xref: /openbmc/linux/fs/f2fs/super.c (revision 59f216cf04d973b4316761cbf3e7cb9556715b7a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/statfs.h>
12 #include <linux/buffer_head.h>
13 #include <linux/backing-dev.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 #include <linux/unicode.h>
27 #include <linux/part_stat.h>
28 #include <linux/zstd.h>
29 #include <linux/lz4.h>
30 
31 #include "f2fs.h"
32 #include "node.h"
33 #include "segment.h"
34 #include "xattr.h"
35 #include "gc.h"
36 
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/f2fs.h>
39 
40 static struct kmem_cache *f2fs_inode_cachep;
41 
42 #ifdef CONFIG_F2FS_FAULT_INJECTION
43 
44 const char *f2fs_fault_name[FAULT_MAX] = {
45 	[FAULT_KMALLOC]		= "kmalloc",
46 	[FAULT_KVMALLOC]	= "kvmalloc",
47 	[FAULT_PAGE_ALLOC]	= "page alloc",
48 	[FAULT_PAGE_GET]	= "page get",
49 	[FAULT_ALLOC_NID]	= "alloc nid",
50 	[FAULT_ORPHAN]		= "orphan",
51 	[FAULT_BLOCK]		= "no more block",
52 	[FAULT_DIR_DEPTH]	= "too big dir depth",
53 	[FAULT_EVICT_INODE]	= "evict_inode fail",
54 	[FAULT_TRUNCATE]	= "truncate fail",
55 	[FAULT_READ_IO]		= "read IO error",
56 	[FAULT_CHECKPOINT]	= "checkpoint error",
57 	[FAULT_DISCARD]		= "discard error",
58 	[FAULT_WRITE_IO]	= "write IO error",
59 };
60 
61 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
62 							unsigned int type)
63 {
64 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
65 
66 	if (rate) {
67 		atomic_set(&ffi->inject_ops, 0);
68 		ffi->inject_rate = rate;
69 	}
70 
71 	if (type)
72 		ffi->inject_type = type;
73 
74 	if (!rate && !type)
75 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
76 }
77 #endif
78 
79 /* f2fs-wide shrinker description */
80 static struct shrinker f2fs_shrinker_info = {
81 	.scan_objects = f2fs_shrink_scan,
82 	.count_objects = f2fs_shrink_count,
83 	.seeks = DEFAULT_SEEKS,
84 };
85 
86 enum {
87 	Opt_gc_background,
88 	Opt_disable_roll_forward,
89 	Opt_norecovery,
90 	Opt_discard,
91 	Opt_nodiscard,
92 	Opt_noheap,
93 	Opt_heap,
94 	Opt_user_xattr,
95 	Opt_nouser_xattr,
96 	Opt_acl,
97 	Opt_noacl,
98 	Opt_active_logs,
99 	Opt_disable_ext_identify,
100 	Opt_inline_xattr,
101 	Opt_noinline_xattr,
102 	Opt_inline_xattr_size,
103 	Opt_inline_data,
104 	Opt_inline_dentry,
105 	Opt_noinline_dentry,
106 	Opt_flush_merge,
107 	Opt_noflush_merge,
108 	Opt_nobarrier,
109 	Opt_fastboot,
110 	Opt_extent_cache,
111 	Opt_noextent_cache,
112 	Opt_noinline_data,
113 	Opt_data_flush,
114 	Opt_reserve_root,
115 	Opt_resgid,
116 	Opt_resuid,
117 	Opt_mode,
118 	Opt_io_size_bits,
119 	Opt_fault_injection,
120 	Opt_fault_type,
121 	Opt_lazytime,
122 	Opt_nolazytime,
123 	Opt_quota,
124 	Opt_noquota,
125 	Opt_usrquota,
126 	Opt_grpquota,
127 	Opt_prjquota,
128 	Opt_usrjquota,
129 	Opt_grpjquota,
130 	Opt_prjjquota,
131 	Opt_offusrjquota,
132 	Opt_offgrpjquota,
133 	Opt_offprjjquota,
134 	Opt_jqfmt_vfsold,
135 	Opt_jqfmt_vfsv0,
136 	Opt_jqfmt_vfsv1,
137 	Opt_whint,
138 	Opt_alloc,
139 	Opt_fsync,
140 	Opt_test_dummy_encryption,
141 	Opt_inlinecrypt,
142 	Opt_checkpoint_disable,
143 	Opt_checkpoint_disable_cap,
144 	Opt_checkpoint_disable_cap_perc,
145 	Opt_checkpoint_enable,
146 	Opt_checkpoint_merge,
147 	Opt_nocheckpoint_merge,
148 	Opt_compress_algorithm,
149 	Opt_compress_log_size,
150 	Opt_compress_extension,
151 	Opt_nocompress_extension,
152 	Opt_compress_chksum,
153 	Opt_compress_mode,
154 	Opt_compress_cache,
155 	Opt_atgc,
156 	Opt_gc_merge,
157 	Opt_nogc_merge,
158 	Opt_err,
159 };
160 
161 static match_table_t f2fs_tokens = {
162 	{Opt_gc_background, "background_gc=%s"},
163 	{Opt_disable_roll_forward, "disable_roll_forward"},
164 	{Opt_norecovery, "norecovery"},
165 	{Opt_discard, "discard"},
166 	{Opt_nodiscard, "nodiscard"},
167 	{Opt_noheap, "no_heap"},
168 	{Opt_heap, "heap"},
169 	{Opt_user_xattr, "user_xattr"},
170 	{Opt_nouser_xattr, "nouser_xattr"},
171 	{Opt_acl, "acl"},
172 	{Opt_noacl, "noacl"},
173 	{Opt_active_logs, "active_logs=%u"},
174 	{Opt_disable_ext_identify, "disable_ext_identify"},
175 	{Opt_inline_xattr, "inline_xattr"},
176 	{Opt_noinline_xattr, "noinline_xattr"},
177 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
178 	{Opt_inline_data, "inline_data"},
179 	{Opt_inline_dentry, "inline_dentry"},
180 	{Opt_noinline_dentry, "noinline_dentry"},
181 	{Opt_flush_merge, "flush_merge"},
182 	{Opt_noflush_merge, "noflush_merge"},
183 	{Opt_nobarrier, "nobarrier"},
184 	{Opt_fastboot, "fastboot"},
185 	{Opt_extent_cache, "extent_cache"},
186 	{Opt_noextent_cache, "noextent_cache"},
187 	{Opt_noinline_data, "noinline_data"},
188 	{Opt_data_flush, "data_flush"},
189 	{Opt_reserve_root, "reserve_root=%u"},
190 	{Opt_resgid, "resgid=%u"},
191 	{Opt_resuid, "resuid=%u"},
192 	{Opt_mode, "mode=%s"},
193 	{Opt_io_size_bits, "io_bits=%u"},
194 	{Opt_fault_injection, "fault_injection=%u"},
195 	{Opt_fault_type, "fault_type=%u"},
196 	{Opt_lazytime, "lazytime"},
197 	{Opt_nolazytime, "nolazytime"},
198 	{Opt_quota, "quota"},
199 	{Opt_noquota, "noquota"},
200 	{Opt_usrquota, "usrquota"},
201 	{Opt_grpquota, "grpquota"},
202 	{Opt_prjquota, "prjquota"},
203 	{Opt_usrjquota, "usrjquota=%s"},
204 	{Opt_grpjquota, "grpjquota=%s"},
205 	{Opt_prjjquota, "prjjquota=%s"},
206 	{Opt_offusrjquota, "usrjquota="},
207 	{Opt_offgrpjquota, "grpjquota="},
208 	{Opt_offprjjquota, "prjjquota="},
209 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
210 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
211 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
212 	{Opt_whint, "whint_mode=%s"},
213 	{Opt_alloc, "alloc_mode=%s"},
214 	{Opt_fsync, "fsync_mode=%s"},
215 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
216 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
217 	{Opt_inlinecrypt, "inlinecrypt"},
218 	{Opt_checkpoint_disable, "checkpoint=disable"},
219 	{Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
220 	{Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
221 	{Opt_checkpoint_enable, "checkpoint=enable"},
222 	{Opt_checkpoint_merge, "checkpoint_merge"},
223 	{Opt_nocheckpoint_merge, "nocheckpoint_merge"},
224 	{Opt_compress_algorithm, "compress_algorithm=%s"},
225 	{Opt_compress_log_size, "compress_log_size=%u"},
226 	{Opt_compress_extension, "compress_extension=%s"},
227 	{Opt_nocompress_extension, "nocompress_extension=%s"},
228 	{Opt_compress_chksum, "compress_chksum"},
229 	{Opt_compress_mode, "compress_mode=%s"},
230 	{Opt_compress_cache, "compress_cache"},
231 	{Opt_atgc, "atgc"},
232 	{Opt_gc_merge, "gc_merge"},
233 	{Opt_nogc_merge, "nogc_merge"},
234 	{Opt_err, NULL},
235 };
236 
237 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
238 {
239 	struct va_format vaf;
240 	va_list args;
241 	int level;
242 
243 	va_start(args, fmt);
244 
245 	level = printk_get_level(fmt);
246 	vaf.fmt = printk_skip_level(fmt);
247 	vaf.va = &args;
248 	printk("%c%cF2FS-fs (%s): %pV\n",
249 	       KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
250 
251 	va_end(args);
252 }
253 
254 #ifdef CONFIG_UNICODE
255 static const struct f2fs_sb_encodings {
256 	__u16 magic;
257 	char *name;
258 	char *version;
259 } f2fs_sb_encoding_map[] = {
260 	{F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"},
261 };
262 
263 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb,
264 				 const struct f2fs_sb_encodings **encoding,
265 				 __u16 *flags)
266 {
267 	__u16 magic = le16_to_cpu(sb->s_encoding);
268 	int i;
269 
270 	for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
271 		if (magic == f2fs_sb_encoding_map[i].magic)
272 			break;
273 
274 	if (i >= ARRAY_SIZE(f2fs_sb_encoding_map))
275 		return -EINVAL;
276 
277 	*encoding = &f2fs_sb_encoding_map[i];
278 	*flags = le16_to_cpu(sb->s_encoding_flags);
279 
280 	return 0;
281 }
282 
283 struct kmem_cache *f2fs_cf_name_slab;
284 static int __init f2fs_create_casefold_cache(void)
285 {
286 	f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name",
287 							F2FS_NAME_LEN);
288 	if (!f2fs_cf_name_slab)
289 		return -ENOMEM;
290 	return 0;
291 }
292 
293 static void f2fs_destroy_casefold_cache(void)
294 {
295 	kmem_cache_destroy(f2fs_cf_name_slab);
296 }
297 #else
298 static int __init f2fs_create_casefold_cache(void) { return 0; }
299 static void f2fs_destroy_casefold_cache(void) { }
300 #endif
301 
302 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
303 {
304 	block_t limit = min((sbi->user_block_count << 1) / 1000,
305 			sbi->user_block_count - sbi->reserved_blocks);
306 
307 	/* limit is 0.2% */
308 	if (test_opt(sbi, RESERVE_ROOT) &&
309 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
310 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
311 		f2fs_info(sbi, "Reduce reserved blocks for root = %u",
312 			  F2FS_OPTION(sbi).root_reserved_blocks);
313 	}
314 	if (!test_opt(sbi, RESERVE_ROOT) &&
315 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
316 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
317 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
318 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
319 		f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
320 			  from_kuid_munged(&init_user_ns,
321 					   F2FS_OPTION(sbi).s_resuid),
322 			  from_kgid_munged(&init_user_ns,
323 					   F2FS_OPTION(sbi).s_resgid));
324 }
325 
326 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
327 {
328 	if (!F2FS_OPTION(sbi).unusable_cap_perc)
329 		return;
330 
331 	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
332 		F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
333 	else
334 		F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
335 					F2FS_OPTION(sbi).unusable_cap_perc;
336 
337 	f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
338 			F2FS_OPTION(sbi).unusable_cap,
339 			F2FS_OPTION(sbi).unusable_cap_perc);
340 }
341 
342 static void init_once(void *foo)
343 {
344 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
345 
346 	inode_init_once(&fi->vfs_inode);
347 }
348 
349 #ifdef CONFIG_QUOTA
350 static const char * const quotatypes[] = INITQFNAMES;
351 #define QTYPE2NAME(t) (quotatypes[t])
352 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
353 							substring_t *args)
354 {
355 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
356 	char *qname;
357 	int ret = -EINVAL;
358 
359 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
360 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
361 		return -EINVAL;
362 	}
363 	if (f2fs_sb_has_quota_ino(sbi)) {
364 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
365 		return 0;
366 	}
367 
368 	qname = match_strdup(args);
369 	if (!qname) {
370 		f2fs_err(sbi, "Not enough memory for storing quotafile name");
371 		return -ENOMEM;
372 	}
373 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
374 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
375 			ret = 0;
376 		else
377 			f2fs_err(sbi, "%s quota file already specified",
378 				 QTYPE2NAME(qtype));
379 		goto errout;
380 	}
381 	if (strchr(qname, '/')) {
382 		f2fs_err(sbi, "quotafile must be on filesystem root");
383 		goto errout;
384 	}
385 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
386 	set_opt(sbi, QUOTA);
387 	return 0;
388 errout:
389 	kfree(qname);
390 	return ret;
391 }
392 
393 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
394 {
395 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
396 
397 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
398 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
399 		return -EINVAL;
400 	}
401 	kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
402 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
403 	return 0;
404 }
405 
406 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
407 {
408 	/*
409 	 * We do the test below only for project quotas. 'usrquota' and
410 	 * 'grpquota' mount options are allowed even without quota feature
411 	 * to support legacy quotas in quota files.
412 	 */
413 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
414 		f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
415 		return -1;
416 	}
417 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
418 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
419 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
420 		if (test_opt(sbi, USRQUOTA) &&
421 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
422 			clear_opt(sbi, USRQUOTA);
423 
424 		if (test_opt(sbi, GRPQUOTA) &&
425 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
426 			clear_opt(sbi, GRPQUOTA);
427 
428 		if (test_opt(sbi, PRJQUOTA) &&
429 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
430 			clear_opt(sbi, PRJQUOTA);
431 
432 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
433 				test_opt(sbi, PRJQUOTA)) {
434 			f2fs_err(sbi, "old and new quota format mixing");
435 			return -1;
436 		}
437 
438 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
439 			f2fs_err(sbi, "journaled quota format not specified");
440 			return -1;
441 		}
442 	}
443 
444 	if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
445 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
446 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
447 	}
448 	return 0;
449 }
450 #endif
451 
452 static int f2fs_set_test_dummy_encryption(struct super_block *sb,
453 					  const char *opt,
454 					  const substring_t *arg,
455 					  bool is_remount)
456 {
457 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
458 #ifdef CONFIG_FS_ENCRYPTION
459 	int err;
460 
461 	if (!f2fs_sb_has_encrypt(sbi)) {
462 		f2fs_err(sbi, "Encrypt feature is off");
463 		return -EINVAL;
464 	}
465 
466 	/*
467 	 * This mount option is just for testing, and it's not worthwhile to
468 	 * implement the extra complexity (e.g. RCU protection) that would be
469 	 * needed to allow it to be set or changed during remount.  We do allow
470 	 * it to be specified during remount, but only if there is no change.
471 	 */
472 	if (is_remount && !F2FS_OPTION(sbi).dummy_enc_policy.policy) {
473 		f2fs_warn(sbi, "Can't set test_dummy_encryption on remount");
474 		return -EINVAL;
475 	}
476 	err = fscrypt_set_test_dummy_encryption(
477 		sb, arg->from, &F2FS_OPTION(sbi).dummy_enc_policy);
478 	if (err) {
479 		if (err == -EEXIST)
480 			f2fs_warn(sbi,
481 				  "Can't change test_dummy_encryption on remount");
482 		else if (err == -EINVAL)
483 			f2fs_warn(sbi, "Value of option \"%s\" is unrecognized",
484 				  opt);
485 		else
486 			f2fs_warn(sbi, "Error processing option \"%s\" [%d]",
487 				  opt, err);
488 		return -EINVAL;
489 	}
490 	f2fs_warn(sbi, "Test dummy encryption mode enabled");
491 #else
492 	f2fs_warn(sbi, "Test dummy encryption mount option ignored");
493 #endif
494 	return 0;
495 }
496 
497 #ifdef CONFIG_F2FS_FS_COMPRESSION
498 /*
499  * 1. The same extension name cannot not appear in both compress and non-compress extension
500  * at the same time.
501  * 2. If the compress extension specifies all files, the types specified by the non-compress
502  * extension will be treated as special cases and will not be compressed.
503  * 3. Don't allow the non-compress extension specifies all files.
504  */
505 static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi)
506 {
507 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
508 	unsigned char (*noext)[F2FS_EXTENSION_LEN];
509 	int ext_cnt, noext_cnt, index = 0, no_index = 0;
510 
511 	ext = F2FS_OPTION(sbi).extensions;
512 	ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
513 	noext = F2FS_OPTION(sbi).noextensions;
514 	noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
515 
516 	if (!noext_cnt)
517 		return 0;
518 
519 	for (no_index = 0; no_index < noext_cnt; no_index++) {
520 		if (!strcasecmp("*", noext[no_index])) {
521 			f2fs_info(sbi, "Don't allow the nocompress extension specifies all files");
522 			return -EINVAL;
523 		}
524 		for (index = 0; index < ext_cnt; index++) {
525 			if (!strcasecmp(ext[index], noext[no_index])) {
526 				f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension",
527 						ext[index]);
528 				return -EINVAL;
529 			}
530 		}
531 	}
532 	return 0;
533 }
534 
535 #ifdef CONFIG_F2FS_FS_LZ4
536 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str)
537 {
538 #ifdef CONFIG_F2FS_FS_LZ4HC
539 	unsigned int level;
540 #endif
541 
542 	if (strlen(str) == 3) {
543 		F2FS_OPTION(sbi).compress_level = 0;
544 		return 0;
545 	}
546 
547 #ifdef CONFIG_F2FS_FS_LZ4HC
548 	str += 3;
549 
550 	if (str[0] != ':') {
551 		f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
552 		return -EINVAL;
553 	}
554 	if (kstrtouint(str + 1, 10, &level))
555 		return -EINVAL;
556 
557 	if (level < LZ4HC_MIN_CLEVEL || level > LZ4HC_MAX_CLEVEL) {
558 		f2fs_info(sbi, "invalid lz4hc compress level: %d", level);
559 		return -EINVAL;
560 	}
561 
562 	F2FS_OPTION(sbi).compress_level = level;
563 	return 0;
564 #else
565 	f2fs_info(sbi, "kernel doesn't support lz4hc compression");
566 	return -EINVAL;
567 #endif
568 }
569 #endif
570 
571 #ifdef CONFIG_F2FS_FS_ZSTD
572 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str)
573 {
574 	unsigned int level;
575 	int len = 4;
576 
577 	if (strlen(str) == len) {
578 		F2FS_OPTION(sbi).compress_level = 0;
579 		return 0;
580 	}
581 
582 	str += len;
583 
584 	if (str[0] != ':') {
585 		f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
586 		return -EINVAL;
587 	}
588 	if (kstrtouint(str + 1, 10, &level))
589 		return -EINVAL;
590 
591 	if (!level || level > ZSTD_maxCLevel()) {
592 		f2fs_info(sbi, "invalid zstd compress level: %d", level);
593 		return -EINVAL;
594 	}
595 
596 	F2FS_OPTION(sbi).compress_level = level;
597 	return 0;
598 }
599 #endif
600 #endif
601 
602 static int parse_options(struct super_block *sb, char *options, bool is_remount)
603 {
604 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
605 	substring_t args[MAX_OPT_ARGS];
606 #ifdef CONFIG_F2FS_FS_COMPRESSION
607 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
608 	unsigned char (*noext)[F2FS_EXTENSION_LEN];
609 	int ext_cnt, noext_cnt;
610 #endif
611 	char *p, *name;
612 	int arg = 0;
613 	kuid_t uid;
614 	kgid_t gid;
615 	int ret;
616 
617 	if (!options)
618 		goto default_check;
619 
620 	while ((p = strsep(&options, ",")) != NULL) {
621 		int token;
622 
623 		if (!*p)
624 			continue;
625 		/*
626 		 * Initialize args struct so we know whether arg was
627 		 * found; some options take optional arguments.
