1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/statfs.h> 12 #include <linux/buffer_head.h> 13 #include <linux/backing-dev.h> 14 #include <linux/kthread.h> 15 #include <linux/parser.h> 16 #include <linux/mount.h> 17 #include <linux/seq_file.h> 18 #include <linux/proc_fs.h> 19 #include <linux/random.h> 20 #include <linux/exportfs.h> 21 #include <linux/blkdev.h> 22 #include <linux/quotaops.h> 23 #include <linux/f2fs_fs.h> 24 #include <linux/sysfs.h> 25 #include <linux/quota.h> 26 #include <linux/unicode.h> 27 #include <linux/part_stat.h> 28 #include <linux/zstd.h> 29 #include <linux/lz4.h> 30 31 #include "f2fs.h" 32 #include "node.h" 33 #include "segment.h" 34 #include "xattr.h" 35 #include "gc.h" 36 37 #define CREATE_TRACE_POINTS 38 #include <trace/events/f2fs.h> 39 40 static struct kmem_cache *f2fs_inode_cachep; 41 42 #ifdef CONFIG_F2FS_FAULT_INJECTION 43 44 const char *f2fs_fault_name[FAULT_MAX] = { 45 [FAULT_KMALLOC] = "kmalloc", 46 [FAULT_KVMALLOC] = "kvmalloc", 47 [FAULT_PAGE_ALLOC] = "page alloc", 48 [FAULT_PAGE_GET] = "page get", 49 [FAULT_ALLOC_NID] = "alloc nid", 50 [FAULT_ORPHAN] = "orphan", 51 [FAULT_BLOCK] = "no more block", 52 [FAULT_DIR_DEPTH] = "too big dir depth", 53 [FAULT_EVICT_INODE] = "evict_inode fail", 54 [FAULT_TRUNCATE] = "truncate fail", 55 [FAULT_READ_IO] = "read IO error", 56 [FAULT_CHECKPOINT] = "checkpoint error", 57 [FAULT_DISCARD] = "discard error", 58 [FAULT_WRITE_IO] = "write IO error", 59 }; 60 61 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 62 unsigned int type) 63 { 64 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 65 66 if (rate) { 67 atomic_set(&ffi->inject_ops, 0); 68 ffi->inject_rate = rate; 69 } 70 71 if (type) 72 ffi->inject_type = type; 73 74 if (!rate && !type) 75 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 76 } 77 #endif 78 79 /* f2fs-wide shrinker description */ 80 static struct shrinker f2fs_shrinker_info = { 81 .scan_objects = f2fs_shrink_scan, 82 .count_objects = f2fs_shrink_count, 83 .seeks = DEFAULT_SEEKS, 84 }; 85 86 enum { 87 Opt_gc_background, 88 Opt_disable_roll_forward, 89 Opt_norecovery, 90 Opt_discard, 91 Opt_nodiscard, 92 Opt_noheap, 93 Opt_heap, 94 Opt_user_xattr, 95 Opt_nouser_xattr, 96 Opt_acl, 97 Opt_noacl, 98 Opt_active_logs, 99 Opt_disable_ext_identify, 100 Opt_inline_xattr, 101 Opt_noinline_xattr, 102 Opt_inline_xattr_size, 103 Opt_inline_data, 104 Opt_inline_dentry, 105 Opt_noinline_dentry, 106 Opt_flush_merge, 107 Opt_noflush_merge, 108 Opt_nobarrier, 109 Opt_fastboot, 110 Opt_extent_cache, 111 Opt_noextent_cache, 112 Opt_noinline_data, 113 Opt_data_flush, 114 Opt_reserve_root, 115 Opt_resgid, 116 Opt_resuid, 117 Opt_mode, 118 Opt_io_size_bits, 119 Opt_fault_injection, 120 Opt_fault_type, 121 Opt_lazytime, 122 Opt_nolazytime, 123 Opt_quota, 124 Opt_noquota, 125 Opt_usrquota, 126 Opt_grpquota, 127 Opt_prjquota, 128 Opt_usrjquota, 129 Opt_grpjquota, 130 Opt_prjjquota, 131 Opt_offusrjquota, 132 Opt_offgrpjquota, 133 Opt_offprjjquota, 134 Opt_jqfmt_vfsold, 135 Opt_jqfmt_vfsv0, 136 Opt_jqfmt_vfsv1, 137 Opt_whint, 138 Opt_alloc, 139 Opt_fsync, 140 Opt_test_dummy_encryption, 141 Opt_inlinecrypt, 142 Opt_checkpoint_disable, 143 Opt_checkpoint_disable_cap, 144 Opt_checkpoint_disable_cap_perc, 145 Opt_checkpoint_enable, 146 Opt_checkpoint_merge, 147 Opt_nocheckpoint_merge, 148 Opt_compress_algorithm, 149 Opt_compress_log_size, 150 Opt_compress_extension, 151 Opt_compress_chksum, 152 Opt_compress_mode, 153 Opt_atgc, 154 Opt_err, 155 }; 156 157 static match_table_t f2fs_tokens = { 158 {Opt_gc_background, "background_gc=%s"}, 159 {Opt_disable_roll_forward, "disable_roll_forward"}, 160 {Opt_norecovery, "norecovery"}, 161 {Opt_discard, "discard"}, 162 {Opt_nodiscard, "nodiscard"}, 163 {Opt_noheap, "no_heap"}, 164 {Opt_heap, "heap"}, 165 {Opt_user_xattr, "user_xattr"}, 166 {Opt_nouser_xattr, "nouser_xattr"}, 167 {Opt_acl, "acl"}, 168 {Opt_noacl, "noacl"}, 169 {Opt_active_logs, "active_logs=%u"}, 170 {Opt_disable_ext_identify, "disable_ext_identify"}, 171 {Opt_inline_xattr, "inline_xattr"}, 172 {Opt_noinline_xattr, "noinline_xattr"}, 173 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 174 {Opt_inline_data, "inline_data"}, 175 {Opt_inline_dentry, "inline_dentry"}, 176 {Opt_noinline_dentry, "noinline_dentry"}, 177 {Opt_flush_merge, "flush_merge"}, 178 {Opt_noflush_merge, "noflush_merge"}, 179 {Opt_nobarrier, "nobarrier"}, 180 {Opt_fastboot, "fastboot"}, 181 {Opt_extent_cache, "extent_cache"}, 182 {Opt_noextent_cache, "noextent_cache"}, 183 {Opt_noinline_data, "noinline_data"}, 184 {Opt_data_flush, "data_flush"}, 185 {Opt_reserve_root, "reserve_root=%u"}, 186 {Opt_resgid, "resgid=%u"}, 187 {Opt_resuid, "resuid=%u"}, 188 {Opt_mode, "mode=%s"}, 189 {Opt_io_size_bits, "io_bits=%u"}, 190 {Opt_fault_injection, "fault_injection=%u"}, 191 {Opt_fault_type, "fault_type=%u"}, 192 {Opt_lazytime, "lazytime"}, 193 {Opt_nolazytime, "nolazytime"}, 194 {Opt_quota, "quota"}, 195 {Opt_noquota, "noquota"}, 196 {Opt_usrquota, "usrquota"}, 197 {Opt_grpquota, "grpquota"}, 198 {Opt_prjquota, "prjquota"}, 199 {Opt_usrjquota, "usrjquota=%s"}, 200 {Opt_grpjquota, "grpjquota=%s"}, 201 {Opt_prjjquota, "prjjquota=%s"}, 202 {Opt_offusrjquota, "usrjquota="}, 203 {Opt_offgrpjquota, "grpjquota="}, 204 {Opt_offprjjquota, "prjjquota="}, 205 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 206 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 207 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 208 {Opt_whint, "whint_mode=%s"}, 209 {Opt_alloc, "alloc_mode=%s"}, 210 {Opt_fsync, "fsync_mode=%s"}, 211 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 212 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 213 {Opt_inlinecrypt, "inlinecrypt"}, 214 {Opt_checkpoint_disable, "checkpoint=disable"}, 215 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"}, 216 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"}, 217 {Opt_checkpoint_enable, "checkpoint=enable"}, 218 {Opt_checkpoint_merge, "checkpoint_merge"}, 219 {Opt_nocheckpoint_merge, "nocheckpoint_merge"}, 220 {Opt_compress_algorithm, "compress_algorithm=%s"}, 221 {Opt_compress_log_size, "compress_log_size=%u"}, 222 {Opt_compress_extension, "compress_extension=%s"}, 223 {Opt_compress_chksum, "compress_chksum"}, 224 {Opt_compress_mode, "compress_mode=%s"}, 225 {Opt_atgc, "atgc"}, 226 {Opt_err, NULL}, 227 }; 228 229 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...) 230 { 231 struct va_format vaf; 232 va_list args; 233 int level; 234 235 va_start(args, fmt); 236 237 level = printk_get_level(fmt); 238 vaf.fmt = printk_skip_level(fmt); 239 vaf.va = &args; 240 printk("%c%cF2FS-fs (%s): %pV\n", 241 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 242 243 va_end(args); 244 } 245 246 #ifdef CONFIG_UNICODE 247 static const struct f2fs_sb_encodings { 248 __u16 magic; 249 char *name; 250 char *version; 251 } f2fs_sb_encoding_map[] = { 252 {F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"}, 253 }; 254 255 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb, 256 const struct f2fs_sb_encodings **encoding, 257 __u16 *flags) 258 { 259 __u16 magic = le16_to_cpu(sb->s_encoding); 260 int i; 261 262 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++) 263 if (magic == f2fs_sb_encoding_map[i].magic) 264 break; 265 266 if (i >= ARRAY_SIZE(f2fs_sb_encoding_map)) 267 return -EINVAL; 268 269 *encoding = &f2fs_sb_encoding_map[i]; 270 *flags = le16_to_cpu(sb->s_encoding_flags); 271 272 return 0; 273 } 274 #endif 275 276 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 277 { 278 block_t limit = min((sbi->user_block_count << 1) / 1000, 279 sbi->user_block_count - sbi->reserved_blocks); 280 281 /* limit is 0.2% */ 282 if (test_opt(sbi, RESERVE_ROOT) && 283 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 284 F2FS_OPTION(sbi).root_reserved_blocks = limit; 285 f2fs_info(sbi, "Reduce reserved blocks for root = %u", 286 F2FS_OPTION(sbi).root_reserved_blocks); 287 } 288 if (!test_opt(sbi, RESERVE_ROOT) && 289 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 290 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 291 !gid_eq(F2FS_OPTION(sbi).s_resgid, 292 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 293 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 294 from_kuid_munged(&init_user_ns, 295 F2FS_OPTION(sbi).s_resuid), 296 from_kgid_munged(&init_user_ns, 297 F2FS_OPTION(sbi).s_resgid)); 298 } 299 300 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi) 301 { 302 if (!F2FS_OPTION(sbi).unusable_cap_perc) 303 return; 304 305 if (F2FS_OPTION(sbi).unusable_cap_perc == 100) 306 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count; 307 else 308 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) * 309 F2FS_OPTION(sbi).unusable_cap_perc; 310 311 f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%", 312 F2FS_OPTION(sbi).unusable_cap, 313 F2FS_OPTION(sbi).unusable_cap_perc); 314 } 315 316 static void init_once(void *foo) 317 { 318 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 319 320 inode_init_once(&fi->vfs_inode); 321 } 322 323 #ifdef CONFIG_QUOTA 324 static const char * const quotatypes[] = INITQFNAMES; 325 #define QTYPE2NAME(t) (quotatypes[t]) 326 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 327 substring_t *args) 328 { 329 struct f2fs_sb_info *sbi = F2FS_SB(sb); 330 char *qname; 331 int ret = -EINVAL; 332 333 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 334 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 335 return -EINVAL; 336 } 337 if (f2fs_sb_has_quota_ino(sbi)) { 338 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name"); 339 return 0; 340 } 341 342 qname = match_strdup(args); 343 if (!qname) { 344 f2fs_err(sbi, "Not enough memory for storing quotafile name"); 345 return -ENOMEM; 346 } 347 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 348 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 349 ret = 0; 350 else 351 f2fs_err(sbi, "%s quota file already specified", 352 QTYPE2NAME(qtype)); 353 goto errout; 354 } 355 if (strchr(qname, '/')) { 356 f2fs_err(sbi, "quotafile must be on filesystem root"); 357 goto errout; 358 } 359 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 360 set_opt(sbi, QUOTA); 361 return 0; 362 errout: 363 kfree(qname); 364 return ret; 365 } 366 367 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 368 { 369 struct f2fs_sb_info *sbi = F2FS_SB(sb); 370 371 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 372 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 373 return -EINVAL; 374 } 375 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 376 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 377 return 0; 378 } 379 380 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 381 { 382 /* 383 * We do the test below only for project quotas. 'usrquota' and 384 * 'grpquota' mount options are allowed even without quota feature 385 * to support legacy quotas in quota files. 386 */ 387 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 388 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement."); 389 return -1; 390 } 391 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 392 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 393 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 394 if (test_opt(sbi, USRQUOTA) && 395 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 396 clear_opt(sbi, USRQUOTA); 397 398 if (test_opt(sbi, GRPQUOTA) && 399 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 400 clear_opt(sbi, GRPQUOTA); 401 402 if (test_opt(sbi, PRJQUOTA) && 403 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 404 clear_opt(sbi, PRJQUOTA); 405 406 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 407 test_opt(sbi, PRJQUOTA)) { 408 f2fs_err(sbi, "old and new quota format mixing"); 409 return -1; 410 } 411 412 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 413 f2fs_err(sbi, "journaled quota format not specified"); 414 return -1; 415 } 416 } 417 418 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 419 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt"); 420 F2FS_OPTION(sbi).s_jquota_fmt = 0; 421 } 422 return 0; 423 } 424 #endif 425 426 static int f2fs_set_test_dummy_encryption(struct super_block *sb, 427 const char *opt, 428 const substring_t *arg, 429 bool is_remount) 430 { 431 struct f2fs_sb_info *sbi = F2FS_SB(sb); 432 #ifdef CONFIG_FS_ENCRYPTION 433 int err; 434 435 if (!f2fs_sb_has_encrypt(sbi)) { 436 f2fs_err(sbi, "Encrypt feature is off"); 437 return -EINVAL; 438 } 439 440 /* 441 * This mount option is just for testing, and it's not worthwhile to 442 * implement the extra complexity (e.g. RCU protection) that would be 443 * needed to allow it to be set or changed during remount. We do allow 444 * it to be specified during remount, but only if there is no change. 445 */ 446 if (is_remount && !F2FS_OPTION(sbi).dummy_enc_policy.policy) { 447 f2fs_warn(sbi, "Can't set test_dummy_encryption on remount"); 448 return -EINVAL; 449 } 450 err = fscrypt_set_test_dummy_encryption( 451 sb, arg->from, &F2FS_OPTION(sbi).dummy_enc_policy); 452 if (err) { 453 if (err == -EEXIST) 454 f2fs_warn(sbi, 455 "Can't change test_dummy_encryption on remount"); 456 else if (err == -EINVAL) 457 f2fs_warn(sbi, "Value of option \"%s\" is unrecognized", 458 opt); 459 else 460 f2fs_warn(sbi, "Error processing option \"%s\" [%d]", 461 opt, err); 462 return -EINVAL; 463 } 464 f2fs_warn(sbi, "Test dummy encryption mode enabled"); 465 #else 466 f2fs_warn(sbi, "Test dummy encryption mount option ignored"); 467 #endif 468 return 0; 469 } 470 471 #ifdef CONFIG_F2FS_FS_COMPRESSION 472 #ifdef CONFIG_F2FS_FS_LZ4 473 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str) 474 { 475 #ifdef CONFIG_F2FS_FS_LZ4HC 476 unsigned int level; 477 #endif 478 479 if (strlen(str) == 3) { 480 F2FS_OPTION(sbi).compress_level = 0; 481 return 0; 482 } 483 484 #ifdef CONFIG_F2FS_FS_LZ4HC 485 str += 3; 486 487 if (str[0] != ':') { 488 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 489 return -EINVAL; 490 } 491 if (kstrtouint(str + 1, 10, &level)) 492 return -EINVAL; 493 494 if (level < LZ4HC_MIN_CLEVEL || level > LZ4HC_MAX_CLEVEL) { 495 f2fs_info(sbi, "invalid lz4hc compress level: %d", level); 496 return -EINVAL; 497 } 498 499 F2FS_OPTION(sbi).compress_level = level; 500 return 0; 501 #else 502 f2fs_info(sbi, "kernel doesn't support lz4hc compression"); 503 return -EINVAL; 504 #endif 505 } 506 #endif 507 508 #ifdef CONFIG_F2FS_FS_ZSTD 509 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str) 510 { 511 unsigned int level; 512 int len = 4; 513 514 if (strlen(str) == len) { 515 F2FS_OPTION(sbi).compress_level = 0; 516 return 0; 517 } 518 519 str += len; 520 521 if (str[0] != ':') { 522 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 523 return -EINVAL; 524 } 525 if (kstrtouint(str + 1, 10, &level)) 526 return -EINVAL; 527 528 if (!level || level > ZSTD_maxCLevel()) { 529 f2fs_info(sbi, "invalid zstd compress level: %d", level); 530 return -EINVAL; 531 } 532 533 F2FS_OPTION(sbi).compress_level = level; 534 return 0; 535 } 536 #endif 537 #endif 538 539 static int parse_options(struct super_block *sb, char *options, bool is_remount) 540 { 541 struct f2fs_sb_info *sbi = F2FS_SB(sb); 542 substring_t args[MAX_OPT_ARGS]; 543 #ifdef CONFIG_F2FS_FS_COMPRESSION 544 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 545 int ext_cnt; 546 #endif 547 char *p, *name; 548 int arg = 0; 549 kuid_t uid; 550 kgid_t gid; 551 int ret; 552 553 if (!options) 554 return 0; 555 556 while ((p = strsep(&options, ",")) != NULL) { 557 int token; 558 if (!*p) 559 continue; 560 /* 561 * Initialize args struct so we know whether arg was 562 * found; some options take optional arguments. 