xref: /openbmc/linux/fs/f2fs/super.c (revision 6e10e219)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/sched/mm.h>
12 #include <linux/statfs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 #include <linux/unicode.h>
27 #include <linux/part_stat.h>
28 #include <linux/zstd.h>
29 #include <linux/lz4.h>
30 
31 #include "f2fs.h"
32 #include "node.h"
33 #include "segment.h"
34 #include "xattr.h"
35 #include "gc.h"
36 #include "iostat.h"
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/f2fs.h>
40 
41 static struct kmem_cache *f2fs_inode_cachep;
42 
43 #ifdef CONFIG_F2FS_FAULT_INJECTION
44 
45 const char *f2fs_fault_name[FAULT_MAX] = {
46 	[FAULT_KMALLOC]		= "kmalloc",
47 	[FAULT_KVMALLOC]	= "kvmalloc",
48 	[FAULT_PAGE_ALLOC]	= "page alloc",
49 	[FAULT_PAGE_GET]	= "page get",
50 	[FAULT_ALLOC_NID]	= "alloc nid",
51 	[FAULT_ORPHAN]		= "orphan",
52 	[FAULT_BLOCK]		= "no more block",
53 	[FAULT_DIR_DEPTH]	= "too big dir depth",
54 	[FAULT_EVICT_INODE]	= "evict_inode fail",
55 	[FAULT_TRUNCATE]	= "truncate fail",
56 	[FAULT_READ_IO]		= "read IO error",
57 	[FAULT_CHECKPOINT]	= "checkpoint error",
58 	[FAULT_DISCARD]		= "discard error",
59 	[FAULT_WRITE_IO]	= "write IO error",
60 	[FAULT_SLAB_ALLOC]	= "slab alloc",
61 	[FAULT_DQUOT_INIT]	= "dquot initialize",
62 };
63 
64 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
65 							unsigned int type)
66 {
67 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
68 
69 	if (rate) {
70 		atomic_set(&ffi->inject_ops, 0);
71 		ffi->inject_rate = rate;
72 	}
73 
74 	if (type)
75 		ffi->inject_type = type;
76 
77 	if (!rate && !type)
78 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
79 }
80 #endif
81 
82 /* f2fs-wide shrinker description */
83 static struct shrinker f2fs_shrinker_info = {
84 	.scan_objects = f2fs_shrink_scan,
85 	.count_objects = f2fs_shrink_count,
86 	.seeks = DEFAULT_SEEKS,
87 };
88 
89 enum {
90 	Opt_gc_background,
91 	Opt_disable_roll_forward,
92 	Opt_norecovery,
93 	Opt_discard,
94 	Opt_nodiscard,
95 	Opt_noheap,
96 	Opt_heap,
97 	Opt_user_xattr,
98 	Opt_nouser_xattr,
99 	Opt_acl,
100 	Opt_noacl,
101 	Opt_active_logs,
102 	Opt_disable_ext_identify,
103 	Opt_inline_xattr,
104 	Opt_noinline_xattr,
105 	Opt_inline_xattr_size,
106 	Opt_inline_data,
107 	Opt_inline_dentry,
108 	Opt_noinline_dentry,
109 	Opt_flush_merge,
110 	Opt_noflush_merge,
111 	Opt_nobarrier,
112 	Opt_fastboot,
113 	Opt_extent_cache,
114 	Opt_noextent_cache,
115 	Opt_noinline_data,
116 	Opt_data_flush,
117 	Opt_reserve_root,
118 	Opt_resgid,
119 	Opt_resuid,
120 	Opt_mode,
121 	Opt_io_size_bits,
122 	Opt_fault_injection,
123 	Opt_fault_type,
124 	Opt_lazytime,
125 	Opt_nolazytime,
126 	Opt_quota,
127 	Opt_noquota,
128 	Opt_usrquota,
129 	Opt_grpquota,
130 	Opt_prjquota,
131 	Opt_usrjquota,
132 	Opt_grpjquota,
133 	Opt_prjjquota,
134 	Opt_offusrjquota,
135 	Opt_offgrpjquota,
136 	Opt_offprjjquota,
137 	Opt_jqfmt_vfsold,
138 	Opt_jqfmt_vfsv0,
139 	Opt_jqfmt_vfsv1,
140 	Opt_whint,
141 	Opt_alloc,
142 	Opt_fsync,
143 	Opt_test_dummy_encryption,
144 	Opt_inlinecrypt,
145 	Opt_checkpoint_disable,
146 	Opt_checkpoint_disable_cap,
147 	Opt_checkpoint_disable_cap_perc,
148 	Opt_checkpoint_enable,
149 	Opt_checkpoint_merge,
150 	Opt_nocheckpoint_merge,
151 	Opt_compress_algorithm,
152 	Opt_compress_log_size,
153 	Opt_compress_extension,
154 	Opt_nocompress_extension,
155 	Opt_compress_chksum,
156 	Opt_compress_mode,
157 	Opt_compress_cache,
158 	Opt_atgc,
159 	Opt_gc_merge,
160 	Opt_nogc_merge,
161 	Opt_discard_unit,
162 	Opt_err,
163 };
164 
165 static match_table_t f2fs_tokens = {
166 	{Opt_gc_background, "background_gc=%s"},
167 	{Opt_disable_roll_forward, "disable_roll_forward"},
168 	{Opt_norecovery, "norecovery"},
169 	{Opt_discard, "discard"},
170 	{Opt_nodiscard, "nodiscard"},
171 	{Opt_noheap, "no_heap"},
172 	{Opt_heap, "heap"},
173 	{Opt_user_xattr, "user_xattr"},
174 	{Opt_nouser_xattr, "nouser_xattr"},
175 	{Opt_acl, "acl"},
176 	{Opt_noacl, "noacl"},
177 	{Opt_active_logs, "active_logs=%u"},
178 	{Opt_disable_ext_identify, "disable_ext_identify"},
179 	{Opt_inline_xattr, "inline_xattr"},
180 	{Opt_noinline_xattr, "noinline_xattr"},
181 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
182 	{Opt_inline_data, "inline_data"},
183 	{Opt_inline_dentry, "inline_dentry"},
184 	{Opt_noinline_dentry, "noinline_dentry"},
185 	{Opt_flush_merge, "flush_merge"},
186 	{Opt_noflush_merge, "noflush_merge"},
187 	{Opt_nobarrier, "nobarrier"},
188 	{Opt_fastboot, "fastboot"},
189 	{Opt_extent_cache, "extent_cache"},
190 	{Opt_noextent_cache, "noextent_cache"},
191 	{Opt_noinline_data, "noinline_data"},
192 	{Opt_data_flush, "data_flush"},
193 	{Opt_reserve_root, "reserve_root=%u"},
194 	{Opt_resgid, "resgid=%u"},
195 	{Opt_resuid, "resuid=%u"},
196 	{Opt_mode, "mode=%s"},
197 	{Opt_io_size_bits, "io_bits=%u"},
198 	{Opt_fault_injection, "fault_injection=%u"},
199 	{Opt_fault_type, "fault_type=%u"},
200 	{Opt_lazytime, "lazytime"},
201 	{Opt_nolazytime, "nolazytime"},
202 	{Opt_quota, "quota"},
203 	{Opt_noquota, "noquota"},
204 	{Opt_usrquota, "usrquota"},
205 	{Opt_grpquota, "grpquota"},
206 	{Opt_prjquota, "prjquota"},
207 	{Opt_usrjquota, "usrjquota=%s"},
208 	{Opt_grpjquota, "grpjquota=%s"},
209 	{Opt_prjjquota, "prjjquota=%s"},
210 	{Opt_offusrjquota, "usrjquota="},
211 	{Opt_offgrpjquota, "grpjquota="},
212 	{Opt_offprjjquota, "prjjquota="},
213 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
214 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
215 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
216 	{Opt_whint, "whint_mode=%s"},
217 	{Opt_alloc, "alloc_mode=%s"},
218 	{Opt_fsync, "fsync_mode=%s"},
219 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
220 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
221 	{Opt_inlinecrypt, "inlinecrypt"},
222 	{Opt_checkpoint_disable, "checkpoint=disable"},
223 	{Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
224 	{Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
225 	{Opt_checkpoint_enable, "checkpoint=enable"},
226 	{Opt_checkpoint_merge, "checkpoint_merge"},
227 	{Opt_nocheckpoint_merge, "nocheckpoint_merge"},
228 	{Opt_compress_algorithm, "compress_algorithm=%s"},
229 	{Opt_compress_log_size, "compress_log_size=%u"},
230 	{Opt_compress_extension, "compress_extension=%s"},
231 	{Opt_nocompress_extension, "nocompress_extension=%s"},
232 	{Opt_compress_chksum, "compress_chksum"},
233 	{Opt_compress_mode, "compress_mode=%s"},
234 	{Opt_compress_cache, "compress_cache"},
235 	{Opt_atgc, "atgc"},
236 	{Opt_gc_merge, "gc_merge"},
237 	{Opt_nogc_merge, "nogc_merge"},
238 	{Opt_discard_unit, "discard_unit=%s"},
239 	{Opt_err, NULL},
240 };
241 
242 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
243 {
244 	struct va_format vaf;
245 	va_list args;
246 	int level;
247 
248 	va_start(args, fmt);
249 
250 	level = printk_get_level(fmt);
251 	vaf.fmt = printk_skip_level(fmt);
252 	vaf.va = &args;
253 	printk("%c%cF2FS-fs (%s): %pV\n",
254 	       KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
255 
256 	va_end(args);
257 }
258 
259 #ifdef CONFIG_UNICODE
260 static const struct f2fs_sb_encodings {
261 	__u16 magic;
262 	char *name;
263 	unsigned int version;
264 } f2fs_sb_encoding_map[] = {
265 	{F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
266 };
267 
268 static const struct f2fs_sb_encodings *
269 f2fs_sb_read_encoding(const struct f2fs_super_block *sb)
270 {
271 	__u16 magic = le16_to_cpu(sb->s_encoding);
272 	int i;
273 
274 	for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
275 		if (magic == f2fs_sb_encoding_map[i].magic)
276 			return &f2fs_sb_encoding_map[i];
277 
278 	return NULL;
279 }
280 
281 struct kmem_cache *f2fs_cf_name_slab;
282 static int __init f2fs_create_casefold_cache(void)
283 {
284 	f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name",
285 							F2FS_NAME_LEN);
286 	if (!f2fs_cf_name_slab)
287 		return -ENOMEM;
288 	return 0;
289 }
290 
291 static void f2fs_destroy_casefold_cache(void)
292 {
293 	kmem_cache_destroy(f2fs_cf_name_slab);
294 }
295 #else
296 static int __init f2fs_create_casefold_cache(void) { return 0; }
297 static void f2fs_destroy_casefold_cache(void) { }
298 #endif
299 
300 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
301 {
302 	block_t limit = min((sbi->user_block_count << 1) / 1000,
303 			sbi->user_block_count - sbi->reserved_blocks);
304 
305 	/* limit is 0.2% */
306 	if (test_opt(sbi, RESERVE_ROOT) &&
307 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
308 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
309 		f2fs_info(sbi, "Reduce reserved blocks for root = %u",
310 			  F2FS_OPTION(sbi).root_reserved_blocks);
311 	}
312 	if (!test_opt(sbi, RESERVE_ROOT) &&
313 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
314 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
315 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
316 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
317 		f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
318 			  from_kuid_munged(&init_user_ns,
319 					   F2FS_OPTION(sbi).s_resuid),
320 			  from_kgid_munged(&init_user_ns,
321 					   F2FS_OPTION(sbi).s_resgid));
322 }
323 
324 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
325 {
326 	if (!F2FS_OPTION(sbi).unusable_cap_perc)
327 		return;
328 
329 	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
330 		F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
331 	else
332 		F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
333 					F2FS_OPTION(sbi).unusable_cap_perc;
334 
335 	f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
336 			F2FS_OPTION(sbi).unusable_cap,
337 			F2FS_OPTION(sbi).unusable_cap_perc);
338 }
339 
340 static void init_once(void *foo)
341 {
342 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
343 
344 	inode_init_once(&fi->vfs_inode);
345 }
346 
347 #ifdef CONFIG_QUOTA
348 static const char * const quotatypes[] = INITQFNAMES;
349 #define QTYPE2NAME(t) (quotatypes[t])
350 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
351 							substring_t *args)
352 {
353 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
354 	char *qname;
355 	int ret = -EINVAL;
356 
357 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
358 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
359 		return -EINVAL;
360 	}
361 	if (f2fs_sb_has_quota_ino(sbi)) {
362 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
363 		return 0;
364 	}
365 
366 	qname = match_strdup(args);
367 	if (!qname) {
368 		f2fs_err(sbi, "Not enough memory for storing quotafile name");
369 		return -ENOMEM;
370 	}
371 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
372 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
373 			ret = 0;
374 		else
375 			f2fs_err(sbi, "%s quota file already specified",
376 				 QTYPE2NAME(qtype));
377 		goto errout;
378 	}
379 	if (strchr(qname, '/')) {
380 		f2fs_err(sbi, "quotafile must be on filesystem root");
381 		goto errout;
382 	}
383 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
384 	set_opt(sbi, QUOTA);
385 	return 0;
386 errout:
387 	kfree(qname);
388 	return ret;
389 }
390 
391 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
392 {
393 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
394 
395 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
396 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
397 		return -EINVAL;
398 	}
399 	kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
400 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
401 	return 0;
402 }
403 
404 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
405 {
406 	/*
407 	 * We do the test below only for project quotas. 'usrquota' and
408 	 * 'grpquota' mount options are allowed even without quota feature
409 	 * to support legacy quotas in quota files.
410 	 */
411 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
412 		f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
413 		return -1;
414 	}
415 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
416 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
417 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
418 		if (test_opt(sbi, USRQUOTA) &&
419 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
420 			clear_opt(sbi, USRQUOTA);
421 
422 		if (test_opt(sbi, GRPQUOTA) &&
423 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
424 			clear_opt(sbi, GRPQUOTA);
425 
426 		if (test_opt(sbi, PRJQUOTA) &&
427 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
428 			clear_opt(sbi, PRJQUOTA);
429 
430 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
431 				test_opt(sbi, PRJQUOTA)) {
432 			f2fs_err(sbi, "old and new quota format mixing");
433 			return -1;
434 		}
435 
436 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
437 			f2fs_err(sbi, "journaled quota format not specified");
438 			return -1;
439 		}
440 	}
441 
442 	if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
443 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
444 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
445 	}
446 	return 0;
447 }
448 #endif
449 
450 static int f2fs_set_test_dummy_encryption(struct super_block *sb,
451 					  const char *opt,
452 					  const substring_t *arg,
453 					  bool is_remount)
454 {
455 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
456 #ifdef CONFIG_FS_ENCRYPTION
457 	int err;
458 
459 	if (!f2fs_sb_has_encrypt(sbi)) {
460 		f2fs_err(sbi, "Encrypt feature is off");
461 		return -EINVAL;
462 	}
463 
464 	/*
465 	 * This mount option is just for testing, and it's not worthwhile to
466 	 * implement the extra complexity (e.g. RCU protection) that would be
467 	 * needed to allow it to be set or changed during remount.  We do allow
468 	 * it to be specified during remount, but only if there is no change.
469 	 */
470 	if (is_remount && !F2FS_OPTION(sbi).dummy_enc_policy.policy) {
471 		f2fs_warn(sbi, "Can't set test_dummy_encryption on remount");
472 		return -EINVAL;
473 	}
474 	err = fscrypt_set_test_dummy_encryption(
475 		sb, arg->from, &F2FS_OPTION(sbi).dummy_enc_policy);
476 	if (err) {
477 		if (err == -EEXIST)
478 			f2fs_warn(sbi,
479 				  "Can't change test_dummy_encryption on remount");
480 		else if (err == -EINVAL)
481 			f2fs_warn(sbi, "Value of option \"%s\" is unrecognized",
482 				  opt);
483 		else
484 			f2fs_warn(sbi, "Error processing option \"%s\" [%d]",
485 				  opt, err);
486 		return -EINVAL;
487 	}
488 	f2fs_warn(sbi, "Test dummy encryption mode enabled");
489 #else
490 	f2fs_warn(sbi, "Test dummy encryption mount option ignored");
491 #endif
492 	return 0;
493 }
494 
495 #ifdef CONFIG_F2FS_FS_COMPRESSION
496 /*
497  * 1. The same extension name cannot not appear in both compress and non-compress extension
498  * at the same time.
499  * 2. If the compress extension specifies all files, the types specified by the non-compress
500  * extension will be treated as special cases and will not be compressed.
501  * 3. Don't allow the non-compress extension specifies all files.
502  */
503 static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi)
504 {
505 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
506 	unsigned char (*noext)[F2FS_EXTENSION_LEN];
507 	int ext_cnt, noext_cnt, index = 0, no_index = 0;
508 
509 	ext = F2FS_OPTION(sbi).extensions;
510 	ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
511 	noext = F2FS_OPTION(sbi).noextensions;
512 	noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
513 
514 	if (!noext_cnt)
515 		return 0;
516 
517 	for (no_index = 0; no_index < noext_cnt; no_index++) {
518 		if (!strcasecmp("*", noext[no_index])) {
519 			f2fs_info(sbi, "Don't allow the nocompress extension specifies all files");
520 			return -EINVAL;
521 		}
522 		for (index = 0; index < ext_cnt; index++) {
523 			if (!strcasecmp(ext[index], noext[no_index])) {
524 				f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension",
525 						ext[index]);
526 				return -EINVAL;
527 			}
528 		}
529 	}
530 	return 0;
531 }
532 
533 #ifdef CONFIG_F2FS_FS_LZ4
534 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str)
535 {
536 #ifdef CONFIG_F2FS_FS_LZ4HC
537 	unsigned int level;
538 #endif
539 
540 	if (strlen(str) == 3) {
541 		F2FS_OPTION(sbi).compress_level = 0;
542 		return 0;
543 	}
544 
545 #ifdef CONFIG_F2FS_FS_LZ4HC
546 	str += 3;
547 
548 	if (str[0] != ':') {
549 		f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
550 		return -EINVAL;
551 	}
552 	if (kstrtouint(str + 1, 10, &level))
553 		return -EINVAL;
554 
555 	if (level < LZ4HC_MIN_CLEVEL || level > LZ4HC_MAX_CLEVEL) {
556 		f2fs_info(sbi, "invalid lz4hc compress level: %d", level);
557 		return -EINVAL;
558 	}
559 
560 	F2FS_OPTION(sbi).compress_level = level;
561 	return 0;
562 #else
563 	f2fs_info(sbi, "kernel doesn't support lz4hc compression");
564 	return -EINVAL;
565 #endif
566 }
567 #endif
568 
569 #ifdef CONFIG_F2FS_FS_ZSTD
570 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str)
571 {
572 	unsigned int level;
573 	int len = 4;
574 
575 	if (strlen(str) == len) {
576 		F2FS_OPTION(sbi).compress_level = 0;
577 		return 0;
578 	}
579 
580 	str += len;
581 
582 	if (str[0] != ':') {
583 		f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
584 		return -EINVAL;
585 	}
586 	if (kstrtouint(str + 1, 10, &level))
587 		return -EINVAL;
588 
589 	if (!level || level > zstd_max_clevel()) {
590 		f2fs_info(sbi, "invalid zstd compress level: %d", level);
591 		return -EINVAL;
592 	}
593 
594 	F2FS_OPTION(sbi).compress_level = level;
595 	return 0;
596 }
597 #endif
598 #endif
599 
600 static int parse_options(struct super_block *sb, char *options, bool is_remount)
601 {
602 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
603 	substring_t args[MAX_OPT_ARGS];
604 #ifdef CONFIG_F2FS_FS_COMPRESSION
605 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
606 	unsigned char (*noext)[F2FS_EXTENSION_LEN];
607 	int ext_cnt, noext_cnt;
608 #endif
609 	char *p, *name;
610 	int arg = 0;
611 	kuid_t uid;
612 	kgid_t gid;
613 	int ret;
614 
615 	if (!options)
616 		goto default_check;
617 
618 	while ((p = strsep(&options, ",")) != NULL) {
619 		int token;
620 
621 		if (!*p)
622 			continue;
623 		/*
624 		 * Initialize args struct so we know whether arg was
625 		 * found; some options take optional arguments.
