1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/statfs.h> 12 #include <linux/buffer_head.h> 13 #include <linux/backing-dev.h> 14 #include <linux/kthread.h> 15 #include <linux/parser.h> 16 #include <linux/mount.h> 17 #include <linux/seq_file.h> 18 #include <linux/proc_fs.h> 19 #include <linux/random.h> 20 #include <linux/exportfs.h> 21 #include <linux/blkdev.h> 22 #include <linux/quotaops.h> 23 #include <linux/f2fs_fs.h> 24 #include <linux/sysfs.h> 25 #include <linux/quota.h> 26 #include <linux/unicode.h> 27 28 #include "f2fs.h" 29 #include "node.h" 30 #include "segment.h" 31 #include "xattr.h" 32 #include "gc.h" 33 #include "trace.h" 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/f2fs.h> 37 38 static struct kmem_cache *f2fs_inode_cachep; 39 40 #ifdef CONFIG_F2FS_FAULT_INJECTION 41 42 const char *f2fs_fault_name[FAULT_MAX] = { 43 [FAULT_KMALLOC] = "kmalloc", 44 [FAULT_KVMALLOC] = "kvmalloc", 45 [FAULT_PAGE_ALLOC] = "page alloc", 46 [FAULT_PAGE_GET] = "page get", 47 [FAULT_ALLOC_BIO] = "alloc bio", 48 [FAULT_ALLOC_NID] = "alloc nid", 49 [FAULT_ORPHAN] = "orphan", 50 [FAULT_BLOCK] = "no more block", 51 [FAULT_DIR_DEPTH] = "too big dir depth", 52 [FAULT_EVICT_INODE] = "evict_inode fail", 53 [FAULT_TRUNCATE] = "truncate fail", 54 [FAULT_READ_IO] = "read IO error", 55 [FAULT_CHECKPOINT] = "checkpoint error", 56 [FAULT_DISCARD] = "discard error", 57 [FAULT_WRITE_IO] = "write IO error", 58 }; 59 60 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 61 unsigned int type) 62 { 63 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 64 65 if (rate) { 66 atomic_set(&ffi->inject_ops, 0); 67 ffi->inject_rate = rate; 68 } 69 70 if (type) 71 ffi->inject_type = type; 72 73 if (!rate && !type) 74 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 75 } 76 #endif 77 78 /* f2fs-wide shrinker description */ 79 static struct shrinker f2fs_shrinker_info = { 80 .scan_objects = f2fs_shrink_scan, 81 .count_objects = f2fs_shrink_count, 82 .seeks = DEFAULT_SEEKS, 83 }; 84 85 enum { 86 Opt_gc_background, 87 Opt_disable_roll_forward, 88 Opt_norecovery, 89 Opt_discard, 90 Opt_nodiscard, 91 Opt_noheap, 92 Opt_heap, 93 Opt_user_xattr, 94 Opt_nouser_xattr, 95 Opt_acl, 96 Opt_noacl, 97 Opt_active_logs, 98 Opt_disable_ext_identify, 99 Opt_inline_xattr, 100 Opt_noinline_xattr, 101 Opt_inline_xattr_size, 102 Opt_inline_data, 103 Opt_inline_dentry, 104 Opt_noinline_dentry, 105 Opt_flush_merge, 106 Opt_noflush_merge, 107 Opt_nobarrier, 108 Opt_fastboot, 109 Opt_extent_cache, 110 Opt_noextent_cache, 111 Opt_noinline_data, 112 Opt_data_flush, 113 Opt_reserve_root, 114 Opt_resgid, 115 Opt_resuid, 116 Opt_mode, 117 Opt_io_size_bits, 118 Opt_fault_injection, 119 Opt_fault_type, 120 Opt_lazytime, 121 Opt_nolazytime, 122 Opt_quota, 123 Opt_noquota, 124 Opt_usrquota, 125 Opt_grpquota, 126 Opt_prjquota, 127 Opt_usrjquota, 128 Opt_grpjquota, 129 Opt_prjjquota, 130 Opt_offusrjquota, 131 Opt_offgrpjquota, 132 Opt_offprjjquota, 133 Opt_jqfmt_vfsold, 134 Opt_jqfmt_vfsv0, 135 Opt_jqfmt_vfsv1, 136 Opt_whint, 137 Opt_alloc, 138 Opt_fsync, 139 Opt_test_dummy_encryption, 140 Opt_checkpoint_disable, 141 Opt_checkpoint_disable_cap, 142 Opt_checkpoint_disable_cap_perc, 143 Opt_checkpoint_enable, 144 Opt_err, 145 }; 146 147 static match_table_t f2fs_tokens = { 148 {Opt_gc_background, "background_gc=%s"}, 149 {Opt_disable_roll_forward, "disable_roll_forward"}, 150 {Opt_norecovery, "norecovery"}, 151 {Opt_discard, "discard"}, 152 {Opt_nodiscard, "nodiscard"}, 153 {Opt_noheap, "no_heap"}, 154 {Opt_heap, "heap"}, 155 {Opt_user_xattr, "user_xattr"}, 156 {Opt_nouser_xattr, "nouser_xattr"}, 157 {Opt_acl, "acl"}, 158 {Opt_noacl, "noacl"}, 159 {Opt_active_logs, "active_logs=%u"}, 160 {Opt_disable_ext_identify, "disable_ext_identify"}, 161 {Opt_inline_xattr, "inline_xattr"}, 162 {Opt_noinline_xattr, "noinline_xattr"}, 163 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 164 {Opt_inline_data, "inline_data"}, 165 {Opt_inline_dentry, "inline_dentry"}, 166 {Opt_noinline_dentry, "noinline_dentry"}, 167 {Opt_flush_merge, "flush_merge"}, 168 {Opt_noflush_merge, "noflush_merge"}, 169 {Opt_nobarrier, "nobarrier"}, 170 {Opt_fastboot, "fastboot"}, 171 {Opt_extent_cache, "extent_cache"}, 172 {Opt_noextent_cache, "noextent_cache"}, 173 {Opt_noinline_data, "noinline_data"}, 174 {Opt_data_flush, "data_flush"}, 175 {Opt_reserve_root, "reserve_root=%u"}, 176 {Opt_resgid, "resgid=%u"}, 177 {Opt_resuid, "resuid=%u"}, 178 {Opt_mode, "mode=%s"}, 179 {Opt_io_size_bits, "io_bits=%u"}, 180 {Opt_fault_injection, "fault_injection=%u"}, 181 {Opt_fault_type, "fault_type=%u"}, 182 {Opt_lazytime, "lazytime"}, 183 {Opt_nolazytime, "nolazytime"}, 184 {Opt_quota, "quota"}, 185 {Opt_noquota, "noquota"}, 186 {Opt_usrquota, "usrquota"}, 187 {Opt_grpquota, "grpquota"}, 188 {Opt_prjquota, "prjquota"}, 189 {Opt_usrjquota, "usrjquota=%s"}, 190 {Opt_grpjquota, "grpjquota=%s"}, 191 {Opt_prjjquota, "prjjquota=%s"}, 192 {Opt_offusrjquota, "usrjquota="}, 193 {Opt_offgrpjquota, "grpjquota="}, 194 {Opt_offprjjquota, "prjjquota="}, 195 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 196 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 197 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 198 {Opt_whint, "whint_mode=%s"}, 199 {Opt_alloc, "alloc_mode=%s"}, 200 {Opt_fsync, "fsync_mode=%s"}, 201 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 202 {Opt_checkpoint_disable, "checkpoint=disable"}, 203 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"}, 204 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"}, 205 {Opt_checkpoint_enable, "checkpoint=enable"}, 206 {Opt_err, NULL}, 207 }; 208 209 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...) 210 { 211 struct va_format vaf; 212 va_list args; 213 int level; 214 215 va_start(args, fmt); 216 217 level = printk_get_level(fmt); 218 vaf.fmt = printk_skip_level(fmt); 219 vaf.va = &args; 220 printk("%c%cF2FS-fs (%s): %pV\n", 221 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 222 223 va_end(args); 224 } 225 226 #ifdef CONFIG_UNICODE 227 static const struct f2fs_sb_encodings { 228 __u16 magic; 229 char *name; 230 char *version; 231 } f2fs_sb_encoding_map[] = { 232 {F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"}, 233 }; 234 235 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb, 236 const struct f2fs_sb_encodings **encoding, 237 __u16 *flags) 238 { 239 __u16 magic = le16_to_cpu(sb->s_encoding); 240 int i; 241 242 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++) 243 if (magic == f2fs_sb_encoding_map[i].magic) 244 break; 245 246 if (i >= ARRAY_SIZE(f2fs_sb_encoding_map)) 247 return -EINVAL; 248 249 *encoding = &f2fs_sb_encoding_map[i]; 250 *flags = le16_to_cpu(sb->s_encoding_flags); 251 252 return 0; 253 } 254 #endif 255 256 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 257 { 258 block_t limit = min((sbi->user_block_count << 1) / 1000, 259 sbi->user_block_count - sbi->reserved_blocks); 260 261 /* limit is 0.2% */ 262 if (test_opt(sbi, RESERVE_ROOT) && 263 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 264 F2FS_OPTION(sbi).root_reserved_blocks = limit; 265 f2fs_info(sbi, "Reduce reserved blocks for root = %u", 266 F2FS_OPTION(sbi).root_reserved_blocks); 267 } 268 if (!test_opt(sbi, RESERVE_ROOT) && 269 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 270 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 271 !gid_eq(F2FS_OPTION(sbi).s_resgid, 272 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 273 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 274 from_kuid_munged(&init_user_ns, 275 F2FS_OPTION(sbi).s_resuid), 276 from_kgid_munged(&init_user_ns, 277 F2FS_OPTION(sbi).s_resgid)); 278 } 279 280 static void init_once(void *foo) 281 { 282 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 283 284 inode_init_once(&fi->vfs_inode); 285 } 286 287 #ifdef CONFIG_QUOTA 288 static const char * const quotatypes[] = INITQFNAMES; 289 #define QTYPE2NAME(t) (quotatypes[t]) 290 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 291 substring_t *args) 292 { 293 struct f2fs_sb_info *sbi = F2FS_SB(sb); 294 char *qname; 295 int ret = -EINVAL; 296 297 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 298 