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1537 	user_block_count = sbi->user_block_count;
1538 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1539 	buf->f_type = F2FS_SUPER_MAGIC;
1540 	buf->f_bsize = sbi->blocksize;
1541 
1542 	buf->f_blocks = total_count - start_count;
1543 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1544 						sbi->current_reserved_blocks;
1545 
1546 	spin_lock(&sbi->stat_lock);
1547 	if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1548 		buf->f_bfree = 0;
1549 	else
1550 		buf->f_bfree -= sbi->unusable_block_count;
1551 	spin_unlock(&sbi->stat_lock);
1552 
1553 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1554 		buf->f_bavail = buf->f_bfree -
1555 				F2FS_OPTION(sbi).root_reserved_blocks;
1556 	else
1557 		buf->f_bavail = 0;
1558 
1559 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1560 
1561 	if (avail_node_count > user_block_count) {
1562 		buf->f_files = user_block_count;
1563 		buf->f_ffree = buf->f_bavail;
1564 	} else {
1565 		buf->f_files = avail_node_count;
1566 		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1567 					buf->f_bavail);
1568 	}
1569 
1570 	buf->f_namelen = F2FS_NAME_LEN;
1571 	buf->f_fsid    = u64_to_fsid(id);
1572 
1573 #ifdef CONFIG_QUOTA
1574 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1575 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1576 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1577 	}
1578 #endif
1579 	return 0;
1580 }
1581 
1582 static inline void f2fs_show_quota_options(struct seq_file *seq,
1583 					   struct super_block *sb)
1584 {
1585 #ifdef CONFIG_QUOTA
1586 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1587 
1588 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1589 		char *fmtname = "";
1590 
1591 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1592 		case QFMT_VFS_OLD:
1593 			fmtname = "vfsold";
1594 			break;
1595 		case QFMT_VFS_V0:
1596 			fmtname = "vfsv0";
1597 			break;
1598 		case QFMT_VFS_V1:
1599 			fmtname = "vfsv1";
1600 			break;
1601 		}
1602 		seq_printf(seq, ",jqfmt=%s", fmtname);
1603 	}
1604 
1605 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1606 		seq_show_option(seq, "usrjquota",
1607 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1608 
1609 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1610 		seq_show_option(seq, "grpjquota",
1611 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1612 
1613 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1614 		seq_show_option(seq, "prjjquota",
1615 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1616 #endif
1617 }
1618 
1619 static inline void f2fs_show_compress_options(struct seq_file *seq,
1620 							struct super_block *sb)
1621 {
1622 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1623 	char *algtype = "";
1624 	int i;
1625 
1626 	if (!f2fs_sb_has_compression(sbi))
1627 		return;
1628 
1629 	switch (F2FS_OPTION(sbi).compress_algorithm) {
1630 	case COMPRESS_LZO:
1631 		algtype = "lzo";
1632 		break;
1633 	case COMPRESS_LZ4:
1634 		algtype = "lz4";
1635 		break;
1636 	case COMPRESS_ZSTD:
1637 		algtype = "zstd";
1638 		break;
1639 	case COMPRESS_LZORLE:
1640 		algtype = "lzo-rle";
1641 		break;
1642 	}
1643 	seq_printf(seq, ",compress_algorithm=%s", algtype);
1644 
1645 	if (F2FS_OPTION(sbi).compress_level)
1646 		seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level);
1647 
1648 	seq_printf(seq, ",compress_log_size=%u",
1649 			F2FS_OPTION(sbi).compress_log_size);
1650 
1651 	for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1652 		seq_printf(seq, ",compress_extension=%s",
1653 			F2FS_OPTION(sbi).extensions[i]);
1654 	}
1655 
1656 	if (F2FS_OPTION(sbi).compress_chksum)
1657 		seq_puts(seq, ",compress_chksum");
1658 
1659 	if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS)
1660 		seq_printf(seq, ",compress_mode=%s", "fs");
1661 	else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER)
1662 		seq_printf(seq, ",compress_mode=%s", "user");
1663 }
1664 
1665 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1666 {
1667 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1668 
1669 	if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
1670 		seq_printf(seq, ",background_gc=%s", "sync");
1671 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
1672 		seq_printf(seq, ",background_gc=%s", "on");
1673 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
1674 		seq_printf(seq, ",background_gc=%s", "off");
1675 
1676 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1677 		seq_puts(seq, ",disable_roll_forward");
1678 	if (test_opt(sbi, NORECOVERY))
1679 		seq_puts(seq, ",norecovery");
1680 	if (test_opt(sbi, DISCARD))
1681 		seq_puts(seq, ",discard");
1682 	else
1683 		seq_puts(seq, ",nodiscard");
1684 	if (test_opt(sbi, NOHEAP))
1685 		seq_puts(seq, ",no_heap");
1686 	else
1687 		seq_puts(seq, ",heap");
1688 #ifdef CONFIG_F2FS_FS_XATTR
1689 	if (test_opt(sbi, XATTR_USER))
1690 		seq_puts(seq, ",user_xattr");
1691 	else
1692 		seq_puts(seq, ",nouser_xattr");
1693 	if (test_opt(sbi, INLINE_XATTR))
1694 		seq_puts(seq, ",inline_xattr");
1695 	else
1696 		seq_puts(seq, ",noinline_xattr");
1697 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1698 		seq_printf(seq, ",inline_xattr_size=%u",
1699 					F2FS_OPTION(sbi).inline_xattr_size);
1700 #endif
1701 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1702 	if (test_opt(sbi, POSIX_ACL))
1703 		seq_puts(seq, ",acl");
1704 	else
1705 		seq_puts(seq, ",noacl");
1706 #endif
1707 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1708 		seq_puts(seq, ",disable_ext_identify");
1709 	if (test_opt(sbi, INLINE_DATA))
1710 		seq_puts(seq, ",inline_data");
1711 	else
1712 		seq_puts(seq, ",noinline_data");
1713 	if (test_opt(sbi, INLINE_DENTRY))
1714 		seq_puts(seq, ",inline_dentry");
1715 	else
1716 		seq_puts(seq, ",noinline_dentry");
1717 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1718 		seq_puts(seq, ",flush_merge");
1719 	if (test_opt(sbi, NOBARRIER))
1720 		seq_puts(seq, ",nobarrier");
1721 	if (test_opt(sbi, FASTBOOT))
1722 		seq_puts(seq, ",fastboot");
1723 	if (test_opt(sbi, EXTENT_CACHE))
1724 		seq_puts(seq, ",extent_cache");
1725 	else
1726 		seq_puts(seq, ",noextent_cache");
1727 	if (test_opt(sbi, DATA_FLUSH))
1728 		seq_puts(seq, ",data_flush");
1729 
1730 	seq_puts(seq, ",mode=");
1731 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
1732 		seq_puts(seq, "adaptive");
1733 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
1734 		seq_puts(seq, "lfs");
1735 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1736 	if (test_opt(sbi, RESERVE_ROOT))
1737 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1738 				F2FS_OPTION(sbi).root_reserved_blocks,
1739 				from_kuid_munged(&init_user_ns,
1740 					F2FS_OPTION(sbi).s_resuid),
1741 				from_kgid_munged(&init_user_ns,
1742 					F2FS_OPTION(sbi).s_resgid));
1743 	if (F2FS_IO_SIZE_BITS(sbi))
1744 		seq_printf(seq, ",io_bits=%u",
1745 				F2FS_OPTION(sbi).write_io_size_bits);
1746 #ifdef CONFIG_F2FS_FAULT_INJECTION
1747 	if (test_opt(sbi, FAULT_INJECTION)) {
1748 		seq_printf(seq, ",fault_injection=%u",
1749 				F2FS_OPTION(sbi).fault_info.inject_rate);
1750 		seq_printf(seq, ",fault_type=%u",
1751 				F2FS_OPTION(sbi).fault_info.inject_type);
1752 	}
1753 #endif
1754 #ifdef CONFIG_QUOTA
1755 	if (test_opt(sbi, QUOTA))
1756 		seq_puts(seq, ",quota");
1757 	if (test_opt(sbi, USRQUOTA))
1758 		seq_puts(seq, ",usrquota");
1759 	if (test_opt(sbi, GRPQUOTA))
1760 		seq_puts(seq, ",grpquota");
1761 	if (test_opt(sbi, PRJQUOTA))
1762 		seq_puts(seq, ",prjquota");
1763 #endif
1764 	f2fs_show_quota_options(seq, sbi->sb);
1765 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1766 		seq_printf(seq, ",whint_mode=%s", "user-based");
1767 	else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1768 		seq_printf(seq, ",whint_mode=%s", "fs-based");
1769 
1770 	fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
1771 
1772 	if (sbi->sb->s_flags & SB_INLINECRYPT)
1773 		seq_puts(seq, ",inlinecrypt");
1774 
1775 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1776 		seq_printf(seq, ",alloc_mode=%s", "default");
1777 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1778 		seq_printf(seq, ",alloc_mode=%s", "reuse");
1779 
1780 	if (test_opt(sbi, DISABLE_CHECKPOINT))
1781 		seq_printf(seq, ",checkpoint=disable:%u",
1782 				F2FS_OPTION(sbi).unusable_cap);
1783 	if (test_opt(sbi, MERGE_CHECKPOINT))
1784 		seq_puts(seq, ",checkpoint_merge");
1785 	else
1786 		seq_puts(seq, ",nocheckpoint_merge");
1787 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1788 		seq_printf(seq, ",fsync_mode=%s", "posix");
1789 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1790 		seq_printf(seq, ",fsync_mode=%s", "strict");
1791 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1792 		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1793 
1794 #ifdef CONFIG_F2FS_FS_COMPRESSION
1795 	f2fs_show_compress_options(seq, sbi->sb);
1796 #endif
1797 
1798 	if (test_opt(sbi, ATGC))
1799 		seq_puts(seq, ",atgc");
1800 	return 0;
1801 }
1802 
1803 static void default_options(struct f2fs_sb_info *sbi)
1804 {
1805 	/* init some FS parameters */
1806 	F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE;
1807 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1808 	F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1809 	F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1810 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1811 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1812 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1813 	F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
1814 	F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
1815 	F2FS_OPTION(sbi).compress_ext_cnt = 0;
1816 	F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
1817 	F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
1818 
1819 	sbi->sb->s_flags &= ~SB_INLINECRYPT;
1820 
1821 	set_opt(sbi, INLINE_XATTR);
1822 	set_opt(sbi, INLINE_DATA);
1823 	set_opt(sbi, INLINE_DENTRY);
1824 	set_opt(sbi, EXTENT_CACHE);
1825 	set_opt(sbi, NOHEAP);
1826 	clear_opt(sbi, DISABLE_CHECKPOINT);
1827 	F2FS_OPTION(sbi).unusable_cap = 0;
1828 	sbi->sb->s_flags |= SB_LAZYTIME;
1829 	set_opt(sbi, FLUSH_MERGE);
1830 	set_opt(sbi, DISCARD);
1831 	if (f2fs_sb_has_blkzoned(sbi))
1832 		F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
1833 	else
1834 		F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
1835 
1836 #ifdef CONFIG_F2FS_FS_XATTR
1837 	set_opt(sbi, XATTR_USER);
1838 #endif
1839 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1840 	set_opt(sbi, POSIX_ACL);
1841 #endif
1842 
1843 	f2fs_build_fault_attr(sbi, 0, 0);
1844 }
1845 
1846 #ifdef CONFIG_QUOTA
1847 static int f2fs_enable_quotas(struct super_block *sb);
1848 #endif
1849 
1850 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
1851 {
1852 	unsigned int s_flags = sbi->sb->s_flags;
1853 	struct cp_control cpc;
1854 	int err = 0;
1855 	int ret;
1856 	block_t unusable;
1857 
1858 	if (s_flags & SB_RDONLY) {
1859 		f2fs_err(sbi, "checkpoint=disable on readonly fs");
1860 		return -EINVAL;
1861 	}
1862 	sbi->sb->s_flags |= SB_ACTIVE;
1863 
1864 	f2fs_update_time(sbi, DISABLE_TIME);
1865 
1866 	while (!f2fs_time_over(sbi, DISABLE_TIME)) {
1867 		down_write(&sbi->gc_lock);
1868 		err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1869 		if (err == -ENODATA) {
1870 			err = 0;
1871 			break;
1872 		}
1873 		if (err && err != -EAGAIN)
1874 			break;
1875 	}
1876 
1877 	ret = sync_filesystem(sbi->sb);
1878 	if (ret || err) {
1879 		err = ret ? ret: err;
1880 		goto restore_flag;
1881 	}
1882 
1883 	unusable = f2fs_get_unusable_blocks(sbi);
1884 	if (f2fs_disable_cp_again(sbi, unusable)) {
1885 		err = -EAGAIN;
1886 		goto restore_flag;
1887 	}
1888 
1889 	down_write(&sbi->gc_lock);
1890 	cpc.reason = CP_PAUSE;
1891 	set_sbi_flag(sbi, SBI_CP_DISABLED);
1892 	err = f2fs_write_checkpoint(sbi, &cpc);
1893 	if (err)
1894 		goto out_unlock;
1895 
1896 	spin_lock(&sbi->stat_lock);
1897 	sbi->unusable_block_count = unusable;
1898 	spin_unlock(&sbi->stat_lock);
1899 
1900 out_unlock:
1901 	up_write(&sbi->gc_lock);
1902 restore_flag:
1903 	sbi->sb->s_flags = s_flags;	/* Restore SB_RDONLY status */
1904 	return err;
1905 }
1906 
1907 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
1908 {
1909 	/* we should flush all the data to keep data consistency */
1910 	sync_inodes_sb(sbi->sb);
1911 
1912 	down_write(&sbi->gc_lock);
1913 	f2fs_dirty_to_prefree(sbi);
1914 
1915 	clear_sbi_flag(sbi, SBI_CP_DISABLED);
1916 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1917 	up_write(&sbi->gc_lock);
1918 
1919 	f2fs_sync_fs(sbi->sb, 1);
1920 }
1921 
1922 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1923 {
1924 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1925 	struct f2fs_mount_info org_mount_opt;
1926 	unsigned long old_sb_flags;
1927 	int err;
1928 	bool need_restart_gc = false;
1929 	bool need_stop_gc = false;
1930 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1931 	bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT);
1932 	bool no_io_align = !F2FS_IO_ALIGNED(sbi);
1933 	bool no_atgc = !test_opt(sbi, ATGC);
1934 	bool checkpoint_changed;
1935 #ifdef CONFIG_QUOTA
1936 	int i, j;
1937 #endif
1938 
1939 	/*
1940 	 * Save the old mount options in case we
1941 	 * need to restore them.