626 		 */
627 		args[0].to = args[0].from = NULL;
628 		token = match_token(p, f2fs_tokens, args);
629 
630 		switch (token) {
631 		case Opt_gc_background:
632 			name = match_strdup(&args[0]);
633 
634 			if (!name)
635 				return -ENOMEM;
636 			if (!strcmp(name, "on")) {
637 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
638 			} else if (!strcmp(name, "off")) {
639 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF;
640 			} else if (!strcmp(name, "sync")) {
641 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC;
642 			} else {
643 				kfree(name);
644 				return -EINVAL;
645 			}
646 			kfree(name);
647 			break;
648 		case Opt_disable_roll_forward:
649 			set_opt(sbi, DISABLE_ROLL_FORWARD);
650 			break;
651 		case Opt_norecovery:
652 			/* this option mounts f2fs with ro */
653 			set_opt(sbi, NORECOVERY);
654 			if (!f2fs_readonly(sb))
655 				return -EINVAL;
656 			break;
657 		case Opt_discard:
658 			if (!f2fs_hw_support_discard(sbi)) {
659 				f2fs_warn(sbi, "device does not support discard");
660 				break;
661 			}
662 			set_opt(sbi, DISCARD);
663 			break;
664 		case Opt_nodiscard:
665 			if (f2fs_hw_should_discard(sbi)) {
666 				f2fs_warn(sbi, "discard is required for zoned block devices");
667 				return -EINVAL;
668 			}
669 			clear_opt(sbi, DISCARD);
670 			break;
671 		case Opt_noheap:
672 			set_opt(sbi, NOHEAP);
673 			break;
674 		case Opt_heap:
675 			clear_opt(sbi, NOHEAP);
676 			break;
677 #ifdef CONFIG_F2FS_FS_XATTR
678 		case Opt_user_xattr:
679 			set_opt(sbi, XATTR_USER);
680 			break;
681 		case Opt_nouser_xattr:
682 			clear_opt(sbi, XATTR_USER);
683 			break;
684 		case Opt_inline_xattr:
685 			set_opt(sbi, INLINE_XATTR);
686 			break;
687 		case Opt_noinline_xattr:
688 			clear_opt(sbi, INLINE_XATTR);
689 			break;
690 		case Opt_inline_xattr_size:
691 			if (args->from && match_int(args, &arg))
692 				return -EINVAL;
693 			set_opt(sbi, INLINE_XATTR_SIZE);
694 			F2FS_OPTION(sbi).inline_xattr_size = arg;
695 			break;
696 #else
697 		case Opt_user_xattr:
698 			f2fs_info(sbi, "user_xattr options not supported");
699 			break;
700 		case Opt_nouser_xattr:
701 			f2fs_info(sbi, "nouser_xattr options not supported");
702 			break;
703 		case Opt_inline_xattr:
704 			f2fs_info(sbi, "inline_xattr options not supported");
705 			break;
706 		case Opt_noinline_xattr:
707 			f2fs_info(sbi, "noinline_xattr options not supported");
708 			break;
709 #endif
710 #ifdef CONFIG_F2FS_FS_POSIX_ACL
711 		case Opt_acl:
712 			set_opt(sbi, POSIX_ACL);
713 			break;
714 		case Opt_noacl:
715 			clear_opt(sbi, POSIX_ACL);
716 			break;
717 #else
718 		case Opt_acl:
719 			f2fs_info(sbi, "acl options not supported");
720 			break;
721 		case Opt_noacl:
722 			f2fs_info(sbi, "noacl options not supported");
723 			break;
724 #endif
725 		case Opt_active_logs:
726 			if (args->from && match_int(args, &arg))
727 				return -EINVAL;
728 			if (arg != 2 && arg != 4 &&
729 				arg != NR_CURSEG_PERSIST_TYPE)
730 				return -EINVAL;
731 			F2FS_OPTION(sbi).active_logs = arg;
732 			break;
733 		case Opt_disable_ext_identify:
734 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
735 			break;
736 		case Opt_inline_data:
737 			set_opt(sbi, INLINE_DATA);
738 			break;
739 		case Opt_inline_dentry:
740 			set_opt(sbi, INLINE_DENTRY);
741 			break;
742 		case Opt_noinline_dentry:
743 			clear_opt(sbi, INLINE_DENTRY);
744 			break;
745 		case Opt_flush_merge:
746 			set_opt(sbi, FLUSH_MERGE);
747 			break;
748 		case Opt_noflush_merge:
749 			clear_opt(sbi, FLUSH_MERGE);
750 			break;
751 		case Opt_nobarrier:
752 			set_opt(sbi, NOBARRIER);
753 			break;
754 		case Opt_fastboot:
755 			set_opt(sbi, FASTBOOT);
756 			break;
757 		case Opt_extent_cache:
758 			set_opt(sbi, EXTENT_CACHE);
759 			break;
760 		case Opt_noextent_cache:
761 			clear_opt(sbi, EXTENT_CACHE);
762 			break;
763 		case Opt_noinline_data:
764 			clear_opt(sbi, INLINE_DATA);
765 			break;
766 		case Opt_data_flush:
767 			set_opt(sbi, DATA_FLUSH);
768 			break;
769 		case Opt_reserve_root:
770 			if (args->from && match_int(args, &arg))
771 				return -EINVAL;
772 			if (test_opt(sbi, RESERVE_ROOT)) {
773 				f2fs_info(sbi, "Preserve previous reserve_root=%u",
774 					  F2FS_OPTION(sbi).root_reserved_blocks);
775 			} else {
776 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
777 				set_opt(sbi, RESERVE_ROOT);
778 			}
779 			break;
780 		case Opt_resuid:
781 			if (args->from && match_int(args, &arg))
782 				return -EINVAL;
783 			uid = make_kuid(current_user_ns(), arg);
784 			if (!uid_valid(uid)) {
785 				f2fs_err(sbi, "Invalid uid value %d", arg);
786 				return -EINVAL;
787 			}
788 			F2FS_OPTION(sbi).s_resuid = uid;
789 			break;
790 		case Opt_resgid:
791 			if (args->from && match_int(args, &arg))
792 				return -EINVAL;
793 			gid = make_kgid(current_user_ns(), arg);
794 			if (!gid_valid(gid)) {
795 				f2fs_err(sbi, "Invalid gid value %d", arg);
796 				return -EINVAL;
797 			}
798 			F2FS_OPTION(sbi).s_resgid = gid;
799 			break;
800 		case Opt_mode:
801 			name = match_strdup(&args[0]);
802 
803 			if (!name)
804 				return -ENOMEM;
805 			if (!strcmp(name, "adaptive")) {
806 				if (f2fs_sb_has_blkzoned(sbi)) {
807 					f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
808 					kfree(name);
809 					return -EINVAL;
810 				}
811 				F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
812 			} else if (!strcmp(name, "lfs")) {
813 				F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
814 			} else if (!strcmp(name, "fragment:segment")) {
815 				F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_SEG;
816 			} else if (!strcmp(name, "fragment:block")) {
817 				F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_BLK;
818 			} else {
819 				kfree(name);
820 				return -EINVAL;
821 			}
822 			kfree(name);
823 			break;
824 		case Opt_io_size_bits:
825 			if (args->from && match_int(args, &arg))
826 				return -EINVAL;
827 			if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_VECS)) {
828 				f2fs_warn(sbi, "Not support %d, larger than %d",
829 					  1 << arg, BIO_MAX_VECS);
830 				return -EINVAL;
831 			}
832 			F2FS_OPTION(sbi).write_io_size_bits = arg;
833 			break;
834 #ifdef CONFIG_F2FS_FAULT_INJECTION
835 		case Opt_fault_injection:
836 			if (args->from && match_int(args, &arg))
837 				return -EINVAL;
838 			f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
839 			set_opt(sbi, FAULT_INJECTION);
840 			break;
841 
842 		case Opt_fault_type:
843 			if (args->from && match_int(args, &arg))
844 				return -EINVAL;
845 			f2fs_build_fault_attr(sbi, 0, arg);
846 			set_opt(sbi, FAULT_INJECTION);
847 			break;
848 #else
849 		case Opt_fault_injection:
850 			f2fs_info(sbi, "fault_injection options not supported");
851 			break;
852 
853 		case Opt_fault_type:
854 			f2fs_info(sbi, "fault_type options not supported");
855 			break;
856 #endif
857 		case Opt_lazytime:
858 			sb->s_flags |= SB_LAZYTIME;
859 			break;
860 		case Opt_nolazytime:
861 			sb->s_flags &= ~SB_LAZYTIME;
862 			break;
863 #ifdef CONFIG_QUOTA
864 		case Opt_quota:
865 		case Opt_usrquota:
866 			set_opt(sbi, USRQUOTA);
867 			break;
868 		case Opt_grpquota:
869 			set_opt(sbi, GRPQUOTA);
870 			break;
871 		case Opt_prjquota:
872 			set_opt(sbi, PRJQUOTA);
873 			break;
874 		case Opt_usrjquota:
875 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
876 			if (ret)
877 				return ret;
878 			break;
879 		case Opt_grpjquota:
880 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
881 			if (ret)
882 				return ret;
883 			break;
884 		case Opt_prjjquota:
885 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
886 			if (ret)
887 				return ret;
888 			break;
889 		case Opt_offusrjquota:
890 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
891 			if (ret)
892 				return ret;
893 			break;
894 		case Opt_offgrpjquota:
895 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
896 			if (ret)
897 				return ret;
898 			break;
899 		case Opt_offprjjquota:
900 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
901 			if (ret)
902 				return ret;
903 			break;
904 		case Opt_jqfmt_vfsold:
905 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
906 			break;
907 		case Opt_jqfmt_vfsv0:
908 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
909 			break;
910 		case Opt_jqfmt_vfsv1:
911 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
912 			break;
913 		case Opt_noquota:
914 			clear_opt(sbi, QUOTA);
915 			clear_opt(sbi, USRQUOTA);
916 			clear_opt(sbi, GRPQUOTA);
917 			clear_opt(sbi, PRJQUOTA);
918 			break;
919 #else
920 		case Opt_quota:
921 		case Opt_usrquota:
922 		case Opt_grpquota:
923 		case Opt_prjquota:
924 		case Opt_usrjquota:
925 		case Opt_grpjquota:
926 		case Opt_prjjquota:
927 		case Opt_offusrjquota:
928 		case Opt_offgrpjquota:
929 		case Opt_offprjjquota:
930 		case Opt_jqfmt_vfsold:
931 		case Opt_jqfmt_vfsv0:
932 		case Opt_jqfmt_vfsv1:
933 		case Opt_noquota:
934 			f2fs_info(sbi, "quota operations not supported");
935 			break;
936 #endif
937 		case Opt_whint:
938 			name = match_strdup(&args[0]);
939 			if (!name)
940 				return -ENOMEM;
941 			if (!strcmp(name, "user-based")) {
942 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
943 			} else if (!strcmp(name, "off")) {
944 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
945 			} else if (!strcmp(name, "fs-based")) {
946 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
947 			} else {
948 				kfree(name);
949 				return -EINVAL;
950 			}
951 			kfree(name);
952 			break;
953 		case Opt_alloc:
954 			name = match_strdup(&args[0]);
955 			if (!name)
956 				return -ENOMEM;
957 
958 			if (!strcmp(name, "default")) {
959 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
960 			} else if (!strcmp(name, "reuse")) {
961 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
962 			} else {
963 				kfree(name);
964 				return -EINVAL;
965 			}
966 			kfree(name);
967 			break;
968 		case Opt_fsync:
969 			name = match_strdup(&args[0]);
970 			if (!name)
971 				return -ENOMEM;
972 			if (!strcmp(name, "posix")) {
973 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
974 			} else if (!strcmp(name, "strict")) {
975 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
976 			} else if (!strcmp(name, "nobarrier")) {
977 				F2FS_OPTION(sbi).fsync_mode =
978 							FSYNC_MODE_NOBARRIER;
979 			} else {
980 				kfree(name);
981 				return -EINVAL;
982 			}
983 			kfree(name);
984 			break;
985 		case Opt_test_dummy_encryption:
986 			ret = f2fs_set_test_dummy_encryption(sb, p, &args[0],
987 							     is_remount);
988 			if (ret)
989 				return ret;
990 			break;
991 		case Opt_inlinecrypt:
992 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
993 			sb->s_flags |= SB_INLINECRYPT;
994 #else
995 			f2fs_info(sbi, "inline encryption not supported");
996 #endif
997 			break;
998 		case Opt_checkpoint_disable_cap_perc:
999 			if (args->from && match_int(args, &arg))
1000 				return -EINVAL;
1001 			if (arg < 0 || arg > 100)
1002 				return -EINVAL;
1003 			F2FS_OPTION(sbi).unusable_cap_perc = arg;
1004 			set_opt(sbi, DISABLE_CHECKPOINT);
1005 			break;
1006 		case Opt_checkpoint_disable_cap:
1007 			if (args->from && match_int(args, &arg))
1008 				return -EINVAL;
1009 			F2FS_OPTION(sbi).unusable_cap = arg;
1010 			set_opt(sbi, DISABLE_CHECKPOINT);
1011 			break;
1012 		case Opt_checkpoint_disable:
1013 			set_opt(sbi, DISABLE_CHECKPOINT);
1014 			break;
1015 		case Opt_checkpoint_enable:
1016 			clear_opt(sbi, DISABLE_CHECKPOINT);
1017 			break;
1018 		case Opt_checkpoint_merge:
1019 			set_opt(sbi, MERGE_CHECKPOINT);
1020 			break;
1021 		case Opt_nocheckpoint_merge:
1022 			clear_opt(sbi, MERGE_CHECKPOINT);
1023 			break;
1024 #ifdef CONFIG_F2FS_FS_COMPRESSION
1025 		case Opt_compress_algorithm:
1026 			if (!f2fs_sb_has_compression(sbi)) {
1027 				f2fs_info(sbi, "Image doesn't support compression");
1028 				break;
1029 			}
1030 			name = match_strdup(&args[0]);
1031 			if (!name)
1032 				return -ENOMEM;
1033 			if (!strcmp(name, "lzo")) {
1034 #ifdef CONFIG_F2FS_FS_LZO
1035 				F2FS_OPTION(sbi).compress_level = 0;
1036 				F2FS_OPTION(sbi).compress_algorithm =
1037 								COMPRESS_LZO;
1038 #else
1039 				f2fs_info(sbi, "kernel doesn't support lzo compression");
1040 #endif
1041 			} else if (!strncmp(name, "lz4", 3)) {
1042 #ifdef CONFIG_F2FS_FS_LZ4
1043 				ret = f2fs_set_lz4hc_level(sbi, name);
1044 				if (ret) {
1045 					kfree(name);
1046 					return -EINVAL;
1047 				}
1048 				F2FS_OPTION(sbi).compress_algorithm =
1049 								COMPRESS_LZ4;
1050 #else
1051 				f2fs_info(sbi, "kernel doesn't support lz4 compression");
1052 #endif
1053 			} else if (!strncmp(name, "zstd", 4)) {
1054 #ifdef CONFIG_F2FS_FS_ZSTD
1055 				ret = f2fs_set_zstd_level(sbi, name);
1056 				if (ret) {
1057 					kfree(name);
1058 					return -EINVAL;
1059 				}
1060 				F2FS_OPTION(sbi).compress_algorithm =
1061 								COMPRESS_ZSTD;
1062 #else
1063 				f2fs_info(sbi, "kernel doesn't support zstd compression");
1064 #endif
1065 			} else if (!strcmp(name, "lzo-rle")) {
1066 #ifdef CONFIG_F2FS_FS_LZORLE
1067 				F2FS_OPTION(sbi).compress_level = 0;
1068 				F2FS_OPTION(sbi).compress_algorithm =
1069 								COMPRESS_LZORLE;
1070 #else
1071 				f2fs_info(sbi, "kernel doesn't support lzorle compression");
1072 #endif
1073 			} else {
1074 				kfree(name);
1075 				return -EINVAL;
1076 			}
1077 			kfree(name);
1078 			break;
1079 		case Opt_compress_log_size:
1080 			if (!f2fs_sb_has_compression(sbi)) {
1081 				f2fs_info(sbi, "Image doesn't support compression");
1082 				break;
1083 			}
1084 			if (args->from && match_int(args, &arg))
1085 				return -EINVAL;
1086 			if (arg < MIN_COMPRESS_LOG_SIZE ||
1087 				arg > MAX_COMPRESS_LOG_SIZE) {
1088 				f2fs_err(sbi,
1089 					"Compress cluster log size is out of range");
1090 				return -EINVAL;
1091 			}
1092 			F2FS_OPTION(sbi).compress_log_size = arg;
1093 			break;
1094 		case Opt_compress_extension:
1095 			if (!f2fs_sb_has_compression(sbi)) {
1096 				f2fs_info(sbi, "Image doesn't support compression");
1097 				break;
1098 			}
1099 			name = match_strdup(&args[0]);
1100 			if (!name)
1101 				return -ENOMEM;
1102 
1103 			ext = F2FS_OPTION(sbi).extensions;
1104 			ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
1105 
1106 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
1107 				ext_cnt >= COMPRESS_EXT_NUM) {
1108 				f2fs_err(sbi,
1109 					"invalid extension length/number");
1110 				kfree(name);
1111 				return -EINVAL;
1112 			}
1113 
1114 			strcpy(ext[ext_cnt], name);
1115 			F2FS_OPTION(sbi).compress_ext_cnt++;
1116 			kfree(name);
1117 			break;
1118 		case Opt_nocompress_extension:
1119 			if (!f2fs_sb_has_compression(sbi)) {
1120 				f2fs_info(sbi, "Image doesn't support compression");
1121 				break;
1122 			}
1123 			name = match_strdup(&args[0]);
1124 			if (!name)
1125 				return -ENOMEM;
1126 
1127 			noext = F2FS_OPTION(sbi).noextensions;
1128 			noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
1129 
1130 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
1131 				noext_cnt >= COMPRESS_EXT_NUM) {
1132 				f2fs_err(sbi,
1133 					"invalid extension length/number");
1134 				kfree(name);
1135 				return -EINVAL;
1136 			}
1137 
1138 			strcpy(noext[noext_cnt], name);
1139 			F2FS_OPTION(sbi).nocompress_ext_cnt++;
1140 			kfree(name);
1141 			break;
1142 		case Opt_compress_chksum:
1143 			F2FS_OPTION(sbi).compress_chksum = true;
1144 			break;
1145 		case Opt_compress_mode:
1146 			name = match_strdup(&args[0]);
1147 			if (!name)
1148 				return -ENOMEM;
1149 			if (!strcmp(name, "fs")) {
1150 				F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
1151 			} else if (!strcmp(name, "user")) {
1152 				F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER;
1153 			} else {
1154 				kfree(name);
1155 				return -EINVAL;
1156 			}
1157 			kfree(name);
1158 			break;
1159 		case Opt_compress_cache:
1160 			set_opt(sbi, COMPRESS_CACHE);
1161 			break;
1162 #else
1163 		case Opt_compress_algorithm:
1164 		case Opt_compress_log_size:
1165 		case Opt_compress_extension:
1166 		case Opt_nocompress_extension:
1167 		case Opt_compress_chksum:
1168 		case Opt_compress_mode:
1169 		case Opt_compress_cache:
1170 			f2fs_info(sbi, "compression options not supported");
1171 			break;
1172 #endif
1173 		case Opt_atgc:
1174 			set_opt(sbi, ATGC);
1175 			break;
1176 		case Opt_gc_merge:
1177 			set_opt(sbi, GC_MERGE);
1178 			break;
1179 		case Opt_nogc_merge:
1180 			clear_opt(sbi, GC_MERGE);
1181 			break;
1182 		case Opt_discard_unit:
1183 			name = match_strdup(&args[0]);
1184 			if (!name)
1185 				return -ENOMEM;
1186 			if (!strcmp(name, "block")) {
1187 				F2FS_OPTION(sbi).discard_unit =
1188 						DISCARD_UNIT_BLOCK;
1189 			} else if (!strcmp(name, "segment")) {
1190 				F2FS_OPTION(sbi).discard_unit =
1191 						DISCARD_UNIT_SEGMENT;
1192 			} else if (!strcmp(name, "section")) {
1193 				F2FS_OPTION(sbi).discard_unit =
1194 						DISCARD_UNIT_SECTION;
1195 			} else {
1196 				kfree(name);
1197 				return -EINVAL;
1198 			}
1199 			kfree(name);
1200 			break;
1201 		default:
1202 			f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
1203 				 p);
1204 			return -EINVAL;
1205 		}
1206 	}
1207 default_check:
1208 #ifdef CONFIG_QUOTA
1209 	if (f2fs_check_quota_options(sbi))
1210 		return -EINVAL;
1211 #else
1212 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
1213 		f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1214 		return -EINVAL;
1215 	}
1216 	if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
1217 		f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1218 		return -EINVAL;
1219 	}
1220 #endif
1221 #ifndef CONFIG_UNICODE
1222 	if (f2fs_sb_has_casefold(sbi)) {
1223 		f2fs_err(sbi,
1224 			"Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
1225 		return -EINVAL;
1226 	}
1227 #endif
1228 	/*
1229 	 * The BLKZONED feature indicates that the drive was formatted with
1230 	 * zone alignment optimization. This is optional for host-aware
1231 	 * devices, but mandatory for host-managed zoned block devices.
