1 /* 2 * fs/f2fs/super.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/fs.h> 14 #include <linux/statfs.h> 15 #include <linux/buffer_head.h> 16 #include <linux/backing-dev.h> 17 #include <linux/kthread.h> 18 #include <linux/parser.h> 19 #include <linux/mount.h> 20 #include <linux/seq_file.h> 21 #include <linux/proc_fs.h> 22 #include <linux/random.h> 23 #include <linux/exportfs.h> 24 #include <linux/blkdev.h> 25 #include <linux/f2fs_fs.h> 26 #include <linux/sysfs.h> 27 28 #include "f2fs.h" 29 #include "node.h" 30 #include "segment.h" 31 #include "xattr.h" 32 #include "gc.h" 33 #include "trace.h" 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/f2fs.h> 37 38 static struct proc_dir_entry *f2fs_proc_root; 39 static struct kmem_cache *f2fs_inode_cachep; 40 static struct kset *f2fs_kset; 41 42 #ifdef CONFIG_F2FS_FAULT_INJECTION 43 struct f2fs_fault_info f2fs_fault; 44 45 char *fault_name[FAULT_MAX] = { 46 [FAULT_KMALLOC] = "kmalloc", 47 [FAULT_PAGE_ALLOC] = "page alloc", 48 [FAULT_ALLOC_NID] = "alloc nid", 49 [FAULT_ORPHAN] = "orphan", 50 [FAULT_BLOCK] = "no more block", 51 [FAULT_DIR_DEPTH] = "too big dir depth", 52 }; 53 54 static void f2fs_build_fault_attr(unsigned int rate) 55 { 56 if (rate) { 57 atomic_set(&f2fs_fault.inject_ops, 0); 58 f2fs_fault.inject_rate = rate; 59 f2fs_fault.inject_type = (1 << FAULT_MAX) - 1; 60 } else { 61 memset(&f2fs_fault, 0, sizeof(struct f2fs_fault_info)); 62 } 63 } 64 #endif 65 66 /* f2fs-wide shrinker description */ 67 static struct shrinker f2fs_shrinker_info = { 68 .scan_objects = f2fs_shrink_scan, 69 .count_objects = f2fs_shrink_count, 70 .seeks = DEFAULT_SEEKS, 71 }; 72 73 enum { 74 Opt_gc_background, 75 Opt_disable_roll_forward, 76 Opt_norecovery, 77 Opt_discard, 78 Opt_noheap, 79 Opt_user_xattr, 80 Opt_nouser_xattr, 81 Opt_acl, 82 Opt_noacl, 83 Opt_active_logs, 84 Opt_disable_ext_identify, 85 Opt_inline_xattr, 86 Opt_inline_data, 87 Opt_inline_dentry, 88 Opt_flush_merge, 89 Opt_nobarrier, 90 Opt_fastboot, 91 Opt_extent_cache, 92 Opt_noextent_cache, 93 Opt_noinline_data, 94 Opt_data_flush, 95 Opt_fault_injection, 96 Opt_err, 97 }; 98 99 static match_table_t f2fs_tokens = { 100 {Opt_gc_background, "background_gc=%s"}, 101 {Opt_disable_roll_forward, "disable_roll_forward"}, 102 {Opt_norecovery, "norecovery"}, 103 {Opt_discard, "discard"}, 104 {Opt_noheap, "no_heap"}, 105 {Opt_user_xattr, "user_xattr"}, 106 {Opt_nouser_xattr, "nouser_xattr"}, 107 {Opt_acl, "acl"}, 108 {Opt_noacl, "noacl"}, 109 {Opt_active_logs, "active_logs=%u"}, 110 {Opt_disable_ext_identify, "disable_ext_identify"}, 111 {Opt_inline_xattr, "inline_xattr"}, 112 {Opt_inline_data, "inline_data"}, 113 {Opt_inline_dentry, "inline_dentry"}, 114 {Opt_flush_merge, "flush_merge"}, 115 {Opt_nobarrier, "nobarrier"}, 116 {Opt_fastboot, "fastboot"}, 117 {Opt_extent_cache, "extent_cache"}, 118 {Opt_noextent_cache, "noextent_cache"}, 119 {Opt_noinline_data, "noinline_data"}, 120 {Opt_data_flush, "data_flush"}, 121 {Opt_fault_injection, "fault_injection=%u"}, 122 {Opt_err, NULL}, 123 }; 124 125 /* Sysfs support for f2fs */ 126 enum { 127 GC_THREAD, /* struct f2fs_gc_thread */ 128 SM_INFO, /* struct f2fs_sm_info */ 129 NM_INFO, /* struct f2fs_nm_info */ 130 F2FS_SBI, /* struct f2fs_sb_info */ 131 #ifdef CONFIG_F2FS_FAULT_INJECTION 132 FAULT_INFO_RATE, /* struct f2fs_fault_info */ 133 FAULT_INFO_TYPE, /* struct f2fs_fault_info */ 134 #endif 135 }; 136 137 struct f2fs_attr { 138 struct attribute attr; 139 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *); 140 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *, 141 const char *, size_t); 142 int struct_type; 143 int offset; 144 }; 145 146 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type) 147 { 148 if (struct_type == GC_THREAD) 149 return (unsigned char *)sbi->gc_thread; 150 else if (struct_type == SM_INFO) 151 return (unsigned char *)SM_I(sbi); 152 else if (struct_type == NM_INFO) 153 return (unsigned char *)NM_I(sbi); 154 else if (struct_type == F2FS_SBI) 155 return (unsigned char *)sbi; 156 #ifdef CONFIG_F2FS_FAULT_INJECTION 157 else if (struct_type == FAULT_INFO_RATE || 158 struct_type == FAULT_INFO_TYPE) 159 return (unsigned char *)&f2fs_fault; 160 #endif 161 return NULL; 162 } 163 164 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a, 165 struct f2fs_sb_info *sbi, char *buf) 166 { 167 struct super_block *sb = sbi->sb; 168 169 if (!sb->s_bdev->bd_part) 170 return snprintf(buf, PAGE_SIZE, "0\n"); 171 172 return snprintf(buf, PAGE_SIZE, "%llu\n", 173 (unsigned long long)(sbi->kbytes_written + 174 BD_PART_WRITTEN(sbi))); 175 } 176 177 static ssize_t f2fs_sbi_show(struct f2fs_attr *a, 178 struct f2fs_sb_info *sbi, char *buf) 179 { 180 unsigned char *ptr = NULL; 181 unsigned int *ui; 182 183 ptr = __struct_ptr(sbi, a->struct_type); 184 if (!ptr) 185 return -EINVAL; 186 187 ui = (unsigned int *)(ptr + a->offset); 188 189 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 190 } 191 192 static ssize_t f2fs_sbi_store(struct f2fs_attr *a, 193 struct f2fs_sb_info *sbi, 194 const char *buf, size_t count) 195 { 196 unsigned char *ptr; 197 unsigned long t; 198 unsigned int *ui; 199 ssize_t ret; 200 201 ptr = __struct_ptr(sbi, a->struct_type); 202 if (!ptr) 203 return -EINVAL; 204 205 ui = (unsigned int *)(ptr + a->offset); 206 207 ret = kstrtoul(skip_spaces(buf), 0, &t); 208 if (ret < 0) 209 return ret; 210 #ifdef CONFIG_F2FS_FAULT_INJECTION 211 if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX)) 212 return -EINVAL; 213 #endif 214 *ui = t; 215 return count; 216 } 217 218 static ssize_t f2fs_attr_show(struct kobject *kobj, 219 struct attribute *attr, char *buf) 220 { 221 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 222 s_kobj); 223 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 224 225 return a->show ? a->show(a, sbi, buf) : 0; 226 } 227 228 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr, 229 const char *buf, size_t len) 230 { 231 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 232 s_kobj); 233 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 234 235 return a->store ? a->store(a, sbi, buf, len) : 0; 236 } 237 238 static void f2fs_sb_release(struct kobject *kobj) 239 { 240 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 241 s_kobj); 242 complete(&sbi->s_kobj_unregister); 243 } 244 245 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \ 246 static struct f2fs_attr f2fs_attr_##_name = { \ 247 .attr = {.name = __stringify(_name), .mode = _mode }, \ 248 .show = _show, \ 249 .store = _store, \ 250 .struct_type = _struct_type, \ 251 .offset = _offset \ 252 } 253 254 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \ 255 F2FS_ATTR_OFFSET(struct_type, name, 0644, \ 256 f2fs_sbi_show, f2fs_sbi_store, \ 257 offsetof(struct struct_name, elname)) 258 259 #define F2FS_GENERAL_RO_ATTR(name) \ 260 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL) 261 262 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time); 263 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time); 