563 */ 564 args[0].to = args[0].from = NULL; 565 token = match_token(p, f2fs_tokens, args); 566 567 switch (token) { 568 case Opt_gc_background: 569 name = match_strdup(&args[0]); 570 571 if (!name) 572 return -ENOMEM; 573 if (!strcmp(name, "on")) { 574 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 575 } else if (!strcmp(name, "off")) { 576 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF; 577 } else if (!strcmp(name, "sync")) { 578 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC; 579 } else { 580 kfree(name); 581 return -EINVAL; 582 } 583 kfree(name); 584 break; 585 case Opt_disable_roll_forward: 586 set_opt(sbi, DISABLE_ROLL_FORWARD); 587 break; 588 case Opt_norecovery: 589 /* this option mounts f2fs with ro */ 590 set_opt(sbi, NORECOVERY); 591 if (!f2fs_readonly(sb)) 592 return -EINVAL; 593 break; 594 case Opt_discard: 595 set_opt(sbi, DISCARD); 596 break; 597 case Opt_nodiscard: 598 if (f2fs_sb_has_blkzoned(sbi)) { 599 f2fs_warn(sbi, "discard is required for zoned block devices"); 600 return -EINVAL; 601 } 602 clear_opt(sbi, DISCARD); 603 break; 604 case Opt_noheap: 605 set_opt(sbi, NOHEAP); 606 break; 607 case Opt_heap: 608 clear_opt(sbi, NOHEAP); 609 break; 610 #ifdef CONFIG_F2FS_FS_XATTR 611 case Opt_user_xattr: 612 set_opt(sbi, XATTR_USER); 613 break; 614 case Opt_nouser_xattr: 615 clear_opt(sbi, XATTR_USER); 616 break; 617 case Opt_inline_xattr: 618 set_opt(sbi, INLINE_XATTR); 619 break; 620 case Opt_noinline_xattr: 621 clear_opt(sbi, INLINE_XATTR); 622 break; 623 case Opt_inline_xattr_size: 624 if (args->from && match_int(args, &arg)) 625 return -EINVAL; 626 set_opt(sbi, INLINE_XATTR_SIZE); 627 F2FS_OPTION(sbi).inline_xattr_size = arg; 628 break; 629 #else 630 case Opt_user_xattr: 631 f2fs_info(sbi, "user_xattr options not supported"); 632 break; 633 case Opt_nouser_xattr: 634 f2fs_info(sbi, "nouser_xattr options not supported"); 635 break; 636 case Opt_inline_xattr: 637 f2fs_info(sbi, "inline_xattr options not supported"); 638 break; 639 case Opt_noinline_xattr: 640 f2fs_info(sbi, "noinline_xattr options not supported"); 641 break; 642 #endif 643 #ifdef CONFIG_F2FS_FS_POSIX_ACL 644 case Opt_acl: 645 set_opt(sbi, POSIX_ACL); 646 break; 647 case Opt_noacl: 648 clear_opt(sbi, POSIX_ACL); 649 break; 650 #else 651 case Opt_acl: 652 f2fs_info(sbi, "acl options not supported"); 653 break; 654 case Opt_noacl: 655 f2fs_info(sbi, "noacl options not supported"); 656 break; 657 #endif 658 case Opt_active_logs: 659 if (args->from && match_int(args, &arg)) 660 return -EINVAL; 661 if (arg != 2 && arg != 4 && 662 arg != NR_CURSEG_PERSIST_TYPE) 663 return -EINVAL; 664 F2FS_OPTION(sbi).active_logs = arg; 665 break; 666 case Opt_disable_ext_identify: 667 set_opt(sbi, DISABLE_EXT_IDENTIFY); 668 break; 669 case Opt_inline_data: 670 set_opt(sbi, INLINE_DATA); 671 break; 672 case Opt_inline_dentry: 673 set_opt(sbi, INLINE_DENTRY); 674 break; 675 case Opt_noinline_dentry: 676 clear_opt(sbi, INLINE_DENTRY); 677 break; 678 case Opt_flush_merge: 679 set_opt(sbi, FLUSH_MERGE); 680 break; 681 case Opt_noflush_merge: 682 clear_opt(sbi, FLUSH_MERGE); 683 break; 684 case Opt_nobarrier: 685 set_opt(sbi, NOBARRIER); 686 break; 687 case Opt_fastboot: 688 set_opt(sbi, FASTBOOT); 689 break; 690 case Opt_extent_cache: 691 set_opt(sbi, EXTENT_CACHE); 692 break; 693 case Opt_noextent_cache: 694 clear_opt(sbi, EXTENT_CACHE); 695 break; 696 case Opt_noinline_data: 697 clear_opt(sbi, INLINE_DATA); 698 break; 699 case Opt_data_flush: 700 set_opt(sbi, DATA_FLUSH); 701 break; 702 case Opt_reserve_root: 703 if (args->from && match_int(args, &arg)) 704 return -EINVAL; 705 if (test_opt(sbi, RESERVE_ROOT)) { 706 f2fs_info(sbi, "Preserve previous reserve_root=%u", 707 F2FS_OPTION(sbi).root_reserved_blocks); 708 } else { 709 F2FS_OPTION(sbi).root_reserved_blocks = arg; 710 set_opt(sbi, RESERVE_ROOT); 711 } 712 break; 713 case Opt_resuid: 714 if (args->from && match_int(args, &arg)) 715 return -EINVAL; 716 uid = make_kuid(current_user_ns(), arg); 717 if (!uid_valid(uid)) { 718 f2fs_err(sbi, "Invalid uid value %d", arg); 719 return -EINVAL; 720 } 721 F2FS_OPTION(sbi).s_resuid = uid; 722 break; 723 case Opt_resgid: 724 if (args->from && match_int(args, &arg)) 725 return -EINVAL; 726 gid = make_kgid(current_user_ns(), arg); 727 if (!gid_valid(gid)) { 728 f2fs_err(sbi, "Invalid gid value %d", arg); 729 return -EINVAL; 730 } 731 F2FS_OPTION(sbi).s_resgid = gid; 732 break; 733 case Opt_mode: 734 name = match_strdup(&args[0]); 735 736 if (!name) 737 return -ENOMEM; 738 if (!strcmp(name, "adaptive")) { 739 if (f2fs_sb_has_blkzoned(sbi)) { 740 f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature"); 741 kfree(name); 742 return -EINVAL; 743 } 744 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 745 } else if (!strcmp(name, "lfs")) { 746 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 747 } else { 748 kfree(name); 749 return -EINVAL; 750 } 751 kfree(name); 752 break; 753 case Opt_io_size_bits: 754 if (args->from && match_int(args, &arg)) 755 return -EINVAL; 756 if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) { 757 f2fs_warn(sbi, "Not support %d, larger than %d", 758 1 << arg, BIO_MAX_PAGES); 759 return -EINVAL; 760 } 761 F2FS_OPTION(sbi).write_io_size_bits = arg; 762 break; 763 #ifdef CONFIG_F2FS_FAULT_INJECTION 764 case Opt_fault_injection: 765 if (args->from && match_int(args, &arg)) 766 return -EINVAL; 767 f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE); 768 set_opt(sbi, FAULT_INJECTION); 769 break; 770 771 case Opt_fault_type: 772 if (args->from && match_int(args, &arg)) 773 return -EINVAL; 774 f2fs_build_fault_attr(sbi, 0, arg); 775 set_opt(sbi, FAULT_INJECTION); 776 break; 777 #else 778 case Opt_fault_injection: 779 f2fs_info(sbi, "fault_injection options not supported"); 780 break; 781 782 case Opt_fault_type: 783 f2fs_info(sbi, "fault_type options not supported"); 784 break; 785 #endif 786 case Opt_lazytime: 787 sb->s_flags |= SB_LAZYTIME; 788 break; 789 case Opt_nolazytime: 790 sb->s_flags &= ~SB_LAZYTIME; 791 break; 792 #ifdef CONFIG_QUOTA 793 case Opt_quota: 794 case Opt_usrquota: 795 set_opt(sbi, USRQUOTA); 796 break; 797 case Opt_grpquota: 798 set_opt(sbi, GRPQUOTA); 799 break; 800 case Opt_prjquota: 801 set_opt(sbi, PRJQUOTA); 802 break; 803 case Opt_usrjquota: 804 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 805 if (ret) 806 return ret; 807 break; 808 case Opt_grpjquota: 809 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 810 if (ret) 811 return ret; 812 break; 813 case Opt_prjjquota: 814 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 815 if (ret) 816 return ret; 817 break; 818 case Opt_offusrjquota: 819 ret = f2fs_clear_qf_name(sb, USRQUOTA); 820 if (ret) 821 return ret; 822 break; 823 case Opt_offgrpjquota: 824 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 825 if (ret) 826 return ret; 827 break; 828 case Opt_offprjjquota: 829 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 830 if (ret) 831 return ret; 832 break; 833 case Opt_jqfmt_vfsold: 834 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 835 break; 836 case Opt_jqfmt_vfsv0: 837 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 838 break; 839 case Opt_jqfmt_vfsv1: 840 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 841 break; 842 case Opt_noquota: 843 clear_opt(sbi, QUOTA); 844 clear_opt(sbi, USRQUOTA); 845 clear_opt(sbi, GRPQUOTA); 846 clear_opt(sbi, PRJQUOTA); 847 break; 848 #else 849 case Opt_quota: 850 case Opt_usrquota: 851 case Opt_grpquota: 852 case Opt_prjquota: 853 case Opt_usrjquota: 854 case Opt_grpjquota: 855 case Opt_prjjquota: 856 case Opt_offusrjquota: 857 case Opt_offgrpjquota: 858 case Opt_offprjjquota: 859 case Opt_jqfmt_vfsold: 860 case Opt_jqfmt_vfsv0: 861 case Opt_jqfmt_vfsv1: 862 case Opt_noquota: 863 f2fs_info(sbi, "quota operations not supported"); 864 break; 865 #endif 866 case Opt_whint: 867 name = match_strdup(&args[0]); 868 if (!name) 869 return -ENOMEM; 870 if (!strcmp(name, "user-based")) { 871 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER; 872 } else if (!strcmp(name, "off")) { 873 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 874 } else if (!strcmp(name, "fs-based")) { 875 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS; 876 } else { 877 kfree(name); 878 return -EINVAL; 879 } 880 kfree(name); 881 break; 882 case Opt_alloc: 883 name = match_strdup(&args[0]); 884 if (!name) 885 return -ENOMEM; 886 887 if (!strcmp(name, "default")) { 888 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 889 } else if (!strcmp(name, "reuse")) { 890 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 891 } else { 892 kfree(name); 893 return -EINVAL; 894 } 895 kfree(name); 896 break; 897 case Opt_fsync: 898 name = match_strdup(&args[0]); 899 if (!name) 900 return -ENOMEM; 901 if (!strcmp(name, "posix")) { 902 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 903 } else if (!strcmp(name, "strict")) { 904 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 905 } else if (!strcmp(name, "nobarrier")) { 906 F2FS_OPTION(sbi).fsync_mode = 907 FSYNC_MODE_NOBARRIER; 908 } else { 909 kfree(name); 910 return -EINVAL; 911 } 912 kfree(name); 913 break; 914 case Opt_test_dummy_encryption: 915 ret = f2fs_set_test_dummy_encryption(sb, p, &args[0], 916 is_remount); 917 if (ret) 918 return ret; 919 break; 920 case Opt_inlinecrypt: 921 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 922 sb->s_flags |= SB_INLINECRYPT; 923 #else 924 f2fs_info(sbi, "inline encryption not supported"); 925 #endif 926 break; 927 case Opt_checkpoint_disable_cap_perc: 928 if (args->from && match_int(args, &arg)) 929 return -EINVAL; 930 if (arg < 0 || arg > 100) 931 return -EINVAL; 932 F2FS_OPTION(sbi).unusable_cap_perc = arg; 933 set_opt(sbi, DISABLE_CHECKPOINT); 934 break; 935 case Opt_checkpoint_disable_cap: 936 if (args->from && match_int(args, &arg)) 937 return -EINVAL; 938 F2FS_OPTION(sbi).unusable_cap = arg; 939 set_opt(sbi, DISABLE_CHECKPOINT); 940 break; 941 case Opt_checkpoint_disable: 942 set_opt(sbi, DISABLE_CHECKPOINT); 943 break; 944 case Opt_checkpoint_enable: 945 clear_opt(sbi, DISABLE_CHECKPOINT); 946 break; 947 case Opt_checkpoint_merge: 948 set_opt(sbi, MERGE_CHECKPOINT); 949 break; 950 case Opt_nocheckpoint_merge: 951 clear_opt(sbi, MERGE_CHECKPOINT); 952 break; 953 #ifdef CONFIG_F2FS_FS_COMPRESSION 954 case Opt_compress_algorithm: 955 if (!f2fs_sb_has_compression(sbi)) { 956 f2fs_info(sbi, "Image doesn't support compression"); 957 break; 958 } 959 name = match_strdup(&args[0]); 960 if (!name) 961 return -ENOMEM; 962 if (!strcmp(name, "lzo")) { 963 #ifdef CONFIG_F2FS_FS_LZO 964 F2FS_OPTION(sbi).compress_level = 0; 965 F2FS_OPTION(sbi).compress_algorithm = 966 COMPRESS_LZO; 967 #else 968 f2fs_info(sbi, "kernel doesn't support lzo compression"); 969 #endif 970 } else if (!strncmp(name, "lz4", 3)) { 971 #ifdef CONFIG_F2FS_FS_LZ4 972 ret = f2fs_set_lz4hc_level(sbi, name); 973 if (ret) { 974 kfree(name); 975 return -EINVAL; 976 } 977 F2FS_OPTION(sbi).compress_algorithm = 978 COMPRESS_LZ4; 979 #else 980 f2fs_info(sbi, "kernel doesn't support lz4 compression"); 981 #endif 982 } else if (!strncmp(name, "zstd", 4)) { 983 #ifdef CONFIG_F2FS_FS_ZSTD 984 ret = f2fs_set_zstd_level(sbi, name); 985 if (ret) { 986 kfree(name); 987 return -EINVAL; 988 } 989 F2FS_OPTION(sbi).compress_algorithm = 990 COMPRESS_ZSTD; 991 #else 992 f2fs_info(sbi, "kernel doesn't support zstd compression"); 993 #endif 994 } else if (!strcmp(name, "lzo-rle")) { 995 #ifdef CONFIG_F2FS_FS_LZORLE 996 F2FS_OPTION(sbi).compress_level = 0; 997 F2FS_OPTION(sbi).compress_algorithm = 998 COMPRESS_LZORLE; 999 #else 1000 f2fs_info(sbi, "kernel doesn't support lzorle compression"); 1001 #endif 1002 } else { 1003 kfree(name); 1004 return -EINVAL; 1005 } 1006 kfree(name); 1007 break; 1008 case Opt_compress_log_size: 1009 if (!f2fs_sb_has_compression(sbi)) { 1010 f2fs_info(sbi, "Image doesn't support compression"); 1011 break; 1012 } 1013 if (args->from && match_int(args, &arg)) 1014 return -EINVAL; 1015 if (arg < MIN_COMPRESS_LOG_SIZE || 1016 arg > MAX_COMPRESS_LOG_SIZE) { 1017 f2fs_err(sbi, 1018 "Compress cluster log size is out of range"); 1019 return -EINVAL; 1020 } 1021 F2FS_OPTION(sbi).compress_log_size = arg; 1022 break; 1023 case Opt_compress_extension: 1024 if (!f2fs_sb_has_compression(sbi)) { 1025 f2fs_info(sbi, "Image doesn't support compression"); 1026 break; 1027 } 1028 name = match_strdup(&args[0]); 1029 if (!name) 1030 return -ENOMEM; 1031 1032 ext = F2FS_OPTION(sbi).extensions; 1033 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 1034 1035 if (strlen(name) >= F2FS_EXTENSION_LEN || 1036 ext_cnt >= COMPRESS_EXT_NUM) { 1037 f2fs_err(sbi, 1038 "invalid extension length/number"); 1039 kfree(name); 1040 return -EINVAL; 1041 } 1042 1043 strcpy(ext[ext_cnt], name); 1044 F2FS_OPTION(sbi).compress_ext_cnt++; 1045 kfree(name); 1046 break; 1047 case Opt_compress_chksum: 1048 F2FS_OPTION(sbi).compress_chksum = true; 1049 break; 1050 case Opt_compress_mode: 1051 name = match_strdup(&args[0]); 1052 if (!name) 1053 return -ENOMEM; 1054 if (!strcmp(name, "fs")) { 1055 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 1056 } else if (!strcmp(name, "user")) { 1057 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER; 1058 } else { 1059 kfree(name); 1060 return -EINVAL; 1061 } 1062 kfree(name); 1063 break; 1064 #else 1065 case Opt_compress_algorithm: 1066 case Opt_compress_log_size: 1067 case Opt_compress_extension: 1068 case Opt_compress_chksum: 1069 case Opt_compress_mode: 1070 f2fs_info(sbi, "compression options not supported"); 1071 break; 1072 #endif 1073 case Opt_atgc: 1074 set_opt(sbi, ATGC); 1075 break; 1076 default: 1077 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value", 1078 p); 1079 return -EINVAL; 1080 } 1081 } 1082 #ifdef CONFIG_QUOTA 1083 if (f2fs_check_quota_options(sbi)) 1084 return -EINVAL; 1085 #else 1086 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 1087 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1088 return -EINVAL; 1089 } 1090 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 1091 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1092 return -EINVAL; 1093 } 1094 #endif 1095 #ifndef CONFIG_UNICODE 1096 if (f2fs_sb_has_casefold(sbi)) { 1097 f2fs_err(sbi, 1098 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 1099 return -EINVAL; 1100 } 1101 #endif 1102 /* 1103 * The BLKZONED feature indicates that the drive was formatted with 1104 * zone alignment optimization. This is optional for host-aware 1105 * devices, but mandatory for host-managed zoned block devices. 