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 299 return -EINVAL; 300 } 301 if (f2fs_sb_has_quota_ino(sbi)) { 302 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name"); 303 return 0; 304 } 305 306 qname = match_strdup(args); 307 if (!qname) { 308 f2fs_err(sbi, "Not enough memory for storing quotafile name"); 309 return -ENOMEM; 310 } 311 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 312 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 313 ret = 0; 314 else 315 f2fs_err(sbi, "%s quota file already specified", 316 QTYPE2NAME(qtype)); 317 goto errout; 318 } 319 if (strchr(qname, '/')) { 320 f2fs_err(sbi, "quotafile must be on filesystem root"); 321 goto errout; 322 } 323 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 324 set_opt(sbi, QUOTA); 325 return 0; 326 errout: 327 kvfree(qname); 328 return ret; 329 } 330 331 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 332 { 333 struct f2fs_sb_info *sbi = F2FS_SB(sb); 334 335 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 336 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 337 return -EINVAL; 338 } 339 kvfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 340 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 341 return 0; 342 } 343 344 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 345 { 346 /* 347 * We do the test below only for project quotas. 'usrquota' and 348 * 'grpquota' mount options are allowed even without quota feature 349 * to support legacy quotas in quota files. 350 */ 351 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 352 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement."); 353 return -1; 354 } 355 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 356 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 357 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 358 if (test_opt(sbi, USRQUOTA) && 359 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 360 clear_opt(sbi, USRQUOTA); 361 362 if (test_opt(sbi, GRPQUOTA) && 363 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 364 clear_opt(sbi, GRPQUOTA); 365 366 if (test_opt(sbi, PRJQUOTA) && 367 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 368 clear_opt(sbi, PRJQUOTA); 369 370 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 371 test_opt(sbi, PRJQUOTA)) { 372 f2fs_err(sbi, "old and new quota format mixing"); 373 return -1; 374 } 375 376 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 377 f2fs_err(sbi, "journaled quota format not specified"); 378 return -1; 379 } 380 } 381 382 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 383 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt"); 384 F2FS_OPTION(sbi).s_jquota_fmt = 0; 385 } 386 return 0; 387 } 388 #endif 389 390 static int parse_options(struct super_block *sb, char *options) 391 { 392 struct f2fs_sb_info *sbi = F2FS_SB(sb); 393 substring_t args[MAX_OPT_ARGS]; 394 char *p, *name; 395 int arg = 0; 396 kuid_t uid; 397 kgid_t gid; 398 #ifdef CONFIG_QUOTA 399 int ret; 400 #endif 401 402 if (!options) 403 return 0; 404 405 while ((p = strsep(&options, ",")) != NULL) { 406 int token; 407 if (!*p) 408 continue; 409 /* 410 * Initialize args struct so we know whether arg was 411 * found; some options take optional arguments. 412 */ 413 args[0].to = args[0].from = NULL; 414 token = match_token(p, f2fs_tokens, args); 415 416 switch (token) { 417 case Opt_gc_background: 418 name = match_strdup(&args[0]); 419 420 if (!name) 421 return -ENOMEM; 422 if (strlen(name) == 2 && !strncmp(name, "on", 2)) { 423 set_opt(sbi, BG_GC); 424 clear_opt(sbi, FORCE_FG_GC); 425 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) { 426 clear_opt(sbi, BG_GC); 427 clear_opt(sbi, FORCE_FG_GC); 428 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) { 429 set_opt(sbi, BG_GC); 430 set_opt(sbi, FORCE_FG_GC); 431 } else { 432 kvfree(name); 433 return -EINVAL; 434 } 435 kvfree(name); 436 break; 437 case Opt_disable_roll_forward: 438 set_opt(sbi, DISABLE_ROLL_FORWARD); 439 break; 440 case Opt_norecovery: 441 /* this option mounts f2fs with ro */ 442 set_opt(sbi, DISABLE_ROLL_FORWARD); 443 if (!f2fs_readonly(sb)) 444 return -EINVAL; 445 break; 446 case Opt_discard: 447 set_opt(sbi, DISCARD); 448 break; 449 case Opt_nodiscard: 450 if (f2fs_sb_has_blkzoned(sbi)) { 451 f2fs_warn(sbi, "discard is required for zoned block devices"); 452 return -EINVAL; 453 } 454 clear_opt(sbi, DISCARD); 455 break; 456 case Opt_noheap: 457 set_opt(sbi, NOHEAP); 458 break; 459 case Opt_heap: 460 clear_opt(sbi, NOHEAP); 461 break; 462 #ifdef CONFIG_F2FS_FS_XATTR 463 case Opt_user_xattr: 464 set_opt(sbi, XATTR_USER); 465 break; 466 case Opt_nouser_xattr: 467 clear_opt(sbi, XATTR_USER); 468 break; 469 case Opt_inline_xattr: 470 set_opt(sbi, INLINE_XATTR); 471 break; 472 case Opt_noinline_xattr: 473 clear_opt(sbi, INLINE_XATTR); 474 break; 475 case Opt_inline_xattr_size: 476 if (args->from && match_int(args, &arg)) 477 return -EINVAL; 478 set_opt(sbi, INLINE_XATTR_SIZE); 479 F2FS_OPTION(sbi).inline_xattr_size = arg; 480 break; 481 #else 482 case Opt_user_xattr: 483 f2fs_info(sbi, "user_xattr options not supported"); 484 break; 485 case Opt_nouser_xattr: 486 f2fs_info(sbi, "nouser_xattr options not supported"); 487 break; 488 case Opt_inline_xattr: 489 f2fs_info(sbi, "inline_xattr options not supported"); 490 break; 491 case Opt_noinline_xattr: 492 f2fs_info(sbi, "noinline_xattr options not supported"); 493 break; 494 #endif 495 #ifdef CONFIG_F2FS_FS_POSIX_ACL 496 case Opt_acl: 497 set_opt(sbi, POSIX_ACL); 498 break; 499 case Opt_noacl: 500 clear_opt(sbi, POSIX_ACL); 501 break; 502 #else 503 case Opt_acl: 504 f2fs_info(sbi, "acl options not supported"); 505 break; 506 case Opt_noacl: 507 f2fs_info(sbi, "noacl options not supported"); 508 break; 509 #endif 510 case Opt_active_logs: 511 if (args->from && match_int(args, &arg)) 512 return -EINVAL; 513 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 514 return -EINVAL; 515 F2FS_OPTION(sbi).active_logs = arg; 516 break; 517 case Opt_disable_ext_identify: 518 set_opt(sbi, DISABLE_EXT_IDENTIFY); 519 break; 520 case Opt_inline_data: 521 set_opt(sbi, INLINE_DATA); 522 break; 523 case Opt_inline_dentry: 524 set_opt(sbi, INLINE_DENTRY); 525 break; 526 case Opt_noinline_dentry: 527 clear_opt(sbi, INLINE_DENTRY); 528 break; 529 case Opt_flush_merge: 530 set_opt(sbi, FLUSH_MERGE); 531 break; 532 case Opt_noflush_merge: 533 clear_opt(sbi, FLUSH_MERGE); 534 break; 535 case Opt_nobarrier: 536 set_opt(sbi, NOBARRIER); 537 break; 538 case Opt_fastboot: 539 set_opt(sbi, FASTBOOT); 540 break; 541 case Opt_extent_cache: 542 set_opt(sbi, EXTENT_CACHE); 543 break; 544 case Opt_noextent_cache: 545 clear_opt(sbi, EXTENT_CACHE); 546 break; 547 case Opt_noinline_data: 548 clear_opt(sbi, INLINE_DATA); 549 break; 550 case Opt_data_flush: 551 set_opt(sbi, DATA_FLUSH); 552 break; 553 case Opt_reserve_root: 554 if (args->from && match_int(args, &arg)) 555 return -EINVAL; 556 if (test_opt(sbi, RESERVE_ROOT)) { 557 f2fs_info(sbi, "Preserve previous reserve_root=%u", 558 F2FS_OPTION(sbi).root_reserved_blocks); 559 } else { 560 F2FS_OPTION(sbi).root_reserved_blocks = arg; 561 set_opt(sbi, RESERVE_ROOT); 562 } 563 break; 564 case Opt_resuid: 565 if (args->from && match_int(args, &arg)) 566 return -EINVAL; 567 uid = make_kuid(current_user_ns(), arg); 568 if (!uid_valid(uid)) { 569 f2fs_err(sbi, "Invalid uid value %d", arg); 570 return -EINVAL; 571 } 572 F2FS_OPTION(sbi).s_resuid = uid; 573 break; 574 case Opt_resgid: 575 if (args->from && match_int(args, &arg)) 576 return -EINVAL; 577 gid = make_kgid(current_user_ns(), arg); 578 if (!gid_valid(gid)) { 579 f2fs_err(sbi, "Invalid gid value %d", arg); 580 return -EINVAL; 581 } 582 F2FS_OPTION(sbi).s_resgid = gid; 583 break; 584 case Opt_mode: 585 name = match_strdup(&args[0]); 586 587 if (!name) 588 return -ENOMEM; 589 if (strlen(name) == 8 && 590 !strncmp(name, "adaptive", 8)) { 591 if (f2fs_sb_has_blkzoned(sbi)) { 592 f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature"); 593 kvfree(name); 594 return -EINVAL; 595 } 596 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 597 } else if (strlen(name) == 3 && 598 !strncmp(name, "lfs", 3)) { 599 set_opt_mode(sbi, F2FS_MOUNT_LFS); 600 } else { 601 