1 /* 2 * fs/f2fs/super.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/fs.h> 14 #include <linux/statfs.h> 15 #include <linux/buffer_head.h> 16 #include <linux/backing-dev.h> 17 #include <linux/kthread.h> 18 #include <linux/parser.h> 19 #include <linux/mount.h> 20 #include <linux/seq_file.h> 21 #include <linux/proc_fs.h> 22 #include <linux/random.h> 23 #include <linux/exportfs.h> 24 #include <linux/blkdev.h> 25 #include <linux/f2fs_fs.h> 26 #include <linux/sysfs.h> 27 28 #include "f2fs.h" 29 #include "node.h" 30 #include "segment.h" 31 #include "xattr.h" 32 #include "gc.h" 33 #include "trace.h" 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/f2fs.h> 37 38 static struct proc_dir_entry *f2fs_proc_root; 39 static struct kmem_cache *f2fs_inode_cachep; 40 static struct kset *f2fs_kset; 41 42 #ifdef CONFIG_F2FS_FAULT_INJECTION 43 44 char *fault_name[FAULT_MAX] = { 45 [FAULT_KMALLOC] = "kmalloc", 46 [FAULT_PAGE_ALLOC] = "page alloc", 47 [FAULT_ALLOC_NID] = "alloc nid", 48 [FAULT_ORPHAN] = "orphan", 49 [FAULT_BLOCK] = "no more block", 50 [FAULT_DIR_DEPTH] = "too big dir depth", 51 [FAULT_EVICT_INODE] = "evict_inode fail", 52 [FAULT_IO] = "IO error", 53 [FAULT_CHECKPOINT] = "checkpoint error", 54 }; 55 56 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, 57 unsigned int rate) 58 { 59 struct f2fs_fault_info *ffi = &sbi->fault_info; 60 61 if (rate) { 62 atomic_set(&ffi->inject_ops, 0); 63 ffi->inject_rate = rate; 64 ffi->inject_type = (1 << FAULT_MAX) - 1; 65 } else { 66 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 67 } 68 } 69 #endif 70 71 /* f2fs-wide shrinker description */ 72 static struct shrinker f2fs_shrinker_info = { 73 .scan_objects = f2fs_shrink_scan, 74 .count_objects = f2fs_shrink_count, 75 .seeks = DEFAULT_SEEKS, 76 }; 77 78 enum { 79 Opt_gc_background, 80 Opt_disable_roll_forward, 81 Opt_norecovery, 82 Opt_discard, 83 Opt_nodiscard, 84 Opt_noheap, 85 Opt_user_xattr, 86 Opt_nouser_xattr, 87 Opt_acl, 88 Opt_noacl, 89 Opt_active_logs, 90 Opt_disable_ext_identify, 91 Opt_inline_xattr, 92 Opt_inline_data, 93 Opt_inline_dentry, 94 Opt_noinline_dentry, 95 Opt_flush_merge, 96 Opt_noflush_merge, 97 Opt_nobarrier, 98 Opt_fastboot, 99 Opt_extent_cache, 100 Opt_noextent_cache, 101 Opt_noinline_data, 102 Opt_data_flush, 103 Opt_mode, 104 Opt_fault_injection, 105 Opt_lazytime, 106 Opt_nolazytime, 107 Opt_err, 108 }; 109 110 static match_table_t f2fs_tokens = { 111 {Opt_gc_background, "background_gc=%s"}, 112 {Opt_disable_roll_forward, "disable_roll_forward"}, 113 {Opt_norecovery, "norecovery"}, 114 {Opt_discard, "discard"}, 115 {Opt_nodiscard, "nodiscard"}, 116 {Opt_noheap, "no_heap"}, 117 {Opt_user_xattr, "user_xattr"}, 118 {Opt_nouser_xattr, "nouser_xattr"}, 119 {Opt_acl, "acl"}, 120 {Opt_noacl, "noacl"}, 121 {Opt_active_logs, "active_logs=%u"}, 122 {Opt_disable_ext_identify, "disable_ext_identify"}, 123 {Opt_inline_xattr, "inline_xattr"}, 124 {Opt_inline_data, "inline_data"}, 125 {Opt_inline_dentry, "inline_dentry"}, 126 {Opt_noinline_dentry, "noinline_dentry"}, 127 {Opt_flush_merge, "flush_merge"}, 128 {Opt_noflush_merge, "noflush_merge"}, 129 {Opt_nobarrier, "nobarrier"}, 130 {Opt_fastboot, "fastboot"}, 131 {Opt_extent_cache, "extent_cache"}, 132 {Opt_noextent_cache, "noextent_cache"}, 133 {Opt_noinline_data, "noinline_data"}, 134 {Opt_data_flush, "data_flush"}, 135 {Opt_mode, "mode=%s"}, 136 {Opt_fault_injection, "fault_injection=%u"}, 137 {Opt_lazytime, "lazytime"}, 138 {Opt_nolazytime, "nolazytime"}, 139 {Opt_err, NULL}, 140 }; 141 142 /* Sysfs support for f2fs */ 143 enum { 144 GC_THREAD, /* struct f2fs_gc_thread */ 145 SM_INFO, /* struct f2fs_sm_info */ 146 NM_INFO, /* struct f2fs_nm_info */ 147 F2FS_SBI, /* struct f2fs_sb_info */ 148 #ifdef CONFIG_F2FS_FAULT_INJECTION 149 FAULT_INFO_RATE, /* struct f2fs_fault_info */ 150 FAULT_INFO_TYPE, /* struct f2fs_fault_info */ 151 #endif 152 }; 153 154 struct f2fs_attr { 155 struct attribute attr; 156 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *); 157 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *, 158 const char *, size_t); 159 int struct_type; 160 int offset; 161 }; 162 163 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type) 164 { 165 if (struct_type == GC_THREAD) 166 return (unsigned char *)sbi->gc_thread; 167 else if (struct_type == SM_INFO) 168 return (unsigned char *)SM_I(sbi); 169 else if (struct_type == NM_INFO) 170 return (unsigned char *)NM_I(sbi); 171 else if (struct_type == F2FS_SBI) 172 return (unsigned char *)sbi; 173 #ifdef CONFIG_F2FS_FAULT_INJECTION 174 else if (struct_type == FAULT_INFO_RATE || 175 struct_type == FAULT_INFO_TYPE) 176 return (unsigned char *)&sbi->fault_info; 177 #endif 178 return NULL; 179 } 180 181 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a, 182 struct f2fs_sb_info *sbi, char *buf) 183 { 184 struct super_block *sb = sbi->sb; 185 186 if (!sb->s_bdev->bd_part) 187 return snprintf(buf, PAGE_SIZE, "0\n"); 188 189 return snprintf(buf, PAGE_SIZE, "%llu\n", 190 (unsigned long long)(sbi->kbytes_written + 191 BD_PART_WRITTEN(sbi))); 192 } 193 194 static ssize_t f2fs_sbi_show(struct f2fs_attr *a, 195 struct f2fs_sb_info *sbi, char *buf) 196 { 197 unsigned char *ptr = NULL; 198 unsigned int *ui; 199 200 ptr = __struct_ptr(sbi, a->struct_type); 201 if (!ptr) 202 return -EINVAL; 203 204 ui = (unsigned int *)(ptr + a->offset); 205 206 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 207 } 208 209 static ssize_t f2fs_sbi_store(struct f2fs_attr *a, 210 struct f2fs_sb_info *sbi, 211 const char *buf, size_t count) 212 { 213 unsigned char *ptr; 214 unsigned long t; 215 unsigned int *ui; 216 ssize_t ret; 217 218 ptr = __struct_ptr(sbi, a->struct_type); 219 if (!ptr) 220 return -EINVAL; 221 222 ui = (unsigned int *)(ptr + a->offset); 223 224 ret = kstrtoul(skip_spaces(buf), 0, &t); 225 if (ret < 0) 226 return ret; 227 #ifdef CONFIG_F2FS_FAULT_INJECTION 228 if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX)) 229 return -EINVAL; 230 #endif 231 *ui = t; 232 return count; 233 } 234 235 static ssize_t f2fs_attr_show(struct kobject *kobj, 236 struct attribute *attr, char *buf) 237 { 238 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 239 s_kobj); 240 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 241 242 return a->show ? a->show(a, sbi, buf) : 0; 243 } 244 245 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr, 246 const char *buf, size_t len) 247 { 248 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 249 s_kobj); 250 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 251 252 return a->store ? a->store(a, sbi, buf, len) : 0; 253 } 254 255 static void f2fs_sb_release(struct kobject *kobj) 256 { 257 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 258 s_kobj); 259 complete(&sbi->s_kobj_unregister); 260 } 261 262 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \ 263 static struct f2fs_attr f2fs_attr_##_name = { \ 264 .attr = {.name = __stringify(_name), .mode = _mode }, \ 265 .show = _show, \ 266 .store = _store, \ 267 .struct_type = _struct_type, \ 268 .offset = _offset \ 269 } 270 271 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \ 272 F2FS_ATTR_OFFSET(struct_type, name, 0644, \ 273 f2fs_sbi_show, f2fs_sbi_store, \ 274 offsetof(struct struct_name, elname)) 275 276 #define F2FS_GENERAL_RO_ATTR(name) \ 277 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL) 