264 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time); 265 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle); 266 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments); 267 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards); 268 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections); 269 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy); 270 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util); 271 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks); 272 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh); 273 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages); 274 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio); 275 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search); 276 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level); 277 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]); 278 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]); 279 #ifdef CONFIG_F2FS_FAULT_INJECTION 280 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate); 281 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type); 282 #endif 283 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes); 284 285 #define ATTR_LIST(name) (&f2fs_attr_##name.attr) 286 static struct attribute *f2fs_attrs[] = { 287 ATTR_LIST(gc_min_sleep_time), 288 ATTR_LIST(gc_max_sleep_time), 289 ATTR_LIST(gc_no_gc_sleep_time), 290 ATTR_LIST(gc_idle), 291 ATTR_LIST(reclaim_segments), 292 ATTR_LIST(max_small_discards), 293 ATTR_LIST(batched_trim_sections), 294 ATTR_LIST(ipu_policy), 295 ATTR_LIST(min_ipu_util), 296 ATTR_LIST(min_fsync_blocks), 297 ATTR_LIST(max_victim_search), 298 ATTR_LIST(dir_level), 299 ATTR_LIST(ram_thresh), 300 ATTR_LIST(ra_nid_pages), 301 ATTR_LIST(dirty_nats_ratio), 302 ATTR_LIST(cp_interval), 303 ATTR_LIST(idle_interval), 304 ATTR_LIST(lifetime_write_kbytes), 305 NULL, 306 }; 307 308 static const struct sysfs_ops f2fs_attr_ops = { 309 .show = f2fs_attr_show, 310 .store = f2fs_attr_store, 311 }; 312 313 static struct kobj_type f2fs_ktype = { 314 .default_attrs = f2fs_attrs, 315 .sysfs_ops = &f2fs_attr_ops, 316 .release = f2fs_sb_release, 317 }; 318 319 #ifdef CONFIG_F2FS_FAULT_INJECTION 320 /* sysfs for f2fs fault injection */ 321 static struct kobject f2fs_fault_inject; 322 323 static struct attribute *f2fs_fault_attrs[] = { 324 ATTR_LIST(inject_rate), 325 ATTR_LIST(inject_type), 326 NULL 327 }; 328 329 static struct kobj_type f2fs_fault_ktype = { 330 .default_attrs = f2fs_fault_attrs, 331 .sysfs_ops = &f2fs_attr_ops, 332 }; 333 #endif 334 335 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) 336 { 337 struct va_format vaf; 338 va_list args; 339 340 va_start(args, fmt); 341 vaf.fmt = fmt; 342 vaf.va = &args; 343 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); 344 va_end(args); 345 } 346 347 static void init_once(void *foo) 348 { 349 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 350 351 inode_init_once(&fi->vfs_inode); 352 } 353 354 static int parse_options(struct super_block *sb, char *options) 355 { 356 struct f2fs_sb_info *sbi = F2FS_SB(sb); 357 struct request_queue *q; 358 substring_t args[MAX_OPT_ARGS]; 359 char *p, *name; 360 int arg = 0; 361 362 #ifdef CONFIG_F2FS_FAULT_INJECTION 363 f2fs_build_fault_attr(0); 364 #endif 365 366 if (!options) 367 return 0; 368 369 while ((p = strsep(&options, ",")) != NULL) { 370 int token; 371 if (!*p) 372 continue; 373 /* 374 * Initialize args struct so we know whether arg was 375 * found; some options take optional arguments. 376 */ 377 args[0].to = args[0].from = NULL; 378 token = match_token(p, f2fs_tokens, args); 379 380 switch (token) { 381 case Opt_gc_background: 382 name = match_strdup(&args[0]); 383 384 if (!name) 385 return -ENOMEM; 386 if (strlen(name) == 2 && !strncmp(name, "on", 2)) { 387 set_opt(sbi, BG_GC); 388 clear_opt(sbi, FORCE_FG_GC); 389 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) { 390 clear_opt(sbi, BG_GC); 391 clear_opt(sbi, FORCE_FG_GC); 392 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) { 393 set_opt(sbi, BG_GC); 394 set_opt(sbi, FORCE_FG_GC); 395 } else { 396 kfree(name); 397 return -EINVAL; 398 } 399 kfree(name); 400 break; 401 case Opt_disable_roll_forward: 402 set_opt(sbi, DISABLE_ROLL_FORWARD); 403 break; 404 case Opt_norecovery: 405 /* this option mounts f2fs with ro */ 406 set_opt(sbi, DISABLE_ROLL_FORWARD); 407 if (!f2fs_readonly(sb)) 408 return -EINVAL; 409 break; 410 case Opt_discard: 411 q = bdev_get_queue(sb->s_bdev); 412 if (blk_queue_discard(q)) { 413 set_opt(sbi, DISCARD); 414 } else { 415 f2fs_msg(sb, KERN_WARNING, 416 "mounting with \"discard\" option, but " 417 "the device does not support discard"); 418 } 419 break; 420 case Opt_noheap: 421 set_opt(sbi, NOHEAP); 422 break; 423 #ifdef CONFIG_F2FS_FS_XATTR 424 case Opt_user_xattr: 425 set_opt(sbi, XATTR_USER); 426 break; 427 case Opt_nouser_xattr: 428 clear_opt(sbi, XATTR_USER); 429 break; 430 case Opt_inline_xattr: 431 set_opt(sbi, INLINE_XATTR); 432 break; 433 #else 434 case Opt_user_xattr: 435 f2fs_msg(sb, KERN_INFO, 436 "user_xattr options not supported"); 437 break; 438 case Opt_nouser_xattr: 439 f2fs_msg(sb, KERN_INFO, 440 "nouser_xattr options not supported"); 441 break; 442 case Opt_inline_xattr: 443 f2fs_msg(sb, KERN_INFO, 444 "inline_xattr options not supported"); 445 break; 446 #endif 447 #ifdef CONFIG_F2FS_FS_POSIX_ACL 448 case Opt_acl: 449 set_opt(sbi, POSIX_ACL); 450 break; 451 case Opt_noacl: 452 clear_opt(sbi, POSIX_ACL); 453 break; 454 #else 455 case Opt_acl: 456 f2fs_msg(sb, KERN_INFO, "acl options not supported"); 457 break; 458 case Opt_noacl: 459 f2fs_msg(sb, KERN_INFO, "noacl options not supported"); 460 break; 461 #endif 462 case Opt_active_logs: 463 if (args->from && match_int(args, &arg)) 464 return -EINVAL; 465 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 466 return -EINVAL; 467 sbi->active_logs = arg; 468 break; 469 case Opt_disable_ext_identify: 470 set_opt(sbi, DISABLE_EXT_IDENTIFY); 471 break; 472 case Opt_inline_data: 473 set_opt(sbi, INLINE_DATA); 474 break; 475 case Opt_inline_dentry: 476 set_opt(sbi, INLINE_DENTRY); 477 break; 478 case Opt_flush_merge: 479 set_opt(sbi, FLUSH_MERGE); 480 break; 481 case Opt_nobarrier: 482 set_opt(sbi, NOBARRIER); 483 break; 484 case Opt_fastboot: 485 set_opt(sbi, FASTBOOT); 486 break; 487 case Opt_extent_cache: 488 set_opt(sbi, EXTENT_CACHE); 489 break; 490 case Opt_noextent_cache: 491 clear_opt(sbi, EXTENT_CACHE); 492 break; 493 case Opt_noinline_data: 494 clear_opt(sbi, INLINE_DATA); 495 break; 496 case Opt_data_flush: 497 set_opt(sbi, DATA_FLUSH); 498 break; 499 case Opt_fault_injection: 500 if (args->from && match_int(args, &arg)) 501 return -EINVAL; 502 #ifdef CONFIG_F2FS_FAULT_INJECTION 503 f2fs_build_fault_attr(arg); 504 #else 505 f2fs_msg(sb, KERN_INFO, 506 "FAULT_INJECTION was not selected"); 507 #endif 508 break; 509 default: 510 f2fs_msg(sb, KERN_ERR, 511 "Unrecognized mount option \"%s\" or missing value", 512 p); 513 