xref: /openbmc/linux/fs/f2fs/super.c (revision 6189f1b0)
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27 
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37 
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41 
42 enum {
43 	Opt_gc_background,
44 	Opt_disable_roll_forward,
45 	Opt_norecovery,
46 	Opt_discard,
47 	Opt_noheap,
48 	Opt_user_xattr,
49 	Opt_nouser_xattr,
50 	Opt_acl,
51 	Opt_noacl,
52 	Opt_active_logs,
53 	Opt_disable_ext_identify,
54 	Opt_inline_xattr,
55 	Opt_inline_data,
56 	Opt_inline_dentry,
57 	Opt_flush_merge,
58 	Opt_nobarrier,
59 	Opt_fastboot,
60 	Opt_extent_cache,
61 	Opt_noinline_data,
62 	Opt_err,
63 };
64 
65 static match_table_t f2fs_tokens = {
66 	{Opt_gc_background, "background_gc=%s"},
67 	{Opt_disable_roll_forward, "disable_roll_forward"},
68 	{Opt_norecovery, "norecovery"},
69 	{Opt_discard, "discard"},
70 	{Opt_noheap, "no_heap"},
71 	{Opt_user_xattr, "user_xattr"},
72 	{Opt_nouser_xattr, "nouser_xattr"},
73 	{Opt_acl, "acl"},
74 	{Opt_noacl, "noacl"},
75 	{Opt_active_logs, "active_logs=%u"},
76 	{Opt_disable_ext_identify, "disable_ext_identify"},
77 	{Opt_inline_xattr, "inline_xattr"},
78 	{Opt_inline_data, "inline_data"},
79 	{Opt_inline_dentry, "inline_dentry"},
80 	{Opt_flush_merge, "flush_merge"},
81 	{Opt_nobarrier, "nobarrier"},
82 	{Opt_fastboot, "fastboot"},
83 	{Opt_extent_cache, "extent_cache"},
84 	{Opt_noinline_data, "noinline_data"},
85 	{Opt_err, NULL},
86 };
87 
88 /* Sysfs support for f2fs */
89 enum {
90 	GC_THREAD,	/* struct f2fs_gc_thread */
91 	SM_INFO,	/* struct f2fs_sm_info */
92 	NM_INFO,	/* struct f2fs_nm_info */
93 	F2FS_SBI,	/* struct f2fs_sb_info */
94 };
95 
96 struct f2fs_attr {
97 	struct attribute attr;
98 	ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
99 	ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
100 			 const char *, size_t);
101 	int struct_type;
102 	int offset;
103 };
104 
105 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
106 {
107 	if (struct_type == GC_THREAD)
108 		return (unsigned char *)sbi->gc_thread;
109 	else if (struct_type == SM_INFO)
110 		return (unsigned char *)SM_I(sbi);
111 	else if (struct_type == NM_INFO)
112 		return (unsigned char *)NM_I(sbi);
113 	else if (struct_type == F2FS_SBI)
114 		return (unsigned char *)sbi;
115 	return NULL;
116 }
117 
118 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
119 			struct f2fs_sb_info *sbi, char *buf)
120 {
121 	unsigned char *ptr = NULL;
122 	unsigned int *ui;
123 
124 	ptr = __struct_ptr(sbi, a->struct_type);
125 	if (!ptr)
126 		return -EINVAL;
127 
128 	ui = (unsigned int *)(ptr + a->offset);
129 
130 	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
131 }
132 
133 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
134 			struct f2fs_sb_info *sbi,
135 			const char *buf, size_t count)
136 {
137 	unsigned char *ptr;
138 	unsigned long t;
139 	unsigned int *ui;
140 	ssize_t ret;
141 
142 	ptr = __struct_ptr(sbi, a->struct_type);
143 	if (!ptr)
144 		return -EINVAL;
145 
146 	ui = (unsigned int *)(ptr + a->offset);
147 
148 	ret = kstrtoul(skip_spaces(buf), 0, &t);
149 	if (ret < 0)
150 		return ret;
151 	*ui = t;
152 	return count;
153 }
154 
155 static ssize_t f2fs_attr_show(struct kobject *kobj,
156 				struct attribute *attr, char *buf)
157 {
158 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
159 								s_kobj);
160 	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
161 
162 	return a->show ? a->show(a, sbi, buf) : 0;
163 }
164 
165 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
166 						const char *buf, size_t len)
167 {
168 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
169 									s_kobj);
170 	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
171 
172 	return a->store ? a->store(a, sbi, buf, len) : 0;
173 }
174 
175 static void f2fs_sb_release(struct kobject *kobj)
176 {
177 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
178 								s_kobj);
179 	complete(&sbi->s_kobj_unregister);
180 }
181 
182 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
183 static struct f2fs_attr f2fs_attr_##_name = {			\
184 	.attr = {.name = __stringify(_name), .mode = _mode },	\
185 	.show	= _show,					\
186 	.store	= _store,					\
187 	.struct_type = _struct_type,				\
188 	.offset = _offset					\
189 }
190 
191 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname)	\
192 	F2FS_ATTR_OFFSET(struct_type, name, 0644,		\
193 		f2fs_sbi_show, f2fs_sbi_store,			\
194 		offsetof(struct struct_name, elname))
195 
196 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
197 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
198 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
199 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
200 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
201 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
202 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
203 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
204 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
205 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
206 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
207 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
208 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
209 
210 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
211 static struct attribute *f2fs_attrs[] = {
212 	ATTR_LIST(gc_min_sleep_time),
213 	ATTR_LIST(gc_max_sleep_time),
214 	ATTR_LIST(gc_no_gc_sleep_time),
215 	ATTR_LIST(gc_idle),
216 	ATTR_LIST(reclaim_segments),
217 	ATTR_LIST(max_small_discards),
218 	ATTR_LIST(batched_trim_sections),
219 	ATTR_LIST(ipu_policy),
220 	ATTR_LIST(min_ipu_util),
221 	ATTR_LIST(min_fsync_blocks),
222 	ATTR_LIST(max_victim_search),
223 	ATTR_LIST(dir_level),
224 	ATTR_LIST(ram_thresh),
225 	NULL,
226 };
227 
228 static const struct sysfs_ops f2fs_attr_ops = {
229 	.show	= f2fs_attr_show,
230 	.store	= f2fs_attr_store,
231 };
232 
233 static struct kobj_type f2fs_ktype = {
234 	.default_attrs	= f2fs_attrs,
235 	.sysfs_ops	= &f2fs_attr_ops,
236 	.release	= f2fs_sb_release,
237 };
238 
239 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
240 {
241 	struct va_format vaf;
242 	va_list args;
243 
244 	va_start(args, fmt);
245 	vaf.fmt = fmt;
246 	vaf.va = &args;
247 	printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
248 	va_end(args);
249 }
250 
251 static void init_once(void *foo)
252 {
253 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
254 
255 	inode_init_once(&fi->vfs_inode);
256 }
257 
258 static int parse_options(struct super_block *sb, char *options)
259 {
260 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
261 	struct request_queue *q;
262 	substring_t args[MAX_OPT_ARGS];
263 	char *p, *name;
264 	int arg = 0;
265 
266 	if (!options)
267 		return 0;
268 
269 	while ((p = strsep(&options, ",")) != NULL) {
270 		int token;
271 		if (!*p)
272 			continue;
273 		/*
274 		 * Initialize args struct so we know whether arg was
275 		 * found; some options take optional arguments.