628 		 */
629 		args[0].to = args[0].from = NULL;
630 		token = match_token(p, f2fs_tokens, args);
631 
632 		switch (token) {
633 		case Opt_gc_background:
634 			name = match_strdup(&args[0]);
635 
636 			if (!name)
637 				return -ENOMEM;
638 			if (!strcmp(name, "on")) {
639 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
640 			} else if (!strcmp(name, "off")) {
641 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF;
642 			} else if (!strcmp(name, "sync")) {
643 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC;
644 			} else {
645 				kfree(name);
646 				return -EINVAL;
647 			}
648 			kfree(name);
649 			break;
650 		case Opt_disable_roll_forward:
651 			set_opt(sbi, DISABLE_ROLL_FORWARD);
652 			break;
653 		case Opt_norecovery:
654 			/* this option mounts f2fs with ro */
655 			set_opt(sbi, NORECOVERY);
656 			if (!f2fs_readonly(sb))
657 				return -EINVAL;
658 			break;
659 		case Opt_discard:
660 			set_opt(sbi, DISCARD);
661 			break;
662 		case Opt_nodiscard:
663 			if (f2fs_sb_has_blkzoned(sbi)) {
664 				f2fs_warn(sbi, "discard is required for zoned block devices");
665 				return -EINVAL;
666 			}
667 			clear_opt(sbi, DISCARD);
668 			break;
669 		case Opt_noheap:
670 			set_opt(sbi, NOHEAP);
671 			break;
672 		case Opt_heap:
673 			clear_opt(sbi, NOHEAP);
674 			break;
675 #ifdef CONFIG_F2FS_FS_XATTR
676 		case Opt_user_xattr:
677 			set_opt(sbi, XATTR_USER);
678 			break;
679 		case Opt_nouser_xattr:
680 			clear_opt(sbi, XATTR_USER);
681 			break;
682 		case Opt_inline_xattr:
683 			set_opt(sbi, INLINE_XATTR);
684 			break;
685 		case Opt_noinline_xattr:
686 			clear_opt(sbi, INLINE_XATTR);
687 			break;
688 		case Opt_inline_xattr_size:
689 			if (args->from && match_int(args, &arg))
690 				return -EINVAL;
691 			set_opt(sbi, INLINE_XATTR_SIZE);
692 			F2FS_OPTION(sbi).inline_xattr_size = arg;
693 			break;
694 #else
695 		case Opt_user_xattr:
696 			f2fs_info(sbi, "user_xattr options not supported");
697 			break;
698 		case Opt_nouser_xattr:
699 			f2fs_info(sbi, "nouser_xattr options not supported");
700 			break;
701 		case Opt_inline_xattr:
702 			f2fs_info(sbi, "inline_xattr options not supported");
703 			break;
704 		case Opt_noinline_xattr:
705 			f2fs_info(sbi, "noinline_xattr options not supported");
706 			break;
707 #endif
708 #ifdef CONFIG_F2FS_FS_POSIX_ACL
709 		case Opt_acl:
710 			set_opt(sbi, POSIX_ACL);
711 			break;
712 		case Opt_noacl:
713 			clear_opt(sbi, POSIX_ACL);
714 			break;
715 #else
716 		case Opt_acl:
717 			f2fs_info(sbi, "acl options not supported");
718 			break;
719 		case Opt_noacl:
720 			f2fs_info(sbi, "noacl options not supported");
721 			break;
722 #endif
723 		case Opt_active_logs:
724 			if (args->from && match_int(args, &arg))
725 				return -EINVAL;
726 			if (arg != 2 && arg != 4 &&
727 				arg != NR_CURSEG_PERSIST_TYPE)
728 				return -EINVAL;
729 			F2FS_OPTION(sbi).active_logs = arg;
730 			break;
731 		case Opt_disable_ext_identify:
732 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
733 			break;
734 		case Opt_inline_data:
735 			set_opt(sbi, INLINE_DATA);
736 			break;
737 		case Opt_inline_dentry:
738 			set_opt(sbi, INLINE_DENTRY);
739 			break;
740 		case Opt_noinline_dentry:
741 			clear_opt(sbi, INLINE_DENTRY);
742 			break;
743 		case Opt_flush_merge:
744 			set_opt(sbi, FLUSH_MERGE);
745 			break;
746 		case Opt_noflush_merge:
747 			clear_opt(sbi, FLUSH_MERGE);
748 			break;
749 		case Opt_nobarrier:
750 			set_opt(sbi, NOBARRIER);
751 			break;
752 		case Opt_fastboot:
753 			set_opt(sbi, FASTBOOT);
754 			break;
755 		case Opt_extent_cache:
756 			set_opt(sbi, EXTENT_CACHE);
757 			break;
758 		case Opt_noextent_cache:
759 			clear_opt(sbi, EXTENT_CACHE);
760 			break;
761 		case Opt_noinline_data:
762 			clear_opt(sbi, INLINE_DATA);
763 			break;
764 		case Opt_data_flush:
765 			set_opt(sbi, DATA_FLUSH);
766 			break;
767 		case Opt_reserve_root:
768 			if (args->from && match_int(args, &arg))
769 				return -EINVAL;
770 			if (test_opt(sbi, RESERVE_ROOT)) {
771 				f2fs_info(sbi, "Preserve previous reserve_root=%u",
772 					  F2FS_OPTION(sbi).root_reserved_blocks);
773 			} else {
774 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
775 				set_opt(sbi, RESERVE_ROOT);
776 			}
777 			break;
778 		case Opt_resuid:
779 			if (args->from && match_int(args, &arg))
780 				return -EINVAL;
781 			uid = make_kuid(current_user_ns(), arg);
782 			if (!uid_valid(uid)) {
783 				f2fs_err(sbi, "Invalid uid value %d", arg);
784 				return -EINVAL;
785 			}
786 			F2FS_OPTION(sbi).s_resuid = uid;
787 			break;
788 		case Opt_resgid:
789 			if (args->from && match_int(args, &arg))
790 				return -EINVAL;
791 			gid = make_kgid(current_user_ns(), arg);
792 			if (!gid_valid(gid)) {
793 				f2fs_err(sbi, "Invalid gid value %d", arg);
794 				return -EINVAL;
795 			}
796 			F2FS_OPTION(sbi).s_resgid = gid;
797 			break;
798 		case Opt_mode:
799 			name = match_strdup(&args[0]);
800 
801 			if (!name)
802 				return -ENOMEM;
803 			if (!strcmp(name, "adaptive")) {
804 				if (f2fs_sb_has_blkzoned(sbi)) {
805 					f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
806 					kfree(name);
807 					return -EINVAL;
808 				}
809 				F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
810 			} else if (!strcmp(name, "lfs")) {
811 				F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
812 			} else {
813 				kfree(name);
814 				return -EINVAL;
815 			}
816 			kfree(name);
817 			break;
818 		case Opt_io_size_bits:
819 			if (args->from && match_int(args, &arg))
820 				return -EINVAL;
821 			if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_VECS)) {
822 				f2fs_warn(sbi, "Not support %d, larger than %d",
823 					  1 << arg, BIO_MAX_VECS);
824 				return -EINVAL;
825 			}
826 			F2FS_OPTION(sbi).write_io_size_bits = arg;
827 			break;
828 #ifdef CONFIG_F2FS_FAULT_INJECTION
829 		case Opt_fault_injection:
830 			if (args->from && match_int(args, &arg))
831 				return -EINVAL;
832 			f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
833 			set_opt(sbi, FAULT_INJECTION);
834 			break;
835 
836 		case Opt_fault_type:
837 			if (args->from && match_int(args, &arg))
838 				return -EINVAL;
839 			f2fs_build_fault_attr(sbi, 0, arg);
840 			set_opt(sbi, FAULT_INJECTION);
841 			break;
842 #else
843 		case Opt_fault_injection:
844 			f2fs_info(sbi, "fault_injection options not supported");
845 			break;
846 
847 		case Opt_fault_type:
848 			f2fs_info(sbi, "fault_type options not supported");
849 			break;
850 #endif
851 		case Opt_lazytime:
852 			sb->s_flags |= SB_LAZYTIME;
853 			break;
854 		case Opt_nolazytime:
855 			sb->s_flags &= ~SB_LAZYTIME;
856 			break;
857 #ifdef CONFIG_QUOTA
858 		case Opt_quota:
859 		case Opt_usrquota:
860 			set_opt(sbi, USRQUOTA);
861 			break;
862 		case Opt_grpquota:
863 			set_opt(sbi, GRPQUOTA);
864 			break;
865 		case Opt_prjquota:
866 			set_opt(sbi, PRJQUOTA);
867 			break;
868 		case Opt_usrjquota:
869 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
870 			if (ret)
871 				return ret;
872 			break;
873 		case Opt_grpjquota:
874 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
875 			if (ret)
876 				return ret;
877 			break;
878 		case Opt_prjjquota:
879 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
880 			if (ret)
881 				return ret;
882 			break;
883 		case Opt_offusrjquota:
884 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
885 			if (ret)
886 				return ret;
887 			break;
888 		case Opt_offgrpjquota:
889 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
890 			if (ret)
891 				return ret;
892 			break;
893 		case Opt_offprjjquota:
894 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
895 			if (ret)
896 				return ret;
897 			break;
898 		case Opt_jqfmt_vfsold:
899 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
900 			break;
901 		case Opt_jqfmt_vfsv0:
902 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
903 			break;
904 		case Opt_jqfmt_vfsv1:
905 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
906 			break;
907 		case Opt_noquota:
908 			clear_opt(sbi, QUOTA);
909 			clear_opt(sbi, USRQUOTA);
910 			clear_opt(sbi, GRPQUOTA);
911 			clear_opt(sbi, PRJQUOTA);
912 			break;
913 #else
914 		case Opt_quota:
915 		case Opt_usrquota:
916 		case Opt_grpquota:
917 		case Opt_prjquota:
918 		case Opt_usrjquota:
919 		case Opt_grpjquota:
920 		case Opt_prjjquota:
921 		case Opt_offusrjquota:
922 		case Opt_offgrpjquota:
923 		case Opt_offprjjquota:
924 		case Opt_jqfmt_vfsold:
925 		case Opt_jqfmt_vfsv0:
926 		case Opt_jqfmt_vfsv1:
927 		case Opt_noquota:
928 			f2fs_info(sbi, "quota operations not supported");
929 			break;
930 #endif
931 		case Opt_whint:
932 			name = match_strdup(&args[0]);
933 			if (!name)
934 				return -ENOMEM;
935 			if (!strcmp(name, "user-based")) {
936 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
937 			} else if (!strcmp(name, "off")) {
938 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
939 			} else if (!strcmp(name, "fs-based")) {
940 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
941 			} else {
942 				kfree(name);
943 				return -EINVAL;
944 			}
945 			kfree(name);
946 			break;
947 		case Opt_alloc:
948 			name = match_strdup(&args[0]);
949 			if (!name)
950 				return -ENOMEM;
951 
952 			if (!strcmp(name, "default")) {
953 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
954 			} else if (!strcmp(name, "reuse")) {
955 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
956 			} else {
957 				kfree(name);
958 				return -EINVAL;
959 			}
960 			kfree(name);
961 			break;
962 		case Opt_fsync:
963 			name = match_strdup(&args[0]);
964 			if (!name)
965 				return -ENOMEM;
966 			if (!strcmp(name, "posix")) {
967 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
968 			} else if (!strcmp(name, "strict")) {
969 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
970 			} else if (!strcmp(name, "nobarrier")) {
971 				F2FS_OPTION(sbi).fsync_mode =
972 							FSYNC_MODE_NOBARRIER;
973 			} else {
974 				kfree(name);
975 				return -EINVAL;
976 			}
977 			kfree(name);
978 			break;
979 		case Opt_test_dummy_encryption:
980 			ret = f2fs_set_test_dummy_encryption(sb, p, &args[0],
981 							     is_remount);
982 			if (ret)
983 				return ret;
984 			break;
985 		case Opt_inlinecrypt:
986 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
987 			sb->s_flags |= SB_INLINECRYPT;
988 #else
989 			f2fs_info(sbi, "inline encryption not supported");
990 #endif
991 			break;
992 		case Opt_checkpoint_disable_cap_perc:
993 			if (args->from && match_int(args, &arg))
994 				return -EINVAL;
995 			if (arg < 0 || arg > 100)
996 				return -EINVAL;
997 			F2FS_OPTION(sbi).unusable_cap_perc = arg;
998 			set_opt(sbi, DISABLE_CHECKPOINT);
999 			break;
1000 		case Opt_checkpoint_disable_cap:
1001 			if (args->from && match_int(args, &arg))
1002 				return -EINVAL;
1003 			F2FS_OPTION(sbi).unusable_cap = arg;
1004 			set_opt(sbi, DISABLE_CHECKPOINT);
1005 			break;
1006 		case Opt_checkpoint_disable:
1007 			set_opt(sbi, DISABLE_CHECKPOINT);
1008 			break;
1009 		case Opt_checkpoint_enable:
1010 			clear_opt(sbi, DISABLE_CHECKPOINT);
1011 			break;
1012 		case Opt_checkpoint_merge:
1013 			set_opt(sbi, MERGE_CHECKPOINT);
1014 			break;
1015 		case Opt_nocheckpoint_merge:
1016 			clear_opt(sbi, MERGE_CHECKPOINT);
1017 			break;
1018 #ifdef CONFIG_F2FS_FS_COMPRESSION
1019 		case Opt_compress_algorithm:
1020 			if (!f2fs_sb_has_compression(sbi)) {
1021 				f2fs_info(sbi, "Image doesn't support compression");
1022 				break;
1023 			}
1024 			name = match_strdup(&args[0]);
1025 			if (!name)
1026 				return -ENOMEM;
1027 			if (!strcmp(name, "lzo")) {
1028 #ifdef CONFIG_F2FS_FS_LZO
1029 				F2FS_OPTION(sbi).compress_level = 0;
1030 				F2FS_OPTION(sbi).compress_algorithm =
1031 								COMPRESS_LZO;
1032 #else
1033 				f2fs_info(sbi, "kernel doesn't support lzo compression");
1034 #endif
1035 			} else if (!strncmp(name, "lz4", 3)) {
1036 #ifdef CONFIG_F2FS_FS_LZ4
1037 				ret = f2fs_set_lz4hc_level(sbi, name);
1038 				if (ret) {
1039 					kfree(name);
1040 					return -EINVAL;
1041 				}
1042 				F2FS_OPTION(sbi).compress_algorithm =
1043 								COMPRESS_LZ4;
1044 #else
1045 				f2fs_info(sbi, "kernel doesn't support lz4 compression");
1046 #endif
1047 			} else if (!strncmp(name, "zstd", 4)) {
1048 #ifdef CONFIG_F2FS_FS_ZSTD
1049 				ret = f2fs_set_zstd_level(sbi, name);
1050 				if (ret) {
1051 					kfree(name);
1052 					return -EINVAL;
1053 				}
1054 				F2FS_OPTION(sbi).compress_algorithm =
1055 								COMPRESS_ZSTD;
1056 #else
1057 				f2fs_info(sbi, "kernel doesn't support zstd compression");
1058 #endif
1059 			} else if (!strcmp(name, "lzo-rle")) {
1060 #ifdef CONFIG_F2FS_FS_LZORLE
1061 				F2FS_OPTION(sbi).compress_level = 0;
1062 				F2FS_OPTION(sbi).compress_algorithm =
1063 								COMPRESS_LZORLE;
1064 #else
1065 				f2fs_info(sbi, "kernel doesn't support lzorle compression");
1066 #endif
1067 			} else {
1068 				kfree(name);
1069 				return -EINVAL;
1070 			}
1071 			kfree(name);
1072 			break;
1073 		case Opt_compress_log_size:
1074 			if (!f2fs_sb_has_compression(sbi)) {
1075 				f2fs_info(sbi, "Image doesn't support compression");
1076 				break;
1077 			}
1078 			if (args->from && match_int(args, &arg))
1079 				return -EINVAL;
1080 			if (arg < MIN_COMPRESS_LOG_SIZE ||
1081 				arg > MAX_COMPRESS_LOG_SIZE) {
1082 				f2fs_err(sbi,
1083 					"Compress cluster log size is out of range");
1084 				return -EINVAL;
1085 			}
1086 			F2FS_OPTION(sbi).compress_log_size = arg;
1087 			break;
1088 		case Opt_compress_extension:
1089 			if (!f2fs_sb_has_compression(sbi)) {
1090 				f2fs_info(sbi, "Image doesn't support compression");
1091 				break;
1092 			}
1093 			name = match_strdup(&args[0]);
1094 			if (!name)
1095 				return -ENOMEM;
1096 
1097 			ext = F2FS_OPTION(sbi).extensions;
1098 			ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
1099 
1100 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
1101 				ext_cnt >= COMPRESS_EXT_NUM) {
1102 				f2fs_err(sbi,
1103 					"invalid extension length/number");
1104 				kfree(name);
1105 				return -EINVAL;
1106 			}
1107 
1108 			strcpy(ext[ext_cnt], name);
1109 			F2FS_OPTION(sbi).compress_ext_cnt++;
1110 			kfree(name);
1111 			break;
1112 		case Opt_nocompress_extension:
1113 			if (!f2fs_sb_has_compression(sbi)) {
1114 				f2fs_info(sbi, "Image doesn't support compression");
1115 				break;
1116 			}
1117 			name = match_strdup(&args[0]);
1118 			if (!name)
1119 				return -ENOMEM;
1120 
1121 			noext = F2FS_OPTION(sbi).noextensions;
1122 			noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
1123 
1124 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
1125 				noext_cnt >= COMPRESS_EXT_NUM) {
1126 				f2fs_err(sbi,
1127 					"invalid extension length/number");
1128 				kfree(name);
1129 				return -EINVAL;
1130 			}
1131 
1132 			strcpy(noext[noext_cnt], name);
1133 			F2FS_OPTION(sbi).nocompress_ext_cnt++;
1134 			kfree(name);
1135 			break;
1136 		case Opt_compress_chksum:
1137 			F2FS_OPTION(sbi).compress_chksum = true;
1138 			break;
1139 		case Opt_compress_mode:
1140 			name = match_strdup(&args[0]);
1141 			if (!name)
1142 				return -ENOMEM;
1143 			if (!strcmp(name, "fs")) {
1144 				F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
1145 			} else if (!strcmp(name, "user")) {
1146 				F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER;
1147 			} else {
1148 				kfree(name);
1149 				return -EINVAL;
1150 			}
1151 			kfree(name);
1152 			break;
1153 		case Opt_compress_cache:
1154 			set_opt(sbi, COMPRESS_CACHE);
1155 			break;
1156 #else
1157 		case Opt_compress_algorithm:
1158 		case Opt_compress_log_size:
1159 		case Opt_compress_extension:
1160 		case Opt_nocompress_extension:
1161 		case Opt_compress_chksum:
1162 		case Opt_compress_mode:
1163 		case Opt_compress_cache:
1164 			f2fs_info(sbi, "compression options not supported");
1165 			break;
1166 #endif
1167 		case Opt_atgc:
1168 			set_opt(sbi, ATGC);
1169 			break;
1170 		case Opt_gc_merge:
1171 			set_opt(sbi, GC_MERGE);
1172 			break;
1173 		case Opt_nogc_merge:
1174 			clear_opt(sbi, GC_MERGE);
1175 			break;
1176 		default:
1177 			f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
1178 				 p);
1179 			return -EINVAL;
1180 		}
1181 	}
1182 default_check:
1183 #ifdef CONFIG_QUOTA
1184 	if (f2fs_check_quota_options(sbi))
1185 		return -EINVAL;
1186 #else
1187 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
1188 		f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1189 		return -EINVAL;
1190 	}
1191 	if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
1192 		f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1193 		return -EINVAL;
1194 	}
1195 #endif
1196 #ifndef CONFIG_UNICODE
1197 	if (f2fs_sb_has_casefold(sbi)) {
1198 		f2fs_err(sbi,
1199 			"Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
1200 		return -EINVAL;
1201 	}
1202 #endif
1203 	/*
1204 	 * The BLKZONED feature indicates that the drive was formatted with
1205 	 * zone alignment optimization. This is optional for host-aware
1206 	 * devices, but mandatory for host-managed zoned block devices.