1232 	 */
1233 #ifndef CONFIG_BLK_DEV_ZONED
1234 	if (f2fs_sb_has_blkzoned(sbi)) {
1235 		f2fs_err(sbi, "Zoned block device support is not enabled");
1236 		return -EINVAL;
1237 	}
1238 #endif
1239 	if (f2fs_sb_has_blkzoned(sbi)) {
1240 		if (F2FS_OPTION(sbi).discard_unit !=
1241 						DISCARD_UNIT_SECTION) {
1242 			f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default");
1243 			F2FS_OPTION(sbi).discard_unit =
1244 					DISCARD_UNIT_SECTION;
1245 		}
1246 	}
1247 
1248 #ifdef CONFIG_F2FS_FS_COMPRESSION
1249 	if (f2fs_test_compress_extension(sbi)) {
1250 		f2fs_err(sbi, "invalid compress or nocompress extension");
1251 		return -EINVAL;
1252 	}
1253 #endif
1254 
1255 	if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) {
1256 		f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
1257 			 F2FS_IO_SIZE_KB(sbi));
1258 		return -EINVAL;
1259 	}
1260 
1261 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
1262 		int min_size, max_size;
1263 
1264 		if (!f2fs_sb_has_extra_attr(sbi) ||
1265 			!f2fs_sb_has_flexible_inline_xattr(sbi)) {
1266 			f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
1267 			return -EINVAL;
1268 		}
1269 		if (!test_opt(sbi, INLINE_XATTR)) {
1270 			f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
1271 			return -EINVAL;
1272 		}
1273 
1274 		min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
1275 		max_size = MAX_INLINE_XATTR_SIZE;
1276 
1277 		if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
1278 				F2FS_OPTION(sbi).inline_xattr_size > max_size) {
1279 			f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
1280 				 min_size, max_size);
1281 			return -EINVAL;
1282 		}
1283 	}
1284 
1285 	if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) {
1286 		f2fs_err(sbi, "LFS not compatible with checkpoint=disable");
1287 		return -EINVAL;
1288 	}
1289 
1290 	/* Not pass down write hints if the number of active logs is lesser
1291 	 * than NR_CURSEG_PERSIST_TYPE.
1292 	 */
1293 	if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_PERSIST_TYPE)
1294 		F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1295 
1296 	if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) {
1297 		f2fs_err(sbi, "Allow to mount readonly mode only");
1298 		return -EROFS;
1299 	}
1300 	return 0;
1301 }
1302 
1303 static struct inode *f2fs_alloc_inode(struct super_block *sb)
1304 {
1305 	struct f2fs_inode_info *fi;
1306 
1307 	fi = f2fs_kmem_cache_alloc(f2fs_inode_cachep,
1308 				GFP_F2FS_ZERO, false, F2FS_SB(sb));
1309 	if (!fi)
1310 		return NULL;
1311 
1312 	init_once((void *) fi);
1313 
1314 	/* Initialize f2fs-specific inode info */
1315 	atomic_set(&fi->dirty_pages, 0);
1316 	atomic_set(&fi->i_compr_blocks, 0);
1317 	init_rwsem(&fi->i_sem);
1318 	spin_lock_init(&fi->i_size_lock);
1319 	INIT_LIST_HEAD(&fi->dirty_list);
1320 	INIT_LIST_HEAD(&fi->gdirty_list);
1321 	INIT_LIST_HEAD(&fi->inmem_ilist);
1322 	INIT_LIST_HEAD(&fi->inmem_pages);
1323 	mutex_init(&fi->inmem_lock);
1324 	init_rwsem(&fi->i_gc_rwsem[READ]);
1325 	init_rwsem(&fi->i_gc_rwsem[WRITE]);
1326 	init_rwsem(&fi->i_xattr_sem);
1327 
1328 	/* Will be used by directory only */
1329 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
1330 
1331 	return &fi->vfs_inode;
1332 }
1333 
1334 static int f2fs_drop_inode(struct inode *inode)
1335 {
1336 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1337 	int ret;
1338 
1339 	/*
1340 	 * during filesystem shutdown, if checkpoint is disabled,
1341 	 * drop useless meta/node dirty pages.
1342 	 */
1343 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1344 		if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1345 			inode->i_ino == F2FS_META_INO(sbi)) {
1346 			trace_f2fs_drop_inode(inode, 1);
1347 			return 1;
1348 		}
1349 	}
1350 
1351 	/*
1352 	 * This is to avoid a deadlock condition like below.
1353 	 * writeback_single_inode(inode)
1354 	 *  - f2fs_write_data_page
1355 	 *    - f2fs_gc -> iput -> evict
1356 	 *       - inode_wait_for_writeback(inode)
1357 	 */
1358 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1359 		if (!inode->i_nlink && !is_bad_inode(inode)) {
1360 			/* to avoid evict_inode call simultaneously */
1361 			atomic_inc(&inode->i_count);
1362 			spin_unlock(&inode->i_lock);
1363 
1364 			/* some remained atomic pages should discarded */
1365 			if (f2fs_is_atomic_file(inode))
1366 				f2fs_drop_inmem_pages(inode);
1367 
1368 			/* should remain fi->extent_tree for writepage */
1369 			f2fs_destroy_extent_node(inode);
1370 
1371 			sb_start_intwrite(inode->i_sb);
1372 			f2fs_i_size_write(inode, 0);
1373 
1374 			f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1375 					inode, NULL, 0, DATA);
1376 			truncate_inode_pages_final(inode->i_mapping);
1377 
1378 			if (F2FS_HAS_BLOCKS(inode))
1379 				f2fs_truncate(inode);
1380 
1381 			sb_end_intwrite(inode->i_sb);
1382 
1383 			spin_lock(&inode->i_lock);
1384 			atomic_dec(&inode->i_count);
1385 		}
1386 		trace_f2fs_drop_inode(inode, 0);
1387 		return 0;
1388 	}
1389 	ret = generic_drop_inode(inode);
1390 	if (!ret)
1391 		ret = fscrypt_drop_inode(inode);
1392 	trace_f2fs_drop_inode(inode, ret);
1393 	return ret;
1394 }
1395 
1396 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1397 {
1398 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1399 	int ret = 0;
1400 
1401 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1402 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1403 		ret = 1;
1404 	} else {
1405 		set_inode_flag(inode, FI_DIRTY_INODE);
1406 		stat_inc_dirty_inode(sbi, DIRTY_META);
1407 	}
1408 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1409 		list_add_tail(&F2FS_I(inode)->gdirty_list,
1410 				&sbi->inode_list[DIRTY_META]);
1411 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
1412 	}
1413 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1414 	return ret;
1415 }
1416 
1417 void f2fs_inode_synced(struct inode *inode)
1418 {
1419 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1420 
1421 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1422 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1423 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1424 		return;
1425 	}
1426 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1427 		list_del_init(&F2FS_I(inode)->gdirty_list);
1428 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
1429 	}
1430 	clear_inode_flag(inode, FI_DIRTY_INODE);
1431 	clear_inode_flag(inode, FI_AUTO_RECOVER);
1432 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1433 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1434 }
1435 
1436 /*
1437  * f2fs_dirty_inode() is called from __mark_inode_dirty()
1438  *
1439  * We should call set_dirty_inode to write the dirty inode through write_inode.
1440  */
1441 static void f2fs_dirty_inode(struct inode *inode, int flags)
1442 {
1443 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1444 
1445 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1446 			inode->i_ino == F2FS_META_INO(sbi))
1447 		return;
1448 
1449 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1450 		clear_inode_flag(inode, FI_AUTO_RECOVER);
1451 
1452 	f2fs_inode_dirtied(inode, false);
1453 }
1454 
1455 static void f2fs_free_inode(struct inode *inode)
1456 {
1457 	fscrypt_free_inode(inode);
1458 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1459 }
1460 
1461 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1462 {
1463 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
1464 	percpu_counter_destroy(&sbi->total_valid_inode_count);
1465 }
1466 
1467 static void destroy_device_list(struct f2fs_sb_info *sbi)
1468 {
1469 	int i;
1470 
1471 	for (i = 0; i < sbi->s_ndevs; i++) {
1472 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1473 #ifdef CONFIG_BLK_DEV_ZONED
1474 		kvfree(FDEV(i).blkz_seq);
1475 		kfree(FDEV(i).zone_capacity_blocks);
1476 #endif
1477 	}
1478 	kvfree(sbi->devs);
1479 }
1480 
1481 static void f2fs_put_super(struct super_block *sb)
1482 {
1483 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1484 	int i;
1485 	bool dropped;
1486 
1487 	/* unregister procfs/sysfs entries in advance to avoid race case */
1488 	f2fs_unregister_sysfs(sbi);
1489 
1490 	f2fs_quota_off_umount(sb);
1491 
1492 	/* prevent remaining shrinker jobs */
1493 	mutex_lock(&sbi->umount_mutex);
1494 
1495 	/*
1496 	 * flush all issued checkpoints and stop checkpoint issue thread.
1497 	 * after then, all checkpoints should be done by each process context.
1498 	 */
1499 	f2fs_stop_ckpt_thread(sbi);
1500 
1501 	/*
1502 	 * We don't need to do checkpoint when superblock is clean.
1503 	 * But, the previous checkpoint was not done by umount, it needs to do
1504 	 * clean checkpoint again.
1505 	 */
1506 	if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1507 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1508 		struct cp_control cpc = {
1509 			.reason = CP_UMOUNT,
1510 		};
1511 		f2fs_write_checkpoint(sbi, &cpc);
1512 	}
1513 
1514 	/* be sure to wait for any on-going discard commands */
1515 	dropped = f2fs_issue_discard_timeout(sbi);
1516 
1517 	if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1518 					!sbi->discard_blks && !dropped) {
1519 		struct cp_control cpc = {
1520 			.reason = CP_UMOUNT | CP_TRIMMED,
1521 		};
1522 		f2fs_write_checkpoint(sbi, &cpc);
1523 	}
1524 
1525 	/*
1526 	 * normally superblock is clean, so we need to release this.
1527 	 * In addition, EIO will skip do checkpoint, we need this as well.
1528 	 */
1529 	f2fs_release_ino_entry(sbi, true);
1530 
1531 	f2fs_leave_shrinker(sbi);
1532 	mutex_unlock(&sbi->umount_mutex);
1533 
1534 	/* our cp_error case, we can wait for any writeback page */
1535 	f2fs_flush_merged_writes(sbi);
1536 
1537 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1538 
1539 	f2fs_bug_on(sbi, sbi->fsync_node_num);
1540 
1541 	f2fs_destroy_compress_inode(sbi);
1542 
1543 	iput(sbi->node_inode);
1544 	sbi->node_inode = NULL;
1545 
1546 	iput(sbi->meta_inode);
1547 	sbi->meta_inode = NULL;
1548 
1549 	/*
1550 	 * iput() can update stat information, if f2fs_write_checkpoint()
1551 	 * above failed with error.
1552 	 */
1553 	f2fs_destroy_stats(sbi);
1554 
1555 	/* destroy f2fs internal modules */
1556 	f2fs_destroy_node_manager(sbi);
1557 	f2fs_destroy_segment_manager(sbi);
1558 
1559 	f2fs_destroy_post_read_wq(sbi);
1560 
1561 	kvfree(sbi->ckpt);
1562 
1563 	sb->s_fs_info = NULL;
1564 	if (sbi->s_chksum_driver)
1565 		crypto_free_shash(sbi->s_chksum_driver);
1566 	kfree(sbi->raw_super);
1567 
1568 	destroy_device_list(sbi);
1569 	f2fs_destroy_page_array_cache(sbi);
1570 	f2fs_destroy_xattr_caches(sbi);
1571 	mempool_destroy(sbi->write_io_dummy);
1572 #ifdef CONFIG_QUOTA
1573 	for (i = 0; i < MAXQUOTAS; i++)
1574 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1575 #endif
1576 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
1577 	destroy_percpu_info(sbi);
1578 	f2fs_destroy_iostat(sbi);
1579 	for (i = 0; i < NR_PAGE_TYPE; i++)
1580 		kvfree(sbi->write_io[i]);
1581 #ifdef CONFIG_UNICODE
1582 	utf8_unload(sb->s_encoding);
1583 #endif
1584 	kfree(sbi);
1585 }
1586 
1587 int f2fs_sync_fs(struct super_block *sb, int sync)
1588 {
1589 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1590 	int err = 0;
1591 
1592 	if (unlikely(f2fs_cp_error(sbi)))
1593 		return 0;
1594 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1595 		return 0;
1596 
1597 	trace_f2fs_sync_fs(sb, sync);
1598 
1599 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1600 		return -EAGAIN;
1601 
1602 	if (sync)
1603 		err = f2fs_issue_checkpoint(sbi);
1604 
1605 	return err;
1606 }
1607 
1608 static int f2fs_freeze(struct super_block *sb)
1609 {
1610 	if (f2fs_readonly(sb))
1611 		return 0;
1612 
1613 	/* IO error happened before */
1614 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1615 		return -EIO;
1616 
1617 	/* must be clean, since sync_filesystem() was already called */
1618 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1619 		return -EINVAL;
1620 
1621 	/* ensure no checkpoint required */
1622 	if (!llist_empty(&F2FS_SB(sb)->cprc_info.issue_list))
1623 		return -EINVAL;
1624 	return 0;
1625 }
1626 
1627 static int f2fs_unfreeze(struct super_block *sb)
1628 {
1629 	return 0;
1630 }
1631 
1632 #ifdef CONFIG_QUOTA
1633 static int f2fs_statfs_project(struct super_block *sb,
1634 				kprojid_t projid, struct kstatfs *buf)
1635 {
1636 	struct kqid qid;
1637 	struct dquot *dquot;
1638 	u64 limit;
1639 	u64 curblock;
1640 
1641 	qid = make_kqid_projid(projid);
1642 	dquot = dqget(sb, qid);
1643 	if (IS_ERR(dquot))
1644 		return PTR_ERR(dquot);
1645 	spin_lock(&dquot->dq_dqb_lock);
1646 
1647 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1648 					dquot->dq_dqb.dqb_bhardlimit);
1649 	if (limit)
1650 		limit >>= sb->s_blocksize_bits;
1651 
1652 	if (limit && buf->f_blocks > limit) {
1653 		curblock = (dquot->dq_dqb.dqb_curspace +
1654 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1655 		buf->f_blocks = limit;
1656 		buf->f_bfree = buf->f_bavail =
1657 			(buf->f_blocks > curblock) ?
