1 /* 2 * fs/f2fs/super.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/fs.h> 14 #include <linux/statfs.h> 15 #include <linux/buffer_head.h> 16 #include <linux/backing-dev.h> 17 #include <linux/kthread.h> 18 #include <linux/parser.h> 19 #include <linux/mount.h> 20 #include <linux/seq_file.h> 21 #include <linux/proc_fs.h> 22 #include <linux/random.h> 23 #include <linux/exportfs.h> 24 #include <linux/blkdev.h> 25 #include <linux/quotaops.h> 26 #include <linux/f2fs_fs.h> 27 #include <linux/sysfs.h> 28 29 #include "f2fs.h" 30 #include "node.h" 31 #include "segment.h" 32 #include "xattr.h" 33 #include "gc.h" 34 #include "trace.h" 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/f2fs.h> 38 39 static struct kmem_cache *f2fs_inode_cachep; 40 41 #ifdef CONFIG_F2FS_FAULT_INJECTION 42 43 char *fault_name[FAULT_MAX] = { 44 [FAULT_KMALLOC] = "kmalloc", 45 [FAULT_PAGE_ALLOC] = "page alloc", 46 [FAULT_ALLOC_NID] = "alloc nid", 47 [FAULT_ORPHAN] = "orphan", 48 [FAULT_BLOCK] = "no more block", 49 [FAULT_DIR_DEPTH] = "too big dir depth", 50 [FAULT_EVICT_INODE] = "evict_inode fail", 51 [FAULT_TRUNCATE] = "truncate fail", 52 [FAULT_IO] = "IO error", 53 [FAULT_CHECKPOINT] = "checkpoint error", 54 }; 55 56 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, 57 unsigned int rate) 58 { 59 struct f2fs_fault_info *ffi = &sbi->fault_info; 60 61 if (rate) { 62 atomic_set(&ffi->inject_ops, 0); 63 ffi->inject_rate = rate; 64 ffi->inject_type = (1 << FAULT_MAX) - 1; 65 } else { 66 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 67 } 68 } 69 #endif 70 71 /* f2fs-wide shrinker description */ 72 static struct shrinker f2fs_shrinker_info = { 73 .scan_objects = f2fs_shrink_scan, 74 .count_objects = f2fs_shrink_count, 75 .seeks = DEFAULT_SEEKS, 76 }; 77 78 enum { 79 Opt_gc_background, 80 Opt_disable_roll_forward, 81 Opt_norecovery, 82 Opt_discard, 83 Opt_nodiscard, 84 Opt_noheap, 85 Opt_heap, 86 Opt_user_xattr, 87 Opt_nouser_xattr, 88 Opt_acl, 89 Opt_noacl, 90 Opt_active_logs, 91 Opt_disable_ext_identify, 92 Opt_inline_xattr, 93 Opt_noinline_xattr, 94 Opt_inline_data, 95 Opt_inline_dentry, 96 Opt_noinline_dentry, 97 Opt_flush_merge, 98 Opt_noflush_merge, 99 Opt_nobarrier, 100 Opt_fastboot, 101 Opt_extent_cache, 102 Opt_noextent_cache, 103 Opt_noinline_data, 104 Opt_data_flush, 105 Opt_mode, 106 Opt_io_size_bits, 107 Opt_fault_injection, 108 Opt_lazytime, 109 Opt_nolazytime, 110 Opt_usrquota, 111 Opt_grpquota, 112 Opt_err, 113 }; 114 115 static match_table_t f2fs_tokens = { 116 {Opt_gc_background, "background_gc=%s"}, 117 {Opt_disable_roll_forward, "disable_roll_forward"}, 118 {Opt_norecovery, "norecovery"}, 119 {Opt_discard, "discard"}, 120 {Opt_nodiscard, "nodiscard"}, 121 {Opt_noheap, "no_heap"}, 122 {Opt_heap, "heap"}, 123 {Opt_user_xattr, "user_xattr"}, 124 {Opt_nouser_xattr, "nouser_xattr"}, 125 {Opt_acl, "acl"}, 126 {Opt_noacl, "noacl"}, 127 {Opt_active_logs, "active_logs=%u"}, 128 {Opt_disable_ext_identify, "disable_ext_identify"}, 129 {Opt_inline_xattr, "inline_xattr"}, 130 {Opt_noinline_xattr, "noinline_xattr"}, 131 {Opt_inline_data, "inline_data"}, 132 {Opt_inline_dentry, "inline_dentry"}, 133 {Opt_noinline_dentry, "noinline_dentry"}, 134 {Opt_flush_merge, "flush_merge"}, 135 {Opt_noflush_merge, "noflush_merge"}, 136 {Opt_nobarrier, "nobarrier"}, 137 {Opt_fastboot, "fastboot"}, 138 {Opt_extent_cache, "extent_cache"}, 139 {Opt_noextent_cache, "noextent_cache"}, 140 {Opt_noinline_data, "noinline_data"}, 141 {Opt_data_flush, "data_flush"}, 142 {Opt_mode, "mode=%s"}, 143 {Opt_io_size_bits, "io_bits=%u"}, 144 {Opt_fault_injection, "fault_injection=%u"}, 145 {Opt_lazytime, "lazytime"}, 146 {Opt_nolazytime, "nolazytime"}, 147 {Opt_usrquota, "usrquota"}, 148 {Opt_grpquota, "grpquota"}, 149 {Opt_err, NULL}, 150 }; 151 152 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) 153 { 154 struct va_format vaf; 155 va_list args; 156 157 va_start(args, fmt); 158 vaf.fmt = fmt; 159 vaf.va = &args; 160 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); 161 va_end(args); 162 } 163 164 static void init_once(void *foo) 165 { 166 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 167 168 inode_init_once(&fi->vfs_inode); 169 } 170 171 static int parse_options(struct super_block *sb, char *options) 172 { 173 struct f2fs_sb_info *sbi = F2FS_SB(sb); 174 struct request_queue *q; 175 substring_t args[MAX_OPT_ARGS]; 176 char *p, *name; 177 int arg = 0; 178 179 if (!options) 180 return 0; 181 182 while ((p = strsep(&options, ",")) != NULL) { 183 int token; 184 if (!*p) 185 continue; 186 /* 187 * Initialize args struct so we know whether arg was 188 * found; some options take optional arguments. 189 */ 190 args[0].to = args[0].from = NULL; 191 token = match_token(p, f2fs_tokens, args); 192 193 switch (token) { 194 case Opt_gc_background: 195 name = match_strdup(&args[0]); 196 197 if (!name) 198 return -ENOMEM; 199 if (strlen(name) == 2 && !strncmp(name, "on", 2)) { 200 set_opt(sbi, BG_GC); 201 clear_opt(sbi, FORCE_FG_GC); 202 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) { 203 clear_opt(sbi, BG_GC); 204 clear_opt(sbi, FORCE_FG_GC); 205 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) { 206 set_opt(sbi, BG_GC); 207 set_opt(sbi, FORCE_FG_GC); 208 } else { 209 kfree(name); 210 return -EINVAL; 211 } 212 kfree(name); 213 break; 214 case Opt_disable_roll_forward: 215 set_opt(sbi, DISABLE_ROLL_FORWARD); 216 break; 217 case Opt_norecovery: 218 /* this option mounts f2fs with ro */ 219 set_opt(sbi, DISABLE_ROLL_FORWARD); 220 if (!f2fs_readonly(sb)) 221 return -EINVAL; 222 break; 223 case Opt_discard: 224 q = bdev_get_queue(sb->s_bdev); 225 if (blk_queue_discard(q)) { 226 set_opt(sbi, DISCARD); 227 } else if (!f2fs_sb_mounted_blkzoned(sb)) { 228 f2fs_msg(sb, KERN_WARNING, 229 "mounting with \"discard\" option, but " 230 "the device does not support discard"); 231 } 232 break; 233 case Opt_nodiscard: 234 if (f2fs_sb_mounted_blkzoned(sb)) { 235 f2fs_msg(sb, KERN_WARNING, 236 "discard is required for zoned block devices"); 237 return -EINVAL; 238 } 239 clear_opt(sbi, DISCARD); 240 break; 241 case Opt_noheap: 242 set_opt(sbi, NOHEAP); 243 break; 244 case Opt_heap: 245 clear_opt(sbi, NOHEAP); 246 break; 247 #ifdef CONFIG_F2FS_FS_XATTR 248 case Opt_user_xattr: 249 set_opt(sbi, XATTR_USER); 250 break; 251 case Opt_nouser_xattr: 252 clear_opt(sbi, XATTR_USER); 253 break; 254 case Opt_inline_xattr: 255 set_opt(sbi, INLINE_XATTR); 256 break; 257 case Opt_noinline_xattr: 258 clear_opt(sbi, INLINE_XATTR); 259 break; 260 #else 261 case Opt_user_xattr: 262 f2fs_msg(sb, KERN_INFO, 263 "user_xattr options not supported"); 264 break; 265 case Opt_nouser_xattr: 266 f2fs_msg(sb, KERN_INFO, 267 "nouser_xattr options not supported"); 268 break; 269 case Opt_inline_xattr: 270 f2fs_msg(sb, KERN_INFO, 271 "inline_xattr options not supported"); 272 break; 273 case Opt_noinline_xattr: 274 f2fs_msg(sb, KERN_INFO, 275 "noinline_xattr options not supported"); 276 break; 277 #endif 278 #ifdef CONFIG_F2FS_FS_POSIX_ACL 279 case Opt_acl: 280 set_opt(sbi, POSIX_ACL); 281 break; 282 case Opt_noacl: 283 clear_opt(sbi, POSIX_ACL); 284 break; 285 #else 286 case Opt_acl: 287 f2fs_msg(sb, KERN_INFO, "acl options not supported"); 288 break; 289 case Opt_noacl: 290 f2fs_msg(sb, KERN_INFO, "noacl options not supported"); 291 break; 292 #endif 293 case Opt_active_logs: 294 if (args->from && match_int(args, &arg)) 295 return -EINVAL; 296 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 297 return -EINVAL; 298 sbi->active_logs = arg; 299 break; 300 case Opt_disable_ext_identify: 301 set_opt(sbi, DISABLE_EXT_IDENTIFY); 302 break; 303 case Opt_inline_data: 304 set_opt(sbi, INLINE_DATA); 305 break; 306 case Opt_inline_dentry: 307 set_opt(sbi, INLINE_DENTRY); 308 break; 309 case Opt_noinline_dentry: 310 clear_opt(sbi, INLINE_DENTRY); 311 break; 312 case Opt_flush_merge: 313 set_opt(sbi, FLUSH_MERGE); 314 break; 315 case Opt_noflush_merge: 316 clear_opt(sbi, FLUSH_MERGE); 317 break; 318 case Opt_nobarrier: 319 set_opt(sbi, NOBARRIER); 320 break; 321 case Opt_fastboot: 322 set_opt(sbi, FASTBOOT); 323 break; 324 case Opt_extent_cache: 325 set_opt(sbi, EXTENT_CACHE); 326 break; 327 case Opt_noextent_cache: 328 clear_opt(sbi, EXTENT_CACHE); 329 break; 330 case Opt_noinline_data: 331 clear_opt(sbi, INLINE_DATA); 332 break; 333 case Opt_data_flush: 