kvfree(name); 602 return -EINVAL; 603 } 604 kvfree(name); 605 break; 606 case Opt_io_size_bits: 607 if (args->from && match_int(args, &arg)) 608 return -EINVAL; 609 if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) { 610 f2fs_warn(sbi, "Not support %d, larger than %d", 611 1 << arg, BIO_MAX_PAGES); 612 return -EINVAL; 613 } 614 F2FS_OPTION(sbi).write_io_size_bits = arg; 615 break; 616 #ifdef CONFIG_F2FS_FAULT_INJECTION 617 case Opt_fault_injection: 618 if (args->from && match_int(args, &arg)) 619 return -EINVAL; 620 f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE); 621 set_opt(sbi, FAULT_INJECTION); 622 break; 623 624 case Opt_fault_type: 625 if (args->from && match_int(args, &arg)) 626 return -EINVAL; 627 f2fs_build_fault_attr(sbi, 0, arg); 628 set_opt(sbi, FAULT_INJECTION); 629 break; 630 #else 631 case Opt_fault_injection: 632 f2fs_info(sbi, "fault_injection options not supported"); 633 break; 634 635 case Opt_fault_type: 636 f2fs_info(sbi, "fault_type options not supported"); 637 break; 638 #endif 639 case Opt_lazytime: 640 sb->s_flags |= SB_LAZYTIME; 641 break; 642 case Opt_nolazytime: 643 sb->s_flags &= ~SB_LAZYTIME; 644 break; 645 #ifdef CONFIG_QUOTA 646 case Opt_quota: 647 case Opt_usrquota: 648 set_opt(sbi, USRQUOTA); 649 break; 650 case Opt_grpquota: 651 set_opt(sbi, GRPQUOTA); 652 break; 653 case Opt_prjquota: 654 set_opt(sbi, PRJQUOTA); 655 break; 656 case Opt_usrjquota: 657 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 658 if (ret) 659 return ret; 660 break; 661 case Opt_grpjquota: 662 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 663 if (ret) 664 return ret; 665 break; 666 case Opt_prjjquota: 667 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 668 if (ret) 669 return ret; 670 break; 671 case Opt_offusrjquota: 672 ret = f2fs_clear_qf_name(sb, USRQUOTA); 673 if (ret) 674 return ret; 675 break; 676 case Opt_offgrpjquota: 677 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 678 if (ret) 679 return ret; 680 break; 681 case Opt_offprjjquota: 682 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 683 if (ret) 684 return ret; 685 break; 686 case Opt_jqfmt_vfsold: 687 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 688 break; 689 case Opt_jqfmt_vfsv0: 690 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 691 break; 692 case Opt_jqfmt_vfsv1: 693 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 694 break; 695 case Opt_noquota: 696 clear_opt(sbi, QUOTA); 697 clear_opt(sbi, USRQUOTA); 698 clear_opt(sbi, GRPQUOTA); 699 clear_opt(sbi, PRJQUOTA); 700 break; 701 #else 702 case Opt_quota: 703 case Opt_usrquota: 704 case Opt_grpquota: 705 case Opt_prjquota: 706 case Opt_usrjquota: 707 case Opt_grpjquota: 708 case Opt_prjjquota: 709 case Opt_offusrjquota: 710 case Opt_offgrpjquota: 711 case Opt_offprjjquota: 712 case Opt_jqfmt_vfsold: 713 case Opt_jqfmt_vfsv0: 714 case Opt_jqfmt_vfsv1: 715 case Opt_noquota: 716 f2fs_info(sbi, "quota operations not supported"); 717 break; 718 #endif 719 case Opt_whint: 720 name = match_strdup(&args[0]); 721 if (!name) 722 return -ENOMEM; 723 if (strlen(name) == 10 && 724 !strncmp(name, "user-based", 10)) { 725 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER; 726 } else if (strlen(name) == 3 && 727 !strncmp(name, "off", 3)) { 728 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 729 } else if (strlen(name) == 8 && 730 !strncmp(name, "fs-based", 8)) { 731 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS; 732 } else { 733 kvfree(name); 734 return -EINVAL; 735 } 736 kvfree(name); 737 break; 738 case Opt_alloc: 739 name = match_strdup(&args[0]); 740 if (!name) 741 return -ENOMEM; 742 743 if (strlen(name) == 7 && 744 !strncmp(name, "default", 7)) { 745 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 746 } else if (strlen(name) == 5 && 747 !strncmp(name, "reuse", 5)) { 748 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 749 } else { 750 kvfree(name); 751 return -EINVAL; 752 } 753 kvfree(name); 754 break; 755 case Opt_fsync: 756 name = match_strdup(&args[0]); 757 if (!name) 758 return -ENOMEM; 759 if (strlen(name) == 5 && 760 !strncmp(name, "posix", 5)) { 761 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 762 } else if (strlen(name) == 6 && 763 !strncmp(name, "strict", 6)) { 764 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 765 } else if (strlen(name) == 9 && 766 !strncmp(name, "nobarrier", 9)) { 767 F2FS_OPTION(sbi).fsync_mode = 768 FSYNC_MODE_NOBARRIER; 769 } else { 770 kvfree(name); 771 return -EINVAL; 772 } 773 kvfree(name); 774 break; 775 case Opt_test_dummy_encryption: 776 #ifdef CONFIG_FS_ENCRYPTION 777 if (!f2fs_sb_has_encrypt(sbi)) { 778 f2fs_err(sbi, "Encrypt feature is off"); 779 return -EINVAL; 780 } 781 782 F2FS_OPTION(sbi).test_dummy_encryption = true; 783 f2fs_info(sbi, "Test dummy encryption mode enabled"); 784 #else 785 f2fs_info(sbi, "Test dummy encryption mount option ignored"); 786 #endif 787 break; 788 case Opt_checkpoint_disable_cap_perc: 789 if (args->from && match_int(args, &arg)) 790 return -EINVAL; 791 if (arg < 0 || arg > 100) 792 return -EINVAL; 793 if (arg == 100) 794 F2FS_OPTION(sbi).unusable_cap = 795 sbi->user_block_count; 796 else 797 F2FS_OPTION(sbi).unusable_cap = 798 (sbi->user_block_count / 100) * arg; 799 set_opt(sbi, DISABLE_CHECKPOINT); 800 break; 801 case Opt_checkpoint_disable_cap: 802 if (args->from && match_int(args, &arg)) 803 return -EINVAL; 804 F2FS_OPTION(sbi).unusable_cap = arg; 805 set_opt(sbi, DISABLE_CHECKPOINT); 806 break; 807 case Opt_checkpoint_disable: 808 set_opt(sbi, DISABLE_CHECKPOINT); 809 break; 810 case Opt_checkpoint_enable: 811 clear_opt(sbi, DISABLE_CHECKPOINT); 812 break; 813 default: 814 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value", 815 p); 816 return -EINVAL; 817 } 818 } 819 #ifdef CONFIG_QUOTA 820 if (f2fs_check_quota_options(sbi)) 821 return -EINVAL; 822 #else 823 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 824 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 825 return -EINVAL; 826 } 827 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 828 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 829 return -EINVAL; 830 } 831 #endif 832 #ifndef CONFIG_UNICODE 833 if (f2fs_sb_has_casefold(sbi)) { 834 f2fs_err(sbi, 835 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 836 return -EINVAL; 837 } 838 #endif 839 840 if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) { 841 f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO", 842 F2FS_IO_SIZE_KB(sbi)); 843 return -EINVAL; 844 } 845 846 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 847 int min_size, max_size; 848 849 if (!f2fs_sb_has_extra_attr(sbi) || 850 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 851 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off"); 852 return -EINVAL; 853 } 854 if (!test_opt(sbi, INLINE_XATTR)) { 855 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option"); 856 return -EINVAL; 857 } 858 859 min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32); 860 max_size = MAX_INLINE_XATTR_SIZE; 861 862 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 863 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 864 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d", 865 min_size, max_size); 866 return -EINVAL; 867 } 868 } 869 870 if (test_opt(sbi, DISABLE_CHECKPOINT) && test_opt(sbi, LFS)) { 871 f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n"); 872 return -EINVAL; 873 } 874 875 /* Not pass down write hints if the number of active logs is lesser 876 * than NR_CURSEG_TYPE. 877 */ 878 if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE) 879 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 880 return 0; 881 } 882 883 static struct inode *f2fs_alloc_inode(struct super_block *sb) 884 { 885 struct f2fs_inode_info *fi; 886 887 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 888 if (!fi) 889 return NULL; 890 891 init_once((void *) fi); 892 893 /* Initialize f2fs-specific inode info */ 894 atomic_set(&fi->dirty_pages, 0); 895 init_rwsem(&fi->i_sem); 896 INIT_LIST_HEAD(&fi->dirty_list); 897 INIT_LIST_HEAD(&fi->gdirty_list); 898 INIT_LIST_HEAD(&fi->inmem_ilist); 899 INIT_LIST_HEAD(&fi->inmem_pages); 900 mutex_init(&fi->inmem_lock); 901 init_rwsem(&fi->i_gc_rwsem[READ]); 902 init_rwsem(&fi->i_gc_rwsem[WRITE]); 903 init_rwsem(&fi->i_mmap_sem); 904 init_rwsem(&fi->i_xattr_sem); 905 906 /* Will be used by directory only */ 907 fi->i_dir_level = F2FS_SB(sb)->dir_level; 908 909 return &fi->vfs_inode; 910 } 911 912 static int f2fs_drop_inode(struct inode *inode) 913 { 914 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 915 int ret; 916 917 /* 918 * during filesystem shutdown, if checkpoint is disabled, 919 * drop useless meta/node dirty pages. 