return -EINVAL; 514 } 515 } 516 return 0; 517 } 518 519 static struct inode *f2fs_alloc_inode(struct super_block *sb) 520 { 521 struct f2fs_inode_info *fi; 522 523 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 524 if (!fi) 525 return NULL; 526 527 init_once((void *) fi); 528 529 if (percpu_counter_init(&fi->dirty_pages, 0, GFP_NOFS)) { 530 kmem_cache_free(f2fs_inode_cachep, fi); 531 return NULL; 532 } 533 534 /* Initialize f2fs-specific inode info */ 535 fi->vfs_inode.i_version = 1; 536 fi->i_current_depth = 1; 537 fi->i_advise = 0; 538 init_rwsem(&fi->i_sem); 539 INIT_LIST_HEAD(&fi->dirty_list); 540 INIT_LIST_HEAD(&fi->inmem_pages); 541 mutex_init(&fi->inmem_lock); 542 543 set_inode_flag(fi, FI_NEW_INODE); 544 545 if (test_opt(F2FS_SB(sb), INLINE_XATTR)) 546 set_inode_flag(fi, FI_INLINE_XATTR); 547 548 /* Will be used by directory only */ 549 fi->i_dir_level = F2FS_SB(sb)->dir_level; 550 return &fi->vfs_inode; 551 } 552 553 static int f2fs_drop_inode(struct inode *inode) 554 { 555 /* 556 * This is to avoid a deadlock condition like below. 557 * writeback_single_inode(inode) 558 * - f2fs_write_data_page 559 * - f2fs_gc -> iput -> evict 560 * - inode_wait_for_writeback(inode) 561 */ 562 if (!inode_unhashed(inode) && inode->i_state & I_SYNC) { 563 if (!inode->i_nlink && !is_bad_inode(inode)) { 564 /* to avoid evict_inode call simultaneously */ 565 atomic_inc(&inode->i_count); 566 spin_unlock(&inode->i_lock); 567 568 /* some remained atomic pages should discarded */ 569 if (f2fs_is_atomic_file(inode)) 570 drop_inmem_pages(inode); 571 572 /* should remain fi->extent_tree for writepage */ 573 f2fs_destroy_extent_node(inode); 574 575 sb_start_intwrite(inode->i_sb); 576 i_size_write(inode, 0); 577 578 if (F2FS_HAS_BLOCKS(inode)) 579 f2fs_truncate(inode, true); 580 581 sb_end_intwrite(inode->i_sb); 582 583 fscrypt_put_encryption_info(inode, NULL); 584 spin_lock(&inode->i_lock); 585 atomic_dec(&inode->i_count); 586 } 587 return 0; 588 } 589 return generic_drop_inode(inode); 590 } 591 592 /* 593 * f2fs_dirty_inode() is called from __mark_inode_dirty() 594 * 595 * We should call set_dirty_inode to write the dirty inode through write_inode. 596 */ 597 static void f2fs_dirty_inode(struct inode *inode, int flags) 598 { 599 set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE); 600 } 601 602 static void f2fs_i_callback(struct rcu_head *head) 603 { 604 struct inode *inode = container_of(head, struct inode, i_rcu); 605 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 606 } 607 608 static void f2fs_destroy_inode(struct inode *inode) 609 { 610 percpu_counter_destroy(&F2FS_I(inode)->dirty_pages); 611 call_rcu(&inode->i_rcu, f2fs_i_callback); 612 } 613 614 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 615 { 616 int i; 617 618 for (i = 0; i < NR_COUNT_TYPE; i++) 619 percpu_counter_destroy(&sbi->nr_pages[i]); 620 percpu_counter_destroy(&sbi->alloc_valid_block_count); 621 percpu_counter_destroy(&sbi->total_valid_inode_count); 622 } 623 624 static void f2fs_put_super(struct super_block *sb) 625 { 626 struct f2fs_sb_info *sbi = F2FS_SB(sb); 627 628 if (sbi->s_proc) { 629 remove_proc_entry("segment_info", sbi->s_proc); 630 remove_proc_entry("segment_bits", sbi->s_proc); 631 remove_proc_entry(sb->s_id, f2fs_proc_root); 632 } 633 kobject_del(&sbi->s_kobj); 634 635 stop_gc_thread(sbi); 636 637 /* prevent remaining shrinker jobs */ 638 mutex_lock(&sbi->umount_mutex); 639 640 /* 641 * We don't need to do checkpoint when superblock is clean. 642 * But, the previous checkpoint was not done by umount, it needs to do 643 * clean checkpoint again. 644 */ 645 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 646 !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) { 647 struct cp_control cpc = { 648 .reason = CP_UMOUNT, 649 }; 650 write_checkpoint(sbi, &cpc); 651 } 652 653 /* write_checkpoint can update stat informaion */ 654 f2fs_destroy_stats(sbi); 655 656 /* 657 * normally superblock is clean, so we need to release this. 658 * In addition, EIO will skip do checkpoint, we need this as well. 659 */ 660 release_ino_entry(sbi, true); 661 release_discard_addrs(sbi); 662 663 f2fs_leave_shrinker(sbi); 664 mutex_unlock(&sbi->umount_mutex); 665 666 /* our cp_error case, we can wait for any writeback page */ 667 f2fs_flush_merged_bios(sbi); 668 669 iput(sbi->node_inode); 670 iput(sbi->meta_inode); 671 672 /* destroy f2fs internal modules */ 673 destroy_node_manager(sbi); 674 destroy_segment_manager(sbi); 675 676 kfree(sbi->ckpt); 677 kobject_put(&sbi->s_kobj); 678 wait_for_completion(&sbi->s_kobj_unregister); 679 680 sb->s_fs_info = NULL; 681 if (sbi->s_chksum_driver) 682 crypto_free_shash(sbi->s_chksum_driver); 683 kfree(sbi->raw_super); 684 685 destroy_percpu_info(sbi); 686 kfree(sbi); 687 } 688 689 int f2fs_sync_fs(struct super_block *sb, int sync) 690 { 691 struct f2fs_sb_info *sbi = F2FS_SB(sb); 692 int err = 0; 693 694 trace_f2fs_sync_fs(sb, sync); 695 696 if (sync) { 697 struct cp_control cpc; 698 699 cpc.reason = __get_cp_reason(sbi); 700 701 mutex_lock(&sbi->gc_mutex); 702 err = write_checkpoint(sbi, &cpc); 703 mutex_unlock(&sbi->gc_mutex); 704 } 705 f2fs_trace_ios(NULL, 1); 706 707 return err; 708 } 709 710 static int f2fs_freeze(struct super_block *sb) 711 { 712 int err; 713 714 if (f2fs_readonly(sb)) 715 return 0; 716 717 err = f2fs_sync_fs(sb, 1); 718 return err; 719 } 720 721 static int f2fs_unfreeze(struct super_block *sb) 722 { 723 return 0; 724 } 725 726 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 727 { 728 struct super_block *sb = dentry->d_sb; 729 struct f2fs_sb_info *sbi = F2FS_SB(sb); 730 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 731 block_t total_count, user_block_count, start_count, ovp_count; 732 733 total_count = le64_to_cpu(sbi->raw_super->block_count); 734 user_block_count = sbi->user_block_count; 735 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 736 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg; 737 buf->f_type = F2FS_SUPER_MAGIC; 738 buf->f_bsize = sbi->blocksize; 739 740 buf->f_blocks = total_count - start_count; 741 buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count; 742 buf->f_bavail = user_block_count - valid_user_blocks(sbi); 743 744 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 745 buf->f_ffree = buf->f_files - valid_inode_count(sbi); 746 747 buf->f_namelen = F2FS_NAME_LEN; 748 buf->f_fsid.val[0] = (u32)id; 749 buf->f_fsid.val[1] = (u32)(id >> 32); 750 751 return 0; 752 } 753 754 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 755 { 756 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 757 758 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) { 759 if (test_opt(sbi, FORCE_FG_GC)) 760 seq_printf(seq, ",background_gc=%s", "sync"); 761 else 762 seq_printf(seq, ",background_gc=%s", "on"); 763 } else { 764 seq_printf(seq, ",background_gc=%s", "off"); 765 } 766 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 767 seq_puts(seq, ",disable_roll_forward"); 768 if (test_opt(sbi, DISCARD)) 769 seq_puts(seq, ",discard"); 770 if (test_opt(sbi, NOHEAP)) 771 seq_puts(seq, ",no_heap_alloc"); 772 #ifdef CONFIG_F2FS_FS_XATTR 773 if (test_opt(sbi, XATTR_USER)) 774 seq_puts(seq, ",user_xattr"); 775 else 776 seq_puts(seq, ",nouser_xattr"); 777 if (test_opt(sbi, INLINE_XATTR)) 778 seq_puts(seq, ",inline_xattr"); 779 #endif 780 #ifdef CONFIG_F2FS_FS_POSIX_ACL 781 if (test_opt(sbi, POSIX_ACL)) 782 seq_puts(seq, ",acl"); 783 else 784 seq_puts(seq, ",noacl"); 785 #endif 786 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 787 seq_puts(seq, ",disable_ext_identify"); 788 if (test_opt(sbi, INLINE_DATA)) 789 seq_puts(seq, ",inline_data"); 790 else 791 seq_puts(seq, ",noinline_data"); 792 if (test_opt(sbi, INLINE_DENTRY)) 793 seq_puts(seq, ",inline_dentry"); 794 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 795 seq_puts(seq, ",flush_merge"); 796 if (test_opt(sbi, NOBARRIER)) 797 seq_puts(seq, ",nobarrier"); 798 if (test_opt(sbi, FASTBOOT)) 799 seq_puts(seq, ",fastboot"); 800 if (test_opt(sbi, EXTENT_CACHE)) 801 seq_puts(seq, ",extent_cache"); 802 else 803 seq_puts(seq, ",noextent_cache"); 804 if (test_opt(sbi, DATA_FLUSH)) 805 seq_puts(seq, ",data_flush"); 806 seq_printf(seq, ",active_logs=%u", sbi->active_logs); 807 808 return 0; 809 } 810 811 static int segment_info_seq_show(struct seq_file *seq, void *offset) 812 { 813 struct super_block *sb = seq->private; 814 struct f2fs_sb_info *sbi = F2FS_SB(sb); 815 unsigned int total_segs = 816 le32_to_cpu(sbi->raw_super->segment_count_main); 817 int i; 818 819 seq_puts(seq, "format: segment_type|valid_blocks\n" 820 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n"); 821 822 for (i = 0; i < total_segs; i++) { 823 struct seg_entry *se = get_seg_entry(sbi, i); 824 825 if ((i % 10) == 0) 826 seq_printf(seq, "%-10d", i); 827 seq_printf(seq, "%d|%-3u", se->type, 828 get_valid_blocks(sbi, i, 1)); 829 if ((i % 10) == 9 || i == (total_segs - 1)) 830 seq_putc(seq, '\n'); 831 else 832 seq_putc(seq, ' '); 833 } 834 835 return 0; 836 } 837 838 static int segment_bits_seq_show(struct seq_file *seq, void *offset) 839 { 840 struct super_block *sb = seq->private; 841 struct f2fs_sb_info *sbi = F2FS_SB(sb); 842 unsigned int total_segs = 843 le32_to_cpu(sbi->raw_super->segment_count_main); 844 int i, j; 845 846 seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n" 847 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n"); 848 849 for (i = 0; i < total_segs; i++) { 850 struct seg_entry *se = get_seg_entry(sbi, i); 851 852 seq_printf(seq, "%-10d", i); 853 seq_printf(seq, "%d|%-3u|", se->type, 854 get_valid_blocks(sbi, i, 1)); 855 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++) 856 seq_printf(seq, "%x ", se->cur_valid_map[j]); 857 seq_putc(seq, '\n'); 858 } 859 return 0; 860 } 861 862 #define F2FS_PROC_FILE_DEF(_name) \ 863 static int _name##_open_fs(struct inode *inode, struct file *file) \ 864 { \ 865 return single_open(file, _name##_seq_show, PDE_DATA(inode)); \ 866 } \ 867 \ 868 static const struct file_operations f2fs_seq_##_name##_fops = { \ 869 .owner = THIS_MODULE, \ 870 .open = _name##_open_fs, \ 871 .read = seq_read, \ 872 .llseek = seq_lseek, \ 873 .release = single_release, \ 874 }; 875 876 F2FS_PROC_FILE_DEF(segment_info); 877 F2FS_PROC_FILE_DEF(segment_bits); 878 879 static void default_options(struct f2fs_sb_info *sbi) 880 { 881 /* init some FS parameters */ 882 sbi->active_logs = NR_CURSEG_TYPE; 883 884 set_opt(sbi, BG_GC); 885 set_opt(sbi, INLINE_DATA); 886 set_opt(sbi, EXTENT_CACHE); 887 888 #ifdef CONFIG_F2FS_FS_XATTR 889 set_opt(sbi, XATTR_USER); 890 #endif 891 #ifdef CONFIG_F2FS_FS_POSIX_ACL 892 set_opt(sbi, POSIX_ACL); 893 #endif 894 } 895 896 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 897 { 898 struct f2fs_sb_info *sbi = F2FS_SB(sb); 899 struct f2fs_mount_info org_mount_opt; 900 int err, active_logs; 901 bool need_restart_gc = false; 902 bool need_stop_gc = false; 903 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 904 905 /* 906 * Save the old mount options in case we 907 * need to restore them. 908 */ 909 org_mount_opt = sbi->mount_opt; 910 active_logs = sbi->active_logs; 911 912 /* recover superblocks we couldn't write due to previous RO mount */ 913 if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 914 err = f2fs_commit_super(sbi, false); 915 f2fs_msg(sb, KERN_INFO, 916 "Try to recover all the superblocks, ret: %d", err); 917 if (!err) 918 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 919 } 920 921 sbi->mount_opt.opt = 0; 922 default_options(sbi); 923 924 /* parse mount options */ 925 err = parse_options(sb, data); 926 if (err) 927 goto restore_opts; 928 929 /* 930 * Previous and new state of filesystem is RO, 931 * so skip checking GC and FLUSH_MERGE conditions. 932 */ 933 if (f2fs_readonly(sb) && (*flags & MS_RDONLY)) 934 goto skip; 935 936 /* disallow enable/disable extent_cache dynamically */ 937 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 938 err = -EINVAL; 939 f2fs_msg(sbi->sb, KERN_WARNING, 940 "switch extent_cache option is not allowed"); 941 goto restore_opts; 942 } 943 944 /* 945 * We stop the GC thread if FS is mounted as RO 946 * or if background_gc = off is passed in mount 947 * option. Also sync the filesystem. 948 */ 949 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) { 950 if (sbi->gc_thread) { 951 stop_gc_thread(sbi); 952 need_restart_gc = true; 953 } 954 } else if (!sbi->gc_thread) { 955 err = start_gc_thread(sbi); 956 if (err) 957 goto restore_opts; 958 need_stop_gc = true; 959 } 960 961 if (*flags & MS_RDONLY) { 962 writeback_inodes_sb(sb, WB_REASON_SYNC); 963 sync_inodes_sb(sb); 964 965 set_sbi_flag(sbi, SBI_IS_DIRTY); 966 set_sbi_flag(sbi, SBI_IS_CLOSE); 967 f2fs_sync_fs(sb, 1); 968 clear_sbi_flag(sbi, SBI_IS_CLOSE); 969 } 970 971 /* 972 * We stop issue flush thread if FS is mounted as RO 973 * or if flush_merge is not passed in mount option. 974 */ 975 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 976 destroy_flush_cmd_control(sbi); 977 } else if (!SM_I(sbi)->cmd_control_info) { 978 err = create_flush_cmd_control(sbi); 979 if (err) 980 goto restore_gc; 981 } 982 skip: 983 /* Update the POSIXACL Flag */ 984 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 985 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 986 987 return 0; 988 restore_gc: 989 if (need_restart_gc) { 990 if (start_gc_thread(sbi)) 991 f2fs_msg(sbi->sb, KERN_WARNING, 992 "background gc thread has stopped"); 993 } else if (need_stop_gc) { 994 stop_gc_thread(sbi); 995 } 996 restore_opts: 997 sbi->mount_opt = org_mount_opt; 998 sbi->active_logs = active_logs; 999 return err; 1000 } 1001 1002 static struct super_operations f2fs_sops = { 1003 .alloc_inode = f2fs_alloc_inode, 1004 .drop_inode = f2fs_drop_inode, 1005 .destroy_inode = f2fs_destroy_inode, 1006 .write_inode = f2fs_write_inode, 1007 .dirty_inode = f2fs_dirty_inode, 1008 .show_options = f2fs_show_options, 1009 .evict_inode = f2fs_evict_inode, 1010 .put_super = f2fs_put_super, 1011 .sync_fs = f2fs_sync_fs, 1012 .freeze_fs = f2fs_freeze, 1013 .unfreeze_fs = f2fs_unfreeze, 1014 .statfs = f2fs_statfs, 1015 .remount_fs = f2fs_remount, 1016 }; 1017 1018 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1019 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 1020 { 1021 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 1022 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 1023 ctx, len, NULL); 1024 } 1025 1026 static int f2fs_key_prefix(struct inode *inode, u8 **key) 1027 { 1028 *key = F2FS_I_SB(inode)->key_prefix; 1029 return F2FS_I_SB(inode)->key_prefix_size; 1030 } 1031 1032 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 1033 void *fs_data) 1034 { 1035 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 1036 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 1037 ctx, len, fs_data, XATTR_CREATE); 1038 } 1039 1040 static unsigned f2fs_max_namelen(struct inode *inode) 1041 { 1042 return S_ISLNK(inode->i_mode) ? 