334 set_opt(sbi, DATA_FLUSH); 335 break; 336 case Opt_mode: 337 name = match_strdup(&args[0]); 338 339 if (!name) 340 return -ENOMEM; 341 if (strlen(name) == 8 && 342 !strncmp(name, "adaptive", 8)) { 343 if (f2fs_sb_mounted_blkzoned(sb)) { 344 f2fs_msg(sb, KERN_WARNING, 345 "adaptive mode is not allowed with " 346 "zoned block device feature"); 347 kfree(name); 348 return -EINVAL; 349 } 350 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 351 } else if (strlen(name) == 3 && 352 !strncmp(name, "lfs", 3)) { 353 set_opt_mode(sbi, F2FS_MOUNT_LFS); 354 } else { 355 kfree(name); 356 return -EINVAL; 357 } 358 kfree(name); 359 break; 360 case Opt_io_size_bits: 361 if (args->from && match_int(args, &arg)) 362 return -EINVAL; 363 if (arg > __ilog2_u32(BIO_MAX_PAGES)) { 364 f2fs_msg(sb, KERN_WARNING, 365 "Not support %d, larger than %d", 366 1 << arg, BIO_MAX_PAGES); 367 return -EINVAL; 368 } 369 sbi->write_io_size_bits = arg; 370 break; 371 case Opt_fault_injection: 372 if (args->from && match_int(args, &arg)) 373 return -EINVAL; 374 #ifdef CONFIG_F2FS_FAULT_INJECTION 375 f2fs_build_fault_attr(sbi, arg); 376 set_opt(sbi, FAULT_INJECTION); 377 #else 378 f2fs_msg(sb, KERN_INFO, 379 "FAULT_INJECTION was not selected"); 380 #endif 381 break; 382 case Opt_lazytime: 383 sb->s_flags |= MS_LAZYTIME; 384 break; 385 case Opt_nolazytime: 386 sb->s_flags &= ~MS_LAZYTIME; 387 break; 388 #ifdef CONFIG_QUOTA 389 case Opt_usrquota: 390 set_opt(sbi, USRQUOTA); 391 break; 392 case Opt_grpquota: 393 set_opt(sbi, GRPQUOTA); 394 break; 395 #else 396 case Opt_usrquota: 397 case Opt_grpquota: 398 f2fs_msg(sb, KERN_INFO, 399 "quota operations not supported"); 400 break; 401 #endif 402 default: 403 f2fs_msg(sb, KERN_ERR, 404 "Unrecognized mount option \"%s\" or missing value", 405 p); 406 return -EINVAL; 407 } 408 } 409 410 if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) { 411 f2fs_msg(sb, KERN_ERR, 412 "Should set mode=lfs with %uKB-sized IO", 413 F2FS_IO_SIZE_KB(sbi)); 414 return -EINVAL; 415 } 416 return 0; 417 } 418 419 static struct inode *f2fs_alloc_inode(struct super_block *sb) 420 { 421 struct f2fs_inode_info *fi; 422 423 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 424 if (!fi) 425 return NULL; 426 427 init_once((void *) fi); 428 429 /* Initialize f2fs-specific inode info */ 430 fi->vfs_inode.i_version = 1; 431 atomic_set(&fi->dirty_pages, 0); 432 fi->i_current_depth = 1; 433 fi->i_advise = 0; 434 init_rwsem(&fi->i_sem); 435 INIT_LIST_HEAD(&fi->dirty_list); 436 INIT_LIST_HEAD(&fi->gdirty_list); 437 INIT_LIST_HEAD(&fi->inmem_pages); 438 mutex_init(&fi->inmem_lock); 439 init_rwsem(&fi->dio_rwsem[READ]); 440 init_rwsem(&fi->dio_rwsem[WRITE]); 441 init_rwsem(&fi->i_mmap_sem); 442 443 #ifdef CONFIG_QUOTA 444 memset(&fi->i_dquot, 0, sizeof(fi->i_dquot)); 445 fi->i_reserved_quota = 0; 446 #endif 447 /* Will be used by directory only */ 448 fi->i_dir_level = F2FS_SB(sb)->dir_level; 449 return &fi->vfs_inode; 450 } 451 452 static int f2fs_drop_inode(struct inode *inode) 453 { 454 int ret; 455 /* 456 * This is to avoid a deadlock condition like below. 457 * writeback_single_inode(inode) 458 * - f2fs_write_data_page 459 * - f2fs_gc -> iput -> evict 460 * - inode_wait_for_writeback(inode) 461 */ 462 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 463 if (!inode->i_nlink && !is_bad_inode(inode)) { 464 /* to avoid evict_inode call simultaneously */ 465 atomic_inc(&inode->i_count); 466 spin_unlock(&inode->i_lock); 467 468 /* some remained atomic pages should discarded */ 469 if (f2fs_is_atomic_file(inode)) 470 drop_inmem_pages(inode); 471 472 /* should remain fi->extent_tree for writepage */ 473 f2fs_destroy_extent_node(inode); 474 475 sb_start_intwrite(inode->i_sb); 476 f2fs_i_size_write(inode, 0); 477 478 if (F2FS_HAS_BLOCKS(inode)) 479 f2fs_truncate(inode); 480 481 sb_end_intwrite(inode->i_sb); 482 483 fscrypt_put_encryption_info(inode, NULL); 484 spin_lock(&inode->i_lock); 485 atomic_dec(&inode->i_count); 486 } 487 trace_f2fs_drop_inode(inode, 0); 488 return 0; 489 } 490 ret = generic_drop_inode(inode); 491 trace_f2fs_drop_inode(inode, ret); 492 return ret; 493 } 494 495 int f2fs_inode_dirtied(struct inode *inode, bool sync) 496 { 497 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 498 int ret = 0; 499 500 spin_lock(&sbi->inode_lock[DIRTY_META]); 501 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 502 ret = 1; 503 } else { 504 set_inode_flag(inode, FI_DIRTY_INODE); 505 stat_inc_dirty_inode(sbi, DIRTY_META); 506 } 507 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 508 list_add_tail(&F2FS_I(inode)->gdirty_list, 509 &sbi->inode_list[DIRTY_META]); 510 inc_page_count(sbi, F2FS_DIRTY_IMETA); 511 } 512 spin_unlock(&sbi->inode_lock[DIRTY_META]); 513 return ret; 514 } 515 516 void f2fs_inode_synced(struct inode *inode) 517 { 518 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 519 520 spin_lock(&sbi->inode_lock[DIRTY_META]); 521 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 522 spin_unlock(&sbi->inode_lock[DIRTY_META]); 523 return; 524 } 525 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 526 list_del_init(&F2FS_I(inode)->gdirty_list); 527 dec_page_count(sbi, F2FS_DIRTY_IMETA); 528 } 529 clear_inode_flag(inode, FI_DIRTY_INODE); 530 clear_inode_flag(inode, FI_AUTO_RECOVER); 531 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 532 spin_unlock(&sbi->inode_lock[DIRTY_META]); 533 } 534 535 /* 536 * f2fs_dirty_inode() is called from __mark_inode_dirty() 537 * 538 * We should call set_dirty_inode to write the dirty inode through write_inode. 539 */ 540 static void f2fs_dirty_inode(struct inode *inode, int flags) 541 { 542 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 543 544 if (inode->i_ino == F2FS_NODE_INO(sbi) || 545 inode->i_ino == F2FS_META_INO(sbi)) 546 return; 547 548 if (flags == I_DIRTY_TIME) 549 return; 550 551 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 552 clear_inode_flag(inode, FI_AUTO_RECOVER); 553 554 f2fs_inode_dirtied(inode, false); 555 } 556 557 static void f2fs_i_callback(struct rcu_head *head) 558 { 559 struct inode *inode = container_of(head, struct inode, i_rcu); 560 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 561 } 562 563 static void f2fs_destroy_inode(struct inode *inode) 564 { 565 call_rcu(&inode->i_rcu, f2fs_i_callback); 566 } 567 568 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 569 { 570 percpu_counter_destroy(&sbi->alloc_valid_block_count); 571 percpu_counter_destroy(&sbi->total_valid_inode_count); 572 } 573 574 static void destroy_device_list(struct f2fs_sb_info *sbi) 575 { 576 int i; 577 578 for (i = 0; i < sbi->s_ndevs; i++) { 579 blkdev_put(FDEV(i).bdev, FMODE_EXCL); 580 #ifdef CONFIG_BLK_DEV_ZONED 581 kfree(FDEV(i).blkz_type); 582 #endif 583 } 584 kfree(sbi->devs); 585 } 586 587 static void f2fs_quota_off_umount(struct super_block *sb); 588 static void f2fs_put_super(struct super_block *sb) 589 { 590 struct f2fs_sb_info *sbi = F2FS_SB(sb); 591 int i; 592 593 f2fs_quota_off_umount(sb); 594 595 /* prevent remaining shrinker jobs */ 596 mutex_lock(&sbi->umount_mutex); 597 598 /* 599 * We don't need to do checkpoint when superblock is clean. 600 * But, the previous checkpoint was not done by umount, it needs to do 601 * clean checkpoint again. 