1658 			 (buf->f_blocks - curblock) : 0;
1659 	}
1660 
1661 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1662 					dquot->dq_dqb.dqb_ihardlimit);
1663 
1664 	if (limit && buf->f_files > limit) {
1665 		buf->f_files = limit;
1666 		buf->f_ffree =
1667 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1668 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1669 	}
1670 
1671 	spin_unlock(&dquot->dq_dqb_lock);
1672 	dqput(dquot);
1673 	return 0;
1674 }
1675 #endif
1676 
1677 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1678 {
1679 	struct super_block *sb = dentry->d_sb;
1680 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1681 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1682 	block_t total_count, user_block_count, start_count;
1683 	u64 avail_node_count;
1684 
1685 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1686 	user_block_count = sbi->user_block_count;
1687 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1688 	buf->f_type = F2FS_SUPER_MAGIC;
1689 	buf->f_bsize = sbi->blocksize;
1690 
1691 	buf->f_blocks = total_count - start_count;
1692 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1693 						sbi->current_reserved_blocks;
1694 
1695 	spin_lock(&sbi->stat_lock);
1696 	if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1697 		buf->f_bfree = 0;
1698 	else
1699 		buf->f_bfree -= sbi->unusable_block_count;
1700 	spin_unlock(&sbi->stat_lock);
1701 
1702 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1703 		buf->f_bavail = buf->f_bfree -
1704 				F2FS_OPTION(sbi).root_reserved_blocks;
1705 	else
1706 		buf->f_bavail = 0;
1707 
1708 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1709 
1710 	if (avail_node_count > user_block_count) {
1711 		buf->f_files = user_block_count;
1712 		buf->f_ffree = buf->f_bavail;
1713 	} else {
1714 		buf->f_files = avail_node_count;
1715 		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1716 					buf->f_bavail);
1717 	}
1718 
1719 	buf->f_namelen = F2FS_NAME_LEN;
1720 	buf->f_fsid    = u64_to_fsid(id);
1721 
1722 #ifdef CONFIG_QUOTA
1723 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1724 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1725 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1726 	}
1727 #endif
1728 	return 0;
1729 }
1730 
1731 static inline void f2fs_show_quota_options(struct seq_file *seq,
1732 					   struct super_block *sb)
1733 {
1734 #ifdef CONFIG_QUOTA
1735 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1736 
1737 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1738 		char *fmtname = "";
1739 
1740 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1741 		case QFMT_VFS_OLD:
1742 			fmtname = "vfsold";
1743 			break;
1744 		case QFMT_VFS_V0:
1745 			fmtname = "vfsv0";
1746 			break;
1747 		case QFMT_VFS_V1:
1748 			fmtname = "vfsv1";
1749 			break;
1750 		}
1751 		seq_printf(seq, ",jqfmt=%s", fmtname);
1752 	}
1753 
1754 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1755 		seq_show_option(seq, "usrjquota",
1756 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1757 
1758 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1759 		seq_show_option(seq, "grpjquota",
1760 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1761 
1762 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1763 		seq_show_option(seq, "prjjquota",
1764 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1765 #endif
1766 }
1767 
1768 #ifdef CONFIG_F2FS_FS_COMPRESSION
1769 static inline void f2fs_show_compress_options(struct seq_file *seq,
1770 							struct super_block *sb)
1771 {
1772 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1773 	char *algtype = "";
1774 	int i;
1775 
1776 	if (!f2fs_sb_has_compression(sbi))
1777 		return;
1778 
1779 	switch (F2FS_OPTION(sbi).compress_algorithm) {
1780 	case COMPRESS_LZO:
1781 		algtype = "lzo";
1782 		break;
1783 	case COMPRESS_LZ4:
1784 		algtype = "lz4";
1785 		break;
1786 	case COMPRESS_ZSTD:
1787 		algtype = "zstd";
1788 		break;
1789 	case COMPRESS_LZORLE:
1790 		algtype = "lzo-rle";
1791 		break;
1792 	}
1793 	seq_printf(seq, ",compress_algorithm=%s", algtype);
1794 
1795 	if (F2FS_OPTION(sbi).compress_level)
1796 		seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level);
1797 
1798 	seq_printf(seq, ",compress_log_size=%u",
1799 			F2FS_OPTION(sbi).compress_log_size);
1800 
1801 	for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1802 		seq_printf(seq, ",compress_extension=%s",
1803 			F2FS_OPTION(sbi).extensions[i]);
1804 	}
1805 
1806 	for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) {
1807 		seq_printf(seq, ",nocompress_extension=%s",
1808 			F2FS_OPTION(sbi).noextensions[i]);
1809 	}
1810 
1811 	if (F2FS_OPTION(sbi).compress_chksum)
1812 		seq_puts(seq, ",compress_chksum");
1813 
1814 	if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS)
1815 		seq_printf(seq, ",compress_mode=%s", "fs");
1816 	else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER)
1817 		seq_printf(seq, ",compress_mode=%s", "user");
1818 
1819 	if (test_opt(sbi, COMPRESS_CACHE))
1820 		seq_puts(seq, ",compress_cache");
1821 }
1822 #endif
1823 
1824 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1825 {
1826 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1827 
1828 	if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
1829 		seq_printf(seq, ",background_gc=%s", "sync");
1830 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
1831 		seq_printf(seq, ",background_gc=%s", "on");
1832 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
1833 		seq_printf(seq, ",background_gc=%s", "off");
1834 
1835 	if (test_opt(sbi, GC_MERGE))
1836 		seq_puts(seq, ",gc_merge");
1837 
1838 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1839 		seq_puts(seq, ",disable_roll_forward");
1840 	if (test_opt(sbi, NORECOVERY))
1841 		seq_puts(seq, ",norecovery");
1842 	if (test_opt(sbi, DISCARD))
1843 		seq_puts(seq, ",discard");
1844 	else
1845 		seq_puts(seq, ",nodiscard");
1846 	if (test_opt(sbi, NOHEAP))
1847 		seq_puts(seq, ",no_heap");
1848 	else
1849 		seq_puts(seq, ",heap");
1850 #ifdef CONFIG_F2FS_FS_XATTR
1851 	if (test_opt(sbi, XATTR_USER))
1852 		seq_puts(seq, ",user_xattr");
1853 	else
1854 		seq_puts(seq, ",nouser_xattr");
1855 	if (test_opt(sbi, INLINE_XATTR))
1856 		seq_puts(seq, ",inline_xattr");
1857 	else
1858 		seq_puts(seq, ",noinline_xattr");
1859 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1860 		seq_printf(seq, ",inline_xattr_size=%u",
1861 					F2FS_OPTION(sbi).inline_xattr_size);
1862 #endif
1863 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1864 	if (test_opt(sbi, POSIX_ACL))
1865 		seq_puts(seq, ",acl");
1866 	else
1867 		seq_puts(seq, ",noacl");
1868 #endif
1869 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1870 		seq_puts(seq, ",disable_ext_identify");
1871 	if (test_opt(sbi, INLINE_DATA))
1872 		seq_puts(seq, ",inline_data");
1873 	else
1874 		seq_puts(seq, ",noinline_data");
1875 	if (test_opt(sbi, INLINE_DENTRY))
1876 		seq_puts(seq, ",inline_dentry");
1877 	else
1878 		seq_puts(seq, ",noinline_dentry");
1879 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1880 		seq_puts(seq, ",flush_merge");
1881 	if (test_opt(sbi, NOBARRIER))
1882 		seq_puts(seq, ",nobarrier");
1883 	if (test_opt(sbi, FASTBOOT))
1884 		seq_puts(seq, ",fastboot");
1885 	if (test_opt(sbi, EXTENT_CACHE))
1886 		seq_puts(seq, ",extent_cache");
1887 	else
1888 		seq_puts(seq, ",noextent_cache");
1889 	if (test_opt(sbi, DATA_FLUSH))
1890 		seq_puts(seq, ",data_flush");
1891 
1892 	seq_puts(seq, ",mode=");
1893 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
1894 		seq_puts(seq, "adaptive");
1895 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
1896 		seq_puts(seq, "lfs");
1897 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG)
1898 		seq_puts(seq, "fragment:segment");
1899 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
1900 		seq_puts(seq, "fragment:block");
1901 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1902 	if (test_opt(sbi, RESERVE_ROOT))
1903 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1904 				F2FS_OPTION(sbi).root_reserved_blocks,
1905 				from_kuid_munged(&init_user_ns,
1906 					F2FS_OPTION(sbi).s_resuid),
1907 				from_kgid_munged(&init_user_ns,
1908 					F2FS_OPTION(sbi).s_resgid));
1909 	if (F2FS_IO_SIZE_BITS(sbi))
1910 		seq_printf(seq, ",io_bits=%u",
1911 				F2FS_OPTION(sbi).write_io_size_bits);
1912 #ifdef CONFIG_F2FS_FAULT_INJECTION
1913 	if (test_opt(sbi, FAULT_INJECTION)) {
1914 		seq_printf(seq, ",fault_injection=%u",
1915 				F2FS_OPTION(sbi).fault_info.inject_rate);
1916 		seq_printf(seq, ",fault_type=%u",
1917 				F2FS_OPTION(sbi).fault_info.inject_type);
1918 	}
1919 #endif
1920 #ifdef CONFIG_QUOTA
1921 	if (test_opt(sbi, QUOTA))
1922 		seq_puts(seq, ",quota");
1923 	if (test_opt(sbi, USRQUOTA))
1924 		seq_puts(seq, ",usrquota");
1925 	if (test_opt(sbi, GRPQUOTA))
1926 		seq_puts(seq, ",grpquota");
1927 	if (test_opt(sbi, PRJQUOTA))
1928 		seq_puts(seq, ",prjquota");
1929 #endif
1930 	f2fs_show_quota_options(seq, sbi->sb);
1931 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1932 		seq_printf(seq, ",whint_mode=%s", "user-based");
1933 	else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1934 		seq_printf(seq, ",whint_mode=%s", "fs-based");
1935 
1936 	fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
1937 
1938 	if (sbi->sb->s_flags & SB_INLINECRYPT)
1939 		seq_puts(seq, ",inlinecrypt");
1940 
1941 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1942 		seq_printf(seq, ",alloc_mode=%s", "default");
1943 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1944 		seq_printf(seq, ",alloc_mode=%s", "reuse");
1945 
1946 	if (test_opt(sbi, DISABLE_CHECKPOINT))
1947 		seq_printf(seq, ",checkpoint=disable:%u",
1948 				F2FS_OPTION(sbi).unusable_cap);
1949 	if (test_opt(sbi, MERGE_CHECKPOINT))
1950 		seq_puts(seq, ",checkpoint_merge");
1951 	else
1952 		seq_puts(seq, ",nocheckpoint_merge");
1953 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1954 		seq_printf(seq, ",fsync_mode=%s", "posix");
1955 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1956 		seq_printf(seq, ",fsync_mode=%s", "strict");
1957 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1958 		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1959 
1960 #ifdef CONFIG_F2FS_FS_COMPRESSION
1961 	f2fs_show_compress_options(seq, sbi->sb);
1962 #endif
1963 
1964 	if (test_opt(sbi, ATGC))
1965 		seq_puts(seq, ",atgc");
1966 
1967 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK)
1968 		seq_printf(seq, ",discard_unit=%s", "block");
1969 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
1970 		seq_printf(seq, ",discard_unit=%s", "segment");
1971 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
1972 		seq_printf(seq, ",discard_unit=%s", "section");
1973 
1974 	return 0;
1975 }
1976 
1977 static void default_options(struct f2fs_sb_info *sbi)
1978 {
1979 	/* init some FS parameters */
1980 	if (f2fs_sb_has_readonly(sbi))
1981 		F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE;
1982 	else
1983 		F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE;
1984 
1985 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1986 	F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1987 	F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1988 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1989 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1990 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1991 	F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
1992 	F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
1993 	F2FS_OPTION(sbi).compress_ext_cnt = 0;
1994 	F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
1995 	F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
1996 
1997 	sbi->sb->s_flags &= ~SB_INLINECRYPT;
1998 
1999 	set_opt(sbi, INLINE_XATTR);
2000 	set_opt(sbi, INLINE_DATA);
2001 	set_opt(sbi, INLINE_DENTRY);
2002 	set_opt(sbi, EXTENT_CACHE);
2003 	set_opt(sbi, NOHEAP);
2004 	clear_opt(sbi, DISABLE_CHECKPOINT);
2005 	set_opt(sbi, MERGE_CHECKPOINT);
2006 	F2FS_OPTION(sbi).unusable_cap = 0;
2007 	sbi->sb->s_flags |= SB_LAZYTIME;
2008 	set_opt(sbi, FLUSH_MERGE);
2009 	if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi))
2010 		set_opt(sbi, DISCARD);
2011 	if (f2fs_sb_has_blkzoned(sbi)) {
2012 		F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
2013 		F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION;
2014 	} else {
2015 		F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
2016 		F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK;
2017 	}
2018 
2019 #ifdef CONFIG_F2FS_FS_XATTR
2020 	set_opt(sbi, XATTR_USER);
2021 #endif
2022 #ifdef CONFIG_F2FS_FS_POSIX_ACL
2023 	set_opt(sbi, POSIX_ACL);
2024 #endif
2025 
2026 	f2fs_build_fault_attr(sbi, 0, 0);
2027 }
2028 
2029 #ifdef CONFIG_QUOTA
2030 static int f2fs_enable_quotas(struct super_block *sb);
2031 #endif
2032 
2033 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
2034 {
2035 	unsigned int s_flags = sbi->sb->s_flags;
2036 	struct cp_control cpc;
2037 	int err = 0;
2038 	int ret;
2039 	block_t unusable;
2040 
2041 	if (s_flags & SB_RDONLY) {
2042 		f2fs_err(sbi, "checkpoint=disable on readonly fs");
2043 		return -EINVAL;
2044 	}
2045 	sbi->sb->s_flags |= SB_ACTIVE;
2046 
2047 	f2fs_update_time(sbi, DISABLE_TIME);
2048 
2049 	while (!f2fs_time_over(sbi, DISABLE_TIME)) {
2050 		down_write(&sbi->gc_lock);
2051 		err = f2fs_gc(sbi, true, false, false, NULL_SEGNO);
2052 		if (err == -ENODATA) {
2053 			err = 0;
2054 			break;
2055 		}
2056 		if (err && err != -EAGAIN)
2057 			break;
2058 	}
2059 
2060 	ret = sync_filesystem(sbi->sb);
2061 	if (ret || err) {
2062 		err = ret ? ret : err;
2063 		goto restore_flag;
2064 	}
2065 
2066 	unusable = f2fs_get_unusable_blocks(sbi);
2067 	if (f2fs_disable_cp_again(sbi, unusable)) {
2068 		err = -EAGAIN;
2069 		goto restore_flag;
2070 	}
2071 
2072 	down_write(&sbi->gc_lock);
2073 	cpc.reason = CP_PAUSE;
2074 	set_sbi_flag(sbi, SBI_CP_DISABLED);
2075 	err = f2fs_write_checkpoint(sbi, &cpc);
2076 	if (err)
2077 		goto out_unlock;
2078 
2079 	spin_lock(&sbi->stat_lock);
2080 	sbi->unusable_block_count = unusable;
2081 	spin_unlock(&sbi->stat_lock);
2082 
2083 out_unlock:
2084 	up_write(&sbi->gc_lock);
2085 restore_flag:
2086 	sbi->sb->s_flags = s_flags;	/* Restore SB_RDONLY status */
2087 	return err;
2088 }
2089 
2090 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
2091 {
2092 	int retry = DEFAULT_RETRY_IO_COUNT;
2093 
2094 	/* we should flush all the data to keep data consistency */
2095 	do {
2096 		sync_inodes_sb(sbi->sb);
2097 		cond_resched();
2098 		congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2099 	} while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--);
2100 
2101 	if (unlikely(retry < 0))
2102 		f2fs_warn(sbi, "checkpoint=enable has some unwritten data.");
2103 
2104 	down_write(&sbi->gc_lock);
2105 	f2fs_dirty_to_prefree(sbi);
2106 
2107 	clear_sbi_flag(sbi, SBI_CP_DISABLED);
2108 	set_sbi_flag(sbi, SBI_IS_DIRTY);
2109 	up_write(&sbi->gc_lock);
2110 
2111 	f2fs_sync_fs(sbi->sb, 1);
2112 }
2113 
2114 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
2115 {
2116 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2117 	struct f2fs_mount_info org_mount_opt;
2118 	unsigned long old_sb_flags;
2119 	int err;
2120 	bool need_restart_gc = false, need_stop_gc = false;
2121 	bool need_restart_ckpt = false, need_stop_ckpt = false;
2122 	bool need_restart_flush = false, need_stop_flush = false;
2123 	bool need_restart_discard = false, need_stop_discard = false;
2124 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
2125 	bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT);
2126 	bool no_io_align = !F2FS_IO_ALIGNED(sbi);
2127 	bool no_atgc = !test_opt(sbi, ATGC);
2128 	bool no_discard = !test_opt(sbi, DISCARD);
2129 	bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE);
2130 	bool block_unit_discard = f2fs_block_unit_discard(sbi);
2131 	struct discard_cmd_control *dcc;
2132 #ifdef CONFIG_QUOTA
2133 	int i, j;
2134 #endif
2135 
2136 	/*
2137 	 * Save the old mount options in case we
2138 	 * need to restore them.
2139 	 */
2140 	org_mount_opt = sbi->mount_opt;
2141 	old_sb_flags = sb->s_flags;
2142 
2143 #ifdef CONFIG_QUOTA
2144 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
2145 	for (i = 0; i < MAXQUOTAS; i++) {
2146 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2147 			org_mount_opt.s_qf_names[i] =
2148 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
2149 				GFP_KERNEL);
2150 			if (!org_mount_opt.s_qf_names[i]) {
2151 				for (j = 0; j < i; j++)
2152 					kfree(org_mount_opt.s_qf_names[j]);
2153 				return -ENOMEM;
2154 			}
2155 		} else {
2156 			org_mount_opt.s_qf_names[i] = NULL;
2157 		}
2158 	}
2159 #endif
2160 
2161 	/* recover superblocks we couldn't write due to previous RO mount */
2162 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
2163 		err = f2fs_commit_super(sbi, false);
2164 		f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
2165 			  err);
2166 		if (!err)
2167 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2168 	}
2169 
2170 	default_options(sbi);
2171 
2172 	/* parse mount options */
2173 	err = parse_options(sb, data, true);
2174 	if (err)
2175 		goto restore_opts;
2176 
2177 	/*
2178 	 * Previous and new state of filesystem is RO,
2179 	 * so skip checking GC and FLUSH_MERGE conditions.
2180 	 */
2181 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
2182 		goto skip;
2183 
2184 	if (f2fs_sb_has_readonly(sbi) && !(*flags & SB_RDONLY)) {
2185 		err = -EROFS;
2186 		goto restore_opts;
2187 	}
2188 
2189 #ifdef CONFIG_QUOTA
2190 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
2191 		err = dquot_suspend(sb, -1);
2192 		if (err < 0)
2193 			goto restore_opts;
2194 	} else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
2195 		/* dquot_resume needs RW */
2196 		sb->s_flags &= ~SB_RDONLY;
2197 		if (sb_any_quota_suspended(sb)) {
2198 			dquot_resume(sb, -1);
2199 		} else if (f2fs_sb_has_quota_ino(sbi)) {
2200 			err = f2fs_enable_quotas(sb);
2201 			if (err)
2202 				goto restore_opts;
2203 		}
2204 	}
2205 #endif
2206 	/* disallow enable atgc dynamically */
2207 	if (no_atgc == !!test_opt(sbi, ATGC)) {
2208 		err = -EINVAL;
2209 		f2fs_warn(sbi, "switch atgc option is not allowed");
2210 		goto restore_opts;
2211 	}
2212 
2213 	/* disallow enable/disable extent_cache dynamically */
2214 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
2215 		err = -EINVAL;
2216 		f2fs_warn(sbi, "switch extent_cache option is not allowed");
2217 		goto restore_opts;
2218 	}
2219 
2220 	if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
2221 		err = -EINVAL;
2222 		f2fs_warn(sbi, "switch io_bits option is not allowed");
2223 		goto restore_opts;
2224 	}
2225 
2226 	if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) {
2227 		err = -EINVAL;
2228 		f2fs_warn(sbi, "switch compress_cache option is not allowed");
2229 		goto restore_opts;
2230 	}
2231 
2232 	if (block_unit_discard != f2fs_block_unit_discard(sbi)) {
2233 		err = -EINVAL;
2234 		f2fs_warn(sbi, "switch discard_unit option is not allowed");
2235 		goto restore_opts;
2236 	}
2237 
2238 	if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
2239 		err = -EINVAL;
2240 		f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
2241 		goto restore_opts;
2242 	}
2243 
2244 	/*
2245 	 * We stop the GC thread if FS is mounted as RO
2246 	 * or if background_gc = off is passed in mount
2247 	 * option. Also sync the filesystem.
2248 	 */
2249 	if ((*flags & SB_RDONLY) ||
2250 			(F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF &&
2251 			!test_opt(sbi, GC_MERGE))) {
2252 		if (sbi->gc_thread) {
2253 			f2fs_stop_gc_thread(sbi);
2254 			need_restart_gc = true;
2255 		}
2256 	} else if (!sbi->gc_thread) {
2257 		err = f2fs_start_gc_thread(sbi);
2258 		if (err)
2259 			goto restore_opts;
2260 		need_stop_gc = true;
2261 	}
2262 
2263 	if (*flags & SB_RDONLY ||
2264 		F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
2265 		sync_inodes_sb(sb);
2266 
2267 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2268 		set_sbi_flag(sbi, SBI_IS_CLOSE);
2269 		f2fs_sync_fs(sb, 1);
2270 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
2271 	}
2272 
2273 	if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) ||
2274 			!test_opt(sbi, MERGE_CHECKPOINT)) {
2275 		f2fs_stop_ckpt_thread(sbi);
2276 		need_restart_ckpt = true;
2277 	} else {
2278 		err = f2fs_start_ckpt_thread(sbi);
2279 		if (err) {
2280 			f2fs_err(sbi,
2281 			    "Failed to start F2FS issue_checkpoint_thread (%d)",
2282 			    err);
2283 			goto restore_gc;
2284 		}
2285 		need_stop_ckpt = true;
2286 	}
2287 
2288 	/*
2289 	 * We stop issue flush thread if FS is mounted as RO
2290 	 * or if flush_merge is not passed in mount option.