278 279 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time); 280 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time); 281 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time); 282 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle); 283 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments); 284 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards); 285 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections); 286 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy); 287 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util); 288 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks); 289 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh); 290 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages); 291 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio); 292 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search); 293 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level); 294 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]); 295 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]); 296 #ifdef CONFIG_F2FS_FAULT_INJECTION 297 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate); 298 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type); 299 #endif 300 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes); 301 302 #define ATTR_LIST(name) (&f2fs_attr_##name.attr) 303 static struct attribute *f2fs_attrs[] = { 304 ATTR_LIST(gc_min_sleep_time), 305 ATTR_LIST(gc_max_sleep_time), 306 ATTR_LIST(gc_no_gc_sleep_time), 307 ATTR_LIST(gc_idle), 308 ATTR_LIST(reclaim_segments), 309 ATTR_LIST(max_small_discards), 310 ATTR_LIST(batched_trim_sections), 311 ATTR_LIST(ipu_policy), 312 ATTR_LIST(min_ipu_util), 313 ATTR_LIST(min_fsync_blocks), 314 ATTR_LIST(max_victim_search), 315 ATTR_LIST(dir_level), 316 ATTR_LIST(ram_thresh), 317 ATTR_LIST(ra_nid_pages), 318 ATTR_LIST(dirty_nats_ratio), 319 ATTR_LIST(cp_interval), 320 ATTR_LIST(idle_interval), 321 #ifdef CONFIG_F2FS_FAULT_INJECTION 322 ATTR_LIST(inject_rate), 323 ATTR_LIST(inject_type), 324 #endif 325 ATTR_LIST(lifetime_write_kbytes), 326 NULL, 327 }; 328 329 static const struct sysfs_ops f2fs_attr_ops = { 330 .show = f2fs_attr_show, 331 .store = f2fs_attr_store, 332 }; 333 334 static struct kobj_type f2fs_ktype = { 335 .default_attrs = f2fs_attrs, 336 .sysfs_ops = &f2fs_attr_ops, 337 .release = f2fs_sb_release, 338 }; 339 340 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) 341 { 342 struct va_format vaf; 343 va_list args; 344 345 va_start(args, fmt); 346 vaf.fmt = fmt; 347 vaf.va = &args; 348 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); 349 va_end(args); 350 } 351 352 static void init_once(void *foo) 353 { 354 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 355 356 inode_init_once(&fi->vfs_inode); 357 } 358 359 static int parse_options(struct super_block *sb, char *options) 360 { 361 struct f2fs_sb_info *sbi = F2FS_SB(sb); 362 struct request_queue *q; 363 substring_t args[MAX_OPT_ARGS]; 364 char *p, *name; 365 int arg = 0; 366 367 if (!options) 368 return 0; 369 370 while ((p = strsep(&options, ",")) != NULL) { 371 int token; 372 if (!*p) 373 continue; 374 /* 375 * Initialize args struct so we know whether arg was 376 * found; some options take optional arguments. 377 */ 378 args[0].to = args[0].from = NULL; 379 token = match_token(p, f2fs_tokens, args); 380 381 switch (token) { 382 case Opt_gc_background: 383 name = match_strdup(&args[0]); 384 385 if (!name) 386 return -ENOMEM; 387 if (strlen(name) == 2 && !strncmp(name, "on", 2)) { 388 set_opt(sbi, BG_GC); 389 clear_opt(sbi, FORCE_FG_GC); 390 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) { 391 clear_opt(sbi, BG_GC); 392 clear_opt(sbi, FORCE_FG_GC); 393 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) { 394 set_opt(sbi, BG_GC); 395 set_opt(sbi, FORCE_FG_GC); 396 } else { 397 kfree(name); 398 return -EINVAL; 399 } 400 kfree(name); 401 break; 402 case Opt_disable_roll_forward: 403 set_opt(sbi, DISABLE_ROLL_FORWARD); 404 break; 405 case Opt_norecovery: 406 /* this option mounts f2fs with ro */ 407 set_opt(sbi, DISABLE_ROLL_FORWARD); 408 if (!f2fs_readonly(sb)) 409 return -EINVAL; 410 break; 411 case Opt_discard: 412 q = bdev_get_queue(sb->s_bdev); 413 if (blk_queue_discard(q)) { 414 set_opt(sbi, DISCARD); 415 } else { 416 f2fs_msg(sb, KERN_WARNING, 417 "mounting with \"discard\" option, but " 418 "the device does not support discard"); 419 } 420 break; 421 case Opt_nodiscard: 422 clear_opt(sbi, DISCARD); 423 case Opt_noheap: 424 set_opt(sbi, NOHEAP); 425 break; 426 #ifdef CONFIG_F2FS_FS_XATTR 427 case Opt_user_xattr: 428 set_opt(sbi, XATTR_USER); 429 break; 430 case Opt_nouser_xattr: 431 clear_opt(sbi, XATTR_USER); 432 break; 433 case Opt_inline_xattr: 434 set_opt(sbi, INLINE_XATTR); 435 break; 436 #else 437 case Opt_user_xattr: 438 f2fs_msg(sb, KERN_INFO, 439 "user_xattr options not supported"); 440 break; 441 case Opt_nouser_xattr: 442 f2fs_msg(sb, KERN_INFO, 443 "nouser_xattr options not supported"); 444 break; 445 case Opt_inline_xattr: 446 f2fs_msg(sb, KERN_INFO, 447 "inline_xattr options not supported"); 448 break; 449 #endif 450 #ifdef CONFIG_F2FS_FS_POSIX_ACL 451 case Opt_acl: 452 set_opt(sbi, POSIX_ACL); 453 break; 454 case Opt_noacl: 455 clear_opt(sbi, POSIX_ACL); 456 break; 457 #else 458 case Opt_acl: 459 f2fs_msg(sb, KERN_INFO, "acl options not supported"); 460 break; 461 case Opt_noacl: 462 f2fs_msg(sb, KERN_INFO, "noacl options not supported"); 463 break; 464 #endif 465 case Opt_active_logs: 466 if (args->from && match_int(args, &arg)) 467 return -EINVAL; 468 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 469 return -EINVAL; 470 sbi->active_logs = arg; 471 break; 472 case Opt_disable_ext_identify: 473 set_opt(sbi, DISABLE_EXT_IDENTIFY); 474 break; 475 case Opt_inline_data: 476 set_opt(sbi, INLINE_DATA); 477 break; 478 case Opt_inline_dentry: 479 set_opt(sbi, INLINE_DENTRY); 480 break; 481 case Opt_noinline_dentry: 482 clear_opt(sbi, INLINE_DENTRY); 483 break; 484 case Opt_flush_merge: 485 set_opt(sbi, FLUSH_MERGE); 486 break; 487 case Opt_noflush_merge: 488 clear_opt(sbi, FLUSH_MERGE); 489 break; 490 case Opt_nobarrier: 491 set_opt(sbi, NOBARRIER); 492 break; 493 case Opt_fastboot: 494 set_opt(sbi, FASTBOOT); 495 break; 496 case Opt_extent_cache: 497 set_opt(sbi, EXTENT_CACHE); 498 break; 499 case Opt_noextent_cache: 500 clear_opt(sbi, EXTENT_CACHE); 501 break; 502 case Opt_noinline_data: 503 clear_opt(sbi, INLINE_DATA); 504 break; 505 case Opt_data_flush: 506 set_opt(sbi, DATA_FLUSH); 507 break; 508 case Opt_mode: 509 name = match_strdup(&args[0]); 510 511 if (!name) 512 return -ENOMEM; 513 if (strlen(name) == 8 && 514 !strncmp(name, "adaptive", 8)) { 515 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 516 } else if (strlen(name) == 3 && 517 !strncmp(name, "lfs", 3)) { 518 set_opt_mode(sbi, F2FS_MOUNT_LFS); 519 } else { 520 kfree(name); 521 return -EINVAL; 522 } 523 kfree(name); 524 break; 525 case Opt_fault_injection: 526 if (args->from && match_int(args, &arg)) 527 return -EINVAL; 528 #ifdef CONFIG_F2FS_FAULT_INJECTION 529 f2fs_build_fault_attr(sbi, arg); 530 #else 531 f2fs_msg(sb, KERN_INFO, 532 "FAULT_INJECTION was not selected"); 533 #endif 534 break; 535 case Opt_lazytime: 536 sb->s_flags |= MS_LAZYTIME; 537 break; 538 case Opt_nolazytime: 539 sb->s_flags &= ~MS_LAZYTIME; 540 break; 541 default: 542 f2fs_msg(sb, KERN_ERR, 543 "Unrecognized mount option \"%s\" or missing value", 544 p); 545 return -EINVAL; 546 } 547 } 548 return 0; 549 } 550 551 static struct inode *f2fs_alloc_inode(struct super_block *sb) 552 { 553 struct f2fs_inode_info *fi; 554 555 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 556 if (!fi) 557 return NULL; 558 559 init_once((void *) fi); 560 561 if (percpu_counter_init(&fi->dirty_pages, 0, GFP_NOFS)) { 562 kmem_cache_free(f2fs_inode_cachep, fi); 563 return NULL; 564 } 565 566 /* Initialize f2fs-specific inode info */ 567 fi->vfs_inode.i_version = 1; 568 fi->i_current_depth = 1; 569 fi->i_advise = 0; 570 init_rwsem(&fi->i_sem); 571 INIT_LIST_HEAD(&fi->dirty_list); 572 INIT_LIST_HEAD(&fi->gdirty_list); 573 INIT_LIST_HEAD(&fi->inmem_pages); 574 mutex_init(&fi->inmem_lock); 575 init_rwsem(&fi->dio_rwsem[READ]); 576 init_rwsem(&fi->dio_rwsem[WRITE]); 577 578 /* Will be used by directory only */ 579 fi->i_dir_level = F2FS_SB(sb)->dir_level; 580 return &fi->vfs_inode; 581 } 582 583 static int f2fs_drop_inode(struct inode *inode) 584 { 585 /* 586 * This is to avoid a deadlock condition like below. 587 * writeback_single_inode(inode) 588 * - f2fs_write_data_page 589 * - f2fs_gc -> iput -> evict 590 * - inode_wait_for_writeback(inode) 591 */ 592 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 593 if (!inode->i_nlink && !is_bad_inode(inode)) { 594 /* to avoid evict_inode call simultaneously */ 595 atomic_inc(&inode->i_count); 596 spin_unlock(&inode->i_lock); 597 598 /* some remained atomic pages should discarded */ 599 if (f2fs_is_atomic_file(inode)) 600 drop_inmem_pages(inode); 601 602 /* should remain fi->extent_tree for writepage */ 603 f2fs_destroy_extent_node(inode); 604 605 sb_start_intwrite(inode->i_sb); 606 f2fs_i_size_write(inode, 0); 607 608 if (F2FS_HAS_BLOCKS(inode)) 609 f2fs_truncate(inode); 610 611 sb_end_intwrite(inode->i_sb); 612 613 fscrypt_put_encryption_info(inode, NULL); 614 spin_lock(&inode->i_lock); 615 atomic_dec(&inode->i_count); 616 } 617 return 0; 618 } 619 620 return generic_drop_inode(inode); 621 } 622 623 int f2fs_inode_dirtied(struct inode *inode) 624 { 625 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 626 627 spin_lock(&sbi->inode_lock[DIRTY_META]); 628 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 629 spin_unlock(&sbi->inode_lock[DIRTY_META]); 630 return 1; 631 } 632 633 set_inode_flag(inode, FI_DIRTY_INODE); 634 list_add_tail(&F2FS_I(inode)->gdirty_list, 635 &sbi->inode_list[DIRTY_META]); 636 inc_page_count(sbi, F2FS_DIRTY_IMETA); 637 stat_inc_dirty_inode(sbi, DIRTY_META); 638 spin_unlock(&sbi->inode_lock[DIRTY_META]); 639 640 return 0; 641 } 642 643 void f2fs_inode_synced(struct inode *inode) 644 { 645 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 646 647 spin_lock(&sbi->inode_lock[DIRTY_META]); 648 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 649 spin_unlock(&sbi->inode_lock[DIRTY_META]); 650 return; 651 } 652 list_del_init(&F2FS_I(inode)->gdirty_list); 653 clear_inode_flag(inode, FI_DIRTY_INODE); 654 clear_inode_flag(inode, FI_AUTO_RECOVER); 655 dec_page_count(sbi, F2FS_DIRTY_IMETA); 656 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 657 spin_unlock(&sbi->inode_lock[DIRTY_META]); 658 } 659 660 /* 661 * f2fs_dirty_inode() is called from __mark_inode_dirty() 662 * 663 * We should call set_dirty_inode to write the dirty inode through write_inode. 664 */ 665 static void f2fs_dirty_inode(struct inode *inode, int flags) 666 { 667 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 668 669 if (inode->i_ino == F2FS_NODE_INO(sbi) || 670 inode->i_ino == F2FS_META_INO(sbi)) 671 return; 672 673 if (flags == I_DIRTY_TIME) 674 return; 675 676 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 677 clear_inode_flag(inode, FI_AUTO_RECOVER); 678 679 f2fs_inode_dirtied(inode); 680 } 681 682 static void f2fs_i_callback(struct rcu_head *head) 683 { 684 struct inode *inode = container_of(head, struct inode, i_rcu); 685 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 686 } 687 688 static void f2fs_destroy_inode(struct inode *inode) 689 { 690 percpu_counter_destroy(&F2FS_I(inode)->dirty_pages); 691 call_rcu(&inode->i_rcu, f2fs_i_callback); 692 } 693 694 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 695 { 696 int i; 697 698 for (i = 0; i < NR_COUNT_TYPE; i++) 699 percpu_counter_destroy(&sbi->nr_pages[i]); 700 percpu_counter_destroy(&sbi->alloc_valid_block_count); 701 percpu_counter_destroy(&sbi->total_valid_inode_count); 702 } 703 704 static void f2fs_put_super(struct super_block *sb) 705 { 706 struct f2fs_sb_info *sbi = F2FS_SB(sb); 707 708 if (sbi->s_proc) { 709 remove_proc_entry("segment_info", sbi->s_proc); 710 remove_proc_entry("segment_bits", sbi->s_proc); 711 remove_proc_entry(sb->s_id, f2fs_proc_root); 712 } 713 kobject_del(&sbi->s_kobj); 714 715 stop_gc_thread(sbi); 716 717 /* prevent remaining shrinker jobs */ 718 mutex_lock(&sbi->umount_mutex); 719 720 /* 721 * We don't need to do checkpoint when superblock is clean. 722 * But, the previous checkpoint was not done by umount, it needs to do 723 * clean checkpoint again. 724 */ 725 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 726 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 727 struct cp_control cpc = { 728 .reason = CP_UMOUNT, 729 }; 730 write_checkpoint(sbi, &cpc); 731 } 732 733 /* write_checkpoint can update stat informaion */ 734 f2fs_destroy_stats(sbi); 735 736 /* 737 * normally superblock is clean, so we need to release this. 738 * In addition, EIO will skip do checkpoint, we need this as well. 739 */ 740 release_ino_entry(sbi, true); 741 release_discard_addrs(sbi); 742 743 f2fs_leave_shrinker(sbi); 744 mutex_unlock(&sbi->umount_mutex); 745 746 /* our cp_error case, we can wait for any writeback page */ 747 f2fs_flush_merged_bios(sbi); 748 749 iput(sbi->node_inode); 750 iput(sbi->meta_inode); 751 752 /* destroy f2fs internal modules */ 753 destroy_node_manager(sbi); 754 destroy_segment_manager(sbi); 755 756 kfree(sbi->ckpt); 757 kobject_put(&sbi->s_kobj); 758 wait_for_completion(&sbi->s_kobj_unregister); 759 760 sb->s_fs_info = NULL; 761 if (sbi->s_chksum_driver) 762 crypto_free_shash(sbi->s_chksum_driver); 763 kfree(sbi->raw_super); 764 765 destroy_percpu_info(sbi); 766 kfree(sbi); 767 } 768 769 int f2fs_sync_fs(struct super_block *sb, int sync) 770 { 771 struct f2fs_sb_info *sbi = F2FS_SB(sb); 772 int err = 0; 773 774 trace_f2fs_sync_fs(sb, sync); 775 776 if (sync) { 777 struct cp_control cpc; 778 779 cpc.reason = __get_cp_reason(sbi); 780 781 mutex_lock(&sbi->gc_mutex); 782 err = write_checkpoint(sbi, &cpc); 783 mutex_unlock(&sbi->gc_mutex); 784 } 785 f2fs_trace_ios(NULL, 1); 786 787 return err; 788 } 789 790 static int f2fs_freeze(struct super_block *sb) 791 { 792 int err; 793 794 if (f2fs_readonly(sb)) 795 return 0; 796 797 err = f2fs_sync_fs(sb, 1); 798 return err; 799 } 800 801 static int f2fs_unfreeze(struct super_block *sb) 802 { 803 return 0; 804 } 805 806 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 807 { 808 struct super_block *sb = dentry->d_sb; 809 struct f2fs_sb_info *sbi = F2FS_SB(sb); 810 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 811 block_t total_count, user_block_count, start_count, ovp_count; 812 813 total_count = le64_to_cpu(sbi->raw_super->block_count); 