602 */ 603 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 604 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 605 struct cp_control cpc = { 606 .reason = CP_UMOUNT, 607 }; 608 write_checkpoint(sbi, &cpc); 609 } 610 611 /* be sure to wait for any on-going discard commands */ 612 f2fs_wait_discard_bios(sbi); 613 614 if (f2fs_discard_en(sbi) && !sbi->discard_blks) { 615 struct cp_control cpc = { 616 .reason = CP_UMOUNT | CP_TRIMMED, 617 }; 618 write_checkpoint(sbi, &cpc); 619 } 620 621 /* write_checkpoint can update stat informaion */ 622 f2fs_destroy_stats(sbi); 623 624 /* 625 * normally superblock is clean, so we need to release this. 626 * In addition, EIO will skip do checkpoint, we need this as well. 627 */ 628 release_ino_entry(sbi, true); 629 630 f2fs_leave_shrinker(sbi); 631 mutex_unlock(&sbi->umount_mutex); 632 633 /* our cp_error case, we can wait for any writeback page */ 634 f2fs_flush_merged_writes(sbi); 635 636 iput(sbi->node_inode); 637 iput(sbi->meta_inode); 638 639 /* destroy f2fs internal modules */ 640 destroy_node_manager(sbi); 641 destroy_segment_manager(sbi); 642 643 kfree(sbi->ckpt); 644 645 f2fs_exit_sysfs(sbi); 646 647 sb->s_fs_info = NULL; 648 if (sbi->s_chksum_driver) 649 crypto_free_shash(sbi->s_chksum_driver); 650 kfree(sbi->raw_super); 651 652 destroy_device_list(sbi); 653 mempool_destroy(sbi->write_io_dummy); 654 destroy_percpu_info(sbi); 655 for (i = 0; i < NR_PAGE_TYPE; i++) 656 kfree(sbi->write_io[i]); 657 kfree(sbi); 658 } 659 660 int f2fs_sync_fs(struct super_block *sb, int sync) 661 { 662 struct f2fs_sb_info *sbi = F2FS_SB(sb); 663 int err = 0; 664 665 trace_f2fs_sync_fs(sb, sync); 666 667 if (sync) { 668 struct cp_control cpc; 669 670 cpc.reason = __get_cp_reason(sbi); 671 672 mutex_lock(&sbi->gc_mutex); 673 err = write_checkpoint(sbi, &cpc); 674 mutex_unlock(&sbi->gc_mutex); 675 } 676 f2fs_trace_ios(NULL, 1); 677 678 return err; 679 } 680 681 static int f2fs_freeze(struct super_block *sb) 682 { 683 if (f2fs_readonly(sb)) 684 return 0; 685 686 /* IO error happened before */ 687 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 688 return -EIO; 689 690 /* must be clean, since sync_filesystem() was already called */ 691 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 692 return -EINVAL; 693 return 0; 694 } 695 696 static int f2fs_unfreeze(struct super_block *sb) 697 { 698 return 0; 699 } 700 701 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 702 { 703 struct super_block *sb = dentry->d_sb; 704 struct f2fs_sb_info *sbi = F2FS_SB(sb); 705 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 706 block_t total_count, user_block_count, start_count, ovp_count; 707 u64 avail_node_count; 708 709 total_count = le64_to_cpu(sbi->raw_super->block_count); 710 user_block_count = sbi->user_block_count; 711 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 712 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg; 713 buf->f_type = F2FS_SUPER_MAGIC; 714 buf->f_bsize = sbi->blocksize; 715 716 buf->f_blocks = total_count - start_count; 717 buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count; 718 buf->f_bavail = user_block_count - valid_user_blocks(sbi) - 719 sbi->reserved_blocks; 720 721 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 722 723 if (avail_node_count > user_block_count) { 724 buf->f_files = user_block_count; 725 buf->f_ffree = buf->f_bavail; 726 } else { 727 buf->f_files = avail_node_count; 728 buf->f_ffree = min(avail_node_count - valid_node_count(sbi), 729 buf->f_bavail); 730 } 731 732 buf->f_namelen = F2FS_NAME_LEN; 733 buf->f_fsid.val[0] = (u32)id; 734 buf->f_fsid.val[1] = (u32)(id >> 32); 735 736 return 0; 737 } 738 739 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 740 { 741 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 742 743 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) { 744 if (test_opt(sbi, FORCE_FG_GC)) 745 seq_printf(seq, ",background_gc=%s", "sync"); 746 else 747 seq_printf(seq, ",background_gc=%s", "on"); 748 } else { 749 seq_printf(seq, ",background_gc=%s", "off"); 750 } 751 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 752 seq_puts(seq, ",disable_roll_forward"); 753 if (test_opt(sbi, DISCARD)) 754 seq_puts(seq, ",discard"); 755 if (test_opt(sbi, NOHEAP)) 756 seq_puts(seq, ",no_heap"); 757 else 758 seq_puts(seq, ",heap"); 759 #ifdef CONFIG_F2FS_FS_XATTR 760 if (test_opt(sbi, XATTR_USER)) 761 seq_puts(seq, ",user_xattr"); 762 else 763 seq_puts(seq, ",nouser_xattr"); 764 if (test_opt(sbi, INLINE_XATTR)) 765 seq_puts(seq, ",inline_xattr"); 766 else 767 seq_puts(seq, ",noinline_xattr"); 768 #endif 769 #ifdef CONFIG_F2FS_FS_POSIX_ACL 770 if (test_opt(sbi, POSIX_ACL)) 771 seq_puts(seq, ",acl"); 772 else 773 seq_puts(seq, ",noacl"); 774 #endif 775 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 776 seq_puts(seq, ",disable_ext_identify"); 777 if (test_opt(sbi, INLINE_DATA)) 778 seq_puts(seq, ",inline_data"); 779 else 780 seq_puts(seq, ",noinline_data"); 781 if (test_opt(sbi, INLINE_DENTRY)) 782 seq_puts(seq, ",inline_dentry"); 783 else 784 seq_puts(seq, ",noinline_dentry"); 785 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 786 seq_puts(seq, ",flush_merge"); 787 if (test_opt(sbi, NOBARRIER)) 788 seq_puts(seq, ",nobarrier"); 789 if (test_opt(sbi, FASTBOOT)) 790 seq_puts(seq, ",fastboot"); 791 if (test_opt(sbi, EXTENT_CACHE)) 792 seq_puts(seq, ",extent_cache"); 793 else 794 seq_puts(seq, ",noextent_cache"); 795 if (test_opt(sbi, DATA_FLUSH)) 796 seq_puts(seq, ",data_flush"); 797 798 seq_puts(seq, ",mode="); 799 if (test_opt(sbi, ADAPTIVE)) 800 seq_puts(seq, "adaptive"); 801 else if (test_opt(sbi, LFS)) 802 seq_puts(seq, "lfs"); 803 seq_printf(seq, ",active_logs=%u", sbi->active_logs); 804 if (F2FS_IO_SIZE_BITS(sbi)) 805 seq_printf(seq, ",io_size=%uKB", F2FS_IO_SIZE_KB(sbi)); 806 #ifdef CONFIG_F2FS_FAULT_INJECTION 807 if (test_opt(sbi, FAULT_INJECTION)) 808 seq_printf(seq, ",fault_injection=%u", 809 sbi->fault_info.inject_rate); 810 #endif 811 #ifdef CONFIG_QUOTA 812 if (test_opt(sbi, USRQUOTA)) 813 seq_puts(seq, ",usrquota"); 814 if (test_opt(sbi, GRPQUOTA)) 815 seq_puts(seq, ",grpquota"); 816 #endif 817 818 return 0; 819 } 820 821 static void default_options(struct f2fs_sb_info *sbi) 822 { 823 /* init some FS parameters */ 824 sbi->active_logs = NR_CURSEG_TYPE; 825 826 set_opt(sbi, BG_GC); 827 set_opt(sbi, INLINE_XATTR); 828 set_opt(sbi, INLINE_DATA); 829 set_opt(sbi, INLINE_DENTRY); 830 set_opt(sbi, EXTENT_CACHE); 831 set_opt(sbi, NOHEAP); 832 sbi->sb->s_flags |= MS_LAZYTIME; 833 set_opt(sbi, FLUSH_MERGE); 834 if (f2fs_sb_mounted_blkzoned(sbi->sb)) { 835 set_opt_mode(sbi, F2FS_MOUNT_LFS); 836 set_opt(sbi, DISCARD); 837 } else { 838 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 839 } 840 841 #ifdef CONFIG_F2FS_FS_XATTR 842 set_opt(sbi, XATTR_USER); 843 #endif 844 #ifdef CONFIG_F2FS_FS_POSIX_ACL 845 set_opt(sbi, POSIX_ACL); 846 #endif 847 848 #ifdef CONFIG_F2FS_FAULT_INJECTION 849 f2fs_build_fault_attr(sbi, 0); 850 #endif 851 } 852 853 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 854 { 855 struct f2fs_sb_info *sbi = F2FS_SB(sb); 856 struct f2fs_mount_info org_mount_opt; 857 unsigned long old_sb_flags; 858 int err, active_logs; 859 bool need_restart_gc = false; 860 bool need_stop_gc = false; 861 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 862 #ifdef CONFIG_F2FS_FAULT_INJECTION 863 struct f2fs_fault_info ffi = sbi->fault_info; 864 #endif 865 866 /* 867 * Save the old mount options in case we 868 * need to restore them. 869 */ 870 org_mount_opt = sbi->mount_opt; 871 old_sb_flags = sb->s_flags; 872 active_logs = sbi->active_logs; 873 874 /* recover superblocks we couldn't write due to previous RO mount */ 875 if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 876 err = f2fs_commit_super(sbi, false); 877 f2fs_msg(sb, KERN_INFO, 878 "Try to recover all the superblocks, ret: %d", err); 879 if (!err) 880 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 881 } 882 883 default_options(sbi); 884 885 /* parse mount options */ 886 err = parse_options(sb, data); 887 if (err) 888 goto restore_opts; 889 890 /* 891 * Previous and new state of filesystem is RO, 892 * so skip checking GC and FLUSH_MERGE conditions. 893 */ 894 if (f2fs_readonly(sb) && (*flags & MS_RDONLY)) 895 goto skip; 896 897 if (!f2fs_readonly(sb) && (*flags & MS_RDONLY)) { 898 err = dquot_suspend(sb, -1); 899 if (err < 0) 900 goto restore_opts; 901 } else { 902 /* dquot_resume needs RW */ 903 sb->s_flags &= ~MS_RDONLY; 904 dquot_resume(sb, -1); 905 } 906 907 /* disallow enable/disable extent_cache dynamically */ 908 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 909 err = -EINVAL; 910 f2fs_msg(sbi->sb, KERN_WARNING, 911 "switch extent_cache option is not allowed"); 912 goto restore_opts; 913 } 914 915 /* 916 * We stop the GC thread if FS is mounted as RO 917 * or if background_gc = off is passed in mount 918 * option. Also sync the filesystem. 919 */ 920 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) { 921 if (sbi->gc_thread) { 922 stop_gc_thread(sbi); 923 need_restart_gc = true; 924 } 925 } else if (!sbi->gc_thread) { 926 err = start_gc_thread(sbi); 927 if (err) 928 goto restore_opts; 929 need_stop_gc = true; 930 } 931 932 if (*flags & MS_RDONLY) { 933 writeback_inodes_sb(sb, WB_REASON_SYNC); 934 sync_inodes_sb(sb); 935 936 set_sbi_flag(sbi, SBI_IS_DIRTY); 937 set_sbi_flag(sbi, SBI_IS_CLOSE); 938 f2fs_sync_fs(sb, 1); 939 clear_sbi_flag(sbi, SBI_IS_CLOSE); 940 } 941 942 /* 943 * We stop issue flush thread if FS is mounted as RO 944 * or if flush_merge is not passed in mount option. 