2291 	 */
2292 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
2293 		clear_opt(sbi, FLUSH_MERGE);
2294 		f2fs_destroy_flush_cmd_control(sbi, false);
2295 		need_restart_flush = true;
2296 	} else {
2297 		err = f2fs_create_flush_cmd_control(sbi);
2298 		if (err)
2299 			goto restore_ckpt;
2300 		need_stop_flush = true;
2301 	}
2302 
2303 	if (no_discard == !!test_opt(sbi, DISCARD)) {
2304 		if (test_opt(sbi, DISCARD)) {
2305 			err = f2fs_start_discard_thread(sbi);
2306 			if (err)
2307 				goto restore_flush;
2308 			need_stop_discard = true;
2309 		} else {
2310 			dcc = SM_I(sbi)->dcc_info;
2311 			f2fs_stop_discard_thread(sbi);
2312 			if (atomic_read(&dcc->discard_cmd_cnt))
2313 				f2fs_issue_discard_timeout(sbi);
2314 			need_restart_discard = true;
2315 		}
2316 	}
2317 
2318 	if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) {
2319 		if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2320 			err = f2fs_disable_checkpoint(sbi);
2321 			if (err)
2322 				goto restore_discard;
2323 		} else {
2324 			f2fs_enable_checkpoint(sbi);
2325 		}
2326 	}
2327 
2328 skip:
2329 #ifdef CONFIG_QUOTA
2330 	/* Release old quota file names */
2331 	for (i = 0; i < MAXQUOTAS; i++)
2332 		kfree(org_mount_opt.s_qf_names[i]);
2333 #endif
2334 	/* Update the POSIXACL Flag */
2335 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2336 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2337 
2338 	limit_reserve_root(sbi);
2339 	adjust_unusable_cap_perc(sbi);
2340 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
2341 	return 0;
2342 restore_discard:
2343 	if (need_restart_discard) {
2344 		if (f2fs_start_discard_thread(sbi))
2345 			f2fs_warn(sbi, "discard has been stopped");
2346 	} else if (need_stop_discard) {
2347 		f2fs_stop_discard_thread(sbi);
2348 	}
2349 restore_flush:
2350 	if (need_restart_flush) {
2351 		if (f2fs_create_flush_cmd_control(sbi))
2352 			f2fs_warn(sbi, "background flush thread has stopped");
2353 	} else if (need_stop_flush) {
2354 		clear_opt(sbi, FLUSH_MERGE);
2355 		f2fs_destroy_flush_cmd_control(sbi, false);
2356 	}
2357 restore_ckpt:
2358 	if (need_restart_ckpt) {
2359 		if (f2fs_start_ckpt_thread(sbi))
2360 			f2fs_warn(sbi, "background ckpt thread has stopped");
2361 	} else if (need_stop_ckpt) {
2362 		f2fs_stop_ckpt_thread(sbi);
2363 	}
2364 restore_gc:
2365 	if (need_restart_gc) {
2366 		if (f2fs_start_gc_thread(sbi))
2367 			f2fs_warn(sbi, "background gc thread has stopped");
2368 	} else if (need_stop_gc) {
2369 		f2fs_stop_gc_thread(sbi);
2370 	}
2371 restore_opts:
2372 #ifdef CONFIG_QUOTA
2373 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
2374 	for (i = 0; i < MAXQUOTAS; i++) {
2375 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
2376 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
2377 	}
2378 #endif
2379 	sbi->mount_opt = org_mount_opt;
2380 	sb->s_flags = old_sb_flags;
2381 	return err;
2382 }
2383 
2384 #ifdef CONFIG_QUOTA
2385 /* Read data from quotafile */
2386 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
2387 			       size_t len, loff_t off)
2388 {
2389 	struct inode *inode = sb_dqopt(sb)->files[type];
2390 	struct address_space *mapping = inode->i_mapping;
2391 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
2392 	int offset = off & (sb->s_blocksize - 1);
2393 	int tocopy;
2394 	size_t toread;
2395 	loff_t i_size = i_size_read(inode);
2396 	struct page *page;
2397 	char *kaddr;
2398 
2399 	if (off > i_size)
2400 		return 0;
2401 
2402 	if (off + len > i_size)
2403 		len = i_size - off;
2404 	toread = len;
2405 	while (toread > 0) {
2406 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
2407 repeat:
2408 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
2409 		if (IS_ERR(page)) {
2410 			if (PTR_ERR(page) == -ENOMEM) {
2411 				memalloc_retry_wait(GFP_NOFS);
2412 				goto repeat;
2413 			}
2414 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2415 			return PTR_ERR(page);
2416 		}
2417 
2418 		lock_page(page);
2419 
2420 		if (unlikely(page->mapping != mapping)) {
2421 			f2fs_put_page(page, 1);
2422 			goto repeat;
2423 		}
2424 		if (unlikely(!PageUptodate(page))) {
2425 			f2fs_put_page(page, 1);
2426 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2427 			return -EIO;
2428 		}
2429 
2430 		kaddr = kmap_atomic(page);
2431 		memcpy(data, kaddr + offset, tocopy);
2432 		kunmap_atomic(kaddr);
2433 		f2fs_put_page(page, 1);
2434 
2435 		offset = 0;
2436 		toread -= tocopy;
2437 		data += tocopy;
2438 		blkidx++;
2439 	}
2440 	return len;
2441 }
2442 
2443 /* Write to quotafile */
2444 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
2445 				const char *data, size_t len, loff_t off)
2446 {
2447 	struct inode *inode = sb_dqopt(sb)->files[type];
2448 	struct address_space *mapping = inode->i_mapping;
2449 	const struct address_space_operations *a_ops = mapping->a_ops;
2450 	int offset = off & (sb->s_blocksize - 1);
2451 	size_t towrite = len;
2452 	struct page *page;
2453 	void *fsdata = NULL;
2454 	char *kaddr;
2455 	int err = 0;
2456 	int tocopy;
2457 
2458 	while (towrite > 0) {
2459 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
2460 								towrite);
2461 retry:
2462 		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
2463 							&page, &fsdata);
2464 		if (unlikely(err)) {
2465 			if (err == -ENOMEM) {
2466 				congestion_wait(BLK_RW_ASYNC,
2467 						DEFAULT_IO_TIMEOUT);
2468 				goto retry;
2469 			}
2470 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2471 			break;
2472 		}
2473 
2474 		kaddr = kmap_atomic(page);
2475 		memcpy(kaddr + offset, data, tocopy);
2476 		kunmap_atomic(kaddr);
2477 		flush_dcache_page(page);
2478 
2479 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
2480 						page, fsdata);
2481 		offset = 0;
2482 		towrite -= tocopy;
2483 		off += tocopy;
2484 		data += tocopy;
2485 		cond_resched();
2486 	}
2487 
2488 	if (len == towrite)
2489 		return err;
2490 	inode->i_mtime = inode->i_ctime = current_time(inode);
2491 	f2fs_mark_inode_dirty_sync(inode, false);
2492 	return len - towrite;
2493 }
2494 
2495 int f2fs_dquot_initialize(struct inode *inode)
2496 {
2497 	if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT)) {
2498 		f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_DQUOT_INIT);
2499 		return -ESRCH;
2500 	}
2501 
2502 	return dquot_initialize(inode);
2503 }
2504 
2505 static struct dquot **f2fs_get_dquots(struct inode *inode)
2506 {
2507 	return F2FS_I(inode)->i_dquot;
2508 }
2509 
2510 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
2511 {
2512 	return &F2FS_I(inode)->i_reserved_quota;
2513 }
2514 
2515 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
2516 {
2517 	if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
2518 		f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
2519 		return 0;
2520 	}
2521 
2522 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
2523 					F2FS_OPTION(sbi).s_jquota_fmt, type);
2524 }
2525 
2526 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
2527 {
2528 	int enabled = 0;
2529 	int i, err;
2530 
2531 	if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
2532 		err = f2fs_enable_quotas(sbi->sb);
2533 		if (err) {
2534 			f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2535 			return 0;
2536 		}
2537 		return 1;
2538 	}
2539 
2540 	for (i = 0; i < MAXQUOTAS; i++) {
2541 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2542 			err = f2fs_quota_on_mount(sbi, i);
2543 			if (!err) {
2544 				enabled = 1;
2545 				continue;
2546 			}
2547 			f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2548 				 err, i);
2549 		}
2550 	}
2551 	return enabled;
2552 }
2553 
2554 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2555 			     unsigned int flags)
2556 {
2557 	struct inode *qf_inode;
2558 	unsigned long qf_inum;
2559 	int err;
2560 
2561 	BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2562 
2563 	qf_inum = f2fs_qf_ino(sb, type);
2564 	if (!qf_inum)
2565 		return -EPERM;
2566 
2567 	qf_inode = f2fs_iget(sb, qf_inum);
2568 	if (IS_ERR(qf_inode)) {
2569 		f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2570 		return PTR_ERR(qf_inode);
2571 	}
2572 
2573 	/* Don't account quota for quota files to avoid recursion */
2574 	qf_inode->i_flags |= S_NOQUOTA;
2575 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2576 	iput(qf_inode);
2577 	return err;
2578 }
2579 
2580 static int f2fs_enable_quotas(struct super_block *sb)
2581 {
2582 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2583 	int type, err = 0;
2584 	unsigned long qf_inum;
2585 	bool quota_mopt[MAXQUOTAS] = {
2586 		test_opt(sbi, USRQUOTA),
2587 		test_opt(sbi, GRPQUOTA),
2588 		test_opt(sbi, PRJQUOTA),
2589 	};
2590 
2591 	if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2592 		f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2593 		return 0;
2594 	}
2595 
2596 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2597 
2598 	for (type = 0; type < MAXQUOTAS; type++) {
2599 		qf_inum = f2fs_qf_ino(sb, type);
2600 		if (qf_inum) {
2601 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2602 				DQUOT_USAGE_ENABLED |
2603 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2604 			if (err) {
2605 				f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2606 					 type, err);
2607 				for (type--; type >= 0; type--)
2608 					dquot_quota_off(sb, type);
2609 				set_sbi_flag(F2FS_SB(sb),
2610 						SBI_QUOTA_NEED_REPAIR);
2611 				return err;
2612 			}
2613 		}
2614 	}
2615 	return 0;
2616 }
2617 
2618 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type)
2619 {
2620 	struct quota_info *dqopt = sb_dqopt(sbi->sb);
2621 	struct address_space *mapping = dqopt->files[type]->i_mapping;
2622 	int ret = 0;
2623 
2624 	ret = dquot_writeback_dquots(sbi->sb, type);
2625 	if (ret)
2626 		goto out;
2627 
2628 	ret = filemap_fdatawrite(mapping);
2629 	if (ret)
2630 		goto out;
2631 
2632 	/* if we are using journalled quota */
2633 	if (is_journalled_quota(sbi))
2634 		goto out;
2635 
2636 	ret = filemap_fdatawait(mapping);
2637 
2638 	truncate_inode_pages(&dqopt->files[type]->i_data, 0);
2639 out:
2640 	if (ret)
2641 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2642 	return ret;
2643 }
2644 
2645 int f2fs_quota_sync(struct super_block *sb, int type)
2646 {
2647 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2648 	struct quota_info *dqopt = sb_dqopt(sb);
2649 	int cnt;
2650 	int ret;
2651 
2652 	/*
2653 	 * Now when everything is written we can discard the pagecache so
2654 	 * that userspace sees the changes.
2655 	 */
2656 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2657 
2658 		if (type != -1 && cnt != type)
2659 			continue;
2660 
2661 		if (!sb_has_quota_active(sb, type))
2662 			return 0;
2663 
2664 		inode_lock(dqopt->files[cnt]);
2665 
2666 		/*
2667 		 * do_quotactl
2668 		 *  f2fs_quota_sync
2669 		 *  down_read(quota_sem)
2670 		 *  dquot_writeback_dquots()
2671 		 *  f2fs_dquot_commit
2672 		 *			      block_operation
2673 		 *			      down_read(quota_sem)
2674 		 */
2675 		f2fs_lock_op(sbi);
2676 		down_read(&sbi->quota_sem);
2677 
2678 		ret = f2fs_quota_sync_file(sbi, cnt);
2679 
2680 		up_read(&sbi->quota_sem);
2681 		f2fs_unlock_op(sbi);
2682 
2683 		inode_unlock(dqopt->files[cnt]);
2684 
2685 		if (ret)
2686 			break;
2687 	}
2688 	return ret;
2689 }
2690 
2691 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2692 							const struct path *path)
2693 {
2694 	struct inode *inode;
2695 	int err;
2696 
2697 	/* if quota sysfile exists, deny enabling quota with specific file */
2698 	if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2699 		f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2700 		return -EBUSY;
2701 	}
2702 
2703 	err = f2fs_quota_sync(sb, type);
2704 	if (err)
2705 		return err;
2706 
2707 	err = dquot_quota_on(sb, type, format_id, path);
2708 	if (err)
2709 		return err;
2710 
2711 	inode = d_inode(path->dentry);
2712 
2713 	inode_lock(inode);
2714 	F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2715 	f2fs_set_inode_flags(inode);
2716 	inode_unlock(inode);
2717 	f2fs_mark_inode_dirty_sync(inode, false);
2718 
2719 	return 0;
2720 }
2721 
2722 static int __f2fs_quota_off(struct super_block *sb, int type)
2723 {
2724 	struct inode *inode = sb_dqopt(sb)->files[type];
2725 	int err;
2726 
2727 	if (!inode || !igrab(inode))
2728 		return dquot_quota_off(sb, type);
2729 
2730 	err = f2fs_quota_sync(sb, type);
2731 	if (err)
2732 		goto out_put;
2733 
2734 	err = dquot_quota_off(sb, type);
2735 	if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2736 		goto out_put;
2737 
2738 	inode_lock(inode);
2739 	F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2740 	f2fs_set_inode_flags(inode);
2741 	inode_unlock(inode);
2742 	f2fs_mark_inode_dirty_sync(inode, false);
2743 out_put:
2744 	iput(inode);
2745 	return err;
2746 }
2747 
2748 static int f2fs_quota_off(struct super_block *sb, int type)
2749 {
2750 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2751 	int err;
2752 
2753 	err = __f2fs_quota_off(sb, type);
2754 
2755 	/*
2756 	 * quotactl can shutdown journalled quota, result in inconsistence
2757 	 * between quota record and fs data by following updates, tag the
2758 	 * flag to let fsck be aware of it.
2759 	 */
2760 	if (is_journalled_quota(sbi))
2761 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2762 	return err;
2763 }
2764 
2765 void f2fs_quota_off_umount(struct super_block *sb)
2766 {
2767 	int type;
2768 	int err;
2769 
2770 	for (type = 0; type < MAXQUOTAS; type++) {
2771 		err = __f2fs_quota_off(sb, type);
2772 		if (err) {
2773 			int ret = dquot_quota_off(sb, type);
2774 
2775 			f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2776 				 type, err, ret);
2777 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2778 		}
2779 	}
2780 	/*
2781 	 * In case of checkpoint=disable, we must flush quota blocks.
2782 	 * This can cause NULL exception for node_inode in end_io, since
2783 	 * put_super already dropped it.
2784 	 */
2785 	sync_filesystem(sb);
2786 }
2787 
2788 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2789 {
2790 	struct quota_info *dqopt = sb_dqopt(sb);
2791 	int type;
2792 
2793 	for (type = 0; type < MAXQUOTAS; type++) {
2794 		if (!dqopt->files[type])
2795 			continue;
2796 		f2fs_inode_synced(dqopt->files[type]);
2797 	}
2798 }
2799 
2800 static int f2fs_dquot_commit(struct dquot *dquot)
2801 {
2802 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2803 	int ret;
2804 
2805 	down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
2806 	ret = dquot_commit(dquot);
2807 	if (ret < 0)
2808 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2809 	up_read(&sbi->quota_sem);
2810 	return ret;
2811 }
2812 
2813 static int f2fs_dquot_acquire(struct dquot *dquot)
2814 {
2815 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2816 	int ret;
2817 
2818 	down_read(&sbi->quota_sem);
2819 	ret = dquot_acquire(dquot);
2820 	if (ret < 0)
2821 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2822 	up_read(&sbi->quota_sem);
2823 	return ret;
2824 }
2825 
2826 static int f2fs_dquot_release(struct dquot *dquot)
2827 {
2828 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2829 	int ret = dquot_release(dquot);
2830 
2831 	if (ret < 0)
2832 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2833 	return ret;
2834 }
2835 
2836 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2837 {
2838 	struct super_block *sb = dquot->dq_sb;
2839 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2840 	int ret = dquot_mark_dquot_dirty(dquot);
2841 
2842 	/* if we are using journalled quota */
2843 	if (is_journalled_quota(sbi))
2844 		set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2845 
2846 	return ret;
2847 }
2848 
2849 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2850 {
2851 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2852 	int ret = dquot_commit_info(sb, type);
2853 
2854 	if (ret < 0)
2855 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2856 	return ret;
2857 }
2858 
2859 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2860 {
2861 	*projid = F2FS_I(inode)->i_projid;
2862 	return 0;
2863 }
2864 
2865 static const struct dquot_operations f2fs_quota_operations = {
2866 	.get_reserved_space = f2fs_get_reserved_space,
2867 	.write_dquot	= f2fs_dquot_commit,
2868 	.acquire_dquot	= f2fs_dquot_acquire,
2869 	.release_dquot	= f2fs_dquot_release,
2870 	.mark_dirty	= f2fs_dquot_mark_dquot_dirty,
2871 	.write_info	= f2fs_dquot_commit_info,
2872 	.alloc_dquot	= dquot_alloc,
2873 	.destroy_dquot	= dquot_destroy,
2874 	.get_projid	= f2fs_get_projid,
2875 	.get_next_id	= dquot_get_next_id,
2876 };
2877 
2878 static const struct quotactl_ops f2fs_quotactl_ops = {
2879 	.quota_on	= f2fs_quota_on,
2880 	.quota_off	= f2fs_quota_off,
2881 	.quota_sync	= f2fs_quota_sync,
2882 	.get_state	= dquot_get_state,
2883 	.set_info	= dquot_set_dqinfo,
2884 	.get_dqblk	= dquot_get_dqblk,
2885 	.set_dqblk	= dquot_set_dqblk,
2886 	.get_nextdqblk	= dquot_get_next_dqblk,
2887 };
2888 #else
2889 int f2fs_dquot_initialize(struct inode *inode)
2890 {
2891 	return 0;
2892 }
2893 
2894 int f2fs_quota_sync(struct super_block *sb, int type)
2895 {
2896 	return 0;
2897 }
2898 
2899 void f2fs_quota_off_umount(struct super_block *sb)
2900 {
2901 }
2902 #endif
2903 
2904 static const struct super_operations f2fs_sops = {
2905 	.alloc_inode	= f2fs_alloc_inode,
2906 	.free_inode	= f2fs_free_inode,
2907 	.drop_inode	= f2fs_drop_inode,
2908 	.write_inode	= f2fs_write_inode,
2909 	.dirty_inode	= f2fs_dirty_inode,
2910 	.show_options	= f2fs_show_options,
2911 #ifdef CONFIG_QUOTA
2912 	.quota_read	= f2fs_quota_read,
2913 	.quota_write	= f2fs_quota_write,
2914 	.get_dquots	= f2fs_get_dquots,
2915 #endif
2916 	.evict_inode	= f2fs_evict_inode,
2917 	.put_super	= f2fs_put_super,
2918 	.sync_fs	= f2fs_sync_fs,
2919 	.freeze_fs	= f2fs_freeze,
2920 	.unfreeze_fs	= f2fs_unfreeze,
2921 	.statfs		= f2fs_statfs,
2922 	.remount_fs	= f2fs_remount,
2923 };
2924 
2925 #ifdef CONFIG_FS_ENCRYPTION
2926 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2927 {
2928 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2929 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2930 				ctx, len, NULL);
2931 }
2932 
2933 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2934 							void *fs_data)
2935 {
2936 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2937 
2938 	/*
2939 	 * Encrypting the root directory is not allowed because fsck
2940 	 * expects lost+found directory to exist and remain unencrypted
2941 	 * if LOST_FOUND feature is enabled.