920 */ 921 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 922 if (inode->i_ino == F2FS_NODE_INO(sbi) || 923 inode->i_ino == F2FS_META_INO(sbi)) { 924 trace_f2fs_drop_inode(inode, 1); 925 return 1; 926 } 927 } 928 929 /* 930 * This is to avoid a deadlock condition like below. 931 * writeback_single_inode(inode) 932 * - f2fs_write_data_page 933 * - f2fs_gc -> iput -> evict 934 * - inode_wait_for_writeback(inode) 935 */ 936 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 937 if (!inode->i_nlink && !is_bad_inode(inode)) { 938 /* to avoid evict_inode call simultaneously */ 939 atomic_inc(&inode->i_count); 940 spin_unlock(&inode->i_lock); 941 942 /* some remained atomic pages should discarded */ 943 if (f2fs_is_atomic_file(inode)) 944 f2fs_drop_inmem_pages(inode); 945 946 /* should remain fi->extent_tree for writepage */ 947 f2fs_destroy_extent_node(inode); 948 949 sb_start_intwrite(inode->i_sb); 950 f2fs_i_size_write(inode, 0); 951 952 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 953 inode, NULL, 0, DATA); 954 truncate_inode_pages_final(inode->i_mapping); 955 956 if (F2FS_HAS_BLOCKS(inode)) 957 f2fs_truncate(inode); 958 959 sb_end_intwrite(inode->i_sb); 960 961 spin_lock(&inode->i_lock); 962 atomic_dec(&inode->i_count); 963 } 964 trace_f2fs_drop_inode(inode, 0); 965 return 0; 966 } 967 ret = generic_drop_inode(inode); 968 if (!ret) 969 ret = fscrypt_drop_inode(inode); 970 trace_f2fs_drop_inode(inode, ret); 971 return ret; 972 } 973 974 int f2fs_inode_dirtied(struct inode *inode, bool sync) 975 { 976 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 977 int ret = 0; 978 979 spin_lock(&sbi->inode_lock[DIRTY_META]); 980 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 981 ret = 1; 982 } else { 983 set_inode_flag(inode, FI_DIRTY_INODE); 984 stat_inc_dirty_inode(sbi, DIRTY_META); 985 } 986 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 987 list_add_tail(&F2FS_I(inode)->gdirty_list, 988 &sbi->inode_list[DIRTY_META]); 989 inc_page_count(sbi, F2FS_DIRTY_IMETA); 990 } 991 spin_unlock(&sbi->inode_lock[DIRTY_META]); 992 return ret; 993 } 994 995 void f2fs_inode_synced(struct inode *inode) 996 { 997 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 998 999 spin_lock(&sbi->inode_lock[DIRTY_META]); 1000 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1001 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1002 return; 1003 } 1004 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 1005 list_del_init(&F2FS_I(inode)->gdirty_list); 1006 dec_page_count(sbi, F2FS_DIRTY_IMETA); 1007 } 1008 clear_inode_flag(inode, FI_DIRTY_INODE); 1009 clear_inode_flag(inode, FI_AUTO_RECOVER); 1010 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 1011 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1012 } 1013 1014 /* 1015 * f2fs_dirty_inode() is called from __mark_inode_dirty() 1016 * 1017 * We should call set_dirty_inode to write the dirty inode through write_inode. 1018 */ 1019 static void f2fs_dirty_inode(struct inode *inode, int flags) 1020 { 1021 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1022 1023 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1024 inode->i_ino == F2FS_META_INO(sbi)) 1025 return; 1026 1027 if (flags == I_DIRTY_TIME) 1028 return; 1029 1030 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1031 clear_inode_flag(inode, FI_AUTO_RECOVER); 1032 1033 f2fs_inode_dirtied(inode, false); 1034 } 1035 1036 static void f2fs_free_inode(struct inode *inode) 1037 { 1038 fscrypt_free_inode(inode); 1039 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1040 } 1041 1042 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1043 { 1044 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1045 percpu_counter_destroy(&sbi->total_valid_inode_count); 1046 } 1047 1048 static void destroy_device_list(struct f2fs_sb_info *sbi) 1049 { 1050 int i; 1051 1052 for (i = 0; i < sbi->s_ndevs; i++) { 1053 blkdev_put(FDEV(i).bdev, FMODE_EXCL); 1054 #ifdef CONFIG_BLK_DEV_ZONED 1055 kvfree(FDEV(i).blkz_seq); 1056 #endif 1057 } 1058 kvfree(sbi->devs); 1059 } 1060 1061 static void f2fs_put_super(struct super_block *sb) 1062 { 1063 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1064 int i; 1065 bool dropped; 1066 1067 f2fs_quota_off_umount(sb); 1068 1069 /* prevent remaining shrinker jobs */ 1070 mutex_lock(&sbi->umount_mutex); 1071 1072 /* 1073 * We don't need to do checkpoint when superblock is clean. 1074 * But, the previous checkpoint was not done by umount, it needs to do 1075 * clean checkpoint again. 1076 */ 1077 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1078 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1079 struct cp_control cpc = { 1080 .reason = CP_UMOUNT, 1081 }; 1082 f2fs_write_checkpoint(sbi, &cpc); 1083 } 1084 1085 /* be sure to wait for any on-going discard commands */ 1086 dropped = f2fs_issue_discard_timeout(sbi); 1087 1088 if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) && 1089 !sbi->discard_blks && !dropped) { 1090 struct cp_control cpc = { 1091 .reason = CP_UMOUNT | CP_TRIMMED, 1092 }; 1093 f2fs_write_checkpoint(sbi, &cpc); 1094 } 1095 1096 /* 1097 * normally superblock is clean, so we need to release this. 1098 * In addition, EIO will skip do checkpoint, we need this as well. 1099 */ 1100 f2fs_release_ino_entry(sbi, true); 1101 1102 f2fs_leave_shrinker(sbi); 1103 mutex_unlock(&sbi->umount_mutex); 1104 1105 /* our cp_error case, we can wait for any writeback page */ 1106 f2fs_flush_merged_writes(sbi); 1107 1108 f2fs_wait_on_all_pages_writeback(sbi); 1109 1110 f2fs_bug_on(sbi, sbi->fsync_node_num); 1111 1112 iput(sbi->node_inode); 1113 sbi->node_inode = NULL; 1114 1115 iput(sbi->meta_inode); 1116 sbi->meta_inode = NULL; 1117 1118 /* 1119 * iput() can update stat information, if f2fs_write_checkpoint() 1120 * above failed with error. 1121 */ 1122 f2fs_destroy_stats(sbi); 1123 1124 /* destroy f2fs internal modules */ 1125 f2fs_destroy_node_manager(sbi); 1126 f2fs_destroy_segment_manager(sbi); 1127 1128 kvfree(sbi->ckpt); 1129 1130 f2fs_unregister_sysfs(sbi); 1131 1132 sb->s_fs_info = NULL; 1133 if (sbi->s_chksum_driver) 1134 crypto_free_shash(sbi->s_chksum_driver); 1135 kvfree(sbi->raw_super); 1136 1137 destroy_device_list(sbi); 1138 mempool_destroy(sbi->write_io_dummy); 1139 #ifdef CONFIG_QUOTA 1140 for (i = 0; i < MAXQUOTAS; i++) 1141 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 1142 #endif 1143 destroy_percpu_info(sbi); 1144 for (i = 0; i < NR_PAGE_TYPE; i++) 1145 kvfree(sbi->write_io[i]); 1146 #ifdef CONFIG_UNICODE 1147 utf8_unload(sbi->s_encoding); 1148 #endif 1149 kvfree(sbi); 1150 } 1151 1152 int f2fs_sync_fs(struct super_block *sb, int sync) 1153 { 1154 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1155 int err = 0; 1156 1157 if (unlikely(f2fs_cp_error(sbi))) 1158 return 0; 1159 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1160 return 0; 1161 1162 trace_f2fs_sync_fs(sb, sync); 1163 1164 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1165 return -EAGAIN; 1166 1167 if (sync) { 1168 struct cp_control cpc; 1169 1170 cpc.reason = __get_cp_reason(sbi); 1171 1172 mutex_lock(&sbi->gc_mutex); 1173 err = f2fs_write_checkpoint(sbi, &cpc); 1174 mutex_unlock(&sbi->gc_mutex); 1175 } 1176 f2fs_trace_ios(NULL, 1); 1177 1178 return err; 1179 } 1180 1181 static int f2fs_freeze(struct super_block *sb) 1182 { 1183 if (f2fs_readonly(sb)) 1184 return 0; 1185 1186 /* IO error happened before */ 1187 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1188 return -EIO; 1189 1190 /* must be clean, since sync_filesystem() was already called */ 1191 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1192 return -EINVAL; 1193 return 0; 1194 } 1195 1196 static int f2fs_unfreeze(struct super_block *sb) 1197 { 1198 return 0; 1199 } 1200 1201 #ifdef CONFIG_QUOTA 1202 static int f2fs_statfs_project(struct super_block *sb, 1203 kprojid_t projid, struct kstatfs *buf) 1204 { 1205 struct kqid qid; 1206 struct dquot *dquot; 1207 u64 limit; 1208 u64 curblock; 1209 1210 qid = make_kqid_projid(projid); 1211 dquot = dqget(sb, qid); 1212 if (IS_ERR(dquot)) 1213 return PTR_ERR(dquot); 1214 spin_lock(&dquot->dq_dqb_lock); 1215 1216 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 1217 dquot->dq_dqb.dqb_bsoftlimit : 1218 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 1219 if (limit && buf->f_blocks > limit) { 1220 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 1221 buf->f_blocks = limit; 1222 buf->f_bfree = buf->f_bavail = 1223 (buf->f_blocks > curblock) ? 