814 user_block_count = sbi->user_block_count; 815 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 816 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg; 817 buf->f_type = F2FS_SUPER_MAGIC; 818 buf->f_bsize = sbi->blocksize; 819 820 buf->f_blocks = total_count - start_count; 821 buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count; 822 buf->f_bavail = user_block_count - valid_user_blocks(sbi); 823 824 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 825 buf->f_ffree = buf->f_files - valid_inode_count(sbi); 826 827 buf->f_namelen = F2FS_NAME_LEN; 828 buf->f_fsid.val[0] = (u32)id; 829 buf->f_fsid.val[1] = (u32)(id >> 32); 830 831 return 0; 832 } 833 834 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 835 { 836 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 837 838 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) { 839 if (test_opt(sbi, FORCE_FG_GC)) 840 seq_printf(seq, ",background_gc=%s", "sync"); 841 else 842 seq_printf(seq, ",background_gc=%s", "on"); 843 } else { 844 seq_printf(seq, ",background_gc=%s", "off"); 845 } 846 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 847 seq_puts(seq, ",disable_roll_forward"); 848 if (test_opt(sbi, DISCARD)) 849 seq_puts(seq, ",discard"); 850 if (test_opt(sbi, NOHEAP)) 851 seq_puts(seq, ",no_heap_alloc"); 852 #ifdef CONFIG_F2FS_FS_XATTR 853 if (test_opt(sbi, XATTR_USER)) 854 seq_puts(seq, ",user_xattr"); 855 else 856 seq_puts(seq, ",nouser_xattr"); 857 if (test_opt(sbi, INLINE_XATTR)) 858 seq_puts(seq, ",inline_xattr"); 859 #endif 860 #ifdef CONFIG_F2FS_FS_POSIX_ACL 861 if (test_opt(sbi, POSIX_ACL)) 862 seq_puts(seq, ",acl"); 863 else 864 seq_puts(seq, ",noacl"); 865 #endif 866 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 867 seq_puts(seq, ",disable_ext_identify"); 868 if (test_opt(sbi, INLINE_DATA)) 869 seq_puts(seq, ",inline_data"); 870 else 871 seq_puts(seq, ",noinline_data"); 872 if (test_opt(sbi, INLINE_DENTRY)) 873 seq_puts(seq, ",inline_dentry"); 874 else 875 seq_puts(seq, ",noinline_dentry"); 876 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 877 seq_puts(seq, ",flush_merge"); 878 if (test_opt(sbi, NOBARRIER)) 879 seq_puts(seq, ",nobarrier"); 880 if (test_opt(sbi, FASTBOOT)) 881 seq_puts(seq, ",fastboot"); 882 if (test_opt(sbi, EXTENT_CACHE)) 883 seq_puts(seq, ",extent_cache"); 884 else 885 seq_puts(seq, ",noextent_cache"); 886 if (test_opt(sbi, DATA_FLUSH)) 887 seq_puts(seq, ",data_flush"); 888 889 seq_puts(seq, ",mode="); 890 if (test_opt(sbi, ADAPTIVE)) 891 seq_puts(seq, "adaptive"); 892 else if (test_opt(sbi, LFS)) 893 seq_puts(seq, "lfs"); 894 seq_printf(seq, ",active_logs=%u", sbi->active_logs); 895 896 return 0; 897 } 898 899 static int segment_info_seq_show(struct seq_file *seq, void *offset) 900 { 901 struct super_block *sb = seq->private; 902 struct f2fs_sb_info *sbi = F2FS_SB(sb); 903 unsigned int total_segs = 904 le32_to_cpu(sbi->raw_super->segment_count_main); 905 int i; 906 907 seq_puts(seq, "format: segment_type|valid_blocks\n" 908 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n"); 909 910 for (i = 0; i < total_segs; i++) { 911 struct seg_entry *se = get_seg_entry(sbi, i); 912 913 if ((i % 10) == 0) 914 seq_printf(seq, "%-10d", i); 915 seq_printf(seq, "%d|%-3u", se->type, 916 get_valid_blocks(sbi, i, 1)); 917 if ((i % 10) == 9 || i == (total_segs - 1)) 918 seq_putc(seq, '\n'); 919 else 920 seq_putc(seq, ' '); 921 } 922 923 return 0; 924 } 925 926 static int segment_bits_seq_show(struct seq_file *seq, void *offset) 927 { 928 struct super_block *sb = seq->private; 929 struct f2fs_sb_info *sbi = F2FS_SB(sb); 930 unsigned int total_segs = 931 le32_to_cpu(sbi->raw_super->segment_count_main); 932 int i, j; 933 934 seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n" 935 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n"); 936 937 for (i = 0; i < total_segs; i++) { 938 struct seg_entry *se = get_seg_entry(sbi, i); 939 940 seq_printf(seq, "%-10d", i); 941 seq_printf(seq, "%d|%-3u|", se->type, 942 get_valid_blocks(sbi, i, 1)); 943 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++) 944 seq_printf(seq, " %.2x", se->cur_valid_map[j]); 945 seq_putc(seq, '\n'); 946 } 947 return 0; 948 } 949 950 #define F2FS_PROC_FILE_DEF(_name) \ 951 static int _name##_open_fs(struct inode *inode, struct file *file) \ 952 { \ 953 return single_open(file, _name##_seq_show, PDE_DATA(inode)); \ 954 } \ 955 \ 956 static const struct file_operations f2fs_seq_##_name##_fops = { \ 957 .open = _name##_open_fs, \ 958 .read = seq_read, \ 959 .llseek = seq_lseek, \ 960 .release = single_release, \ 961 }; 962 963 F2FS_PROC_FILE_DEF(segment_info); 964 F2FS_PROC_FILE_DEF(segment_bits); 965 966 static void default_options(struct f2fs_sb_info *sbi) 967 { 968 /* init some FS parameters */ 969 sbi->active_logs = NR_CURSEG_TYPE; 970 971 set_opt(sbi, BG_GC); 972 set_opt(sbi, INLINE_DATA); 973 set_opt(sbi, INLINE_DENTRY); 974 set_opt(sbi, EXTENT_CACHE); 975 sbi->sb->s_flags |= MS_LAZYTIME; 976 set_opt(sbi, FLUSH_MERGE); 977 if (f2fs_sb_mounted_hmsmr(sbi->sb)) { 978 set_opt_mode(sbi, F2FS_MOUNT_LFS); 979 set_opt(sbi, DISCARD); 980 } else { 981 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 982 } 983 984 #ifdef CONFIG_F2FS_FS_XATTR 985 set_opt(sbi, XATTR_USER); 986 #endif 987 #ifdef CONFIG_F2FS_FS_POSIX_ACL 988 set_opt(sbi, POSIX_ACL); 989 #endif 990 991 #ifdef CONFIG_F2FS_FAULT_INJECTION 992 f2fs_build_fault_attr(sbi, 0); 993 #endif 994 } 995 996 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 997 { 998 struct f2fs_sb_info *sbi = F2FS_SB(sb); 999 struct f2fs_mount_info org_mount_opt; 1000 int err, active_logs; 1001 bool need_restart_gc = false; 1002 bool need_stop_gc = false; 1003 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 1004 #ifdef CONFIG_F2FS_FAULT_INJECTION 1005 struct f2fs_fault_info ffi = sbi->fault_info; 1006 #endif 1007 1008 /* 1009 * Save the old mount options in case we 1010 * need to restore them. 1011 */ 1012 org_mount_opt = sbi->mount_opt; 1013 active_logs = sbi->active_logs; 1014 1015 /* recover superblocks we couldn't write due to previous RO mount */ 1016 if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 1017 err = f2fs_commit_super(sbi, false); 1018 f2fs_msg(sb, KERN_INFO, 1019 "Try to recover all the superblocks, ret: %d", err); 1020 if (!err) 1021 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1022 } 1023 1024 sbi->mount_opt.opt = 0; 1025 default_options(sbi); 1026 1027 /* parse mount options */ 1028 err = parse_options(sb, data); 1029 if (err) 1030 goto restore_opts; 1031 1032 /* 1033 * Previous and new state of filesystem is RO, 1034 * so skip checking GC and FLUSH_MERGE conditions. 1035 */ 1036 if (f2fs_readonly(sb) && (*flags & MS_RDONLY)) 1037 goto skip; 1038 1039 /* disallow enable/disable extent_cache dynamically */ 1040 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 1041 err = -EINVAL; 1042 f2fs_msg(sbi->sb, KERN_WARNING, 1043 "switch extent_cache option is not allowed"); 1044 goto restore_opts; 1045 } 1046 1047 /* 1048 * We stop the GC thread if FS is mounted as RO 1049 * or if background_gc = off is passed in mount 1050 * option. Also sync the filesystem. 