1207 	 */
1208 #ifndef CONFIG_BLK_DEV_ZONED
1209 	if (f2fs_sb_has_blkzoned(sbi)) {
1210 		f2fs_err(sbi, "Zoned block device support is not enabled");
1211 		return -EINVAL;
1212 	}
1213 #endif
1214 
1215 #ifdef CONFIG_F2FS_FS_COMPRESSION
1216 	if (f2fs_test_compress_extension(sbi)) {
1217 		f2fs_err(sbi, "invalid compress or nocompress extension");
1218 		return -EINVAL;
1219 	}
1220 #endif
1221 
1222 	if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) {
1223 		f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
1224 			 F2FS_IO_SIZE_KB(sbi));
1225 		return -EINVAL;
1226 	}
1227 
1228 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
1229 		int min_size, max_size;
1230 
1231 		if (!f2fs_sb_has_extra_attr(sbi) ||
1232 			!f2fs_sb_has_flexible_inline_xattr(sbi)) {
1233 			f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
1234 			return -EINVAL;
1235 		}
1236 		if (!test_opt(sbi, INLINE_XATTR)) {
1237 			f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
1238 			return -EINVAL;
1239 		}
1240 
1241 		min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
1242 		max_size = MAX_INLINE_XATTR_SIZE;
1243 
1244 		if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
1245 				F2FS_OPTION(sbi).inline_xattr_size > max_size) {
1246 			f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
1247 				 min_size, max_size);
1248 			return -EINVAL;
1249 		}
1250 	}
1251 
1252 	if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) {
1253 		f2fs_err(sbi, "LFS not compatible with checkpoint=disable");
1254 		return -EINVAL;
1255 	}
1256 
1257 	/* Not pass down write hints if the number of active logs is lesser
1258 	 * than NR_CURSEG_PERSIST_TYPE.
1259 	 */
1260 	if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
1261 		F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1262 
1263 	if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) {
1264 		f2fs_err(sbi, "Allow to mount readonly mode only");
1265 		return -EROFS;
1266 	}
1267 	return 0;
1268 }
1269 
1270 static struct inode *f2fs_alloc_inode(struct super_block *sb)
1271 {
1272 	struct f2fs_inode_info *fi;
1273 
1274 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
1275 	if (!fi)
1276 		return NULL;
1277 
1278 	init_once((void *) fi);
1279 
1280 	/* Initialize f2fs-specific inode info */
1281 	atomic_set(&fi->dirty_pages, 0);
1282 	atomic_set(&fi->i_compr_blocks, 0);
1283 	init_rwsem(&fi->i_sem);
1284 	spin_lock_init(&fi->i_size_lock);
1285 	INIT_LIST_HEAD(&fi->dirty_list);
1286 	INIT_LIST_HEAD(&fi->gdirty_list);
1287 	INIT_LIST_HEAD(&fi->inmem_ilist);
1288 	INIT_LIST_HEAD(&fi->inmem_pages);
1289 	mutex_init(&fi->inmem_lock);
1290 	init_rwsem(&fi->i_gc_rwsem[READ]);
1291 	init_rwsem(&fi->i_gc_rwsem[WRITE]);
1292 	init_rwsem(&fi->i_mmap_sem);
1293 	init_rwsem(&fi->i_xattr_sem);
1294 
1295 	/* Will be used by directory only */
1296 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
1297 
1298 	return &fi->vfs_inode;
1299 }
1300 
1301 static int f2fs_drop_inode(struct inode *inode)
1302 {
1303 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1304 	int ret;
1305 
1306 	/*
1307 	 * during filesystem shutdown, if checkpoint is disabled,
1308 	 * drop useless meta/node dirty pages.
1309 	 */
1310 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1311 		if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1312 			inode->i_ino == F2FS_META_INO(sbi)) {
1313 			trace_f2fs_drop_inode(inode, 1);
1314 			return 1;
1315 		}
1316 	}
1317 
1318 	/*
1319 	 * This is to avoid a deadlock condition like below.
1320 	 * writeback_single_inode(inode)
1321 	 *  - f2fs_write_data_page
1322 	 *    - f2fs_gc -> iput -> evict
1323 	 *       - inode_wait_for_writeback(inode)
1324 	 */
1325 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1326 		if (!inode->i_nlink && !is_bad_inode(inode)) {
1327 			/* to avoid evict_inode call simultaneously */
1328 			atomic_inc(&inode->i_count);
1329 			spin_unlock(&inode->i_lock);
1330 
1331 			/* some remained atomic pages should discarded */
1332 			if (f2fs_is_atomic_file(inode))
1333 				f2fs_drop_inmem_pages(inode);
1334 
1335 			/* should remain fi->extent_tree for writepage */
1336 			f2fs_destroy_extent_node(inode);
1337 
1338 			sb_start_intwrite(inode->i_sb);
1339 			f2fs_i_size_write(inode, 0);
1340 
1341 			f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1342 					inode, NULL, 0, DATA);
1343 			truncate_inode_pages_final(inode->i_mapping);
1344 
1345 			if (F2FS_HAS_BLOCKS(inode))
1346 				f2fs_truncate(inode);
1347 
1348 			sb_end_intwrite(inode->i_sb);
1349 
1350 			spin_lock(&inode->i_lock);
1351 			atomic_dec(&inode->i_count);
1352 		}
1353 		trace_f2fs_drop_inode(inode, 0);
1354 		return 0;
1355 	}
1356 	ret = generic_drop_inode(inode);
1357 	if (!ret)
1358 		ret = fscrypt_drop_inode(inode);
1359 	trace_f2fs_drop_inode(inode, ret);
1360 	return ret;
1361 }
1362 
1363 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1364 {
1365 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1366 	int ret = 0;
1367 
1368 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1369 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1370 		ret = 1;
1371 	} else {
1372 		set_inode_flag(inode, FI_DIRTY_INODE);
1373 		stat_inc_dirty_inode(sbi, DIRTY_META);
1374 	}
1375 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1376 		list_add_tail(&F2FS_I(inode)->gdirty_list,
1377 				&sbi->inode_list[DIRTY_META]);
1378 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
1379 	}
1380 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1381 	return ret;
1382 }
1383 
1384 void f2fs_inode_synced(struct inode *inode)
1385 {
1386 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1387 
1388 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1389 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1390 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1391 		return;
1392 	}
1393 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1394 		list_del_init(&F2FS_I(inode)->gdirty_list);
1395 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
1396 	}
1397 	clear_inode_flag(inode, FI_DIRTY_INODE);
1398 	clear_inode_flag(inode, FI_AUTO_RECOVER);
1399 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1400 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1401 }
1402 
1403 /*
1404  * f2fs_dirty_inode() is called from __mark_inode_dirty()
1405  *
1406  * We should call set_dirty_inode to write the dirty inode through write_inode.
1407  */
1408 static void f2fs_dirty_inode(struct inode *inode, int flags)
1409 {
1410 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1411 
1412 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1413 			inode->i_ino == F2FS_META_INO(sbi))
1414 		return;
1415 
1416 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1417 		clear_inode_flag(inode, FI_AUTO_RECOVER);
1418 
1419 	f2fs_inode_dirtied(inode, false);
1420 }
1421 
1422 static void f2fs_free_inode(struct inode *inode)
1423 {
1424 	fscrypt_free_inode(inode);
1425 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1426 }
1427 
1428 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1429 {
1430 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
1431 	percpu_counter_destroy(&sbi->total_valid_inode_count);
1432 }
1433 
1434 static void destroy_device_list(struct f2fs_sb_info *sbi)
1435 {
1436 	int i;
1437 
1438 	for (i = 0; i < sbi->s_ndevs; i++) {
1439 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1440 #ifdef CONFIG_BLK_DEV_ZONED
1441 		kvfree(FDEV(i).blkz_seq);
1442 		kfree(FDEV(i).zone_capacity_blocks);
1443 #endif
1444 	}
1445 	kvfree(sbi->devs);
1446 }
1447 
1448 static void f2fs_put_super(struct super_block *sb)
1449 {
1450 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1451 	int i;
1452 	bool dropped;
1453 
1454 	/* unregister procfs/sysfs entries in advance to avoid race case */
1455 	f2fs_unregister_sysfs(sbi);
1456 
1457 	f2fs_quota_off_umount(sb);
1458 
1459 	/* prevent remaining shrinker jobs */
1460 	mutex_lock(&sbi->umount_mutex);
1461 
1462 	/*
1463 	 * flush all issued checkpoints and stop checkpoint issue thread.
1464 	 * after then, all checkpoints should be done by each process context.
1465 	 */
1466 	f2fs_stop_ckpt_thread(sbi);
1467 
1468 	/*
1469 	 * We don't need to do checkpoint when superblock is clean.
1470 	 * But, the previous checkpoint was not done by umount, it needs to do
1471 	 * clean checkpoint again.
1472 	 */
1473 	if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1474 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1475 		struct cp_control cpc = {
1476 			.reason = CP_UMOUNT,
1477 		};
1478 		f2fs_write_checkpoint(sbi, &cpc);
1479 	}
1480 
1481 	/* be sure to wait for any on-going discard commands */
1482 	dropped = f2fs_issue_discard_timeout(sbi);
1483 
1484 	if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1485 					!sbi->discard_blks && !dropped) {
1486 		struct cp_control cpc = {
1487 			.reason = CP_UMOUNT | CP_TRIMMED,
1488 		};
1489 		f2fs_write_checkpoint(sbi, &cpc);
1490 	}
1491 
1492 	/*
1493 	 * normally superblock is clean, so we need to release this.
1494 	 * In addition, EIO will skip do checkpoint, we need this as well.
1495 	 */
1496 	f2fs_release_ino_entry(sbi, true);
1497 
1498 	f2fs_leave_shrinker(sbi);
1499 	mutex_unlock(&sbi->umount_mutex);
1500 
1501 	/* our cp_error case, we can wait for any writeback page */
1502 	f2fs_flush_merged_writes(sbi);
1503 
1504 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1505 
1506 	f2fs_bug_on(sbi, sbi->fsync_node_num);
1507 
1508 	f2fs_destroy_compress_inode(sbi);
1509 
1510 	iput(sbi->node_inode);
1511 	sbi->node_inode = NULL;
1512 
1513 	iput(sbi->meta_inode);
1514 	sbi->meta_inode = NULL;
1515 
1516 	/*
1517 	 * iput() can update stat information, if f2fs_write_checkpoint()
1518 	 * above failed with error.
1519 	 */
1520 	f2fs_destroy_stats(sbi);
1521 
1522 	/* destroy f2fs internal modules */
1523 	f2fs_destroy_node_manager(sbi);
1524 	f2fs_destroy_segment_manager(sbi);
1525 
1526 	f2fs_destroy_post_read_wq(sbi);
1527 
1528 	kvfree(sbi->ckpt);
1529 
1530 	sb->s_fs_info = NULL;
1531 	if (sbi->s_chksum_driver)
1532 		crypto_free_shash(sbi->s_chksum_driver);
1533 	kfree(sbi->raw_super);
1534 
1535 	destroy_device_list(sbi);
1536 	f2fs_destroy_page_array_cache(sbi);
1537 	f2fs_destroy_xattr_caches(sbi);
1538 	mempool_destroy(sbi->write_io_dummy);
1539 #ifdef CONFIG_QUOTA
1540 	for (i = 0; i < MAXQUOTAS; i++)
1541 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1542 #endif
1543 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
1544 	destroy_percpu_info(sbi);
1545 	for (i = 0; i < NR_PAGE_TYPE; i++)
1546 		kvfree(sbi->write_io[i]);
1547 #ifdef CONFIG_UNICODE
1548 	utf8_unload(sb->s_encoding);
1549 #endif
1550 	kfree(sbi);
1551 }
1552 
1553 int f2fs_sync_fs(struct super_block *sb, int sync)
1554 {
1555 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1556 	int err = 0;
1557 
1558 	if (unlikely(f2fs_cp_error(sbi)))
1559 		return 0;
1560 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1561 		return 0;
1562 
1563 	trace_f2fs_sync_fs(sb, sync);
1564 
1565 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1566 		return -EAGAIN;
1567 
1568 	if (sync)
1569 		err = f2fs_issue_checkpoint(sbi);
1570 
1571 	return err;
1572 }
1573 
1574 static int f2fs_freeze(struct super_block *sb)
1575 {
1576 	if (f2fs_readonly(sb))
1577 		return 0;
1578 
1579 	/* IO error happened before */
1580 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1581 		return -EIO;
1582 
1583 	/* must be clean, since sync_filesystem() was already called */
1584 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1585 		return -EINVAL;
1586 
1587 	/* ensure no checkpoint required */
1588 	if (!llist_empty(&F2FS_SB(sb)->cprc_info.issue_list))
1589 		return -EINVAL;
1590 	return 0;
1591 }
1592 
1593 static int f2fs_unfreeze(struct super_block *sb)
1594 {
1595 	return 0;
1596 }
1597 
1598 #ifdef CONFIG_QUOTA
1599 static int f2fs_statfs_project(struct super_block *sb,
1600 				kprojid_t projid, struct kstatfs *buf)
1601 {
1602 	struct kqid qid;
1603 	struct dquot *dquot;
1604 	u64 limit;
1605 	u64 curblock;
1606 
1607 	qid = make_kqid_projid(projid);
1608 	dquot = dqget(sb, qid);
1609 	if (IS_ERR(dquot))
1610 		return PTR_ERR(dquot);
1611 	spin_lock(&dquot->dq_dqb_lock);
1612 
1613 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1614 					dquot->dq_dqb.dqb_bhardlimit);
1615 	if (limit)
1616 		limit >>= sb->s_blocksize_bits;
1617 
1618 	if (limit && buf->f_blocks > limit) {
1619 		curblock = (dquot->dq_dqb.dqb_curspace +
1620 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1621 		buf->f_blocks = limit;
1622 		buf->f_bfree = buf->f_bavail =
1623 			(buf->f_blocks > curblock) ?