945 */ 946 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 947 clear_opt(sbi, FLUSH_MERGE); 948 destroy_flush_cmd_control(sbi, false); 949 } else { 950 err = create_flush_cmd_control(sbi); 951 if (err) 952 goto restore_gc; 953 } 954 skip: 955 /* Update the POSIXACL Flag */ 956 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 957 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 958 959 return 0; 960 restore_gc: 961 if (need_restart_gc) { 962 if (start_gc_thread(sbi)) 963 f2fs_msg(sbi->sb, KERN_WARNING, 964 "background gc thread has stopped"); 965 } else if (need_stop_gc) { 966 stop_gc_thread(sbi); 967 } 968 restore_opts: 969 sbi->mount_opt = org_mount_opt; 970 sbi->active_logs = active_logs; 971 sb->s_flags = old_sb_flags; 972 #ifdef CONFIG_F2FS_FAULT_INJECTION 973 sbi->fault_info = ffi; 974 #endif 975 return err; 976 } 977 978 #ifdef CONFIG_QUOTA 979 /* Read data from quotafile */ 980 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 981 size_t len, loff_t off) 982 { 983 struct inode *inode = sb_dqopt(sb)->files[type]; 984 struct address_space *mapping = inode->i_mapping; 985 block_t blkidx = F2FS_BYTES_TO_BLK(off); 986 int offset = off & (sb->s_blocksize - 1); 987 int tocopy; 988 size_t toread; 989 loff_t i_size = i_size_read(inode); 990 struct page *page; 991 char *kaddr; 992 993 if (off > i_size) 994 return 0; 995 996 if (off + len > i_size) 997 len = i_size - off; 998 toread = len; 999 while (toread > 0) { 1000 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 1001 repeat: 1002 page = read_mapping_page(mapping, blkidx, NULL); 1003 if (IS_ERR(page)) 1004 return PTR_ERR(page); 1005 1006 lock_page(page); 1007 1008 if (unlikely(page->mapping != mapping)) { 1009 f2fs_put_page(page, 1); 1010 goto repeat; 1011 } 1012 if (unlikely(!PageUptodate(page))) { 1013 f2fs_put_page(page, 1); 1014 return -EIO; 1015 } 1016 1017 kaddr = kmap_atomic(page); 1018 memcpy(data, kaddr + offset, tocopy); 1019 kunmap_atomic(kaddr); 1020 f2fs_put_page(page, 1); 1021 1022 offset = 0; 1023 toread -= tocopy; 1024 data += tocopy; 1025 blkidx++; 1026 } 1027 return len; 1028 } 1029 1030 /* Write to quotafile */ 1031 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 1032 const char *data, size_t len, loff_t off) 1033 { 1034 struct inode *inode = sb_dqopt(sb)->files[type]; 1035 struct address_space *mapping = inode->i_mapping; 1036 const struct address_space_operations *a_ops = mapping->a_ops; 1037 int offset = off & (sb->s_blocksize - 1); 1038 size_t towrite = len; 1039 struct page *page; 1040 char *kaddr; 1041 int err = 0; 1042 int tocopy; 1043 1044 while (towrite > 0) { 1045 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 1046 towrite); 1047 1048 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0, 1049 &page, NULL); 1050 if (unlikely(err)) 1051 break; 1052 1053 kaddr = kmap_atomic(page); 1054 memcpy(kaddr + offset, data, tocopy); 1055 kunmap_atomic(kaddr); 1056 flush_dcache_page(page); 1057 1058 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 1059 page, NULL); 1060 offset = 0; 1061 towrite -= tocopy; 1062 off += tocopy; 1063 data += tocopy; 1064 cond_resched(); 1065 } 1066 1067 if (len == towrite) 1068 return err; 1069 inode->i_version++; 1070 inode->i_mtime = inode->i_ctime = current_time(inode); 1071 f2fs_mark_inode_dirty_sync(inode, false); 1072 return len - towrite; 1073 } 1074 1075 static struct dquot **f2fs_get_dquots(struct inode *inode) 1076 { 1077 return F2FS_I(inode)->i_dquot; 1078 } 1079 1080 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 1081 { 1082 return &F2FS_I(inode)->i_reserved_quota; 1083 } 1084 1085 static int f2fs_quota_sync(struct super_block *sb, int type) 1086 { 1087 struct quota_info *dqopt = sb_dqopt(sb); 1088 int cnt; 1089 int ret; 1090 1091 ret = dquot_writeback_dquots(sb, type); 1092 if (ret) 1093 return ret; 1094 1095 /* 1096 * Now when everything is written we can discard the pagecache so 1097 * that userspace sees the changes. 1098 */ 1099 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 1100 if (type != -1 && cnt != type) 1101 continue; 1102 if (!sb_has_quota_active(sb, cnt)) 1103 continue; 1104 1105 ret = filemap_write_and_wait(dqopt->files[cnt]->i_mapping); 1106 if (ret) 1107 return ret; 1108 1109 inode_lock(dqopt->files[cnt]); 1110 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0); 1111 inode_unlock(dqopt->files[cnt]); 1112 } 1113 return 0; 1114 } 1115 1116 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 1117 const struct path *path) 1118 { 1119 struct inode *inode; 1120 int err; 1121 1122 err = f2fs_quota_sync(sb, -1); 1123 if (err) 1124 return err; 1125 1126 err = dquot_quota_on(sb, type, format_id, path); 1127 if (err) 1128 return err; 1129 1130 inode = d_inode(path->dentry); 1131 1132 inode_lock(inode); 1133 F2FS_I(inode)->i_flags |= FS_NOATIME_FL | FS_IMMUTABLE_FL; 1134 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE, 1135 S_NOATIME | S_IMMUTABLE); 1136 inode_unlock(inode); 1137 f2fs_mark_inode_dirty_sync(inode, false); 1138 1139 return 0; 1140 } 1141 1142 static int f2fs_quota_off(struct super_block *sb, int type) 1143 { 1144 struct inode *inode = sb_dqopt(sb)->files[type]; 1145 int err; 1146 1147 if (!inode || !igrab(inode)) 1148 return dquot_quota_off(sb, type); 1149 1150 f2fs_quota_sync(sb, -1); 1151 1152 err = dquot_quota_off(sb, type); 1153 if (err) 1154 goto out_put; 1155 1156 inode_lock(inode); 1157 F2FS_I(inode)->i_flags &= ~(FS_NOATIME_FL | FS_IMMUTABLE_FL); 1158 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE); 1159 inode_unlock(inode); 1160 f2fs_mark_inode_dirty_sync(inode, false); 1161 out_put: 1162 iput(inode); 1163 return err; 1164 } 1165 1166 static void f2fs_quota_off_umount(struct super_block *sb) 1167 { 1168 int type; 1169 1170 for (type = 0; type < MAXQUOTAS; type++) 1171 f2fs_quota_off(sb, type); 1172 } 1173 1174 static const struct dquot_operations f2fs_quota_operations = { 1175 .get_reserved_space = f2fs_get_reserved_space, 1176 .write_dquot = dquot_commit, 1177 .acquire_dquot = dquot_acquire, 1178 .release_dquot = dquot_release, 1179 .mark_dirty = dquot_mark_dquot_dirty, 1180 .write_info = dquot_commit_info, 1181 .alloc_dquot = dquot_alloc, 1182 .destroy_dquot = dquot_destroy, 1183 .get_next_id = dquot_get_next_id, 1184 }; 1185 1186 static const struct quotactl_ops f2fs_quotactl_ops = { 1187 .quota_on = f2fs_quota_on, 1188 .quota_off = f2fs_quota_off, 1189 .quota_sync = f2fs_quota_sync, 1190 .get_state = dquot_get_state, 1191 .set_info = dquot_set_dqinfo, 1192 .get_dqblk = dquot_get_dqblk, 1193 .set_dqblk = dquot_set_dqblk, 1194 .get_nextdqblk = dquot_get_next_dqblk, 1195 }; 1196 #else 1197 static inline void f2fs_quota_off_umount(struct super_block *sb) 1198 { 1199 } 1200 #endif 1201 1202 static struct super_operations f2fs_sops = { 1203 .alloc_inode = f2fs_alloc_inode, 1204 .drop_inode = f2fs_drop_inode, 1205 .destroy_inode = f2fs_destroy_inode, 1206 .write_inode = f2fs_write_inode, 1207 .dirty_inode = f2fs_dirty_inode, 1208 .show_options = f2fs_show_options, 1209 #ifdef CONFIG_QUOTA 1210 .quota_read = f2fs_quota_read, 1211 .quota_write = f2fs_quota_write, 1212 .get_dquots = f2fs_get_dquots, 1213 #endif 1214 .evict_inode = f2fs_evict_inode, 1215 .put_super = f2fs_put_super, 1216 .sync_fs = f2fs_sync_fs, 1217 .freeze_fs = f2fs_freeze, 1218 .unfreeze_fs = f2fs_unfreeze, 1219 .statfs = f2fs_statfs, 1220 .remount_fs = f2fs_remount, 1221 }; 1222 1223 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1224 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 1225 { 1226 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 1227 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 1228 ctx, len, NULL); 1229 } 1230 1231 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 1232 void *fs_data) 1233 { 1234 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 1235 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 1236 ctx, len, fs_data, XATTR_CREATE); 1237 } 1238 1239 static unsigned f2fs_max_namelen(struct inode *inode) 1240 { 1241 return S_ISLNK(inode->i_mode) ? 