1051 */ 1052 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) { 1053 if (sbi->gc_thread) { 1054 stop_gc_thread(sbi); 1055 need_restart_gc = true; 1056 } 1057 } else if (!sbi->gc_thread) { 1058 err = start_gc_thread(sbi); 1059 if (err) 1060 goto restore_opts; 1061 need_stop_gc = true; 1062 } 1063 1064 if (*flags & MS_RDONLY) { 1065 writeback_inodes_sb(sb, WB_REASON_SYNC); 1066 sync_inodes_sb(sb); 1067 1068 set_sbi_flag(sbi, SBI_IS_DIRTY); 1069 set_sbi_flag(sbi, SBI_IS_CLOSE); 1070 f2fs_sync_fs(sb, 1); 1071 clear_sbi_flag(sbi, SBI_IS_CLOSE); 1072 } 1073 1074 /* 1075 * We stop issue flush thread if FS is mounted as RO 1076 * or if flush_merge is not passed in mount option. 1077 */ 1078 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 1079 destroy_flush_cmd_control(sbi); 1080 } else if (!SM_I(sbi)->cmd_control_info) { 1081 err = create_flush_cmd_control(sbi); 1082 if (err) 1083 goto restore_gc; 1084 } 1085 skip: 1086 /* Update the POSIXACL Flag */ 1087 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 1088 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 1089 1090 return 0; 1091 restore_gc: 1092 if (need_restart_gc) { 1093 if (start_gc_thread(sbi)) 1094 f2fs_msg(sbi->sb, KERN_WARNING, 1095 "background gc thread has stopped"); 1096 } else if (need_stop_gc) { 1097 stop_gc_thread(sbi); 1098 } 1099 restore_opts: 1100 sbi->mount_opt = org_mount_opt; 1101 sbi->active_logs = active_logs; 1102 #ifdef CONFIG_F2FS_FAULT_INJECTION 1103 sbi->fault_info = ffi; 1104 #endif 1105 return err; 1106 } 1107 1108 static struct super_operations f2fs_sops = { 1109 .alloc_inode = f2fs_alloc_inode, 1110 .drop_inode = f2fs_drop_inode, 1111 .destroy_inode = f2fs_destroy_inode, 1112 .write_inode = f2fs_write_inode, 1113 .dirty_inode = f2fs_dirty_inode, 1114 .show_options = f2fs_show_options, 1115 .evict_inode = f2fs_evict_inode, 1116 .put_super = f2fs_put_super, 1117 .sync_fs = f2fs_sync_fs, 1118 .freeze_fs = f2fs_freeze, 1119 .unfreeze_fs = f2fs_unfreeze, 1120 .statfs = f2fs_statfs, 1121 .remount_fs = f2fs_remount, 1122 }; 1123 1124 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1125 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 1126 { 1127 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 1128 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 1129 ctx, len, NULL); 1130 } 1131 1132 static int f2fs_key_prefix(struct inode *inode, u8 **key) 1133 { 1134 *key = F2FS_I_SB(inode)->key_prefix; 1135 return F2FS_I_SB(inode)->key_prefix_size; 1136 } 1137 1138 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 1139 void *fs_data) 1140 { 1141 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 1142 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 1143 ctx, len, fs_data, XATTR_CREATE); 1144 } 1145 1146 static unsigned f2fs_max_namelen(struct inode *inode) 1147 { 1148 return S_ISLNK(inode->i_mode) ? 1149 inode->i_sb->s_blocksize : F2FS_NAME_LEN; 1150 } 1151 1152 static struct fscrypt_operations f2fs_cryptops = { 1153 .get_context = f2fs_get_context, 1154 .key_prefix = f2fs_key_prefix, 1155 .set_context = f2fs_set_context, 1156 .is_encrypted = f2fs_encrypted_inode, 1157 .empty_dir = f2fs_empty_dir, 1158 .max_namelen = f2fs_max_namelen, 1159 }; 1160 #else 1161 static struct fscrypt_operations f2fs_cryptops = { 1162 .is_encrypted = f2fs_encrypted_inode, 1163 }; 1164 #endif 1165 1166 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 1167 u64 ino, u32 generation) 1168 { 1169 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1170 struct inode *inode; 1171 1172 if (check_nid_range(sbi, ino)) 1173 return ERR_PTR(-ESTALE); 1174 1175 /* 1176 * f2fs_iget isn't quite right if the inode is currently unallocated! 1177 * However f2fs_iget currently does appropriate checks to handle stale 1178 * inodes so everything is OK. 1179 */ 1180 inode = f2fs_iget(sb, ino); 1181 if (IS_ERR(inode)) 1182 return ERR_CAST(inode); 1183 if (unlikely(generation && inode->i_generation != generation)) { 1184 /* we didn't find the right inode.. */ 1185 iput(inode); 1186 return ERR_PTR(-ESTALE); 1187 } 1188 return inode; 1189 } 1190 1191 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1192 int fh_len, int fh_type) 1193 { 1194 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1195 f2fs_nfs_get_inode); 1196 } 1197 1198 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 1199 int fh_len, int fh_type) 1200 { 1201 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1202 f2fs_nfs_get_inode); 1203 } 1204 1205 static const struct export_operations f2fs_export_ops = { 1206 .fh_to_dentry = f2fs_fh_to_dentry, 1207 .fh_to_parent = f2fs_fh_to_parent, 1208 .get_parent = f2fs_get_parent, 1209 }; 1210 1211 static loff_t max_file_blocks(void) 1212 { 1213 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS); 1214 loff_t leaf_count = ADDRS_PER_BLOCK; 1215 1216 /* two direct node blocks */ 1217 result += (leaf_count * 2); 1218 1219 /* two indirect node blocks */ 1220 leaf_count *= NIDS_PER_BLOCK; 1221 result += (leaf_count * 2); 1222 1223 /* one double indirect node block */ 1224 leaf_count *= NIDS_PER_BLOCK; 1225 result += leaf_count; 1226 1227 return result; 1228 } 1229 1230 static int __f2fs_commit_super(struct buffer_head *bh, 1231 struct f2fs_super_block *super) 1232 { 1233 lock_buffer(bh); 1234 if (super) 1235 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 1236 set_buffer_uptodate(bh); 1237 set_buffer_dirty(bh); 1238 unlock_buffer(bh); 1239 1240 /* it's rare case, we can do fua all the time */ 1241 return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA); 1242 } 1243 1244 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 1245 struct buffer_head *bh) 1246 { 1247 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 1248 (bh->b_data + F2FS_SUPER_OFFSET); 1249 struct super_block *sb = sbi->sb; 1250 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 1251 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 1252 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 1253 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 1254 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 1255 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 1256 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 1257 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 1258 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 1259 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 1260 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 1261 u32 segment_count = le32_to_cpu(raw_super->segment_count); 1262 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 1263 u64 main_end_blkaddr = main_blkaddr + 1264 (segment_count_main << log_blocks_per_seg); 1265 u64 seg_end_blkaddr = segment0_blkaddr + 1266 (segment_count << log_blocks_per_seg); 1267 1268 if (segment0_blkaddr != cp_blkaddr) { 1269 f2fs_msg(sb, KERN_INFO, 1270 "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 1271 segment0_blkaddr, cp_blkaddr); 1272 return true; 1273 } 1274 1275 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 1276 sit_blkaddr) { 1277 f2fs_msg(sb, KERN_INFO, 1278 "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 1279 cp_blkaddr, sit_blkaddr, 1280 segment_count_ckpt << log_blocks_per_seg); 1281 return true; 1282 } 1283 1284 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 1285 nat_blkaddr) { 1286 f2fs_msg(sb, KERN_INFO, 1287 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 1288 sit_blkaddr, nat_blkaddr, 1289 segment_count_sit << log_blocks_per_seg); 1290 return true; 1291 } 1292 1293 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 