1043 inode->i_sb->s_blocksize : F2FS_NAME_LEN; 1044 } 1045 1046 static struct fscrypt_operations f2fs_cryptops = { 1047 .get_context = f2fs_get_context, 1048 .key_prefix = f2fs_key_prefix, 1049 .set_context = f2fs_set_context, 1050 .is_encrypted = f2fs_encrypted_inode, 1051 .empty_dir = f2fs_empty_dir, 1052 .max_namelen = f2fs_max_namelen, 1053 }; 1054 #else 1055 static struct fscrypt_operations f2fs_cryptops = { 1056 .is_encrypted = f2fs_encrypted_inode, 1057 }; 1058 #endif 1059 1060 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 1061 u64 ino, u32 generation) 1062 { 1063 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1064 struct inode *inode; 1065 1066 if (check_nid_range(sbi, ino)) 1067 return ERR_PTR(-ESTALE); 1068 1069 /* 1070 * f2fs_iget isn't quite right if the inode is currently unallocated! 1071 * However f2fs_iget currently does appropriate checks to handle stale 1072 * inodes so everything is OK. 1073 */ 1074 inode = f2fs_iget(sb, ino); 1075 if (IS_ERR(inode)) 1076 return ERR_CAST(inode); 1077 if (unlikely(generation && inode->i_generation != generation)) { 1078 /* we didn't find the right inode.. */ 1079 iput(inode); 1080 return ERR_PTR(-ESTALE); 1081 } 1082 return inode; 1083 } 1084 1085 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1086 int fh_len, int fh_type) 1087 { 1088 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1089 f2fs_nfs_get_inode); 1090 } 1091 1092 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 1093 int fh_len, int fh_type) 1094 { 1095 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1096 f2fs_nfs_get_inode); 1097 } 1098 1099 static const struct export_operations f2fs_export_ops = { 1100 .fh_to_dentry = f2fs_fh_to_dentry, 1101 .fh_to_parent = f2fs_fh_to_parent, 1102 .get_parent = f2fs_get_parent, 1103 }; 1104 1105 static loff_t max_file_blocks(void) 1106 { 1107 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS); 1108 loff_t leaf_count = ADDRS_PER_BLOCK; 1109 1110 /* two direct node blocks */ 1111 result += (leaf_count * 2); 1112 1113 /* two indirect node blocks */ 1114 leaf_count *= NIDS_PER_BLOCK; 1115 result += (leaf_count * 2); 1116 1117 /* one double indirect node block */ 1118 leaf_count *= NIDS_PER_BLOCK; 1119 result += leaf_count; 1120 1121 return result; 1122 } 1123 1124 static int __f2fs_commit_super(struct buffer_head *bh, 1125 struct f2fs_super_block *super) 1126 { 1127 lock_buffer(bh); 1128 if (super) 1129 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 1130 set_buffer_uptodate(bh); 1131 set_buffer_dirty(bh); 1132 unlock_buffer(bh); 1133 1134 /* it's rare case, we can do fua all the time */ 1135 return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA); 1136 } 1137 1138 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 1139 struct buffer_head *bh) 1140 { 1141 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 1142 (bh->b_data + F2FS_SUPER_OFFSET); 1143 struct super_block *sb = sbi->sb; 1144 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 1145 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 1146 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 1147 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 1148 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 1149 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 1150 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 1151 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 1152 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 1153 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 1154 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 1155 u32 segment_count = le32_to_cpu(raw_super->segment_count); 1156 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 1157 u64 main_end_blkaddr = main_blkaddr + 1158 (segment_count_main << log_blocks_per_seg); 1159 u64 seg_end_blkaddr = segment0_blkaddr + 1160 (segment_count << log_blocks_per_seg); 1161 1162 if (segment0_blkaddr != cp_blkaddr) { 1163 f2fs_msg(sb, KERN_INFO, 1164 "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 1165 segment0_blkaddr, cp_blkaddr); 1166 return true; 1167 } 1168 1169 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 1170 sit_blkaddr) { 1171 f2fs_msg(sb, KERN_INFO, 1172 "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 1173 cp_blkaddr, sit_blkaddr, 1174 segment_count_ckpt << log_blocks_per_seg); 1175 return true; 1176 } 1177 1178 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 1179 nat_blkaddr) { 1180 f2fs_msg(sb, KERN_INFO, 1181 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 1182 sit_blkaddr, nat_blkaddr, 1183 segment_count_sit << log_blocks_per_seg); 1184 return true; 1185 } 1186 1187 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 1188 ssa_blkaddr) { 1189 f2fs_msg(sb, KERN_INFO, 1190 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 1191 nat_blkaddr, ssa_blkaddr, 1192 segment_count_nat << log_blocks_per_seg); 1193 return true; 1194 } 1195 1196 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 1197 main_blkaddr) { 1198 f2fs_msg(sb, KERN_INFO, 1199 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 1200 ssa_blkaddr, main_blkaddr, 1201 segment_count_ssa << log_blocks_per_seg); 1202 return true; 1203 } 1204 1205 if (main_end_blkaddr > seg_end_blkaddr) { 1206 f2fs_msg(sb, KERN_INFO, 1207 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)", 1208 main_blkaddr, 1209 segment0_blkaddr + 1210 (segment_count << log_blocks_per_seg), 1211 segment_count_main << log_blocks_per_seg); 1212 return true; 1213 } else if (main_end_blkaddr < seg_end_blkaddr) { 1214 int err = 0; 1215 char *res; 1216 1217 /* fix in-memory information all the time */ 1218 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 1219 segment0_blkaddr) >> log_blocks_per_seg); 1220 1221 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 1222 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1223 res = "internally"; 1224 } else { 1225 err = __f2fs_commit_super(bh, NULL); 1226 res = err ? "failed" : "done"; 1227 } 1228 f2fs_msg(sb, KERN_INFO, 