1942 	 */
1943 	org_mount_opt = sbi->mount_opt;
1944 	old_sb_flags = sb->s_flags;
1945 
1946 #ifdef CONFIG_QUOTA
1947 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1948 	for (i = 0; i < MAXQUOTAS; i++) {
1949 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1950 			org_mount_opt.s_qf_names[i] =
1951 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1952 				GFP_KERNEL);
1953 			if (!org_mount_opt.s_qf_names[i]) {
1954 				for (j = 0; j < i; j++)
1955 					kfree(org_mount_opt.s_qf_names[j]);
1956 				return -ENOMEM;
1957 			}
1958 		} else {
1959 			org_mount_opt.s_qf_names[i] = NULL;
1960 		}
1961 	}
1962 #endif
1963 
1964 	/* recover superblocks we couldn't write due to previous RO mount */
1965 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1966 		err = f2fs_commit_super(sbi, false);
1967 		f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
1968 			  err);
1969 		if (!err)
1970 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1971 	}
1972 
1973 	default_options(sbi);
1974 
1975 	/* parse mount options */
1976 	err = parse_options(sb, data, true);
1977 	if (err)
1978 		goto restore_opts;
1979 	checkpoint_changed =
1980 			disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT);
1981 
1982 	/*
1983 	 * Previous and new state of filesystem is RO,
1984 	 * so skip checking GC and FLUSH_MERGE conditions.
1985 	 */
1986 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1987 		goto skip;
1988 
1989 #ifdef CONFIG_QUOTA
1990 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1991 		err = dquot_suspend(sb, -1);
1992 		if (err < 0)
1993 			goto restore_opts;
1994 	} else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
1995 		/* dquot_resume needs RW */
1996 		sb->s_flags &= ~SB_RDONLY;
1997 		if (sb_any_quota_suspended(sb)) {
1998 			dquot_resume(sb, -1);
1999 		} else if (f2fs_sb_has_quota_ino(sbi)) {
2000 			err = f2fs_enable_quotas(sb);
2001 			if (err)
2002 				goto restore_opts;
2003 		}
2004 	}
2005 #endif
2006 	/* disallow enable atgc dynamically */
2007 	if (no_atgc == !!test_opt(sbi, ATGC)) {
2008 		err = -EINVAL;
2009 		f2fs_warn(sbi, "switch atgc option is not allowed");
2010 		goto restore_opts;
2011 	}
2012 
2013 	/* disallow enable/disable extent_cache dynamically */
2014 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
2015 		err = -EINVAL;
2016 		f2fs_warn(sbi, "switch extent_cache option is not allowed");
2017 		goto restore_opts;
2018 	}
2019 
2020 	if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
2021 		err = -EINVAL;
2022 		f2fs_warn(sbi, "switch io_bits option is not allowed");
2023 		goto restore_opts;
2024 	}
2025 
2026 	if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
2027 		err = -EINVAL;
2028 		f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
2029 		goto restore_opts;
2030 	}
2031 
2032 	/*
2033 	 * We stop the GC thread if FS is mounted as RO
2034 	 * or if background_gc = off is passed in mount
2035 	 * option. Also sync the filesystem.
2036 	 */
2037 	if ((*flags & SB_RDONLY) ||
2038 			F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) {
2039 		if (sbi->gc_thread) {
2040 			f2fs_stop_gc_thread(sbi);
2041 			need_restart_gc = true;
2042 		}
2043 	} else if (!sbi->gc_thread) {
2044 		err = f2fs_start_gc_thread(sbi);
2045 		if (err)
2046 			goto restore_opts;
2047 		need_stop_gc = true;
2048 	}
2049 
2050 	if (*flags & SB_RDONLY ||
2051 		F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
2052 		sync_inodes_sb(sb);
2053 
2054 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2055 		set_sbi_flag(sbi, SBI_IS_CLOSE);
2056 		f2fs_sync_fs(sb, 1);
2057 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
2058 	}
2059 
2060 	if (checkpoint_changed) {
2061 		if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2062 			err = f2fs_disable_checkpoint(sbi);
2063 			if (err)
2064 				goto restore_gc;
2065 		} else {
2066 			f2fs_enable_checkpoint(sbi);
2067 		}
2068 	}
2069 
2070 	if (!test_opt(sbi, DISABLE_CHECKPOINT) &&
2071 			test_opt(sbi, MERGE_CHECKPOINT)) {
2072 		err = f2fs_start_ckpt_thread(sbi);
2073 		if (err) {
2074 			f2fs_err(sbi,
2075 			    "Failed to start F2FS issue_checkpoint_thread (%d)",
2076 			    err);
2077 			goto restore_gc;
2078 		}
2079 	} else {
2080 		f2fs_stop_ckpt_thread(sbi);
2081 	}
2082 
2083 	/*
2084 	 * We stop issue flush thread if FS is mounted as RO
2085 	 * or if flush_merge is not passed in mount option.