1224 (buf->f_blocks - curblock) : 0; 1225 } 1226 1227 limit = dquot->dq_dqb.dqb_isoftlimit ? 1228 dquot->dq_dqb.dqb_isoftlimit : 1229 dquot->dq_dqb.dqb_ihardlimit; 1230 if (limit && buf->f_files > limit) { 1231 buf->f_files = limit; 1232 buf->f_ffree = 1233 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1234 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1235 } 1236 1237 spin_unlock(&dquot->dq_dqb_lock); 1238 dqput(dquot); 1239 return 0; 1240 } 1241 #endif 1242 1243 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1244 { 1245 struct super_block *sb = dentry->d_sb; 1246 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1247 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1248 block_t total_count, user_block_count, start_count; 1249 u64 avail_node_count; 1250 1251 total_count = le64_to_cpu(sbi->raw_super->block_count); 1252 user_block_count = sbi->user_block_count; 1253 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1254 buf->f_type = F2FS_SUPER_MAGIC; 1255 buf->f_bsize = sbi->blocksize; 1256 1257 buf->f_blocks = total_count - start_count; 1258 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1259 sbi->current_reserved_blocks; 1260 1261 spin_lock(&sbi->stat_lock); 1262 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1263 buf->f_bfree = 0; 1264 else 1265 buf->f_bfree -= sbi->unusable_block_count; 1266 spin_unlock(&sbi->stat_lock); 1267 1268 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1269 buf->f_bavail = buf->f_bfree - 1270 F2FS_OPTION(sbi).root_reserved_blocks; 1271 else 1272 buf->f_bavail = 0; 1273 1274 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 1275 1276 if (avail_node_count > user_block_count) { 1277 buf->f_files = user_block_count; 1278 buf->f_ffree = buf->f_bavail; 1279 } else { 1280 buf->f_files = avail_node_count; 1281 buf->f_ffree = min(avail_node_count - valid_node_count(sbi), 1282 buf->f_bavail); 1283 } 1284 1285 buf->f_namelen = F2FS_NAME_LEN; 1286 buf->f_fsid.val[0] = (u32)id; 1287 buf->f_fsid.val[1] = (u32)(id >> 32); 1288 1289 #ifdef CONFIG_QUOTA 1290 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1291 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1292 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1293 } 1294 #endif 1295 return 0; 1296 } 1297 1298 static inline void f2fs_show_quota_options(struct seq_file *seq, 1299 struct super_block *sb) 1300 { 1301 #ifdef CONFIG_QUOTA 1302 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1303 1304 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1305 char *fmtname = ""; 1306 1307 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1308 case QFMT_VFS_OLD: 1309 fmtname = "vfsold"; 1310 break; 1311 case QFMT_VFS_V0: 1312 fmtname = "vfsv0"; 1313 break; 1314 case QFMT_VFS_V1: 1315 fmtname = "vfsv1"; 1316 break; 1317 } 1318 seq_printf(seq, ",jqfmt=%s", fmtname); 1319 } 1320 1321 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1322 seq_show_option(seq, "usrjquota", 1323 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1324 1325 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1326 seq_show_option(seq, "grpjquota", 1327 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1328 1329 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1330 seq_show_option(seq, "prjjquota", 1331 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1332 #endif 1333 } 1334 1335 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1336 { 1337 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1338 1339 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) { 1340 if (test_opt(sbi, FORCE_FG_GC)) 1341 seq_printf(seq, ",background_gc=%s", "sync"); 1342 else 1343 seq_printf(seq, ",background_gc=%s", "on"); 1344 } else { 1345 seq_printf(seq, ",background_gc=%s", "off"); 1346 } 1347 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1348 seq_puts(seq, ",disable_roll_forward"); 1349 if (test_opt(sbi, DISCARD)) 1350 seq_puts(seq, ",discard"); 1351 else 1352 seq_puts(seq, ",nodiscard"); 1353 if (test_opt(sbi, NOHEAP)) 1354 seq_puts(seq, ",no_heap"); 1355 else 1356 seq_puts(seq, ",heap"); 1357 #ifdef CONFIG_F2FS_FS_XATTR 1358 if (test_opt(sbi, XATTR_USER)) 1359 seq_puts(seq, ",user_xattr"); 1360 else 1361 seq_puts(seq, ",nouser_xattr"); 1362 if (test_opt(sbi, INLINE_XATTR)) 1363 seq_puts(seq, ",inline_xattr"); 1364 else 1365 seq_puts(seq, ",noinline_xattr"); 1366 if (test_opt(sbi, INLINE_XATTR_SIZE)) 1367 seq_printf(seq, ",inline_xattr_size=%u", 1368 F2FS_OPTION(sbi).inline_xattr_size); 1369 #endif 1370 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1371 if (test_opt(sbi, POSIX_ACL)) 1372 seq_puts(seq, ",acl"); 1373 else 1374 seq_puts(seq, ",noacl"); 1375 #endif 1376 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 1377 seq_puts(seq, ",disable_ext_identify"); 1378 if (test_opt(sbi, INLINE_DATA)) 1379 seq_puts(seq, ",inline_data"); 1380 else 1381 seq_puts(seq, ",noinline_data"); 1382 if (test_opt(sbi, INLINE_DENTRY)) 1383 seq_puts(seq, ",inline_dentry"); 1384 else 1385 seq_puts(seq, ",noinline_dentry"); 1386 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 1387 seq_puts(seq, ",flush_merge"); 1388 if (test_opt(sbi, NOBARRIER)) 1389 seq_puts(seq, ",nobarrier"); 1390 if (test_opt(sbi, FASTBOOT)) 1391 seq_puts(seq, ",fastboot"); 1392 if (test_opt(sbi, EXTENT_CACHE)) 1393 seq_puts(seq, ",extent_cache"); 1394 else 1395 seq_puts(seq, ",noextent_cache"); 1396 if (test_opt(sbi, DATA_FLUSH)) 1397 seq_puts(seq, ",data_flush"); 1398 1399 seq_puts(seq, ",mode="); 1400 if (test_opt(sbi, ADAPTIVE)) 1401 seq_puts(seq, "adaptive"); 1402 else if (test_opt(sbi, LFS)) 1403 seq_puts(seq, "lfs"); 1404 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 1405 if (test_opt(sbi, RESERVE_ROOT)) 1406 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 1407 F2FS_OPTION(sbi).root_reserved_blocks, 1408 from_kuid_munged(&init_user_ns, 1409 F2FS_OPTION(sbi).s_resuid), 1410 from_kgid_munged(&init_user_ns, 1411 F2FS_OPTION(sbi).s_resgid)); 1412 if (F2FS_IO_SIZE_BITS(sbi)) 1413 seq_printf(seq, ",io_bits=%u", 1414 F2FS_OPTION(sbi).write_io_size_bits); 1415 #ifdef CONFIG_F2FS_FAULT_INJECTION 1416 if (test_opt(sbi, FAULT_INJECTION)) { 1417 seq_printf(seq, ",fault_injection=%u", 1418 F2FS_OPTION(sbi).fault_info.inject_rate); 1419 seq_printf(seq, ",fault_type=%u", 1420 F2FS_OPTION(sbi).fault_info.inject_type); 1421 } 1422 #endif 1423 #ifdef CONFIG_QUOTA 1424 if (test_opt(sbi, QUOTA)) 1425 seq_puts(seq, ",quota"); 1426 if (test_opt(sbi, USRQUOTA)) 1427 seq_puts(seq, ",usrquota"); 1428 if (test_opt(sbi, GRPQUOTA)) 1429 seq_puts(seq, ",grpquota"); 1430 if (test_opt(sbi, PRJQUOTA)) 1431 seq_puts(seq, ",prjquota"); 1432 #endif 1433 f2fs_show_quota_options(seq, sbi->sb); 1434 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) 1435 seq_printf(seq, ",whint_mode=%s", "user-based"); 1436 else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) 1437 seq_printf(seq, ",whint_mode=%s", "fs-based"); 1438 #ifdef CONFIG_FS_ENCRYPTION 1439 if (F2FS_OPTION(sbi).test_dummy_encryption) 1440 seq_puts(seq, ",test_dummy_encryption"); 1441 #endif 1442 1443 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 1444 seq_printf(seq, ",alloc_mode=%s", "default"); 1445 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 1446 seq_printf(seq, ",alloc_mode=%s", "reuse"); 1447 1448 if (test_opt(sbi, DISABLE_CHECKPOINT)) 1449 seq_printf(seq, ",checkpoint=disable:%u", 