2942 	 *
2943 	 */
2944 	if (f2fs_sb_has_lost_found(sbi) &&
2945 			inode->i_ino == F2FS_ROOT_INO(sbi))
2946 		return -EPERM;
2947 
2948 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2949 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2950 				ctx, len, fs_data, XATTR_CREATE);
2951 }
2952 
2953 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb)
2954 {
2955 	return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy;
2956 }
2957 
2958 static bool f2fs_has_stable_inodes(struct super_block *sb)
2959 {
2960 	return true;
2961 }
2962 
2963 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
2964 				       int *ino_bits_ret, int *lblk_bits_ret)
2965 {
2966 	*ino_bits_ret = 8 * sizeof(nid_t);
2967 	*lblk_bits_ret = 8 * sizeof(block_t);
2968 }
2969 
2970 static int f2fs_get_num_devices(struct super_block *sb)
2971 {
2972 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2973 
2974 	if (f2fs_is_multi_device(sbi))
2975 		return sbi->s_ndevs;
2976 	return 1;
2977 }
2978 
2979 static void f2fs_get_devices(struct super_block *sb,
2980 			     struct request_queue **devs)
2981 {
2982 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2983 	int i;
2984 
2985 	for (i = 0; i < sbi->s_ndevs; i++)
2986 		devs[i] = bdev_get_queue(FDEV(i).bdev);
2987 }
2988 
2989 static const struct fscrypt_operations f2fs_cryptops = {
2990 	.key_prefix		= "f2fs:",
2991 	.get_context		= f2fs_get_context,
2992 	.set_context		= f2fs_set_context,
2993 	.get_dummy_policy	= f2fs_get_dummy_policy,
2994 	.empty_dir		= f2fs_empty_dir,
2995 	.has_stable_inodes	= f2fs_has_stable_inodes,
2996 	.get_ino_and_lblk_bits	= f2fs_get_ino_and_lblk_bits,
2997 	.get_num_devices	= f2fs_get_num_devices,
2998 	.get_devices		= f2fs_get_devices,
2999 };
3000 #endif
3001 
3002 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
3003 		u64 ino, u32 generation)
3004 {
3005 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
3006 	struct inode *inode;
3007 
3008 	if (f2fs_check_nid_range(sbi, ino))
3009 		return ERR_PTR(-ESTALE);
3010 
3011 	/*
3012 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
3013 	 * However f2fs_iget currently does appropriate checks to handle stale
3014 	 * inodes so everything is OK.
3015 	 */
3016 	inode = f2fs_iget(sb, ino);
3017 	if (IS_ERR(inode))
3018 		return ERR_CAST(inode);
3019 	if (unlikely(generation && inode->i_generation != generation)) {
3020 		/* we didn't find the right inode.. */
3021 		iput(inode);
3022 		return ERR_PTR(-ESTALE);
3023 	}
3024 	return inode;
3025 }
3026 
3027 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
3028 		int fh_len, int fh_type)
3029 {
3030 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
3031 				    f2fs_nfs_get_inode);
3032 }
3033 
3034 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
3035 		int fh_len, int fh_type)
3036 {
3037 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
3038 				    f2fs_nfs_get_inode);
3039 }
3040 
3041 static const struct export_operations f2fs_export_ops = {
3042 	.fh_to_dentry = f2fs_fh_to_dentry,
3043 	.fh_to_parent = f2fs_fh_to_parent,
3044 	.get_parent = f2fs_get_parent,
3045 };
3046 
3047 loff_t max_file_blocks(struct inode *inode)
3048 {
3049 	loff_t result = 0;
3050 	loff_t leaf_count;
3051 
3052 	/*
3053 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
3054 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
3055 	 * space in inode.i_addr, it will be more safe to reassign
3056 	 * result as zero.
3057 	 */
3058 
3059 	if (inode && f2fs_compressed_file(inode))
3060 		leaf_count = ADDRS_PER_BLOCK(inode);
3061 	else
3062 		leaf_count = DEF_ADDRS_PER_BLOCK;
3063 
3064 	/* two direct node blocks */
3065 	result += (leaf_count * 2);
3066 
3067 	/* two indirect node blocks */
3068 	leaf_count *= NIDS_PER_BLOCK;
3069 	result += (leaf_count * 2);
3070 
3071 	/* one double indirect node block */
3072 	leaf_count *= NIDS_PER_BLOCK;
3073 	result += leaf_count;
3074 
3075 	return result;
3076 }
3077 
3078 static int __f2fs_commit_super(struct buffer_head *bh,
3079 			struct f2fs_super_block *super)
3080 {
3081 	lock_buffer(bh);
3082 	if (super)
3083 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
3084 	set_buffer_dirty(bh);
3085 	unlock_buffer(bh);
3086 
3087 	/* it's rare case, we can do fua all the time */
3088 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
3089 }
3090 
3091 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
3092 					struct buffer_head *bh)
3093 {
3094 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
3095 					(bh->b_data + F2FS_SUPER_OFFSET);
3096 	struct super_block *sb = sbi->sb;
3097 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3098 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
3099 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
3100 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
3101 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3102 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3103 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
3104 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
3105 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
3106 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
3107 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3108 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
3109 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3110 	u64 main_end_blkaddr = main_blkaddr +
3111 				(segment_count_main << log_blocks_per_seg);
3112 	u64 seg_end_blkaddr = segment0_blkaddr +
3113 				(segment_count << log_blocks_per_seg);
3114 
3115 	if (segment0_blkaddr != cp_blkaddr) {
3116 		f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
3117 			  segment0_blkaddr, cp_blkaddr);
3118 		return true;
3119 	}
3120 
3121 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
3122 							sit_blkaddr) {
3123 		f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
3124 			  cp_blkaddr, sit_blkaddr,
3125 			  segment_count_ckpt << log_blocks_per_seg);
3126 		return true;
3127 	}
3128 
3129 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
3130 							nat_blkaddr) {
3131 		f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
3132 			  sit_blkaddr, nat_blkaddr,
3133 			  segment_count_sit << log_blocks_per_seg);
3134 		return true;
3135 	}
3136 
3137 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
3138 							ssa_blkaddr) {
3139 		f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
3140 			  nat_blkaddr, ssa_blkaddr,
3141 			  segment_count_nat << log_blocks_per_seg);
3142 		return true;
3143 	}
3144 
3145 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
3146 							main_blkaddr) {
3147 		f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
3148 			  ssa_blkaddr, main_blkaddr,
3149 			  segment_count_ssa << log_blocks_per_seg);
3150 		return true;
3151 	}
3152 
3153 	if (main_end_blkaddr > seg_end_blkaddr) {
3154 		f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)",
3155 			  main_blkaddr, seg_end_blkaddr,
3156 			  segment_count_main << log_blocks_per_seg);
3157 		return true;
3158 	} else if (main_end_blkaddr < seg_end_blkaddr) {
3159 		int err = 0;
3160 		char *res;
3161 
3162 		/* fix in-memory information all the time */
3163 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
3164 				segment0_blkaddr) >> log_blocks_per_seg);
3165 
3166 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
3167 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3168 			res = "internally";
3169 		} else {
3170 			err = __f2fs_commit_super(bh, NULL);
3171 			res = err ? "failed" : "done";
3172 		}
3173 		f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)",
3174 			  res, main_blkaddr, seg_end_blkaddr,
3175 			  segment_count_main << log_blocks_per_seg);
3176 		if (err)
3177 			return true;
3178 	}
3179 	return false;
3180 }
3181 
3182 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
3183 				struct buffer_head *bh)
3184 {
3185 	block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main;
3186 	block_t total_sections, blocks_per_seg;
3187 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
3188 					(bh->b_data + F2FS_SUPER_OFFSET);
3189 	size_t crc_offset = 0;
3190 	__u32 crc = 0;
3191 
3192 	if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
3193 		f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
3194 			  F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
3195 		return -EINVAL;
3196 	}
3197 
3198 	/* Check checksum_offset and crc in superblock */
3199 	if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
3200 		crc_offset = le32_to_cpu(raw_super->checksum_offset);
3201 		if (crc_offset !=
3202 			offsetof(struct f2fs_super_block, crc)) {
3203 			f2fs_info(sbi, "Invalid SB checksum offset: %zu",
3204 				  crc_offset);
3205 			return -EFSCORRUPTED;
3206 		}
3207 		crc = le32_to_cpu(raw_super->crc);
3208 		if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
3209 			f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
3210 			return -EFSCORRUPTED;
3211 		}
3212 	}
3213 
3214 	/* Currently, support only 4KB block size */
3215 	if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) {
3216 		f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u",
3217 			  le32_to_cpu(raw_super->log_blocksize),
3218 			  F2FS_BLKSIZE_BITS);
3219 		return -EFSCORRUPTED;
3220 	}
3221 
3222 	/* check log blocks per segment */
3223 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
3224 		f2fs_info(sbi, "Invalid log blocks per segment (%u)",
3225 			  le32_to_cpu(raw_super->log_blocks_per_seg));
3226 		return -EFSCORRUPTED;
3227 	}
3228 
3229 	/* Currently, support 512/1024/2048/4096 bytes sector size */
3230 	if (le32_to_cpu(raw_super->log_sectorsize) >
3231 				F2FS_MAX_LOG_SECTOR_SIZE ||
3232 		le32_to_cpu(raw_super->log_sectorsize) <
3233 				F2FS_MIN_LOG_SECTOR_SIZE) {
3234 		f2fs_info(sbi, "Invalid log sectorsize (%u)",
3235 			  le32_to_cpu(raw_super->log_sectorsize));
3236 		return -EFSCORRUPTED;
3237 	}
3238 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
3239 		le32_to_cpu(raw_super->log_sectorsize) !=
3240 			F2FS_MAX_LOG_SECTOR_SIZE) {
3241 		f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
3242 			  le32_to_cpu(raw_super->log_sectors_per_block),
3243 			  le32_to_cpu(raw_super->log_sectorsize));
3244 		return -EFSCORRUPTED;
3245 	}
3246 
3247 	segment_count = le32_to_cpu(raw_super->segment_count);
3248 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3249 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3250 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3251 	total_sections = le32_to_cpu(raw_super->section_count);
3252 
3253 	/* blocks_per_seg should be 512, given the above check */
3254 	blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
3255 
3256 	if (segment_count > F2FS_MAX_SEGMENT ||
3257 				segment_count < F2FS_MIN_SEGMENTS) {
3258 		f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
3259 		return -EFSCORRUPTED;
3260 	}
3261 
3262 	if (total_sections > segment_count_main || total_sections < 1 ||
3263 			segs_per_sec > segment_count || !segs_per_sec) {
3264 		f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
3265 			  segment_count, total_sections, segs_per_sec);
3266 		return -EFSCORRUPTED;
3267 	}
3268 
3269 	if (segment_count_main != total_sections * segs_per_sec) {
3270 		f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)",
3271 			  segment_count_main, total_sections, segs_per_sec);
3272 		return -EFSCORRUPTED;
3273 	}
3274 
3275 	if ((segment_count / segs_per_sec) < total_sections) {
3276 		f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
3277 			  segment_count, segs_per_sec, total_sections);
3278 		return -EFSCORRUPTED;
3279 	}
3280 
3281 	if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
3282 		f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
3283 			  segment_count, le64_to_cpu(raw_super->block_count));
3284 		return -EFSCORRUPTED;
3285 	}
3286 
3287 	if (RDEV(0).path[0]) {
3288 		block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
3289 		int i = 1;
3290 
3291 		while (i < MAX_DEVICES && RDEV(i).path[0]) {
3292 			dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
3293 			i++;
3294 		}
3295 		if (segment_count != dev_seg_count) {
3296 			f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
3297 					segment_count, dev_seg_count);
3298 			return -EFSCORRUPTED;
3299 		}
3300 	} else {
3301 		if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) &&
3302 					!bdev_is_zoned(sbi->sb->s_bdev)) {
3303 			f2fs_info(sbi, "Zoned block device path is missing");
3304 			return -EFSCORRUPTED;
3305 		}
3306 	}
3307 
3308 	if (secs_per_zone > total_sections || !secs_per_zone) {
3309 		f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
3310 			  secs_per_zone, total_sections);
3311 		return -EFSCORRUPTED;
3312 	}
3313 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
3314 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
3315 			(le32_to_cpu(raw_super->extension_count) +
3316 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
3317 		f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
3318 			  le32_to_cpu(raw_super->extension_count),
3319 			  raw_super->hot_ext_count,
3320 			  F2FS_MAX_EXTENSION);
3321 		return -EFSCORRUPTED;
3322 	}
3323 
3324 	if (le32_to_cpu(raw_super->cp_payload) >=
3325 				(blocks_per_seg - F2FS_CP_PACKS -
3326 				NR_CURSEG_PERSIST_TYPE)) {
3327 		f2fs_info(sbi, "Insane cp_payload (%u >= %u)",
3328 			  le32_to_cpu(raw_super->cp_payload),
3329 			  blocks_per_seg - F2FS_CP_PACKS -
3330 			  NR_CURSEG_PERSIST_TYPE);
3331 		return -EFSCORRUPTED;
3332 	}
3333 
3334 	/* check reserved ino info */
3335 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
3336 		le32_to_cpu(raw_super->meta_ino) != 2 ||
3337 		le32_to_cpu(raw_super->root_ino) != 3) {
3338 		f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
3339 			  le32_to_cpu(raw_super->node_ino),
3340 			  le32_to_cpu(raw_super->meta_ino),
3341 			  le32_to_cpu(raw_super->root_ino));
3342 		return -EFSCORRUPTED;
3343 	}
3344 
3345 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
3346 	if (sanity_check_area_boundary(sbi, bh))
3347 		return -EFSCORRUPTED;
3348 
3349 	return 0;
3350 }
3351 
3352 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
3353 {
3354 	unsigned int total, fsmeta;
3355 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3356 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3357 	unsigned int ovp_segments, reserved_segments;
3358 	unsigned int main_segs, blocks_per_seg;
3359 	unsigned int sit_segs, nat_segs;
3360 	unsigned int sit_bitmap_size, nat_bitmap_size;
3361 	unsigned int log_blocks_per_seg;
3362 	unsigned int segment_count_main;
3363 	unsigned int cp_pack_start_sum, cp_payload;
3364 	block_t user_block_count, valid_user_blocks;
3365 	block_t avail_node_count, valid_node_count;
3366 	unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks;
3367 	int i, j;
3368 
3369 	total = le32_to_cpu(raw_super->segment_count);
3370 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
3371 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
3372 	fsmeta += sit_segs;
3373 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
3374 	fsmeta += nat_segs;
3375 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
3376 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
3377 
3378 	if (unlikely(fsmeta >= total))
3379 		return 1;
3380 
3381 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3382 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3383 
3384 	if (!f2fs_sb_has_readonly(sbi) &&
3385 			unlikely(fsmeta < F2FS_MIN_META_SEGMENTS ||
3386 			ovp_segments == 0 || reserved_segments == 0)) {
3387 		f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
3388 		return 1;
3389 	}
3390 	user_block_count = le64_to_cpu(ckpt->user_block_count);
3391 	segment_count_main = le32_to_cpu(raw_super->segment_count_main) +
3392 			(f2fs_sb_has_readonly(sbi) ? 1 : 0);
3393 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3394 	if (!user_block_count || user_block_count >=
3395 			segment_count_main << log_blocks_per_seg) {
3396 		f2fs_err(sbi, "Wrong user_block_count: %u",
3397 			 user_block_count);
3398 		return 1;
3399 	}
3400 
3401 	valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
3402 	if (valid_user_blocks > user_block_count) {
3403 		f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
3404 			 valid_user_blocks, user_block_count);
3405 		return 1;
3406 	}
3407 
3408 	valid_node_count = le32_to_cpu(ckpt->valid_node_count);
3409 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
3410 	if (valid_node_count > avail_node_count) {
3411 		f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
3412 			 valid_node_count, avail_node_count);
3413 		return 1;
3414 	}
3415 
3416 	main_segs = le32_to_cpu(raw_super->segment_count_main);
3417 	blocks_per_seg = sbi->blocks_per_seg;
3418 
3419 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3420 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
3421 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
3422 			return 1;
3423 
3424 		if (f2fs_sb_has_readonly(sbi))
3425 			goto check_data;
3426 
3427 		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
3428 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3429 				le32_to_cpu(ckpt->cur_node_segno[j])) {
3430 				f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
3431 					 i, j,
3432 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3433 				return 1;
3434 			}
3435 		}
3436 	}
3437 check_data:
3438 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
3439 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
3440 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
3441 			return 1;
3442 
3443 		if (f2fs_sb_has_readonly(sbi))
3444 			goto skip_cross;
3445 
3446 		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
3447 			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
3448 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3449 				f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
3450 					 i, j,
3451 					 le32_to_cpu(ckpt->cur_data_segno[i]));
3452 				return 1;
3453 			}
3454 		}
3455 	}
3456 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3457 		for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
3458 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3459 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3460 				f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
3461 					 i, j,
3462 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3463 				return 1;
3464 			}
3465 		}
3466 	}
3467 skip_cross:
3468 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
3469 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
3470 
3471 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
3472 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
3473 		f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
3474 			 sit_bitmap_size, nat_bitmap_size);
3475 		return 1;
3476 	}
3477 
3478 	cp_pack_start_sum = __start_sum_addr(sbi);
3479 	cp_payload = __cp_payload(sbi);
3480 	if (cp_pack_start_sum < cp_payload + 1 ||
3481 		cp_pack_start_sum > blocks_per_seg - 1 -
3482 			NR_CURSEG_PERSIST_TYPE) {
3483 		f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
3484 			 cp_pack_start_sum);
3485 		return 1;
3486 	}
3487 
3488 	if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
3489 		le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
3490 		f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
3491 			  "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
3492 			  "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
3493 			  le32_to_cpu(ckpt->checksum_offset));
3494 		return 1;
3495 	}
3496 
3497 	nat_blocks = nat_segs << log_blocks_per_seg;
3498 	nat_bits_bytes = nat_blocks / BITS_PER_BYTE;
3499 	nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3500 	if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) &&
3501 		(cp_payload + F2FS_CP_PACKS +
3502 		NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) {
3503 		f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)",
3504 			  cp_payload, nat_bits_blocks);
3505 		return 1;
3506 	}
3507 
3508 	if (unlikely(f2fs_cp_error(sbi))) {
3509 		f2fs_err(sbi, "A bug case: need to run fsck");
3510 		return 1;
3511 	}
3512 	return 0;
3513 }
3514 
3515 static void init_sb_info(struct f2fs_sb_info *sbi)
3516 {
3517 	struct f2fs_super_block *raw_super = sbi->raw_super;
3518 	int i;
3519 
3520 	sbi->log_sectors_per_block =
3521 		le32_to_cpu(raw_super->log_sectors_per_block);
3522 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
3523 	sbi->blocksize = 1 << sbi->log_blocksize;
3524 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3525 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
3526 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3527 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3528 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
3529 	sbi->total_node_count =
3530 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
3531 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
3532 	F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino);
3533 	F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino);
3534 	F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino);
3535 	sbi->cur_victim_sec = NULL_SECNO;
3536 	sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
3537 	sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
3538 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
3539 	sbi->migration_granularity = sbi->segs_per_sec;
3540 	sbi->seq_file_ra_mul = MIN_RA_MUL;
3541 	sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE;
3542 	sbi->max_fragment_hole = DEF_FRAGMENT_SIZE;
3543 
3544 	sbi->dir_level = DEF_DIR_LEVEL;
3545 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
3546 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
3547 	sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
3548 	sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
3549 	sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
3550 	sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
3551 				DEF_UMOUNT_DISCARD_TIMEOUT;
3552 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
3553 
3554 	for (i = 0; i < NR_COUNT_TYPE; i++)
3555 		atomic_set(&sbi->nr_pages[i], 0);
3556 
3557 	for (i = 0; i < META; i++)
3558 		atomic_set(&sbi->wb_sync_req[i], 0);
3559 
3560 	INIT_LIST_HEAD(&sbi->s_list);
3561 	mutex_init(&sbi->umount_mutex);
3562 	init_rwsem(&sbi->io_order_lock);
3563 	spin_lock_init(&sbi->cp_lock);
3564 
3565 	sbi->dirty_device = 0;
3566 	spin_lock_init(&sbi->dev_lock);
3567 
3568 	init_rwsem(&sbi->sb_lock);
3569 	init_rwsem(&sbi->pin_sem);
3570 }
3571 
3572 static int init_percpu_info(struct f2fs_sb_info *sbi)
3573 {
3574 	int err;
3575 
3576 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
3577 	if (err)
3578 		return err;
3579 
3580 	err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
3581 								GFP_KERNEL);
3582 	if (err)
3583 		percpu_counter_destroy(&sbi->alloc_valid_block_count);
3584 
3585 	return err;
3586 }
3587 
3588 #ifdef CONFIG_BLK_DEV_ZONED
3589 
3590 struct f2fs_report_zones_args {
3591 	struct f2fs_dev_info *dev;
3592 	bool zone_cap_mismatch;
3593 };
3594 
3595 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
3596 			      void *data)
3597 {
3598 	struct f2fs_report_zones_args *rz_args = data;
3599 
3600 	if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
3601 		return 0;
3602 
3603 	set_bit(idx, rz_args->dev->blkz_seq);
3604 	rz_args->dev->zone_capacity_blocks[idx] = zone->capacity >>
3605 						F2FS_LOG_SECTORS_PER_BLOCK;
3606 	if (zone->len != zone->capacity && !rz_args->zone_cap_mismatch)
3607 		rz_args->zone_cap_mismatch = true;
3608 
3609 	return 0;
3610 }
3611 
3612 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
3613 {
3614 	struct block_device *bdev = FDEV(devi).bdev;
3615 	sector_t nr_sectors = bdev_nr_sectors(bdev);
3616 	struct f2fs_report_zones_args rep_zone_arg;
3617 	int ret;
3618 
3619 	if (!f2fs_sb_has_blkzoned(sbi))
3620 		return 0;
3621 
3622 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3623 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
3624 		return -EINVAL;
3625 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
3626 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
3627 				__ilog2_u32(sbi->blocks_per_blkz))
3628 		return -EINVAL;
3629 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
3630 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
3631 					sbi->log_blocks_per_blkz;
3632 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
3633 		FDEV(devi).nr_blkz++;
3634 
3635 	FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
3636 					BITS_TO_LONGS(FDEV(devi).nr_blkz)
3637 					* sizeof(unsigned long),
3638 					GFP_KERNEL);
3639 	if (!FDEV(devi).blkz_seq)
3640 		return -ENOMEM;
3641 
3642 	/* Get block zones type and zone-capacity */
3643 	FDEV(devi).zone_capacity_blocks = f2fs_kzalloc(sbi,
3644 					FDEV(devi).nr_blkz * sizeof(block_t),
3645 					GFP_KERNEL);
3646 	if (!FDEV(devi).zone_capacity_blocks)
3647 		return -ENOMEM;
3648 
3649 	rep_zone_arg.dev = &FDEV(devi);
3650 	rep_zone_arg.zone_cap_mismatch = false;
3651 
3652 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3653 				  &rep_zone_arg);
3654 	if (ret < 0)
3655 		return ret;
3656 
3657 	if (!rep_zone_arg.zone_cap_mismatch) {
3658 		kfree(FDEV(devi).zone_capacity_blocks);
3659 		FDEV(devi).zone_capacity_blocks = NULL;
3660 	}
3661 
3662 	return 0;
3663 }
3664 #endif
3665 
3666 /*
3667  * Read f2fs raw super block.