276 		 */
277 		args[0].to = args[0].from = NULL;
278 		token = match_token(p, f2fs_tokens, args);
279 
280 		switch (token) {
281 		case Opt_gc_background:
282 			name = match_strdup(&args[0]);
283 
284 			if (!name)
285 				return -ENOMEM;
286 			if (strlen(name) == 2 && !strncmp(name, "on", 2))
287 				set_opt(sbi, BG_GC);
288 			else if (strlen(name) == 3 && !strncmp(name, "off", 3))
289 				clear_opt(sbi, BG_GC);
290 			else {
291 				kfree(name);
292 				return -EINVAL;
293 			}
294 			kfree(name);
295 			break;
296 		case Opt_disable_roll_forward:
297 			set_opt(sbi, DISABLE_ROLL_FORWARD);
298 			break;
299 		case Opt_norecovery:
300 			/* this option mounts f2fs with ro */
301 			set_opt(sbi, DISABLE_ROLL_FORWARD);
302 			if (!f2fs_readonly(sb))
303 				return -EINVAL;
304 			break;
305 		case Opt_discard:
306 			q = bdev_get_queue(sb->s_bdev);
307 			if (blk_queue_discard(q)) {
308 				set_opt(sbi, DISCARD);
309 			} else {
310 				f2fs_msg(sb, KERN_WARNING,
311 					"mounting with \"discard\" option, but "
312 					"the device does not support discard");
313 			}
314 			break;
315 		case Opt_noheap:
316 			set_opt(sbi, NOHEAP);
317 			break;
318 #ifdef CONFIG_F2FS_FS_XATTR
319 		case Opt_user_xattr:
320 			set_opt(sbi, XATTR_USER);
321 			break;
322 		case Opt_nouser_xattr:
323 			clear_opt(sbi, XATTR_USER);
324 			break;
325 		case Opt_inline_xattr:
326 			set_opt(sbi, INLINE_XATTR);
327 			break;
328 #else
329 		case Opt_user_xattr:
330 			f2fs_msg(sb, KERN_INFO,
331 				"user_xattr options not supported");
332 			break;
333 		case Opt_nouser_xattr:
334 			f2fs_msg(sb, KERN_INFO,
335 				"nouser_xattr options not supported");
336 			break;
337 		case Opt_inline_xattr:
338 			f2fs_msg(sb, KERN_INFO,
339 				"inline_xattr options not supported");
340 			break;
341 #endif
342 #ifdef CONFIG_F2FS_FS_POSIX_ACL
343 		case Opt_acl:
344 			set_opt(sbi, POSIX_ACL);
345 			break;
346 		case Opt_noacl:
347 			clear_opt(sbi, POSIX_ACL);
348 			break;
349 #else
350 		case Opt_acl:
351 			f2fs_msg(sb, KERN_INFO, "acl options not supported");
352 			break;
353 		case Opt_noacl:
354 			f2fs_msg(sb, KERN_INFO, "noacl options not supported");
355 			break;
356 #endif
357 		case Opt_active_logs:
358 			if (args->from && match_int(args, &arg))
359 				return -EINVAL;
360 			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
361 				return -EINVAL;
362 			sbi->active_logs = arg;
363 			break;
364 		case Opt_disable_ext_identify:
365 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
366 			break;
367 		case Opt_inline_data:
368 			set_opt(sbi, INLINE_DATA);
369 			break;
370 		case Opt_inline_dentry:
371 			set_opt(sbi, INLINE_DENTRY);
372 			break;
373 		case Opt_flush_merge:
374 			set_opt(sbi, FLUSH_MERGE);
375 			break;
376 		case Opt_nobarrier:
377 			set_opt(sbi, NOBARRIER);
378 			break;
379 		case Opt_fastboot:
380 			set_opt(sbi, FASTBOOT);
381 			break;
382 		case Opt_extent_cache:
383 			set_opt(sbi, EXTENT_CACHE);
384 			break;
385 		case Opt_noinline_data:
386 			clear_opt(sbi, INLINE_DATA);
387 			break;
388 		default:
389 			f2fs_msg(sb, KERN_ERR,
390 				"Unrecognized mount option \"%s\" or missing value",
391 				p);
392 			return -EINVAL;
393 		}
394 	}
395 	return 0;
396 }
397 
398 static struct inode *f2fs_alloc_inode(struct super_block *sb)
399 {
400 	struct f2fs_inode_info *fi;
401 
402 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
403 	if (!fi)
404 		return NULL;
405 
406 	init_once((void *) fi);
407 
408 	/* Initialize f2fs-specific inode info */
409 	fi->vfs_inode.i_version = 1;
410 	atomic_set(&fi->dirty_pages, 0);
411 	fi->i_current_depth = 1;
412 	fi->i_advise = 0;
413 	rwlock_init(&fi->ext_lock);
414 	init_rwsem(&fi->i_sem);
415 	INIT_RADIX_TREE(&fi->inmem_root, GFP_NOFS);
416 	INIT_LIST_HEAD(&fi->inmem_pages);
417 	mutex_init(&fi->inmem_lock);
418 
419 	set_inode_flag(fi, FI_NEW_INODE);
420 
421 	if (test_opt(F2FS_SB(sb), INLINE_XATTR))
422 		set_inode_flag(fi, FI_INLINE_XATTR);
423 
424 	/* Will be used by directory only */
425 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
426 
427 #ifdef CONFIG_F2FS_FS_ENCRYPTION
428 	fi->i_crypt_info = NULL;
429 #endif
430 	return &fi->vfs_inode;
431 }
432 
433 static int f2fs_drop_inode(struct inode *inode)
434 {
435 	/*
436 	 * This is to avoid a deadlock condition like below.