1294 ssa_blkaddr) { 1295 f2fs_msg(sb, KERN_INFO, 1296 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 1297 nat_blkaddr, ssa_blkaddr, 1298 segment_count_nat << log_blocks_per_seg); 1299 return true; 1300 } 1301 1302 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 1303 main_blkaddr) { 1304 f2fs_msg(sb, KERN_INFO, 1305 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 1306 ssa_blkaddr, main_blkaddr, 1307 segment_count_ssa << log_blocks_per_seg); 1308 return true; 1309 } 1310 1311 if (main_end_blkaddr > seg_end_blkaddr) { 1312 f2fs_msg(sb, KERN_INFO, 1313 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)", 1314 main_blkaddr, 1315 segment0_blkaddr + 1316 (segment_count << log_blocks_per_seg), 1317 segment_count_main << log_blocks_per_seg); 1318 return true; 1319 } else if (main_end_blkaddr < seg_end_blkaddr) { 1320 int err = 0; 1321 char *res; 1322 1323 /* fix in-memory information all the time */ 1324 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 1325 segment0_blkaddr) >> log_blocks_per_seg); 1326 1327 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 1328 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1329 res = "internally"; 1330 } else { 1331 err = __f2fs_commit_super(bh, NULL); 1332 res = err ? "failed" : "done"; 1333 } 1334 f2fs_msg(sb, KERN_INFO, 1335 "Fix alignment : %s, start(%u) end(%u) block(%u)", 1336 res, main_blkaddr, 1337 segment0_blkaddr + 1338 (segment_count << log_blocks_per_seg), 1339 segment_count_main << log_blocks_per_seg); 1340 if (err) 1341 return true; 1342 } 1343 return false; 1344 } 1345 1346 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 1347 struct buffer_head *bh) 1348 { 1349 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 1350 (bh->b_data + F2FS_SUPER_OFFSET); 1351 struct super_block *sb = sbi->sb; 1352 unsigned int blocksize; 1353 1354 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { 1355 f2fs_msg(sb, KERN_INFO, 1356 "Magic Mismatch, valid(0x%x) - read(0x%x)", 1357 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 1358 return 1; 1359 } 1360 1361 /* Currently, support only 4KB page cache size */ 1362 if (F2FS_BLKSIZE != PAGE_SIZE) { 1363 f2fs_msg(sb, KERN_INFO, 1364 "Invalid page_cache_size (%lu), supports only 4KB\n", 1365 PAGE_SIZE); 1366 return 1; 1367 } 1368 1369 /* Currently, support only 4KB block size */ 1370 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 1371 if (blocksize != F2FS_BLKSIZE) { 1372 f2fs_msg(sb, KERN_INFO, 1373 "Invalid blocksize (%u), supports only 4KB\n", 1374 blocksize); 1375 return 1; 1376 } 1377 1378 /* check log blocks per segment */ 1379 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 1380 f2fs_msg(sb, KERN_INFO, 1381 "Invalid log blocks per segment (%u)\n", 1382 le32_to_cpu(raw_super->log_blocks_per_seg)); 1383 return 1; 1384 } 1385 1386 /* Currently, support 512/1024/2048/4096 bytes sector size */ 1387 if (le32_to_cpu(raw_super->log_sectorsize) > 1388 F2FS_MAX_LOG_SECTOR_SIZE || 1389 le32_to_cpu(raw_super->log_sectorsize) < 1390 F2FS_MIN_LOG_SECTOR_SIZE) { 1391 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)", 1392 le32_to_cpu(raw_super->log_sectorsize)); 1393 return 1; 1394 } 1395 if (le32_to_cpu(raw_super->log_sectors_per_block) + 1396 le32_to_cpu(raw_super->log_sectorsize) != 1397 F2FS_MAX_LOG_SECTOR_SIZE) { 1398 f2fs_msg(sb, KERN_INFO, 1399 "Invalid log sectors per block(%u) log sectorsize(%u)", 1400 le32_to_cpu(raw_super->log_sectors_per_block), 1401 le32_to_cpu(raw_super->log_sectorsize)); 1402 return 1; 1403 } 1404 1405 /* check reserved ino info */ 1406 if (le32_to_cpu(raw_super->node_ino) != 1 || 1407 le32_to_cpu(raw_super->meta_ino) != 2 || 1408 le32_to_cpu(raw_super->root_ino) != 3) { 1409 f2fs_msg(sb, KERN_INFO, 1410 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 1411 le32_to_cpu(raw_super->node_ino), 1412 le32_to_cpu(raw_super->meta_ino), 1413 le32_to_cpu(raw_super->root_ino)); 1414 return 1; 1415 } 1416 1417 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 1418 if (sanity_check_area_boundary(sbi, bh)) 1419 return 1; 1420 1421 return 0; 1422 } 1423 1424 int sanity_check_ckpt(struct f2fs_sb_info *sbi) 1425 { 1426 unsigned int total, fsmeta; 1427 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1428 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1429 1430 total = le32_to_cpu(raw_super->segment_count); 1431 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 1432 fsmeta += le32_to_cpu(raw_super->segment_count_sit); 1433 fsmeta += le32_to_cpu(raw_super->segment_count_nat); 1434 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 1435 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 1436 1437 if (unlikely(fsmeta >= total)) 1438 return 1; 1439 1440 if (unlikely(f2fs_cp_error(sbi))) { 1441 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); 1442 return 1; 1443 } 1444 return 0; 1445 } 1446 1447 static void init_sb_info(struct f2fs_sb_info *sbi) 1448 { 1449 struct f2fs_super_block *raw_super = sbi->raw_super; 1450 1451 sbi->log_sectors_per_block = 1452 le32_to_cpu(raw_super->log_sectors_per_block); 1453 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 1454 sbi->blocksize = 1 << sbi->log_blocksize; 1455 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 1456 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 1457 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 1458 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 1459 sbi->total_sections = le32_to_cpu(raw_super->section_count); 1460 sbi->total_node_count = 1461 (le32_to_cpu(raw_super->segment_count_nat) / 2) 1462 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 1463 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 1464 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 1465 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 1466 sbi->cur_victim_sec = NULL_SECNO; 1467 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 1468 1469 sbi->dir_level = DEF_DIR_LEVEL; 1470 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 1471 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 1472 clear_sbi_flag(sbi, SBI_NEED_FSCK); 1473 1474 INIT_LIST_HEAD(&sbi->s_list); 1475 mutex_init(&sbi->umount_mutex); 1476 mutex_init(&sbi->wio_mutex[NODE]); 1477 mutex_init(&sbi->wio_mutex[DATA]); 1478 spin_lock_init(&sbi->cp_lock); 1479 1480 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1481 memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX, 1482 F2FS_KEY_DESC_PREFIX_SIZE); 1483 sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE; 1484 #endif 1485 } 1486 1487 static int init_percpu_info(struct f2fs_sb_info *sbi) 1488 { 1489 int i, err; 1490 1491 for (i = 0; i < NR_COUNT_TYPE; i++) { 1492 err = percpu_counter_init(&sbi->nr_pages[i], 0, GFP_KERNEL); 1493 if (err) 1494 return err; 1495 } 1496 1497 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 1498 if (err) 1499 return err; 1500 1501 return percpu_counter_init(&sbi->total_valid_inode_count, 0, 1502 GFP_KERNEL); 1503 } 1504 1505 /* 1506 * Read f2fs raw super block. 1507 * Because we have two copies of super block, so read both of them 1508 * to get the first valid one. If any one of them is broken, we pass 1509 * them recovery flag back to the caller. 