3668  * Because we have two copies of super block, so read both of them
3669  * to get the first valid one. If any one of them is broken, we pass
3670  * them recovery flag back to the caller.
3671  */
3672 static int read_raw_super_block(struct f2fs_sb_info *sbi,
3673 			struct f2fs_super_block **raw_super,
3674 			int *valid_super_block, int *recovery)
3675 {
3676 	struct super_block *sb = sbi->sb;
3677 	int block;
3678 	struct buffer_head *bh;
3679 	struct f2fs_super_block *super;
3680 	int err = 0;
3681 
3682 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3683 	if (!super)
3684 		return -ENOMEM;
3685 
3686 	for (block = 0; block < 2; block++) {
3687 		bh = sb_bread(sb, block);
3688 		if (!bh) {
3689 			f2fs_err(sbi, "Unable to read %dth superblock",
3690 				 block + 1);
3691 			err = -EIO;
3692 			*recovery = 1;
3693 			continue;
3694 		}
3695 
3696 		/* sanity checking of raw super */
3697 		err = sanity_check_raw_super(sbi, bh);
3698 		if (err) {
3699 			f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3700 				 block + 1);
3701 			brelse(bh);
3702 			*recovery = 1;
3703 			continue;
3704 		}
3705 
3706 		if (!*raw_super) {
3707 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3708 							sizeof(*super));
3709 			*valid_super_block = block;
3710 			*raw_super = super;
3711 		}
3712 		brelse(bh);
3713 	}
3714 
3715 	/* No valid superblock */
3716 	if (!*raw_super)
3717 		kfree(super);
3718 	else
3719 		err = 0;
3720 
3721 	return err;
3722 }
3723 
3724 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3725 {
3726 	struct buffer_head *bh;
3727 	__u32 crc = 0;
3728 	int err;
3729 
3730 	if ((recover && f2fs_readonly(sbi->sb)) ||
3731 				bdev_read_only(sbi->sb->s_bdev)) {
3732 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3733 		return -EROFS;
3734 	}
3735 
3736 	/* we should update superblock crc here */
3737 	if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3738 		crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3739 				offsetof(struct f2fs_super_block, crc));
3740 		F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3741 	}
3742 
3743 	/* write back-up superblock first */
3744 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3745 	if (!bh)
3746 		return -EIO;
3747 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3748 	brelse(bh);
3749 
3750 	/* if we are in recovery path, skip writing valid superblock */
3751 	if (recover || err)
3752 		return err;
3753 
3754 	/* write current valid superblock */
3755 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
3756 	if (!bh)
3757 		return -EIO;
3758 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3759 	brelse(bh);
3760 	return err;
3761 }
3762 
3763 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3764 {
3765 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3766 	unsigned int max_devices = MAX_DEVICES;
3767 	unsigned int logical_blksize;
3768 	int i;
3769 
3770 	/* Initialize single device information */
3771 	if (!RDEV(0).path[0]) {
3772 		if (!bdev_is_zoned(sbi->sb->s_bdev))
3773 			return 0;
3774 		max_devices = 1;
3775 	}
3776 
3777 	/*
3778 	 * Initialize multiple devices information, or single
3779 	 * zoned block device information.
3780 	 */
3781 	sbi->devs = f2fs_kzalloc(sbi,
3782 				 array_size(max_devices,
3783 					    sizeof(struct f2fs_dev_info)),
3784 				 GFP_KERNEL);
3785 	if (!sbi->devs)
3786 		return -ENOMEM;
3787 
3788 	logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev);
3789 	sbi->aligned_blksize = true;
3790 
3791 	for (i = 0; i < max_devices; i++) {
3792 
3793 		if (i > 0 && !RDEV(i).path[0])
3794 			break;
3795 
3796 		if (max_devices == 1) {
3797 			/* Single zoned block device mount */
3798 			FDEV(0).bdev =
3799 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3800 					sbi->sb->s_mode, sbi->sb->s_type);
3801 		} else {
3802 			/* Multi-device mount */
3803 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3804 			FDEV(i).total_segments =
3805 				le32_to_cpu(RDEV(i).total_segments);
3806 			if (i == 0) {
3807 				FDEV(i).start_blk = 0;
3808 				FDEV(i).end_blk = FDEV(i).start_blk +
3809 				    (FDEV(i).total_segments <<
3810 				    sbi->log_blocks_per_seg) - 1 +
3811 				    le32_to_cpu(raw_super->segment0_blkaddr);
3812 			} else {
3813 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3814 				FDEV(i).end_blk = FDEV(i).start_blk +
3815 					(FDEV(i).total_segments <<
3816 					sbi->log_blocks_per_seg) - 1;
3817 			}
3818 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3819 					sbi->sb->s_mode, sbi->sb->s_type);
3820 		}
3821 		if (IS_ERR(FDEV(i).bdev))
3822 			return PTR_ERR(FDEV(i).bdev);
3823 
3824 		/* to release errored devices */
3825 		sbi->s_ndevs = i + 1;
3826 
3827 		if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev))
3828 			sbi->aligned_blksize = false;
3829 
3830 #ifdef CONFIG_BLK_DEV_ZONED
3831 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3832 				!f2fs_sb_has_blkzoned(sbi)) {
3833 			f2fs_err(sbi, "Zoned block device feature not enabled");
3834 			return -EINVAL;
3835 		}
3836 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3837 			if (init_blkz_info(sbi, i)) {
3838 				f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
3839 				return -EINVAL;
3840 			}
3841 			if (max_devices == 1)
3842 				break;
3843 			f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3844 				  i, FDEV(i).path,
3845 				  FDEV(i).total_segments,
3846 				  FDEV(i).start_blk, FDEV(i).end_blk,
3847 				  bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3848 				  "Host-aware" : "Host-managed");
3849 			continue;
3850 		}
3851 #endif
3852 		f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3853 			  i, FDEV(i).path,
3854 			  FDEV(i).total_segments,
3855 			  FDEV(i).start_blk, FDEV(i).end_blk);
3856 	}
3857 	f2fs_info(sbi,
3858 		  "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3859 	return 0;
3860 }
3861 
3862 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
3863 {
3864 #ifdef CONFIG_UNICODE
3865 	if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) {
3866 		const struct f2fs_sb_encodings *encoding_info;
3867 		struct unicode_map *encoding;
3868 		__u16 encoding_flags;
3869 
3870 		encoding_info = f2fs_sb_read_encoding(sbi->raw_super);
3871 		if (!encoding_info) {
3872 			f2fs_err(sbi,
3873 				 "Encoding requested by superblock is unknown");
3874 			return -EINVAL;
3875 		}
3876 
3877 		encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags);
3878 		encoding = utf8_load(encoding_info->version);
3879 		if (IS_ERR(encoding)) {
3880 			f2fs_err(sbi,
3881 				 "can't mount with superblock charset: %s-%u.%u.%u "
3882 				 "not supported by the kernel. flags: 0x%x.",
3883 				 encoding_info->name,
3884 				 unicode_major(encoding_info->version),
3885 				 unicode_minor(encoding_info->version),
3886 				 unicode_rev(encoding_info->version),
3887 				 encoding_flags);
3888 			return PTR_ERR(encoding);
3889 		}
3890 		f2fs_info(sbi, "Using encoding defined by superblock: "
3891 			 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
3892 			 unicode_major(encoding_info->version),
3893 			 unicode_minor(encoding_info->version),
3894 			 unicode_rev(encoding_info->version),
3895 			 encoding_flags);
3896 
3897 		sbi->sb->s_encoding = encoding;
3898 		sbi->sb->s_encoding_flags = encoding_flags;
3899 	}
3900 #else
3901 	if (f2fs_sb_has_casefold(sbi)) {
3902 		f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
3903 		return -EINVAL;
3904 	}
3905 #endif
3906 	return 0;
3907 }
3908 
3909 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3910 {
3911 	struct f2fs_sm_info *sm_i = SM_I(sbi);
3912 
3913 	/* adjust parameters according to the volume size */
3914 	if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3915 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3916 		if (f2fs_block_unit_discard(sbi))
3917 			sm_i->dcc_info->discard_granularity = 1;
3918 		sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3919 	}
3920 
3921 	sbi->readdir_ra = 1;
3922 }
3923 
3924 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3925 {
3926 	struct f2fs_sb_info *sbi;
3927 	struct f2fs_super_block *raw_super;
3928 	struct inode *root;
3929 	int err;
3930 	bool skip_recovery = false, need_fsck = false;
3931 	char *options = NULL;
3932 	int recovery, i, valid_super_block;
3933 	struct curseg_info *seg_i;
3934 	int retry_cnt = 1;
3935 
3936 try_onemore:
3937 	err = -EINVAL;
3938 	raw_super = NULL;
3939 	valid_super_block = -1;
3940 	recovery = 0;
3941 
3942 	/* allocate memory for f2fs-specific super block info */
3943 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3944 	if (!sbi)
3945 		return -ENOMEM;
3946 
3947 	sbi->sb = sb;
3948 
3949 	/* Load the checksum driver */
3950 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3951 	if (IS_ERR(sbi->s_chksum_driver)) {
3952 		f2fs_err(sbi, "Cannot load crc32 driver.");
3953 		err = PTR_ERR(sbi->s_chksum_driver);
3954 		sbi->s_chksum_driver = NULL;
3955 		goto free_sbi;
3956 	}
3957 
3958 	/* set a block size */
3959 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3960 		f2fs_err(sbi, "unable to set blocksize");
3961 		goto free_sbi;
3962 	}
3963 
3964 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3965 								&recovery);
3966 	if (err)
3967 		goto free_sbi;
3968 
3969 	sb->s_fs_info = sbi;
3970 	sbi->raw_super = raw_super;
3971 
3972 	/* precompute checksum seed for metadata */
3973 	if (f2fs_sb_has_inode_chksum(sbi))
3974 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3975 						sizeof(raw_super->uuid));
3976 
3977 	default_options(sbi);
3978 	/* parse mount options */
3979 	options = kstrdup((const char *)data, GFP_KERNEL);
3980 	if (data && !options) {
3981 		err = -ENOMEM;
3982 		goto free_sb_buf;
3983 	}
3984 
3985 	err = parse_options(sb, options, false);
3986 	if (err)
3987 		goto free_options;
3988 
3989 	sb->s_maxbytes = max_file_blocks(NULL) <<
3990 				le32_to_cpu(raw_super->log_blocksize);
3991 	sb->s_max_links = F2FS_LINK_MAX;
3992 
3993 	err = f2fs_setup_casefold(sbi);
3994 	if (err)
3995 		goto free_options;
3996 
3997 #ifdef CONFIG_QUOTA
3998 	sb->dq_op = &f2fs_quota_operations;
3999 	sb->s_qcop = &f2fs_quotactl_ops;
4000 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4001 
4002 	if (f2fs_sb_has_quota_ino(sbi)) {
4003 		for (i = 0; i < MAXQUOTAS; i++) {
4004 			if (f2fs_qf_ino(sbi->sb, i))
4005 				sbi->nquota_files++;
4006 		}
4007 	}
4008 #endif
4009 
4010 	sb->s_op = &f2fs_sops;
4011 #ifdef CONFIG_FS_ENCRYPTION
4012 	sb->s_cop = &f2fs_cryptops;
4013 #endif
4014 #ifdef CONFIG_FS_VERITY
4015 	sb->s_vop = &f2fs_verityops;
4016 #endif
4017 	sb->s_xattr = f2fs_xattr_handlers;
4018 	sb->s_export_op = &f2fs_export_ops;
4019 	sb->s_magic = F2FS_SUPER_MAGIC;
4020 	sb->s_time_gran = 1;
4021 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4022 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
4023 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
4024 	sb->s_iflags |= SB_I_CGROUPWB;
4025 
4026 	/* init f2fs-specific super block info */
4027 	sbi->valid_super_block = valid_super_block;
4028 	init_rwsem(&sbi->gc_lock);
4029 	mutex_init(&sbi->writepages);
4030 	init_rwsem(&sbi->cp_global_sem);
4031 	init_rwsem(&sbi->node_write);
4032 	init_rwsem(&sbi->node_change);
4033 
4034 	/* disallow all the data/node/meta page writes */
4035 	set_sbi_flag(sbi, SBI_POR_DOING);
4036 	spin_lock_init(&sbi->stat_lock);
4037 
4038 	for (i = 0; i < NR_PAGE_TYPE; i++) {
4039 		int n = (i == META) ? 1 : NR_TEMP_TYPE;
4040 		int j;
4041 
4042 		sbi->write_io[i] =
4043 			f2fs_kmalloc(sbi,
4044 				     array_size(n,
4045 						sizeof(struct f2fs_bio_info)),
4046 				     GFP_KERNEL);
4047 		if (!sbi->write_io[i]) {
4048 			err = -ENOMEM;
4049 			goto free_bio_info;
4050 		}
4051 
4052 		for (j = HOT; j < n; j++) {
4053 			init_rwsem(&sbi->write_io[i][j].io_rwsem);
4054 			sbi->write_io[i][j].sbi = sbi;
4055 			sbi->write_io[i][j].bio = NULL;
4056 			spin_lock_init(&sbi->write_io[i][j].io_lock);
4057 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
4058 			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
4059 			init_rwsem(&sbi->write_io[i][j].bio_list_lock);
4060 		}
4061 	}
4062 
4063 	init_rwsem(&sbi->cp_rwsem);
4064 	init_rwsem(&sbi->quota_sem);
4065 	init_waitqueue_head(&sbi->cp_wait);
4066 	init_sb_info(sbi);
4067 
4068 	err = f2fs_init_iostat(sbi);
4069 	if (err)
4070 		goto free_bio_info;
4071 
4072 	err = init_percpu_info(sbi);
4073 	if (err)
4074 		goto free_iostat;
4075 
4076 	if (F2FS_IO_ALIGNED(sbi)) {
4077 		sbi->write_io_dummy =
4078 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
4079 		if (!sbi->write_io_dummy) {
4080 			err = -ENOMEM;
4081 			goto free_percpu;
4082 		}
4083 	}
4084 
4085 	/* init per sbi slab cache */
4086 	err = f2fs_init_xattr_caches(sbi);
4087 	if (err)
4088 		goto free_io_dummy;
4089 	err = f2fs_init_page_array_cache(sbi);
4090 	if (err)
4091 		goto free_xattr_cache;
4092 
4093 	/* get an inode for meta space */
4094 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
4095 	if (IS_ERR(sbi->meta_inode)) {
4096 		f2fs_err(sbi, "Failed to read F2FS meta data inode");
4097 		err = PTR_ERR(sbi->meta_inode);
4098 		goto free_page_array_cache;
4099 	}
4100 
4101 	err = f2fs_get_valid_checkpoint(sbi);
4102 	if (err) {
4103 		f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
4104 		goto free_meta_inode;
4105 	}
4106 
4107 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
4108 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
4109 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
4110 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
4111 		sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
4112 	}
4113 
4114 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
4115 		set_sbi_flag(sbi, SBI_NEED_FSCK);
4116 
4117 	/* Initialize device list */
4118 	err = f2fs_scan_devices(sbi);
4119 	if (err) {
4120 		f2fs_err(sbi, "Failed to find devices");
4121 		goto free_devices;
4122 	}
4123 
4124 	err = f2fs_init_post_read_wq(sbi);
4125 	if (err) {
4126 		f2fs_err(sbi, "Failed to initialize post read workqueue");
4127 		goto free_devices;
4128 	}
4129 
4130 	sbi->total_valid_node_count =
4131 				le32_to_cpu(sbi->ckpt->valid_node_count);
4132 	percpu_counter_set(&sbi->total_valid_inode_count,
4133 				le32_to_cpu(sbi->ckpt->valid_inode_count));
4134 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
4135 	sbi->total_valid_block_count =
4136 				le64_to_cpu(sbi->ckpt->valid_block_count);
4137 	sbi->last_valid_block_count = sbi->total_valid_block_count;
4138 	sbi->reserved_blocks = 0;
4139 	sbi->current_reserved_blocks = 0;
4140 	limit_reserve_root(sbi);
4141 	adjust_unusable_cap_perc(sbi);
4142 
4143 	for (i = 0; i < NR_INODE_TYPE; i++) {
4144 		INIT_LIST_HEAD(&sbi->inode_list[i]);
4145 		spin_lock_init(&sbi->inode_lock[i]);
4146 	}
4147 	mutex_init(&sbi->flush_lock);
4148 
4149 	f2fs_init_extent_cache_info(sbi);
4150 
4151 	f2fs_init_ino_entry_info(sbi);
4152 
4153 	f2fs_init_fsync_node_info(sbi);
4154 
4155 	/* setup checkpoint request control and start checkpoint issue thread */
4156 	f2fs_init_ckpt_req_control(sbi);
4157 	if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) &&
4158 			test_opt(sbi, MERGE_CHECKPOINT)) {
4159 		err = f2fs_start_ckpt_thread(sbi);
4160 		if (err) {
4161 			f2fs_err(sbi,
4162 			    "Failed to start F2FS issue_checkpoint_thread (%d)",
4163 			    err);
4164 			goto stop_ckpt_thread;
4165 		}
4166 	}
4167 
4168 	/* setup f2fs internal modules */
4169 	err = f2fs_build_segment_manager(sbi);
4170 	if (err) {
4171 		f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
4172 			 err);
4173 		goto free_sm;
4174 	}
4175 	err = f2fs_build_node_manager(sbi);
4176 	if (err) {
4177 		f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
4178 			 err);
4179 		goto free_nm;
4180 	}
4181 
4182 	/* For write statistics */
4183 	sbi->sectors_written_start = f2fs_get_sectors_written(sbi);
4184 
4185 	/* Read accumulated write IO statistics if exists */
4186 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
4187 	if (__exist_node_summaries(sbi))
4188 		sbi->kbytes_written =
4189 			le64_to_cpu(seg_i->journal->info.kbytes_written);
4190 
4191 	f2fs_build_gc_manager(sbi);
4192 
4193 	err = f2fs_build_stats(sbi);
4194 	if (err)
4195 		goto free_nm;
4196 
4197 	/* get an inode for node space */
4198 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
4199 	if (IS_ERR(sbi->node_inode)) {
4200 		f2fs_err(sbi, "Failed to read node inode");
4201 		err = PTR_ERR(sbi->node_inode);
4202 		goto free_stats;
4203 	}
4204 
4205 	/* read root inode and dentry */
4206 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
4207 	if (IS_ERR(root)) {
4208 		f2fs_err(sbi, "Failed to read root inode");
4209 		err = PTR_ERR(root);
4210 		goto free_node_inode;
4211 	}
4212 	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
4213 			!root->i_size || !root->i_nlink) {
4214 		iput(root);
4215 		err = -EINVAL;
4216 		goto free_node_inode;
4217 	}
4218 
4219 	sb->s_root = d_make_root(root); /* allocate root dentry */
4220 	if (!sb->s_root) {
4221 		err = -ENOMEM;
4222 		goto free_node_inode;
4223 	}
4224 
4225 	err = f2fs_init_compress_inode(sbi);
4226 	if (err)
4227 		goto free_root_inode;
4228 
4229 	err = f2fs_register_sysfs(sbi);
4230 	if (err)
4231 		goto free_compress_inode;
4232 
4233 #ifdef CONFIG_QUOTA
4234 	/* Enable quota usage during mount */
4235 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
4236 		err = f2fs_enable_quotas(sb);
4237 		if (err)
4238 			f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
4239 	}
4240 #endif
4241 	/* if there are any orphan inodes, free them */
4242 	err = f2fs_recover_orphan_inodes(sbi);
4243 	if (err)
4244 		goto free_meta;
4245 
4246 	if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
4247 		goto reset_checkpoint;
4248 
4249 	/* recover fsynced data */
4250 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
4251 			!test_opt(sbi, NORECOVERY)) {
4252 		/*
4253 		 * mount should be failed, when device has readonly mode, and
4254 		 * previous checkpoint was not done by clean system shutdown.