437 	 * writeback_single_inode(inode)
438 	 *  - f2fs_write_data_page
439 	 *    - f2fs_gc -> iput -> evict
440 	 *       - inode_wait_for_writeback(inode)
441 	 */
442 	if (!inode_unhashed(inode) && inode->i_state & I_SYNC) {
443 		if (!inode->i_nlink && !is_bad_inode(inode)) {
444 			spin_unlock(&inode->i_lock);
445 
446 			/* some remained atomic pages should discarded */
447 			if (f2fs_is_atomic_file(inode))
448 				commit_inmem_pages(inode, true);
449 
450 			sb_start_intwrite(inode->i_sb);
451 			i_size_write(inode, 0);
452 
453 			if (F2FS_HAS_BLOCKS(inode))
454 				f2fs_truncate(inode);
455 
456 			sb_end_intwrite(inode->i_sb);
457 
458 #ifdef CONFIG_F2FS_FS_ENCRYPTION
459 			if (F2FS_I(inode)->i_crypt_info)
460 				f2fs_free_encryption_info(inode,
461 					F2FS_I(inode)->i_crypt_info);
462 #endif
463 			spin_lock(&inode->i_lock);
464 		}
465 		return 0;
466 	}
467 	return generic_drop_inode(inode);
468 }
469 
470 /*
471  * f2fs_dirty_inode() is called from __mark_inode_dirty()
472  *
473  * We should call set_dirty_inode to write the dirty inode through write_inode.
474  */
475 static void f2fs_dirty_inode(struct inode *inode, int flags)
476 {
477 	set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
478 }
479 
480 static void f2fs_i_callback(struct rcu_head *head)
481 {
482 	struct inode *inode = container_of(head, struct inode, i_rcu);
483 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
484 }
485 
486 static void f2fs_destroy_inode(struct inode *inode)
487 {
488 	call_rcu(&inode->i_rcu, f2fs_i_callback);
489 }
490 
491 static void f2fs_put_super(struct super_block *sb)
492 {
493 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
494 
495 	if (sbi->s_proc) {
496 		remove_proc_entry("segment_info", sbi->s_proc);
497 		remove_proc_entry(sb->s_id, f2fs_proc_root);
498 	}
499 	kobject_del(&sbi->s_kobj);
500 
501 	f2fs_destroy_stats(sbi);
502 	stop_gc_thread(sbi);
503 
504 	/*
505 	 * We don't need to do checkpoint when superblock is clean.
506 	 * But, the previous checkpoint was not done by umount, it needs to do
507 	 * clean checkpoint again.
508 	 */
509 	if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
510 			!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
511 		struct cp_control cpc = {
512 			.reason = CP_UMOUNT,
513 		};
514 		write_checkpoint(sbi, &cpc);
515 	}
516 
517 	/*
518 	 * normally superblock is clean, so we need to release this.
519 	 * In addition, EIO will skip do checkpoint, we need this as well.