1624 			 (buf->f_blocks - curblock) : 0;
1625 	}
1626 
1627 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1628 					dquot->dq_dqb.dqb_ihardlimit);
1629 
1630 	if (limit && buf->f_files > limit) {
1631 		buf->f_files = limit;
1632 		buf->f_ffree =
1633 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1634 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1635 	}
1636 
1637 	spin_unlock(&dquot->dq_dqb_lock);
1638 	dqput(dquot);
1639 	return 0;
1640 }
1641 #endif
1642 
1643 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1644 {
1645 	struct super_block *sb = dentry->d_sb;
1646 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1647 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1648 	block_t total_count, user_block_count, start_count;
1649 	u64 avail_node_count;
1650 
1651 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1652 	user_block_count = sbi->user_block_count;
1653 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1654 	buf->f_type = F2FS_SUPER_MAGIC;
1655 	buf->f_bsize = sbi->blocksize;
1656 
1657 	buf->f_blocks = total_count - start_count;
1658 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1659 						sbi->current_reserved_blocks;
1660 
1661 	spin_lock(&sbi->stat_lock);
1662 	if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1663 		buf->f_bfree = 0;
1664 	else
1665 		buf->f_bfree -= sbi->unusable_block_count;
1666 	spin_unlock(&sbi->stat_lock);
1667 
1668 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1669 		buf->f_bavail = buf->f_bfree -
1670 				F2FS_OPTION(sbi).root_reserved_blocks;
1671 	else
1672 		buf->f_bavail = 0;
1673 
1674 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1675 
1676 	if (avail_node_count > user_block_count) {
1677 		buf->f_files = user_block_count;
1678 		buf->f_ffree = buf->f_bavail;
1679 	} else {
1680 		buf->f_files = avail_node_count;
1681 		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1682 					buf->f_bavail);
1683 	}
1684 
1685 	buf->f_namelen = F2FS_NAME_LEN;
1686 	buf->f_fsid    = u64_to_fsid(id);
1687 
1688 #ifdef CONFIG_QUOTA
1689 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1690 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1691 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1692 	}
1693 #endif
1694 	return 0;
1695 }
1696 
1697 static inline void f2fs_show_quota_options(struct seq_file *seq,
1698 					   struct super_block *sb)
1699 {
1700 #ifdef CONFIG_QUOTA
1701 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1702 
1703 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1704 		char *fmtname = "";
1705 
1706 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1707 		case QFMT_VFS_OLD:
1708 			fmtname = "vfsold";
1709 			break;
1710 		case QFMT_VFS_V0:
1711 			fmtname = "vfsv0";
1712 			break;
1713 		case QFMT_VFS_V1:
1714 			fmtname = "vfsv1";
1715 			break;
1716 		}
1717 		seq_printf(seq, ",jqfmt=%s", fmtname);
1718 	}
1719 
1720 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1721 		seq_show_option(seq, "usrjquota",
1722 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1723 
1724 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1725 		seq_show_option(seq, "grpjquota",
1726 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1727 
1728 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1729 		seq_show_option(seq, "prjjquota",
1730 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1731 #endif
1732 }
1733 
1734 #ifdef CONFIG_F2FS_FS_COMPRESSION
1735 static inline void f2fs_show_compress_options(struct seq_file *seq,
1736 							struct super_block *sb)
1737 {
1738 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1739 	char *algtype = "";
1740 	int i;
1741 
1742 	if (!f2fs_sb_has_compression(sbi))
1743 		return;
1744 
1745 	switch (F2FS_OPTION(sbi).compress_algorithm) {
1746 	case COMPRESS_LZO:
1747 		algtype = "lzo";
1748 		break;
1749 	case COMPRESS_LZ4:
1750 		algtype = "lz4";
1751 		break;
1752 	case COMPRESS_ZSTD:
1753 		algtype = "zstd";
1754 		break;
1755 	case COMPRESS_LZORLE:
1756 		algtype = "lzo-rle";
1757 		break;
1758 	}
1759 	seq_printf(seq, ",compress_algorithm=%s", algtype);
1760 
1761 	if (F2FS_OPTION(sbi).compress_level)
1762 		seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level);
1763 
1764 	seq_printf(seq, ",compress_log_size=%u",
1765 			F2FS_OPTION(sbi).compress_log_size);
1766 
1767 	for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1768 		seq_printf(seq, ",compress_extension=%s",
1769 			F2FS_OPTION(sbi).extensions[i]);
1770 	}
1771 
1772 	for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) {
1773 		seq_printf(seq, ",nocompress_extension=%s",
1774 			F2FS_OPTION(sbi).noextensions[i]);
1775 	}
1776 
1777 	if (F2FS_OPTION(sbi).compress_chksum)
1778 		seq_puts(seq, ",compress_chksum");
1779 
1780 	if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS)
1781 		seq_printf(seq, ",compress_mode=%s", "fs");
1782 	else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER)
1783 		seq_printf(seq, ",compress_mode=%s", "user");
1784 
1785 	if (test_opt(sbi, COMPRESS_CACHE))
1786 		seq_puts(seq, ",compress_cache");
1787 }
1788 #endif
1789 
1790 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1791 {
1792 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1793 
1794 	if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
1795 		seq_printf(seq, ",background_gc=%s", "sync");
1796 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
1797 		seq_printf(seq, ",background_gc=%s", "on");
1798 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
1799 		seq_printf(seq, ",background_gc=%s", "off");
1800 
1801 	if (test_opt(sbi, GC_MERGE))
1802 		seq_puts(seq, ",gc_merge");
1803 
1804 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1805 		seq_puts(seq, ",disable_roll_forward");
1806 	if (test_opt(sbi, NORECOVERY))
1807 		seq_puts(seq, ",norecovery");
1808 	if (test_opt(sbi, DISCARD))
1809 		seq_puts(seq, ",discard");
1810 	else
1811 		seq_puts(seq, ",nodiscard");
1812 	if (test_opt(sbi, NOHEAP))
1813 		seq_puts(seq, ",no_heap");
1814 	else
1815 		seq_puts(seq, ",heap");
1816 #ifdef CONFIG_F2FS_FS_XATTR
1817 	if (test_opt(sbi, XATTR_USER))
1818 		seq_puts(seq, ",user_xattr");
1819 	else
1820 		seq_puts(seq, ",nouser_xattr");
1821 	if (test_opt(sbi, INLINE_XATTR))
1822 		seq_puts(seq, ",inline_xattr");
1823 	else
1824 		seq_puts(seq, ",noinline_xattr");
1825 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1826 		seq_printf(seq, ",inline_xattr_size=%u",
1827 					F2FS_OPTION(sbi).inline_xattr_size);
1828 #endif
1829 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1830 	if (test_opt(sbi, POSIX_ACL))
1831 		seq_puts(seq, ",acl");
1832 	else
1833 		seq_puts(seq, ",noacl");
1834 #endif
1835 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1836 		seq_puts(seq, ",disable_ext_identify");
1837 	if (test_opt(sbi, INLINE_DATA))
1838 		seq_puts(seq, ",inline_data");
1839 	else
1840 		seq_puts(seq, ",noinline_data");
1841 	if (test_opt(sbi, INLINE_DENTRY))
1842 		seq_puts(seq, ",inline_dentry");
1843 	else
1844 		seq_puts(seq, ",noinline_dentry");
1845 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1846 		seq_puts(seq, ",flush_merge");
1847 	if (test_opt(sbi, NOBARRIER))
1848 		seq_puts(seq, ",nobarrier");
1849 	if (test_opt(sbi, FASTBOOT))
1850 		seq_puts(seq, ",fastboot");
1851 	if (test_opt(sbi, EXTENT_CACHE))
1852 		seq_puts(seq, ",extent_cache");
1853 	else
1854 		seq_puts(seq, ",noextent_cache");
1855 	if (test_opt(sbi, DATA_FLUSH))
1856 		seq_puts(seq, ",data_flush");
1857 
1858 	seq_puts(seq, ",mode=");
1859 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
1860 		seq_puts(seq, "adaptive");
1861 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
1862 		seq_puts(seq, "lfs");
1863 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1864 	if (test_opt(sbi, RESERVE_ROOT))
1865 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1866 				F2FS_OPTION(sbi).root_reserved_blocks,
1867 				from_kuid_munged(&init_user_ns,
1868 					F2FS_OPTION(sbi).s_resuid),
1869 				from_kgid_munged(&init_user_ns,
1870 					F2FS_OPTION(sbi).s_resgid));
1871 	if (F2FS_IO_SIZE_BITS(sbi))
1872 		seq_printf(seq, ",io_bits=%u",
1873 				F2FS_OPTION(sbi).write_io_size_bits);
1874 #ifdef CONFIG_F2FS_FAULT_INJECTION
1875 	if (test_opt(sbi, FAULT_INJECTION)) {
1876 		seq_printf(seq, ",fault_injection=%u",
1877 				F2FS_OPTION(sbi).fault_info.inject_rate);
1878 		seq_printf(seq, ",fault_type=%u",
1879 				F2FS_OPTION(sbi).fault_info.inject_type);
1880 	}
1881 #endif
1882 #ifdef CONFIG_QUOTA
1883 	if (test_opt(sbi, QUOTA))
1884 		seq_puts(seq, ",quota");
1885 	if (test_opt(sbi, USRQUOTA))
1886 		seq_puts(seq, ",usrquota");
1887 	if (test_opt(sbi, GRPQUOTA))
1888 		seq_puts(seq, ",grpquota");
1889 	if (test_opt(sbi, PRJQUOTA))
1890 		seq_puts(seq, ",prjquota");
1891 #endif
1892 	f2fs_show_quota_options(seq, sbi->sb);
1893 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1894 		seq_printf(seq, ",whint_mode=%s", "user-based");
1895 	else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1896 		seq_printf(seq, ",whint_mode=%s", "fs-based");
1897 
1898 	fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
1899 
1900 	if (sbi->sb->s_flags & SB_INLINECRYPT)
1901 		seq_puts(seq, ",inlinecrypt");
1902 
1903 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1904 		seq_printf(seq, ",alloc_mode=%s", "default");
1905 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1906 		seq_printf(seq, ",alloc_mode=%s", "reuse");
1907 
1908 	if (test_opt(sbi, DISABLE_CHECKPOINT))
1909 		seq_printf(seq, ",checkpoint=disable:%u",
1910 				F2FS_OPTION(sbi).unusable_cap);
1911 	if (test_opt(sbi, MERGE_CHECKPOINT))
1912 		seq_puts(seq, ",checkpoint_merge");
1913 	else
1914 		seq_puts(seq, ",nocheckpoint_merge");
1915 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1916 		seq_printf(seq, ",fsync_mode=%s", "posix");
1917 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1918 		seq_printf(seq, ",fsync_mode=%s", "strict");
1919 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1920 		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1921 
1922 #ifdef CONFIG_F2FS_FS_COMPRESSION
1923 	f2fs_show_compress_options(seq, sbi->sb);
1924 #endif
1925 
1926 	if (test_opt(sbi, ATGC))
1927 		seq_puts(seq, ",atgc");
1928 	return 0;
1929 }
1930 
1931 static void default_options(struct f2fs_sb_info *sbi)
1932 {
1933 	/* init some FS parameters */
1934 	if (f2fs_sb_has_readonly(sbi))
1935 		F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE;
1936 	else
1937 		F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE;
1938 
1939 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1940 	F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1941 	F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1942 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1943 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1944 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1945 	F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
1946 	F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
1947 	F2FS_OPTION(sbi).compress_ext_cnt = 0;
1948 	F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
1949 	F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
1950 
1951 	sbi->sb->s_flags &= ~SB_INLINECRYPT;
1952 
1953 	set_opt(sbi, INLINE_XATTR);
1954 	set_opt(sbi, INLINE_DATA);
1955 	set_opt(sbi, INLINE_DENTRY);
1956 	set_opt(sbi, EXTENT_CACHE);
1957 	set_opt(sbi, NOHEAP);
1958 	clear_opt(sbi, DISABLE_CHECKPOINT);
1959 	set_opt(sbi, MERGE_CHECKPOINT);
1960 	F2FS_OPTION(sbi).unusable_cap = 0;
1961 	sbi->sb->s_flags |= SB_LAZYTIME;
1962 	set_opt(sbi, FLUSH_MERGE);
1963 	set_opt(sbi, DISCARD);
1964 	if (f2fs_sb_has_blkzoned(sbi))
1965 		F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
1966 	else
1967 		F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
1968 
1969 #ifdef CONFIG_F2FS_FS_XATTR
1970 	set_opt(sbi, XATTR_USER);
1971 #endif
1972 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1973 	set_opt(sbi, POSIX_ACL);
1974 #endif
1975 
1976 	f2fs_build_fault_attr(sbi, 0, 0);
1977 }
1978 
1979 #ifdef CONFIG_QUOTA
1980 static int f2fs_enable_quotas(struct super_block *sb);
1981 #endif
1982 
1983 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
1984 {
1985 	unsigned int s_flags = sbi->sb->s_flags;
1986 	struct cp_control cpc;
1987 	int err = 0;
1988 	int ret;
1989 	block_t unusable;
1990 
1991 	if (s_flags & SB_RDONLY) {
1992 		f2fs_err(sbi, "checkpoint=disable on readonly fs");
1993 		return -EINVAL;
1994 	}
1995 	sbi->sb->s_flags |= SB_ACTIVE;
1996 
1997 	f2fs_update_time(sbi, DISABLE_TIME);
1998 
1999 	while (!f2fs_time_over(sbi, DISABLE_TIME)) {
2000 		down_write(&sbi->gc_lock);
2001 		err = f2fs_gc(sbi, true, false, false, NULL_SEGNO);
2002 		if (err == -ENODATA) {
2003 			err = 0;
2004 			break;
2005 		}
2006 		if (err && err != -EAGAIN)
2007 			break;
2008 	}
2009 
2010 	ret = sync_filesystem(sbi->sb);
2011 	if (ret || err) {
2012 		err = ret ? ret : err;
2013 		goto restore_flag;
2014 	}
2015 
2016 	unusable = f2fs_get_unusable_blocks(sbi);
2017 	if (f2fs_disable_cp_again(sbi, unusable)) {
2018 		err = -EAGAIN;
2019 		goto restore_flag;
2020 	}
2021 
2022 	down_write(&sbi->gc_lock);
2023 	cpc.reason = CP_PAUSE;
2024 	set_sbi_flag(sbi, SBI_CP_DISABLED);
2025 	err = f2fs_write_checkpoint(sbi, &cpc);
2026 	if (err)
2027 		goto out_unlock;
2028 
2029 	spin_lock(&sbi->stat_lock);
2030 	sbi->unusable_block_count = unusable;
2031 	spin_unlock(&sbi->stat_lock);
2032 
2033 out_unlock:
2034 	up_write(&sbi->gc_lock);
2035 restore_flag:
2036 	sbi->sb->s_flags = s_flags;	/* Restore SB_RDONLY status */
2037 	return err;
2038 }
2039 
2040 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
2041 {
2042 	/* we should flush all the data to keep data consistency */
2043 	sync_inodes_sb(sbi->sb);
2044 
2045 	down_write(&sbi->gc_lock);
2046 	f2fs_dirty_to_prefree(sbi);
2047 
2048 	clear_sbi_flag(sbi, SBI_CP_DISABLED);
2049 	set_sbi_flag(sbi, SBI_IS_DIRTY);
2050 	up_write(&sbi->gc_lock);
2051 
2052 	f2fs_sync_fs(sbi->sb, 1);
2053 }
2054 
2055 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
2056 {
2057 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2058 	struct f2fs_mount_info org_mount_opt;
2059 	unsigned long old_sb_flags;
2060 	int err;
2061 	bool need_restart_gc = false, need_stop_gc = false;
2062 	bool need_restart_ckpt = false, need_stop_ckpt = false;
2063 	bool need_restart_flush = false, need_stop_flush = false;
2064 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
2065 	bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT);
2066 	bool no_io_align = !F2FS_IO_ALIGNED(sbi);
2067 	bool no_atgc = !test_opt(sbi, ATGC);
2068 	bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE);
2069 	bool checkpoint_changed;
2070 #ifdef CONFIG_QUOTA
2071 	int i, j;
2072 #endif
2073 
2074 	/*
2075 	 * Save the old mount options in case we
2076 	 * need to restore them.
2077 	 */
2078 	org_mount_opt = sbi->mount_opt;
2079 	old_sb_flags = sb->s_flags;
2080 
2081 #ifdef CONFIG_QUOTA
2082 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
2083 	for (i = 0; i < MAXQUOTAS; i++) {
2084 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2085 			org_mount_opt.s_qf_names[i] =
2086 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
2087 				GFP_KERNEL);
2088 			if (!org_mount_opt.s_qf_names[i]) {
2089 				for (j = 0; j < i; j++)
2090 					kfree(org_mount_opt.s_qf_names[j]);
2091 				return -ENOMEM;
2092 			}
2093 		} else {
2094 			org_mount_opt.s_qf_names[i] = NULL;
2095 		}
2096 	}
2097 #endif
2098 
2099 	/* recover superblocks we couldn't write due to previous RO mount */
2100 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
2101 		err = f2fs_commit_super(sbi, false);
2102 		f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
2103 			  err);
2104 		if (!err)
2105 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2106 	}
2107 
2108 	default_options(sbi);
2109 
2110 	/* parse mount options */
2111 	err = parse_options(sb, data, true);
2112 	if (err)
2113 		goto restore_opts;
2114 	checkpoint_changed =
2115 			disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT);
2116 
2117 	/*
2118 	 * Previous and new state of filesystem is RO,
2119 	 * so skip checking GC and FLUSH_MERGE conditions.
2120 	 */
2121 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
2122 		goto skip;
2123 
2124 	if (f2fs_sb_has_readonly(sbi) && !(*flags & SB_RDONLY)) {
2125 		err = -EROFS;
2126 		goto restore_opts;
2127 	}
2128 
2129 #ifdef CONFIG_QUOTA
2130 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
2131 		err = dquot_suspend(sb, -1);
2132 		if (err < 0)
2133 			goto restore_opts;
2134 	} else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
2135 		/* dquot_resume needs RW */
2136 		sb->s_flags &= ~SB_RDONLY;
2137 		if (sb_any_quota_suspended(sb)) {
2138 			dquot_resume(sb, -1);
2139 		} else if (f2fs_sb_has_quota_ino(sbi)) {
2140 			err = f2fs_enable_quotas(sb);
2141 			if (err)
2142 				goto restore_opts;
2143 		}
2144 	}
2145 #endif
2146 	/* disallow enable atgc dynamically */
2147 	if (no_atgc == !!test_opt(sbi, ATGC)) {
2148 		err = -EINVAL;
2149 		f2fs_warn(sbi, "switch atgc option is not allowed");
2150 		goto restore_opts;
2151 	}
2152 
2153 	/* disallow enable/disable extent_cache dynamically */
2154 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
2155 		err = -EINVAL;
2156 		f2fs_warn(sbi, "switch extent_cache option is not allowed");
2157 		goto restore_opts;
2158 	}
2159 
2160 	if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
2161 		err = -EINVAL;
2162 		f2fs_warn(sbi, "switch io_bits option is not allowed");
2163 		goto restore_opts;
2164 	}
2165 
2166 	if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) {
2167 		err = -EINVAL;
2168 		f2fs_warn(sbi, "switch compress_cache option is not allowed");
2169 		goto restore_opts;
2170 	}
2171 
2172 	if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
2173 		err = -EINVAL;
2174 		f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
2175 		goto restore_opts;
2176 	}
2177 
2178 	/*
2179 	 * We stop the GC thread if FS is mounted as RO
2180 	 * or if background_gc = off is passed in mount
2181 	 * option. Also sync the filesystem.
2182 	 */
2183 	if ((*flags & SB_RDONLY) ||
2184 			(F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF &&
2185 			!test_opt(sbi, GC_MERGE))) {
2186 		if (sbi->gc_thread) {
2187 			f2fs_stop_gc_thread(sbi);
2188 			need_restart_gc = true;
2189 		}
2190 	} else if (!sbi->gc_thread) {
2191 		err = f2fs_start_gc_thread(sbi);
2192 		if (err)
2193 			goto restore_opts;
2194 		need_stop_gc = true;
2195 	}
2196 
2197 	if (*flags & SB_RDONLY ||
2198 		F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
2199 		sync_inodes_sb(sb);
2200 
2201 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2202 		set_sbi_flag(sbi, SBI_IS_CLOSE);
2203 		f2fs_sync_fs(sb, 1);
2204 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
2205 	}
2206 
2207 	if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) ||
2208 			!test_opt(sbi, MERGE_CHECKPOINT)) {
2209 		f2fs_stop_ckpt_thread(sbi);
2210 		need_restart_ckpt = true;
2211 	} else {
2212 		err = f2fs_start_ckpt_thread(sbi);
2213 		if (err) {
2214 			f2fs_err(sbi,
2215 			    "Failed to start F2FS issue_checkpoint_thread (%d)",
2216 			    err);
2217 			goto restore_gc;
2218 		}
2219 		need_stop_ckpt = true;
2220 	}
2221 
2222 	/*
2223 	 * We stop issue flush thread if FS is mounted as RO
2224 	 * or if flush_merge is not passed in mount option.