2086 	 */
2087 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
2088 		clear_opt(sbi, FLUSH_MERGE);
2089 		f2fs_destroy_flush_cmd_control(sbi, false);
2090 	} else {
2091 		err = f2fs_create_flush_cmd_control(sbi);
2092 		if (err)
2093 			goto restore_gc;
2094 	}
2095 skip:
2096 #ifdef CONFIG_QUOTA
2097 	/* Release old quota file names */
2098 	for (i = 0; i < MAXQUOTAS; i++)
2099 		kfree(org_mount_opt.s_qf_names[i]);
2100 #endif
2101 	/* Update the POSIXACL Flag */
2102 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2103 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2104 
2105 	limit_reserve_root(sbi);
2106 	adjust_unusable_cap_perc(sbi);
2107 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
2108 	return 0;
2109 restore_gc:
2110 	if (need_restart_gc) {
2111 		if (f2fs_start_gc_thread(sbi))
2112 			f2fs_warn(sbi, "background gc thread has stopped");
2113 	} else if (need_stop_gc) {
2114 		f2fs_stop_gc_thread(sbi);
2115 	}
2116 restore_opts:
2117 #ifdef CONFIG_QUOTA
2118 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
2119 	for (i = 0; i < MAXQUOTAS; i++) {
2120 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
2121 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
2122 	}
2123 #endif
2124 	sbi->mount_opt = org_mount_opt;
2125 	sb->s_flags = old_sb_flags;
2126 	return err;
2127 }
2128 
2129 #ifdef CONFIG_QUOTA
2130 /* Read data from quotafile */
2131 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
2132 			       size_t len, loff_t off)
2133 {
2134 	struct inode *inode = sb_dqopt(sb)->files[type];
2135 	struct address_space *mapping = inode->i_mapping;
2136 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
2137 	int offset = off & (sb->s_blocksize - 1);
2138 	int tocopy;
2139 	size_t toread;
2140 	loff_t i_size = i_size_read(inode);
2141 	struct page *page;
2142 	char *kaddr;
2143 
2144 	if (off > i_size)
2145 		return 0;
2146 
2147 	if (off + len > i_size)
2148 		len = i_size - off;
2149 	toread = len;
2150 	while (toread > 0) {
2151 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
2152 repeat:
2153 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
2154 		if (IS_ERR(page)) {
2155 			if (PTR_ERR(page) == -ENOMEM) {
2156 				congestion_wait(BLK_RW_ASYNC,
2157 						DEFAULT_IO_TIMEOUT);
2158 				goto repeat;
2159 			}
2160 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2161 			return PTR_ERR(page);
2162 		}
2163 
2164 		lock_page(page);
2165 
2166 		if (unlikely(page->mapping != mapping)) {
2167 			f2fs_put_page(page, 1);
2168 			goto repeat;
2169 		}
2170 		if (unlikely(!PageUptodate(page))) {
2171 			f2fs_put_page(page, 1);
2172 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2173 			return -EIO;
2174 		}
2175 
2176 		kaddr = kmap_atomic(page);
2177 		memcpy(data, kaddr + offset, tocopy);
2178 		kunmap_atomic(kaddr);
2179 		f2fs_put_page(page, 1);
2180 
2181 		offset = 0;
2182 		toread -= tocopy;
2183 		data += tocopy;
2184 		blkidx++;
2185 	}
2186 	return len;
2187 }
2188 
2189 /* Write to quotafile */
2190 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
2191 				const char *data, size_t len, loff_t off)
2192 {
2193 	struct inode *inode = sb_dqopt(sb)->files[type];
2194 	struct address_space *mapping = inode->i_mapping;
2195 	const struct address_space_operations *a_ops = mapping->a_ops;
2196 	int offset = off & (sb->s_blocksize - 1);
2197 	size_t towrite = len;
2198 	struct page *page;
2199 	void *fsdata = NULL;
2200 	char *kaddr;
2201 	int err = 0;
2202 	int tocopy;
2203 
2204 	while (towrite > 0) {
2205 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
2206 								towrite);
2207 retry:
2208 		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
2209 							&page, &fsdata);
2210 		if (unlikely(err)) {
2211 			if (err == -ENOMEM) {
2212 				congestion_wait(BLK_RW_ASYNC,
2213 						DEFAULT_IO_TIMEOUT);
2214 				goto retry;
2215 			}
2216 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2217 			break;
2218 		}
2219 
2220 		kaddr = kmap_atomic(page);
2221 		memcpy(kaddr + offset, data, tocopy);
2222 		kunmap_atomic(kaddr);
2223 		flush_dcache_page(page);
2224 
2225 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
2226 						page, fsdata);
2227 		offset = 0;
2228 		towrite -= tocopy;
2229 		off += tocopy;
2230 		data += tocopy;
2231 		cond_resched();
2232 	}
2233 
2234 	if (len == towrite)
2235 		return err;
2236 	inode->i_mtime = inode->i_ctime = current_time(inode);
2237 	f2fs_mark_inode_dirty_sync(inode, false);
2238 	return len - towrite;
2239 }
2240 
2241 static struct dquot **f2fs_get_dquots(struct inode *inode)
2242 {
2243 	return F2FS_I(inode)->i_dquot;
2244 }
2245 
2246 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
2247 {
2248 	return &F2FS_I(inode)->i_reserved_quota;
2249 }
2250 
2251 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
2252 {
2253 	if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
2254 		f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
2255 		return 0;
2256 	}
2257 
2258 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
2259 					F2FS_OPTION(sbi).s_jquota_fmt, type);
2260 }
2261 
2262 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
2263 {
2264 	int enabled = 0;
2265 	int i, err;
2266 
2267 	if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
2268 		err = f2fs_enable_quotas(sbi->sb);
2269 		if (err) {
2270 			f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2271 			return 0;
2272 		}
2273 		return 1;
2274 	}
2275 
2276 	for (i = 0; i < MAXQUOTAS; i++) {
2277 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2278 			err = f2fs_quota_on_mount(sbi, i);
2279 			if (!err) {
2280 				enabled = 1;
2281 				continue;
2282 			}
2283 			f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2284 				 err, i);
2285 		}
2286 	}
2287 	return enabled;
2288 }
2289 
2290 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2291 			     unsigned int flags)
2292 {
2293 	struct inode *qf_inode;
2294 	unsigned long qf_inum;
2295 	int err;
2296 
2297 	BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2298 
2299 	qf_inum = f2fs_qf_ino(sb, type);
2300 	if (!qf_inum)
2301 		return -EPERM;
2302 
2303 	qf_inode = f2fs_iget(sb, qf_inum);
2304 	if (IS_ERR(qf_inode)) {
2305 		f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2306 		return PTR_ERR(qf_inode);
2307 	}
2308 
2309 	/* Don't account quota for quota files to avoid recursion */
2310 	qf_inode->i_flags |= S_NOQUOTA;
2311 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2312 	iput(qf_inode);
2313 	return err;
2314 }
2315 
2316 static int f2fs_enable_quotas(struct super_block *sb)
2317 {
2318 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2319 	int type, err = 0;
2320 	unsigned long qf_inum;
2321 	bool quota_mopt[MAXQUOTAS] = {
2322 		test_opt(sbi, USRQUOTA),
2323 		test_opt(sbi, GRPQUOTA),
2324 		test_opt(sbi, PRJQUOTA),
2325 	};
2326 
2327 	if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2328 		f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2329 		return 0;
2330 	}
2331 
2332 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2333 
2334 	for (type = 0; type < MAXQUOTAS; type++) {
2335 		qf_inum = f2fs_qf_ino(sb, type);
2336 		if (qf_inum) {
2337 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2338 				DQUOT_USAGE_ENABLED |
2339 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2340 			if (err) {
2341 				f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2342 					 type, err);
2343 				for (type--; type >= 0; type--)
2344 					dquot_quota_off(sb, type);
2345 				set_sbi_flag(F2FS_SB(sb),
2346 						SBI_QUOTA_NEED_REPAIR);
2347 				return err;
2348 			}
2349 		}
2350 	}
2351 	return 0;
2352 }
2353 
2354 int f2fs_quota_sync(struct super_block *sb, int type)
2355 {
2356 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2357 	struct quota_info *dqopt = sb_dqopt(sb);
2358 	int cnt;
2359 	int ret;
2360 
2361 	/*
2362 	 * do_quotactl
2363 	 *  f2fs_quota_sync
2364 	 *  down_read(quota_sem)
2365 	 *  dquot_writeback_dquots()
2366 	 *  f2fs_dquot_commit
2367 	 *                            block_operation
2368 	 *                            down_read(quota_sem)
2369 	 */
2370 	f2fs_lock_op(sbi);
2371 
2372 	down_read(&sbi->quota_sem);
2373 	ret = dquot_writeback_dquots(sb, type);
2374 	if (ret)
2375 		goto out;
2376 
2377 	/*
2378 	 * Now when everything is written we can discard the pagecache so
2379 	 * that userspace sees the changes.
2380 	 */
2381 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2382 		struct address_space *mapping;
2383 
2384 		if (type != -1 && cnt != type)
2385 			continue;
2386 		if (!sb_has_quota_active(sb, cnt))
2387 			continue;
2388 
2389 		mapping = dqopt->files[cnt]->i_mapping;
2390 
2391 		ret = filemap_fdatawrite(mapping);
2392 		if (ret)
2393 			goto out;
2394 
2395 		/* if we are using journalled quota */
2396 		if (is_journalled_quota(sbi))
2397 			continue;
2398 
2399 		ret = filemap_fdatawait(mapping);
2400 		if (ret)
2401 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2402 
2403 		inode_lock(dqopt->files[cnt]);
2404 		truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
2405 		inode_unlock(dqopt->files[cnt]);
2406 	}
2407 out:
2408 	if (ret)
2409 		set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2410 	up_read(&sbi->quota_sem);
2411 	f2fs_unlock_op(sbi);
2412 	return ret;
2413 }
2414 
2415 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2416 							const struct path *path)
2417 {
2418 	struct inode *inode;
2419 	int err;
2420 
2421 	/* if quota sysfile exists, deny enabling quota with specific file */
2422 	if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2423 		f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2424 		return -EBUSY;
2425 	}
2426 
2427 	err = f2fs_quota_sync(sb, type);
2428 	if (err)
2429 		return err;
2430 
2431 	err = dquot_quota_on(sb, type, format_id, path);
2432 	if (err)
2433 		return err;
2434 
2435 	inode = d_inode(path->dentry);
2436 
2437 	inode_lock(inode);
2438 	F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2439 	f2fs_set_inode_flags(inode);
2440 	inode_unlock(inode);
2441 	f2fs_mark_inode_dirty_sync(inode, false);
2442 
2443 	return 0;
2444 }
2445 
2446 static int __f2fs_quota_off(struct super_block *sb, int type)
2447 {
2448 	struct inode *inode = sb_dqopt(sb)->files[type];
2449 	int err;
2450 
2451 	if (!inode || !igrab(inode))
2452 		return dquot_quota_off(sb, type);
2453 
2454 	err = f2fs_quota_sync(sb, type);
2455 	if (err)
2456 		goto out_put;
2457 
2458 	err = dquot_quota_off(sb, type);
2459 	if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2460 		goto out_put;
2461 
2462 	inode_lock(inode);
2463 	F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2464 	f2fs_set_inode_flags(inode);
2465 	inode_unlock(inode);
2466 	f2fs_mark_inode_dirty_sync(inode, false);
2467 out_put:
2468 	iput(inode);
2469 	return err;
2470 }
2471 
2472 static int f2fs_quota_off(struct super_block *sb, int type)
2473 {
2474 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2475 	int err;
2476 
2477 	err = __f2fs_quota_off(sb, type);
2478 
2479 	/*
2480 	 * quotactl can shutdown journalled quota, result in inconsistence
2481 	 * between quota record and fs data by following updates, tag the
2482 	 * flag to let fsck be aware of it.
2483 	 */
2484 	if (is_journalled_quota(sbi))
2485 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2486 	return err;
2487 }
2488 
2489 void f2fs_quota_off_umount(struct super_block *sb)
2490 {
2491 	int type;
2492 	int err;
2493 
2494 	for (type = 0; type < MAXQUOTAS; type++) {
2495 		err = __f2fs_quota_off(sb, type);
2496 		if (err) {
2497 			int ret = dquot_quota_off(sb, type);
2498 
2499 			f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2500 				 type, err, ret);
2501 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2502 		}
2503 	}
2504 	/*
2505 	 * In case of checkpoint=disable, we must flush quota blocks.
2506 	 * This can cause NULL exception for node_inode in end_io, since
2507 	 * put_super already dropped it.