1106 */ 1107 #ifndef CONFIG_BLK_DEV_ZONED 1108 if (f2fs_sb_has_blkzoned(sbi)) { 1109 f2fs_err(sbi, "Zoned block device support is not enabled"); 1110 return -EINVAL; 1111 } 1112 #endif 1113 1114 if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) { 1115 f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO", 1116 F2FS_IO_SIZE_KB(sbi)); 1117 return -EINVAL; 1118 } 1119 1120 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 1121 int min_size, max_size; 1122 1123 if (!f2fs_sb_has_extra_attr(sbi) || 1124 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 1125 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off"); 1126 return -EINVAL; 1127 } 1128 if (!test_opt(sbi, INLINE_XATTR)) { 1129 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option"); 1130 return -EINVAL; 1131 } 1132 1133 min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32); 1134 max_size = MAX_INLINE_XATTR_SIZE; 1135 1136 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 1137 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 1138 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d", 1139 min_size, max_size); 1140 return -EINVAL; 1141 } 1142 } 1143 1144 if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) { 1145 f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n"); 1146 return -EINVAL; 1147 } 1148 1149 /* Not pass down write hints if the number of active logs is lesser 1150 * than NR_CURSEG_PERSIST_TYPE. 1151 */ 1152 if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE) 1153 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 1154 return 0; 1155 } 1156 1157 static struct inode *f2fs_alloc_inode(struct super_block *sb) 1158 { 1159 struct f2fs_inode_info *fi; 1160 1161 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 1162 if (!fi) 1163 return NULL; 1164 1165 init_once((void *) fi); 1166 1167 /* Initialize f2fs-specific inode info */ 1168 atomic_set(&fi->dirty_pages, 0); 1169 atomic_set(&fi->i_compr_blocks, 0); 1170 init_rwsem(&fi->i_sem); 1171 spin_lock_init(&fi->i_size_lock); 1172 INIT_LIST_HEAD(&fi->dirty_list); 1173 INIT_LIST_HEAD(&fi->gdirty_list); 1174 INIT_LIST_HEAD(&fi->inmem_ilist); 1175 INIT_LIST_HEAD(&fi->inmem_pages); 1176 mutex_init(&fi->inmem_lock); 1177 init_rwsem(&fi->i_gc_rwsem[READ]); 1178 init_rwsem(&fi->i_gc_rwsem[WRITE]); 1179 init_rwsem(&fi->i_mmap_sem); 1180 init_rwsem(&fi->i_xattr_sem); 1181 1182 /* Will be used by directory only */ 1183 fi->i_dir_level = F2FS_SB(sb)->dir_level; 1184 1185 return &fi->vfs_inode; 1186 } 1187 1188 static int f2fs_drop_inode(struct inode *inode) 1189 { 1190 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1191 int ret; 1192 1193 /* 1194 * during filesystem shutdown, if checkpoint is disabled, 1195 * drop useless meta/node dirty pages. 1196 */ 1197 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1198 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1199 inode->i_ino == F2FS_META_INO(sbi)) { 1200 trace_f2fs_drop_inode(inode, 1); 1201 return 1; 1202 } 1203 } 1204 1205 /* 1206 * This is to avoid a deadlock condition like below. 1207 * writeback_single_inode(inode) 1208 * - f2fs_write_data_page 1209 * - f2fs_gc -> iput -> evict 1210 * - inode_wait_for_writeback(inode) 1211 */ 1212 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 1213 if (!inode->i_nlink && !is_bad_inode(inode)) { 1214 /* to avoid evict_inode call simultaneously */ 1215 atomic_inc(&inode->i_count); 1216 spin_unlock(&inode->i_lock); 1217 1218 /* some remained atomic pages should discarded */ 1219 if (f2fs_is_atomic_file(inode)) 1220 f2fs_drop_inmem_pages(inode); 1221 1222 /* should remain fi->extent_tree for writepage */ 1223 f2fs_destroy_extent_node(inode); 1224 1225 sb_start_intwrite(inode->i_sb); 1226 f2fs_i_size_write(inode, 0); 1227 1228 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 1229 inode, NULL, 0, DATA); 1230 truncate_inode_pages_final(inode->i_mapping); 1231 1232 if (F2FS_HAS_BLOCKS(inode)) 1233 f2fs_truncate(inode); 1234 1235 sb_end_intwrite(inode->i_sb); 1236 1237 spin_lock(&inode->i_lock); 1238 atomic_dec(&inode->i_count); 1239 } 1240 trace_f2fs_drop_inode(inode, 0); 1241 return 0; 1242 } 1243 ret = generic_drop_inode(inode); 1244 if (!ret) 1245 ret = fscrypt_drop_inode(inode); 1246 trace_f2fs_drop_inode(inode, ret); 1247 return ret; 1248 } 1249 1250 int f2fs_inode_dirtied(struct inode *inode, bool sync) 1251 { 1252 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1253 int ret = 0; 1254 1255 spin_lock(&sbi->inode_lock[DIRTY_META]); 1256 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1257 ret = 1; 1258 } else { 1259 set_inode_flag(inode, FI_DIRTY_INODE); 1260 stat_inc_dirty_inode(sbi, DIRTY_META); 1261 } 1262 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 1263 list_add_tail(&F2FS_I(inode)->gdirty_list, 1264 &sbi->inode_list[DIRTY_META]); 1265 inc_page_count(sbi, F2FS_DIRTY_IMETA); 1266 } 1267 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1268 return ret; 1269 } 1270 1271 void f2fs_inode_synced(struct inode *inode) 1272 { 1273 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1274 1275 spin_lock(&sbi->inode_lock[DIRTY_META]); 1276 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1277 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1278 return; 1279 } 1280 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 1281 list_del_init(&F2FS_I(inode)->gdirty_list); 1282 dec_page_count(sbi, F2FS_DIRTY_IMETA); 1283 } 1284 clear_inode_flag(inode, FI_DIRTY_INODE); 1285 clear_inode_flag(inode, FI_AUTO_RECOVER); 1286 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 1287 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1288 } 1289 1290 /* 1291 * f2fs_dirty_inode() is called from __mark_inode_dirty() 1292 * 1293 * We should call set_dirty_inode to write the dirty inode through write_inode. 1294 */ 1295 static void f2fs_dirty_inode(struct inode *inode, int flags) 1296 { 1297 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1298 1299 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1300 inode->i_ino == F2FS_META_INO(sbi)) 1301 return; 1302 1303 if (flags == I_DIRTY_TIME) 1304 return; 1305 1306 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1307 clear_inode_flag(inode, FI_AUTO_RECOVER); 1308 1309 f2fs_inode_dirtied(inode, false); 1310 } 1311 1312 static void f2fs_free_inode(struct inode *inode) 1313 { 1314 fscrypt_free_inode(inode); 1315 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1316 } 1317 1318 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1319 { 1320 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1321 percpu_counter_destroy(&sbi->total_valid_inode_count); 1322 } 1323 1324 static void destroy_device_list(struct f2fs_sb_info *sbi) 1325 { 1326 int i; 1327 1328 for (i = 0; i < sbi->s_ndevs; i++) { 1329 blkdev_put(FDEV(i).bdev, FMODE_EXCL); 1330 #ifdef CONFIG_BLK_DEV_ZONED 1331 kvfree(FDEV(i).blkz_seq); 1332 kfree(FDEV(i).zone_capacity_blocks); 1333 #endif 1334 } 1335 kvfree(sbi->devs); 1336 } 1337 1338 static void f2fs_put_super(struct super_block *sb) 1339 { 1340 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1341 int i; 1342 bool dropped; 1343 1344 /* unregister procfs/sysfs entries in advance to avoid race case */ 1345 f2fs_unregister_sysfs(sbi); 1346 1347 f2fs_quota_off_umount(sb); 1348 1349 /* prevent remaining shrinker jobs */ 1350 mutex_lock(&sbi->umount_mutex); 1351 1352 /* 1353 * flush all issued checkpoints and stop checkpoint issue thread. 1354 * after then, all checkpoints should be done by each process context. 1355 */ 1356 f2fs_stop_ckpt_thread(sbi); 1357 1358 /* 1359 * We don't need to do checkpoint when superblock is clean. 1360 * But, the previous checkpoint was not done by umount, it needs to do 1361 * clean checkpoint again. 1362 */ 1363 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1364 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1365 struct cp_control cpc = { 1366 .reason = CP_UMOUNT, 1367 }; 1368 f2fs_write_checkpoint(sbi, &cpc); 1369 } 1370 1371 /* be sure to wait for any on-going discard commands */ 1372 dropped = f2fs_issue_discard_timeout(sbi); 1373 1374 if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) && 1375 !sbi->discard_blks && !dropped) { 1376 struct cp_control cpc = { 1377 .reason = CP_UMOUNT | CP_TRIMMED, 1378 }; 1379 f2fs_write_checkpoint(sbi, &cpc); 1380 } 1381 1382 /* 1383 * normally superblock is clean, so we need to release this. 1384 * In addition, EIO will skip do checkpoint, we need this as well. 1385 */ 1386 f2fs_release_ino_entry(sbi, true); 1387 1388 f2fs_leave_shrinker(sbi); 1389 mutex_unlock(&sbi->umount_mutex); 1390 1391 /* our cp_error case, we can wait for any writeback page */ 1392 f2fs_flush_merged_writes(sbi); 1393 1394 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1395 1396 f2fs_bug_on(sbi, sbi->fsync_node_num); 1397 1398 iput(sbi->node_inode); 1399 sbi->node_inode = NULL; 1400 1401 iput(sbi->meta_inode); 1402 sbi->meta_inode = NULL; 1403 1404 /* 1405 * iput() can update stat information, if f2fs_write_checkpoint() 1406 * above failed with error. 1407 */ 1408 f2fs_destroy_stats(sbi); 1409 1410 /* destroy f2fs internal modules */ 1411 f2fs_destroy_node_manager(sbi); 1412 f2fs_destroy_segment_manager(sbi); 1413 1414 f2fs_destroy_post_read_wq(sbi); 1415 1416 kvfree(sbi->ckpt); 1417 1418 sb->s_fs_info = NULL; 1419 if (sbi->s_chksum_driver) 1420 crypto_free_shash(sbi->s_chksum_driver); 1421 kfree(sbi->raw_super); 1422 1423 destroy_device_list(sbi); 1424 f2fs_destroy_page_array_cache(sbi); 1425 f2fs_destroy_xattr_caches(sbi); 1426 mempool_destroy(sbi->write_io_dummy); 1427 #ifdef CONFIG_QUOTA 1428 for (i = 0; i < MAXQUOTAS; i++) 1429 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 1430 #endif 1431 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 1432 destroy_percpu_info(sbi); 1433 for (i = 0; i < NR_PAGE_TYPE; i++) 1434 kvfree(sbi->write_io[i]); 1435 #ifdef CONFIG_UNICODE 1436 utf8_unload(sb->s_encoding); 1437 #endif 1438 kfree(sbi); 1439 } 1440 1441 int f2fs_sync_fs(struct super_block *sb, int sync) 1442 { 1443 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1444 int err = 0; 1445 1446 if (unlikely(f2fs_cp_error(sbi))) 1447 return 0; 1448 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1449 return 0; 1450 1451 trace_f2fs_sync_fs(sb, sync); 1452 1453 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1454 return -EAGAIN; 1455 1456 if (sync) 1457 err = f2fs_issue_checkpoint(sbi); 1458 1459 return err; 1460 } 1461 1462 static int f2fs_freeze(struct super_block *sb) 1463 { 1464 if (f2fs_readonly(sb)) 1465 return 0; 1466 1467 /* IO error happened before */ 1468 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1469 return -EIO; 1470 1471 /* must be clean, since sync_filesystem() was already called */ 1472 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1473 return -EINVAL; 1474 1475 /* ensure no checkpoint required */ 1476 if (!llist_empty(&F2FS_SB(sb)->cprc_info.issue_list)) 1477 return -EINVAL; 1478 return 0; 1479 } 1480 1481 static int f2fs_unfreeze(struct super_block *sb) 1482 { 1483 return 0; 1484 } 1485 1486 #ifdef CONFIG_QUOTA 1487 static int f2fs_statfs_project(struct super_block *sb, 1488 kprojid_t projid, struct kstatfs *buf) 1489 { 1490 struct kqid qid; 1491 struct dquot *dquot; 1492 u64 limit; 1493 u64 curblock; 1494 1495 qid = make_kqid_projid(projid); 1496 dquot = dqget(sb, qid); 1497 if (IS_ERR(dquot)) 1498 return PTR_ERR(dquot); 1499 spin_lock(&dquot->dq_dqb_lock); 1500 1501 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 1502 dquot->dq_dqb.dqb_bhardlimit); 1503 if (limit) 1504 limit >>= sb->s_blocksize_bits; 1505 1506 if (limit && buf->f_blocks > limit) { 1507 curblock = (dquot->dq_dqb.dqb_curspace + 1508 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 1509 buf->f_blocks = limit; 1510 buf->f_bfree = buf->f_bavail = 1511 (buf->f_blocks > curblock) ? 1512 (buf->f_blocks - curblock) : 0; 1513 } 1514 1515 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 1516 dquot->dq_dqb.dqb_ihardlimit); 1517 1518 if (limit && buf->f_files > limit) { 1519 buf->f_files = limit; 1520 buf->f_ffree = 1521 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1522 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1523 } 1524 1525 spin_unlock(&dquot->dq_dqb_lock); 1526 dqput(dquot); 1527 return 0; 1528 } 1529 #endif 1530 1531 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1532 { 1533 struct super_block *sb = dentry->d_sb; 1534 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1535 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1536 block_t total_count, user_block_count, start_count; 1537 u64 avail_node_count; 1538 1539 total_count = le64_to_cpu(sbi->raw_super->block_count); 1540 user_block_count = sbi->user_block_count; 1541 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1542 buf->f_type = F2FS_SUPER_MAGIC; 1543 buf->f_bsize = sbi->blocksize; 1544 1545 buf->f_blocks = total_count - start_count; 1546 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1547 sbi->current_reserved_blocks; 1548 1549 spin_lock(&sbi->stat_lock); 1550 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1551 buf->f_bfree = 0; 1552 else 1553 buf->f_bfree -= sbi->unusable_block_count; 1554 spin_unlock(&sbi->stat_lock); 1555 1556 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1557 buf->f_bavail = buf->f_bfree - 1558 F2FS_OPTION(sbi).root_reserved_blocks; 1559 else 1560 buf->f_bavail = 0; 1561 1562 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 1563 1564 if (avail_node_count > user_block_count) { 1565 buf->f_files = user_block_count; 1566 buf->f_ffree = buf->f_bavail; 1567 } else { 1568 buf->f_files = avail_node_count; 1569 buf->f_ffree = min(avail_node_count - valid_node_count(sbi), 1570 buf->f_bavail); 1571 } 1572 1573 buf->f_namelen = F2FS_NAME_LEN; 1574 buf->f_fsid = u64_to_fsid(id); 1575 1576 #ifdef CONFIG_QUOTA 1577 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1578 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1579 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1580 } 1581 #endif 1582 return 0; 1583 } 1584 1585 static inline void f2fs_show_quota_options(struct seq_file *seq, 1586 struct super_block *sb) 1587 { 1588 #ifdef CONFIG_QUOTA 1589 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1590 1591 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1592 char *fmtname = ""; 1593 1594 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1595 case QFMT_VFS_OLD: 1596 fmtname = "vfsold"; 1597 break; 1598 case QFMT_VFS_V0: 1599 fmtname = "vfsv0"; 1600 break; 1601 case QFMT_VFS_V1: 1602 fmtname = "vfsv1"; 1603 break; 1604 } 1605 seq_printf(seq, ",jqfmt=%s", fmtname); 1606 } 1607 1608 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1609 seq_show_option(seq, "usrjquota", 1610 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1611 1612 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1613 seq_show_option(seq, "grpjquota", 1614 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1615 1616 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1617 seq_show_option(seq, "prjjquota", 1618 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1619 #endif 1620 } 1621 1622 static inline void f2fs_show_compress_options(struct seq_file *seq, 1623 struct super_block *sb) 1624 { 1625 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1626 char *algtype = ""; 1627 int i; 1628 1629 if (!f2fs_sb_has_compression(sbi)) 1630 return; 1631 1632 switch (F2FS_OPTION(sbi).compress_algorithm) { 1633 case COMPRESS_LZO: 1634 algtype = "lzo"; 1635 break; 1636 case COMPRESS_LZ4: 1637 algtype = "lz4"; 1638 break; 1639 case COMPRESS_ZSTD: 1640 algtype = "zstd"; 1641 break; 1642 case COMPRESS_LZORLE: 1643 algtype = "lzo-rle"; 1644 break; 1645 } 1646 seq_printf(seq, ",compress_algorithm=%s", algtype); 1647 1648 if (F2FS_OPTION(sbi).compress_level) 1649 seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level); 1650 1651 seq_printf(seq, ",compress_log_size=%u", 1652 F2FS_OPTION(sbi).compress_log_size); 1653 1654 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) { 1655 seq_printf(seq, ",compress_extension=%s", 1656 F2FS_OPTION(sbi).extensions[i]); 1657 } 1658 1659 if (F2FS_OPTION(sbi).compress_chksum) 1660 seq_puts(seq, ",compress_chksum"); 1661 1662 if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS) 1663 seq_printf(seq, ",compress_mode=%s", "fs"); 1664 else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER) 1665 seq_printf(seq, ",compress_mode=%s", "user"); 1666 } 1667 1668 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1669 { 1670 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1671 1672 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC) 1673 seq_printf(seq, ",background_gc=%s", "sync"); 1674 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON) 