1242 inode->i_sb->s_blocksize : F2FS_NAME_LEN; 1243 } 1244 1245 static const struct fscrypt_operations f2fs_cryptops = { 1246 .key_prefix = "f2fs:", 1247 .get_context = f2fs_get_context, 1248 .set_context = f2fs_set_context, 1249 .is_encrypted = f2fs_encrypted_inode, 1250 .empty_dir = f2fs_empty_dir, 1251 .max_namelen = f2fs_max_namelen, 1252 }; 1253 #else 1254 static const struct fscrypt_operations f2fs_cryptops = { 1255 .is_encrypted = f2fs_encrypted_inode, 1256 }; 1257 #endif 1258 1259 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 1260 u64 ino, u32 generation) 1261 { 1262 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1263 struct inode *inode; 1264 1265 if (check_nid_range(sbi, ino)) 1266 return ERR_PTR(-ESTALE); 1267 1268 /* 1269 * f2fs_iget isn't quite right if the inode is currently unallocated! 1270 * However f2fs_iget currently does appropriate checks to handle stale 1271 * inodes so everything is OK. 1272 */ 1273 inode = f2fs_iget(sb, ino); 1274 if (IS_ERR(inode)) 1275 return ERR_CAST(inode); 1276 if (unlikely(generation && inode->i_generation != generation)) { 1277 /* we didn't find the right inode.. */ 1278 iput(inode); 1279 return ERR_PTR(-ESTALE); 1280 } 1281 return inode; 1282 } 1283 1284 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1285 int fh_len, int fh_type) 1286 { 1287 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1288 f2fs_nfs_get_inode); 1289 } 1290 1291 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 1292 int fh_len, int fh_type) 1293 { 1294 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1295 f2fs_nfs_get_inode); 1296 } 1297 1298 static const struct export_operations f2fs_export_ops = { 1299 .fh_to_dentry = f2fs_fh_to_dentry, 1300 .fh_to_parent = f2fs_fh_to_parent, 1301 .get_parent = f2fs_get_parent, 1302 }; 1303 1304 static loff_t max_file_blocks(void) 1305 { 1306 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS); 1307 loff_t leaf_count = ADDRS_PER_BLOCK; 1308 1309 /* two direct node blocks */ 1310 result += (leaf_count * 2); 1311 1312 /* two indirect node blocks */ 1313 leaf_count *= NIDS_PER_BLOCK; 1314 result += (leaf_count * 2); 1315 1316 /* one double indirect node block */ 1317 leaf_count *= NIDS_PER_BLOCK; 1318 result += leaf_count; 1319 1320 return result; 1321 } 1322 1323 static int __f2fs_commit_super(struct buffer_head *bh, 1324 struct f2fs_super_block *super) 1325 { 1326 lock_buffer(bh); 1327 if (super) 1328 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 1329 set_buffer_uptodate(bh); 1330 set_buffer_dirty(bh); 1331 unlock_buffer(bh); 1332 1333 /* it's rare case, we can do fua all the time */ 1334 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 1335 } 1336 1337 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 1338 struct buffer_head *bh) 1339 { 1340 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 1341 (bh->b_data + F2FS_SUPER_OFFSET); 1342 struct super_block *sb = sbi->sb; 1343 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 1344 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 1345 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 1346 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 1347 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 1348 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 1349 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 1350 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 1351 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 1352 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 1353 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 1354 u32 segment_count = le32_to_cpu(raw_super->segment_count); 1355 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 1356 u64 main_end_blkaddr = main_blkaddr + 1357 (segment_count_main << log_blocks_per_seg); 1358 u64 seg_end_blkaddr = segment0_blkaddr + 1359 (segment_count << log_blocks_per_seg); 1360 1361 if (segment0_blkaddr != cp_blkaddr) { 1362 f2fs_msg(sb, KERN_INFO, 1363 "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 1364 segment0_blkaddr, cp_blkaddr); 1365 return true; 1366 } 1367 1368 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 1369 sit_blkaddr) { 1370 f2fs_msg(sb, KERN_INFO, 1371 "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 1372 cp_blkaddr, sit_blkaddr, 1373 segment_count_ckpt << log_blocks_per_seg); 1374 return true; 1375 } 1376 1377 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 1378 nat_blkaddr) { 1379 f2fs_msg(sb, KERN_INFO, 1380 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 1381 sit_blkaddr, nat_blkaddr, 1382 segment_count_sit << log_blocks_per_seg); 1383 return true; 1384 } 1385 1386 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 1387 ssa_blkaddr) { 1388 f2fs_msg(sb, KERN_INFO, 1389 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 1390 nat_blkaddr, ssa_blkaddr, 1391 segment_count_nat << log_blocks_per_seg); 1392 return true; 1393 } 1394 1395 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 1396 main_blkaddr) { 1397 f2fs_msg(sb, KERN_INFO, 1398 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 1399 ssa_blkaddr, main_blkaddr, 1400 segment_count_ssa << log_blocks_per_seg); 1401 return true; 1402 } 1403 1404 if (main_end_blkaddr > seg_end_blkaddr) { 1405 f2fs_msg(sb, KERN_INFO, 1406 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)", 1407 main_blkaddr, 1408 segment0_blkaddr + 1409 (segment_count << log_blocks_per_seg), 1410 segment_count_main << log_blocks_per_seg); 1411 return true; 1412 } else if (main_end_blkaddr < seg_end_blkaddr) { 1413 int err = 0; 1414 char *res; 1415 1416 /* fix in-memory information all the time */ 1417 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 1418 segment0_blkaddr) >> log_blocks_per_seg); 1419 1420 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 1421 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1422 res = "internally"; 1423 } else { 1424 err = __f2fs_commit_super(bh, NULL); 1425 res = err ? "failed" : "done"; 1426 } 1427 f2fs_msg(sb, KERN_INFO, 1428 "Fix alignment : %s, start(%u) end(%u) block(%u)", 1429 res, main_blkaddr, 1430 segment0_blkaddr + 1431 (segment_count << log_blocks_per_seg), 1432 segment_count_main << log_blocks_per_seg); 1433 if (err) 1434 return true; 1435 } 1436 return false; 1437 } 1438 1439 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 1440 struct buffer_head *bh) 1441 { 1442 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 1443 (bh->b_data + F2FS_SUPER_OFFSET); 1444 struct super_block *sb = sbi->sb; 1445 unsigned int blocksize; 1446 1447 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { 1448 f2fs_msg(sb, KERN_INFO, 1449 "Magic Mismatch, valid(0x%x) - read(0x%x)", 1450 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 1451 return 1; 1452 } 1453 1454 /* Currently, support only 4KB page cache size */ 1455 if (F2FS_BLKSIZE != PAGE_SIZE) { 1456 f2fs_msg(sb, KERN_INFO, 1457 "Invalid page_cache_size (%lu), supports only 4KB\n", 1458 PAGE_SIZE); 1459 return 1; 1460 } 1461 1462 /* Currently, support only 4KB block size */ 1463 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 1464 if (blocksize != F2FS_BLKSIZE) { 1465 f2fs_msg(sb, KERN_INFO, 1466 "Invalid blocksize (%u), supports only 4KB\n", 1467 blocksize); 1468 return 1; 1469 } 1470 1471 /* check log blocks per segment */ 1472 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 1473 f2fs_msg(sb, KERN_INFO, 1474 "Invalid log blocks per segment (%u)\n", 1475 le32_to_cpu(raw_super->log_blocks_per_seg)); 1476 return 1; 1477 } 1478 1479 /* Currently, support 512/1024/2048/4096 bytes sector size */ 1480 if (le32_to_cpu(raw_super->log_sectorsize) > 1481 F2FS_MAX_LOG_SECTOR_SIZE || 1482 le32_to_cpu(raw_super->log_sectorsize) < 1483 F2FS_MIN_LOG_SECTOR_SIZE) { 1484 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)", 1485 le32_to_cpu(raw_super->log_sectorsize)); 1486 return 1; 1487 } 1488 if (le32_to_cpu(raw_super->log_sectors_per_block) + 1489 le32_to_cpu(raw_super->log_sectorsize) != 1490 F2FS_MAX_LOG_SECTOR_SIZE) { 1491 f2fs_msg(sb, KERN_INFO, 1492 "Invalid log sectors per block(%u) log sectorsize(%u)", 1493 le32_to_cpu(raw_super->log_sectors_per_block), 1494 le32_to_cpu(raw_super->log_sectorsize)); 1495 return 1; 1496 } 1497 1498 /* check reserved ino info */ 1499 if (le32_to_cpu(raw_super->node_ino) != 1 || 1500 le32_to_cpu(raw_super->meta_ino) != 2 || 1501 le32_to_cpu(raw_super->root_ino) != 3) { 1502 f2fs_msg(sb, KERN_INFO, 1503 