2225 	 */
2226 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
2227 		clear_opt(sbi, FLUSH_MERGE);
2228 		f2fs_destroy_flush_cmd_control(sbi, false);
2229 		need_restart_flush = true;
2230 	} else {
2231 		err = f2fs_create_flush_cmd_control(sbi);
2232 		if (err)
2233 			goto restore_ckpt;
2234 		need_stop_flush = true;
2235 	}
2236 
2237 	if (checkpoint_changed) {
2238 		if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2239 			err = f2fs_disable_checkpoint(sbi);
2240 			if (err)
2241 				goto restore_flush;
2242 		} else {
2243 			f2fs_enable_checkpoint(sbi);
2244 		}
2245 	}
2246 
2247 skip:
2248 #ifdef CONFIG_QUOTA
2249 	/* Release old quota file names */
2250 	for (i = 0; i < MAXQUOTAS; i++)
2251 		kfree(org_mount_opt.s_qf_names[i]);
2252 #endif
2253 	/* Update the POSIXACL Flag */
2254 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2255 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2256 
2257 	limit_reserve_root(sbi);
2258 	adjust_unusable_cap_perc(sbi);
2259 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
2260 	return 0;
2261 restore_flush:
2262 	if (need_restart_flush) {
2263 		if (f2fs_create_flush_cmd_control(sbi))
2264 			f2fs_warn(sbi, "background flush thread has stopped");
2265 	} else if (need_stop_flush) {
2266 		clear_opt(sbi, FLUSH_MERGE);
2267 		f2fs_destroy_flush_cmd_control(sbi, false);
2268 	}
2269 restore_ckpt:
2270 	if (need_restart_ckpt) {
2271 		if (f2fs_start_ckpt_thread(sbi))
2272 			f2fs_warn(sbi, "background ckpt thread has stopped");
2273 	} else if (need_stop_ckpt) {
2274 		f2fs_stop_ckpt_thread(sbi);
2275 	}
2276 restore_gc:
2277 	if (need_restart_gc) {
2278 		if (f2fs_start_gc_thread(sbi))
2279 			f2fs_warn(sbi, "background gc thread has stopped");
2280 	} else if (need_stop_gc) {
2281 		f2fs_stop_gc_thread(sbi);
2282 	}
2283 restore_opts:
2284 #ifdef CONFIG_QUOTA
2285 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
2286 	for (i = 0; i < MAXQUOTAS; i++) {
2287 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
2288 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
2289 	}
2290 #endif
2291 	sbi->mount_opt = org_mount_opt;
2292 	sb->s_flags = old_sb_flags;
2293 	return err;
2294 }
2295 
2296 #ifdef CONFIG_QUOTA
2297 /* Read data from quotafile */
2298 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
2299 			       size_t len, loff_t off)
2300 {
2301 	struct inode *inode = sb_dqopt(sb)->files[type];
2302 	struct address_space *mapping = inode->i_mapping;
2303 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
2304 	int offset = off & (sb->s_blocksize - 1);
2305 	int tocopy;
2306 	size_t toread;
2307 	loff_t i_size = i_size_read(inode);
2308 	struct page *page;
2309 	char *kaddr;
2310 
2311 	if (off > i_size)
2312 		return 0;
2313 
2314 	if (off + len > i_size)
2315 		len = i_size - off;
2316 	toread = len;
2317 	while (toread > 0) {
2318 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
2319 repeat:
2320 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
2321 		if (IS_ERR(page)) {
2322 			if (PTR_ERR(page) == -ENOMEM) {
2323 				congestion_wait(BLK_RW_ASYNC,
2324 						DEFAULT_IO_TIMEOUT);
2325 				goto repeat;
2326 			}
2327 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2328 			return PTR_ERR(page);
2329 		}
2330 
2331 		lock_page(page);
2332 
2333 		if (unlikely(page->mapping != mapping)) {
2334 			f2fs_put_page(page, 1);
2335 			goto repeat;
2336 		}
2337 		if (unlikely(!PageUptodate(page))) {
2338 			f2fs_put_page(page, 1);
2339 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2340 			return -EIO;
2341 		}
2342 
2343 		kaddr = kmap_atomic(page);
2344 		memcpy(data, kaddr + offset, tocopy);
2345 		kunmap_atomic(kaddr);
2346 		f2fs_put_page(page, 1);
2347 
2348 		offset = 0;
2349 		toread -= tocopy;
2350 		data += tocopy;
2351 		blkidx++;
2352 	}
2353 	return len;
2354 }
2355 
2356 /* Write to quotafile */
2357 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
2358 				const char *data, size_t len, loff_t off)
2359 {
2360 	struct inode *inode = sb_dqopt(sb)->files[type];
2361 	struct address_space *mapping = inode->i_mapping;
2362 	const struct address_space_operations *a_ops = mapping->a_ops;
2363 	int offset = off & (sb->s_blocksize - 1);
2364 	size_t towrite = len;
2365 	struct page *page;
2366 	void *fsdata = NULL;
2367 	char *kaddr;
2368 	int err = 0;
2369 	int tocopy;
2370 
2371 	while (towrite > 0) {
2372 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
2373 								towrite);
2374 retry:
2375 		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
2376 							&page, &fsdata);
2377 		if (unlikely(err)) {
2378 			if (err == -ENOMEM) {
2379 				congestion_wait(BLK_RW_ASYNC,
2380 						DEFAULT_IO_TIMEOUT);
2381 				goto retry;
2382 			}
2383 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2384 			break;
2385 		}
2386 
2387 		kaddr = kmap_atomic(page);
2388 		memcpy(kaddr + offset, data, tocopy);
2389 		kunmap_atomic(kaddr);
2390 		flush_dcache_page(page);
2391 
2392 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
2393 						page, fsdata);
2394 		offset = 0;
2395 		towrite -= tocopy;
2396 		off += tocopy;
2397 		data += tocopy;
2398 		cond_resched();
2399 	}
2400 
2401 	if (len == towrite)
2402 		return err;
2403 	inode->i_mtime = inode->i_ctime = current_time(inode);
2404 	f2fs_mark_inode_dirty_sync(inode, false);
2405 	return len - towrite;
2406 }
2407 
2408 static struct dquot **f2fs_get_dquots(struct inode *inode)
2409 {
2410 	return F2FS_I(inode)->i_dquot;
2411 }
2412 
2413 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
2414 {
2415 	return &F2FS_I(inode)->i_reserved_quota;
2416 }
2417 
2418 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
2419 {
2420 	if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
2421 		f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
2422 		return 0;
2423 	}
2424 
2425 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
2426 					F2FS_OPTION(sbi).s_jquota_fmt, type);
2427 }
2428 
2429 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
2430 {
2431 	int enabled = 0;
2432 	int i, err;
2433 
2434 	if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
2435 		err = f2fs_enable_quotas(sbi->sb);
2436 		if (err) {
2437 			f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2438 			return 0;
2439 		}
2440 		return 1;
2441 	}
2442 
2443 	for (i = 0; i < MAXQUOTAS; i++) {
2444 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2445 			err = f2fs_quota_on_mount(sbi, i);
2446 			if (!err) {
2447 				enabled = 1;
2448 				continue;
2449 			}
2450 			f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2451 				 err, i);
2452 		}
2453 	}
2454 	return enabled;
2455 }
2456 
2457 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2458 			     unsigned int flags)
2459 {
2460 	struct inode *qf_inode;
2461 	unsigned long qf_inum;
2462 	int err;
2463 
2464 	BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2465 
2466 	qf_inum = f2fs_qf_ino(sb, type);
2467 	if (!qf_inum)
2468 		return -EPERM;
2469 
2470 	qf_inode = f2fs_iget(sb, qf_inum);
2471 	if (IS_ERR(qf_inode)) {
2472 		f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2473 		return PTR_ERR(qf_inode);
2474 	}
2475 
2476 	/* Don't account quota for quota files to avoid recursion */
2477 	qf_inode->i_flags |= S_NOQUOTA;
2478 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2479 	iput(qf_inode);
2480 	return err;
2481 }
2482 
2483 static int f2fs_enable_quotas(struct super_block *sb)
2484 {
2485 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2486 	int type, err = 0;
2487 	unsigned long qf_inum;
2488 	bool quota_mopt[MAXQUOTAS] = {
2489 		test_opt(sbi, USRQUOTA),
2490 		test_opt(sbi, GRPQUOTA),
2491 		test_opt(sbi, PRJQUOTA),
2492 	};
2493 
2494 	if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2495 		f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2496 		return 0;
2497 	}
2498 
2499 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2500 
2501 	for (type = 0; type < MAXQUOTAS; type++) {
2502 		qf_inum = f2fs_qf_ino(sb, type);
2503 		if (qf_inum) {
2504 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2505 				DQUOT_USAGE_ENABLED |
2506 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2507 			if (err) {
2508 				f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2509 					 type, err);
2510 				for (type--; type >= 0; type--)
2511 					dquot_quota_off(sb, type);
2512 				set_sbi_flag(F2FS_SB(sb),
2513 						SBI_QUOTA_NEED_REPAIR);
2514 				return err;
2515 			}
2516 		}
2517 	}
2518 	return 0;
2519 }
2520 
2521 int f2fs_quota_sync(struct super_block *sb, int type)
2522 {
2523 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2524 	struct quota_info *dqopt = sb_dqopt(sb);
2525 	int cnt;
2526 	int ret;
2527 
2528 	/*
2529 	 * do_quotactl
2530 	 *  f2fs_quota_sync
2531 	 *  down_read(quota_sem)
2532 	 *  dquot_writeback_dquots()
2533 	 *  f2fs_dquot_commit
2534 	 *                            block_operation
2535 	 *                            down_read(quota_sem)
2536 	 */
2537 	f2fs_lock_op(sbi);
2538 
2539 	down_read(&sbi->quota_sem);
2540 	ret = dquot_writeback_dquots(sb, type);
2541 	if (ret)
2542 		goto out;
2543 
2544 	/*
2545 	 * Now when everything is written we can discard the pagecache so
2546 	 * that userspace sees the changes.
2547 	 */
2548 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2549 		struct address_space *mapping;
2550 
2551 		if (type != -1 && cnt != type)
2552 			continue;
2553 		if (!sb_has_quota_active(sb, cnt))
2554 			continue;
2555 
2556 		mapping = dqopt->files[cnt]->i_mapping;
2557 
2558 		ret = filemap_fdatawrite(mapping);
2559 		if (ret)
2560 			goto out;
2561 
2562 		/* if we are using journalled quota */
2563 		if (is_journalled_quota(sbi))
2564 			continue;
2565 
2566 		ret = filemap_fdatawait(mapping);
2567 		if (ret)
2568 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2569 
2570 		inode_lock(dqopt->files[cnt]);
2571 		truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
2572 		inode_unlock(dqopt->files[cnt]);
2573 	}
2574 out:
2575 	if (ret)
2576 		set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2577 	up_read(&sbi->quota_sem);
2578 	f2fs_unlock_op(sbi);
2579 	return ret;
2580 }
2581 
2582 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2583 							const struct path *path)
2584 {
2585 	struct inode *inode;
2586 	int err;
2587 
2588 	/* if quota sysfile exists, deny enabling quota with specific file */
2589 	if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2590 		f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2591 		return -EBUSY;
2592 	}
2593 
2594 	err = f2fs_quota_sync(sb, type);
2595 	if (err)
2596 		return err;
2597 
2598 	err = dquot_quota_on(sb, type, format_id, path);
2599 	if (err)
2600 		return err;
2601 
2602 	inode = d_inode(path->dentry);
2603 
2604 	inode_lock(inode);
2605 	F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2606 	f2fs_set_inode_flags(inode);
2607 	inode_unlock(inode);
2608 	f2fs_mark_inode_dirty_sync(inode, false);
2609 
2610 	return 0;
2611 }
2612 
2613 static int __f2fs_quota_off(struct super_block *sb, int type)
2614 {
2615 	struct inode *inode = sb_dqopt(sb)->files[type];
2616 	int err;
2617 
2618 	if (!inode || !igrab(inode))
2619 		return dquot_quota_off(sb, type);
2620 
2621 	err = f2fs_quota_sync(sb, type);
2622 	if (err)
2623 		goto out_put;
2624 
2625 	err = dquot_quota_off(sb, type);
2626 	if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2627 		goto out_put;
2628 
2629 	inode_lock(inode);
2630 	F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2631 	f2fs_set_inode_flags(inode);
2632 	inode_unlock(inode);
2633 	f2fs_mark_inode_dirty_sync(inode, false);
2634 out_put:
2635 	iput(inode);
2636 	return err;
2637 }
2638 
2639 static int f2fs_quota_off(struct super_block *sb, int type)
2640 {
2641 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2642 	int err;
2643 
2644 	err = __f2fs_quota_off(sb, type);
2645 
2646 	/*
2647 	 * quotactl can shutdown journalled quota, result in inconsistence
2648 	 * between quota record and fs data by following updates, tag the
2649 	 * flag to let fsck be aware of it.
2650 	 */
2651 	if (is_journalled_quota(sbi))
2652 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2653 	return err;
2654 }
2655 
2656 void f2fs_quota_off_umount(struct super_block *sb)
2657 {
2658 	int type;
2659 	int err;
2660 
2661 	for (type = 0; type < MAXQUOTAS; type++) {
2662 		err = __f2fs_quota_off(sb, type);
2663 		if (err) {
2664 			int ret = dquot_quota_off(sb, type);
2665 
2666 			f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2667 				 type, err, ret);
2668 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2669 		}
2670 	}
2671 	/*
2672 	 * In case of checkpoint=disable, we must flush quota blocks.
2673 	 * This can cause NULL exception for node_inode in end_io, since
2674 	 * put_super already dropped it.
2675 	 */
2676 	sync_filesystem(sb);
2677 }
2678 
2679 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2680 {
2681 	struct quota_info *dqopt = sb_dqopt(sb);
2682 	int type;
2683 
2684 	for (type = 0; type < MAXQUOTAS; type++) {
2685 		if (!dqopt->files[type])
2686 			continue;
2687 		f2fs_inode_synced(dqopt->files[type]);
2688 	}
2689 }
2690 
2691 static int f2fs_dquot_commit(struct dquot *dquot)
2692 {
2693 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2694 	int ret;
2695 
2696 	down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
2697 	ret = dquot_commit(dquot);
2698 	if (ret < 0)
2699 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2700 	up_read(&sbi->quota_sem);
2701 	return ret;
2702 }
2703 
2704 static int f2fs_dquot_acquire(struct dquot *dquot)
2705 {
2706 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2707 	int ret;
2708 
2709 	down_read(&sbi->quota_sem);
2710 	ret = dquot_acquire(dquot);
2711 	if (ret < 0)
2712 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2713 	up_read(&sbi->quota_sem);
2714 	return ret;
2715 }
2716 
2717 static int f2fs_dquot_release(struct dquot *dquot)
2718 {
2719 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2720 	int ret = dquot_release(dquot);
2721 
2722 	if (ret < 0)
2723 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2724 	return ret;
2725 }
2726 
2727 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2728 {
2729 	struct super_block *sb = dquot->dq_sb;
2730 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2731 	int ret = dquot_mark_dquot_dirty(dquot);
2732 
2733 	/* if we are using journalled quota */
2734 	if (is_journalled_quota(sbi))
2735 		set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2736 
2737 	return ret;
2738 }
2739 
2740 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2741 {
2742 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2743 	int ret = dquot_commit_info(sb, type);
2744 
2745 	if (ret < 0)
2746 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2747 	return ret;
2748 }
2749 
2750 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2751 {
2752 	*projid = F2FS_I(inode)->i_projid;
2753 	return 0;
2754 }
2755 
2756 static const struct dquot_operations f2fs_quota_operations = {
2757 	.get_reserved_space = f2fs_get_reserved_space,
2758 	.write_dquot	= f2fs_dquot_commit,
2759 	.acquire_dquot	= f2fs_dquot_acquire,
2760 	.release_dquot	= f2fs_dquot_release,
2761 	.mark_dirty	= f2fs_dquot_mark_dquot_dirty,
2762 	.write_info	= f2fs_dquot_commit_info,
2763 	.alloc_dquot	= dquot_alloc,
2764 	.destroy_dquot	= dquot_destroy,
2765 	.get_projid	= f2fs_get_projid,
2766 	.get_next_id	= dquot_get_next_id,
2767 };
2768 
2769 static const struct quotactl_ops f2fs_quotactl_ops = {
2770 	.quota_on	= f2fs_quota_on,
2771 	.quota_off	= f2fs_quota_off,
2772 	.quota_sync	= f2fs_quota_sync,
2773 	.get_state	= dquot_get_state,
2774 	.set_info	= dquot_set_dqinfo,
2775 	.get_dqblk	= dquot_get_dqblk,
2776 	.set_dqblk	= dquot_set_dqblk,
2777 	.get_nextdqblk	= dquot_get_next_dqblk,
2778 };
2779 #else
2780 int f2fs_quota_sync(struct super_block *sb, int type)
2781 {
2782 	return 0;
2783 }
2784 
2785 void f2fs_quota_off_umount(struct super_block *sb)
2786 {
2787 }
2788 #endif
2789 
2790 static const struct super_operations f2fs_sops = {
2791 	.alloc_inode	= f2fs_alloc_inode,
2792 	.free_inode	= f2fs_free_inode,
2793 	.drop_inode	= f2fs_drop_inode,
2794 	.write_inode	= f2fs_write_inode,
2795 	.dirty_inode	= f2fs_dirty_inode,
2796 	.show_options	= f2fs_show_options,
2797 #ifdef CONFIG_QUOTA
2798 	.quota_read	= f2fs_quota_read,
2799 	.quota_write	= f2fs_quota_write,
2800 	.get_dquots	= f2fs_get_dquots,
2801 #endif
2802 	.evict_inode	= f2fs_evict_inode,
2803 	.put_super	= f2fs_put_super,
2804 	.sync_fs	= f2fs_sync_fs,
2805 	.freeze_fs	= f2fs_freeze,
2806 	.unfreeze_fs	= f2fs_unfreeze,
2807 	.statfs		= f2fs_statfs,
2808 	.remount_fs	= f2fs_remount,
2809 };
2810 
2811 #ifdef CONFIG_FS_ENCRYPTION
2812 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2813 {
2814 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2815 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2816 				ctx, len, NULL);
2817 }
2818 
2819 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2820 							void *fs_data)
2821 {
2822 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2823 
2824 	/*
2825 	 * Encrypting the root directory is not allowed because fsck
2826 	 * expects lost+found directory to exist and remain unencrypted
2827 	 * if LOST_FOUND feature is enabled.