1675 seq_printf(seq, ",background_gc=%s", "on"); 1676 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) 1677 seq_printf(seq, ",background_gc=%s", "off"); 1678 1679 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1680 seq_puts(seq, ",disable_roll_forward"); 1681 if (test_opt(sbi, NORECOVERY)) 1682 seq_puts(seq, ",norecovery"); 1683 if (test_opt(sbi, DISCARD)) 1684 seq_puts(seq, ",discard"); 1685 else 1686 seq_puts(seq, ",nodiscard"); 1687 if (test_opt(sbi, NOHEAP)) 1688 seq_puts(seq, ",no_heap"); 1689 else 1690 seq_puts(seq, ",heap"); 1691 #ifdef CONFIG_F2FS_FS_XATTR 1692 if (test_opt(sbi, XATTR_USER)) 1693 seq_puts(seq, ",user_xattr"); 1694 else 1695 seq_puts(seq, ",nouser_xattr"); 1696 if (test_opt(sbi, INLINE_XATTR)) 1697 seq_puts(seq, ",inline_xattr"); 1698 else 1699 seq_puts(seq, ",noinline_xattr"); 1700 if (test_opt(sbi, INLINE_XATTR_SIZE)) 1701 seq_printf(seq, ",inline_xattr_size=%u", 1702 F2FS_OPTION(sbi).inline_xattr_size); 1703 #endif 1704 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1705 if (test_opt(sbi, POSIX_ACL)) 1706 seq_puts(seq, ",acl"); 1707 else 1708 seq_puts(seq, ",noacl"); 1709 #endif 1710 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 1711 seq_puts(seq, ",disable_ext_identify"); 1712 if (test_opt(sbi, INLINE_DATA)) 1713 seq_puts(seq, ",inline_data"); 1714 else 1715 seq_puts(seq, ",noinline_data"); 1716 if (test_opt(sbi, INLINE_DENTRY)) 1717 seq_puts(seq, ",inline_dentry"); 1718 else 1719 seq_puts(seq, ",noinline_dentry"); 1720 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 1721 seq_puts(seq, ",flush_merge"); 1722 if (test_opt(sbi, NOBARRIER)) 1723 seq_puts(seq, ",nobarrier"); 1724 if (test_opt(sbi, FASTBOOT)) 1725 seq_puts(seq, ",fastboot"); 1726 if (test_opt(sbi, EXTENT_CACHE)) 1727 seq_puts(seq, ",extent_cache"); 1728 else 1729 seq_puts(seq, ",noextent_cache"); 1730 if (test_opt(sbi, DATA_FLUSH)) 1731 seq_puts(seq, ",data_flush"); 1732 1733 seq_puts(seq, ",mode="); 1734 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE) 1735 seq_puts(seq, "adaptive"); 1736 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS) 1737 seq_puts(seq, "lfs"); 1738 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 1739 if (test_opt(sbi, RESERVE_ROOT)) 1740 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 1741 F2FS_OPTION(sbi).root_reserved_blocks, 1742 from_kuid_munged(&init_user_ns, 1743 F2FS_OPTION(sbi).s_resuid), 1744 from_kgid_munged(&init_user_ns, 1745 F2FS_OPTION(sbi).s_resgid)); 1746 if (F2FS_IO_SIZE_BITS(sbi)) 1747 seq_printf(seq, ",io_bits=%u", 1748 F2FS_OPTION(sbi).write_io_size_bits); 1749 #ifdef CONFIG_F2FS_FAULT_INJECTION 1750 if (test_opt(sbi, FAULT_INJECTION)) { 1751 seq_printf(seq, ",fault_injection=%u", 1752 F2FS_OPTION(sbi).fault_info.inject_rate); 1753 seq_printf(seq, ",fault_type=%u", 1754 F2FS_OPTION(sbi).fault_info.inject_type); 1755 } 1756 #endif 1757 #ifdef CONFIG_QUOTA 1758 if (test_opt(sbi, QUOTA)) 1759 seq_puts(seq, ",quota"); 1760 if (test_opt(sbi, USRQUOTA)) 1761 seq_puts(seq, ",usrquota"); 1762 if (test_opt(sbi, GRPQUOTA)) 1763 seq_puts(seq, ",grpquota"); 1764 if (test_opt(sbi, PRJQUOTA)) 1765 seq_puts(seq, ",prjquota"); 1766 #endif 1767 f2fs_show_quota_options(seq, sbi->sb); 1768 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) 1769 seq_printf(seq, ",whint_mode=%s", "user-based"); 1770 else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) 1771 seq_printf(seq, ",whint_mode=%s", "fs-based"); 1772 1773 fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb); 1774 1775 if (sbi->sb->s_flags & SB_INLINECRYPT) 1776 seq_puts(seq, ",inlinecrypt"); 1777 1778 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 1779 seq_printf(seq, ",alloc_mode=%s", "default"); 1780 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 1781 seq_printf(seq, ",alloc_mode=%s", "reuse"); 1782 1783 if (test_opt(sbi, DISABLE_CHECKPOINT)) 1784 seq_printf(seq, ",checkpoint=disable:%u", 1785 F2FS_OPTION(sbi).unusable_cap); 1786 if (test_opt(sbi, MERGE_CHECKPOINT)) 1787 seq_puts(seq, ",checkpoint_merge"); 1788 else 1789 seq_puts(seq, ",nocheckpoint_merge"); 1790 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 1791 seq_printf(seq, ",fsync_mode=%s", "posix"); 1792 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 1793 seq_printf(seq, ",fsync_mode=%s", "strict"); 1794 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 1795 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 1796 1797 #ifdef CONFIG_F2FS_FS_COMPRESSION 1798 f2fs_show_compress_options(seq, sbi->sb); 1799 #endif 1800 1801 if (test_opt(sbi, ATGC)) 1802 seq_puts(seq, ",atgc"); 1803 return 0; 1804 } 1805 1806 static void default_options(struct f2fs_sb_info *sbi) 1807 { 1808 /* init some FS parameters */ 1809 F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE; 1810 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 1811 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 1812 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 1813 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1814 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 1815 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 1816 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4; 1817 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE; 1818 F2FS_OPTION(sbi).compress_ext_cnt = 0; 1819 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 1820 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 1821 1822 sbi->sb->s_flags &= ~SB_INLINECRYPT; 1823 1824 set_opt(sbi, INLINE_XATTR); 1825 set_opt(sbi, INLINE_DATA); 1826 set_opt(sbi, INLINE_DENTRY); 1827 set_opt(sbi, EXTENT_CACHE); 1828 set_opt(sbi, NOHEAP); 1829 clear_opt(sbi, DISABLE_CHECKPOINT); 1830 F2FS_OPTION(sbi).unusable_cap = 0; 1831 sbi->sb->s_flags |= SB_LAZYTIME; 1832 set_opt(sbi, FLUSH_MERGE); 1833 set_opt(sbi, DISCARD); 1834 if (f2fs_sb_has_blkzoned(sbi)) 1835 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 1836 else 1837 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 1838 1839 #ifdef CONFIG_F2FS_FS_XATTR 1840 set_opt(sbi, XATTR_USER); 1841 #endif 1842 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1843 set_opt(sbi, POSIX_ACL); 1844 #endif 1845 1846 f2fs_build_fault_attr(sbi, 0, 0); 1847 } 1848 1849 #ifdef CONFIG_QUOTA 1850 static int f2fs_enable_quotas(struct super_block *sb); 1851 #endif 1852 1853 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 1854 { 1855 unsigned int s_flags = sbi->sb->s_flags; 1856 struct cp_control cpc; 1857 int err = 0; 1858 int ret; 1859 block_t unusable; 1860 1861 if (s_flags & SB_RDONLY) { 1862 f2fs_err(sbi, "checkpoint=disable on readonly fs"); 1863 return -EINVAL; 1864 } 1865 sbi->sb->s_flags |= SB_ACTIVE; 1866 1867 f2fs_update_time(sbi, DISABLE_TIME); 1868 1869 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 1870 down_write(&sbi->gc_lock); 1871 err = f2fs_gc(sbi, true, false, NULL_SEGNO); 1872 if (err == -ENODATA) { 1873 err = 0; 1874 break; 1875 } 1876 if (err && err != -EAGAIN) 1877 break; 1878 } 1879 1880 ret = sync_filesystem(sbi->sb); 1881 if (ret || err) { 1882 err = ret ? ret: err; 1883 goto restore_flag; 1884 } 1885 1886 unusable = f2fs_get_unusable_blocks(sbi); 1887 if (f2fs_disable_cp_again(sbi, unusable)) { 1888 err = -EAGAIN; 1889 goto restore_flag; 1890 } 1891 1892 down_write(&sbi->gc_lock); 1893 cpc.reason = CP_PAUSE; 1894 set_sbi_flag(sbi, SBI_CP_DISABLED); 1895 err = f2fs_write_checkpoint(sbi, &cpc); 1896 if (err) 1897 goto out_unlock; 1898 1899 spin_lock(&sbi->stat_lock); 1900 sbi->unusable_block_count = unusable; 1901 spin_unlock(&sbi->stat_lock); 1902 1903 out_unlock: 1904 up_write(&sbi->gc_lock); 1905 restore_flag: 1906 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 1907 return err; 1908 } 1909 1910 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 1911 { 1912 /* we should flush all the data to keep data consistency */ 1913 sync_inodes_sb(sbi->sb); 1914 1915 down_write(&sbi->gc_lock); 1916 f2fs_dirty_to_prefree(sbi); 1917 1918 clear_sbi_flag(sbi, SBI_CP_DISABLED); 1919 set_sbi_flag(sbi, SBI_IS_DIRTY); 1920 up_write(&sbi->gc_lock); 1921 1922 f2fs_sync_fs(sbi->sb, 1); 1923 } 1924 1925 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 1926 { 1927 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1928 struct f2fs_mount_info org_mount_opt; 1929 unsigned long old_sb_flags; 1930 int err; 1931 bool need_restart_gc = false; 1932 bool need_stop_gc = false; 1933 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 1934 bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT); 1935 bool no_io_align = !F2FS_IO_ALIGNED(sbi); 1936 bool no_atgc = !test_opt(sbi, ATGC); 1937 bool checkpoint_changed; 1938 #ifdef CONFIG_QUOTA 1939 int i, j; 1940 #endif 1941 1942 /* 1943 * Save the old mount options in case we 1944 * need to restore them. 1945 */ 1946 org_mount_opt = sbi->mount_opt; 1947 old_sb_flags = sb->s_flags; 1948 1949 #ifdef CONFIG_QUOTA 1950 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 1951 for (i = 0; i < MAXQUOTAS; i++) { 1952 if (F2FS_OPTION(sbi).s_qf_names[i]) { 1953 org_mount_opt.s_qf_names[i] = 1954 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 1955 GFP_KERNEL); 1956 if (!org_mount_opt.s_qf_names[i]) { 1957 for (j = 0; j < i; j++) 1958 kfree(org_mount_opt.s_qf_names[j]); 1959 return -ENOMEM; 1960 } 1961 } else { 1962 org_mount_opt.s_qf_names[i] = NULL; 1963 } 1964 } 1965 #endif 1966 1967 /* recover superblocks we couldn't write due to previous RO mount */ 1968 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 1969 err = f2fs_commit_super(sbi, false); 1970 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d", 1971 err); 1972 if (!err) 1973 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1974 } 1975 1976 default_options(sbi); 1977 1978 /* parse mount options */ 1979 err = parse_options(sb, data, true); 1980 if (err) 1981 goto restore_opts; 1982 checkpoint_changed = 1983 disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT); 1984 1985 /* 1986 * Previous and new state of filesystem is RO, 1987 * so skip checking GC and FLUSH_MERGE conditions. 1988 */ 1989 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 1990 goto skip; 1991 1992 #ifdef CONFIG_QUOTA 1993 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 1994 err = dquot_suspend(sb, -1); 1995 if (err < 0) 1996 goto restore_opts; 1997 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 1998 /* dquot_resume needs RW */ 1999 sb->s_flags &= ~SB_RDONLY; 2000 if (sb_any_quota_suspended(sb)) { 2001 dquot_resume(sb, -1); 2002 } else if (f2fs_sb_has_quota_ino(sbi)) { 2003 err = f2fs_enable_quotas(sb); 2004 if (err) 2005 goto restore_opts; 2006 } 2007 } 2008 #endif 2009 /* disallow enable atgc dynamically */ 2010 if (no_atgc == !!test_opt(sbi, ATGC)) { 2011 err = -EINVAL; 2012 f2fs_warn(sbi, "switch atgc option is not allowed"); 2013 goto restore_opts; 2014 } 2015 2016 /* disallow enable/disable extent_cache dynamically */ 2017 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 2018 err = -EINVAL; 2019 f2fs_warn(sbi, "switch extent_cache option is not allowed"); 2020 goto restore_opts; 2021 } 2022 2023 if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) { 2024 err = -EINVAL; 2025 f2fs_warn(sbi, "switch io_bits option is not allowed"); 2026 goto restore_opts; 2027 } 2028 2029 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 2030 err = -EINVAL; 2031 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only"); 2032 goto restore_opts; 2033 } 2034 2035 /* 2036 * We stop the GC thread if FS is mounted as RO 2037 * or if background_gc = off is passed in mount 2038 * option. Also sync the filesystem. 2039 */ 2040 if ((*flags & SB_RDONLY) || 2041 F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) { 2042 if (sbi->gc_thread) { 2043 f2fs_stop_gc_thread(sbi); 2044 need_restart_gc = true; 2045 } 2046 } else if (!sbi->gc_thread) { 2047 err = f2fs_start_gc_thread(sbi); 2048 if (err) 2049 goto restore_opts; 2050 need_stop_gc = true; 2051 } 2052 2053 if (*flags & SB_RDONLY || 2054 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) { 2055 sync_inodes_sb(sb); 2056 2057 set_sbi_flag(sbi, SBI_IS_DIRTY); 2058 set_sbi_flag(sbi, SBI_IS_CLOSE); 2059 f2fs_sync_fs(sb, 1); 2060 clear_sbi_flag(sbi, SBI_IS_CLOSE); 2061 } 2062 2063 if (checkpoint_changed) { 2064 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2065 err = f2fs_disable_checkpoint(sbi); 2066 if (err) 2067 goto restore_gc; 2068 } else { 2069 f2fs_enable_checkpoint(sbi); 2070 } 2071 } 2072 2073 if (!test_opt(sbi, DISABLE_CHECKPOINT) && 2074 test_opt(sbi, MERGE_CHECKPOINT)) { 2075 err = f2fs_start_ckpt_thread(sbi); 2076 if (err) { 2077 f2fs_err(sbi, 2078 "Failed to start F2FS issue_checkpoint_thread (%d)", 2079 err); 2080 goto restore_gc; 2081 } 2082 } else { 2083 f2fs_stop_ckpt_thread(sbi); 2084 } 2085 2086 /* 2087 * We stop issue flush thread if FS is mounted as RO 2088 * or if flush_merge is not passed in mount option. 2089 */ 2090 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 2091 clear_opt(sbi, FLUSH_MERGE); 2092 f2fs_destroy_flush_cmd_control(sbi, false); 2093 } else { 2094 err = f2fs_create_flush_cmd_control(sbi); 2095 if (err) 2096 goto restore_gc; 2097 } 2098 skip: 2099 #ifdef CONFIG_QUOTA 2100 /* Release old quota file names */ 2101 for (i = 0; i < MAXQUOTAS; i++) 2102 kfree(org_mount_opt.s_qf_names[i]); 2103 #endif 2104 /* Update the POSIXACL Flag */ 2105 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 2106 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 2107 2108 limit_reserve_root(sbi); 2109 adjust_unusable_cap_perc(sbi); 2110 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 2111 return 0; 2112 restore_gc: 2113 if (need_restart_gc) { 2114 if (f2fs_start_gc_thread(sbi)) 2115 f2fs_warn(sbi, "background gc thread has stopped"); 2116 } else if (need_stop_gc) { 2117 f2fs_stop_gc_thread(sbi); 2118 } 2119 restore_opts: 2120 #ifdef CONFIG_QUOTA 2121 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 2122 for (i = 0; i < MAXQUOTAS; i++) { 2123 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 2124 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 2125 } 2126 #endif 2127 sbi->mount_opt = org_mount_opt; 2128 sb->s_flags = old_sb_flags; 2129 return err; 2130 } 2131 2132 #ifdef CONFIG_QUOTA 2133 /* Read data from quotafile */ 2134 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 2135 size_t len, loff_t off) 2136 { 2137 struct inode *inode = sb_dqopt(sb)->files[type]; 2138 struct address_space *mapping = inode->i_mapping; 2139 block_t blkidx = F2FS_BYTES_TO_BLK(off); 2140 int offset = off & (sb->s_blocksize - 1); 2141 int tocopy; 2142 size_t toread; 2143 loff_t i_size = i_size_read(inode); 2144 struct page *page; 2145 char *kaddr; 2146 2147 if (off > i_size) 2148 return 0; 2149 2150 if (off + len > i_size) 2151 len = i_size - off; 2152 toread = len; 2153 while (toread > 0) { 2154 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 2155 repeat: 2156 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 2157 if (IS_ERR(page)) { 2158 if (PTR_ERR(page) == -ENOMEM) { 2159 congestion_wait(BLK_RW_ASYNC, 2160 DEFAULT_IO_TIMEOUT); 2161 goto repeat; 2162 } 2163 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2164 return PTR_ERR(page); 2165 } 2166 2167 lock_page(page); 2168 2169 if (unlikely(page->mapping != mapping)) { 2170 f2fs_put_page(page, 1); 2171 goto repeat; 2172 } 2173 if (unlikely(!PageUptodate(page))) { 2174 f2fs_put_page(page, 1); 2175 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2176 return -EIO; 2177 } 2178 2179 kaddr = kmap_atomic(page); 2180 memcpy(data, kaddr + offset, tocopy); 2181 kunmap_atomic(kaddr); 2182 f2fs_put_page(page, 1); 2183 2184 offset = 0; 2185 toread -= tocopy; 2186 data += tocopy; 