1229 "Fix alignment : %s, start(%u) end(%u) block(%u)", 1230 res, main_blkaddr, 1231 segment0_blkaddr + 1232 (segment_count << log_blocks_per_seg), 1233 segment_count_main << log_blocks_per_seg); 1234 if (err) 1235 return true; 1236 } 1237 return false; 1238 } 1239 1240 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 1241 struct buffer_head *bh) 1242 { 1243 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 1244 (bh->b_data + F2FS_SUPER_OFFSET); 1245 struct super_block *sb = sbi->sb; 1246 unsigned int blocksize; 1247 1248 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { 1249 f2fs_msg(sb, KERN_INFO, 1250 "Magic Mismatch, valid(0x%x) - read(0x%x)", 1251 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 1252 return 1; 1253 } 1254 1255 /* Currently, support only 4KB page cache size */ 1256 if (F2FS_BLKSIZE != PAGE_SIZE) { 1257 f2fs_msg(sb, KERN_INFO, 1258 "Invalid page_cache_size (%lu), supports only 4KB\n", 1259 PAGE_SIZE); 1260 return 1; 1261 } 1262 1263 /* Currently, support only 4KB block size */ 1264 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 1265 if (blocksize != F2FS_BLKSIZE) { 1266 f2fs_msg(sb, KERN_INFO, 1267 "Invalid blocksize (%u), supports only 4KB\n", 1268 blocksize); 1269 return 1; 1270 } 1271 1272 /* check log blocks per segment */ 1273 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 1274 f2fs_msg(sb, KERN_INFO, 1275 "Invalid log blocks per segment (%u)\n", 1276 le32_to_cpu(raw_super->log_blocks_per_seg)); 1277 return 1; 1278 } 1279 1280 /* Currently, support 512/1024/2048/4096 bytes sector size */ 1281 if (le32_to_cpu(raw_super->log_sectorsize) > 1282 F2FS_MAX_LOG_SECTOR_SIZE || 1283 le32_to_cpu(raw_super->log_sectorsize) < 1284 F2FS_MIN_LOG_SECTOR_SIZE) { 1285 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)", 1286 le32_to_cpu(raw_super->log_sectorsize)); 1287 return 1; 1288 } 1289 if (le32_to_cpu(raw_super->log_sectors_per_block) + 1290 le32_to_cpu(raw_super->log_sectorsize) != 1291 F2FS_MAX_LOG_SECTOR_SIZE) { 1292 f2fs_msg(sb, KERN_INFO, 1293 "Invalid log sectors per block(%u) log sectorsize(%u)", 1294 le32_to_cpu(raw_super->log_sectors_per_block), 1295 le32_to_cpu(raw_super->log_sectorsize)); 1296 return 1; 1297 } 1298 1299 /* check reserved ino info */ 1300 if (le32_to_cpu(raw_super->node_ino) != 1 || 1301 le32_to_cpu(raw_super->meta_ino) != 2 || 1302 le32_to_cpu(raw_super->root_ino) != 3) { 1303 f2fs_msg(sb, KERN_INFO, 1304 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 1305 le32_to_cpu(raw_super->node_ino), 1306 le32_to_cpu(raw_super->meta_ino), 1307 le32_to_cpu(raw_super->root_ino)); 1308 return 1; 1309 } 1310 1311 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 1312 if (sanity_check_area_boundary(sbi, bh)) 1313 return 1; 1314 1315 return 0; 1316 } 1317 1318 int sanity_check_ckpt(struct f2fs_sb_info *sbi) 1319 { 1320 unsigned int total, fsmeta; 1321 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1322 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1323 1324 total = le32_to_cpu(raw_super->segment_count); 1325 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 1326 fsmeta += le32_to_cpu(raw_super->segment_count_sit); 1327 fsmeta += le32_to_cpu(raw_super->segment_count_nat); 1328 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 1329 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 1330 1331 if (unlikely(fsmeta >= total)) 1332 return 1; 1333 1334 if (unlikely(f2fs_cp_error(sbi))) { 1335 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); 1336 return 1; 1337 } 1338 return 0; 1339 } 1340 1341 static void init_sb_info(struct f2fs_sb_info *sbi) 1342 { 1343 struct f2fs_super_block *raw_super = sbi->raw_super; 1344 1345 sbi->log_sectors_per_block = 1346 le32_to_cpu(raw_super->log_sectors_per_block); 1347 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 1348 sbi->blocksize = 1 << sbi->log_blocksize; 1349 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 1350 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 1351 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 1352 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 1353 sbi->total_sections = le32_to_cpu(raw_super->section_count); 1354 sbi->total_node_count = 1355 (le32_to_cpu(raw_super->segment_count_nat) / 2) 1356 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 1357 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 1358 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 1359 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 1360 sbi->cur_victim_sec = NULL_SECNO; 1361 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 1362 1363 sbi->dir_level = DEF_DIR_LEVEL; 1364 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 1365 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 1366 clear_sbi_flag(sbi, SBI_NEED_FSCK); 1367 1368 INIT_LIST_HEAD(&sbi->s_list); 1369 mutex_init(&sbi->umount_mutex); 1370 1371 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1372 memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX, 1373 F2FS_KEY_DESC_PREFIX_SIZE); 1374 sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE; 1375 #endif 1376 } 1377 1378 static int init_percpu_info(struct f2fs_sb_info *sbi) 1379 { 1380 int i, err; 1381 1382 for (i = 0; i < NR_COUNT_TYPE; i++) { 1383 err = percpu_counter_init(&sbi->nr_pages[i], 0, GFP_KERNEL); 1384 if (err) 1385 return err; 1386 } 1387 1388 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 1389 if (err) 1390 return err; 1391 1392 return percpu_counter_init(&sbi->total_valid_inode_count, 0, 1393 GFP_KERNEL); 1394 } 1395 1396 /* 1397 * Read f2fs raw super block. 1398 * Because we have two copies of super block, so read both of them 1399 * to get the first valid one. If any one of them is broken, we pass 1400 * them recovery flag back to the caller. 1401 */ 1402 static int read_raw_super_block(struct f2fs_sb_info *sbi, 1403 struct f2fs_super_block **raw_super, 1404 int *valid_super_block, int *recovery) 1405 { 1406 struct super_block *sb = sbi->sb; 1407 int block; 1408 struct buffer_head *bh; 1409 struct f2fs_super_block *super; 1410 int err = 0; 1411 1412 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 1413 if (!super) 1414 return -ENOMEM; 1415 1416 for (block = 0; block < 2; block++) { 1417 bh = sb_bread(sb, block); 1418 if (!bh) { 1419 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock", 1420 block + 1); 1421 err = -EIO; 1422 continue; 1423 } 1424 1425 /* sanity checking of raw super */ 1426 if (sanity_check_raw_super(sbi, bh)) { 1427 f2fs_msg(sb, KERN_ERR, 1428 "Can't find valid F2FS filesystem in %dth superblock", 1429 block + 1); 1430 err = -EINVAL; 1431 brelse(bh); 1432 continue; 1433 } 1434 1435 if (!*raw_super) { 1436 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 1437 sizeof(*super)); 1438 *valid_super_block = block; 1439 *raw_super = super; 1440 } 1441 brelse(bh); 1442 } 1443 1444 /* Fail to read any one of the superblocks*/ 1445 if (err < 0) 1446 *recovery = 1; 1447 1448 /* No valid superblock */ 1449 if (!