2508 	 */
2509 	sync_filesystem(sb);
2510 }
2511 
2512 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2513 {
2514 	struct quota_info *dqopt = sb_dqopt(sb);
2515 	int type;
2516 
2517 	for (type = 0; type < MAXQUOTAS; type++) {
2518 		if (!dqopt->files[type])
2519 			continue;
2520 		f2fs_inode_synced(dqopt->files[type]);
2521 	}
2522 }
2523 
2524 static int f2fs_dquot_commit(struct dquot *dquot)
2525 {
2526 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2527 	int ret;
2528 
2529 	down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
2530 	ret = dquot_commit(dquot);
2531 	if (ret < 0)
2532 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2533 	up_read(&sbi->quota_sem);
2534 	return ret;
2535 }
2536 
2537 static int f2fs_dquot_acquire(struct dquot *dquot)
2538 {
2539 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2540 	int ret;
2541 
2542 	down_read(&sbi->quota_sem);
2543 	ret = dquot_acquire(dquot);
2544 	if (ret < 0)
2545 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2546 	up_read(&sbi->quota_sem);
2547 	return ret;
2548 }
2549 
2550 static int f2fs_dquot_release(struct dquot *dquot)
2551 {
2552 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2553 	int ret = dquot_release(dquot);
2554 
2555 	if (ret < 0)
2556 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2557 	return ret;
2558 }
2559 
2560 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2561 {
2562 	struct super_block *sb = dquot->dq_sb;
2563 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2564 	int ret = dquot_mark_dquot_dirty(dquot);
2565 
2566 	/* if we are using journalled quota */
2567 	if (is_journalled_quota(sbi))
2568 		set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2569 
2570 	return ret;
2571 }
2572 
2573 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2574 {
2575 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2576 	int ret = dquot_commit_info(sb, type);
2577 
2578 	if (ret < 0)
2579 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2580 	return ret;
2581 }
2582 
2583 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2584 {
2585 	*projid = F2FS_I(inode)->i_projid;
2586 	return 0;
2587 }
2588 
2589 static const struct dquot_operations f2fs_quota_operations = {
2590 	.get_reserved_space = f2fs_get_reserved_space,
2591 	.write_dquot	= f2fs_dquot_commit,
2592 	.acquire_dquot	= f2fs_dquot_acquire,
2593 	.release_dquot	= f2fs_dquot_release,
2594 	.mark_dirty	= f2fs_dquot_mark_dquot_dirty,
2595 	.write_info	= f2fs_dquot_commit_info,
2596 	.alloc_dquot	= dquot_alloc,
2597 	.destroy_dquot	= dquot_destroy,
2598 	.get_projid	= f2fs_get_projid,
2599 	.get_next_id	= dquot_get_next_id,
2600 };
2601 
2602 static const struct quotactl_ops f2fs_quotactl_ops = {
2603 	.quota_on	= f2fs_quota_on,
2604 	.quota_off	= f2fs_quota_off,
2605 	.quota_sync	= f2fs_quota_sync,
2606 	.get_state	= dquot_get_state,
2607 	.set_info	= dquot_set_dqinfo,
2608 	.get_dqblk	= dquot_get_dqblk,
2609 	.set_dqblk	= dquot_set_dqblk,
2610 	.get_nextdqblk	= dquot_get_next_dqblk,
2611 };
2612 #else
2613 int f2fs_quota_sync(struct super_block *sb, int type)
2614 {
2615 	return 0;
2616 }
2617 
2618 void f2fs_quota_off_umount(struct super_block *sb)
2619 {
2620 }
2621 #endif
2622 
2623 static const struct super_operations f2fs_sops = {
2624 	.alloc_inode	= f2fs_alloc_inode,
2625 	.free_inode	= f2fs_free_inode,
2626 	.drop_inode	= f2fs_drop_inode,
2627 	.write_inode	= f2fs_write_inode,
2628 	.dirty_inode	= f2fs_dirty_inode,
2629 	.show_options	= f2fs_show_options,
2630 #ifdef CONFIG_QUOTA
2631 	.quota_read	= f2fs_quota_read,
2632 	.quota_write	= f2fs_quota_write,
2633 	.get_dquots	= f2fs_get_dquots,
2634 #endif
2635 	.evict_inode	= f2fs_evict_inode,
2636 	.put_super	= f2fs_put_super,
2637 	.sync_fs	= f2fs_sync_fs,
2638 	.freeze_fs	= f2fs_freeze,
2639 	.unfreeze_fs	= f2fs_unfreeze,
2640 	.statfs		= f2fs_statfs,
2641 	.remount_fs	= f2fs_remount,
2642 };
2643 
2644 #ifdef CONFIG_FS_ENCRYPTION
2645 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2646 {
2647 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2648 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2649 				ctx, len, NULL);
2650 }
2651 
2652 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2653 							void *fs_data)
2654 {
2655 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2656 
2657 	/*
2658 	 * Encrypting the root directory is not allowed because fsck
2659 	 * expects lost+found directory to exist and remain unencrypted
2660 	 * if LOST_FOUND feature is enabled.
2661 	 *
2662 	 */
2663 	if (f2fs_sb_has_lost_found(sbi) &&
2664 			inode->i_ino == F2FS_ROOT_INO(sbi))
2665 		return -EPERM;
2666 
2667 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2668 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2669 				ctx, len, fs_data, XATTR_CREATE);
2670 }
2671 
2672 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb)
2673 {
2674 	return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy;
2675 }
2676 
2677 static bool f2fs_has_stable_inodes(struct super_block *sb)
2678 {
2679 	return true;
2680 }
2681 
2682 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
2683 				       int *ino_bits_ret, int *lblk_bits_ret)
2684 {
2685 	*ino_bits_ret = 8 * sizeof(nid_t);
2686 	*lblk_bits_ret = 8 * sizeof(block_t);
2687 }
2688 
2689 static int f2fs_get_num_devices(struct super_block *sb)
2690 {
2691 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2692 
2693 	if (f2fs_is_multi_device(sbi))
2694 		return sbi->s_ndevs;
2695 	return 1;
2696 }
2697 
2698 static void f2fs_get_devices(struct super_block *sb,
2699 			     struct request_queue **devs)
2700 {
2701 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2702 	int i;
2703 
2704 	for (i = 0; i < sbi->s_ndevs; i++)
2705 		devs[i] = bdev_get_queue(FDEV(i).bdev);
2706 }
2707 
2708 static const struct fscrypt_operations f2fs_cryptops = {
2709 	.key_prefix		= "f2fs:",
2710 	.get_context		= f2fs_get_context,
2711 	.set_context		= f2fs_set_context,
2712 	.get_dummy_policy	= f2fs_get_dummy_policy,
2713 	.empty_dir		= f2fs_empty_dir,
2714 	.max_namelen		= F2FS_NAME_LEN,
2715 	.has_stable_inodes	= f2fs_has_stable_inodes,
2716 	.get_ino_and_lblk_bits	= f2fs_get_ino_and_lblk_bits,
2717 	.get_num_devices	= f2fs_get_num_devices,
2718 	.get_devices		= f2fs_get_devices,
2719 };
2720 #endif
2721 
2722 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2723 		u64 ino, u32 generation)
2724 {
2725 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2726 	struct inode *inode;
2727 
2728 	if (f2fs_check_nid_range(sbi, ino))
2729 		return ERR_PTR(-ESTALE);
2730 
2731 	/*
2732 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
2733 	 * However f2fs_iget currently does appropriate checks to handle stale
2734 	 * inodes so everything is OK.
2735 	 */
2736 	inode = f2fs_iget(sb, ino);
2737 	if (IS_ERR(inode))
2738 		return ERR_CAST(inode);
2739 	if (unlikely(generation && inode->i_generation != generation)) {
2740 		/* we didn't find the right inode.. */
2741 		iput(inode);
2742 		return ERR_PTR(-ESTALE);
2743 	}
2744 	return inode;
2745 }
2746 
2747 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2748 		int fh_len, int fh_type)
2749 {
2750 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2751 				    f2fs_nfs_get_inode);
2752 }
2753 
2754 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2755 		int fh_len, int fh_type)
2756 {
2757 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2758 				    f2fs_nfs_get_inode);
2759 }
2760 
2761 static const struct export_operations f2fs_export_ops = {
2762 	.fh_to_dentry = f2fs_fh_to_dentry,
2763 	.fh_to_parent = f2fs_fh_to_parent,
2764 	.get_parent = f2fs_get_parent,
2765 };
2766 
2767 loff_t max_file_blocks(struct inode *inode)
2768 {
2769 	loff_t result = 0;
2770 	loff_t leaf_count;
2771 
2772 	/*
2773 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2774 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2775 	 * space in inode.i_addr, it will be more safe to reassign
2776 	 * result as zero.
2777 	 */
2778 
2779 	if (inode && f2fs_compressed_file(inode))
2780 		leaf_count = ADDRS_PER_BLOCK(inode);
2781 	else
2782 		leaf_count = DEF_ADDRS_PER_BLOCK;
2783 
2784 	/* two direct node blocks */
2785 	result += (leaf_count * 2);
2786 
2787 	/* two indirect node blocks */
2788 	leaf_count *= NIDS_PER_BLOCK;
2789 	result += (leaf_count * 2);
2790 
2791 	/* one double indirect node block */
2792 	leaf_count *= NIDS_PER_BLOCK;
2793 	result += leaf_count;
2794 
2795 	return result;
2796 }
2797 
2798 static int __f2fs_commit_super(struct buffer_head *bh,
2799 			struct f2fs_super_block *super)
2800 {
2801 	lock_buffer(bh);
2802 	if (super)
2803 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2804 	set_buffer_dirty(bh);
2805 	unlock_buffer(bh);
2806 
2807 	/* it's rare case, we can do fua all the time */
2808 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2809 }
2810 
2811 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2812 					struct buffer_head *bh)
2813 {
2814 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2815 					(bh->b_data + F2FS_SUPER_OFFSET);
2816 	struct super_block *sb = sbi->sb;
2817 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2818 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2819 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2820 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2821 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2822 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2823 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2824 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2825 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2826 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2827 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2828 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
2829 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2830 	u64 main_end_blkaddr = main_blkaddr +
2831 				(segment_count_main << log_blocks_per_seg);
2832 	u64 seg_end_blkaddr = segment0_blkaddr +
2833 				(segment_count << log_blocks_per_seg);
2834 
2835 	if (segment0_blkaddr != cp_blkaddr) {
2836 		f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2837 			  segment0_blkaddr, cp_blkaddr);
2838 		return true;
2839 	}
2840 
2841 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2842 							sit_blkaddr) {
2843 		f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2844 			  cp_blkaddr, sit_blkaddr,
2845 			  segment_count_ckpt << log_blocks_per_seg);
2846 		return true;
2847 	}
2848 
2849 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2850 							nat_blkaddr) {
2851 		f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2852 			  sit_blkaddr, nat_blkaddr,
2853 			  segment_count_sit << log_blocks_per_seg);
2854 		return true;
2855 	}
2856 
2857 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2858 							ssa_blkaddr) {
2859 		f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2860 			  nat_blkaddr, ssa_blkaddr,
2861 			  segment_count_nat << log_blocks_per_seg);
2862 		return true;
2863 	}
2864 
2865 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2866 							main_blkaddr) {
2867 		f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2868 			  ssa_blkaddr, main_blkaddr,
2869 			  segment_count_ssa << log_blocks_per_seg);
2870 		return true;
2871 	}
2872 
2873 	if (main_end_blkaddr > seg_end_blkaddr) {
2874 		f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)",
2875 			  main_blkaddr, seg_end_blkaddr,
2876 			  segment_count_main << log_blocks_per_seg);
2877 		return true;
2878 	} else if (main_end_blkaddr < seg_end_blkaddr) {
2879 		int err = 0;
2880 		char *res;
2881 
2882 		/* fix in-memory information all the time */
2883 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2884 				segment0_blkaddr) >> log_blocks_per_seg);
2885 
2886 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2887 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2888 			res = "internally";
2889 		} else {
2890 			err = __f2fs_commit_super(bh, NULL);
2891 			res = err ? "failed" : "done";
2892 		}
2893 		f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)",
2894 			  res, main_blkaddr, seg_end_blkaddr,
2895 			  segment_count_main << log_blocks_per_seg);
2896 		if (err)
2897 			return true;
2898 	}
2899 	return false;
2900 }
2901 
2902 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2903 				struct buffer_head *bh)
2904 {
2905 	block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main;
2906 	block_t total_sections, blocks_per_seg;
2907 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2908 					(bh->b_data + F2FS_SUPER_OFFSET);
2909 	size_t crc_offset = 0;
2910 	__u32 crc = 0;
2911 
2912 	if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
2913 		f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
2914 			  F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2915 		return -EINVAL;
2916 	}
2917 
2918 	/* Check checksum_offset and crc in superblock */
2919 	if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
2920 		crc_offset = le32_to_cpu(raw_super->checksum_offset);
2921 		if (crc_offset !=
2922 			offsetof(struct f2fs_super_block, crc)) {
2923 			f2fs_info(sbi, "Invalid SB checksum offset: %zu",
2924 				  crc_offset);
2925 			return -EFSCORRUPTED;
2926 		}
2927 		crc = le32_to_cpu(raw_super->crc);
2928 		if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
2929 			f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
2930 			return -EFSCORRUPTED;
2931 		}
2932 	}
2933 
2934 	/* Currently, support only 4KB block size */
2935 	if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) {
2936 		f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u",
2937 			  le32_to_cpu(raw_super->log_blocksize),
2938 			  F2FS_BLKSIZE_BITS);
2939 		return -EFSCORRUPTED;
2940 	}
2941 
2942 	/* check log blocks per segment */
2943 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2944 		f2fs_info(sbi, "Invalid log blocks per segment (%u)",
2945 			  le32_to_cpu(raw_super->log_blocks_per_seg));
2946 		return -EFSCORRUPTED;
2947 	}
2948 
2949 	/* Currently, support 512/1024/2048/4096 bytes sector size */
2950 	if (le32_to_cpu(raw_super->log_sectorsize) >
2951 				F2FS_MAX_LOG_SECTOR_SIZE ||
2952 		le32_to_cpu(raw_super->log_sectorsize) <
2953 				F2FS_MIN_LOG_SECTOR_SIZE) {
2954 		f2fs_info(sbi, "Invalid log sectorsize (%u)",
2955 			  le32_to_cpu(raw_super->log_sectorsize));
2956 		return -EFSCORRUPTED;
2957 	}
2958 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