2187 blkidx++; 2188 } 2189 return len; 2190 } 2191 2192 /* Write to quotafile */ 2193 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 2194 const char *data, size_t len, loff_t off) 2195 { 2196 struct inode *inode = sb_dqopt(sb)->files[type]; 2197 struct address_space *mapping = inode->i_mapping; 2198 const struct address_space_operations *a_ops = mapping->a_ops; 2199 int offset = off & (sb->s_blocksize - 1); 2200 size_t towrite = len; 2201 struct page *page; 2202 void *fsdata = NULL; 2203 char *kaddr; 2204 int err = 0; 2205 int tocopy; 2206 2207 while (towrite > 0) { 2208 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 2209 towrite); 2210 retry: 2211 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0, 2212 &page, &fsdata); 2213 if (unlikely(err)) { 2214 if (err == -ENOMEM) { 2215 congestion_wait(BLK_RW_ASYNC, 2216 DEFAULT_IO_TIMEOUT); 2217 goto retry; 2218 } 2219 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2220 break; 2221 } 2222 2223 kaddr = kmap_atomic(page); 2224 memcpy(kaddr + offset, data, tocopy); 2225 kunmap_atomic(kaddr); 2226 flush_dcache_page(page); 2227 2228 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 2229 page, fsdata); 2230 offset = 0; 2231 towrite -= tocopy; 2232 off += tocopy; 2233 data += tocopy; 2234 cond_resched(); 2235 } 2236 2237 if (len == towrite) 2238 return err; 2239 inode->i_mtime = inode->i_ctime = current_time(inode); 2240 f2fs_mark_inode_dirty_sync(inode, false); 2241 return len - towrite; 2242 } 2243 2244 static struct dquot **f2fs_get_dquots(struct inode *inode) 2245 { 2246 return F2FS_I(inode)->i_dquot; 2247 } 2248 2249 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 2250 { 2251 return &F2FS_I(inode)->i_reserved_quota; 2252 } 2253 2254 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 2255 { 2256 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 2257 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it"); 2258 return 0; 2259 } 2260 2261 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 2262 F2FS_OPTION(sbi).s_jquota_fmt, type); 2263 } 2264 2265 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 2266 { 2267 int enabled = 0; 2268 int i, err; 2269 2270 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 2271 err = f2fs_enable_quotas(sbi->sb); 2272 if (err) { 2273 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err); 2274 return 0; 2275 } 2276 return 1; 2277 } 2278 2279 for (i = 0; i < MAXQUOTAS; i++) { 2280 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2281 err = f2fs_quota_on_mount(sbi, i); 2282 if (!err) { 2283 enabled = 1; 2284 continue; 2285 } 2286 f2fs_err(sbi, "Cannot turn on quotas: %d on %d", 2287 err, i); 2288 } 2289 } 2290 return enabled; 2291 } 2292 2293 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 2294 unsigned int flags) 2295 { 2296 struct inode *qf_inode; 2297 unsigned long qf_inum; 2298 int err; 2299 2300 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 2301 2302 qf_inum = f2fs_qf_ino(sb, type); 2303 if (!qf_inum) 2304 return -EPERM; 2305 2306 qf_inode = f2fs_iget(sb, qf_inum); 2307 if (IS_ERR(qf_inode)) { 2308 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum); 2309 return PTR_ERR(qf_inode); 2310 } 2311 2312 /* Don't account quota for quota files to avoid recursion */ 2313 qf_inode->i_flags |= S_NOQUOTA; 2314 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 2315 iput(qf_inode); 2316 return err; 2317 } 2318 2319 static int f2fs_enable_quotas(struct super_block *sb) 2320 { 2321 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2322 int type, err = 0; 2323 unsigned long qf_inum; 2324 bool quota_mopt[MAXQUOTAS] = { 2325 test_opt(sbi, USRQUOTA), 2326 test_opt(sbi, GRPQUOTA), 2327 test_opt(sbi, PRJQUOTA), 2328 }; 2329 2330 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 2331 f2fs_err(sbi, "quota file may be corrupted, skip loading it"); 2332 return 0; 2333 } 2334 2335 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 2336 2337 for (type = 0; type < MAXQUOTAS; type++) { 2338 qf_inum = f2fs_qf_ino(sb, type); 2339 if (qf_inum) { 2340 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 2341 DQUOT_USAGE_ENABLED | 2342 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 2343 if (err) { 2344 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.", 2345 type, err); 2346 for (type--; type >= 0; type--) 2347 dquot_quota_off(sb, type); 2348 set_sbi_flag(F2FS_SB(sb), 2349 SBI_QUOTA_NEED_REPAIR); 2350 return err; 2351 } 2352 } 2353 } 2354 return 0; 2355 } 2356 2357 int f2fs_quota_sync(struct super_block *sb, int type) 2358 { 2359 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2360 struct quota_info *dqopt = sb_dqopt(sb); 2361 int cnt; 2362 int ret; 2363 2364 /* 2365 * do_quotactl 2366 * f2fs_quota_sync 2367 * down_read(quota_sem) 2368 * dquot_writeback_dquots() 2369 * f2fs_dquot_commit 2370 * block_operation 2371 * down_read(quota_sem) 2372 */ 2373 f2fs_lock_op(sbi); 2374 2375 down_read(&sbi->quota_sem); 2376 ret = dquot_writeback_dquots(sb, type); 2377 if (ret) 2378 goto out; 2379 2380 /* 2381 * Now when everything is written we can discard the pagecache so 2382 * that userspace sees the changes. 2383 */ 2384 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 2385 struct address_space *mapping; 2386 2387 if (type != -1 && cnt != type) 2388 continue; 2389 if (!sb_has_quota_active(sb, cnt)) 2390 continue; 2391 2392 mapping = dqopt->files[cnt]->i_mapping; 2393 2394 ret = filemap_fdatawrite(mapping); 2395 if (ret) 2396 goto out; 2397 2398 /* if we are using journalled quota */ 2399 if (is_journalled_quota(sbi)) 2400 continue; 2401 2402 ret = filemap_fdatawait(mapping); 2403 if (ret) 2404 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2405 2406 inode_lock(dqopt->files[cnt]); 2407 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0); 2408 inode_unlock(dqopt->files[cnt]); 2409 } 2410 out: 2411 if (ret) 2412 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2413 up_read(&sbi->quota_sem); 2414 f2fs_unlock_op(sbi); 2415 return ret; 2416 } 2417 2418 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 2419 const struct path *path) 2420 { 2421 struct inode *inode; 2422 int err; 2423 2424 /* if quota sysfile exists, deny enabling quota with specific file */ 2425 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) { 2426 f2fs_err(F2FS_SB(sb), "quota sysfile already exists"); 2427 return -EBUSY; 2428 } 2429 2430 err = f2fs_quota_sync(sb, type); 2431 if (err) 2432 return err; 2433 2434 err = dquot_quota_on(sb, type, format_id, path); 2435 if (err) 2436 return err; 2437 2438 inode = d_inode(path->dentry); 2439 2440 inode_lock(inode); 2441 F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL; 2442 f2fs_set_inode_flags(inode); 2443 inode_unlock(inode); 2444 f2fs_mark_inode_dirty_sync(inode, false); 2445 2446 return 0; 2447 } 2448 2449 static int __f2fs_quota_off(struct super_block *sb, int type) 2450 { 2451 struct inode *inode = sb_dqopt(sb)->files[type]; 2452 int err; 2453 2454 if (!inode || !igrab(inode)) 2455 return dquot_quota_off(sb, type); 2456 2457 err = f2fs_quota_sync(sb, type); 2458 if (err) 2459 goto out_put; 2460 2461 err = dquot_quota_off(sb, type); 2462 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 2463 goto out_put; 2464 2465 inode_lock(inode); 2466 F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL); 2467 f2fs_set_inode_flags(inode); 2468 inode_unlock(inode); 2469 f2fs_mark_inode_dirty_sync(inode, false); 2470 out_put: 2471 iput(inode); 2472 return err; 2473 } 2474 2475 static int f2fs_quota_off(struct super_block *sb, int type) 2476 { 2477 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2478 int err; 2479 2480 err = __f2fs_quota_off(sb, type); 2481 2482 /* 2483 * quotactl can shutdown journalled quota, result in inconsistence 2484 * between quota record and fs data by following updates, tag the 2485 * flag to let fsck be aware of it. 2486 */ 2487 if (is_journalled_quota(sbi)) 2488 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2489 return err; 2490 } 2491 2492 void f2fs_quota_off_umount(struct super_block *sb) 2493 { 2494 int type; 2495 int err; 2496 2497 for (type = 0; type < MAXQUOTAS; type++) { 2498 err = __f2fs_quota_off(sb, type); 2499 if (err) { 2500 int ret = dquot_quota_off(sb, type); 2501 2502 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.", 2503 type, err, ret); 2504 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2505 } 2506 } 2507 /* 2508 * In case of checkpoint=disable, we must flush quota blocks. 2509 * This can cause NULL exception for node_inode in end_io, since 2510 * put_super already dropped it. 2511 */ 2512 sync_filesystem(sb); 2513 } 2514 2515 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 2516 { 2517 struct quota_info *dqopt = sb_dqopt(sb); 2518 int type; 2519 2520 for (type = 0; type < MAXQUOTAS; type++) { 2521 if (!dqopt->files[type]) 2522 continue; 2523 f2fs_inode_synced(dqopt->files[type]); 2524 } 2525 } 2526 2527 static int f2fs_dquot_commit(struct dquot *dquot) 2528 { 2529 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2530 int ret; 2531 2532 down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING); 2533 ret = dquot_commit(dquot); 2534 if (ret < 0) 2535 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2536 up_read(&sbi->quota_sem); 2537 return ret; 2538 } 2539 2540 static int f2fs_dquot_acquire(struct dquot *dquot) 2541 { 2542 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2543 int ret; 2544 2545 down_read(&sbi->quota_sem); 2546 ret = dquot_acquire(dquot); 2547 if (ret < 0) 2548 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2549 up_read(&sbi->quota_sem); 2550 return ret; 2551 } 2552 2553 static int f2fs_dquot_release(struct dquot *dquot) 2554 { 2555 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2556 int ret = dquot_release(dquot); 2557 2558 if (ret < 0) 2559 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2560 return ret; 2561 } 2562 2563 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 2564 { 2565 struct super_block *sb = dquot->dq_sb; 2566 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2567 int ret = dquot_mark_dquot_dirty(dquot); 2568 2569 /* if we are using journalled quota */ 2570 if (is_journalled_quota(sbi)) 2571 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 2572 2573 return ret; 2574 } 2575 2576 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 2577 { 2578 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2579 int ret = dquot_commit_info(sb, type); 2580 2581 if (ret < 0) 2582 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2583 return ret; 2584 } 2585 2586 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 2587 { 2588 *projid = F2FS_I(inode)->i_projid; 2589 return 0; 2590 } 2591 2592 static const struct dquot_operations f2fs_quota_operations = { 2593 .get_reserved_space = f2fs_get_reserved_space, 2594 .write_dquot = f2fs_dquot_commit, 2595 .acquire_dquot = f2fs_dquot_acquire, 2596 .release_dquot = f2fs_dquot_release, 2597 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 2598 .write_info = f2fs_dquot_commit_info, 2599 .alloc_dquot = dquot_alloc, 2600 .destroy_dquot = dquot_destroy, 2601 .get_projid = f2fs_get_projid, 2602 .get_next_id = dquot_get_next_id, 2603 }; 2604 2605 static const struct quotactl_ops f2fs_quotactl_ops = { 2606 .quota_on = f2fs_quota_on, 2607 .quota_off = f2fs_quota_off, 2608 .quota_sync = f2fs_quota_sync, 2609 .get_state = dquot_get_state, 2610 .set_info = dquot_set_dqinfo, 2611 .get_dqblk = dquot_get_dqblk, 2612 .set_dqblk = dquot_set_dqblk, 2613 .get_nextdqblk = dquot_get_next_dqblk, 2614 }; 2615 #else 2616 int f2fs_quota_sync(struct super_block *sb, int type) 2617 { 2618 return 0; 2619 } 2620 2621 void f2fs_quota_off_umount(struct super_block *sb) 2622 { 2623 } 2624 #endif 2625 2626 static const struct super_operations f2fs_sops = { 2627 .alloc_inode = f2fs_alloc_inode, 2628 .free_inode = f2fs_free_inode, 2629 .drop_inode = f2fs_drop_inode, 2630 .write_inode = f2fs_write_inode, 2631 .dirty_inode = f2fs_dirty_inode, 2632 .show_options = f2fs_show_options, 2633 #ifdef CONFIG_QUOTA 2634 .quota_read = f2fs_quota_read, 2635 .quota_write = f2fs_quota_write, 2636 .get_dquots = f2fs_get_dquots, 2637 #endif 2638 .evict_inode = f2fs_evict_inode, 2639 .put_super = f2fs_put_super, 2640 .sync_fs = f2fs_sync_fs, 2641 .freeze_fs = f2fs_freeze, 2642 .unfreeze_fs = f2fs_unfreeze, 2643 .statfs = f2fs_statfs, 2644 .remount_fs = f2fs_remount, 2645 }; 2646 2647 #ifdef CONFIG_FS_ENCRYPTION 2648 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 2649 { 2650 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2651 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2652 ctx, len, NULL); 2653 } 2654 2655 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 2656 void *fs_data) 2657 { 2658 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2659 2660 /* 2661 * Encrypting the root directory is not allowed because fsck 2662 * expects lost+found directory to exist and remain unencrypted 2663 * if LOST_FOUND feature is enabled. 2664 * 2665 */ 2666 if (f2fs_sb_has_lost_found(sbi) && 2667 inode->i_ino == F2FS_ROOT_INO(sbi)) 2668 return -EPERM; 2669 2670 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2671 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2672 ctx, len, fs_data, XATTR_CREATE); 2673 } 2674 2675 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb) 2676 { 2677 return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy; 2678 } 2679 2680 static bool f2fs_has_stable_inodes(struct super_block *sb) 2681 { 2682 return true; 2683 } 2684 2685 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb, 2686 int *ino_bits_ret, int *lblk_bits_ret) 2687 { 2688 *ino_bits_ret = 8 * sizeof(nid_t); 2689 *lblk_bits_ret = 8 * sizeof(block_t); 2690 } 2691 2692 static int f2fs_get_num_devices(struct super_block *sb) 2693 { 2694 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2695 2696 if (f2fs_is_multi_device(sbi)) 2697 return sbi->s_ndevs; 2698 return 1; 2699 } 2700 2701 static void f2fs_get_devices(struct super_block *sb, 2702 struct request_queue **devs) 2703 { 2704 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2705 int i; 2706 2707 for (i = 0; i < sbi->s_ndevs; i++) 2708 devs[i] = bdev_get_queue(FDEV(i).bdev); 2709 } 2710 2711 static const struct fscrypt_operations f2fs_cryptops = { 2712 .key_prefix = "f2fs:", 2713 .get_context = f2fs_get_context, 2714 .set_context = f2fs_set_context, 2715 .get_dummy_policy = f2fs_get_dummy_policy, 2716 .empty_dir = f2fs_empty_dir, 2717 .max_namelen = F2FS_NAME_LEN, 2718 .has_stable_inodes = f2fs_has_stable_inodes, 2719 .get_ino_and_lblk_bits = f2fs_get_ino_and_lblk_bits, 2720 .get_num_devices = f2fs_get_num_devices, 2721 .get_devices = f2fs_get_devices, 2722 }; 2723 #endif 2724 2725 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 2726 u64 ino, u32 generation) 2727 { 2728 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2729 struct inode *inode; 2730 2731 if (f2fs_check_nid_range(sbi, ino)) 2732 return ERR_PTR(-ESTALE); 2733 2734 /* 2735 * f2fs_iget isn't quite right if the inode is currently unallocated! 