520 	 */
521 	release_dirty_inode(sbi);
522 	release_discard_addrs(sbi);
523 
524 	iput(sbi->node_inode);
525 	iput(sbi->meta_inode);
526 
527 	/* destroy f2fs internal modules */
528 	destroy_node_manager(sbi);
529 	destroy_segment_manager(sbi);
530 
531 	kfree(sbi->ckpt);
532 	kobject_put(&sbi->s_kobj);
533 	wait_for_completion(&sbi->s_kobj_unregister);
534 
535 	sb->s_fs_info = NULL;
536 	brelse(sbi->raw_super_buf);
537 	kfree(sbi);
538 }
539 
540 int f2fs_sync_fs(struct super_block *sb, int sync)
541 {
542 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
543 
544 	trace_f2fs_sync_fs(sb, sync);
545 
546 	if (sync) {
547 		struct cp_control cpc;
548 
549 		cpc.reason = __get_cp_reason(sbi);
550 
551 		mutex_lock(&sbi->gc_mutex);
552 		write_checkpoint(sbi, &cpc);
553 		mutex_unlock(&sbi->gc_mutex);
554 	} else {
555 		f2fs_balance_fs(sbi);
556 	}
557 	f2fs_trace_ios(NULL, 1);
558 
559 	return 0;
560 }
561 
562 static int f2fs_freeze(struct super_block *sb)
563 {
564 	int err;
565 
566 	if (f2fs_readonly(sb))
567 		return 0;
568 
569 	err = f2fs_sync_fs(sb, 1);
570 	return err;
571 }
572 
573 static int f2fs_unfreeze(struct super_block *sb)
574 {
575 	return 0;
576 }
577 
578 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
579 {
580 	struct super_block *sb = dentry->d_sb;
581 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
582 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
583 	block_t total_count, user_block_count, start_count, ovp_count;
584 
585 	total_count = le64_to_cpu(sbi->raw_super->block_count);
586 	user_block_count = sbi->user_block_count;
587 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
588 	ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
589 	buf->f_type = F2FS_SUPER_MAGIC;
590 	buf->f_bsize = sbi->blocksize;
591 
592 	buf->f_blocks = total_count - start_count;
593 	buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
594 	buf->f_bavail = user_block_count - valid_user_blocks(sbi);
595 
596 	buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
597 	buf->f_ffree = buf->f_files - valid_inode_count(sbi);
598 
599 	buf->f_namelen = F2FS_NAME_LEN;
600 	buf->f_fsid.val[0] = (u32)id;
601 	buf->f_fsid.val[1] = (u32)(id >> 32);
602 
603 	return 0;
604 }
605 
606 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
607 {
608 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
609 
610 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC))
611 		seq_printf(seq, ",background_gc=%s", "on");
612 	else
613 		seq_printf(seq, ",background_gc=%s", "off");
614 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
615 		seq_puts(seq, ",disable_roll_forward");
616 	if (test_opt(sbi, DISCARD))
617 		seq_puts(seq, ",discard");
618 	if (test_opt(sbi, NOHEAP))
619 		seq_puts(seq, ",no_heap_alloc");
620 #ifdef CONFIG_F2FS_FS_XATTR
621 	if (test_opt(sbi, XATTR_USER))
622 		seq_puts(seq, ",user_xattr");
623 	else
624 		seq_puts(seq, ",nouser_xattr");
625 	if (test_opt(sbi, INLINE_XATTR))
626 		seq_puts(seq, ",inline_xattr");
627 #endif
628 #ifdef CONFIG_F2FS_FS_POSIX_ACL
629 	if (test_opt(sbi, POSIX_ACL))
630 		seq_puts(seq, ",acl");
631 	else
632 		seq_puts(seq, ",noacl");
633 #endif
634 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
635 		seq_puts(seq, ",disable_ext_identify");
636 	if (test_opt(sbi, INLINE_DATA))
637 		seq_puts(seq, ",inline_data");
638 	else
639 		seq_puts(seq, ",noinline_data");
640 	if (test_opt(sbi, INLINE_DENTRY))
641 		seq_puts(seq, ",inline_dentry");
642 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
643 		seq_puts(seq, ",flush_merge");
644 	if (test_opt(sbi, NOBARRIER))
645 		seq_puts(seq, ",nobarrier");
646 	if (test_opt(sbi, FASTBOOT))
647 		seq_puts(seq, ",fastboot");
648 	if (test_opt(sbi, EXTENT_CACHE))
649 		seq_puts(seq, ",extent_cache");
650 	seq_printf(seq, ",active_logs=%u", sbi->active_logs);
651 
652 	return 0;
653 }
654 
655 static int segment_info_seq_show(struct seq_file *seq, void *offset)
656 {
657 	struct super_block *sb = seq->private;
658 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
659 	unsigned int total_segs =
660 			le32_to_cpu(sbi->raw_super->segment_count_main);
661 	int i;
662 
663 	seq_puts(seq, "format: segment_type|valid_blocks\n"
664 		"segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
665 
666 	for (i = 0; i < total_segs; i++) {
667 		struct seg_entry *se = get_seg_entry(sbi, i);
668 
669 		if ((i % 10) == 0)
670 			seq_printf(seq, "%-5d", i);
671 		seq_printf(seq, "%d|%-3u", se->type,
672 					get_valid_blocks(sbi, i, 1));
673 		if ((i % 10) == 9 || i == (total_segs - 1))
674 			seq_putc(seq, '\n');
675 		else
676 			seq_putc(seq, ' ');
677 	}
678 
679 	return 0;
680 }
681 
682 static int segment_info_open_fs(struct inode *inode, struct file *file)
683 {
684 	return single_open(file, segment_info_seq_show, PDE_DATA(inode));
685 }
686 
687 static const struct file_operations f2fs_seq_segment_info_fops = {
688 	.owner = THIS_MODULE,
689 	.open = segment_info_open_fs,
690 	.read = seq_read,
691 	.llseek = seq_lseek,
692 	.release = single_release,
693 };
694 
695 static void default_options(struct f2fs_sb_info *sbi)
696 {
697 	/* init some FS parameters */
698 	sbi->active_logs = NR_CURSEG_TYPE;
699 
700 	set_opt(sbi, BG_GC);
701 	set_opt(sbi, INLINE_DATA);
702 
703 #ifdef CONFIG_F2FS_FS_XATTR
704 	set_opt(sbi, XATTR_USER);
705 #endif
706 #ifdef CONFIG_F2FS_FS_POSIX_ACL
707 	set_opt(sbi, POSIX_ACL);
708 #endif
709 }
710 
711 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
712 {
713 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
714 	struct f2fs_mount_info org_mount_opt;
715 	int err, active_logs;
716 	bool need_restart_gc = false;
717 	bool need_stop_gc = false;
718 
719 	sync_filesystem(sb);
720 
721 	/*
722 	 * Save the old mount options in case we
723 	 * need to restore them.
724 	 */
725 	org_mount_opt = sbi->mount_opt;
726 	active_logs = sbi->active_logs;
727 
728 	sbi->mount_opt.opt = 0;
729 	default_options(sbi);
730 
731 	/* parse mount options */
732 	err = parse_options(sb, data);
733 	if (err)
734 		goto restore_opts;
735 
736 	/*
737 	 * Previous and new state of filesystem is RO,
738 	 * so skip checking GC and FLUSH_MERGE conditions.