4255 		 */
4256 		if (f2fs_hw_is_readonly(sbi)) {
4257 			if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4258 				err = f2fs_recover_fsync_data(sbi, true);
4259 				if (err > 0) {
4260 					err = -EROFS;
4261 					f2fs_err(sbi, "Need to recover fsync data, but "
4262 						"write access unavailable, please try "
4263 						"mount w/ disable_roll_forward or norecovery");
4264 				}
4265 				if (err < 0)
4266 					goto free_meta;
4267 			}
4268 			f2fs_info(sbi, "write access unavailable, skipping recovery");
4269 			goto reset_checkpoint;
4270 		}
4271 
4272 		if (need_fsck)
4273 			set_sbi_flag(sbi, SBI_NEED_FSCK);
4274 
4275 		if (skip_recovery)
4276 			goto reset_checkpoint;
4277 
4278 		err = f2fs_recover_fsync_data(sbi, false);
4279 		if (err < 0) {
4280 			if (err != -ENOMEM)
4281 				skip_recovery = true;
4282 			need_fsck = true;
4283 			f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
4284 				 err);
4285 			goto free_meta;
4286 		}
4287 	} else {
4288 		err = f2fs_recover_fsync_data(sbi, true);
4289 
4290 		if (!f2fs_readonly(sb) && err > 0) {
4291 			err = -EINVAL;
4292 			f2fs_err(sbi, "Need to recover fsync data");
4293 			goto free_meta;
4294 		}
4295 	}
4296 
4297 	/*
4298 	 * If the f2fs is not readonly and fsync data recovery succeeds,
4299 	 * check zoned block devices' write pointer consistency.
4300 	 */
4301 	if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
4302 		err = f2fs_check_write_pointer(sbi);
4303 		if (err)
4304 			goto free_meta;
4305 	}
4306 
4307 reset_checkpoint:
4308 	f2fs_init_inmem_curseg(sbi);
4309 
4310 	/* f2fs_recover_fsync_data() cleared this already */
4311 	clear_sbi_flag(sbi, SBI_POR_DOING);
4312 
4313 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
4314 		err = f2fs_disable_checkpoint(sbi);
4315 		if (err)
4316 			goto sync_free_meta;
4317 	} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
4318 		f2fs_enable_checkpoint(sbi);
4319 	}
4320 
4321 	/*
4322 	 * If filesystem is not mounted as read-only then
4323 	 * do start the gc_thread.
4324 	 */
4325 	if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF ||
4326 		test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) {
4327 		/* After POR, we can run background GC thread.*/
4328 		err = f2fs_start_gc_thread(sbi);
4329 		if (err)
4330 			goto sync_free_meta;
4331 	}
4332 	kvfree(options);
4333 
4334 	/* recover broken superblock */
4335 	if (recovery) {
4336 		err = f2fs_commit_super(sbi, true);
4337 		f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
4338 			  sbi->valid_super_block ? 1 : 2, err);
4339 	}
4340 
4341 	f2fs_join_shrinker(sbi);
4342 
4343 	f2fs_tuning_parameters(sbi);
4344 
4345 	f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
4346 		    cur_cp_version(F2FS_CKPT(sbi)));
4347 	f2fs_update_time(sbi, CP_TIME);
4348 	f2fs_update_time(sbi, REQ_TIME);
4349 	clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
4350 	return 0;
4351 
4352 sync_free_meta:
4353 	/* safe to flush all the data */
4354 	sync_filesystem(sbi->sb);
4355 	retry_cnt = 0;
4356 
4357 free_meta:
4358 #ifdef CONFIG_QUOTA
4359 	f2fs_truncate_quota_inode_pages(sb);
4360 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
4361 		f2fs_quota_off_umount(sbi->sb);
4362 #endif
4363 	/*
4364 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
4365 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
4366 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
4367 	 * falls into an infinite loop in f2fs_sync_meta_pages().
4368 	 */
4369 	truncate_inode_pages_final(META_MAPPING(sbi));
4370 	/* evict some inodes being cached by GC */
4371 	evict_inodes(sb);
4372 	f2fs_unregister_sysfs(sbi);
4373 free_compress_inode:
4374 	f2fs_destroy_compress_inode(sbi);
4375 free_root_inode:
4376 	dput(sb->s_root);
4377 	sb->s_root = NULL;
4378 free_node_inode:
4379 	f2fs_release_ino_entry(sbi, true);
4380 	truncate_inode_pages_final(NODE_MAPPING(sbi));
4381 	iput(sbi->node_inode);
4382 	sbi->node_inode = NULL;
4383 free_stats:
4384 	f2fs_destroy_stats(sbi);
4385 free_nm:
4386 	/* stop discard thread before destroying node manager */
4387 	f2fs_stop_discard_thread(sbi);
4388 	f2fs_destroy_node_manager(sbi);
4389 free_sm:
4390 	f2fs_destroy_segment_manager(sbi);
4391 	f2fs_destroy_post_read_wq(sbi);
4392 stop_ckpt_thread:
4393 	f2fs_stop_ckpt_thread(sbi);
4394 free_devices:
4395 	destroy_device_list(sbi);
4396 	kvfree(sbi->ckpt);
4397 free_meta_inode:
4398 	make_bad_inode(sbi->meta_inode);
4399 	iput(sbi->meta_inode);
4400 	sbi->meta_inode = NULL;
4401 free_page_array_cache:
4402 	f2fs_destroy_page_array_cache(sbi);
4403 free_xattr_cache:
4404 	f2fs_destroy_xattr_caches(sbi);
4405 free_io_dummy:
4406 	mempool_destroy(sbi->write_io_dummy);
4407 free_percpu:
4408 	destroy_percpu_info(sbi);
4409 free_iostat:
4410 	f2fs_destroy_iostat(sbi);
4411 free_bio_info:
4412 	for (i = 0; i < NR_PAGE_TYPE; i++)
4413 		kvfree(sbi->write_io[i]);
4414 
4415 #ifdef CONFIG_UNICODE
4416 	utf8_unload(sb->s_encoding);
4417 	sb->s_encoding = NULL;
4418 #endif
4419 free_options:
4420 #ifdef CONFIG_QUOTA
4421 	for (i = 0; i < MAXQUOTAS; i++)
4422 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
4423 #endif
4424 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
4425 	kvfree(options);
4426 free_sb_buf:
4427 	kfree(raw_super);
4428 free_sbi:
4429 	if (sbi->s_chksum_driver)
4430 		crypto_free_shash(sbi->s_chksum_driver);
4431 	kfree(sbi);
4432 
4433 	/* give only one another chance */
4434 	if (retry_cnt > 0 && skip_recovery) {
4435 		retry_cnt--;
4436 		shrink_dcache_sb(sb);
4437 		goto try_onemore;
4438 	}
4439 	return err;
4440 }
4441 
4442 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
4443 			const char *dev_name, void *data)
4444 {
4445 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
4446 }
4447 
4448 static void kill_f2fs_super(struct super_block *sb)
4449 {
4450 	if (sb->s_root) {
4451 		struct f2fs_sb_info *sbi = F2FS_SB(sb);
4452 
4453 		set_sbi_flag(sbi, SBI_IS_CLOSE);
4454 		f2fs_stop_gc_thread(sbi);
4455 		f2fs_stop_discard_thread(sbi);
4456 
4457 #ifdef CONFIG_F2FS_FS_COMPRESSION
4458 		/*
4459 		 * latter evict_inode() can bypass checking and invalidating
4460 		 * compress inode cache.
4461 		 */
4462 		if (test_opt(sbi, COMPRESS_CACHE))
4463 			truncate_inode_pages_final(COMPRESS_MAPPING(sbi));
4464 #endif
4465 
4466 		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
4467 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4468 			struct cp_control cpc = {
4469 				.reason = CP_UMOUNT,
4470 			};
4471 			f2fs_write_checkpoint(sbi, &cpc);
4472 		}
4473 
4474 		if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
4475 			sb->s_flags &= ~SB_RDONLY;
4476 	}
4477 	kill_block_super(sb);
4478 }
4479 
4480 static struct file_system_type f2fs_fs_type = {
4481 	.owner		= THIS_MODULE,
4482 	.name		= "f2fs",
4483 	.mount		= f2fs_mount,
4484 	.kill_sb	= kill_f2fs_super,
4485 	.fs_flags	= FS_REQUIRES_DEV,
4486 };
4487 MODULE_ALIAS_FS("f2fs");
4488 
4489 static int __init init_inodecache(void)
4490 {
4491 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
4492 			sizeof(struct f2fs_inode_info), 0,
4493 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
4494 	if (!f2fs_inode_cachep)
4495 		return -ENOMEM;
4496 	return 0;
4497 }
4498 
4499 static void destroy_inodecache(void)
4500 {
4501 	/*
4502 	 * Make sure all delayed rcu free inodes are flushed before we
4503 	 * destroy cache.
4504 	 */
4505 	rcu_barrier();
4506 	kmem_cache_destroy(f2fs_inode_cachep);
4507 }
4508 
4509 static int __init init_f2fs_fs(void)
4510 {
4511 	int err;
4512 
4513 	if (PAGE_SIZE != F2FS_BLKSIZE) {
4514 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
4515 				PAGE_SIZE, F2FS_BLKSIZE);
4516 		return -EINVAL;
4517 	}
4518 
4519 	err = init_inodecache();
4520 	if (err)
4521 		goto fail;
4522 	err = f2fs_create_node_manager_caches();
4523 	if (err)
4524 		goto free_inodecache;
4525 	err = f2fs_create_segment_manager_caches();
4526 	if (err)
4527 		goto free_node_manager_caches;
4528 	err = f2fs_create_checkpoint_caches();
4529 	if (err)
4530 		goto free_segment_manager_caches;
4531 	err = f2fs_create_recovery_cache();
4532 	if (err)
4533 		goto free_checkpoint_caches;
4534 	err = f2fs_create_extent_cache();
4535 	if (err)
4536 		goto free_recovery_cache;
4537 	err = f2fs_create_garbage_collection_cache();
4538 	if (err)
4539 		goto free_extent_cache;
4540 	err = f2fs_init_sysfs();
4541 	if (err)
4542 		goto free_garbage_collection_cache;
4543 	err = register_shrinker(&f2fs_shrinker_info);
4544 	if (err)
4545 		goto free_sysfs;
4546 	err = register_filesystem(&f2fs_fs_type);
4547 	if (err)
4548 		goto free_shrinker;
4549 	f2fs_create_root_stats();
4550 	err = f2fs_init_post_read_processing();
4551 	if (err)
4552 		goto free_root_stats;
4553 	err = f2fs_init_iostat_processing();
4554 	if (err)
4555 		goto free_post_read;
4556 	err = f2fs_init_bio_entry_cache();
4557 	if (err)
4558 		goto free_iostat;
4559 	err = f2fs_init_bioset();
4560 	if (err)
4561 		goto free_bio_enrty_cache;
4562 	err = f2fs_init_compress_mempool();
4563 	if (err)
4564 		goto free_bioset;
4565 	err = f2fs_init_compress_cache();
4566 	if (err)
4567 		goto free_compress_mempool;
4568 	err = f2fs_create_casefold_cache();
4569 	if (err)
4570 		goto free_compress_cache;
4571 	return 0;
4572 free_compress_cache:
4573 	f2fs_destroy_compress_cache();
4574 free_compress_mempool:
4575 	f2fs_destroy_compress_mempool();
4576 free_bioset:
4577 	f2fs_destroy_bioset();
4578 free_bio_enrty_cache:
4579 	f2fs_destroy_bio_entry_cache();
4580 free_iostat:
4581 	f2fs_destroy_iostat_processing();
4582 free_post_read:
4583 	f2fs_destroy_post_read_processing();
4584 free_root_stats:
4585 	f2fs_destroy_root_stats();
4586 	unregister_filesystem(&f2fs_fs_type);
4587 free_shrinker:
4588 	unregister_shrinker(&f2fs_shrinker_info);
4589 free_sysfs:
4590 	f2fs_exit_sysfs();
4591 free_garbage_collection_cache:
4592 	f2fs_destroy_garbage_collection_cache();
4593 free_extent_cache:
4594 	f2fs_destroy_extent_cache();
4595 free_recovery_cache:
4596 	f2fs_destroy_recovery_cache();
4597 free_checkpoint_caches:
4598 	f2fs_destroy_checkpoint_caches();
4599 free_segment_manager_caches:
4600 	f2fs_destroy_segment_manager_caches();
4601 free_node_manager_caches:
4602 	f2fs_destroy_node_manager_caches();
4603 free_inodecache:
4604 	destroy_inodecache();
4605 fail:
4606 	return err;
4607 }
4608 
4609 static void __exit exit_f2fs_fs(void)
4610 {
4611 	f2fs_destroy_casefold_cache();
4612 	f2fs_destroy_compress_cache();
4613 	f2fs_destroy_compress_mempool();
4614 	f2fs_destroy_bioset();
4615 	f2fs_destroy_bio_entry_cache();
4616 	f2fs_destroy_iostat_processing();
4617 	f2fs_destroy_post_read_processing();
4618 	f2fs_destroy_root_stats();
4619 	unregister_filesystem(&f2fs_fs_type);
4620 	unregister_shrinker(&f2fs_shrinker_info);
4621 	f2fs_exit_sysfs();
4622 	f2fs_destroy_garbage_collection_cache();
4623 	f2fs_destroy_extent_cache();
4624 	f2fs_destroy_recovery_cache();
4625 	f2fs_destroy_checkpoint_caches();
4626 	f2fs_destroy_segment_manager_caches();
4627 	f2fs_destroy_node_manager_caches();
4628 	destroy_inodecache();
4629 }
4630 
4631 module_init(init_f2fs_fs)
4632 module_exit(exit_f2fs_fs)
4633 
4634 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
4635 MODULE_DESCRIPTION("Flash Friendly File System");
4636 MODULE_LICENSE("GPL");
4637 MODULE_SOFTDEP("pre: crc32");
4638 
4639