2736 * However f2fs_iget currently does appropriate checks to handle stale 2737 * inodes so everything is OK. 2738 */ 2739 inode = f2fs_iget(sb, ino); 2740 if (IS_ERR(inode)) 2741 return ERR_CAST(inode); 2742 if (unlikely(generation && inode->i_generation != generation)) { 2743 /* we didn't find the right inode.. */ 2744 iput(inode); 2745 return ERR_PTR(-ESTALE); 2746 } 2747 return inode; 2748 } 2749 2750 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 2751 int fh_len, int fh_type) 2752 { 2753 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 2754 f2fs_nfs_get_inode); 2755 } 2756 2757 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 2758 int fh_len, int fh_type) 2759 { 2760 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 2761 f2fs_nfs_get_inode); 2762 } 2763 2764 static const struct export_operations f2fs_export_ops = { 2765 .fh_to_dentry = f2fs_fh_to_dentry, 2766 .fh_to_parent = f2fs_fh_to_parent, 2767 .get_parent = f2fs_get_parent, 2768 }; 2769 2770 loff_t max_file_blocks(struct inode *inode) 2771 { 2772 loff_t result = 0; 2773 loff_t leaf_count; 2774 2775 /* 2776 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 2777 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 2778 * space in inode.i_addr, it will be more safe to reassign 2779 * result as zero. 2780 */ 2781 2782 if (inode && f2fs_compressed_file(inode)) 2783 leaf_count = ADDRS_PER_BLOCK(inode); 2784 else 2785 leaf_count = DEF_ADDRS_PER_BLOCK; 2786 2787 /* two direct node blocks */ 2788 result += (leaf_count * 2); 2789 2790 /* two indirect node blocks */ 2791 leaf_count *= NIDS_PER_BLOCK; 2792 result += (leaf_count * 2); 2793 2794 /* one double indirect node block */ 2795 leaf_count *= NIDS_PER_BLOCK; 2796 result += leaf_count; 2797 2798 return result; 2799 } 2800 2801 static int __f2fs_commit_super(struct buffer_head *bh, 2802 struct f2fs_super_block *super) 2803 { 2804 lock_buffer(bh); 2805 if (super) 2806 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 2807 set_buffer_dirty(bh); 2808 unlock_buffer(bh); 2809 2810 /* it's rare case, we can do fua all the time */ 2811 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 2812 } 2813 2814 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 2815 struct buffer_head *bh) 2816 { 2817 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2818 (bh->b_data + F2FS_SUPER_OFFSET); 2819 struct super_block *sb = sbi->sb; 2820 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2821 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 2822 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 2823 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 2824 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2825 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2826 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 2827 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 2828 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 2829 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 2830 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2831 u32 segment_count = le32_to_cpu(raw_super->segment_count); 2832 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2833 u64 main_end_blkaddr = main_blkaddr + 2834 (segment_count_main << log_blocks_per_seg); 2835 u64 seg_end_blkaddr = segment0_blkaddr + 2836 (segment_count << log_blocks_per_seg); 2837 2838 if (segment0_blkaddr != cp_blkaddr) { 2839 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 2840 segment0_blkaddr, cp_blkaddr); 2841 return true; 2842 } 2843 2844 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 2845 sit_blkaddr) { 2846 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 2847 cp_blkaddr, sit_blkaddr, 2848 segment_count_ckpt << log_blocks_per_seg); 2849 return true; 2850 } 2851 2852 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 2853 nat_blkaddr) { 2854 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 2855 sit_blkaddr, nat_blkaddr, 2856 segment_count_sit << log_blocks_per_seg); 2857 return true; 2858 } 2859 2860 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 2861 ssa_blkaddr) { 2862 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 2863 nat_blkaddr, ssa_blkaddr, 2864 segment_count_nat << log_blocks_per_seg); 2865 return true; 2866 } 2867 2868 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 2869 main_blkaddr) { 2870 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 2871 ssa_blkaddr, main_blkaddr, 2872 segment_count_ssa << log_blocks_per_seg); 2873 return true; 2874 } 2875 2876 if (main_end_blkaddr > seg_end_blkaddr) { 2877 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)", 2878 main_blkaddr, seg_end_blkaddr, 2879 segment_count_main << log_blocks_per_seg); 2880 return true; 2881 } else if (main_end_blkaddr < seg_end_blkaddr) { 2882 int err = 0; 2883 char *res; 2884 2885 /* fix in-memory information all the time */ 2886 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 2887 segment0_blkaddr) >> log_blocks_per_seg); 2888 2889 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 2890 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2891 res = "internally"; 2892 } else { 2893 err = __f2fs_commit_super(bh, NULL); 2894 res = err ? "failed" : "done"; 2895 } 2896 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)", 2897 res, main_blkaddr, seg_end_blkaddr, 2898 segment_count_main << log_blocks_per_seg); 2899 if (err) 2900 return true; 2901 } 2902 return false; 2903 } 2904 2905 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 2906 struct buffer_head *bh) 2907 { 2908 block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main; 2909 block_t total_sections, blocks_per_seg; 2910 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2911 (bh->b_data + F2FS_SUPER_OFFSET); 2912 size_t crc_offset = 0; 2913 __u32 crc = 0; 2914 2915 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { 2916 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)", 2917 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 2918 return -EINVAL; 2919 } 2920 2921 /* Check checksum_offset and crc in superblock */ 2922 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 2923 crc_offset = le32_to_cpu(raw_super->checksum_offset); 2924 if (crc_offset != 2925 offsetof(struct f2fs_super_block, crc)) { 2926 f2fs_info(sbi, "Invalid SB checksum offset: %zu", 2927 crc_offset); 2928 return -EFSCORRUPTED; 2929 } 2930 crc = le32_to_cpu(raw_super->crc); 2931 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 2932 f2fs_info(sbi, "Invalid SB checksum value: %u", crc); 2933 return -EFSCORRUPTED; 2934 } 2935 } 2936 2937 /* Currently, support only 4KB block size */ 2938 if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) { 2939 f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u", 2940 le32_to_cpu(raw_super->log_blocksize), 2941 F2FS_BLKSIZE_BITS); 2942 return -EFSCORRUPTED; 2943 } 2944 2945 /* check log blocks per segment */ 2946 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 2947 f2fs_info(sbi, "Invalid log blocks per segment (%u)", 2948 le32_to_cpu(raw_super->log_blocks_per_seg)); 2949 return -EFSCORRUPTED; 2950 } 2951 2952 /* Currently, support 512/1024/2048/4096 bytes sector size */ 2953 if (le32_to_cpu(raw_super->log_sectorsize) > 2954 F2FS_MAX_LOG_SECTOR_SIZE || 2955 le32_to_cpu(raw_super->log_sectorsize) < 2956 F2FS_MIN_LOG_SECTOR_SIZE) { 2957 f2fs_info(sbi, "Invalid log sectorsize (%u)", 2958 le32_to_cpu(raw_super->log_sectorsize)); 2959 return -EFSCORRUPTED; 2960 } 2961 if (le32_to_cpu(raw_super->log_sectors_per_block) + 2962 le32_to_cpu(raw_super->log_sectorsize) != 2963 F2FS_MAX_LOG_SECTOR_SIZE) { 2964 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)", 2965 le32_to_cpu(raw_super->log_sectors_per_block), 2966 le32_to_cpu(raw_super->log_sectorsize)); 2967 return -EFSCORRUPTED; 2968 } 2969 2970 segment_count = le32_to_cpu(raw_super->segment_count); 2971 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2972 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 2973 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 2974 total_sections = le32_to_cpu(raw_super->section_count); 2975 2976 /* blocks_per_seg should be 512, given the above check */ 2977 blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg); 2978 2979 if (segment_count > F2FS_MAX_SEGMENT || 2980 segment_count < F2FS_MIN_SEGMENTS) { 2981 f2fs_info(sbi, "Invalid segment count (%u)", segment_count); 2982 return -EFSCORRUPTED; 2983 } 2984 2985 if (total_sections > segment_count_main || total_sections < 1 || 2986 segs_per_sec > segment_count || !segs_per_sec) { 2987 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)", 2988 segment_count, total_sections, segs_per_sec); 2989 return -EFSCORRUPTED; 2990 } 2991 2992 if (segment_count_main != total_sections * segs_per_sec) { 2993 f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)", 2994 segment_count_main, total_sections, segs_per_sec); 2995 return -EFSCORRUPTED; 2996 } 2997 2998 if ((segment_count / segs_per_sec) < total_sections) { 2999 f2fs_info(sbi, "Small segment_count (%u < %u * %u)", 3000 segment_count, segs_per_sec, total_sections); 3001 return -EFSCORRUPTED; 3002 } 3003 3004 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 3005 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)", 3006 segment_count, le64_to_cpu(raw_super->block_count)); 3007 return -EFSCORRUPTED; 3008 } 3009 3010 if (RDEV(0).path[0]) { 3011 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments); 3012 int i = 1; 3013 3014 while (i < MAX_DEVICES && RDEV(i).path[0]) { 3015 dev_seg_count += le32_to_cpu(RDEV(i).total_segments); 3016 i++; 3017 } 3018 if (segment_count != dev_seg_count) { 3019 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)", 3020 segment_count, dev_seg_count); 3021 return -EFSCORRUPTED; 3022 } 3023 } else { 3024 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) && 3025 !bdev_is_zoned(sbi->sb->s_bdev)) { 3026 f2fs_info(sbi, "Zoned block device path is missing"); 3027 return -EFSCORRUPTED; 3028 } 3029 } 3030 3031 if (secs_per_zone > total_sections || !secs_per_zone) { 3032 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)", 3033 secs_per_zone, total_sections); 3034 return -EFSCORRUPTED; 3035 } 3036 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 3037 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 3038 (le32_to_cpu(raw_super->extension_count) + 3039 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 3040 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)", 3041 le32_to_cpu(raw_super->extension_count), 3042 raw_super->hot_ext_count, 3043 F2FS_MAX_EXTENSION); 3044 return -EFSCORRUPTED; 3045 } 3046 3047 if (le32_to_cpu(raw_super->cp_payload) > 3048 (blocks_per_seg - F2FS_CP_PACKS)) { 3049 f2fs_info(sbi, "Insane cp_payload (%u > %u)", 3050 le32_to_cpu(raw_super->cp_payload), 3051 blocks_per_seg - F2FS_CP_PACKS); 3052 return -EFSCORRUPTED; 3053 } 3054 3055 /* check reserved ino info */ 3056 if (le32_to_cpu(raw_super->node_ino) != 1 || 3057 le32_to_cpu(raw_super->meta_ino) != 2 || 3058 le32_to_cpu(raw_super->root_ino) != 3) { 3059 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 3060 le32_to_cpu(raw_super->node_ino), 3061 le32_to_cpu(raw_super->meta_ino), 3062 le32_to_cpu(raw_super->root_ino)); 3063 return -EFSCORRUPTED; 3064 } 3065 3066 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 3067 if (sanity_check_area_boundary(sbi, bh)) 3068 return -EFSCORRUPTED; 3069 3070 return 0; 3071 } 3072 3073 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 3074 { 3075 unsigned int total, fsmeta; 3076 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3077 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3078 unsigned int ovp_segments, reserved_segments; 3079 unsigned int main_segs, blocks_per_seg; 3080 unsigned int sit_segs, nat_segs; 3081 unsigned int sit_bitmap_size, nat_bitmap_size; 3082 unsigned int log_blocks_per_seg; 3083 unsigned int segment_count_main; 3084 unsigned int cp_pack_start_sum, cp_payload; 3085 block_t user_block_count, valid_user_blocks; 3086 block_t avail_node_count, valid_node_count; 3087 int i, j; 3088 3089 total = le32_to_cpu(raw_super->segment_count); 3090 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 3091 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 3092 fsmeta += sit_segs; 3093 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 3094 fsmeta += nat_segs; 3095 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 3096 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 3097 3098 if (unlikely(fsmeta >= total)) 3099 return 1; 3100 3101 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 3102 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 3103 3104 if (unlikely(fsmeta < F2FS_MIN_META_SEGMENTS || 3105 ovp_segments == 0 || reserved_segments == 0)) { 3106 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version"); 3107 return 1; 3108 } 3109 3110 user_block_count = le64_to_cpu(ckpt->user_block_count); 3111 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3112 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3113 if (!user_block_count || user_block_count >= 3114 segment_count_main << log_blocks_per_seg) { 3115 f2fs_err(sbi, "Wrong user_block_count: %u", 3116 user_block_count); 3117 return 1; 3118 } 3119 3120 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 3121 if (valid_user_blocks > user_block_count) { 3122 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u", 3123 valid_user_blocks, user_block_count); 3124 return 1; 3125 } 3126 3127 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 3128 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 3129 if (valid_node_count > avail_node_count) { 3130 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u", 3131 valid_node_count, avail_node_count); 3132 return 1; 3133 } 3134 3135 main_segs = le32_to_cpu(raw_super->segment_count_main); 3136 blocks_per_seg = sbi->blocks_per_seg; 3137 3138 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3139 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 3140 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 3141 return 1; 3142 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 3143 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3144 le32_to_cpu(ckpt->cur_node_segno[j])) { 3145 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u", 3146 i, j, 3147 le32_to_cpu(ckpt->cur_node_segno[i])); 3148 return 1; 3149 } 3150 } 3151 } 3152 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 3153 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 3154 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 3155 return 1; 3156 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 3157 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 3158 le32_to_cpu(ckpt->cur_data_segno[j])) { 3159 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u", 3160 i, j, 3161 le32_to_cpu(ckpt->cur_data_segno[i])); 3162 return 1; 3163 } 3164 } 3165 } 3166 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3167 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) { 3168 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3169 le32_to_cpu(ckpt->cur_data_segno[j])) { 3170 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u", 3171 i, j, 3172 le32_to_cpu(ckpt->cur_node_segno[i])); 3173 return 1; 3174 } 3175 } 3176 } 3177 3178 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 3179 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 3180 3181 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 3182 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 3183 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u", 3184 sit_bitmap_size, nat_bitmap_size); 3185 return 1; 3186 } 3187 3188 cp_pack_start_sum = __start_sum_addr(sbi); 3189 cp_payload = __cp_payload(sbi); 3190 if (cp_pack_start_sum < cp_payload + 1 || 3191 cp_pack_start_sum > blocks_per_seg - 1 - 3192 NR_CURSEG_PERSIST_TYPE) { 3193 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u", 3194 cp_pack_start_sum); 3195 return 1; 3196 } 3197 3198 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && 3199 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { 3200 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, " 3201 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, " 3202 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"", 3203 le32_to_cpu(ckpt->checksum_offset)); 