1450 F2FS_OPTION(sbi).unusable_cap); 1451 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 1452 seq_printf(seq, ",fsync_mode=%s", "posix"); 1453 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 1454 seq_printf(seq, ",fsync_mode=%s", "strict"); 1455 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 1456 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 1457 return 0; 1458 } 1459 1460 static void default_options(struct f2fs_sb_info *sbi) 1461 { 1462 /* init some FS parameters */ 1463 F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE; 1464 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 1465 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 1466 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 1467 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1468 F2FS_OPTION(sbi).test_dummy_encryption = false; 1469 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 1470 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 1471 1472 set_opt(sbi, BG_GC); 1473 set_opt(sbi, INLINE_XATTR); 1474 set_opt(sbi, INLINE_DATA); 1475 set_opt(sbi, INLINE_DENTRY); 1476 set_opt(sbi, EXTENT_CACHE); 1477 set_opt(sbi, NOHEAP); 1478 clear_opt(sbi, DISABLE_CHECKPOINT); 1479 F2FS_OPTION(sbi).unusable_cap = 0; 1480 sbi->sb->s_flags |= SB_LAZYTIME; 1481 set_opt(sbi, FLUSH_MERGE); 1482 set_opt(sbi, DISCARD); 1483 if (f2fs_sb_has_blkzoned(sbi)) 1484 set_opt_mode(sbi, F2FS_MOUNT_LFS); 1485 else 1486 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 1487 1488 #ifdef CONFIG_F2FS_FS_XATTR 1489 set_opt(sbi, XATTR_USER); 1490 #endif 1491 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1492 set_opt(sbi, POSIX_ACL); 1493 #endif 1494 1495 f2fs_build_fault_attr(sbi, 0, 0); 1496 } 1497 1498 #ifdef CONFIG_QUOTA 1499 static int f2fs_enable_quotas(struct super_block *sb); 1500 #endif 1501 1502 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 1503 { 1504 unsigned int s_flags = sbi->sb->s_flags; 1505 struct cp_control cpc; 1506 int err = 0; 1507 int ret; 1508 block_t unusable; 1509 1510 if (s_flags & SB_RDONLY) { 1511 f2fs_err(sbi, "checkpoint=disable on readonly fs"); 1512 return -EINVAL; 1513 } 1514 sbi->sb->s_flags |= SB_ACTIVE; 1515 1516 f2fs_update_time(sbi, DISABLE_TIME); 1517 1518 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 1519 mutex_lock(&sbi->gc_mutex); 1520 err = f2fs_gc(sbi, true, false, NULL_SEGNO); 1521 if (err == -ENODATA) { 1522 err = 0; 1523 break; 1524 } 1525 if (err && err != -EAGAIN) 1526 break; 1527 } 1528 1529 ret = sync_filesystem(sbi->sb); 1530 if (ret || err) { 1531 err = ret ? ret: err; 1532 goto restore_flag; 1533 } 1534 1535 unusable = f2fs_get_unusable_blocks(sbi); 1536 if (f2fs_disable_cp_again(sbi, unusable)) { 1537 err = -EAGAIN; 1538 goto restore_flag; 1539 } 1540 1541 mutex_lock(&sbi->gc_mutex); 1542 cpc.reason = CP_PAUSE; 1543 set_sbi_flag(sbi, SBI_CP_DISABLED); 1544 err = f2fs_write_checkpoint(sbi, &cpc); 1545 if (err) 1546 goto out_unlock; 1547 1548 spin_lock(&sbi->stat_lock); 1549 sbi->unusable_block_count = unusable; 1550 spin_unlock(&sbi->stat_lock); 1551 1552 out_unlock: 1553 mutex_unlock(&sbi->gc_mutex); 1554 restore_flag: 1555 sbi->sb->s_flags = s_flags; /* Restore MS_RDONLY status */ 1556 return err; 1557 } 1558 1559 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 1560 { 1561 mutex_lock(&sbi->gc_mutex); 1562 f2fs_dirty_to_prefree(sbi); 1563 1564 clear_sbi_flag(sbi, SBI_CP_DISABLED); 1565 set_sbi_flag(sbi, SBI_IS_DIRTY); 1566 mutex_unlock(&sbi->gc_mutex); 1567 1568 f2fs_sync_fs(sbi->sb, 1); 1569 } 1570 1571 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 1572 { 1573 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1574 struct f2fs_mount_info org_mount_opt; 1575 unsigned long old_sb_flags; 1576 int err; 1577 bool need_restart_gc = false; 1578 bool need_stop_gc = false; 1579 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 1580 bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT); 1581 bool no_io_align = !F2FS_IO_ALIGNED(sbi); 1582 bool checkpoint_changed; 1583 #ifdef CONFIG_QUOTA 1584 int i, j; 1585 #endif 1586 1587 /* 1588 * Save the old mount options in case we 1589 * need to restore them. 1590 */ 1591 org_mount_opt = sbi->mount_opt; 1592 old_sb_flags = sb->s_flags; 1593 1594 #ifdef CONFIG_QUOTA 1595 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 1596 for (i = 0; i < MAXQUOTAS; i++) { 1597 if (F2FS_OPTION(sbi).s_qf_names[i]) { 1598 org_mount_opt.s_qf_names[i] = 1599 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 1600 GFP_KERNEL); 1601 if (!org_mount_opt.s_qf_names[i]) { 1602 for (j = 0; j < i; j++) 1603 kvfree(org_mount_opt.s_qf_names[j]); 1604 return -ENOMEM; 1605 } 1606 } else { 1607 org_mount_opt.s_qf_names[i] = NULL; 1608 } 1609 } 1610 #endif 1611 1612 /* recover superblocks we couldn't write due to previous RO mount */ 1613 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 1614 err = f2fs_commit_super(sbi, false); 1615 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d", 1616 err); 1617 if (!err) 1618 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1619 } 1620 1621 default_options(sbi); 1622 1623 /* parse mount options */ 1624 err = parse_options(sb, data); 1625 if (err) 1626 goto restore_opts; 1627 checkpoint_changed = 1628 disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT); 1629 1630 /* 1631 * Previous and new state of filesystem is RO, 1632 * so skip checking GC and FLUSH_MERGE conditions. 1633 */ 1634 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 1635 goto skip; 1636 1637 #ifdef CONFIG_QUOTA 1638 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 1639 err = dquot_suspend(sb, -1); 1640 if (err < 0) 1641 goto restore_opts; 1642 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 1643 /* dquot_resume needs RW */ 1644 sb->s_flags &= ~SB_RDONLY; 1645 if (sb_any_quota_suspended(sb)) { 1646 dquot_resume(sb, -1); 1647 } else if (f2fs_sb_has_quota_ino(sbi)) { 1648 err = f2fs_enable_quotas(sb); 1649 if (err) 1650 goto restore_opts; 1651 } 1652 } 1653 #endif 1654 /* disallow enable/disable extent_cache dynamically */ 1655 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 1656 err = -EINVAL; 1657 f2fs_warn(sbi, "switch extent_cache option is not allowed"); 1658 goto restore_opts; 1659 } 1660 1661 if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) { 1662 err = -EINVAL; 1663 f2fs_warn(sbi, "switch io_bits option is not allowed"); 1664 goto restore_opts; 1665 } 1666 1667 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 1668 err = -EINVAL; 1669 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only"); 1670 goto restore_opts; 1671 } 1672 1673 /* 1674 * We stop the GC thread if FS is mounted as RO 1675 * or if background_gc = off is passed in mount 1676 * option. Also sync the filesystem. 1677 */ 1678 if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) { 1679 if (sbi->gc_thread) { 1680 f2fs_stop_gc_thread(sbi); 1681 need_restart_gc = true; 1682 } 1683 } else if (!sbi->gc_thread) { 1684 err = f2fs_start_gc_thread(sbi); 1685 if (err) 1686 goto restore_opts; 1687 need_stop_gc = true; 1688 } 1689 1690 if (*flags & SB_RDONLY || 1691 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) { 1692 writeback_inodes_sb(sb, WB_REASON_SYNC); 1693 sync_inodes_sb(sb); 1694 1695 set_sbi_flag(sbi, SBI_IS_DIRTY); 1696 set_sbi_flag(sbi, SBI_IS_CLOSE); 1697 f2fs_sync_fs(sb, 1); 1698 clear_sbi_flag(sbi, SBI_IS_CLOSE); 1699 } 1700 1701 if (checkpoint_changed) { 1702 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 1703 err = f2fs_disable_checkpoint(sbi); 1704 if (err) 1705 goto restore_gc; 1706 } else { 1707 f2fs_enable_checkpoint(sbi); 1708 } 1709 } 1710 1711 /* 1712 * We stop issue flush thread if FS is mounted as RO 1713 * or if flush_merge is not passed in mount option. 