739 	 */
740 	if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
741 		goto skip;
742 
743 	/*
744 	 * We stop the GC thread if FS is mounted as RO
745 	 * or if background_gc = off is passed in mount
746 	 * option. Also sync the filesystem.
747 	 */
748 	if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
749 		if (sbi->gc_thread) {
750 			stop_gc_thread(sbi);
751 			f2fs_sync_fs(sb, 1);
752 			need_restart_gc = true;
753 		}
754 	} else if (!sbi->gc_thread) {
755 		err = start_gc_thread(sbi);
756 		if (err)
757 			goto restore_opts;
758 		need_stop_gc = true;
759 	}
760 
761 	/*
762 	 * We stop issue flush thread if FS is mounted as RO
763 	 * or if flush_merge is not passed in mount option.
764 	 */
765 	if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
766 		destroy_flush_cmd_control(sbi);
767 	} else if (!SM_I(sbi)->cmd_control_info) {
768 		err = create_flush_cmd_control(sbi);
769 		if (err)
770 			goto restore_gc;
771 	}
772 skip:
773 	/* Update the POSIXACL Flag */
774 	 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
775 		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
776 	return 0;
777 restore_gc:
778 	if (need_restart_gc) {
779 		if (start_gc_thread(sbi))
780 			f2fs_msg(sbi->sb, KERN_WARNING,
781 				"background gc thread has stopped");
782 	} else if (need_stop_gc) {
783 		stop_gc_thread(sbi);
784 	}
785 restore_opts:
786 	sbi->mount_opt = org_mount_opt;
787 	sbi->active_logs = active_logs;
788 	return err;
789 }
790 
791 static struct super_operations f2fs_sops = {
792 	.alloc_inode	= f2fs_alloc_inode,
793 	.drop_inode	= f2fs_drop_inode,
794 	.destroy_inode	= f2fs_destroy_inode,
795 	.write_inode	= f2fs_write_inode,
796 	.dirty_inode	= f2fs_dirty_inode,
797 	.show_options	= f2fs_show_options,
798 	.evict_inode	= f2fs_evict_inode,
799 	.put_super	= f2fs_put_super,
800 	.sync_fs	= f2fs_sync_fs,
801 	.freeze_fs	= f2fs_freeze,
802 	.unfreeze_fs	= f2fs_unfreeze,
803 	.statfs		= f2fs_statfs,
804 	.remount_fs	= f2fs_remount,
805 };
806 
807 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
808 		u64 ino, u32 generation)
809 {
810 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
811 	struct inode *inode;
812 
813 	if (check_nid_range(sbi, ino))
814 		return ERR_PTR(-ESTALE);
815 
816 	/*
817 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
818 	 * However f2fs_iget currently does appropriate checks to handle stale
819 	 * inodes so everything is OK.
820 	 */
821 	inode = f2fs_iget(sb, ino);
822 	if (IS_ERR(inode))
823 		return ERR_CAST(inode);
824 	if (unlikely(generation && inode->i_generation != generation)) {
825 		/* we didn't find the right inode.. */
826 		iput(inode);
827 		return ERR_PTR(-ESTALE);
828 	}
829 	return inode;
830 }
831 
832 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
833 		int fh_len, int fh_type)
834 {
835 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
836 				    f2fs_nfs_get_inode);
837 }
838 
839 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
840 		int fh_len, int fh_type)
841 {
842 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
843 				    f2fs_nfs_get_inode);
844 }
845 
846 static const struct export_operations f2fs_export_ops = {
847 	.fh_to_dentry = f2fs_fh_to_dentry,
848 	.fh_to_parent = f2fs_fh_to_parent,
849 	.get_parent = f2fs_get_parent,
850 };
851 
852 static loff_t max_file_size(unsigned bits)
853 {
854 	loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
855 	loff_t leaf_count = ADDRS_PER_BLOCK;
856 
857 	/* two direct node blocks */
858 	result += (leaf_count * 2);
859 
860 	/* two indirect node blocks */
861 	leaf_count *= NIDS_PER_BLOCK;
862 	result += (leaf_count * 2);
863 
864 	/* one double indirect node block */
865 	leaf_count *= NIDS_PER_BLOCK;
866 	result += leaf_count;
867 
868 	result <<= bits;
869 	return result;
870 }
871 
872 static int sanity_check_raw_super(struct super_block *sb,
873 			struct f2fs_super_block *raw_super)
874 {
875 	unsigned int blocksize;
876 
877 	if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
878 		f2fs_msg(sb, KERN_INFO,
879 			"Magic Mismatch, valid(0x%x) - read(0x%x)",
880 			F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
881 		return 1;
882 	}
883 
884 	/* Currently, support only 4KB page cache size */
885 	if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
886 		f2fs_msg(sb, KERN_INFO,
887 			"Invalid page_cache_size (%lu), supports only 4KB\n",
888 			PAGE_CACHE_SIZE);
889 		return 1;
890 	}
891 
892 	/* Currently, support only 4KB block size */
893 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
894 	if (blocksize != F2FS_BLKSIZE) {
895 		f2fs_msg(sb, KERN_INFO,
896 			"Invalid blocksize (%u), supports only 4KB\n",
897 			blocksize);
898 		return 1;
899 	}
900 
901 	/* Currently, support 512/1024/2048/4096 bytes sector size */
902 	if (le32_to_cpu(raw_super->log_sectorsize) >
903 				F2FS_MAX_LOG_SECTOR_SIZE ||
904 		le32_to_cpu(raw_super->log_sectorsize) <
905 				F2FS_MIN_LOG_SECTOR_SIZE) {
906 		f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
907 			le32_to_cpu(raw_super->log_sectorsize));
908 		return 1;
909 	}
910 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
911 		le32_to_cpu(raw_super->log_sectorsize) !=
912 			F2FS_MAX_LOG_SECTOR_SIZE) {
913 		f2fs_msg(sb, KERN_INFO,
914 			"Invalid log sectors per block(%u) log sectorsize(%u)",
915 			le32_to_cpu(raw_super->log_sectors_per_block),
916 			le32_to_cpu(raw_super->log_sectorsize));