1510 */ 1511 static int read_raw_super_block(struct f2fs_sb_info *sbi, 1512 struct f2fs_super_block **raw_super, 1513 int *valid_super_block, int *recovery) 1514 { 1515 struct super_block *sb = sbi->sb; 1516 int block; 1517 struct buffer_head *bh; 1518 struct f2fs_super_block *super; 1519 int err = 0; 1520 1521 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 1522 if (!super) 1523 return -ENOMEM; 1524 1525 for (block = 0; block < 2; block++) { 1526 bh = sb_bread(sb, block); 1527 if (!bh) { 1528 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock", 1529 block + 1); 1530 err = -EIO; 1531 continue; 1532 } 1533 1534 /* sanity checking of raw super */ 1535 if (sanity_check_raw_super(sbi, bh)) { 1536 f2fs_msg(sb, KERN_ERR, 1537 "Can't find valid F2FS filesystem in %dth superblock", 1538 block + 1); 1539 err = -EINVAL; 1540 brelse(bh); 1541 continue; 1542 } 1543 1544 if (!*raw_super) { 1545 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 1546 sizeof(*super)); 1547 *valid_super_block = block; 1548 *raw_super = super; 1549 } 1550 brelse(bh); 1551 } 1552 1553 /* Fail to read any one of the superblocks*/ 1554 if (err < 0) 1555 *recovery = 1; 1556 1557 /* No valid superblock */ 1558 if (!*raw_super) 1559 kfree(super); 1560 else 1561 err = 0; 1562 1563 return err; 1564 } 1565 1566 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 1567 { 1568 struct buffer_head *bh; 1569 int err; 1570 1571 if ((recover && f2fs_readonly(sbi->sb)) || 1572 bdev_read_only(sbi->sb->s_bdev)) { 1573 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1574 return -EROFS; 1575 } 1576 1577 /* write back-up superblock first */ 1578 bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1); 1579 if (!bh) 1580 return -EIO; 1581 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 1582 brelse(bh); 1583 1584 /* if we are in recovery path, skip writing valid superblock */ 1585 if (recover || err) 1586 return err; 1587 1588 /* write current valid superblock */ 1589 bh = sb_getblk(sbi->sb, sbi->valid_super_block); 1590 if (!bh) 1591 return -EIO; 1592 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 1593 brelse(bh); 1594 return err; 1595 } 1596 1597 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 1598 { 1599 struct f2fs_sb_info *sbi; 1600 struct f2fs_super_block *raw_super; 1601 struct inode *root; 1602 int err; 1603 bool retry = true, need_fsck = false; 1604 char *options = NULL; 1605 int recovery, i, valid_super_block; 1606 struct curseg_info *seg_i; 1607 1608 try_onemore: 1609 err = -EINVAL; 1610 raw_super = NULL; 1611 valid_super_block = -1; 1612 recovery = 0; 1613 1614 /* allocate memory for f2fs-specific super block info */ 1615 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 1616 if (!sbi) 1617 return -ENOMEM; 1618 1619 sbi->sb = sb; 1620 1621 /* Load the checksum driver */ 1622 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 1623 if (IS_ERR(sbi->s_chksum_driver)) { 1624 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver."); 1625 err = PTR_ERR(sbi->s_chksum_driver); 1626 sbi->s_chksum_driver = NULL; 1627 goto free_sbi; 1628 } 1629 1630 /* set a block size */ 1631 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 1632 f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); 1633 goto free_sbi; 1634 } 1635 1636 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 1637 &recovery); 1638 if (err) 1639 goto free_sbi; 1640 1641 sb->s_fs_info = sbi; 1642 sbi->raw_super = raw_super; 1643 1644 default_options(sbi); 1645 /* parse mount options */ 1646 options = kstrdup((const char *)data, GFP_KERNEL); 1647 if (data && !options) { 1648 err = -ENOMEM; 1649 goto free_sb_buf; 1650 } 1651 1652 err = parse_options(sb, options); 1653 if (err) 1654 goto free_options; 1655 1656 sbi->max_file_blocks = max_file_blocks(); 1657 sb->s_maxbytes = sbi->max_file_blocks << 1658 le32_to_cpu(raw_super->log_blocksize); 1659 sb->s_max_links = F2FS_LINK_MAX; 1660 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 1661 1662 sb->s_op = &f2fs_sops; 1663 sb->s_cop = &f2fs_cryptops; 1664 sb->s_xattr = f2fs_xattr_handlers; 1665 sb->s_export_op = &f2fs_export_ops; 1666 sb->s_magic = F2FS_SUPER_MAGIC; 1667 sb->s_time_gran = 1; 1668 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 1669 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 1670 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 1671 1672 /* init f2fs-specific super block info */ 1673 sbi->valid_super_block = valid_super_block; 1674 mutex_init(&sbi->gc_mutex); 1675 mutex_init(&sbi->cp_mutex); 1676 init_rwsem(&sbi->node_write); 1677 1678 /* disallow all the data/node/meta page writes */ 1679 set_sbi_flag(sbi, SBI_POR_DOING); 1680 spin_lock_init(&sbi->stat_lock); 1681 1682 init_rwsem(&sbi->read_io.io_rwsem); 1683 sbi->read_io.sbi = sbi; 1684 sbi->read_io.bio = NULL; 1685 for (i = 0; i < NR_PAGE_TYPE; i++) { 1686 init_rwsem(&sbi->write_io[i].io_rwsem); 1687 sbi->write_io[i].sbi = sbi; 1688 sbi->write_io[i].bio = NULL; 1689 } 1690 1691 init_rwsem(&sbi->cp_rwsem); 1692 init_waitqueue_head(&sbi->cp_wait); 1693 init_sb_info(sbi); 1694 1695 err = init_percpu_info(sbi); 1696 if (err) 1697 goto free_options; 1698 1699 /* get an inode for meta space */ 1700 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 1701 if (IS_ERR(sbi->meta_inode)) { 1702 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); 1703 err = PTR_ERR(sbi->meta_inode); 1704 goto free_options; 1705 } 1706 1707 err = get_valid_checkpoint(sbi); 1708 if (err) { 1709 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); 1710 goto free_meta_inode; 1711 } 1712 1713 sbi->total_valid_node_count = 1714 le32_to_cpu(sbi->ckpt->valid_node_count); 1715 percpu_counter_set(&sbi->total_valid_inode_count, 1716 le32_to_cpu(sbi->ckpt->valid_inode_count)); 1717 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 1718 sbi->total_valid_block_count = 1719 le64_to_cpu(sbi->ckpt->valid_block_count); 1720 sbi->last_valid_block_count = sbi->total_valid_block_count; 1721 1722 for (i = 0; i < NR_INODE_TYPE; i++) { 1723 INIT_LIST_HEAD(&sbi->inode_list[i]); 1724 spin_lock_init(&sbi->inode_lock[i]); 1725 } 1726 1727 init_extent_cache_info(sbi); 1728 1729 init_ino_entry_info(sbi); 1730 1731 /* setup f2fs internal modules */ 1732 err = build_segment_manager(sbi); 1733 if (err) { 1734 f2fs_msg(sb, KERN_ERR, 1735 "Failed to initialize F2FS segment manager"); 1736 goto free_sm; 1737 } 1738 err = build_node_manager(sbi); 1739 if (err) { 1740 f2fs_msg(sb, KERN_ERR, 1741 "Failed to initialize F2FS node manager"); 1742 goto free_nm; 1743 } 1744 1745 /* For write statistics */ 1746 if (sb->s_bdev->bd_part) 1747 sbi->sectors_written_start = 1748 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]); 1749 1750 /* Read accumulated write IO statistics if exists */ 1751 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1752 if (__exist_node_summaries(sbi)) 1753 sbi->kbytes_written = 1754 le64_to_cpu(seg_i->journal->info.kbytes_written); 1755 1756 build_gc_manager(sbi); 1757 1758 /* get an inode for node space */ 1759 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 1760 if (IS_ERR(sbi->node_inode)) { 1761 f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); 1762 err = PTR_ERR(sbi->node_inode); 1763 goto free_nm; 1764 } 1765 1766 f2fs_join_shrinker(sbi); 1767 1768 /* if there are nt orphan nodes free them */ 1769 err = recover_orphan_inodes(sbi); 1770 if (err) 1771 goto free_node_inode; 1772 1773 /* read root inode and dentry */ 1774 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 