2959 		le32_to_cpu(raw_super->log_sectorsize) !=
2960 			F2FS_MAX_LOG_SECTOR_SIZE) {
2961 		f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
2962 			  le32_to_cpu(raw_super->log_sectors_per_block),
2963 			  le32_to_cpu(raw_super->log_sectorsize));
2964 		return -EFSCORRUPTED;
2965 	}
2966 
2967 	segment_count = le32_to_cpu(raw_super->segment_count);
2968 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2969 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2970 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2971 	total_sections = le32_to_cpu(raw_super->section_count);
2972 
2973 	/* blocks_per_seg should be 512, given the above check */
2974 	blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2975 
2976 	if (segment_count > F2FS_MAX_SEGMENT ||
2977 				segment_count < F2FS_MIN_SEGMENTS) {
2978 		f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
2979 		return -EFSCORRUPTED;
2980 	}
2981 
2982 	if (total_sections > segment_count_main || total_sections < 1 ||
2983 			segs_per_sec > segment_count || !segs_per_sec) {
2984 		f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
2985 			  segment_count, total_sections, segs_per_sec);
2986 		return -EFSCORRUPTED;
2987 	}
2988 
2989 	if (segment_count_main != total_sections * segs_per_sec) {
2990 		f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)",
2991 			  segment_count_main, total_sections, segs_per_sec);
2992 		return -EFSCORRUPTED;
2993 	}
2994 
2995 	if ((segment_count / segs_per_sec) < total_sections) {
2996 		f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
2997 			  segment_count, segs_per_sec, total_sections);
2998 		return -EFSCORRUPTED;
2999 	}
3000 
3001 	if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
3002 		f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
3003 			  segment_count, le64_to_cpu(raw_super->block_count));
3004 		return -EFSCORRUPTED;
3005 	}
3006 
3007 	if (RDEV(0).path[0]) {
3008 		block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
3009 		int i = 1;
3010 
3011 		while (i < MAX_DEVICES && RDEV(i).path[0]) {
3012 			dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
3013 			i++;
3014 		}
3015 		if (segment_count != dev_seg_count) {
3016 			f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
3017 					segment_count, dev_seg_count);
3018 			return -EFSCORRUPTED;
3019 		}
3020 	} else {
3021 		if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) &&
3022 					!bdev_is_zoned(sbi->sb->s_bdev)) {
3023 			f2fs_info(sbi, "Zoned block device path is missing");
3024 			return -EFSCORRUPTED;
3025 		}
3026 	}
3027 
3028 	if (secs_per_zone > total_sections || !secs_per_zone) {
3029 		f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
3030 			  secs_per_zone, total_sections);
3031 		return -EFSCORRUPTED;
3032 	}
3033 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
3034 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
3035 			(le32_to_cpu(raw_super->extension_count) +
3036 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
3037 		f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
3038 			  le32_to_cpu(raw_super->extension_count),
3039 			  raw_super->hot_ext_count,
3040 			  F2FS_MAX_EXTENSION);
3041 		return -EFSCORRUPTED;
3042 	}
3043 
3044 	if (le32_to_cpu(raw_super->cp_payload) >
3045 				(blocks_per_seg - F2FS_CP_PACKS)) {
3046 		f2fs_info(sbi, "Insane cp_payload (%u > %u)",
3047 			  le32_to_cpu(raw_super->cp_payload),
3048 			  blocks_per_seg - F2FS_CP_PACKS);
3049 		return -EFSCORRUPTED;
3050 	}
3051 
3052 	/* check reserved ino info */
3053 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
3054 		le32_to_cpu(raw_super->meta_ino) != 2 ||
3055 		le32_to_cpu(raw_super->root_ino) != 3) {
3056 		f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
3057 			  le32_to_cpu(raw_super->node_ino),
3058 			  le32_to_cpu(raw_super->meta_ino),
3059 			  le32_to_cpu(raw_super->root_ino));
3060 		return -EFSCORRUPTED;
3061 	}
3062 
3063 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
3064 	if (sanity_check_area_boundary(sbi, bh))
3065 		return -EFSCORRUPTED;
3066 
3067 	return 0;
3068 }
3069 
3070 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
3071 {
3072 	unsigned int total, fsmeta;
3073 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3074 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3075 	unsigned int ovp_segments, reserved_segments;
3076 	unsigned int main_segs, blocks_per_seg;
3077 	unsigned int sit_segs, nat_segs;
3078 	unsigned int sit_bitmap_size, nat_bitmap_size;
3079 	unsigned int log_blocks_per_seg;
3080 	unsigned int segment_count_main;
3081 	unsigned int cp_pack_start_sum, cp_payload;
3082 	block_t user_block_count, valid_user_blocks;
3083 	block_t avail_node_count, valid_node_count;
3084 	int i, j;
3085 
3086 	total = le32_to_cpu(raw_super->segment_count);
3087 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
3088 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
3089 	fsmeta += sit_segs;
3090 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
3091 	fsmeta += nat_segs;
3092 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
3093 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
3094 
3095 	if (unlikely(fsmeta >= total))
3096 		return 1;
3097 
3098 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3099 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3100 
3101 	if (unlikely(fsmeta < F2FS_MIN_META_SEGMENTS ||
3102 			ovp_segments == 0 || reserved_segments == 0)) {
3103 		f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
3104 		return 1;
3105 	}
3106 
3107 	user_block_count = le64_to_cpu(ckpt->user_block_count);
3108 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3109 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3110 	if (!user_block_count || user_block_count >=
3111 			segment_count_main << log_blocks_per_seg) {
3112 		f2fs_err(sbi, "Wrong user_block_count: %u",
3113 			 user_block_count);
3114 		return 1;
3115 	}
3116 
3117 	valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
3118 	if (valid_user_blocks > user_block_count) {
3119 		f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
3120 			 valid_user_blocks, user_block_count);
3121 		return 1;
3122 	}
3123 
3124 	valid_node_count = le32_to_cpu(ckpt->valid_node_count);
3125 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
3126 	if (valid_node_count > avail_node_count) {
3127 		f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
3128 			 valid_node_count, avail_node_count);
3129 		return 1;
3130 	}
3131 
3132 	main_segs = le32_to_cpu(raw_super->segment_count_main);
3133 	blocks_per_seg = sbi->blocks_per_seg;
3134 
3135 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3136 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
3137 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
3138 			return 1;
3139 		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
3140 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3141 				le32_to_cpu(ckpt->cur_node_segno[j])) {
3142 				f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
3143 					 i, j,
3144 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3145 				return 1;
3146 			}
3147 		}
3148 	}
3149 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
3150 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
3151 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
3152 			return 1;
3153 		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
3154 			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
3155 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3156 				f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
3157 					 i, j,
3158 					 le32_to_cpu(ckpt->cur_data_segno[i]));
3159 				return 1;
3160 			}
3161 		}
3162 	}
3163 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3164 		for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
3165 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3166 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3167 				f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
3168 					 i, j,
3169 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3170 				return 1;
3171 			}
3172 		}
3173 	}
3174 
3175 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
3176 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
3177 
3178 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
3179 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
3180 		f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
3181 			 sit_bitmap_size, nat_bitmap_size);
3182 		return 1;
3183 	}
3184 
3185 	cp_pack_start_sum = __start_sum_addr(sbi);
3186 	cp_payload = __cp_payload(sbi);
3187 	if (cp_pack_start_sum < cp_payload + 1 ||
3188 		cp_pack_start_sum > blocks_per_seg - 1 -
3189 			NR_CURSEG_PERSIST_TYPE) {
3190 		f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
3191 			 cp_pack_start_sum);
3192 		return 1;
3193 	}
3194 
3195 	if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
3196 		le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
3197 		f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
3198 			  "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
3199 			  "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
3200 			  le32_to_cpu(ckpt->checksum_offset));
3201 		return 1;
3202 	}
3203 
3204 	if (unlikely(f2fs_cp_error(sbi))) {
3205 		f2fs_err(sbi, "A bug case: need to run fsck");
3206 		return 1;
3207 	}
3208 	return 0;
3209 }
3210 
3211 static void init_sb_info(struct f2fs_sb_info *sbi)
3212 {
3213 	struct f2fs_super_block *raw_super = sbi->raw_super;
3214 	int i;
3215 
3216 	sbi->log_sectors_per_block =
3217 		le32_to_cpu(raw_super->log_sectors_per_block);
3218 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
3219 	sbi->blocksize = 1 << sbi->log_blocksize;
3220 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3221 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
3222 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3223 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3224 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
3225 	sbi->total_node_count =
3226 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
3227 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
3228 	F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino);
3229 	F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino);
3230 	F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino);
3231 	sbi->cur_victim_sec = NULL_SECNO;
3232 	sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
3233 	sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
3234 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
3235 	sbi->migration_granularity = sbi->segs_per_sec;
3236 
3237 	sbi->dir_level = DEF_DIR_LEVEL;
3238 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
3239 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
3240 	sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
3241 	sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
3242 	sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
3243 	sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
3244 				DEF_UMOUNT_DISCARD_TIMEOUT;
3245 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
3246 
3247 	for (i = 0; i < NR_COUNT_TYPE; i++)
3248 		atomic_set(&sbi->nr_pages[i], 0);
3249 
3250 	for (i = 0; i < META; i++)
3251 		atomic_set(&sbi->wb_sync_req[i], 0);
3252 
3253 	INIT_LIST_HEAD(&sbi->s_list);
3254 	mutex_init(&sbi->umount_mutex);
3255 	init_rwsem(&sbi->io_order_lock);
3256 	spin_lock_init(&sbi->cp_lock);
3257 
3258 	sbi->dirty_device = 0;
3259 	spin_lock_init(&sbi->dev_lock);
3260 
3261 	init_rwsem(&sbi->sb_lock);
3262 	init_rwsem(&sbi->pin_sem);
3263 }
3264 
3265 static int init_percpu_info(struct f2fs_sb_info *sbi)
3266 {
3267 	int err;
3268 
3269 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
3270 	if (err)
3271 		return err;
3272 
3273 	err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
3274 								GFP_KERNEL);
3275 	if (err)
3276 		percpu_counter_destroy(&sbi->alloc_valid_block_count);
3277 
3278 	return err;
3279 }
3280 
3281 #ifdef CONFIG_BLK_DEV_ZONED
3282 
3283 struct f2fs_report_zones_args {
3284 	struct f2fs_dev_info *dev;
3285 	bool zone_cap_mismatch;
3286 };
3287 
3288 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
3289 			      void *data)
3290 {
3291 	struct f2fs_report_zones_args *rz_args = data;
3292 
3293 	if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
3294 		return 0;
3295 
3296 	set_bit(idx, rz_args->dev->blkz_seq);
3297 	rz_args->dev->zone_capacity_blocks[idx] = zone->capacity >>
3298 						F2FS_LOG_SECTORS_PER_BLOCK;
3299 	if (zone->len != zone->capacity && !rz_args->zone_cap_mismatch)
3300 		rz_args->zone_cap_mismatch = true;
3301 
3302 	return 0;
3303 }
3304 
3305 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
3306 {
3307 	struct block_device *bdev = FDEV(devi).bdev;
3308 	sector_t nr_sectors = bdev_nr_sectors(bdev);
3309 	struct f2fs_report_zones_args rep_zone_arg;
3310 	int ret;
3311 
3312 	if (!f2fs_sb_has_blkzoned(sbi))
3313 		return 0;
3314 
3315 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3316 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
3317 		return -EINVAL;
3318 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
3319 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
3320 				__ilog2_u32(sbi->blocks_per_blkz))
3321 		return -EINVAL;
3322 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
3323 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
3324 					sbi->log_blocks_per_blkz;
3325 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
3326 		FDEV(devi).nr_blkz++;
3327 
3328 	FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
3329 					BITS_TO_LONGS(FDEV(devi).nr_blkz)
3330 					* sizeof(unsigned long),
3331 					GFP_KERNEL);
3332 	if (!FDEV(devi).blkz_seq)
3333 		return -ENOMEM;
3334 
3335 	/* Get block zones type and zone-capacity */
3336 	FDEV(devi).zone_capacity_blocks = f2fs_kzalloc(sbi,
3337 					FDEV(devi).nr_blkz * sizeof(block_t),
3338 					GFP_KERNEL);
3339 	if (!FDEV(devi).zone_capacity_blocks)
3340 		return -ENOMEM;
3341 
3342 	rep_zone_arg.dev = &FDEV(devi);
3343 	rep_zone_arg.zone_cap_mismatch = false;
3344 
3345 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3346 				  &rep_zone_arg);
3347 	if (ret < 0)
3348 		return ret;
3349 
3350 	if (!rep_zone_arg.zone_cap_mismatch) {
3351 		kfree(FDEV(devi).zone_capacity_blocks);
3352 		FDEV(devi).zone_capacity_blocks = NULL;
3353 	}
3354 
3355 	return 0;
3356 }
3357 #endif
3358 
3359 /*
3360  * Read f2fs raw super block.