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 1504 le32_to_cpu(raw_super->node_ino), 1505 le32_to_cpu(raw_super->meta_ino), 1506 le32_to_cpu(raw_super->root_ino)); 1507 return 1; 1508 } 1509 1510 if (le32_to_cpu(raw_super->segment_count) > F2FS_MAX_SEGMENT) { 1511 f2fs_msg(sb, KERN_INFO, 1512 "Invalid segment count (%u)", 1513 le32_to_cpu(raw_super->segment_count)); 1514 return 1; 1515 } 1516 1517 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 1518 if (sanity_check_area_boundary(sbi, bh)) 1519 return 1; 1520 1521 return 0; 1522 } 1523 1524 int sanity_check_ckpt(struct f2fs_sb_info *sbi) 1525 { 1526 unsigned int total, fsmeta; 1527 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1528 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1529 unsigned int ovp_segments, reserved_segments; 1530 unsigned int main_segs, blocks_per_seg; 1531 int i; 1532 1533 total = le32_to_cpu(raw_super->segment_count); 1534 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 1535 fsmeta += le32_to_cpu(raw_super->segment_count_sit); 1536 fsmeta += le32_to_cpu(raw_super->segment_count_nat); 1537 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 1538 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 1539 1540 if (unlikely(fsmeta >= total)) 1541 return 1; 1542 1543 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 1544 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 1545 1546 if (unlikely(fsmeta < F2FS_MIN_SEGMENTS || 1547 ovp_segments == 0 || reserved_segments == 0)) { 1548 f2fs_msg(sbi->sb, KERN_ERR, 1549 "Wrong layout: check mkfs.f2fs version"); 1550 return 1; 1551 } 1552 1553 main_segs = le32_to_cpu(raw_super->segment_count_main); 1554 blocks_per_seg = sbi->blocks_per_seg; 1555 1556 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 1557 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 1558 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 1559 return 1; 1560 } 1561 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 1562 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 1563 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 1564 return 1; 1565 } 1566 1567 if (unlikely(f2fs_cp_error(sbi))) { 1568 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); 1569 return 1; 1570 } 1571 return 0; 1572 } 1573 1574 static void init_sb_info(struct f2fs_sb_info *sbi) 1575 { 1576 struct f2fs_super_block *raw_super = sbi->raw_super; 1577 int i, j; 1578 1579 sbi->log_sectors_per_block = 1580 le32_to_cpu(raw_super->log_sectors_per_block); 1581 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 1582 sbi->blocksize = 1 << sbi->log_blocksize; 1583 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 1584 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 1585 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 1586 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 1587 sbi->total_sections = le32_to_cpu(raw_super->section_count); 1588 sbi->total_node_count = 1589 (le32_to_cpu(raw_super->segment_count_nat) / 2) 1590 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 1591 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 1592 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 1593 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 1594 sbi->cur_victim_sec = NULL_SECNO; 1595 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 1596 1597 sbi->dir_level = DEF_DIR_LEVEL; 1598 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 1599 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 1600 clear_sbi_flag(sbi, SBI_NEED_FSCK); 1601 1602 for (i = 0; i < NR_COUNT_TYPE; i++) 1603 atomic_set(&sbi->nr_pages[i], 0); 1604 1605 atomic_set(&sbi->wb_sync_req, 0); 1606 1607 INIT_LIST_HEAD(&sbi->s_list); 1608 mutex_init(&sbi->umount_mutex); 1609 for (i = 0; i < NR_PAGE_TYPE - 1; i++) 1610 for (j = HOT; j < NR_TEMP_TYPE; j++) 1611 mutex_init(&sbi->wio_mutex[i][j]); 1612 spin_lock_init(&sbi->cp_lock); 1613 } 1614 1615 static int init_percpu_info(struct f2fs_sb_info *sbi) 1616 { 1617 int err; 1618 1619 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 1620 if (err) 1621 return err; 1622 1623 return percpu_counter_init(&sbi->total_valid_inode_count, 0, 1624 GFP_KERNEL); 1625 } 1626 1627 #ifdef CONFIG_BLK_DEV_ZONED 1628 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 1629 { 1630 struct block_device *bdev = FDEV(devi).bdev; 1631 sector_t nr_sectors = bdev->bd_part->nr_sects; 1632 sector_t sector = 0; 1633 struct blk_zone *zones; 1634 unsigned int i, nr_zones; 1635 unsigned int n = 0; 1636 int err = -EIO; 1637 1638 if (!f2fs_sb_mounted_blkzoned(sbi->sb)) 1639 return 0; 1640 1641 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 1642 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev))) 1643 return -EINVAL; 1644 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)); 1645 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz != 1646 __ilog2_u32(sbi->blocks_per_blkz)) 1647 return -EINVAL; 1648 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz); 1649 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >> 1650 sbi->log_blocks_per_blkz; 1651 if (nr_sectors & (bdev_zone_sectors(bdev) - 1)) 1652 FDEV(devi).nr_blkz++; 1653 1654 FDEV(devi).blkz_type = kmalloc(FDEV(devi).nr_blkz, GFP_KERNEL); 1655 if (!FDEV(devi).blkz_type) 1656 return -ENOMEM; 1657 1658 #define F2FS_REPORT_NR_ZONES 4096 1659 1660 zones = kcalloc(F2FS_REPORT_NR_ZONES, sizeof(struct blk_zone), 1661 GFP_KERNEL); 1662 if (!zones) 1663 return -ENOMEM; 1664 1665 /* Get block zones type */ 1666 while (zones && sector < nr_sectors) { 1667 1668 nr_zones = F2FS_REPORT_NR_ZONES; 1669 err = blkdev_report_zones(bdev, sector, 1670 zones, &nr_zones, 1671 GFP_KERNEL); 1672 if (err) 1673 break; 1674 if (!nr_zones) { 1675 err = -EIO; 1676 break; 1677 } 1678 1679 for (i = 0; i < nr_zones; i++) { 1680 FDEV(devi).blkz_type[n] = zones[i].type; 1681 sector += zones[i].len; 1682 n++; 1683 } 1684 } 1685 1686 kfree(zones); 1687 1688 return err; 1689 } 1690 #endif 1691 1692 /* 1693 * Read f2fs raw super block. 1694 * Because we have two copies of super block, so read both of them 1695 * to get the first valid one. If any one of them is broken, we pass 1696 * them recovery flag back to the caller. 1697 */ 1698 static int read_raw_super_block(struct f2fs_sb_info *sbi, 1699 struct f2fs_super_block **raw_super, 1700 int *valid_super_block, int *recovery) 1701 { 1702 struct super_block *sb = sbi->sb; 1703 int block; 1704 struct buffer_head *bh; 1705 struct f2fs_super_block *super; 1706 int err = 0; 1707 1708 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 1709 if (!super) 1710 return -ENOMEM; 1711 1712 for (block = 0; block < 2; block++) { 1713 bh = sb_bread(sb, block); 1714 if (!bh) { 1715 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock", 1716 block + 1); 1717 err = -EIO; 1718 continue; 1719 } 1720 1721 /* sanity checking of raw super */ 1722 if (sanity_check_raw_super(sbi, bh)) { 1723 f2fs_msg(sb, KERN_ERR, 1724 "Can't find valid F2FS filesystem in %dth superblock", 1725 block + 1); 1726 err = -EINVAL; 1727 brelse(bh); 1728 continue; 1729 } 1730 1731 if (!*raw_super) { 1732 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 1733 sizeof(*super)); 1734 *valid_super_block = block; 1735 *raw_super = super; 1736 } 1737 brelse(bh); 1738 } 1739 1740 /* Fail to read any one of the superblocks*/ 1741 if (err < 0) 1742 *recovery = 1; 1743 1744 /* No valid superblock */ 1745 if (!*raw_super) 1746 kfree(super); 1747 else 1748 err = 0; 1749 1750 return err; 1751 } 1752 1753 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 1754 { 1755 struct buffer_head *bh; 1756 int err; 1757 1758 if ((recover && f2fs_readonly(sbi->sb)) || 1759 bdev_read_only(sbi->sb->s_bdev)) { 1760 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1761 return -EROFS; 1762 } 1763 1764 /* write back-up superblock first */ 1765 bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1); 1766 if (!bh) 1767 return -EIO; 1768 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 1769 brelse(bh); 1770 1771 /* if we are in recovery path, skip writing valid superblock */ 1772 if (recover || err) 1773 return err; 1774 1775 /* write current valid superblock */ 1776 bh = sb_getblk(sbi->sb, sbi->valid_super_block); 1777 if (!bh) 1778 return -EIO; 1779 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 1780 brelse(bh); 1781 return err; 1782 } 1783 1784 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 1785 { 1786 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1787 unsigned int max_devices = MAX_DEVICES; 1788 int i; 1789 1790 /* Initialize single device information */ 1791 if (!RDEV(0).path[0]) { 1792 if (!bdev_is_zoned(sbi->sb->s_bdev)) 1793 return 0; 1794 max_devices = 1; 1795 } 1796 1797 /* 1798 * Initialize multiple devices information, or single 1799 * zoned block device information. 