1714 */ 1715 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 1716 clear_opt(sbi, FLUSH_MERGE); 1717 f2fs_destroy_flush_cmd_control(sbi, false); 1718 } else { 1719 err = f2fs_create_flush_cmd_control(sbi); 1720 if (err) 1721 goto restore_gc; 1722 } 1723 skip: 1724 #ifdef CONFIG_QUOTA 1725 /* Release old quota file names */ 1726 for (i = 0; i < MAXQUOTAS; i++) 1727 kvfree(org_mount_opt.s_qf_names[i]); 1728 #endif 1729 /* Update the POSIXACL Flag */ 1730 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 1731 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 1732 1733 limit_reserve_root(sbi); 1734 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 1735 return 0; 1736 restore_gc: 1737 if (need_restart_gc) { 1738 if (f2fs_start_gc_thread(sbi)) 1739 f2fs_warn(sbi, "background gc thread has stopped"); 1740 } else if (need_stop_gc) { 1741 f2fs_stop_gc_thread(sbi); 1742 } 1743 restore_opts: 1744 #ifdef CONFIG_QUOTA 1745 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 1746 for (i = 0; i < MAXQUOTAS; i++) { 1747 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 1748 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 1749 } 1750 #endif 1751 sbi->mount_opt = org_mount_opt; 1752 sb->s_flags = old_sb_flags; 1753 return err; 1754 } 1755 1756 #ifdef CONFIG_QUOTA 1757 /* Read data from quotafile */ 1758 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 1759 size_t len, loff_t off) 1760 { 1761 struct inode *inode = sb_dqopt(sb)->files[type]; 1762 struct address_space *mapping = inode->i_mapping; 1763 block_t blkidx = F2FS_BYTES_TO_BLK(off); 1764 int offset = off & (sb->s_blocksize - 1); 1765 int tocopy; 1766 size_t toread; 1767 loff_t i_size = i_size_read(inode); 1768 struct page *page; 1769 char *kaddr; 1770 1771 if (off > i_size) 1772 return 0; 1773 1774 if (off + len > i_size) 1775 len = i_size - off; 1776 toread = len; 1777 while (toread > 0) { 1778 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 1779 repeat: 1780 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 1781 if (IS_ERR(page)) { 1782 if (PTR_ERR(page) == -ENOMEM) { 1783 congestion_wait(BLK_RW_ASYNC, HZ/50); 1784 goto repeat; 1785 } 1786 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1787 return PTR_ERR(page); 1788 } 1789 1790 lock_page(page); 1791 1792 if (unlikely(page->mapping != mapping)) { 1793 f2fs_put_page(page, 1); 1794 goto repeat; 1795 } 1796 if (unlikely(!PageUptodate(page))) { 1797 f2fs_put_page(page, 1); 1798 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1799 return -EIO; 1800 } 1801 1802 kaddr = kmap_atomic(page); 1803 memcpy(data, kaddr + offset, tocopy); 1804 kunmap_atomic(kaddr); 1805 f2fs_put_page(page, 1); 1806 1807 offset = 0; 1808 toread -= tocopy; 1809 data += tocopy; 1810 blkidx++; 1811 } 1812 return len; 1813 } 1814 1815 /* Write to quotafile */ 1816 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 1817 const char *data, size_t len, loff_t off) 1818 { 1819 struct inode *inode = sb_dqopt(sb)->files[type]; 1820 struct address_space *mapping = inode->i_mapping; 1821 const struct address_space_operations *a_ops = mapping->a_ops; 1822 int offset = off & (sb->s_blocksize - 1); 1823 size_t towrite = len; 1824 struct page *page; 1825 char *kaddr; 1826 int err = 0; 1827 int tocopy; 1828 1829 while (towrite > 0) { 1830 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 1831 towrite); 1832 retry: 1833 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0, 1834 &page, NULL); 1835 if (unlikely(err)) { 1836 if (err == -ENOMEM) { 1837 congestion_wait(BLK_RW_ASYNC, HZ/50); 1838 goto retry; 1839 } 1840 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1841 break; 1842 } 1843 1844 kaddr = kmap_atomic(page); 1845 memcpy(kaddr + offset, data, tocopy); 1846 kunmap_atomic(kaddr); 1847 flush_dcache_page(page); 1848 1849 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 1850 page, NULL); 1851 offset = 0; 1852 towrite -= tocopy; 1853 off += tocopy; 1854 data += tocopy; 1855 cond_resched(); 1856 } 1857 1858 if (len == towrite) 1859 return err; 1860 inode->i_mtime = inode->i_ctime = current_time(inode); 1861 f2fs_mark_inode_dirty_sync(inode, false); 1862 return len - towrite; 1863 } 1864 1865 static struct dquot **f2fs_get_dquots(struct inode *inode) 1866 { 1867 return F2FS_I(inode)->i_dquot; 1868 } 1869 1870 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 1871 { 1872 return &F2FS_I(inode)->i_reserved_quota; 1873 } 1874 1875 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 1876 { 1877 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 1878 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it"); 1879 return 0; 1880 } 1881 1882 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 1883 F2FS_OPTION(sbi).s_jquota_fmt, type); 1884 } 1885 1886 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 1887 { 1888 int enabled = 0; 1889 int i, err; 1890 1891 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 1892 err = f2fs_enable_quotas(sbi->sb); 1893 if (err) { 1894 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err); 1895 return 0; 1896 } 1897 return 1; 1898 } 1899 1900 for (i = 0; i < MAXQUOTAS; i++) { 1901 if (F2FS_OPTION(sbi).s_qf_names[i]) { 1902 err = f2fs_quota_on_mount(sbi, i); 1903 if (!err) { 1904 enabled = 1; 1905 continue; 1906 } 1907 f2fs_err(sbi, "Cannot turn on quotas: %d on %d", 1908 err, i); 1909 } 1910 } 1911 return enabled; 1912 } 1913 1914 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 1915 unsigned int flags) 1916 { 1917 struct inode *qf_inode; 1918 unsigned long qf_inum; 1919 int err; 1920 1921 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 1922 1923 qf_inum = f2fs_qf_ino(sb, type); 1924 if (!qf_inum) 1925 return -EPERM; 1926 1927 qf_inode = f2fs_iget(sb, qf_inum); 1928 if (IS_ERR(qf_inode)) { 1929 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum); 1930 return PTR_ERR(qf_inode); 1931 } 1932 1933 /* Don't account quota for quota files to avoid recursion */ 1934 qf_inode->i_flags |= S_NOQUOTA; 1935 err = dquot_enable(qf_inode, type, format_id, flags); 1936 iput(qf_inode); 1937 return err; 1938 } 1939 1940 static int f2fs_enable_quotas(struct super_block *sb) 1941 { 1942 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1943 int type, err = 0; 1944 unsigned long qf_inum; 1945 bool quota_mopt[MAXQUOTAS] = { 1946 test_opt(sbi, USRQUOTA), 1947 test_opt(sbi, GRPQUOTA), 1948 test_opt(sbi, PRJQUOTA), 1949 }; 1950 1951 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 1952 f2fs_err(sbi, "quota file may be corrupted, skip loading it"); 1953 return 0; 1954 } 1955 1956 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 1957 1958 for (type = 0; type < MAXQUOTAS; type++) { 1959 qf_inum = f2fs_qf_ino(sb, type); 1960 if (qf_inum) { 1961 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 1962 DQUOT_USAGE_ENABLED | 1963 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 1964 if (err) { 1965 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.", 1966 type, err); 1967 for (type--; type >= 0; type--) 1968 dquot_quota_off(sb, type); 1969 set_sbi_flag(F2FS_SB(sb), 1970 SBI_QUOTA_NEED_REPAIR); 1971 return err; 1972 } 1973 } 1974 } 1975 return 0; 1976 } 1977 1978 int f2fs_quota_sync(struct super_block *sb, int type) 1979 { 1980 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1981 struct quota_info *dqopt = sb_dqopt(sb); 1982 int cnt; 1983 int ret; 1984 1985 /* 1986 * do_quotactl 1987 * f2fs_quota_sync 1988 * down_read(quota_sem) 1989 * dquot_writeback_dquots() 1990 * f2fs_dquot_commit 1991 * block_operation 1992 * down_read(quota_sem) 1993 */ 1994 f2fs_lock_op(sbi); 1995 1996 down_read(&sbi->quota_sem); 1997 ret = dquot_writeback_dquots(sb, type); 1998 if (ret) 1999 goto out; 2000 2001 /* 2002 * Now when everything is written we can discard the pagecache so 2003 * that userspace sees the changes. 