*raw_super) 1450 kfree(super); 1451 else 1452 err = 0; 1453 1454 return err; 1455 } 1456 1457 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 1458 { 1459 struct buffer_head *bh; 1460 int err; 1461 1462 if ((recover && f2fs_readonly(sbi->sb)) || 1463 bdev_read_only(sbi->sb->s_bdev)) { 1464 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1465 return -EROFS; 1466 } 1467 1468 /* write back-up superblock first */ 1469 bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1); 1470 if (!bh) 1471 return -EIO; 1472 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 1473 brelse(bh); 1474 1475 /* if we are in recovery path, skip writing valid superblock */ 1476 if (recover || err) 1477 return err; 1478 1479 /* write current valid superblock */ 1480 bh = sb_getblk(sbi->sb, sbi->valid_super_block); 1481 if (!bh) 1482 return -EIO; 1483 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 1484 brelse(bh); 1485 return err; 1486 } 1487 1488 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 1489 { 1490 struct f2fs_sb_info *sbi; 1491 struct f2fs_super_block *raw_super; 1492 struct inode *root; 1493 int err; 1494 bool retry = true, need_fsck = false; 1495 char *options = NULL; 1496 int recovery, i, valid_super_block; 1497 struct curseg_info *seg_i; 1498 1499 try_onemore: 1500 err = -EINVAL; 1501 raw_super = NULL; 1502 valid_super_block = -1; 1503 recovery = 0; 1504 1505 /* allocate memory for f2fs-specific super block info */ 1506 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 1507 if (!sbi) 1508 return -ENOMEM; 1509 1510 sbi->sb = sb; 1511 1512 /* Load the checksum driver */ 1513 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 1514 if (IS_ERR(sbi->s_chksum_driver)) { 1515 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver."); 1516 err = PTR_ERR(sbi->s_chksum_driver); 1517 sbi->s_chksum_driver = NULL; 1518 goto free_sbi; 1519 } 1520 1521 /* set a block size */ 1522 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 1523 f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); 1524 goto free_sbi; 1525 } 1526 1527 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 1528 &recovery); 1529 if (err) 1530 goto free_sbi; 1531 1532 sb->s_fs_info = sbi; 1533 default_options(sbi); 1534 /* parse mount options */ 1535 options = kstrdup((const char *)data, GFP_KERNEL); 1536 if (data && !options) { 1537 err = -ENOMEM; 1538 goto free_sb_buf; 1539 } 1540 1541 err = parse_options(sb, options); 1542 if (err) 1543 goto free_options; 1544 1545 sbi->max_file_blocks = max_file_blocks(); 1546 sb->s_maxbytes = sbi->max_file_blocks << 1547 le32_to_cpu(raw_super->log_blocksize); 1548 sb->s_max_links = F2FS_LINK_MAX; 1549 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 1550 1551 sb->s_op = &f2fs_sops; 1552 sb->s_cop = &f2fs_cryptops; 1553 sb->s_xattr = f2fs_xattr_handlers; 1554 sb->s_export_op = &f2fs_export_ops; 1555 sb->s_magic = F2FS_SUPER_MAGIC; 1556 sb->s_time_gran = 1; 1557 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 1558 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 1559 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 1560 1561 /* init f2fs-specific super block info */ 1562 sbi->raw_super = raw_super; 1563 sbi->valid_super_block = valid_super_block; 1564 mutex_init(&sbi->gc_mutex); 1565 mutex_init(&sbi->writepages); 1566 mutex_init(&sbi->cp_mutex); 1567 init_rwsem(&sbi->node_write); 1568 1569 /* disallow all the data/node/meta page writes */ 1570 set_sbi_flag(sbi, SBI_POR_DOING); 1571 spin_lock_init(&sbi->stat_lock); 1572 1573 init_rwsem(&sbi->read_io.io_rwsem); 1574 sbi->read_io.sbi = sbi; 1575 sbi->read_io.bio = NULL; 1576 for (i = 0; i < NR_PAGE_TYPE; i++) { 1577 init_rwsem(&sbi->write_io[i].io_rwsem); 1578 sbi->write_io[i].sbi = sbi; 1579 sbi->write_io[i].bio = NULL; 1580 } 1581 1582 init_rwsem(&sbi->cp_rwsem); 1583 init_waitqueue_head(&sbi->cp_wait); 1584 init_sb_info(sbi); 1585 1586 err = init_percpu_info(sbi); 1587 if (err) 1588 goto free_options; 1589 1590 /* get an inode for meta space */ 1591 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 1592 if (IS_ERR(sbi->meta_inode)) { 1593 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); 1594 err = PTR_ERR(sbi->meta_inode); 1595 goto free_options; 1596 } 1597 1598 err = get_valid_checkpoint(sbi); 1599 if (err) { 1600 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); 1601 goto free_meta_inode; 1602 } 1603 1604 sbi->total_valid_node_count = 1605 le32_to_cpu(sbi->ckpt->valid_node_count); 1606 percpu_counter_set(&sbi->total_valid_inode_count, 1607 le32_to_cpu(sbi->ckpt->valid_inode_count)); 1608 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 1609 sbi->total_valid_block_count = 1610 le64_to_cpu(sbi->ckpt->valid_block_count); 1611 sbi->last_valid_block_count = sbi->total_valid_block_count; 1612 1613 for (i = 0; i < NR_INODE_TYPE; i++) { 1614 INIT_LIST_HEAD(&sbi->inode_list[i]); 1615 spin_lock_init(&sbi->inode_lock[i]); 1616 } 1617 1618 init_extent_cache_info(sbi); 1619 1620 init_ino_entry_info(sbi); 1621 1622 /* setup f2fs internal modules */ 1623 err = build_segment_manager(sbi); 1624 if (err) { 1625 f2fs_msg(sb, KERN_ERR, 1626 "Failed to initialize F2FS segment manager"); 1627 goto free_sm; 1628 } 1629 err = build_node_manager(sbi); 1630 if (err) { 1631 f2fs_msg(sb, KERN_ERR, 1632 "Failed to initialize F2FS node manager"); 1633 goto free_nm; 1634 } 1635 1636 /* For write statistics */ 1637 if (sb->s_bdev->bd_part) 1638 sbi->sectors_written_start = 1639 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]); 1640 1641 /* Read accumulated write IO statistics if exists */ 1642 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1643 if (__exist_node_summaries(sbi)) 1644 sbi->kbytes_written = 1645 le64_to_cpu(seg_i->journal->info.kbytes_written); 1646 1647 build_gc_manager(sbi); 1648 1649 /* get an inode for node space */ 1650 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 1651 if (IS_ERR(sbi->node_inode)) { 1652 f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); 1653 err = PTR_ERR(sbi->node_inode); 1654 goto free_nm; 1655 } 1656 1657 f2fs_join_shrinker(sbi); 1658 1659 /* if there are nt orphan nodes free them */ 1660 err = recover_orphan_inodes(sbi); 1661 if (err) 1662 goto free_node_inode; 1663 1664 /* read root inode and dentry */ 1665 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 1666 if (IS_ERR(root)) { 1667 f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); 1668 err = PTR_ERR(root); 1669 goto free_node_inode; 1670 } 1671 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 1672 iput(root); 1673 err = -EINVAL; 1674 goto free_node_inode; 1675 } 1676 1677 sb->s_root = d_make_root(root); /* allocate root dentry */ 1678 if (!sb->s_root) { 1679 err = -ENOMEM; 1680 goto free_root_inode; 1681 } 1682 1683 err = f2fs_build_stats(sbi); 1684 if (err) 1685 goto free_root_inode; 1686 1687 if (f2fs_proc_root) 1688 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root); 1689 1690 if (sbi->s_proc) { 1691 proc_create_data("segment_info", S_IRUGO, sbi->s_proc, 1692 &f2fs_seq_segment_info_fops, sb); 1693 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc, 1694 &f2fs_seq_segment_bits_fops, sb); 1695 } 1696 1697 sbi->s_kobj.kset = f2fs_kset; 1698 init_completion(&sbi->s_kobj_unregister); 1699 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL, 1700 "%s", sb->s_id); 1701 if (err) 1702 goto free_proc; 1703 1704 /* recover fsynced data */ 1705 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 1706 /* 1707 * mount should be failed, when device has readonly mode, and 1708 * previous checkpoint was not done by clean system shutdown. 