917 		return 1;
918 	}
919 	return 0;
920 }
921 
922 static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
923 {
924 	unsigned int total, fsmeta;
925 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
926 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
927 
928 	total = le32_to_cpu(raw_super->segment_count);
929 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
930 	fsmeta += le32_to_cpu(raw_super->segment_count_sit);
931 	fsmeta += le32_to_cpu(raw_super->segment_count_nat);
932 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
933 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
934 
935 	if (unlikely(fsmeta >= total))
936 		return 1;
937 
938 	if (unlikely(f2fs_cp_error(sbi))) {
939 		f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
940 		return 1;
941 	}
942 	return 0;
943 }
944 
945 static void init_sb_info(struct f2fs_sb_info *sbi)
946 {
947 	struct f2fs_super_block *raw_super = sbi->raw_super;
948 	int i;
949 
950 	sbi->log_sectors_per_block =
951 		le32_to_cpu(raw_super->log_sectors_per_block);
952 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
953 	sbi->blocksize = 1 << sbi->log_blocksize;
954 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
955 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
956 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
957 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
958 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
959 	sbi->total_node_count =
960 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
961 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
962 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
963 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
964 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
965 	sbi->cur_victim_sec = NULL_SECNO;
966 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
967 
968 	for (i = 0; i < NR_COUNT_TYPE; i++)
969 		atomic_set(&sbi->nr_pages[i], 0);
970 
971 	sbi->dir_level = DEF_DIR_LEVEL;
972 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
973 }
974 
975 /*
976  * Read f2fs raw super block.
977  * Because we have two copies of super block, so read the first one at first,
978  * if the first one is invalid, move to read the second one.
979  */
980 static int read_raw_super_block(struct super_block *sb,
981 			struct f2fs_super_block **raw_super,
982 			struct buffer_head **raw_super_buf,
983 			int *recovery)
984 {
985 	int block = 0;
986 	struct buffer_head *buffer;
987 	struct f2fs_super_block *super;
988 	int err = 0;
989 
990 retry:
991 	buffer = sb_bread(sb, block);
992 	if (!buffer) {
993 		*recovery = 1;
994 		f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
995 				block + 1);
996 		if (block == 0) {
997 			block++;
998 			goto retry;
999 		} else {
1000 			err = -EIO;
1001 			goto out;
1002 		}
1003 	}
1004 
1005 	super = (struct f2fs_super_block *)
1006 		((char *)(buffer)->b_data + F2FS_SUPER_OFFSET);
1007 
1008 	/* sanity checking of raw super */
1009 	if (sanity_check_raw_super(sb, super)) {
1010 		brelse(buffer);
1011 		*recovery = 1;
1012 		f2fs_msg(sb, KERN_ERR,
1013 			"Can't find valid F2FS filesystem in %dth superblock",
1014 								block + 1);
1015 		if (block == 0) {
1016 			block++;
1017 			goto retry;
1018 		} else {
1019 			err = -EINVAL;
1020 			goto out;
1021 		}
1022 	}
1023 
1024 	if (!*raw_super) {
1025 		*raw_super_buf = buffer;
1026 		*raw_super = super;
1027 	} else {
1028 		/* already have a valid superblock */
1029 		brelse(buffer);
1030 	}
1031 
1032 	/* check the validity of the second superblock */
1033 	if (block == 0) {
1034 		block++;
1035 		goto retry;
1036 	}
1037 
1038 out:
1039 	/* No valid superblock */
1040 	if (!*raw_super)
1041 		return err;
1042 
1043 	return 0;
1044 }
1045 
1046 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1047 {
1048 	struct buffer_head *sbh = sbi->raw_super_buf;
1049 	sector_t block = sbh->b_blocknr;
1050 	int err;
1051 
1052 	/* write back-up superblock first */
1053 	sbh->b_blocknr = block ? 0 : 1;
1054 	mark_buffer_dirty(sbh);
1055 	err = sync_dirty_buffer(sbh);
1056 
1057 	sbh->b_blocknr = block;
1058 
1059 	/* if we are in recovery path, skip writing valid superblock */
1060 	if (recover || err)
1061 		goto out;
1062 
1063 	/* write current valid superblock */
1064 	mark_buffer_dirty(sbh);
1065 	err = sync_dirty_buffer(sbh);
1066 out:
1067 	clear_buffer_write_io_error(sbh);
1068 	set_buffer_uptodate(sbh);
1069 	return err;
1070 }
1071 
1072 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1073 {
1074 	struct f2fs_sb_info *sbi;
1075 	struct f2fs_super_block *raw_super;
1076 	struct buffer_head *raw_super_buf;
1077 	struct inode *root;
1078 	long err;
1079 	bool retry = true, need_fsck = false;
1080 	char *options = NULL;
1081 	int recovery, i;
1082 
1083 try_onemore:
1084 	err = -EINVAL;
1085 	raw_super = NULL;
1086 	raw_super_buf = NULL;
1087 	recovery = 0;
1088 
1089 	/* allocate memory for f2fs-specific super block info */
1090 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1091 	if (!sbi)
1092 		return -ENOMEM;
1093 
1094 	/* set a block size */
1095 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1096 		f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1097 		goto free_sbi;
1098 	}
1099 
1100 	err = read_raw_super_block(sb, &raw_super, &raw_super_buf, &recovery);
1101 	if (err)
1102 		goto free_sbi;
1103 
1104 	sb->s_fs_info = sbi;
1105 	default_options(sbi);