1800 */ 1801 sbi->devs = kcalloc(max_devices, sizeof(struct f2fs_dev_info), 1802 GFP_KERNEL); 1803 if (!sbi->devs) 1804 return -ENOMEM; 1805 1806 for (i = 0; i < max_devices; i++) { 1807 1808 if (i > 0 && !RDEV(i).path[0]) 1809 break; 1810 1811 if (max_devices == 1) { 1812 /* Single zoned block device mount */ 1813 FDEV(0).bdev = 1814 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev, 1815 sbi->sb->s_mode, sbi->sb->s_type); 1816 } else { 1817 /* Multi-device mount */ 1818 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 1819 FDEV(i).total_segments = 1820 le32_to_cpu(RDEV(i).total_segments); 1821 if (i == 0) { 1822 FDEV(i).start_blk = 0; 1823 FDEV(i).end_blk = FDEV(i).start_blk + 1824 (FDEV(i).total_segments << 1825 sbi->log_blocks_per_seg) - 1 + 1826 le32_to_cpu(raw_super->segment0_blkaddr); 1827 } else { 1828 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 1829 FDEV(i).end_blk = FDEV(i).start_blk + 1830 (FDEV(i).total_segments << 1831 sbi->log_blocks_per_seg) - 1; 1832 } 1833 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 1834 sbi->sb->s_mode, sbi->sb->s_type); 1835 } 1836 if (IS_ERR(FDEV(i).bdev)) 1837 return PTR_ERR(FDEV(i).bdev); 1838 1839 /* to release errored devices */ 1840 sbi->s_ndevs = i + 1; 1841 1842 #ifdef CONFIG_BLK_DEV_ZONED 1843 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 1844 !f2fs_sb_mounted_blkzoned(sbi->sb)) { 1845 f2fs_msg(sbi->sb, KERN_ERR, 1846 "Zoned block device feature not enabled\n"); 1847 return -EINVAL; 1848 } 1849 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 1850 if (init_blkz_info(sbi, i)) { 1851 f2fs_msg(sbi->sb, KERN_ERR, 1852 "Failed to initialize F2FS blkzone information"); 1853 return -EINVAL; 1854 } 1855 if (max_devices == 1) 1856 break; 1857 f2fs_msg(sbi->sb, KERN_INFO, 1858 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 1859 i, FDEV(i).path, 1860 FDEV(i).total_segments, 1861 FDEV(i).start_blk, FDEV(i).end_blk, 1862 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 1863 "Host-aware" : "Host-managed"); 1864 continue; 1865 } 1866 #endif 1867 f2fs_msg(sbi->sb, KERN_INFO, 1868 "Mount Device [%2d]: %20s, %8u, %8x - %8x", 1869 i, FDEV(i).path, 1870 FDEV(i).total_segments, 1871 FDEV(i).start_blk, FDEV(i).end_blk); 1872 } 1873 f2fs_msg(sbi->sb, KERN_INFO, 1874 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi)); 1875 return 0; 1876 } 1877 1878 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 1879 { 1880 struct f2fs_sb_info *sbi; 1881 struct f2fs_super_block *raw_super; 1882 struct inode *root; 1883 int err; 1884 bool retry = true, need_fsck = false; 1885 char *options = NULL; 1886 int recovery, i, valid_super_block; 1887 struct curseg_info *seg_i; 1888 1889 try_onemore: 1890 err = -EINVAL; 1891 raw_super = NULL; 1892 valid_super_block = -1; 1893 recovery = 0; 1894 1895 /* allocate memory for f2fs-specific super block info */ 1896 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 1897 if (!sbi) 1898 return -ENOMEM; 1899 1900 sbi->sb = sb; 1901 1902 /* Load the checksum driver */ 1903 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 1904 if (IS_ERR(sbi->s_chksum_driver)) { 1905 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver."); 1906 err = PTR_ERR(sbi->s_chksum_driver); 1907 sbi->s_chksum_driver = NULL; 1908 goto free_sbi; 1909 } 1910 1911 /* set a block size */ 1912 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 1913 f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); 1914 goto free_sbi; 1915 } 1916 1917 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 1918 &recovery); 1919 if (err) 1920 goto free_sbi; 1921 1922 sb->s_fs_info = sbi; 1923 sbi->raw_super = raw_super; 1924 1925 /* 1926 * The BLKZONED feature indicates that the drive was formatted with 1927 * zone alignment optimization. This is optional for host-aware 1928 * devices, but mandatory for host-managed zoned block devices. 1929 */ 1930 #ifndef CONFIG_BLK_DEV_ZONED 1931 if (f2fs_sb_mounted_blkzoned(sb)) { 1932 f2fs_msg(sb, KERN_ERR, 1933 "Zoned block device support is not enabled\n"); 1934 err = -EOPNOTSUPP; 1935 goto free_sb_buf; 1936 } 1937 #endif 1938 default_options(sbi); 1939 /* parse mount options */ 1940 options = kstrdup((const char *)data, GFP_KERNEL); 1941 if (data && !options) { 1942 err = -ENOMEM; 1943 goto free_sb_buf; 1944 } 1945 1946 err = parse_options(sb, options); 1947 if (err) 1948 goto free_options; 1949 1950 sbi->max_file_blocks = max_file_blocks(); 1951 sb->s_maxbytes = sbi->max_file_blocks << 1952 le32_to_cpu(raw_super->log_blocksize); 1953 sb->s_max_links = F2FS_LINK_MAX; 1954 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 1955 1956 #ifdef CONFIG_QUOTA 1957 sb->dq_op = &f2fs_quota_operations; 1958 sb->s_qcop = &f2fs_quotactl_ops; 1959 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP; 1960 #endif 1961 1962 sb->s_op = &f2fs_sops; 1963 sb->s_cop = &f2fs_cryptops; 1964 sb->s_xattr = f2fs_xattr_handlers; 1965 sb->s_export_op = &f2fs_export_ops; 1966 sb->s_magic = F2FS_SUPER_MAGIC; 1967 sb->s_time_gran = 1; 1968 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 1969 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 1970 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 1971 1972 /* init f2fs-specific super block info */ 1973 sbi->valid_super_block = valid_super_block; 1974 mutex_init(&sbi->gc_mutex); 1975 mutex_init(&sbi->cp_mutex); 1976 init_rwsem(&sbi->node_write); 1977 init_rwsem(&sbi->node_change); 1978 1979 /* disallow all the data/node/meta page writes */ 1980 set_sbi_flag(sbi, SBI_POR_DOING); 1981 spin_lock_init(&sbi->stat_lock); 1982 1983 for (i = 0; i < NR_PAGE_TYPE; i++) { 1984 int n = (i == META) ? 1: NR_TEMP_TYPE; 1985 int j; 1986 1987 sbi->write_io[i] = kmalloc(n * sizeof(struct f2fs_bio_info), 1988 GFP_KERNEL); 1989 if (!sbi->write_io[i]) { 1990 err = -ENOMEM; 1991 goto free_options; 1992 } 1993 1994 for (j = HOT; j < n; j++) { 1995 init_rwsem(&sbi->write_io[i][j].io_rwsem); 1996 sbi->write_io[i][j].sbi = sbi; 1997 sbi->write_io[i][j].bio = NULL; 1998 spin_lock_init(&sbi->write_io[i][j].io_lock); 1999 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 2000 } 2001 } 2002 2003 init_rwsem(&sbi->cp_rwsem); 2004 init_waitqueue_head(&sbi->cp_wait); 2005 init_sb_info(sbi); 2006 2007 err = init_percpu_info(sbi); 2008 if (err) 2009 goto free_options; 2010 2011 if (F2FS_IO_SIZE(sbi) > 1) { 2012 sbi->write_io_dummy = 2013 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); 2014 if (!sbi->write_io_dummy) { 2015 err = -ENOMEM; 2016 goto free_options; 2017 } 2018 } 2019 2020 /* get an inode for meta space */ 2021 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 2022 if (IS_ERR(sbi->meta_inode)) { 2023 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); 2024 err = PTR_ERR(sbi->meta_inode); 2025 goto free_io_dummy; 2026 } 2027 2028 err = get_valid_checkpoint(sbi); 2029 if (err) { 2030 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); 2031 goto free_meta_inode; 2032 } 2033 2034 /* Initialize device list */ 2035 err = f2fs_scan_devices(sbi); 2036 if (err) { 2037 f2fs_msg(sb, KERN_ERR, "Failed to find devices"); 2038 goto free_devices; 2039 } 2040 2041 sbi->total_valid_node_count = 2042 le32_to_cpu(sbi->ckpt->valid_node_count); 2043 percpu_counter_set(&sbi->total_valid_inode_count, 2044 le32_to_cpu(sbi->ckpt->valid_inode_count)); 2045 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 2046 sbi->total_valid_block_count = 2047 le64_to_cpu(sbi->ckpt->valid_block_count); 2048 sbi->last_valid_block_count = sbi->total_valid_block_count; 2049 sbi->reserved_blocks = 0; 2050 2051 for (i = 0; i < NR_INODE_TYPE; i++) { 2052 INIT_LIST_HEAD(&sbi->inode_list[i]); 2053 spin_lock_init(&sbi->inode_lock[i]); 2054 } 2055 2056 init_extent_cache_info(sbi); 2057 2058 init_ino_entry_info(sbi); 2059 2060 /* setup f2fs internal modules */ 2061 err = build_segment_manager(sbi); 2062 if (err) { 2063 