3361  * Because we have two copies of super block, so read both of them
3362  * to get the first valid one. If any one of them is broken, we pass
3363  * them recovery flag back to the caller.
3364  */
3365 static int read_raw_super_block(struct f2fs_sb_info *sbi,
3366 			struct f2fs_super_block **raw_super,
3367 			int *valid_super_block, int *recovery)
3368 {
3369 	struct super_block *sb = sbi->sb;
3370 	int block;
3371 	struct buffer_head *bh;
3372 	struct f2fs_super_block *super;
3373 	int err = 0;
3374 
3375 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3376 	if (!super)
3377 		return -ENOMEM;
3378 
3379 	for (block = 0; block < 2; block++) {
3380 		bh = sb_bread(sb, block);
3381 		if (!bh) {
3382 			f2fs_err(sbi, "Unable to read %dth superblock",
3383 				 block + 1);
3384 			err = -EIO;
3385 			*recovery = 1;
3386 			continue;
3387 		}
3388 
3389 		/* sanity checking of raw super */
3390 		err = sanity_check_raw_super(sbi, bh);
3391 		if (err) {
3392 			f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3393 				 block + 1);
3394 			brelse(bh);
3395 			*recovery = 1;
3396 			continue;
3397 		}
3398 
3399 		if (!*raw_super) {
3400 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3401 							sizeof(*super));
3402 			*valid_super_block = block;
3403 			*raw_super = super;
3404 		}
3405 		brelse(bh);
3406 	}
3407 
3408 	/* No valid superblock */
3409 	if (!*raw_super)
3410 		kfree(super);
3411 	else
3412 		err = 0;
3413 
3414 	return err;
3415 }
3416 
3417 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3418 {
3419 	struct buffer_head *bh;
3420 	__u32 crc = 0;
3421 	int err;
3422 
3423 	if ((recover && f2fs_readonly(sbi->sb)) ||
3424 				bdev_read_only(sbi->sb->s_bdev)) {
3425 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3426 		return -EROFS;
3427 	}
3428 
3429 	/* we should update superblock crc here */
3430 	if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3431 		crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3432 				offsetof(struct f2fs_super_block, crc));
3433 		F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3434 	}
3435 
3436 	/* write back-up superblock first */
3437 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3438 	if (!bh)
3439 		return -EIO;
3440 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3441 	brelse(bh);
3442 
3443 	/* if we are in recovery path, skip writing valid superblock */
3444 	if (recover || err)
3445 		return err;
3446 
3447 	/* write current valid superblock */
3448 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
3449 	if (!bh)
3450 		return -EIO;
3451 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3452 	brelse(bh);
3453 	return err;
3454 }
3455 
3456 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3457 {
3458 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3459 	unsigned int max_devices = MAX_DEVICES;
3460 	int i;
3461 
3462 	/* Initialize single device information */
3463 	if (!RDEV(0).path[0]) {
3464 		if (!bdev_is_zoned(sbi->sb->s_bdev))
3465 			return 0;
3466 		max_devices = 1;
3467 	}
3468 
3469 	/*
3470 	 * Initialize multiple devices information, or single
3471 	 * zoned block device information.
3472 	 */
3473 	sbi->devs = f2fs_kzalloc(sbi,
3474 				 array_size(max_devices,
3475 					    sizeof(struct f2fs_dev_info)),
3476 				 GFP_KERNEL);
3477 	if (!sbi->devs)
3478 		return -ENOMEM;
3479 
3480 	for (i = 0; i < max_devices; i++) {
3481 
3482 		if (i > 0 && !RDEV(i).path[0])
3483 			break;
3484 
3485 		if (max_devices == 1) {
3486 			/* Single zoned block device mount */
3487 			FDEV(0).bdev =
3488 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3489 					sbi->sb->s_mode, sbi->sb->s_type);
3490 		} else {
3491 			/* Multi-device mount */
3492 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3493 			FDEV(i).total_segments =
3494 				le32_to_cpu(RDEV(i).total_segments);
3495 			if (i == 0) {
3496 				FDEV(i).start_blk = 0;
3497 				FDEV(i).end_blk = FDEV(i).start_blk +
3498 				    (FDEV(i).total_segments <<
3499 				    sbi->log_blocks_per_seg) - 1 +
3500 				    le32_to_cpu(raw_super->segment0_blkaddr);
3501 			} else {
3502 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3503 				FDEV(i).end_blk = FDEV(i).start_blk +
3504 					(FDEV(i).total_segments <<
3505 					sbi->log_blocks_per_seg) - 1;
3506 			}
3507 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3508 					sbi->sb->s_mode, sbi->sb->s_type);
3509 		}
3510 		if (IS_ERR(FDEV(i).bdev))
3511 			return PTR_ERR(FDEV(i).bdev);
3512 
3513 		/* to release errored devices */
3514 		sbi->s_ndevs = i + 1;
3515 
3516 #ifdef CONFIG_BLK_DEV_ZONED
3517 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3518 				!f2fs_sb_has_blkzoned(sbi)) {
3519 			f2fs_err(sbi, "Zoned block device feature not enabled\n");
3520 			return -EINVAL;
3521 		}
3522 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3523 			if (init_blkz_info(sbi, i)) {
3524 				f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
3525 				return -EINVAL;
3526 			}
3527 			if (max_devices == 1)
3528 				break;
3529 			f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3530 				  i, FDEV(i).path,
3531 				  FDEV(i).total_segments,
3532 				  FDEV(i).start_blk, FDEV(i).end_blk,
3533 				  bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3534 				  "Host-aware" : "Host-managed");
3535 			continue;
3536 		}
3537 #endif
3538 		f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3539 			  i, FDEV(i).path,
3540 			  FDEV(i).total_segments,
3541 			  FDEV(i).start_blk, FDEV(i).end_blk);
3542 	}
3543 	f2fs_info(sbi,
3544 		  "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3545 	return 0;
3546 }
3547 
3548 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
3549 {
3550 #ifdef CONFIG_UNICODE
3551 	if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) {
3552 		const struct f2fs_sb_encodings *encoding_info;
3553 		struct unicode_map *encoding;
3554 		__u16 encoding_flags;
3555 
3556 		if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info,
3557 					  &encoding_flags)) {
3558 			f2fs_err(sbi,
3559 				 "Encoding requested by superblock is unknown");
3560 			return -EINVAL;
3561 		}
3562 
3563 		encoding = utf8_load(encoding_info->version);
3564 		if (IS_ERR(encoding)) {
3565 			f2fs_err(sbi,
3566 				 "can't mount with superblock charset: %s-%s "
3567 				 "not supported by the kernel. flags: 0x%x.",
3568 				 encoding_info->name, encoding_info->version,
3569 				 encoding_flags);
3570 			return PTR_ERR(encoding);
3571 		}
3572 		f2fs_info(sbi, "Using encoding defined by superblock: "
3573 			 "%s-%s with flags 0x%hx", encoding_info->name,
3574 			 encoding_info->version?:"\b", encoding_flags);
3575 
3576 		sbi->sb->s_encoding = encoding;
3577 		sbi->sb->s_encoding_flags = encoding_flags;
3578 	}
3579 #else
3580 	if (f2fs_sb_has_casefold(sbi)) {
3581 		f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
3582 		return -EINVAL;
3583 	}
3584 #endif
3585 	return 0;
3586 }
3587 
3588 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3589 {
3590 	struct f2fs_sm_info *sm_i = SM_I(sbi);
3591 
3592 	/* adjust parameters according to the volume size */
3593 	if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3594 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3595 		sm_i->dcc_info->discard_granularity = 1;
3596 		sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3597 	}
3598 
3599 	sbi->readdir_ra = 1;
3600 }
3601 
3602 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3603 {
3604 	struct f2fs_sb_info *sbi;
3605 	struct f2fs_super_block *raw_super;
3606 	struct inode *root;
3607 	int err;
3608 	bool skip_recovery = false, need_fsck = false;
3609 	char *options = NULL;
3610 	int recovery, i, valid_super_block;
3611 	struct curseg_info *seg_i;
3612 	int retry_cnt = 1;
3613 
3614 try_onemore:
3615 	err = -EINVAL;
3616 	raw_super = NULL;
3617 	valid_super_block = -1;
3618 	recovery = 0;
3619 
3620 	/* allocate memory for f2fs-specific super block info */
3621 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3622 	if (!sbi)
3623 		return -ENOMEM;
3624 
3625 	sbi->sb = sb;
3626 
3627 	/* Load the checksum driver */
3628 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3629 	if (IS_ERR(sbi->s_chksum_driver)) {
3630 		f2fs_err(sbi, "Cannot load crc32 driver.");
3631 		err = PTR_ERR(sbi->s_chksum_driver);
3632 		sbi->s_chksum_driver = NULL;
3633 		goto free_sbi;
3634 	}
3635 
3636 	/* set a block size */
3637 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3638 		f2fs_err(sbi, "unable to set blocksize");
3639 		goto free_sbi;
3640 	}
3641 
3642 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3643 								&recovery);
3644 	if (err)
3645 		goto free_sbi;
3646 
3647 	sb->s_fs_info = sbi;
3648 	sbi->raw_super = raw_super;
3649 
3650 	/* precompute checksum seed for metadata */
3651 	if (f2fs_sb_has_inode_chksum(sbi))
3652 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3653 						sizeof(raw_super->uuid));
3654 
3655 	default_options(sbi);
3656 	/* parse mount options */
3657 	options = kstrdup((const char *)data, GFP_KERNEL);
3658 	if (data && !options) {
3659 		err = -ENOMEM;
3660 		goto free_sb_buf;
3661 	}
3662 
3663 	err = parse_options(sb, options, false);
3664 	if (err)
3665 		goto free_options;
3666 
3667 	sb->s_maxbytes = max_file_blocks(NULL) <<