1106 	/* parse mount options */
1107 	options = kstrdup((const char *)data, GFP_KERNEL);
1108 	if (data && !options) {
1109 		err = -ENOMEM;
1110 		goto free_sb_buf;
1111 	}
1112 
1113 	err = parse_options(sb, options);
1114 	if (err)
1115 		goto free_options;
1116 
1117 	sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
1118 	sb->s_max_links = F2FS_LINK_MAX;
1119 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1120 
1121 	sb->s_op = &f2fs_sops;
1122 	sb->s_xattr = f2fs_xattr_handlers;
1123 	sb->s_export_op = &f2fs_export_ops;
1124 	sb->s_magic = F2FS_SUPER_MAGIC;
1125 	sb->s_time_gran = 1;
1126 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1127 		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1128 	memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1129 
1130 	/* init f2fs-specific super block info */
1131 	sbi->sb = sb;
1132 	sbi->raw_super = raw_super;
1133 	sbi->raw_super_buf = raw_super_buf;
1134 	mutex_init(&sbi->gc_mutex);
1135 	mutex_init(&sbi->writepages);
1136 	mutex_init(&sbi->cp_mutex);
1137 	init_rwsem(&sbi->node_write);
1138 	clear_sbi_flag(sbi, SBI_POR_DOING);
1139 	spin_lock_init(&sbi->stat_lock);
1140 
1141 	init_rwsem(&sbi->read_io.io_rwsem);
1142 	sbi->read_io.sbi = sbi;
1143 	sbi->read_io.bio = NULL;
1144 	for (i = 0; i < NR_PAGE_TYPE; i++) {
1145 		init_rwsem(&sbi->write_io[i].io_rwsem);
1146 		sbi->write_io[i].sbi = sbi;
1147 		sbi->write_io[i].bio = NULL;
1148 	}
1149 
1150 	init_rwsem(&sbi->cp_rwsem);
1151 	init_waitqueue_head(&sbi->cp_wait);
1152 	init_sb_info(sbi);
1153 
1154 	/* get an inode for meta space */
1155 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1156 	if (IS_ERR(sbi->meta_inode)) {
1157 		f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1158 		err = PTR_ERR(sbi->meta_inode);
1159 		goto free_options;
1160 	}
1161 
1162 	err = get_valid_checkpoint(sbi);
1163 	if (err) {
1164 		f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1165 		goto free_meta_inode;
1166 	}
1167 
1168 	/* sanity checking of checkpoint */
1169 	err = -EINVAL;
1170 	if (sanity_check_ckpt(sbi)) {
1171 		f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
1172 		goto free_cp;
1173 	}
1174 
1175 	sbi->total_valid_node_count =
1176 				le32_to_cpu(sbi->ckpt->valid_node_count);
1177 	sbi->total_valid_inode_count =
1178 				le32_to_cpu(sbi->ckpt->valid_inode_count);
1179 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1180 	sbi->total_valid_block_count =
1181 				le64_to_cpu(sbi->ckpt->valid_block_count);
1182 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1183 	sbi->alloc_valid_block_count = 0;
1184 	INIT_LIST_HEAD(&sbi->dir_inode_list);
1185 	spin_lock_init(&sbi->dir_inode_lock);
1186 
1187 	init_extent_cache_info(sbi);
1188 
1189 	init_ino_entry_info(sbi);
1190 
1191 	/* setup f2fs internal modules */
1192 	err = build_segment_manager(sbi);
1193 	if (err) {
1194 		f2fs_msg(sb, KERN_ERR,
1195 			"Failed to initialize F2FS segment manager");
1196 		goto free_sm;
1197 	}
1198 	err = build_node_manager(sbi);
1199 	if (err) {
1200 		f2fs_msg(sb, KERN_ERR,
1201 			"Failed to initialize F2FS node manager");
1202 		goto free_nm;
1203 	}
1204 
1205 	build_gc_manager(sbi);
1206 
1207 	/* get an inode for node space */
1208 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1209 	if (IS_ERR(sbi->node_inode)) {
1210 		f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1211 		err = PTR_ERR(sbi->node_inode);
1212 		goto free_nm;
1213 	}
1214 
1215 	/* if there are nt orphan nodes free them */
1216 	recover_orphan_inodes(sbi);
1217 
1218 	/* read root inode and dentry */
1219 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1220 	if (IS_ERR(root)) {
1221 		f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1222 		err = PTR_ERR(root);
1223 		goto free_node_inode;
1224 	}
1225 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1226 		iput(root);
1227 		err = -EINVAL;
1228 		goto free_node_inode;
1229 	}
1230 
1231 	sb->s_root = d_make_root(root); /* allocate root dentry */
1232 	if (!sb->s_root) {
1233 		err = -ENOMEM;
1234 		goto free_root_inode;
1235 	}
1236 
1237 	err = f2fs_build_stats(sbi);
1238 	if (err)
1239 		goto free_root_inode;
1240 
1241 	if (f2fs_proc_root)
1242 		sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1243 
1244 	if (sbi->s_proc)
1245 		proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1246 				 &f2fs_seq_segment_info_fops, sb);
1247 
1248 	sbi->s_kobj.kset = f2fs_kset;
1249 	init_completion(&sbi->s_kobj_unregister);
1250 	err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1251 							"%s", sb->s_id);
1252 	if (err)
1253 		goto free_proc;
1254 
1255 	/* recover fsynced data */
1256 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1257 		/*
1258 		 * mount should be failed, when device has readonly mode, and
1259 		 * previous checkpoint was not done by clean system shutdown.
1260 		 */
1261 		if (bdev_read_only(sb->s_bdev) &&
1262 				!is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1263 			err = -EROFS;
1264 			goto free_kobj;
1265 		}
1266 
1267 		if (need_fsck)
1268 			set_sbi_flag(sbi, SBI_NEED_FSCK);
1269 
1270 		err = recover_fsync_data(sbi);
1271 		if (err) {
1272 			need_fsck = true;
1273 			f2fs_msg(sb, KERN_ERR,
1274 				"Cannot recover all fsync data errno=%ld", err);
1275 			goto free_kobj;
1276 		}
1277 	}
1278 
1279 	/*
1280 	 * If filesystem is not mounted as read-only then
1281 	 * do start the gc_thread.