3204 return 1; 3205 } 3206 3207 if (unlikely(f2fs_cp_error(sbi))) { 3208 f2fs_err(sbi, "A bug case: need to run fsck"); 3209 return 1; 3210 } 3211 return 0; 3212 } 3213 3214 static void init_sb_info(struct f2fs_sb_info *sbi) 3215 { 3216 struct f2fs_super_block *raw_super = sbi->raw_super; 3217 int i; 3218 3219 sbi->log_sectors_per_block = 3220 le32_to_cpu(raw_super->log_sectors_per_block); 3221 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 3222 sbi->blocksize = 1 << sbi->log_blocksize; 3223 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3224 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 3225 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3226 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3227 sbi->total_sections = le32_to_cpu(raw_super->section_count); 3228 sbi->total_node_count = 3229 (le32_to_cpu(raw_super->segment_count_nat) / 2) 3230 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 3231 F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino); 3232 F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino); 3233 F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino); 3234 sbi->cur_victim_sec = NULL_SECNO; 3235 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 3236 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 3237 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 3238 sbi->migration_granularity = sbi->segs_per_sec; 3239 3240 sbi->dir_level = DEF_DIR_LEVEL; 3241 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 3242 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 3243 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 3244 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 3245 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 3246 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 3247 DEF_UMOUNT_DISCARD_TIMEOUT; 3248 clear_sbi_flag(sbi, SBI_NEED_FSCK); 3249 3250 for (i = 0; i < NR_COUNT_TYPE; i++) 3251 atomic_set(&sbi->nr_pages[i], 0); 3252 3253 for (i = 0; i < META; i++) 3254 atomic_set(&sbi->wb_sync_req[i], 0); 3255 3256 INIT_LIST_HEAD(&sbi->s_list); 3257 mutex_init(&sbi->umount_mutex); 3258 init_rwsem(&sbi->io_order_lock); 3259 spin_lock_init(&sbi->cp_lock); 3260 3261 sbi->dirty_device = 0; 3262 spin_lock_init(&sbi->dev_lock); 3263 3264 init_rwsem(&sbi->sb_lock); 3265 init_rwsem(&sbi->pin_sem); 3266 } 3267 3268 static int init_percpu_info(struct f2fs_sb_info *sbi) 3269 { 3270 int err; 3271 3272 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 3273 if (err) 3274 return err; 3275 3276 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 3277 GFP_KERNEL); 3278 if (err) 3279 percpu_counter_destroy(&sbi->alloc_valid_block_count); 3280 3281 return err; 3282 } 3283 3284 #ifdef CONFIG_BLK_DEV_ZONED 3285 3286 struct f2fs_report_zones_args { 3287 struct f2fs_dev_info *dev; 3288 bool zone_cap_mismatch; 3289 }; 3290 3291 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx, 3292 void *data) 3293 { 3294 struct f2fs_report_zones_args *rz_args = data; 3295 3296 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 3297 return 0; 3298 3299 set_bit(idx, rz_args->dev->blkz_seq); 3300 rz_args->dev->zone_capacity_blocks[idx] = zone->capacity >> 3301 F2FS_LOG_SECTORS_PER_BLOCK; 3302 if (zone->len != zone->capacity && !rz_args->zone_cap_mismatch) 3303 rz_args->zone_cap_mismatch = true; 3304 3305 return 0; 3306 } 3307 3308 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 3309 { 3310 struct block_device *bdev = FDEV(devi).bdev; 3311 sector_t nr_sectors = bdev_nr_sectors(bdev); 3312 struct f2fs_report_zones_args rep_zone_arg; 3313 int ret; 3314 3315 if (!f2fs_sb_has_blkzoned(sbi)) 3316 return 0; 3317 3318 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 3319 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev))) 3320 return -EINVAL; 3321 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)); 3322 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz != 3323 __ilog2_u32(sbi->blocks_per_blkz)) 3324 return -EINVAL; 3325 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz); 3326 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >> 3327 sbi->log_blocks_per_blkz; 3328 if (nr_sectors & (bdev_zone_sectors(bdev) - 1)) 3329 FDEV(devi).nr_blkz++; 3330 3331 FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi, 3332 BITS_TO_LONGS(FDEV(devi).nr_blkz) 3333 * sizeof(unsigned long), 3334 GFP_KERNEL); 3335 if (!FDEV(devi).blkz_seq) 3336 return -ENOMEM; 3337 3338 /* Get block zones type and zone-capacity */ 3339 FDEV(devi).zone_capacity_blocks = f2fs_kzalloc(sbi, 3340 FDEV(devi).nr_blkz * sizeof(block_t), 3341 GFP_KERNEL); 3342 if (!FDEV(devi).zone_capacity_blocks) 3343 return -ENOMEM; 3344 3345 rep_zone_arg.dev = &FDEV(devi); 3346 rep_zone_arg.zone_cap_mismatch = false; 3347 3348 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb, 3349 &rep_zone_arg); 3350 if (ret < 0) 3351 return ret; 3352 3353 if (!rep_zone_arg.zone_cap_mismatch) { 3354 kfree(FDEV(devi).zone_capacity_blocks); 3355 FDEV(devi).zone_capacity_blocks = NULL; 3356 } 3357 3358 return 0; 3359 } 3360 #endif 3361 3362 /* 3363 * Read f2fs raw super block. 3364 * Because we have two copies of super block, so read both of them 3365 * to get the first valid one. If any one of them is broken, we pass 3366 * them recovery flag back to the caller. 3367 */ 3368 static int read_raw_super_block(struct f2fs_sb_info *sbi, 3369 struct f2fs_super_block **raw_super, 3370 int *valid_super_block, int *recovery) 3371 { 3372 struct super_block *sb = sbi->sb; 3373 int block; 3374 struct buffer_head *bh; 3375 struct f2fs_super_block *super; 3376 int err = 0; 3377 3378 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 3379 if (!super) 3380 return -ENOMEM; 3381 3382 for (block = 0; block < 2; block++) { 3383 bh = sb_bread(sb, block); 3384 if (!bh) { 3385 f2fs_err(sbi, "Unable to read %dth superblock", 3386 block + 1); 3387 err = -EIO; 3388 *recovery = 1; 3389 continue; 3390 } 3391 3392 /* sanity checking of raw super */ 3393 err = sanity_check_raw_super(sbi, bh); 3394 if (err) { 3395 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock", 3396 block + 1); 3397 brelse(bh); 3398 *recovery = 1; 3399 continue; 3400 } 3401 3402 if (!*raw_super) { 3403 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 3404 sizeof(*super)); 3405 *valid_super_block = block; 3406 *raw_super = super; 3407 } 3408 brelse(bh); 3409 } 3410 3411 /* No valid superblock */ 3412 if (!*raw_super) 3413 kfree(super); 3414 else 3415 err = 0; 3416 3417 return err; 3418 } 3419 3420 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 3421 { 3422 struct buffer_head *bh; 3423 __u32 crc = 0; 3424 int err; 3425 3426 if ((recover && f2fs_readonly(sbi->sb)) || 3427 bdev_read_only(sbi->sb->s_bdev)) { 3428 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3429 return -EROFS; 3430 } 3431 3432 /* we should update superblock crc here */ 3433 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 3434 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 3435 offsetof(struct f2fs_super_block, crc)); 3436 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 3437 } 3438 3439 /* write back-up superblock first */ 3440 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 3441 if (!bh) 3442 return -EIO; 3443 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3444 brelse(bh); 3445 3446 /* if we are in recovery path, skip writing valid superblock */ 3447 if (recover || err) 3448 return err; 3449 3450 /* write current valid superblock */ 3451 bh = sb_bread(sbi->sb, sbi->valid_super_block); 3452 if (!bh) 3453 return -EIO; 3454 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3455 brelse(bh); 3456 return err; 3457 } 3458 3459 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 3460 { 3461 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3462 unsigned int max_devices = MAX_DEVICES; 3463 int i; 3464 3465 /* Initialize single device information */ 3466 if (!RDEV(0).path[0]) { 3467 if (!bdev_is_zoned(sbi->sb->s_bdev)) 3468 return 0; 3469 max_devices = 1; 3470 } 3471 3472 /* 3473 * Initialize multiple devices information, or single 3474 * zoned block device information. 3475 */ 3476 sbi->devs = f2fs_kzalloc(sbi, 3477 array_size(max_devices, 3478 sizeof(struct f2fs_dev_info)), 3479 GFP_KERNEL); 3480 if (!sbi->devs) 3481 return -ENOMEM; 3482 3483 for (i = 0; i < max_devices; i++) { 3484 3485 if (i > 0 && !RDEV(i).path[0]) 3486 break; 3487 3488 if (max_devices == 1) { 3489 /* Single zoned block device mount */ 3490 FDEV(0).bdev = 3491 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev, 3492 sbi->sb->s_mode, sbi->sb->s_type); 3493 } else { 3494 /* Multi-device mount */ 3495 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 3496 FDEV(i).total_segments = 3497 le32_to_cpu(RDEV(i).total_segments); 3498 if (i == 0) { 3499 FDEV(i).start_blk = 0; 3500 FDEV(i).end_blk = FDEV(i).start_blk + 3501 (FDEV(i).total_segments << 3502 sbi->log_blocks_per_seg) - 1 + 3503 le32_to_cpu(raw_super->segment0_blkaddr); 3504 } else { 3505 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 3506 FDEV(i).end_blk = FDEV(i).start_blk + 3507 (FDEV(i).total_segments << 3508 sbi->log_blocks_per_seg) - 1; 3509 } 3510 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 3511 sbi->sb->s_mode, sbi->sb->s_type); 3512 } 3513 if (IS_ERR(FDEV(i).bdev)) 3514 return PTR_ERR(FDEV(i).bdev); 3515 3516 /* to release errored devices */ 3517 sbi->s_ndevs = i + 1; 3518 3519 #ifdef CONFIG_BLK_DEV_ZONED 3520 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 3521 !f2fs_sb_has_blkzoned(sbi)) { 3522 f2fs_err(sbi, "Zoned block device feature not enabled\n"); 3523 return -EINVAL; 3524 } 3525 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 3526 if (init_blkz_info(sbi, i)) { 3527 f2fs_err(sbi, "Failed to initialize F2FS blkzone information"); 3528 return -EINVAL; 3529 } 3530 if (max_devices == 1) 3531 break; 3532 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 3533 i, FDEV(i).path, 3534 FDEV(i).total_segments, 3535 FDEV(i).start_blk, FDEV(i).end_blk, 3536 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 3537 "Host-aware" : "Host-managed"); 3538 continue; 3539 } 3540 #endif 3541 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x", 3542 i, FDEV(i).path, 3543 FDEV(i).total_segments, 3544 FDEV(i).start_blk, FDEV(i).end_blk); 3545 } 3546 f2fs_info(sbi, 3547 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi)); 3548 return 0; 3549 } 3550 3551 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi) 3552 { 3553 #ifdef CONFIG_UNICODE 3554 if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) { 3555 const struct f2fs_sb_encodings *encoding_info; 3556 struct unicode_map *encoding; 3557 __u16 encoding_flags; 3558 3559 if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info, 3560 &encoding_flags)) { 3561 f2fs_err(sbi, 3562 "Encoding requested by superblock is unknown"); 3563 return -EINVAL; 3564 } 3565 3566 encoding = utf8_load(encoding_info->version); 3567 if (IS_ERR(encoding)) { 3568 f2fs_err(sbi, 3569 "can't mount with superblock charset: %s-%s " 3570 "not supported by the kernel. flags: 0x%x.", 3571 encoding_info->name, encoding_info->version, 3572 encoding_flags); 3573 return PTR_ERR(encoding); 3574 } 3575 f2fs_info(sbi, "Using encoding defined by superblock: " 3576 "%s-%s with flags 0x%hx", encoding_info->name, 3577 encoding_info->version?:"\b", encoding_flags); 3578 3579 sbi->sb->s_encoding = encoding; 3580 sbi->sb->s_encoding_flags = encoding_flags; 3581 } 3582 #else 3583 if (f2fs_sb_has_casefold(sbi)) { 3584 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 3585 return -EINVAL; 3586 } 3587 #endif 3588 return 0; 3589 } 3590 3591 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 3592 { 3593 struct f2fs_sm_info *sm_i = SM_I(sbi); 3594 3595 /* adjust parameters according to the volume size */ 3596 if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) { 3597 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 3598 sm_i->dcc_info->discard_granularity = 1; 3599 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE; 3600 } 3601 3602 sbi->readdir_ra = 1; 3603 } 3604 3605 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 3606 { 3607 struct f2fs_sb_info *sbi; 3608 struct f2fs_super_block *raw_super; 3609 struct inode *root; 3610 int err; 3611 bool skip_recovery = false, need_fsck = false; 3612 char *options = NULL; 3613 int recovery, i, valid_super_block; 3614 struct curseg_info *seg_i; 3615 int retry_cnt = 1; 3616 3617 try_onemore: 3618 err = -EINVAL; 3619 raw_super = NULL; 3620 valid_super_block = -1; 3621 recovery = 0; 3622 3623 /* allocate memory for f2fs-specific super block info */ 3624 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 3625 if (!sbi) 3626 return -ENOMEM; 3627 3628 sbi->sb = sb; 3629 3630 /* Load the checksum driver */ 3631 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 3632 if (IS_ERR(sbi->s_chksum_driver)) { 3633 f2fs_err(sbi, "Cannot load crc32 driver."); 3634 err = PTR_ERR(sbi->s_chksum_driver); 3635 sbi->s_chksum_driver = NULL; 3636 goto free_sbi; 3637 } 3638 3639 /* set a block size */ 3640 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 3641 f2fs_err(sbi, "unable to set blocksize"); 3642 goto free_sbi; 3643 } 3644 3645 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 3646 &recovery); 3647 if (err) 3648 goto free_sbi; 3649 3650 sb->s_fs_info = sbi; 3651 sbi->raw_super = raw_super; 3652 3653 /* precompute checksum seed for metadata */ 3654 if (f2fs_sb_has_inode_chksum(sbi)) 3655 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 3656 sizeof(raw_super->uuid)); 3657 3658 default_options(sbi); 3659 /* parse mount options */ 3660 options = kstrdup((const char *)data, GFP_KERNEL); 3661 if (data && !options) { 3662 err = -ENOMEM; 3663 goto free_sb_buf; 3664 } 3665 3666 err = parse_options(sb, options, false); 3667 if (err) 3668 goto free_options; 3669 3670 sb->s_maxbytes = max_file_blocks(NULL) << 3671 le32_to_cpu(raw_super->log_blocksize); 3672 sb->s_max_links = F2FS_LINK_MAX; 3673 3674 err = f2fs_setup_casefold(sbi); 3675 if (err) 3676 goto free_options; 3677 3678 #ifdef CONFIG_QUOTA 3679 sb->dq_op = &f2fs_quota_operations; 3680 sb->s_qcop = &f2fs_quotactl_ops; 3681 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 3682 3683 if (f2fs_sb_has_quota_ino(sbi)) { 3684 for (i = 0; i < MAXQUOTAS; i++) { 3685 if (f2fs_qf_ino(sbi->sb, i)) 3686 sbi->nquota_files++; 3687 } 3688 } 3689 #endif 3690 3691 sb->s_op = &f2fs_sops; 3692 #ifdef CONFIG_FS_ENCRYPTION 3693 sb->s_cop = &f2fs_cryptops; 3694 #endif 3695 #ifdef CONFIG_FS_VERITY 3696 sb->s_vop = &f2fs_verityops; 3697 #endif 3698 sb->s_xattr = f2fs_xattr_handlers; 3699 sb->s_export_op = &f2fs_export_ops; 3700 sb->s_magic = F2FS_SUPER_MAGIC; 3701 sb->s_time_gran = 1; 3702 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3703 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 3704 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 3705 sb->s_iflags |= SB_I_CGROUPWB; 3706 3707 /* init f2fs-specific super block info */ 3708 sbi->valid_super_block = valid_super_block; 3709 init_rwsem(&sbi->gc_lock); 3710 mutex_init(&sbi->writepages); 3711 init_rwsem(&sbi->cp_global_sem); 3712 init_rwsem(&sbi->node_write); 3713 init_rwsem(&sbi->node_change); 3714 3715 /* disallow all the data/node/meta page writes */ 3716 set_sbi_flag(sbi, SBI_POR_DOING); 3717 spin_lock_init(&sbi->stat_lock); 3718 3719 /* init iostat info */ 3720 spin_lock_init(&sbi->iostat_lock); 3721 sbi->iostat_enable = false; 3722 sbi->iostat_period_ms = DEFAULT_IOSTAT_PERIOD_MS; 3723 3724 for (i = 0; i < NR_PAGE_TYPE; i++) { 3725 int n = (i == META) ? 