2828 	 *
2829 	 */
2830 	if (f2fs_sb_has_lost_found(sbi) &&
2831 			inode->i_ino == F2FS_ROOT_INO(sbi))
2832 		return -EPERM;
2833 
2834 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2835 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2836 				ctx, len, fs_data, XATTR_CREATE);
2837 }
2838 
2839 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb)
2840 {
2841 	return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy;
2842 }
2843 
2844 static bool f2fs_has_stable_inodes(struct super_block *sb)
2845 {
2846 	return true;
2847 }
2848 
2849 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
2850 				       int *ino_bits_ret, int *lblk_bits_ret)
2851 {
2852 	*ino_bits_ret = 8 * sizeof(nid_t);
2853 	*lblk_bits_ret = 8 * sizeof(block_t);
2854 }
2855 
2856 static int f2fs_get_num_devices(struct super_block *sb)
2857 {
2858 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2859 
2860 	if (f2fs_is_multi_device(sbi))
2861 		return sbi->s_ndevs;
2862 	return 1;
2863 }
2864 
2865 static void f2fs_get_devices(struct super_block *sb,
2866 			     struct request_queue **devs)
2867 {
2868 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2869 	int i;
2870 
2871 	for (i = 0; i < sbi->s_ndevs; i++)
2872 		devs[i] = bdev_get_queue(FDEV(i).bdev);
2873 }
2874 
2875 static const struct fscrypt_operations f2fs_cryptops = {
2876 	.key_prefix		= "f2fs:",
2877 	.get_context		= f2fs_get_context,
2878 	.set_context		= f2fs_set_context,
2879 	.get_dummy_policy	= f2fs_get_dummy_policy,
2880 	.empty_dir		= f2fs_empty_dir,
2881 	.max_namelen		= F2FS_NAME_LEN,
2882 	.has_stable_inodes	= f2fs_has_stable_inodes,
2883 	.get_ino_and_lblk_bits	= f2fs_get_ino_and_lblk_bits,
2884 	.get_num_devices	= f2fs_get_num_devices,
2885 	.get_devices		= f2fs_get_devices,
2886 };
2887 #endif
2888 
2889 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2890 		u64 ino, u32 generation)
2891 {
2892 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2893 	struct inode *inode;
2894 
2895 	if (f2fs_check_nid_range(sbi, ino))
2896 		return ERR_PTR(-ESTALE);
2897 
2898 	/*
2899 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
2900 	 * However f2fs_iget currently does appropriate checks to handle stale
2901 	 * inodes so everything is OK.
2902 	 */
2903 	inode = f2fs_iget(sb, ino);
2904 	if (IS_ERR(inode))
2905 		return ERR_CAST(inode);
2906 	if (unlikely(generation && inode->i_generation != generation)) {
2907 		/* we didn't find the right inode.. */
2908 		iput(inode);
2909 		return ERR_PTR(-ESTALE);
2910 	}
2911 	return inode;
2912 }
2913 
2914 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2915 		int fh_len, int fh_type)
2916 {
2917 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2918 				    f2fs_nfs_get_inode);
2919 }
2920 
2921 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2922 		int fh_len, int fh_type)
2923 {
2924 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2925 				    f2fs_nfs_get_inode);
2926 }
2927 
2928 static const struct export_operations f2fs_export_ops = {
2929 	.fh_to_dentry = f2fs_fh_to_dentry,
2930 	.fh_to_parent = f2fs_fh_to_parent,
2931 	.get_parent = f2fs_get_parent,
2932 };
2933 
2934 loff_t max_file_blocks(struct inode *inode)
2935 {
2936 	loff_t result = 0;
2937 	loff_t leaf_count;
2938 
2939 	/*
2940 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2941 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2942 	 * space in inode.i_addr, it will be more safe to reassign
2943 	 * result as zero.
2944 	 */
2945 
2946 	if (inode && f2fs_compressed_file(inode))
2947 		leaf_count = ADDRS_PER_BLOCK(inode);
2948 	else
2949 		leaf_count = DEF_ADDRS_PER_BLOCK;
2950 
2951 	/* two direct node blocks */
2952 	result += (leaf_count * 2);
2953 
2954 	/* two indirect node blocks */
2955 	leaf_count *= NIDS_PER_BLOCK;
2956 	result += (leaf_count * 2);
2957 
2958 	/* one double indirect node block */
2959 	leaf_count *= NIDS_PER_BLOCK;
2960 	result += leaf_count;
2961 
2962 	return result;
2963 }
2964 
2965 static int __f2fs_commit_super(struct buffer_head *bh,
2966 			struct f2fs_super_block *super)
2967 {
2968 	lock_buffer(bh);
2969 	if (super)
2970 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2971 	set_buffer_dirty(bh);
2972 	unlock_buffer(bh);
2973 
2974 	/* it's rare case, we can do fua all the time */
2975 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2976 }
2977 
2978 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2979 					struct buffer_head *bh)
2980 {
2981 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2982 					(bh->b_data + F2FS_SUPER_OFFSET);
2983 	struct super_block *sb = sbi->sb;
2984 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2985 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2986 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2987 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2988 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2989 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2990 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2991 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2992 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2993 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2994 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2995 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
2996 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2997 	u64 main_end_blkaddr = main_blkaddr +
2998 				(segment_count_main << log_blocks_per_seg);
2999 	u64 seg_end_blkaddr = segment0_blkaddr +
3000 				(segment_count << log_blocks_per_seg);
3001 
3002 	if (segment0_blkaddr != cp_blkaddr) {
3003 		f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
3004 			  segment0_blkaddr, cp_blkaddr);
3005 		return true;
3006 	}
3007 
3008 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
3009 							sit_blkaddr) {
3010 		f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
3011 			  cp_blkaddr, sit_blkaddr,
3012 			  segment_count_ckpt << log_blocks_per_seg);
3013 		return true;
3014 	}
3015 
3016 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
3017 							nat_blkaddr) {
3018 		f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
3019 			  sit_blkaddr, nat_blkaddr,
3020 			  segment_count_sit << log_blocks_per_seg);
3021 		return true;
3022 	}
3023 
3024 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
3025 							ssa_blkaddr) {
3026 		f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
3027 			  nat_blkaddr, ssa_blkaddr,
3028 			  segment_count_nat << log_blocks_per_seg);
3029 		return true;
3030 	}
3031 
3032 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
3033 							main_blkaddr) {
3034 		f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
3035 			  ssa_blkaddr, main_blkaddr,
3036 			  segment_count_ssa << log_blocks_per_seg);
3037 		return true;
3038 	}
3039 
3040 	if (main_end_blkaddr > seg_end_blkaddr) {
3041 		f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)",
3042 			  main_blkaddr, seg_end_blkaddr,
3043 			  segment_count_main << log_blocks_per_seg);
3044 		return true;
3045 	} else if (main_end_blkaddr < seg_end_blkaddr) {
3046 		int err = 0;
3047 		char *res;
3048 
3049 		/* fix in-memory information all the time */
3050 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
3051 				segment0_blkaddr) >> log_blocks_per_seg);
3052 
3053 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
3054 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3055 			res = "internally";
3056 		} else {
3057 			err = __f2fs_commit_super(bh, NULL);
3058 			res = err ? "failed" : "done";
3059 		}
3060 		f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)",
3061 			  res, main_blkaddr, seg_end_blkaddr,
3062 			  segment_count_main << log_blocks_per_seg);
3063 		if (err)
3064 			return true;
3065 	}
3066 	return false;
3067 }
3068 
3069 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
3070 				struct buffer_head *bh)
3071 {
3072 	block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main;
3073 	block_t total_sections, blocks_per_seg;
3074 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
3075 					(bh->b_data + F2FS_SUPER_OFFSET);
3076 	size_t crc_offset = 0;
3077 	__u32 crc = 0;
3078 
3079 	if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
3080 		f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
3081 			  F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
3082 		return -EINVAL;
3083 	}
3084 
3085 	/* Check checksum_offset and crc in superblock */
3086 	if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
3087 		crc_offset = le32_to_cpu(raw_super->checksum_offset);
3088 		if (crc_offset !=
3089 			offsetof(struct f2fs_super_block, crc)) {
3090 			f2fs_info(sbi, "Invalid SB checksum offset: %zu",
3091 				  crc_offset);
3092 			return -EFSCORRUPTED;
3093 		}
3094 		crc = le32_to_cpu(raw_super->crc);
3095 		if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
3096 			f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
3097 			return -EFSCORRUPTED;
3098 		}
3099 	}
3100 
3101 	/* Currently, support only 4KB block size */
3102 	if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) {
3103 		f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u",
3104 			  le32_to_cpu(raw_super->log_blocksize),
3105 			  F2FS_BLKSIZE_BITS);
3106 		return -EFSCORRUPTED;
3107 	}
3108 
3109 	/* check log blocks per segment */
3110 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
3111 		f2fs_info(sbi, "Invalid log blocks per segment (%u)",
3112 			  le32_to_cpu(raw_super->log_blocks_per_seg));
3113 		return -EFSCORRUPTED;
3114 	}
3115 
3116 	/* Currently, support 512/1024/2048/4096 bytes sector size */
3117 	if (le32_to_cpu(raw_super->log_sectorsize) >
3118 				F2FS_MAX_LOG_SECTOR_SIZE ||
3119 		le32_to_cpu(raw_super->log_sectorsize) <
3120 				F2FS_MIN_LOG_SECTOR_SIZE) {
3121 		f2fs_info(sbi, "Invalid log sectorsize (%u)",
3122 			  le32_to_cpu(raw_super->log_sectorsize));
3123 		return -EFSCORRUPTED;
3124 	}
3125 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
3126 		le32_to_cpu(raw_super->log_sectorsize) !=
3127 			F2FS_MAX_LOG_SECTOR_SIZE) {
3128 		f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
3129 			  le32_to_cpu(raw_super->log_sectors_per_block),
3130 			  le32_to_cpu(raw_super->log_sectorsize));
3131 		return -EFSCORRUPTED;
3132 	}
3133 
3134 	segment_count = le32_to_cpu(raw_super->segment_count);
3135 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3136 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3137 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3138 	total_sections = le32_to_cpu(raw_super->section_count);
3139 
3140 	/* blocks_per_seg should be 512, given the above check */
3141 	blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
3142 
3143 	if (segment_count > F2FS_MAX_SEGMENT ||
3144 				segment_count < F2FS_MIN_SEGMENTS) {
3145 		f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
3146 		return -EFSCORRUPTED;
3147 	}
3148 
3149 	if (total_sections > segment_count_main || total_sections < 1 ||
3150 			segs_per_sec > segment_count || !segs_per_sec) {
3151 		f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
3152 			  segment_count, total_sections, segs_per_sec);
3153 		return -EFSCORRUPTED;
3154 	}
3155 
3156 	if (segment_count_main != total_sections * segs_per_sec) {
3157 		f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)",
3158 			  segment_count_main, total_sections, segs_per_sec);
3159 		return -EFSCORRUPTED;
3160 	}
3161 
3162 	if ((segment_count / segs_per_sec) < total_sections) {
3163 		f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
3164 			  segment_count, segs_per_sec, total_sections);
3165 		return -EFSCORRUPTED;
3166 	}
3167 
3168 	if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
3169 		f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
3170 			  segment_count, le64_to_cpu(raw_super->block_count));
3171 		return -EFSCORRUPTED;
3172 	}
3173 
3174 	if (RDEV(0).path[0]) {
3175 		block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
3176 		int i = 1;
3177 
3178 		while (i < MAX_DEVICES && RDEV(i).path[0]) {
3179 			dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
3180 			i++;
3181 		}
3182 		if (segment_count != dev_seg_count) {
3183 			f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
3184 					segment_count, dev_seg_count);
3185 			return -EFSCORRUPTED;
3186 		}
3187 	} else {
3188 		if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) &&
3189 					!bdev_is_zoned(sbi->sb->s_bdev)) {
3190 			f2fs_info(sbi, "Zoned block device path is missing");
3191 			return -EFSCORRUPTED;
3192 		}
3193 	}
3194 
3195 	if (secs_per_zone > total_sections || !secs_per_zone) {
3196 		f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
3197 			  secs_per_zone, total_sections);
3198 		return -EFSCORRUPTED;
3199 	}
3200 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
3201 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
3202 			(le32_to_cpu(raw_super->extension_count) +
3203 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
3204 		f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
3205 			  le32_to_cpu(raw_super->extension_count),
3206 			  raw_super->hot_ext_count,
3207 			  F2FS_MAX_EXTENSION);
3208 		return -EFSCORRUPTED;
3209 	}
3210 
3211 	if (le32_to_cpu(raw_super->cp_payload) >
3212 				(blocks_per_seg - F2FS_CP_PACKS)) {
3213 		f2fs_info(sbi, "Insane cp_payload (%u > %u)",
3214 			  le32_to_cpu(raw_super->cp_payload),
3215 			  blocks_per_seg - F2FS_CP_PACKS);
3216 		return -EFSCORRUPTED;
3217 	}
3218 
3219 	/* check reserved ino info */
3220 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
3221 		le32_to_cpu(raw_super->meta_ino) != 2 ||
3222 		le32_to_cpu(raw_super->root_ino) != 3) {
3223 		f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
3224 			  le32_to_cpu(raw_super->node_ino),
3225 			  le32_to_cpu(raw_super->meta_ino),
3226 			  le32_to_cpu(raw_super->root_ino));
3227 		return -EFSCORRUPTED;
3228 	}
3229 
3230 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
3231 	if (sanity_check_area_boundary(sbi, bh))
3232 		return -EFSCORRUPTED;
3233 
3234 	return 0;
3235 }
3236 
3237 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
3238 {
3239 	unsigned int total, fsmeta;
3240 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3241 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3242 	unsigned int ovp_segments, reserved_segments;
3243 	unsigned int main_segs, blocks_per_seg;
3244 	unsigned int sit_segs, nat_segs;
3245 	unsigned int sit_bitmap_size, nat_bitmap_size;
3246 	unsigned int log_blocks_per_seg;
3247 	unsigned int segment_count_main;
3248 	unsigned int cp_pack_start_sum, cp_payload;
3249 	block_t user_block_count, valid_user_blocks;
3250 	block_t avail_node_count, valid_node_count;
3251 	int i, j;
3252 
3253 	total = le32_to_cpu(raw_super->segment_count);
3254 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
3255 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
3256 	fsmeta += sit_segs;
3257 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
3258 	fsmeta += nat_segs;
3259 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
3260 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
3261 
3262 	if (unlikely(fsmeta >= total))
3263 		return 1;
3264 
3265 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3266 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3267 
3268 	if (!f2fs_sb_has_readonly(sbi) &&
3269 			unlikely(fsmeta < F2FS_MIN_META_SEGMENTS ||
3270 			ovp_segments == 0 || reserved_segments == 0)) {
3271 		f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
3272 		return 1;
3273 	}
3274 	user_block_count = le64_to_cpu(ckpt->user_block_count);
3275 	segment_count_main = le32_to_cpu(raw_super->segment_count_main) +
3276 			(f2fs_sb_has_readonly(sbi) ? 1 : 0);
3277 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3278 	if (!user_block_count || user_block_count >=
3279 			segment_count_main << log_blocks_per_seg) {
3280 		f2fs_err(sbi, "Wrong user_block_count: %u",
3281 			 user_block_count);
3282 		return 1;
3283 	}
3284 
3285 	valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
3286 	if (valid_user_blocks > user_block_count) {
3287 		f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
3288 			 valid_user_blocks, user_block_count);
3289 		return 1;
3290 	}
3291 
3292 	valid_node_count = le32_to_cpu(ckpt->valid_node_count);
3293 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
3294 	if (valid_node_count > avail_node_count) {
3295 		f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
3296 			 valid_node_count, avail_node_count);
3297 		return 1;
3298 	}
3299 
3300 	main_segs = le32_to_cpu(raw_super->segment_count_main);
3301 	blocks_per_seg = sbi->blocks_per_seg;
3302 
3303 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3304 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
3305 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
3306 			return 1;
3307 
3308 		if (f2fs_sb_has_readonly(sbi))
3309 			goto check_data;
3310 
3311 		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
3312 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3313 				le32_to_cpu(ckpt->cur_node_segno[j])) {
3314 				f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
3315 					 i, j,
3316 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3317 				return 1;
3318 			}
3319 		}
3320 	}
3321 check_data:
3322 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
3323 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
3324 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
3325 			return 1;
3326 
3327 		if (f2fs_sb_has_readonly(sbi))
3328 			goto skip_cross;
3329 
3330 		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
3331 			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
3332 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3333 				f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
3334 					 i, j,
3335 					 le32_to_cpu(ckpt->cur_data_segno[i]));
3336 				return 1;
3337 			}
3338 		}
3339 	}
3340 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3341 		for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
3342 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3343 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3344 				f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
3345 					 i, j,
3346 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3347 				return 1;
3348 			}
3349 		}
3350 	}
3351 skip_cross:
3352 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
3353 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
3354 
3355 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
3356 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
3357 		f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
3358 			 sit_bitmap_size, nat_bitmap_size);
3359 		return 1;
3360 	}
3361 
3362 	cp_pack_start_sum = __start_sum_addr(sbi);
3363 	cp_payload = __cp_payload(sbi);
3364 	if (cp_pack_start_sum < cp_payload + 1 ||
3365 		cp_pack_start_sum > blocks_per_seg - 1 -
3366 			NR_CURSEG_PERSIST_TYPE) {
3367 		f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
3368 			 cp_pack_start_sum);
3369 		return 1;
3370 	}
3371 
3372 	if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
3373 		le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
3374 		f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
3375 			  "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
3376 			  "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
3377 			  le32_to_cpu(ckpt->checksum_offset));
3378 		return 1;
3379 	}
3380 
3381 	if (unlikely(f2fs_cp_error(sbi))) {
3382 		f2fs_err(sbi, "A bug case: need to run fsck");
3383 		return 1;
3384 	}
3385 	return 0;
3386 }
3387 
3388 static void init_sb_info(struct f2fs_sb_info *sbi)
3389 {
3390 	struct f2fs_super_block *raw_super = sbi->raw_super;
3391 	int i;
3392 
3393 	sbi->log_sectors_per_block =
3394 		le32_to_cpu(raw_super->log_sectors_per_block);
3395 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
3396 	sbi->blocksize = 1 << sbi->log_blocksize;
3397 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3398 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
3399 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3400 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3401 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
3402 	sbi->total_node_count =
3403 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
3404 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
3405 	F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino);
3406 	F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino);
3407 	F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino);
3408 	sbi->cur_victim_sec = NULL_SECNO;
3409 	sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
3410 	sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
3411 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
3412 	sbi->migration_granularity = sbi->segs_per_sec;
3413 
3414 	sbi->dir_level = DEF_DIR_LEVEL;
3415 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
3416 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
3417 	sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
3418 	sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
3419 	sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
3420 	sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
3421 				DEF_UMOUNT_DISCARD_TIMEOUT;
3422 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
3423 
3424 	for (i = 0; i < NR_COUNT_TYPE; i++)
3425 		atomic_set(&sbi->nr_pages[i], 0);
3426 
3427 	for (i = 0; i < META; i++)
3428 		atomic_set(&sbi->wb_sync_req[i], 0);
3429 
3430 	INIT_LIST_HEAD(&sbi->s_list);
3431 	mutex_init(&sbi->umount_mutex);
3432 	init_rwsem(&sbi->io_order_lock);
3433 	spin_lock_init(&sbi->cp_lock);
3434 
3435 	sbi->dirty_device = 0;
3436 	spin_lock_init(&sbi->dev_lock);
3437 
3438 	init_rwsem(&sbi->sb_lock);
3439 	init_rwsem(&sbi->pin_sem);
3440 }
3441 
3442 static int init_percpu_info(struct f2fs_sb_info *sbi)
3443 {
3444 	int err;
3445 
3446 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
3447 	if (err)
3448 		return err;
3449 
3450 	err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
3451 								GFP_KERNEL);
3452 	if (err)
3453 		percpu_counter_destroy(&sbi->alloc_valid_block_count);
3454 
3455 	return err;
3456 }
3457 
3458 #ifdef CONFIG_BLK_DEV_ZONED
3459 
3460 struct f2fs_report_zones_args {
3461 	struct f2fs_dev_info *dev;
3462 	bool zone_cap_mismatch;
3463 };
3464 
3465 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
3466 			      void *data)
3467 {
3468 	struct f2fs_report_zones_args *rz_args = data;
3469 
3470 	if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
3471 		return 0;
3472 
3473 	set_bit(idx, rz_args->dev->blkz_seq);
3474 	rz_args->dev->zone_capacity_blocks[idx] = zone->capacity >>
3475 						F2FS_LOG_SECTORS_PER_BLOCK;
3476 	if (zone->len != zone->capacity && !rz_args->zone_cap_mismatch)
3477 		rz_args->zone_cap_mismatch = true;
3478 
3479 	return 0;
3480 }
3481 
3482 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
3483 {
3484 	struct block_device *bdev = FDEV(devi).bdev;
3485 	sector_t nr_sectors = bdev_nr_sectors(bdev);
3486 	struct f2fs_report_zones_args rep_zone_arg;
3487 	int ret;
3488 
3489 	if (!f2fs_sb_has_blkzoned(sbi))
3490 		return 0;
3491 
3492 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3493 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
3494 		return -EINVAL;
3495 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
3496 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
3497 				__ilog2_u32(sbi->blocks_per_blkz))
3498 		return -EINVAL;
3499 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
3500 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
3501 					sbi->log_blocks_per_blkz;
3502 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
3503 		FDEV(devi).nr_blkz++;
3504 
3505 	FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
3506 					BITS_TO_LONGS(FDEV(devi).nr_blkz)
3507 					* sizeof(unsigned long),
3508 					GFP_KERNEL);
3509 	if (!FDEV(devi).blkz_seq)
3510 		return -ENOMEM;
3511 
3512 	/* Get block zones type and zone-capacity */
3513 	FDEV(devi).zone_capacity_blocks = f2fs_kzalloc(sbi,
3514 					FDEV(devi).nr_blkz * sizeof(block_t),
3515 					GFP_KERNEL);
3516 	if (!FDEV(devi).zone_capacity_blocks)
3517 		return -ENOMEM;
3518 
3519 	rep_zone_arg.dev = &FDEV(devi);
3520 	rep_zone_arg.zone_cap_mismatch = false;
3521 
3522 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3523 				  &rep_zone_arg);
3524 	if (ret < 0)
3525 		return ret;
3526 
3527 	if (!rep_zone_arg.zone_cap_mismatch) {
3528 		kfree(FDEV(devi).zone_capacity_blocks);
3529 		FDEV(devi).zone_capacity_blocks = NULL;
3530 	}
3531 
3532 	return 0;
3533 }
3534 #endif
3535 
3536 /*
3537  * Read f2fs raw super block.