1282 	 */
1283 	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1284 		/* After POR, we can run background GC thread.*/
1285 		err = start_gc_thread(sbi);
1286 		if (err)
1287 			goto free_kobj;
1288 	}
1289 	kfree(options);
1290 
1291 	/* recover broken superblock */
1292 	if (recovery && !f2fs_readonly(sb) && !bdev_read_only(sb->s_bdev)) {
1293 		f2fs_msg(sb, KERN_INFO, "Recover invalid superblock");
1294 		f2fs_commit_super(sbi, true);
1295 	}
1296 
1297 	return 0;
1298 
1299 free_kobj:
1300 	kobject_del(&sbi->s_kobj);
1301 free_proc:
1302 	if (sbi->s_proc) {
1303 		remove_proc_entry("segment_info", sbi->s_proc);
1304 		remove_proc_entry(sb->s_id, f2fs_proc_root);
1305 	}
1306 	f2fs_destroy_stats(sbi);
1307 free_root_inode:
1308 	dput(sb->s_root);
1309 	sb->s_root = NULL;
1310 free_node_inode:
1311 	iput(sbi->node_inode);
1312 free_nm:
1313 	destroy_node_manager(sbi);
1314 free_sm:
1315 	destroy_segment_manager(sbi);
1316 free_cp:
1317 	kfree(sbi->ckpt);
1318 free_meta_inode:
1319 	make_bad_inode(sbi->meta_inode);
1320 	iput(sbi->meta_inode);
1321 free_options:
1322 	kfree(options);
1323 free_sb_buf:
1324 	brelse(raw_super_buf);
1325 free_sbi:
1326 	kfree(sbi);
1327 
1328 	/* give only one another chance */
1329 	if (retry) {
1330 		retry = false;
1331 		shrink_dcache_sb(sb);
1332 		goto try_onemore;
1333 	}
1334 	return err;
1335 }
1336 
1337 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1338 			const char *dev_name, void *data)
1339 {
1340 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1341 }
1342 
1343 static void kill_f2fs_super(struct super_block *sb)
1344 {
1345 	if (sb->s_root)
1346 		set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1347 	kill_block_super(sb);
1348 }
1349 
1350 static struct file_system_type f2fs_fs_type = {
1351 	.owner		= THIS_MODULE,
1352 	.name		= "f2fs",
1353 	.mount		= f2fs_mount,
1354 	.kill_sb	= kill_f2fs_super,
1355 	.fs_flags	= FS_REQUIRES_DEV,
1356 };
1357 MODULE_ALIAS_FS("f2fs");
1358 
1359 static int __init init_inodecache(void)
1360 {
1361 	f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
1362 			sizeof(struct f2fs_inode_info));
1363 	if (!f2fs_inode_cachep)
1364 		return -ENOMEM;
1365 	return 0;
1366 }
1367 
1368 static void destroy_inodecache(void)
1369 {
1370 	/*
1371 	 * Make sure all delayed rcu free inodes are flushed before we
1372 	 * destroy cache.
1373 	 */
1374 	rcu_barrier();
1375 	kmem_cache_destroy(f2fs_inode_cachep);
1376 }
1377 
1378 static int __init init_f2fs_fs(void)
1379 {
1380 	int err;
1381 
1382 	f2fs_build_trace_ios();
1383 
1384 	err = init_inodecache();
1385 	if (err)
1386 		goto fail;
1387 	err = create_node_manager_caches();
1388 	if (err)
1389 		goto free_inodecache;
1390 	err = create_segment_manager_caches();
1391 	if (err)
1392 		goto free_node_manager_caches;
1393 	err = create_checkpoint_caches();
1394 	if (err)
1395 		goto free_segment_manager_caches;
1396 	err = create_extent_cache();
1397 	if (err)
1398 		goto free_checkpoint_caches;
1399 	f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1400 	if (!f2fs_kset) {
1401 		err = -ENOMEM;
1402 		goto free_extent_cache;
1403 	}
1404 	err = f2fs_init_crypto();
1405 	if (err)
1406 		goto free_kset;
1407 	err = register_filesystem(&f2fs_fs_type);
1408 	if (err)
1409 		goto free_crypto;
1410 	f2fs_create_root_stats();
1411 	f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1412 	return 0;
1413 
1414 free_crypto:
1415 	f2fs_exit_crypto();
1416 free_kset:
1417 	kset_unregister(f2fs_kset);
1418 free_extent_cache:
1419 	destroy_extent_cache();
1420 free_checkpoint_caches:
1421 	destroy_checkpoint_caches();
1422 free_segment_manager_caches:
1423 	destroy_segment_manager_caches();
1424 free_node_manager_caches:
1425 	destroy_node_manager_caches();
1426 free_inodecache:
1427 	destroy_inodecache();
1428 fail:
1429 	return err;
1430 }
1431 
1432 static void __exit exit_f2fs_fs(void)
1433 {
1434 	remove_proc_entry("fs/f2fs", NULL);
1435 	f2fs_destroy_root_stats();
1436 	unregister_filesystem(&f2fs_fs_type);
1437 	f2fs_exit_crypto();
1438 	destroy_extent_cache();
1439 	destroy_checkpoint_caches();
1440 	destroy_segment_manager_caches();
1441 	destroy_node_manager_caches();
1442 	destroy_inodecache();
1443 	kset_unregister(f2fs_kset);
1444 	f2fs_destroy_trace_ios();
1445 }
1446 
1447 module_init(init_f2fs_fs)
1448 module_exit(exit_f2fs_fs)
1449 
1450 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1451 MODULE_DESCRIPTION("Flash Friendly File System");
1452 MODULE_LICENSE("GPL");
1453