f2fs_msg(sb, KERN_ERR, 2064 "Failed to initialize F2FS segment manager"); 2065 goto free_sm; 2066 } 2067 err = build_node_manager(sbi); 2068 if (err) { 2069 f2fs_msg(sb, KERN_ERR, 2070 "Failed to initialize F2FS node manager"); 2071 goto free_nm; 2072 } 2073 2074 /* For write statistics */ 2075 if (sb->s_bdev->bd_part) 2076 sbi->sectors_written_start = 2077 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]); 2078 2079 /* Read accumulated write IO statistics if exists */ 2080 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 2081 if (__exist_node_summaries(sbi)) 2082 sbi->kbytes_written = 2083 le64_to_cpu(seg_i->journal->info.kbytes_written); 2084 2085 build_gc_manager(sbi); 2086 2087 /* get an inode for node space */ 2088 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 2089 if (IS_ERR(sbi->node_inode)) { 2090 f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); 2091 err = PTR_ERR(sbi->node_inode); 2092 goto free_nm; 2093 } 2094 2095 f2fs_join_shrinker(sbi); 2096 2097 err = f2fs_build_stats(sbi); 2098 if (err) 2099 goto free_nm; 2100 2101 /* if there are nt orphan nodes free them */ 2102 err = recover_orphan_inodes(sbi); 2103 if (err) 2104 goto free_node_inode; 2105 2106 /* read root inode and dentry */ 2107 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 2108 if (IS_ERR(root)) { 2109 f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); 2110 err = PTR_ERR(root); 2111 goto free_node_inode; 2112 } 2113 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 2114 iput(root); 2115 err = -EINVAL; 2116 goto free_node_inode; 2117 } 2118 2119 sb->s_root = d_make_root(root); /* allocate root dentry */ 2120 if (!sb->s_root) { 2121 err = -ENOMEM; 2122 goto free_root_inode; 2123 } 2124 2125 err = f2fs_init_sysfs(sbi); 2126 if (err) 2127 goto free_root_inode; 2128 2129 /* recover fsynced data */ 2130 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 2131 /* 2132 * mount should be failed, when device has readonly mode, and 2133 * previous checkpoint was not done by clean system shutdown. 2134 */ 2135 if (bdev_read_only(sb->s_bdev) && 2136 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 2137 err = -EROFS; 2138 goto free_sysfs; 2139 } 2140 2141 if (need_fsck) 2142 set_sbi_flag(sbi, SBI_NEED_FSCK); 2143 2144 if (!retry) 2145 goto skip_recovery; 2146 2147 err = recover_fsync_data(sbi, false); 2148 if (err < 0) { 2149 need_fsck = true; 2150 f2fs_msg(sb, KERN_ERR, 2151 "Cannot recover all fsync data errno=%d", err); 2152 goto free_sysfs; 2153 } 2154 } else { 2155 err = recover_fsync_data(sbi, true); 2156 2157 if (!f2fs_readonly(sb) && err > 0) { 2158 err = -EINVAL; 2159 f2fs_msg(sb, KERN_ERR, 2160 "Need to recover fsync data"); 2161 goto free_sysfs; 2162 } 2163 } 2164 skip_recovery: 2165 /* recover_fsync_data() cleared this already */ 2166 clear_sbi_flag(sbi, SBI_POR_DOING); 2167 2168 /* 2169 * If filesystem is not mounted as read-only then 2170 * do start the gc_thread. 2171 */ 2172 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) { 2173 /* After POR, we can run background GC thread.*/ 2174 err = start_gc_thread(sbi); 2175 if (err) 2176 goto free_sysfs; 2177 } 2178 kfree(options); 2179 2180 /* recover broken superblock */ 2181 if (recovery) { 2182 err = f2fs_commit_super(sbi, true); 2183 f2fs_msg(sb, KERN_INFO, 2184 "Try to recover %dth superblock, ret: %d", 2185 sbi->valid_super_block ? 1 : 2, err); 2186 } 2187 2188 f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx", 2189 cur_cp_version(F2FS_CKPT(sbi))); 2190 f2fs_update_time(sbi, CP_TIME); 2191 f2fs_update_time(sbi, REQ_TIME); 2192 return 0; 2193 2194 free_sysfs: 2195 f2fs_sync_inode_meta(sbi); 2196 f2fs_exit_sysfs(sbi); 2197 free_root_inode: 2198 dput(sb->s_root); 2199 sb->s_root = NULL; 2200 free_node_inode: 2201 truncate_inode_pages_final(NODE_MAPPING(sbi)); 2202 mutex_lock(&sbi->umount_mutex); 2203 release_ino_entry(sbi, true); 2204 f2fs_leave_shrinker(sbi); 2205 /* 2206 * Some dirty meta pages can be produced by recover_orphan_inodes() 2207 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 2208 * followed by write_checkpoint() through f2fs_write_node_pages(), which 2209 * falls into an infinite loop in sync_meta_pages(). 2210 */ 2211 truncate_inode_pages_final(META_MAPPING(sbi)); 2212 iput(sbi->node_inode); 2213 mutex_unlock(&sbi->umount_mutex); 2214 f2fs_destroy_stats(sbi); 2215 free_nm: 2216 destroy_node_manager(sbi); 2217 free_sm: 2218 destroy_segment_manager(sbi); 2219 free_devices: 2220 destroy_device_list(sbi); 2221 kfree(sbi->ckpt); 2222 free_meta_inode: 2223 make_bad_inode(sbi->meta_inode); 2224 iput(sbi->meta_inode); 2225 free_io_dummy: 2226 mempool_destroy(sbi->write_io_dummy); 2227 free_options: 2228 for (i = 0; i < NR_PAGE_TYPE; i++) 2229 kfree(sbi->write_io[i]); 2230 destroy_percpu_info(sbi); 2231 kfree(options); 2232 free_sb_buf: 2233 kfree(raw_super); 2234 free_sbi: 2235 if (sbi->s_chksum_driver) 2236 crypto_free_shash(sbi->s_chksum_driver); 2237 kfree(sbi); 2238 2239 /* give only one another chance */ 2240 if (retry) { 2241 retry = false; 2242 shrink_dcache_sb(sb); 2243 goto try_onemore; 2244 } 2245 return err; 2246 } 2247 2248 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 2249 const char *dev_name, void *data) 2250 { 2251 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 2252 } 2253 2254 static void kill_f2fs_super(struct super_block *sb) 2255 { 2256 if (sb->s_root) { 2257 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE); 2258 stop_gc_thread(F2FS_SB(sb)); 2259 stop_discard_thread(F2FS_SB(sb)); 2260 } 2261 kill_block_super(sb); 2262 } 2263 2264 static struct file_system_type f2fs_fs_type = { 2265 .owner = THIS_MODULE, 2266 .name = "f2fs", 2267 .mount = f2fs_mount, 2268 .kill_sb = kill_f2fs_super, 2269 .fs_flags = FS_REQUIRES_DEV, 2270 }; 2271 MODULE_ALIAS_FS("f2fs"); 2272 2273 static int __init init_inodecache(void) 2274 { 2275 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 2276 sizeof(struct f2fs_inode_info), 0, 2277 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 2278 if (!f2fs_inode_cachep) 2279 return -ENOMEM; 2280 return 0; 2281 } 2282 2283 static void destroy_inodecache(void) 2284 { 2285 /* 2286 * Make sure all delayed rcu free inodes are flushed before we 2287 * destroy cache. 2288 */ 2289 rcu_barrier(); 2290 kmem_cache_destroy(f2fs_inode_cachep); 2291 } 2292 2293 static int __init init_f2fs_fs(void) 2294 { 2295 int err; 2296 2297 f2fs_build_trace_ios(); 2298 2299 err = init_inodecache(); 2300 if (err) 2301 goto fail; 2302 err = create_node_manager_caches(); 2303 if (err) 2304 goto free_inodecache; 2305 err = create_segment_manager_caches(); 2306 if (err) 2307 goto free_node_manager_caches; 2308 err = create_checkpoint_caches(); 2309 if (err) 2310 goto free_segment_manager_caches; 2311 err = create_extent_cache(); 2312 if (err) 2313 goto free_checkpoint_caches; 2314 err = f2fs_register_sysfs(); 2315 if (err) 2316 goto free_extent_cache; 2317 err = register_shrinker(&f2fs_shrinker_info); 2318 if (err) 2319 goto free_sysfs; 2320 err = register_filesystem(&f2fs_fs_type); 2321 if (err) 2322 goto free_shrinker; 2323 err = f2fs_create_root_stats(); 2324 if (err) 2325 goto free_filesystem; 2326 return 0; 2327 2328 free_filesystem: 2329 unregister_filesystem(&f2fs_fs_type); 2330 free_shrinker: 2331 unregister_shrinker(&f2fs_shrinker_info); 2332 free_sysfs: 2333 f2fs_unregister_sysfs(); 2334 free_extent_cache: 2335 destroy_extent_cache(); 2336 free_checkpoint_caches: 2337 destroy_checkpoint_caches(); 2338 free_segment_manager_caches: 2339 destroy_segment_manager_caches(); 2340 free_node_manager_caches: 2341 destroy_node_manager_caches(); 2342 free_inodecache: 2343 destroy_inodecache(); 2344 fail: 2345 return err; 2346 } 2347 2348 static void __exit exit_f2fs_fs(void) 2349 { 2350 f2fs_destroy_root_stats(); 2351 unregister_filesystem(&f2fs_fs_type); 2352 unregister_shrinker(&f2fs_shrinker_info); 2353 f2fs_unregister_sysfs(); 2354 destroy_extent_cache(); 2355 destroy_checkpoint_caches(); 2356 destroy_segment_manager_caches(); 2357 destroy_node_manager_caches(); 2358 destroy_inodecache(); 2359 f2fs_destroy_trace_ios(); 2360 } 2361 2362 module_init(init_f2fs_fs) 2363 module_exit(exit_f2fs_fs) 2364 2365 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 2366 MODULE_DESCRIPTION("Flash Friendly File System"); 2367 MODULE_LICENSE("GPL"); 2368 2369