1: NR_TEMP_TYPE; 3726 int j; 3727 3728 sbi->write_io[i] = 3729 f2fs_kmalloc(sbi, 3730 array_size(n, 3731 sizeof(struct f2fs_bio_info)), 3732 GFP_KERNEL); 3733 if (!sbi->write_io[i]) { 3734 err = -ENOMEM; 3735 goto free_bio_info; 3736 } 3737 3738 for (j = HOT; j < n; j++) { 3739 init_rwsem(&sbi->write_io[i][j].io_rwsem); 3740 sbi->write_io[i][j].sbi = sbi; 3741 sbi->write_io[i][j].bio = NULL; 3742 spin_lock_init(&sbi->write_io[i][j].io_lock); 3743 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 3744 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list); 3745 init_rwsem(&sbi->write_io[i][j].bio_list_lock); 3746 } 3747 } 3748 3749 init_rwsem(&sbi->cp_rwsem); 3750 init_rwsem(&sbi->quota_sem); 3751 init_waitqueue_head(&sbi->cp_wait); 3752 init_sb_info(sbi); 3753 3754 err = init_percpu_info(sbi); 3755 if (err) 3756 goto free_bio_info; 3757 3758 if (F2FS_IO_ALIGNED(sbi)) { 3759 sbi->write_io_dummy = 3760 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); 3761 if (!sbi->write_io_dummy) { 3762 err = -ENOMEM; 3763 goto free_percpu; 3764 } 3765 } 3766 3767 /* init per sbi slab cache */ 3768 err = f2fs_init_xattr_caches(sbi); 3769 if (err) 3770 goto free_io_dummy; 3771 err = f2fs_init_page_array_cache(sbi); 3772 if (err) 3773 goto free_xattr_cache; 3774 3775 /* get an inode for meta space */ 3776 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 3777 if (IS_ERR(sbi->meta_inode)) { 3778 f2fs_err(sbi, "Failed to read F2FS meta data inode"); 3779 err = PTR_ERR(sbi->meta_inode); 3780 goto free_page_array_cache; 3781 } 3782 3783 err = f2fs_get_valid_checkpoint(sbi); 3784 if (err) { 3785 f2fs_err(sbi, "Failed to get valid F2FS checkpoint"); 3786 goto free_meta_inode; 3787 } 3788 3789 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 3790 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3791 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 3792 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 3793 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 3794 } 3795 3796 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG)) 3797 set_sbi_flag(sbi, SBI_NEED_FSCK); 3798 3799 /* Initialize device list */ 3800 err = f2fs_scan_devices(sbi); 3801 if (err) { 3802 f2fs_err(sbi, "Failed to find devices"); 3803 goto free_devices; 3804 } 3805 3806 err = f2fs_init_post_read_wq(sbi); 3807 if (err) { 3808 f2fs_err(sbi, "Failed to initialize post read workqueue"); 3809 goto free_devices; 3810 } 3811 3812 sbi->total_valid_node_count = 3813 le32_to_cpu(sbi->ckpt->valid_node_count); 3814 percpu_counter_set(&sbi->total_valid_inode_count, 3815 le32_to_cpu(sbi->ckpt->valid_inode_count)); 3816 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 3817 sbi->total_valid_block_count = 3818 le64_to_cpu(sbi->ckpt->valid_block_count); 3819 sbi->last_valid_block_count = sbi->total_valid_block_count; 3820 sbi->reserved_blocks = 0; 3821 sbi->current_reserved_blocks = 0; 3822 limit_reserve_root(sbi); 3823 adjust_unusable_cap_perc(sbi); 3824 3825 for (i = 0; i < NR_INODE_TYPE; i++) { 3826 INIT_LIST_HEAD(&sbi->inode_list[i]); 3827 spin_lock_init(&sbi->inode_lock[i]); 3828 } 3829 mutex_init(&sbi->flush_lock); 3830 3831 f2fs_init_extent_cache_info(sbi); 3832 3833 f2fs_init_ino_entry_info(sbi); 3834 3835 f2fs_init_fsync_node_info(sbi); 3836 3837 /* setup checkpoint request control and start checkpoint issue thread */ 3838 f2fs_init_ckpt_req_control(sbi); 3839 if (!test_opt(sbi, DISABLE_CHECKPOINT) && 3840 test_opt(sbi, MERGE_CHECKPOINT)) { 3841 err = f2fs_start_ckpt_thread(sbi); 3842 if (err) { 3843 f2fs_err(sbi, 3844 "Failed to start F2FS issue_checkpoint_thread (%d)", 3845 err); 3846 goto stop_ckpt_thread; 3847 } 3848 } 3849 3850 /* setup f2fs internal modules */ 3851 err = f2fs_build_segment_manager(sbi); 3852 if (err) { 3853 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)", 3854 err); 3855 goto free_sm; 3856 } 3857 err = f2fs_build_node_manager(sbi); 3858 if (err) { 3859 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)", 3860 err); 3861 goto free_nm; 3862 } 3863 3864 /* For write statistics */ 3865 sbi->sectors_written_start = f2fs_get_sectors_written(sbi); 3866 3867 /* Read accumulated write IO statistics if exists */ 3868 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 3869 if (__exist_node_summaries(sbi)) 3870 sbi->kbytes_written = 3871 le64_to_cpu(seg_i->journal->info.kbytes_written); 3872 3873 f2fs_build_gc_manager(sbi); 3874 3875 err = f2fs_build_stats(sbi); 3876 if (err) 3877 goto free_nm; 3878 3879 /* get an inode for node space */ 3880 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 3881 if (IS_ERR(sbi->node_inode)) { 3882 f2fs_err(sbi, "Failed to read node inode"); 3883 err = PTR_ERR(sbi->node_inode); 3884 goto free_stats; 3885 } 3886 3887 /* read root inode and dentry */ 3888 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 3889 if (IS_ERR(root)) { 3890 f2fs_err(sbi, "Failed to read root inode"); 3891 err = PTR_ERR(root); 3892 goto free_node_inode; 3893 } 3894 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 3895 !root->i_size || !root->i_nlink) { 3896 iput(root); 3897 err = -EINVAL; 3898 goto free_node_inode; 3899 } 3900 3901 sb->s_root = d_make_root(root); /* allocate root dentry */ 3902 if (!sb->s_root) { 3903 err = -ENOMEM; 3904 goto free_node_inode; 3905 } 3906 3907 err = f2fs_register_sysfs(sbi); 3908 if (err) 3909 goto free_root_inode; 3910 3911 #ifdef CONFIG_QUOTA 3912 /* Enable quota usage during mount */ 3913 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 3914 err = f2fs_enable_quotas(sb); 3915 if (err) 3916 f2fs_err(sbi, "Cannot turn on quotas: error %d", err); 3917 } 3918 #endif 3919 /* if there are any orphan inodes, free them */ 3920 err = f2fs_recover_orphan_inodes(sbi); 3921 if (err) 3922 goto free_meta; 3923 3924 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 3925 goto reset_checkpoint; 3926 3927 /* recover fsynced data */ 3928 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) && 3929 !test_opt(sbi, NORECOVERY)) { 3930 /* 3931 * mount should be failed, when device has readonly mode, and 3932 * previous checkpoint was not done by clean system shutdown. 3933 */ 3934 if (f2fs_hw_is_readonly(sbi)) { 3935 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) 3936 f2fs_err(sbi, "Need to recover fsync data, but write access unavailable"); 3937 else 3938 f2fs_info(sbi, "write access unavailable, skipping recovery"); 3939 goto reset_checkpoint; 3940 } 3941 3942 if (need_fsck) 3943 set_sbi_flag(sbi, SBI_NEED_FSCK); 3944 3945 if (skip_recovery) 3946 goto reset_checkpoint; 3947 3948 err = f2fs_recover_fsync_data(sbi, false); 3949 if (err < 0) { 3950 if (err != -ENOMEM) 3951 skip_recovery = true; 3952 need_fsck = true; 3953 f2fs_err(sbi, "Cannot recover all fsync data errno=%d", 3954 err); 3955 goto free_meta; 3956 } 3957 } else { 3958 err = f2fs_recover_fsync_data(sbi, true); 3959 3960 if (!f2fs_readonly(sb) && err > 0) { 3961 err = -EINVAL; 3962 f2fs_err(sbi, "Need to recover fsync data"); 3963 goto free_meta; 3964 } 3965 } 3966 3967 /* 3968 * If the f2fs is not readonly and fsync data recovery succeeds, 3969 * check zoned block devices' write pointer consistency. 3970 */ 3971 if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) { 3972 err = f2fs_check_write_pointer(sbi); 3973 if (err) 3974 goto free_meta; 3975 } 3976 3977 reset_checkpoint: 3978 f2fs_init_inmem_curseg(sbi); 3979 3980 /* f2fs_recover_fsync_data() cleared this already */ 3981 clear_sbi_flag(sbi, SBI_POR_DOING); 3982 3983 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 3984 err = f2fs_disable_checkpoint(sbi); 3985 if (err) 3986 goto sync_free_meta; 3987 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 3988 f2fs_enable_checkpoint(sbi); 3989 } 3990 3991 /* 3992 * If filesystem is not mounted as read-only then 3993 * do start the gc_thread. 3994 */ 3995 if (F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF && !f2fs_readonly(sb)) { 3996 /* After POR, we can run background GC thread.*/ 3997 err = f2fs_start_gc_thread(sbi); 3998 if (err) 3999 goto sync_free_meta; 4000 } 4001 kvfree(options); 4002 4003 /* recover broken superblock */ 4004 if (recovery) { 4005 err = f2fs_commit_super(sbi, true); 4006 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d", 4007 sbi->valid_super_block ? 1 : 2, err); 4008 } 4009 4010 f2fs_join_shrinker(sbi); 4011 4012 f2fs_tuning_parameters(sbi); 4013 4014 f2fs_notice(sbi, "Mounted with checkpoint version = %llx", 4015 cur_cp_version(F2FS_CKPT(sbi))); 4016 f2fs_update_time(sbi, CP_TIME); 4017 f2fs_update_time(sbi, REQ_TIME); 4018 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4019 return 0; 4020 4021 sync_free_meta: 4022 /* safe to flush all the data */ 4023 sync_filesystem(sbi->sb); 4024 retry_cnt = 0; 4025 4026 free_meta: 4027 #ifdef CONFIG_QUOTA 4028 f2fs_truncate_quota_inode_pages(sb); 4029 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 4030 f2fs_quota_off_umount(sbi->sb); 4031 #endif 4032 /* 4033 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 4034 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 4035 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 4036 * falls into an infinite loop in f2fs_sync_meta_pages(). 4037 */ 4038 truncate_inode_pages_final(META_MAPPING(sbi)); 4039 /* evict some inodes being cached by GC */ 4040 evict_inodes(sb); 4041 f2fs_unregister_sysfs(sbi); 4042 free_root_inode: 4043 dput(sb->s_root); 4044 sb->s_root = NULL; 4045 free_node_inode: 4046 f2fs_release_ino_entry(sbi, true); 4047 truncate_inode_pages_final(NODE_MAPPING(sbi)); 4048 iput(sbi->node_inode); 4049 sbi->node_inode = NULL; 4050 free_stats: 4051 f2fs_destroy_stats(sbi); 4052 free_nm: 4053 f2fs_destroy_node_manager(sbi); 4054 free_sm: 4055 f2fs_destroy_segment_manager(sbi); 4056 f2fs_destroy_post_read_wq(sbi); 4057 stop_ckpt_thread: 4058 f2fs_stop_ckpt_thread(sbi); 4059 free_devices: 4060 destroy_device_list(sbi); 4061 kvfree(sbi->ckpt); 4062 free_meta_inode: 4063 make_bad_inode(sbi->meta_inode); 4064 iput(sbi->meta_inode); 4065 sbi->meta_inode = NULL; 4066 free_page_array_cache: 4067 f2fs_destroy_page_array_cache(sbi); 4068 free_xattr_cache: 4069 f2fs_destroy_xattr_caches(sbi); 4070 free_io_dummy: 4071 mempool_destroy(sbi->write_io_dummy); 4072 free_percpu: 4073 destroy_percpu_info(sbi); 4074 free_bio_info: 4075 for (i = 0; i < NR_PAGE_TYPE; i++) 4076 kvfree(sbi->write_io[i]); 4077 4078 #ifdef CONFIG_UNICODE 4079 utf8_unload(sb->s_encoding); 4080 sb->s_encoding = NULL; 4081 #endif 4082 free_options: 4083 #ifdef CONFIG_QUOTA 4084 for (i = 0; i < MAXQUOTAS; i++) 4085 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 4086 #endif 4087 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 4088 kvfree(options); 4089 free_sb_buf: 4090 kfree(raw_super); 4091 free_sbi: 4092 if (sbi->s_chksum_driver) 4093 crypto_free_shash(sbi->s_chksum_driver); 4094 kfree(sbi); 4095 4096 /* give only one another chance */ 4097 if (retry_cnt > 0 && skip_recovery) { 4098 retry_cnt--; 4099 shrink_dcache_sb(sb); 4100 goto try_onemore; 4101 } 4102 return err; 4103 } 4104 4105 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 4106 const char *dev_name, void *data) 4107 { 4108 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 4109 } 4110 4111 static void kill_f2fs_super(struct super_block *sb) 4112 { 4113 if (sb->s_root) { 4114 struct f2fs_sb_info *sbi = F2FS_SB(sb); 4115 4116 set_sbi_flag(sbi, SBI_IS_CLOSE); 4117 f2fs_stop_gc_thread(sbi); 4118 f2fs_stop_discard_thread(sbi); 4119 4120 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 4121 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4122 struct cp_control cpc = { 4123 .reason = CP_UMOUNT, 4124 }; 4125 f2fs_write_checkpoint(sbi, &cpc); 4126 } 4127 4128 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 4129 sb->s_flags &= ~SB_RDONLY; 4130 } 4131 kill_block_super(sb); 4132 } 4133 4134 static struct file_system_type f2fs_fs_type = { 4135 .owner = THIS_MODULE, 4136 .name = "f2fs", 4137 .mount = f2fs_mount, 4138 .kill_sb = kill_f2fs_super, 4139 .fs_flags = FS_REQUIRES_DEV, 4140 }; 4141 MODULE_ALIAS_FS("f2fs"); 4142 4143 static int __init init_inodecache(void) 4144 { 4145 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 4146 sizeof(struct f2fs_inode_info), 0, 4147 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 4148 if (!f2fs_inode_cachep) 4149 return -ENOMEM; 4150 return 0; 4151 } 4152 4153 static void destroy_inodecache(void) 4154 { 4155 /* 4156 * Make sure all delayed rcu free inodes are flushed before we 4157 * destroy cache. 4158 */ 4159 rcu_barrier(); 4160 kmem_cache_destroy(f2fs_inode_cachep); 4161 } 4162 4163 static int __init init_f2fs_fs(void) 4164 { 4165 int err; 4166 4167 if (PAGE_SIZE != F2FS_BLKSIZE) { 4168 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n", 4169 PAGE_SIZE, F2FS_BLKSIZE); 4170 return -EINVAL; 4171 } 4172 4173 err = init_inodecache(); 4174 if (err) 4175 goto fail; 4176 err = f2fs_create_node_manager_caches(); 4177 if (err) 4178 goto free_inodecache; 4179 err = f2fs_create_segment_manager_caches(); 4180 if (err) 4181 goto free_node_manager_caches; 4182 err = f2fs_create_checkpoint_caches(); 4183 if (err) 4184 goto free_segment_manager_caches; 4185 err = f2fs_create_extent_cache(); 4186 if (err) 4187 goto free_checkpoint_caches; 4188 err = f2fs_create_garbage_collection_cache(); 4189 if (err) 4190 goto free_extent_cache; 4191 err = f2fs_init_sysfs(); 4192 if (err) 4193 goto free_garbage_collection_cache; 4194 err = register_shrinker(&f2fs_shrinker_info); 4195 if (err) 4196 goto free_sysfs; 4197 err = register_filesystem(&f2fs_fs_type); 4198 if (err) 4199 goto free_shrinker; 4200 f2fs_create_root_stats(); 4201 err = f2fs_init_post_read_processing(); 4202 if (err) 4203 goto free_root_stats; 4204 err = f2fs_init_bio_entry_cache(); 4205 if (err) 4206 goto free_post_read; 4207 err = f2fs_init_bioset(); 4208 if (err) 4209 goto free_bio_enrty_cache; 4210 err = f2fs_init_compress_mempool(); 4211 if (err) 4212 goto free_bioset; 4213 err = f2fs_init_compress_cache(); 4214 if (err) 4215 goto free_compress_mempool; 4216 return 0; 4217 free_compress_mempool: 4218 f2fs_destroy_compress_mempool(); 4219 free_bioset: 4220 f2fs_destroy_bioset(); 4221 free_bio_enrty_cache: 4222 f2fs_destroy_bio_entry_cache(); 4223 free_post_read: 4224 f2fs_destroy_post_read_processing(); 4225 free_root_stats: 4226 f2fs_destroy_root_stats(); 4227 unregister_filesystem(&f2fs_fs_type); 4228 free_shrinker: 4229 unregister_shrinker(&f2fs_shrinker_info); 4230 free_sysfs: 4231 f2fs_exit_sysfs(); 4232 free_garbage_collection_cache: 4233 f2fs_destroy_garbage_collection_cache(); 4234 free_extent_cache: 4235 f2fs_destroy_extent_cache(); 4236 free_checkpoint_caches: 4237 f2fs_destroy_checkpoint_caches(); 4238 free_segment_manager_caches: 4239 f2fs_destroy_segment_manager_caches(); 4240 free_node_manager_caches: 4241 f2fs_destroy_node_manager_caches(); 4242 free_inodecache: 4243 destroy_inodecache(); 4244 fail: 4245 return err; 4246 } 4247 4248 static void __exit exit_f2fs_fs(void) 4249 { 4250 f2fs_destroy_compress_cache(); 4251 f2fs_destroy_compress_mempool(); 4252 f2fs_destroy_bioset(); 4253 f2fs_destroy_bio_entry_cache(); 4254 f2fs_destroy_post_read_processing(); 4255 f2fs_destroy_root_stats(); 4256 unregister_filesystem(&f2fs_fs_type); 4257 unregister_shrinker(&f2fs_shrinker_info); 4258 f2fs_exit_sysfs(); 4259 f2fs_destroy_garbage_collection_cache(); 4260 f2fs_destroy_extent_cache(); 4261 f2fs_destroy_checkpoint_caches(); 4262 f2fs_destroy_segment_manager_caches(); 4263 f2fs_destroy_node_manager_caches(); 4264 destroy_inodecache(); 4265 } 4266 4267 module_init(init_f2fs_fs) 4268 module_exit(exit_f2fs_fs) 4269 4270 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 4271 MODULE_DESCRIPTION("Flash Friendly File System"); 4272 MODULE_LICENSE("GPL"); 4273 4274