3668 				le32_to_cpu(raw_super->log_blocksize);
3669 	sb->s_max_links = F2FS_LINK_MAX;
3670 
3671 	err = f2fs_setup_casefold(sbi);
3672 	if (err)
3673 		goto free_options;
3674 
3675 #ifdef CONFIG_QUOTA
3676 	sb->dq_op = &f2fs_quota_operations;
3677 	sb->s_qcop = &f2fs_quotactl_ops;
3678 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3679 
3680 	if (f2fs_sb_has_quota_ino(sbi)) {
3681 		for (i = 0; i < MAXQUOTAS; i++) {
3682 			if (f2fs_qf_ino(sbi->sb, i))
3683 				sbi->nquota_files++;
3684 		}
3685 	}
3686 #endif
3687 
3688 	sb->s_op = &f2fs_sops;
3689 #ifdef CONFIG_FS_ENCRYPTION
3690 	sb->s_cop = &f2fs_cryptops;
3691 #endif
3692 #ifdef CONFIG_FS_VERITY
3693 	sb->s_vop = &f2fs_verityops;
3694 #endif
3695 	sb->s_xattr = f2fs_xattr_handlers;
3696 	sb->s_export_op = &f2fs_export_ops;
3697 	sb->s_magic = F2FS_SUPER_MAGIC;
3698 	sb->s_time_gran = 1;
3699 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3700 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3701 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3702 	sb->s_iflags |= SB_I_CGROUPWB;
3703 
3704 	/* init f2fs-specific super block info */
3705 	sbi->valid_super_block = valid_super_block;
3706 	init_rwsem(&sbi->gc_lock);
3707 	mutex_init(&sbi->writepages);
3708 	init_rwsem(&sbi->cp_global_sem);
3709 	init_rwsem(&sbi->node_write);
3710 	init_rwsem(&sbi->node_change);
3711 
3712 	/* disallow all the data/node/meta page writes */
3713 	set_sbi_flag(sbi, SBI_POR_DOING);
3714 	spin_lock_init(&sbi->stat_lock);
3715 
3716 	/* init iostat info */
3717 	spin_lock_init(&sbi->iostat_lock);
3718 	sbi->iostat_enable = false;
3719 	sbi->iostat_period_ms = DEFAULT_IOSTAT_PERIOD_MS;
3720 
3721 	for (i = 0; i < NR_PAGE_TYPE; i++) {
3722 		int n = (i == META) ? 1: NR_TEMP_TYPE;
3723 		int j;
3724 
3725 		sbi->write_io[i] =
3726 			f2fs_kmalloc(sbi,
3727 				     array_size(n,
3728 						sizeof(struct f2fs_bio_info)),
3729 				     GFP_KERNEL);
3730 		if (!sbi->write_io[i]) {
3731 			err = -ENOMEM;
3732 			goto free_bio_info;
3733 		}
3734 
3735 		for (j = HOT; j < n; j++) {
3736 			init_rwsem(&sbi->write_io[i][j].io_rwsem);
3737 			sbi->write_io[i][j].sbi = sbi;
3738 			sbi->write_io[i][j].bio = NULL;
3739 			spin_lock_init(&sbi->write_io[i][j].io_lock);
3740 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
3741 			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
3742 			init_rwsem(&sbi->write_io[i][j].bio_list_lock);
3743 		}
3744 	}
3745 
3746 	init_rwsem(&sbi->cp_rwsem);
3747 	init_rwsem(&sbi->quota_sem);
3748 	init_waitqueue_head(&sbi->cp_wait);
3749 	init_sb_info(sbi);
3750 
3751 	err = init_percpu_info(sbi);
3752 	if (err)
3753 		goto free_bio_info;
3754 
3755 	if (F2FS_IO_ALIGNED(sbi)) {
3756 		sbi->write_io_dummy =
3757 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
3758 		if (!sbi->write_io_dummy) {
3759 			err = -ENOMEM;
3760 			goto free_percpu;
3761 		}
3762 	}
3763 
3764 	/* init per sbi slab cache */
3765 	err = f2fs_init_xattr_caches(sbi);
3766 	if (err)
3767 		goto free_io_dummy;
3768 	err = f2fs_init_page_array_cache(sbi);
3769 	if (err)
3770 		goto free_xattr_cache;
3771 
3772 	/* get an inode for meta space */
3773 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
3774 	if (IS_ERR(sbi->meta_inode)) {
3775 		f2fs_err(sbi, "Failed to read F2FS meta data inode");
3776 		err = PTR_ERR(sbi->meta_inode);
3777 		goto free_page_array_cache;
3778 	}
3779 
3780 	err = f2fs_get_valid_checkpoint(sbi);
3781 	if (err) {
3782 		f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
3783 		goto free_meta_inode;
3784 	}
3785 
3786 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
3787 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3788 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
3789 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3790 		sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
3791 	}
3792 
3793 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
3794 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3795 
3796 	/* Initialize device list */
3797 	err = f2fs_scan_devices(sbi);
3798 	if (err) {
3799 		f2fs_err(sbi, "Failed to find devices");
3800 		goto free_devices;
3801 	}
3802 
3803 	err = f2fs_init_post_read_wq(sbi);
3804 	if (err) {
3805 		f2fs_err(sbi, "Failed to initialize post read workqueue");
3806 		goto free_devices;
3807 	}
3808 
3809 	sbi->total_valid_node_count =
3810 				le32_to_cpu(sbi->ckpt->valid_node_count);
3811 	percpu_counter_set(&sbi->total_valid_inode_count,
3812 				le32_to_cpu(sbi->ckpt->valid_inode_count));
3813 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
3814 	sbi->total_valid_block_count =
3815 				le64_to_cpu(sbi->ckpt->valid_block_count);
3816 	sbi->last_valid_block_count = sbi->total_valid_block_count;
3817 	sbi->reserved_blocks = 0;
3818 	sbi->current_reserved_blocks = 0;
3819 	limit_reserve_root(sbi);
3820 	adjust_unusable_cap_perc(sbi);
3821 
3822 	for (i = 0; i < NR_INODE_TYPE; i++) {
3823 		INIT_LIST_HEAD(&sbi->inode_list[i]);
3824 		spin_lock_init(&sbi->inode_lock[i]);
3825 	}
3826 	mutex_init(&sbi->flush_lock);
3827 
3828 	f2fs_init_extent_cache_info(sbi);
3829 
3830 	f2fs_init_ino_entry_info(sbi);
3831 
3832 	f2fs_init_fsync_node_info(sbi);
3833 
3834 	/* setup checkpoint request control and start checkpoint issue thread */
3835 	f2fs_init_ckpt_req_control(sbi);
3836 	if (!test_opt(sbi, DISABLE_CHECKPOINT) &&
3837 			test_opt(sbi, MERGE_CHECKPOINT)) {
3838 		err = f2fs_start_ckpt_thread(sbi);
3839 		if (err) {
3840 			f2fs_err(sbi,
3841 			    "Failed to start F2FS issue_checkpoint_thread (%d)",
3842 			    err);
3843 			goto stop_ckpt_thread;
3844 		}
3845 	}
3846 
3847 	/* setup f2fs internal modules */
3848 	err = f2fs_build_segment_manager(sbi);
3849 	if (err) {
3850 		f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
3851 			 err);
3852 		goto free_sm;
3853 	}
3854 	err = f2fs_build_node_manager(sbi);
3855 	if (err) {
3856 		f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
3857 			 err);
3858 		goto free_nm;
3859 	}
3860 
3861 	/* For write statistics */
3862 	sbi->sectors_written_start = f2fs_get_sectors_written(sbi);
3863 
3864 	/* Read accumulated write IO statistics if exists */
3865 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
3866 	if (__exist_node_summaries(sbi))
3867 		sbi->kbytes_written =
3868 			le64_to_cpu(seg_i->journal->info.kbytes_written);
3869 
3870 	f2fs_build_gc_manager(sbi);
3871 
3872 	err = f2fs_build_stats(sbi);
3873 	if (err)
3874 		goto free_nm;
3875 
3876 	/* get an inode for node space */
3877 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
3878 	if (IS_ERR(sbi->node_inode)) {
3879 		f2fs_err(sbi, "Failed to read node inode");
3880 		err = PTR_ERR(sbi->node_inode);
3881 		goto free_stats;
3882 	}
3883 
3884 	/* read root inode and dentry */
3885 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
3886 	if (IS_ERR(root)) {
3887 		f2fs_err(sbi, "Failed to read root inode");
3888 		err = PTR_ERR(root);
3889 		goto free_node_inode;
3890 	}
3891 	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
3892 			!root->i_size || !root->i_nlink) {
3893 		iput(root);
3894 		err = -EINVAL;
3895 		goto free_node_inode;
3896 	}
3897 
3898 	sb->s_root = d_make_root(root); /* allocate root dentry */
3899 	if (!sb->s_root) {
3900 		err = -ENOMEM;
3901 		goto free_node_inode;
3902 	}
3903 
3904 	err = f2fs_register_sysfs(sbi);
3905 	if (err)
3906 		goto free_root_inode;
3907 
3908 #ifdef CONFIG_QUOTA
3909 	/* Enable quota usage during mount */
3910 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
3911 		err = f2fs_enable_quotas(sb);
3912 		if (err)
3913 			f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
3914 	}
3915 #endif
3916 	/* if there are any orphan inodes, free them */
3917 	err = f2fs_recover_orphan_inodes(sbi);
3918 	if (err)
3919 		goto free_meta;
3920 
3921 	if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
3922 		goto reset_checkpoint;
3923 
3924 	/* recover fsynced data */
3925 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
3926 			!test_opt(sbi, NORECOVERY)) {
3927 		/*
3928 		 * mount should be failed, when device has readonly mode, and
3929 		 * previous checkpoint was not done by clean system shutdown.
3930 		 */
3931 		if (f2fs_hw_is_readonly(sbi)) {
3932 			if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))
3933 				f2fs_err(sbi, "Need to recover fsync data, but write access unavailable");
3934 			else
3935 				f2fs_info(sbi, "write access unavailable, skipping recovery");
3936 			goto reset_checkpoint;
3937 		}
3938 
3939 		if (need_fsck)
3940 			set_sbi_flag(sbi, SBI_NEED_FSCK);
3941 
3942 		if (skip_recovery)
3943 			goto reset_checkpoint;
3944 
3945 		err = f2fs_recover_fsync_data(sbi, false);
3946 		if (err < 0) {
3947 			if (err != -ENOMEM)
3948 				skip_recovery = true;
3949 			need_fsck = true;
3950 			f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
3951 				 err);
3952 			goto free_meta;
3953 		}
3954 	} else {
3955 		err = f2fs_recover_fsync_data(sbi, true);
3956 
3957 		if (!f2fs_readonly(sb) && err > 0) {
3958 			err = -EINVAL;
3959 			f2fs_err(sbi, "Need to recover fsync data");
3960 			goto free_meta;
3961 		}
3962 	}
3963 
3964 	/*
3965 	 * If the f2fs is not readonly and fsync data recovery succeeds,
3966 	 * check zoned block devices' write pointer consistency.