1775 if (IS_ERR(root)) { 1776 f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); 1777 err = PTR_ERR(root); 1778 goto free_node_inode; 1779 } 1780 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 1781 iput(root); 1782 err = -EINVAL; 1783 goto free_node_inode; 1784 } 1785 1786 sb->s_root = d_make_root(root); /* allocate root dentry */ 1787 if (!sb->s_root) { 1788 err = -ENOMEM; 1789 goto free_root_inode; 1790 } 1791 1792 err = f2fs_build_stats(sbi); 1793 if (err) 1794 goto free_root_inode; 1795 1796 if (f2fs_proc_root) 1797 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root); 1798 1799 if (sbi->s_proc) { 1800 proc_create_data("segment_info", S_IRUGO, sbi->s_proc, 1801 &f2fs_seq_segment_info_fops, sb); 1802 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc, 1803 &f2fs_seq_segment_bits_fops, sb); 1804 } 1805 1806 sbi->s_kobj.kset = f2fs_kset; 1807 init_completion(&sbi->s_kobj_unregister); 1808 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL, 1809 "%s", sb->s_id); 1810 if (err) 1811 goto free_proc; 1812 1813 /* recover fsynced data */ 1814 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 1815 /* 1816 * mount should be failed, when device has readonly mode, and 1817 * previous checkpoint was not done by clean system shutdown. 1818 */ 1819 if (bdev_read_only(sb->s_bdev) && 1820 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 1821 err = -EROFS; 1822 goto free_kobj; 1823 } 1824 1825 if (need_fsck) 1826 set_sbi_flag(sbi, SBI_NEED_FSCK); 1827 1828 if (!retry) 1829 goto skip_recovery; 1830 1831 err = recover_fsync_data(sbi, false); 1832 if (err < 0) { 1833 need_fsck = true; 1834 f2fs_msg(sb, KERN_ERR, 1835 "Cannot recover all fsync data errno=%d", err); 1836 goto free_kobj; 1837 } 1838 } else { 1839 err = recover_fsync_data(sbi, true); 1840 1841 if (!f2fs_readonly(sb) && err > 0) { 1842 err = -EINVAL; 1843 f2fs_msg(sb, KERN_ERR, 1844 "Need to recover fsync data"); 1845 goto free_kobj; 1846 } 1847 } 1848 skip_recovery: 1849 /* recover_fsync_data() cleared this already */ 1850 clear_sbi_flag(sbi, SBI_POR_DOING); 1851 1852 /* 1853 * If filesystem is not mounted as read-only then 1854 * do start the gc_thread. 1855 */ 1856 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) { 1857 /* After POR, we can run background GC thread.*/ 1858 err = start_gc_thread(sbi); 1859 if (err) 1860 goto free_kobj; 1861 } 1862 kfree(options); 1863 1864 /* recover broken superblock */ 1865 if (recovery) { 1866 err = f2fs_commit_super(sbi, true); 1867 f2fs_msg(sb, KERN_INFO, 1868 "Try to recover %dth superblock, ret: %d", 1869 sbi->valid_super_block ? 1 : 2, err); 1870 } 1871 1872 f2fs_update_time(sbi, CP_TIME); 1873 f2fs_update_time(sbi, REQ_TIME); 1874 return 0; 1875 1876 free_kobj: 1877 f2fs_sync_inode_meta(sbi); 1878 kobject_del(&sbi->s_kobj); 1879 kobject_put(&sbi->s_kobj); 1880 wait_for_completion(&sbi->s_kobj_unregister); 1881 free_proc: 1882 if (sbi->s_proc) { 1883 remove_proc_entry("segment_info", sbi->s_proc); 1884 remove_proc_entry("segment_bits", sbi->s_proc); 1885 remove_proc_entry(sb->s_id, f2fs_proc_root); 1886 } 1887 f2fs_destroy_stats(sbi); 1888 free_root_inode: 1889 dput(sb->s_root); 1890 sb->s_root = NULL; 1891 free_node_inode: 1892 truncate_inode_pages_final(NODE_MAPPING(sbi)); 1893 mutex_lock(&sbi->umount_mutex); 1894 release_ino_entry(sbi, true); 1895 f2fs_leave_shrinker(sbi); 1896 iput(sbi->node_inode); 1897 mutex_unlock(&sbi->umount_mutex); 1898 free_nm: 1899 destroy_node_manager(sbi); 1900 free_sm: 1901 destroy_segment_manager(sbi); 1902 kfree(sbi->ckpt); 1903 free_meta_inode: 1904 make_bad_inode(sbi->meta_inode); 1905 iput(sbi->meta_inode); 1906 free_options: 1907 destroy_percpu_info(sbi); 1908 kfree(options); 1909 free_sb_buf: 1910 kfree(raw_super); 1911 free_sbi: 1912 if (sbi->s_chksum_driver) 1913 crypto_free_shash(sbi->s_chksum_driver); 1914 kfree(sbi); 1915 1916 /* give only one another chance */ 1917 if (retry) { 1918 retry = false; 1919 shrink_dcache_sb(sb); 1920 goto try_onemore; 1921 } 1922 return err; 1923 } 1924 1925 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 1926 const char *dev_name, void *data) 1927 { 1928 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 1929 } 1930 1931 static void kill_f2fs_super(struct super_block *sb) 1932 { 1933 if (sb->s_root) 1934 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE); 1935 kill_block_super(sb); 1936 } 1937 1938 static struct file_system_type f2fs_fs_type = { 1939 .owner = THIS_MODULE, 1940 .name = "f2fs", 1941 .mount = f2fs_mount, 1942 .kill_sb = kill_f2fs_super, 1943 .fs_flags = FS_REQUIRES_DEV, 1944 }; 1945 MODULE_ALIAS_FS("f2fs"); 1946 1947 static int __init init_inodecache(void) 1948 { 1949 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 1950 sizeof(struct f2fs_inode_info), 0, 1951 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 1952 if (!f2fs_inode_cachep) 1953 return -ENOMEM; 1954 return 0; 1955 } 1956 1957 static void destroy_inodecache(void) 1958 { 1959 /* 1960 * Make sure all delayed rcu free inodes are flushed before we 1961 * destroy cache. 1962 */ 1963 rcu_barrier(); 1964 kmem_cache_destroy(f2fs_inode_cachep); 1965 } 1966 1967 static int __init init_f2fs_fs(void) 1968 { 1969 int err; 1970 1971 f2fs_build_trace_ios(); 1972 1973 err = init_inodecache(); 1974 if (err) 1975 goto fail; 1976 err = create_node_manager_caches(); 1977 if (err) 1978 goto free_inodecache; 1979 err = create_segment_manager_caches(); 1980 if (err) 1981 goto free_node_manager_caches; 1982 err = create_checkpoint_caches(); 1983 if (err) 1984 goto free_segment_manager_caches; 1985 err = create_extent_cache(); 1986 if (err) 1987 goto free_checkpoint_caches; 1988 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj); 1989 if (!f2fs_kset) { 1990 err = -ENOMEM; 1991 goto free_extent_cache; 1992 } 1993 err = register_shrinker(&f2fs_shrinker_info); 1994 if (err) 1995 goto free_kset; 1996 1997 err = register_filesystem(&f2fs_fs_type); 1998 if (err) 1999 goto free_shrinker; 2000 err = f2fs_create_root_stats(); 2001 if (err) 2002 goto free_filesystem; 2003 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL); 2004 return 0; 2005 2006 free_filesystem: 2007 unregister_filesystem(&f2fs_fs_type); 2008 free_shrinker: 2009 unregister_shrinker(&f2fs_shrinker_info); 2010 free_kset: 2011 kset_unregister(f2fs_kset); 2012 free_extent_cache: 2013 destroy_extent_cache(); 2014 free_checkpoint_caches: 2015 destroy_checkpoint_caches(); 2016 free_segment_manager_caches: 2017 destroy_segment_manager_caches(); 2018 free_node_manager_caches: 2019 destroy_node_manager_caches(); 2020 free_inodecache: 2021 destroy_inodecache(); 2022 fail: 2023 return err; 2024 } 2025 2026 static void __exit exit_f2fs_fs(void) 2027 { 2028 remove_proc_entry("fs/f2fs", NULL); 2029 f2fs_destroy_root_stats(); 2030 unregister_filesystem(&f2fs_fs_type); 2031 unregister_shrinker(&f2fs_shrinker_info); 2032 kset_unregister(f2fs_kset); 2033 destroy_extent_cache(); 2034 destroy_checkpoint_caches(); 2035 destroy_segment_manager_caches(); 2036 destroy_node_manager_caches(); 2037 destroy_inodecache(); 2038 f2fs_destroy_trace_ios(); 2039 } 2040 2041 module_init(init_f2fs_fs) 2042 module_exit(exit_f2fs_fs) 2043 2044 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 2045 MODULE_DESCRIPTION("Flash Friendly File System"); 2046 MODULE_LICENSE("GPL"); 2047