3538  * Because we have two copies of super block, so read both of them
3539  * to get the first valid one. If any one of them is broken, we pass
3540  * them recovery flag back to the caller.
3541  */
3542 static int read_raw_super_block(struct f2fs_sb_info *sbi,
3543 			struct f2fs_super_block **raw_super,
3544 			int *valid_super_block, int *recovery)
3545 {
3546 	struct super_block *sb = sbi->sb;
3547 	int block;
3548 	struct buffer_head *bh;
3549 	struct f2fs_super_block *super;
3550 	int err = 0;
3551 
3552 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3553 	if (!super)
3554 		return -ENOMEM;
3555 
3556 	for (block = 0; block < 2; block++) {
3557 		bh = sb_bread(sb, block);
3558 		if (!bh) {
3559 			f2fs_err(sbi, "Unable to read %dth superblock",
3560 				 block + 1);
3561 			err = -EIO;
3562 			*recovery = 1;
3563 			continue;
3564 		}
3565 
3566 		/* sanity checking of raw super */
3567 		err = sanity_check_raw_super(sbi, bh);
3568 		if (err) {
3569 			f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3570 				 block + 1);
3571 			brelse(bh);
3572 			*recovery = 1;
3573 			continue;
3574 		}
3575 
3576 		if (!*raw_super) {
3577 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3578 							sizeof(*super));
3579 			*valid_super_block = block;
3580 			*raw_super = super;
3581 		}
3582 		brelse(bh);
3583 	}
3584 
3585 	/* No valid superblock */
3586 	if (!*raw_super)
3587 		kfree(super);
3588 	else
3589 		err = 0;
3590 
3591 	return err;
3592 }
3593 
3594 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3595 {
3596 	struct buffer_head *bh;
3597 	__u32 crc = 0;
3598 	int err;
3599 
3600 	if ((recover && f2fs_readonly(sbi->sb)) ||
3601 				bdev_read_only(sbi->sb->s_bdev)) {
3602 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3603 		return -EROFS;
3604 	}
3605 
3606 	/* we should update superblock crc here */
3607 	if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3608 		crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3609 				offsetof(struct f2fs_super_block, crc));
3610 		F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3611 	}
3612 
3613 	/* write back-up superblock first */
3614 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3615 	if (!bh)
3616 		return -EIO;
3617 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3618 	brelse(bh);
3619 
3620 	/* if we are in recovery path, skip writing valid superblock */
3621 	if (recover || err)
3622 		return err;
3623 
3624 	/* write current valid superblock */
3625 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
3626 	if (!bh)
3627 		return -EIO;
3628 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3629 	brelse(bh);
3630 	return err;
3631 }
3632 
3633 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3634 {
3635 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3636 	unsigned int max_devices = MAX_DEVICES;
3637 	int i;
3638 
3639 	/* Initialize single device information */
3640 	if (!RDEV(0).path[0]) {
3641 		if (!bdev_is_zoned(sbi->sb->s_bdev))
3642 			return 0;
3643 		max_devices = 1;
3644 	}
3645 
3646 	/*
3647 	 * Initialize multiple devices information, or single
3648 	 * zoned block device information.
3649 	 */
3650 	sbi->devs = f2fs_kzalloc(sbi,
3651 				 array_size(max_devices,
3652 					    sizeof(struct f2fs_dev_info)),
3653 				 GFP_KERNEL);
3654 	if (!sbi->devs)
3655 		return -ENOMEM;
3656 
3657 	for (i = 0; i < max_devices; i++) {
3658 
3659 		if (i > 0 && !RDEV(i).path[0])
3660 			break;
3661 
3662 		if (max_devices == 1) {
3663 			/* Single zoned block device mount */
3664 			FDEV(0).bdev =
3665 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3666 					sbi->sb->s_mode, sbi->sb->s_type);
3667 		} else {
3668 			/* Multi-device mount */
3669 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3670 			FDEV(i).total_segments =
3671 				le32_to_cpu(RDEV(i).total_segments);
3672 			if (i == 0) {
3673 				FDEV(i).start_blk = 0;
3674 				FDEV(i).end_blk = FDEV(i).start_blk +
3675 				    (FDEV(i).total_segments <<
3676 				    sbi->log_blocks_per_seg) - 1 +
3677 				    le32_to_cpu(raw_super->segment0_blkaddr);
3678 			} else {
3679 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3680 				FDEV(i).end_blk = FDEV(i).start_blk +
3681 					(FDEV(i).total_segments <<
3682 					sbi->log_blocks_per_seg) - 1;
3683 			}
3684 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3685 					sbi->sb->s_mode, sbi->sb->s_type);
3686 		}
3687 		if (IS_ERR(FDEV(i).bdev))
3688 			return PTR_ERR(FDEV(i).bdev);
3689 
3690 		/* to release errored devices */
3691 		sbi->s_ndevs = i + 1;
3692 
3693 #ifdef CONFIG_BLK_DEV_ZONED
3694 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3695 				!f2fs_sb_has_blkzoned(sbi)) {
3696 			f2fs_err(sbi, "Zoned block device feature not enabled");
3697 			return -EINVAL;
3698 		}
3699 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3700 			if (init_blkz_info(sbi, i)) {
3701 				f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
3702 				return -EINVAL;
3703 			}
3704 			if (max_devices == 1)
3705 				break;
3706 			f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3707 				  i, FDEV(i).path,
3708 				  FDEV(i).total_segments,
3709 				  FDEV(i).start_blk, FDEV(i).end_blk,
3710 				  bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3711 				  "Host-aware" : "Host-managed");
3712 			continue;
3713 		}
3714 #endif
3715 		f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3716 			  i, FDEV(i).path,
3717 			  FDEV(i).total_segments,
3718 			  FDEV(i).start_blk, FDEV(i).end_blk);
3719 	}
3720 	f2fs_info(sbi,
3721 		  "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3722 	return 0;
3723 }
3724 
3725 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
3726 {
3727 #ifdef CONFIG_UNICODE
3728 	if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) {
3729 		const struct f2fs_sb_encodings *encoding_info;
3730 		struct unicode_map *encoding;
3731 		__u16 encoding_flags;
3732 
3733 		if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info,
3734 					  &encoding_flags)) {
3735 			f2fs_err(sbi,
3736 				 "Encoding requested by superblock is unknown");
3737 			return -EINVAL;
3738 		}
3739 
3740 		encoding = utf8_load(encoding_info->version);
3741 		if (IS_ERR(encoding)) {
3742 			f2fs_err(sbi,
3743 				 "can't mount with superblock charset: %s-%s "
3744 				 "not supported by the kernel. flags: 0x%x.",
3745 				 encoding_info->name, encoding_info->version,
3746 				 encoding_flags);
3747 			return PTR_ERR(encoding);
3748 		}
3749 		f2fs_info(sbi, "Using encoding defined by superblock: "
3750 			 "%s-%s with flags 0x%hx", encoding_info->name,
3751 			 encoding_info->version?:"\b", encoding_flags);
3752 
3753 		sbi->sb->s_encoding = encoding;
3754 		sbi->sb->s_encoding_flags = encoding_flags;
3755 	}
3756 #else
3757 	if (f2fs_sb_has_casefold(sbi)) {
3758 		f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
3759 		return -EINVAL;
3760 	}
3761 #endif
3762 	return 0;
3763 }
3764 
3765 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3766 {
3767 	struct f2fs_sm_info *sm_i = SM_I(sbi);
3768 
3769 	/* adjust parameters according to the volume size */
3770 	if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3771 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3772 		sm_i->dcc_info->discard_granularity = 1;
3773 		sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3774 	}
3775 
3776 	sbi->readdir_ra = 1;
3777 }
3778 
3779 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3780 {
3781 	struct f2fs_sb_info *sbi;
3782 	struct f2fs_super_block *raw_super;
3783 	struct inode *root;
3784 	int err;
3785 	bool skip_recovery = false, need_fsck = false;
3786 	char *options = NULL;
3787 	int recovery, i, valid_super_block;
3788 	struct curseg_info *seg_i;
3789 	int retry_cnt = 1;
3790 
3791 try_onemore:
3792 	err = -EINVAL;
3793 	raw_super = NULL;
3794 	valid_super_block = -1;
3795 	recovery = 0;
3796 
3797 	/* allocate memory for f2fs-specific super block info */
3798 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3799 	if (!sbi)
3800 		return -ENOMEM;
3801 
3802 	sbi->sb = sb;
3803 
3804 	/* Load the checksum driver */
3805 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3806 	if (IS_ERR(sbi->s_chksum_driver)) {
3807 		f2fs_err(sbi, "Cannot load crc32 driver.");
3808 		err = PTR_ERR(sbi->s_chksum_driver);
3809 		sbi->s_chksum_driver = NULL;
3810 		goto free_sbi;
3811 	}
3812 
3813 	/* set a block size */
3814 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3815 		f2fs_err(sbi, "unable to set blocksize");
3816 		goto free_sbi;
3817 	}
3818 
3819 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3820 								&recovery);
3821 	if (err)
3822 		goto free_sbi;
3823 
3824 	sb->s_fs_info = sbi;
3825 	sbi->raw_super = raw_super;
3826 
3827 	/* precompute checksum seed for metadata */
3828 	if (f2fs_sb_has_inode_chksum(sbi))
3829 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3830 						sizeof(raw_super->uuid));
3831 
3832 	default_options(sbi);
3833 	/* parse mount options */
3834 	options = kstrdup((const char *)data, GFP_KERNEL);
3835 	if (data && !options) {
3836 		err = -ENOMEM;
3837 		goto free_sb_buf;
3838 	}
3839 
3840 	err = parse_options(sb, options, false);
3841 	if (err)
3842 		goto free_options;
3843 
3844 	sb->s_maxbytes = max_file_blocks(NULL) <<
3845 				le32_to_cpu(raw_super->log_blocksize);
3846 	sb->s_max_links = F2FS_LINK_MAX;
3847 
3848 	err = f2fs_setup_casefold(sbi);
3849 	if (err)
3850 		goto free_options;
3851 
3852 #ifdef CONFIG_QUOTA
3853 	sb->dq_op = &f2fs_quota_operations;
3854 	sb->s_qcop = &f2fs_quotactl_ops;
3855 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3856 
3857 	if (f2fs_sb_has_quota_ino(sbi)) {
3858 		for (i = 0; i < MAXQUOTAS; i++) {
3859 			if (f2fs_qf_ino(sbi->sb, i))
3860 				sbi->nquota_files++;
3861 		}
3862 	}
3863 #endif
3864 
3865 	sb->s_op = &f2fs_sops;
3866 #ifdef CONFIG_FS_ENCRYPTION
3867 	sb->s_cop = &f2fs_cryptops;
3868 #endif
3869 #ifdef CONFIG_FS_VERITY
3870 	sb->s_vop = &f2fs_verityops;
3871 #endif
3872 	sb->s_xattr = f2fs_xattr_handlers;
3873 	sb->s_export_op = &f2fs_export_ops;
3874 	sb->s_magic = F2FS_SUPER_MAGIC;
3875 	sb->s_time_gran = 1;
3876 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3877 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3878 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3879 	sb->s_iflags |= SB_I_CGROUPWB;
3880 
3881 	/* init f2fs-specific super block info */
3882 	sbi->valid_super_block = valid_super_block;
3883 	init_rwsem(&sbi->gc_lock);
3884 	mutex_init(&sbi->writepages);
3885 	init_rwsem(&sbi->cp_global_sem);
3886 	init_rwsem(&sbi->node_write);
3887 	init_rwsem(&sbi->node_change);
3888 
3889 	/* disallow all the data/node/meta page writes */
3890 	set_sbi_flag(sbi, SBI_POR_DOING);
3891 	spin_lock_init(&sbi->stat_lock);
3892 
3893 	/* init iostat info */
3894 	spin_lock_init(&sbi->iostat_lock);
3895 	sbi->iostat_enable = false;
3896 	sbi->iostat_period_ms = DEFAULT_IOSTAT_PERIOD_MS;
3897 
3898 	for (i = 0; i < NR_PAGE_TYPE; i++) {
3899 		int n = (i == META) ? 1 : NR_TEMP_TYPE;
3900 		int j;
3901 
3902 		sbi->write_io[i] =
3903 			f2fs_kmalloc(sbi,
3904 				     array_size(n,
3905 						sizeof(struct f2fs_bio_info)),
3906 				     GFP_KERNEL);
3907 		if (!sbi->write_io[i]) {
3908 			err = -ENOMEM;
3909 			goto free_bio_info;
3910 		}
3911 
3912 		for (j = HOT; j < n; j++) {
3913 			init_rwsem(&sbi->write_io[i][j].io_rwsem);
3914 			sbi->write_io[i][j].sbi = sbi;
3915 			sbi->write_io[i][j].bio = NULL;
3916 			spin_lock_init(&sbi->write_io[i][j].io_lock);
3917 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
3918 			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
3919 			init_rwsem(&sbi->write_io[i][j].bio_list_lock);
3920 		}
3921 	}
3922 
3923 	init_rwsem(&sbi->cp_rwsem);
3924 	init_rwsem(&sbi->quota_sem);
3925 	init_waitqueue_head(&sbi->cp_wait);
3926 	init_sb_info(sbi);
3927 
3928 	err = init_percpu_info(sbi);
3929 	if (err)
3930 		goto free_bio_info;
3931 
3932 	if (F2FS_IO_ALIGNED(sbi)) {
3933 		sbi->write_io_dummy =
3934 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
3935 		if (!sbi->write_io_dummy) {
3936 			err = -ENOMEM;
3937 			goto free_percpu;
3938 		}
3939 	}
3940 
3941 	/* init per sbi slab cache */
3942 	err = f2fs_init_xattr_caches(sbi);
3943 	if (err)
3944 		goto free_io_dummy;
3945 	err = f2fs_init_page_array_cache(sbi);
3946 	if (err)
3947 		goto free_xattr_cache;
3948 
3949 	/* get an inode for meta space */
3950 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
3951 	if (IS_ERR(sbi->meta_inode)) {
3952 		f2fs_err(sbi, "Failed to read F2FS meta data inode");
3953 		err = PTR_ERR(sbi->meta_inode);
3954 		goto free_page_array_cache;
3955 	}
3956 
3957 	err = f2fs_get_valid_checkpoint(sbi);
3958 	if (err) {
3959 		f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
3960 		goto free_meta_inode;
3961 	}
3962 
3963 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
3964 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3965 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
3966 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3967 		sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
3968 	}
3969 
3970 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
3971 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3972 
3973 	/* Initialize device list */
3974 	err = f2fs_scan_devices(sbi);
3975 	if (err) {
3976 		f2fs_err(sbi, "Failed to find devices");
3977 		goto free_devices;
3978 	}
3979 
3980 	err = f2fs_init_post_read_wq(sbi);
3981 	if (err) {
3982 		f2fs_err(sbi, "Failed to initialize post read workqueue");
3983 		goto free_devices;
3984 	}
3985 
3986 	sbi->total_valid_node_count =
3987 				le32_to_cpu(sbi->ckpt->valid_node_count);
3988 	percpu_counter_set(&sbi->total_valid_inode_count,
3989 				le32_to_cpu(sbi->ckpt->valid_inode_count));
3990 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
3991 	sbi->total_valid_block_count =
3992 				le64_to_cpu(sbi->ckpt->valid_block_count);
3993 	sbi->last_valid_block_count = sbi->total_valid_block_count;
3994 	sbi->reserved_blocks = 0;
3995 	sbi->current_reserved_blocks = 0;
3996 	limit_reserve_root(sbi);
3997 	adjust_unusable_cap_perc(sbi);
3998 
3999 	for (i = 0; i < NR_INODE_TYPE; i++) {
4000 		INIT_LIST_HEAD(&sbi->inode_list[i]);
4001 		spin_lock_init(&sbi->inode_lock[i]);
4002 	}
4003 	mutex_init(&sbi->flush_lock);
4004 
4005 	f2fs_init_extent_cache_info(sbi);
4006 
4007 	f2fs_init_ino_entry_info(sbi);
4008 
4009 	f2fs_init_fsync_node_info(sbi);
4010 
4011 	/* setup checkpoint request control and start checkpoint issue thread */
4012 	f2fs_init_ckpt_req_control(sbi);
4013 	if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) &&
4014 			test_opt(sbi, MERGE_CHECKPOINT)) {
4015 		err = f2fs_start_ckpt_thread(sbi);
4016 		if (err) {
4017 			f2fs_err(sbi,
4018 			    "Failed to start F2FS issue_checkpoint_thread (%d)",
4019 			    err);
4020 			goto stop_ckpt_thread;
4021 		}
4022 	}
4023 
4024 	/* setup f2fs internal modules */
4025 	err = f2fs_build_segment_manager(sbi);
4026 	if (err) {
4027 		f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
4028 			 err);
4029 		goto free_sm;
4030 	}
4031 	err = f2fs_build_node_manager(sbi);
4032 	if (err) {
4033 		f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
4034 			 err);
4035 		goto free_nm;
4036 	}
4037 
4038 	/* For write statistics */
4039 	sbi->sectors_written_start = f2fs_get_sectors_written(sbi);
4040 
4041 	/* Read accumulated write IO statistics if exists */
4042 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
4043 	if (__exist_node_summaries(sbi))
4044 		sbi->kbytes_written =
4045 			le64_to_cpu(seg_i->journal->info.kbytes_written);
4046 
4047 	f2fs_build_gc_manager(sbi);
4048 
4049 	err = f2fs_build_stats(sbi);
4050 	if (err)
4051 		goto free_nm;
4052 
4053 	/* get an inode for node space */
4054 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
4055 	if (IS_ERR(sbi->node_inode)) {
4056 		f2fs_err(sbi, "Failed to read node inode");
4057 		err = PTR_ERR(sbi->node_inode);
4058 		goto free_stats;
4059 	}
4060 
4061 	/* read root inode and dentry */
4062 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
4063 	if (IS_ERR(root)) {
4064 		f2fs_err(sbi, "Failed to read root inode");
4065 		err = PTR_ERR(root);
4066 		goto free_node_inode;
4067 	}
4068 	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
4069 			!root->i_size || !root->i_nlink) {
4070 		iput(root);
4071 		err = -EINVAL;
4072 		goto free_node_inode;
4073 	}
4074 
4075 	sb->s_root = d_make_root(root); /* allocate root dentry */
4076 	if (!sb->s_root) {
4077 		err = -ENOMEM;
4078 		goto free_node_inode;
4079 	}
4080 
4081 	err = f2fs_init_compress_inode(sbi);
4082 	if (err)
4083 		goto free_root_inode;
4084 
4085 	err = f2fs_register_sysfs(sbi);
4086 	if (err)
4087 		goto free_compress_inode;
4088 
4089 #ifdef CONFIG_QUOTA
4090 	/* Enable quota usage during mount */
4091 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
4092 		err = f2fs_enable_quotas(sb);
4093 		if (err)
4094 			f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
4095 	}
4096 #endif
4097 	/* if there are any orphan inodes, free them */
4098 	err = f2fs_recover_orphan_inodes(sbi);
4099 	if (err)
4100 		goto free_meta;
4101 
4102 	if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
4103 		goto reset_checkpoint;
4104 
4105 	/* recover fsynced data */
4106 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
4107 			!test_opt(sbi, NORECOVERY)) {
4108 		/*
4109 		 * mount should be failed, when device has readonly mode, and
4110 		 * previous checkpoint was not done by clean system shutdown.