3967 	 */
3968 	if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
3969 		err = f2fs_check_write_pointer(sbi);
3970 		if (err)
3971 			goto free_meta;
3972 	}
3973 
3974 reset_checkpoint:
3975 	f2fs_init_inmem_curseg(sbi);
3976 
3977 	/* f2fs_recover_fsync_data() cleared this already */
3978 	clear_sbi_flag(sbi, SBI_POR_DOING);
3979 
3980 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
3981 		err = f2fs_disable_checkpoint(sbi);
3982 		if (err)
3983 			goto sync_free_meta;
3984 	} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
3985 		f2fs_enable_checkpoint(sbi);
3986 	}
3987 
3988 	/*
3989 	 * If filesystem is not mounted as read-only then
3990 	 * do start the gc_thread.
3991 	 */
3992 	if (F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF && !f2fs_readonly(sb)) {
3993 		/* After POR, we can run background GC thread.*/
3994 		err = f2fs_start_gc_thread(sbi);
3995 		if (err)
3996 			goto sync_free_meta;
3997 	}
3998 	kvfree(options);
3999 
4000 	/* recover broken superblock */
4001 	if (recovery) {
4002 		err = f2fs_commit_super(sbi, true);
4003 		f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
4004 			  sbi->valid_super_block ? 1 : 2, err);
4005 	}
4006 
4007 	f2fs_join_shrinker(sbi);
4008 
4009 	f2fs_tuning_parameters(sbi);
4010 
4011 	f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
4012 		    cur_cp_version(F2FS_CKPT(sbi)));
4013 	f2fs_update_time(sbi, CP_TIME);
4014 	f2fs_update_time(sbi, REQ_TIME);
4015 	clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
4016 	return 0;
4017 
4018 sync_free_meta:
4019 	/* safe to flush all the data */
4020 	sync_filesystem(sbi->sb);
4021 	retry_cnt = 0;
4022 
4023 free_meta:
4024 #ifdef CONFIG_QUOTA
4025 	f2fs_truncate_quota_inode_pages(sb);
4026 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
4027 		f2fs_quota_off_umount(sbi->sb);
4028 #endif
4029 	/*
4030 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
4031 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
4032 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
4033 	 * falls into an infinite loop in f2fs_sync_meta_pages().
4034 	 */
4035 	truncate_inode_pages_final(META_MAPPING(sbi));
4036 	/* evict some inodes being cached by GC */
4037 	evict_inodes(sb);
4038 	f2fs_unregister_sysfs(sbi);
4039 free_root_inode:
4040 	dput(sb->s_root);
4041 	sb->s_root = NULL;
4042 free_node_inode:
4043 	f2fs_release_ino_entry(sbi, true);
4044 	truncate_inode_pages_final(NODE_MAPPING(sbi));
4045 	iput(sbi->node_inode);
4046 	sbi->node_inode = NULL;
4047 free_stats:
4048 	f2fs_destroy_stats(sbi);
4049 free_nm:
4050 	f2fs_destroy_node_manager(sbi);
4051 free_sm:
4052 	f2fs_destroy_segment_manager(sbi);
4053 	f2fs_destroy_post_read_wq(sbi);
4054 stop_ckpt_thread:
4055 	f2fs_stop_ckpt_thread(sbi);
4056 free_devices:
4057 	destroy_device_list(sbi);
4058 	kvfree(sbi->ckpt);
4059 free_meta_inode:
4060 	make_bad_inode(sbi->meta_inode);
4061 	iput(sbi->meta_inode);
4062 	sbi->meta_inode = NULL;
4063 free_page_array_cache:
4064 	f2fs_destroy_page_array_cache(sbi);
4065 free_xattr_cache:
4066 	f2fs_destroy_xattr_caches(sbi);
4067 free_io_dummy:
4068 	mempool_destroy(sbi->write_io_dummy);
4069 free_percpu:
4070 	destroy_percpu_info(sbi);
4071 free_bio_info:
4072 	for (i = 0; i < NR_PAGE_TYPE; i++)
4073 		kvfree(sbi->write_io[i]);
4074 
4075 #ifdef CONFIG_UNICODE
4076 	utf8_unload(sb->s_encoding);
4077 	sb->s_encoding = NULL;
4078 #endif
4079 free_options:
4080 #ifdef CONFIG_QUOTA
4081 	for (i = 0; i < MAXQUOTAS; i++)
4082 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
4083 #endif
4084 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
4085 	kvfree(options);
4086 free_sb_buf:
4087 	kfree(raw_super);
4088 free_sbi:
4089 	if (sbi->s_chksum_driver)
4090 		crypto_free_shash(sbi->s_chksum_driver);
4091 	kfree(sbi);
4092 
4093 	/* give only one another chance */
4094 	if (retry_cnt > 0 && skip_recovery) {
4095 		retry_cnt--;
4096 		shrink_dcache_sb(sb);
4097 		goto try_onemore;
4098 	}
4099 	return err;
4100 }
4101 
4102 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
4103 			const char *dev_name, void *data)
4104 {
4105 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
4106 }
4107 
4108 static void kill_f2fs_super(struct super_block *sb)
4109 {
4110 	if (sb->s_root) {
4111 		struct f2fs_sb_info *sbi = F2FS_SB(sb);
4112 
4113 		set_sbi_flag(sbi, SBI_IS_CLOSE);
4114 		f2fs_stop_gc_thread(sbi);
4115 		f2fs_stop_discard_thread(sbi);
4116 
4117 		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
4118 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4119 			struct cp_control cpc = {
4120 				.reason = CP_UMOUNT,
4121 			};
4122 			f2fs_write_checkpoint(sbi, &cpc);
4123 		}
4124 
4125 		if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
4126 			sb->s_flags &= ~SB_RDONLY;
4127 	}
4128 	kill_block_super(sb);
4129 }
4130 
4131 static struct file_system_type f2fs_fs_type = {
4132 	.owner		= THIS_MODULE,
4133 	.name		= "f2fs",
4134 	.mount		= f2fs_mount,
4135 	.kill_sb	= kill_f2fs_super,
4136 	.fs_flags	= FS_REQUIRES_DEV,
4137 };
4138 MODULE_ALIAS_FS("f2fs");
4139 
4140 static int __init init_inodecache(void)
4141 {
4142 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
4143 			sizeof(struct f2fs_inode_info), 0,
4144 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
4145 	if (!f2fs_inode_cachep)
4146 		return -ENOMEM;
4147 	return 0;
4148 }
4149 
4150 static void destroy_inodecache(void)
4151 {
4152 	/*
4153 	 * Make sure all delayed rcu free inodes are flushed before we
4154 	 * destroy cache.
4155 	 */
4156 	rcu_barrier();
4157 	kmem_cache_destroy(f2fs_inode_cachep);
4158 }
4159 
4160 static int __init init_f2fs_fs(void)
4161 {
4162 	int err;
4163 
4164 	if (PAGE_SIZE != F2FS_BLKSIZE) {
4165 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
4166 				PAGE_SIZE, F2FS_BLKSIZE);
4167 		return -EINVAL;
4168 	}
4169 
4170 	err = init_inodecache();
4171 	if (err)
4172 		goto fail;
4173 	err = f2fs_create_node_manager_caches();
4174 	if (err)
4175 		goto free_inodecache;
4176 	err = f2fs_create_segment_manager_caches();
4177 	if (err)
4178 		goto free_node_manager_caches;
4179 	err = f2fs_create_checkpoint_caches();
4180 	if (err)
4181 		goto free_segment_manager_caches;
4182 	err = f2fs_create_extent_cache();
4183 	if (err)
4184 		goto free_checkpoint_caches;
4185 	err = f2fs_create_garbage_collection_cache();
4186 	if (err)
4187 		goto free_extent_cache;
4188 	err = f2fs_init_sysfs();
4189 	if (err)
4190 		goto free_garbage_collection_cache;
4191 	err = register_shrinker(&f2fs_shrinker_info);
4192 	if (err)
4193 		goto free_sysfs;
4194 	err = register_filesystem(&f2fs_fs_type);
4195 	if (err)
4196 		goto free_shrinker;
4197 	f2fs_create_root_stats();
4198 	err = f2fs_init_post_read_processing();
4199 	if (err)
4200 		goto free_root_stats;
4201 	err = f2fs_init_bio_entry_cache();
4202 	if (err)
4203 		goto free_post_read;
4204 	err = f2fs_init_bioset();
4205 	if (err)
4206 		goto free_bio_enrty_cache;
4207 	err = f2fs_init_compress_mempool();
4208 	if (err)
4209 		goto free_bioset;
4210 	err = f2fs_init_compress_cache();
4211 	if (err)
4212 		goto free_compress_mempool;
4213 	return 0;
4214 free_compress_mempool:
4215 	f2fs_destroy_compress_mempool();
4216 free_bioset:
4217 	f2fs_destroy_bioset();
4218 free_bio_enrty_cache:
4219 	f2fs_destroy_bio_entry_cache();
4220 free_post_read:
4221 	f2fs_destroy_post_read_processing();
4222 free_root_stats:
4223 	f2fs_destroy_root_stats();
4224 	unregister_filesystem(&f2fs_fs_type);
4225 free_shrinker:
4226 	unregister_shrinker(&f2fs_shrinker_info);
4227 free_sysfs:
4228 	f2fs_exit_sysfs();
4229 free_garbage_collection_cache:
4230 	f2fs_destroy_garbage_collection_cache();
4231 free_extent_cache:
4232 	f2fs_destroy_extent_cache();
4233 free_checkpoint_caches:
4234 	f2fs_destroy_checkpoint_caches();
4235 free_segment_manager_caches:
4236 	f2fs_destroy_segment_manager_caches();
4237 free_node_manager_caches:
4238 	f2fs_destroy_node_manager_caches();
4239 free_inodecache:
4240 	destroy_inodecache();
4241 fail:
4242 	return err;
4243 }
4244 
4245 static void __exit exit_f2fs_fs(void)
4246 {
4247 	f2fs_destroy_compress_cache();
4248 	f2fs_destroy_compress_mempool();
4249 	f2fs_destroy_bioset();
4250 	f2fs_destroy_bio_entry_cache();
4251 	f2fs_destroy_post_read_processing();
4252 	f2fs_destroy_root_stats();
4253 	unregister_filesystem(&f2fs_fs_type);
4254 	unregister_shrinker(&f2fs_shrinker_info);
4255 	f2fs_exit_sysfs();
4256 	f2fs_destroy_garbage_collection_cache();
4257 	f2fs_destroy_extent_cache();
4258 	f2fs_destroy_checkpoint_caches();
4259 	f2fs_destroy_segment_manager_caches();
4260 	f2fs_destroy_node_manager_caches();
4261 	destroy_inodecache();
4262 }
4263 
4264 module_init(init_f2fs_fs)
4265 module_exit(exit_f2fs_fs)
4266 
4267 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
4268 MODULE_DESCRIPTION("Flash Friendly File System");
4269 MODULE_LICENSE("GPL");
4270 
4271