1709 */ 1710 if (bdev_read_only(sb->s_bdev) && 1711 !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) { 1712 err = -EROFS; 1713 goto free_kobj; 1714 } 1715 1716 if (need_fsck) 1717 set_sbi_flag(sbi, SBI_NEED_FSCK); 1718 1719 err = recover_fsync_data(sbi, false); 1720 if (err < 0) { 1721 need_fsck = true; 1722 f2fs_msg(sb, KERN_ERR, 1723 "Cannot recover all fsync data errno=%d", err); 1724 goto free_kobj; 1725 } 1726 } else { 1727 err = recover_fsync_data(sbi, true); 1728 1729 if (!f2fs_readonly(sb) && err > 0) { 1730 err = -EINVAL; 1731 f2fs_msg(sb, KERN_ERR, 1732 "Need to recover fsync data"); 1733 goto free_kobj; 1734 } 1735 } 1736 1737 /* recover_fsync_data() cleared this already */ 1738 clear_sbi_flag(sbi, SBI_POR_DOING); 1739 1740 /* 1741 * If filesystem is not mounted as read-only then 1742 * do start the gc_thread. 1743 */ 1744 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) { 1745 /* After POR, we can run background GC thread.*/ 1746 err = start_gc_thread(sbi); 1747 if (err) 1748 goto free_kobj; 1749 } 1750 kfree(options); 1751 1752 /* recover broken superblock */ 1753 if (recovery) { 1754 err = f2fs_commit_super(sbi, true); 1755 f2fs_msg(sb, KERN_INFO, 1756 "Try to recover %dth superblock, ret: %d", 1757 sbi->valid_super_block ? 1 : 2, err); 1758 } 1759 1760 f2fs_update_time(sbi, CP_TIME); 1761 f2fs_update_time(sbi, REQ_TIME); 1762 return 0; 1763 1764 free_kobj: 1765 kobject_del(&sbi->s_kobj); 1766 kobject_put(&sbi->s_kobj); 1767 wait_for_completion(&sbi->s_kobj_unregister); 1768 free_proc: 1769 if (sbi->s_proc) { 1770 remove_proc_entry("segment_info", sbi->s_proc); 1771 remove_proc_entry("segment_bits", sbi->s_proc); 1772 remove_proc_entry(sb->s_id, f2fs_proc_root); 1773 } 1774 f2fs_destroy_stats(sbi); 1775 free_root_inode: 1776 dput(sb->s_root); 1777 sb->s_root = NULL; 1778 free_node_inode: 1779 mutex_lock(&sbi->umount_mutex); 1780 f2fs_leave_shrinker(sbi); 1781 iput(sbi->node_inode); 1782 mutex_unlock(&sbi->umount_mutex); 1783 free_nm: 1784 destroy_node_manager(sbi); 1785 free_sm: 1786 destroy_segment_manager(sbi); 1787 kfree(sbi->ckpt); 1788 free_meta_inode: 1789 make_bad_inode(sbi->meta_inode); 1790 iput(sbi->meta_inode); 1791 free_options: 1792 destroy_percpu_info(sbi); 1793 kfree(options); 1794 free_sb_buf: 1795 kfree(raw_super); 1796 free_sbi: 1797 if (sbi->s_chksum_driver) 1798 crypto_free_shash(sbi->s_chksum_driver); 1799 kfree(sbi); 1800 1801 /* give only one another chance */ 1802 if (retry) { 1803 retry = false; 1804 shrink_dcache_sb(sb); 1805 goto try_onemore; 1806 } 1807 return err; 1808 } 1809 1810 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 1811 const char *dev_name, void *data) 1812 { 1813 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 1814 } 1815 1816 static void kill_f2fs_super(struct super_block *sb) 1817 { 1818 if (sb->s_root) 1819 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE); 1820 kill_block_super(sb); 1821 } 1822 1823 static struct file_system_type f2fs_fs_type = { 1824 .owner = THIS_MODULE, 1825 .name = "f2fs", 1826 .mount = f2fs_mount, 1827 .kill_sb = kill_f2fs_super, 1828 .fs_flags = FS_REQUIRES_DEV, 1829 }; 1830 MODULE_ALIAS_FS("f2fs"); 1831 1832 static int __init init_inodecache(void) 1833 { 1834 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 1835 sizeof(struct f2fs_inode_info), 0, 1836 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 1837 if (!f2fs_inode_cachep) 1838 return -ENOMEM; 1839 return 0; 1840 } 1841 1842 static void destroy_inodecache(void) 1843 { 1844 /* 1845 * Make sure all delayed rcu free inodes are flushed before we 1846 * destroy cache. 1847 */ 1848 rcu_barrier(); 1849 kmem_cache_destroy(f2fs_inode_cachep); 1850 } 1851 1852 static int __init init_f2fs_fs(void) 1853 { 1854 int err; 1855 1856 f2fs_build_trace_ios(); 1857 1858 err = init_inodecache(); 1859 if (err) 1860 goto fail; 1861 err = create_node_manager_caches(); 1862 if (err) 1863 goto free_inodecache; 1864 err = create_segment_manager_caches(); 1865 if (err) 1866 goto free_node_manager_caches; 1867 err = create_checkpoint_caches(); 1868 if (err) 1869 goto free_segment_manager_caches; 1870 err = create_extent_cache(); 1871 if (err) 1872 goto free_checkpoint_caches; 1873 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj); 1874 if (!f2fs_kset) { 1875 err = -ENOMEM; 1876 goto free_extent_cache; 1877 } 1878 #ifdef CONFIG_F2FS_FAULT_INJECTION 1879 f2fs_fault_inject.kset = f2fs_kset; 1880 f2fs_build_fault_attr(0); 1881 err = kobject_init_and_add(&f2fs_fault_inject, &f2fs_fault_ktype, 1882 NULL, "fault_injection"); 1883 if (err) { 1884 f2fs_fault_inject.kset = NULL; 1885 goto free_kset; 1886 } 1887 #endif 1888 err = register_shrinker(&f2fs_shrinker_info); 1889 if (err) 1890 goto free_kset; 1891 1892 err = register_filesystem(&f2fs_fs_type); 1893 if (err) 1894 goto free_shrinker; 1895 err = f2fs_create_root_stats(); 1896 if (err) 1897 goto free_filesystem; 1898 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL); 1899 return 0; 1900 1901 free_filesystem: 1902 unregister_filesystem(&f2fs_fs_type); 1903 free_shrinker: 1904 unregister_shrinker(&f2fs_shrinker_info); 1905 free_kset: 1906 #ifdef CONFIG_F2FS_FAULT_INJECTION 1907 if (f2fs_fault_inject.kset) 1908 kobject_put(&f2fs_fault_inject); 1909 #endif 1910 kset_unregister(f2fs_kset); 1911 free_extent_cache: 1912 destroy_extent_cache(); 1913 free_checkpoint_caches: 1914 destroy_checkpoint_caches(); 1915 free_segment_manager_caches: 1916 destroy_segment_manager_caches(); 1917 free_node_manager_caches: 1918 destroy_node_manager_caches(); 1919 free_inodecache: 1920 destroy_inodecache(); 1921 fail: 1922 return err; 1923 } 1924 1925 static void __exit exit_f2fs_fs(void) 1926 { 1927 remove_proc_entry("fs/f2fs", NULL); 1928 f2fs_destroy_root_stats(); 1929 unregister_filesystem(&f2fs_fs_type); 1930 unregister_shrinker(&f2fs_shrinker_info); 1931 #ifdef CONFIG_F2FS_FAULT_INJECTION 1932 kobject_put(&f2fs_fault_inject); 1933 #endif 1934 kset_unregister(f2fs_kset); 1935 destroy_extent_cache(); 1936 destroy_checkpoint_caches(); 1937 destroy_segment_manager_caches(); 1938 destroy_node_manager_caches(); 1939 destroy_inodecache(); 1940 f2fs_destroy_trace_ios(); 1941 } 1942 1943 module_init(init_f2fs_fs) 1944 module_exit(exit_f2fs_fs) 1945 1946 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 1947 MODULE_DESCRIPTION("Flash Friendly File System"); 1948 MODULE_LICENSE("GPL"); 1949