4111 		 */
4112 		if (f2fs_hw_is_readonly(sbi)) {
4113 			if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4114 				err = f2fs_recover_fsync_data(sbi, true);
4115 				if (err > 0) {
4116 					err = -EROFS;
4117 					f2fs_err(sbi, "Need to recover fsync data, but "
4118 						"write access unavailable, please try "
4119 						"mount w/ disable_roll_forward or norecovery");
4120 				}
4121 				if (err < 0)
4122 					goto free_meta;
4123 			}
4124 			f2fs_info(sbi, "write access unavailable, skipping recovery");
4125 			goto reset_checkpoint;
4126 		}
4127 
4128 		if (need_fsck)
4129 			set_sbi_flag(sbi, SBI_NEED_FSCK);
4130 
4131 		if (skip_recovery)
4132 			goto reset_checkpoint;
4133 
4134 		err = f2fs_recover_fsync_data(sbi, false);
4135 		if (err < 0) {
4136 			if (err != -ENOMEM)
4137 				skip_recovery = true;
4138 			need_fsck = true;
4139 			f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
4140 				 err);
4141 			goto free_meta;
4142 		}
4143 	} else {
4144 		err = f2fs_recover_fsync_data(sbi, true);
4145 
4146 		if (!f2fs_readonly(sb) && err > 0) {
4147 			err = -EINVAL;
4148 			f2fs_err(sbi, "Need to recover fsync data");
4149 			goto free_meta;
4150 		}
4151 	}
4152 
4153 	/*
4154 	 * If the f2fs is not readonly and fsync data recovery succeeds,
4155 	 * check zoned block devices' write pointer consistency.
4156 	 */
4157 	if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
4158 		err = f2fs_check_write_pointer(sbi);
4159 		if (err)
4160 			goto free_meta;
4161 	}
4162 
4163 reset_checkpoint:
4164 	f2fs_init_inmem_curseg(sbi);
4165 
4166 	/* f2fs_recover_fsync_data() cleared this already */
4167 	clear_sbi_flag(sbi, SBI_POR_DOING);
4168 
4169 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
4170 		err = f2fs_disable_checkpoint(sbi);
4171 		if (err)
4172 			goto sync_free_meta;
4173 	} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
4174 		f2fs_enable_checkpoint(sbi);
4175 	}
4176 
4177 	/*
4178 	 * If filesystem is not mounted as read-only then
4179 	 * do start the gc_thread.
4180 	 */
4181 	if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF ||
4182 		test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) {
4183 		/* After POR, we can run background GC thread.*/
4184 		err = f2fs_start_gc_thread(sbi);
4185 		if (err)
4186 			goto sync_free_meta;
4187 	}
4188 	kvfree(options);
4189 
4190 	/* recover broken superblock */
4191 	if (recovery) {
4192 		err = f2fs_commit_super(sbi, true);
4193 		f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
4194 			  sbi->valid_super_block ? 1 : 2, err);
4195 	}
4196 
4197 	f2fs_join_shrinker(sbi);
4198 
4199 	f2fs_tuning_parameters(sbi);
4200 
4201 	f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
4202 		    cur_cp_version(F2FS_CKPT(sbi)));
4203 	f2fs_update_time(sbi, CP_TIME);
4204 	f2fs_update_time(sbi, REQ_TIME);
4205 	clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
4206 	return 0;
4207 
4208 sync_free_meta:
4209 	/* safe to flush all the data */
4210 	sync_filesystem(sbi->sb);
4211 	retry_cnt = 0;
4212 
4213 free_meta:
4214 #ifdef CONFIG_QUOTA
4215 	f2fs_truncate_quota_inode_pages(sb);
4216 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
4217 		f2fs_quota_off_umount(sbi->sb);
4218 #endif
4219 	/*
4220 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
4221 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
4222 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
4223 	 * falls into an infinite loop in f2fs_sync_meta_pages().
4224 	 */
4225 	truncate_inode_pages_final(META_MAPPING(sbi));
4226 	/* evict some inodes being cached by GC */
4227 	evict_inodes(sb);
4228 	f2fs_unregister_sysfs(sbi);
4229 free_compress_inode:
4230 	f2fs_destroy_compress_inode(sbi);
4231 free_root_inode:
4232 	dput(sb->s_root);
4233 	sb->s_root = NULL;
4234 free_node_inode:
4235 	f2fs_release_ino_entry(sbi, true);
4236 	truncate_inode_pages_final(NODE_MAPPING(sbi));
4237 	iput(sbi->node_inode);
4238 	sbi->node_inode = NULL;
4239 free_stats:
4240 	f2fs_destroy_stats(sbi);
4241 free_nm:
4242 	f2fs_destroy_node_manager(sbi);
4243 free_sm:
4244 	f2fs_destroy_segment_manager(sbi);
4245 	f2fs_destroy_post_read_wq(sbi);
4246 stop_ckpt_thread:
4247 	f2fs_stop_ckpt_thread(sbi);
4248 free_devices:
4249 	destroy_device_list(sbi);
4250 	kvfree(sbi->ckpt);
4251 free_meta_inode:
4252 	make_bad_inode(sbi->meta_inode);
4253 	iput(sbi->meta_inode);
4254 	sbi->meta_inode = NULL;
4255 free_page_array_cache:
4256 	f2fs_destroy_page_array_cache(sbi);
4257 free_xattr_cache:
4258 	f2fs_destroy_xattr_caches(sbi);
4259 free_io_dummy:
4260 	mempool_destroy(sbi->write_io_dummy);
4261 free_percpu:
4262 	destroy_percpu_info(sbi);
4263 free_bio_info:
4264 	for (i = 0; i < NR_PAGE_TYPE; i++)
4265 		kvfree(sbi->write_io[i]);
4266 
4267 #ifdef CONFIG_UNICODE
4268 	utf8_unload(sb->s_encoding);
4269 	sb->s_encoding = NULL;
4270 #endif
4271 free_options:
4272 #ifdef CONFIG_QUOTA
4273 	for (i = 0; i < MAXQUOTAS; i++)
4274 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
4275 #endif
4276 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
4277 	kvfree(options);
4278 free_sb_buf:
4279 	kfree(raw_super);
4280 free_sbi:
4281 	if (sbi->s_chksum_driver)
4282 		crypto_free_shash(sbi->s_chksum_driver);
4283 	kfree(sbi);
4284 
4285 	/* give only one another chance */
4286 	if (retry_cnt > 0 && skip_recovery) {
4287 		retry_cnt--;
4288 		shrink_dcache_sb(sb);
4289 		goto try_onemore;
4290 	}
4291 	return err;
4292 }
4293 
4294 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
4295 			const char *dev_name, void *data)
4296 {
4297 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
4298 }
4299 
4300 static void kill_f2fs_super(struct super_block *sb)
4301 {
4302 	if (sb->s_root) {
4303 		struct f2fs_sb_info *sbi = F2FS_SB(sb);
4304 
4305 		set_sbi_flag(sbi, SBI_IS_CLOSE);
4306 		f2fs_stop_gc_thread(sbi);
4307 		f2fs_stop_discard_thread(sbi);
4308 
4309 #ifdef CONFIG_F2FS_FS_COMPRESSION
4310 		/*
4311 		 * latter evict_inode() can bypass checking and invalidating
4312 		 * compress inode cache.
4313 		 */
4314 		if (test_opt(sbi, COMPRESS_CACHE))
4315 			truncate_inode_pages_final(COMPRESS_MAPPING(sbi));
4316 #endif
4317 
4318 		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
4319 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4320 			struct cp_control cpc = {
4321 				.reason = CP_UMOUNT,
4322 			};
4323 			f2fs_write_checkpoint(sbi, &cpc);
4324 		}
4325 
4326 		if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
4327 			sb->s_flags &= ~SB_RDONLY;
4328 	}
4329 	kill_block_super(sb);
4330 }
4331 
4332 static struct file_system_type f2fs_fs_type = {
4333 	.owner		= THIS_MODULE,
4334 	.name		= "f2fs",
4335 	.mount		= f2fs_mount,
4336 	.kill_sb	= kill_f2fs_super,
4337 	.fs_flags	= FS_REQUIRES_DEV,
4338 };
4339 MODULE_ALIAS_FS("f2fs");
4340 
4341 static int __init init_inodecache(void)
4342 {
4343 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
4344 			sizeof(struct f2fs_inode_info), 0,
4345 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
4346 	if (!f2fs_inode_cachep)
4347 		return -ENOMEM;
4348 	return 0;
4349 }
4350 
4351 static void destroy_inodecache(void)
4352 {
4353 	/*
4354 	 * Make sure all delayed rcu free inodes are flushed before we
4355 	 * destroy cache.
4356 	 */
4357 	rcu_barrier();
4358 	kmem_cache_destroy(f2fs_inode_cachep);
4359 }
4360 
4361 static int __init init_f2fs_fs(void)
4362 {
4363 	int err;
4364 
4365 	if (PAGE_SIZE != F2FS_BLKSIZE) {
4366 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
4367 				PAGE_SIZE, F2FS_BLKSIZE);
4368 		return -EINVAL;
4369 	}
4370 
4371 	err = init_inodecache();
4372 	if (err)
4373 		goto fail;
4374 	err = f2fs_create_node_manager_caches();
4375 	if (err)
4376 		goto free_inodecache;
4377 	err = f2fs_create_segment_manager_caches();
4378 	if (err)
4379 		goto free_node_manager_caches;
4380 	err = f2fs_create_checkpoint_caches();
4381 	if (err)
4382 		goto free_segment_manager_caches;
4383 	err = f2fs_create_recovery_cache();
4384 	if (err)
4385 		goto free_checkpoint_caches;
4386 	err = f2fs_create_extent_cache();
4387 	if (err)
4388 		goto free_recovery_cache;
4389 	err = f2fs_create_garbage_collection_cache();
4390 	if (err)
4391 		goto free_extent_cache;
4392 	err = f2fs_init_sysfs();
4393 	if (err)
4394 		goto free_garbage_collection_cache;
4395 	err = register_shrinker(&f2fs_shrinker_info);
4396 	if (err)
4397 		goto free_sysfs;
4398 	err = register_filesystem(&f2fs_fs_type);
4399 	if (err)
4400 		goto free_shrinker;
4401 	f2fs_create_root_stats();
4402 	err = f2fs_init_post_read_processing();
4403 	if (err)
4404 		goto free_root_stats;
4405 	err = f2fs_init_bio_entry_cache();
4406 	if (err)
4407 		goto free_post_read;
4408 	err = f2fs_init_bioset();
4409 	if (err)
4410 		goto free_bio_enrty_cache;
4411 	err = f2fs_init_compress_mempool();
4412 	if (err)
4413 		goto free_bioset;
4414 	err = f2fs_init_compress_cache();
4415 	if (err)
4416 		goto free_compress_mempool;
4417 	err = f2fs_create_casefold_cache();
4418 	if (err)
4419 		goto free_compress_cache;
4420 	return 0;
4421 free_compress_cache:
4422 	f2fs_destroy_compress_cache();
4423 free_compress_mempool:
4424 	f2fs_destroy_compress_mempool();
4425 free_bioset:
4426 	f2fs_destroy_bioset();
4427 free_bio_enrty_cache:
4428 	f2fs_destroy_bio_entry_cache();
4429 free_post_read:
4430 	f2fs_destroy_post_read_processing();
4431 free_root_stats:
4432 	f2fs_destroy_root_stats();
4433 	unregister_filesystem(&f2fs_fs_type);
4434 free_shrinker:
4435 	unregister_shrinker(&f2fs_shrinker_info);
4436 free_sysfs:
4437 	f2fs_exit_sysfs();
4438 free_garbage_collection_cache:
4439 	f2fs_destroy_garbage_collection_cache();
4440 free_extent_cache:
4441 	f2fs_destroy_extent_cache();
4442 free_recovery_cache:
4443 	f2fs_destroy_recovery_cache();
4444 free_checkpoint_caches:
4445 	f2fs_destroy_checkpoint_caches();
4446 free_segment_manager_caches:
4447 	f2fs_destroy_segment_manager_caches();
4448 free_node_manager_caches:
4449 	f2fs_destroy_node_manager_caches();
4450 free_inodecache:
4451 	destroy_inodecache();
4452 fail:
4453 	return err;
4454 }
4455 
4456 static void __exit exit_f2fs_fs(void)
4457 {
4458 	f2fs_destroy_casefold_cache();
4459 	f2fs_destroy_compress_cache();
4460 	f2fs_destroy_compress_mempool();
4461 	f2fs_destroy_bioset();
4462 	f2fs_destroy_bio_entry_cache();
4463 	f2fs_destroy_post_read_processing();
4464 	f2fs_destroy_root_stats();
4465 	unregister_filesystem(&f2fs_fs_type);
4466 	unregister_shrinker(&f2fs_shrinker_info);
4467 	f2fs_exit_sysfs();
4468 	f2fs_destroy_garbage_collection_cache();
4469 	f2fs_destroy_extent_cache();
4470 	f2fs_destroy_recovery_cache();
4471 	f2fs_destroy_checkpoint_caches();
4472 	f2fs_destroy_segment_manager_caches();
4473 	f2fs_destroy_node_manager_caches();
4474 	destroy_inodecache();
4475 }
4476 
4477 module_init(init_f2fs_fs)
4478 module_exit(exit_f2fs_fs)
4479 
4480 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
4481 MODULE_DESCRIPTION("Flash Friendly File System");
4482 MODULE_LICENSE("GPL");
4483 MODULE_SOFTDEP("pre: crc32");
4484 
4485