2004 */ 2005 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 2006 struct address_space *mapping; 2007 2008 if (type != -1 && cnt != type) 2009 continue; 2010 if (!sb_has_quota_active(sb, cnt)) 2011 continue; 2012 2013 mapping = dqopt->files[cnt]->i_mapping; 2014 2015 ret = filemap_fdatawrite(mapping); 2016 if (ret) 2017 goto out; 2018 2019 /* if we are using journalled quota */ 2020 if (is_journalled_quota(sbi)) 2021 continue; 2022 2023 ret = filemap_fdatawait(mapping); 2024 if (ret) 2025 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2026 2027 inode_lock(dqopt->files[cnt]); 2028 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0); 2029 inode_unlock(dqopt->files[cnt]); 2030 } 2031 out: 2032 if (ret) 2033 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2034 up_read(&sbi->quota_sem); 2035 f2fs_unlock_op(sbi); 2036 return ret; 2037 } 2038 2039 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 2040 const struct path *path) 2041 { 2042 struct inode *inode; 2043 int err; 2044 2045 /* if quota sysfile exists, deny enabling quota with specific file */ 2046 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) { 2047 f2fs_err(F2FS_SB(sb), "quota sysfile already exists"); 2048 return -EBUSY; 2049 } 2050 2051 err = f2fs_quota_sync(sb, type); 2052 if (err) 2053 return err; 2054 2055 err = dquot_quota_on(sb, type, format_id, path); 2056 if (err) 2057 return err; 2058 2059 inode = d_inode(path->dentry); 2060 2061 inode_lock(inode); 2062 F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL; 2063 f2fs_set_inode_flags(inode); 2064 inode_unlock(inode); 2065 f2fs_mark_inode_dirty_sync(inode, false); 2066 2067 return 0; 2068 } 2069 2070 static int __f2fs_quota_off(struct super_block *sb, int type) 2071 { 2072 struct inode *inode = sb_dqopt(sb)->files[type]; 2073 int err; 2074 2075 if (!inode || !igrab(inode)) 2076 return dquot_quota_off(sb, type); 2077 2078 err = f2fs_quota_sync(sb, type); 2079 if (err) 2080 goto out_put; 2081 2082 err = dquot_quota_off(sb, type); 2083 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 2084 goto out_put; 2085 2086 inode_lock(inode); 2087 F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL); 2088 f2fs_set_inode_flags(inode); 2089 inode_unlock(inode); 2090 f2fs_mark_inode_dirty_sync(inode, false); 2091 out_put: 2092 iput(inode); 2093 return err; 2094 } 2095 2096 static int f2fs_quota_off(struct super_block *sb, int type) 2097 { 2098 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2099 int err; 2100 2101 err = __f2fs_quota_off(sb, type); 2102 2103 /* 2104 * quotactl can shutdown journalled quota, result in inconsistence 2105 * between quota record and fs data by following updates, tag the 2106 * flag to let fsck be aware of it. 2107 */ 2108 if (is_journalled_quota(sbi)) 2109 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2110 return err; 2111 } 2112 2113 void f2fs_quota_off_umount(struct super_block *sb) 2114 { 2115 int type; 2116 int err; 2117 2118 for (type = 0; type < MAXQUOTAS; type++) { 2119 err = __f2fs_quota_off(sb, type); 2120 if (err) { 2121 int ret = dquot_quota_off(sb, type); 2122 2123 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.", 2124 type, err, ret); 2125 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2126 } 2127 } 2128 /* 2129 * In case of checkpoint=disable, we must flush quota blocks. 2130 * This can cause NULL exception for node_inode in end_io, since 2131 * put_super already dropped it. 2132 */ 2133 sync_filesystem(sb); 2134 } 2135 2136 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 2137 { 2138 struct quota_info *dqopt = sb_dqopt(sb); 2139 int type; 2140 2141 for (type = 0; type < MAXQUOTAS; type++) { 2142 if (!dqopt->files[type]) 2143 continue; 2144 f2fs_inode_synced(dqopt->files[type]); 2145 } 2146 } 2147 2148 static int f2fs_dquot_commit(struct dquot *dquot) 2149 { 2150 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2151 int ret; 2152 2153 down_read(&sbi->quota_sem); 2154 ret = dquot_commit(dquot); 2155 if (ret < 0) 2156 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2157 up_read(&sbi->quota_sem); 2158 return ret; 2159 } 2160 2161 static int f2fs_dquot_acquire(struct dquot *dquot) 2162 { 2163 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2164 int ret; 2165 2166 down_read(&sbi->quota_sem); 2167 ret = dquot_acquire(dquot); 2168 if (ret < 0) 2169 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2170 up_read(&sbi->quota_sem); 2171 return ret; 2172 } 2173 2174 static int f2fs_dquot_release(struct dquot *dquot) 2175 { 2176 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2177 int ret; 2178 2179 down_read(&sbi->quota_sem); 2180 ret = dquot_release(dquot); 2181 if (ret < 0) 2182 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2183 up_read(&sbi->quota_sem); 2184 return ret; 2185 } 2186 2187 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 2188 { 2189 struct super_block *sb = dquot->dq_sb; 2190 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2191 int ret; 2192 2193 down_read(&sbi->quota_sem); 2194 ret = dquot_mark_dquot_dirty(dquot); 2195 2196 /* if we are using journalled quota */ 2197 if (is_journalled_quota(sbi)) 2198 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 2199 2200 up_read(&sbi->quota_sem); 2201 return ret; 2202 } 2203 2204 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 2205 { 2206 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2207 int ret; 2208 2209 down_read(&sbi->quota_sem); 2210 ret = dquot_commit_info(sb, type); 2211 if (ret < 0) 2212 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2213 up_read(&sbi->quota_sem); 2214 return ret; 2215 } 2216 2217 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 2218 { 2219 *projid = F2FS_I(inode)->i_projid; 2220 return 0; 2221 } 2222 2223 static const struct dquot_operations f2fs_quota_operations = { 2224 .get_reserved_space = f2fs_get_reserved_space, 2225 .write_dquot = f2fs_dquot_commit, 2226 .acquire_dquot = f2fs_dquot_acquire, 2227 .release_dquot = f2fs_dquot_release, 2228 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 2229 .write_info = f2fs_dquot_commit_info, 2230 .alloc_dquot = dquot_alloc, 2231 .destroy_dquot = dquot_destroy, 2232 .get_projid = f2fs_get_projid, 2233 .get_next_id = dquot_get_next_id, 2234 }; 2235 2236 static const struct quotactl_ops f2fs_quotactl_ops = { 2237 .quota_on = f2fs_quota_on, 2238 .quota_off = f2fs_quota_off, 2239 .quota_sync = f2fs_quota_sync, 2240 .get_state = dquot_get_state, 2241 .set_info = dquot_set_dqinfo, 2242 .get_dqblk = dquot_get_dqblk, 2243 .set_dqblk = dquot_set_dqblk, 2244 .get_nextdqblk = dquot_get_next_dqblk, 2245 }; 2246 #else 2247 int f2fs_quota_sync(struct super_block *sb, int type) 2248 { 2249 return 0; 2250 } 2251 2252 void f2fs_quota_off_umount(struct super_block *sb) 2253 { 2254 } 2255 #endif 2256 2257 static const struct super_operations f2fs_sops = { 2258 .alloc_inode = f2fs_alloc_inode, 2259 .free_inode = f2fs_free_inode, 2260 .drop_inode = f2fs_drop_inode, 2261 .write_inode = f2fs_write_inode, 2262 .dirty_inode = f2fs_dirty_inode, 2263 .show_options = f2fs_show_options, 2264 #ifdef CONFIG_QUOTA 2265 .quota_read = f2fs_quota_read, 2266 .quota_write = f2fs_quota_write, 2267 .get_dquots = f2fs_get_dquots, 2268 #endif 2269 .evict_inode = f2fs_evict_inode, 2270 .put_super = f2fs_put_super, 2271 .sync_fs = f2fs_sync_fs, 2272 .freeze_fs = f2fs_freeze, 2273 .unfreeze_fs = f2fs_unfreeze, 2274 .statfs = f2fs_statfs, 2275 .remount_fs = f2fs_remount, 2276 }; 2277 2278 #ifdef CONFIG_FS_ENCRYPTION 2279 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 2280 { 2281 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2282 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2283 ctx, len, NULL); 2284 } 2285 2286 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 2287 void *fs_data) 2288 { 2289 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2290 2291 /* 2292 * Encrypting the root directory is not allowed because fsck 2293 * expects lost+found directory to exist and remain unencrypted 2294 * if LOST_FOUND feature is enabled. 2295 * 2296 */ 2297 if (f2fs_sb_has_lost_found(sbi) && 2298 inode->i_ino == F2FS_ROOT_INO(sbi)) 2299 return -EPERM; 2300 2301 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2302 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2303 ctx, len, fs_data, XATTR_CREATE); 2304 } 2305 2306 static bool f2fs_dummy_context(struct inode *inode) 2307 { 2308 return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode)); 2309 } 2310 2311 static const struct fscrypt_operations f2fs_cryptops = { 2312 .key_prefix = "f2fs:", 2313 .get_context = f2fs_get_context, 2314 .set_context = f2fs_set_context, 2315 .dummy_context = f2fs_dummy_context, 2316 .empty_dir = f2fs_empty_dir, 2317 .max_namelen = F2FS_NAME_LEN, 2318 }; 2319 #endif 2320 2321 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 2322 u64 ino, u32 generation) 2323 { 2324 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2325 struct inode *inode; 2326 2327 if (f2fs_check_nid_range(sbi, ino)) 2328 return ERR_PTR(-ESTALE); 2329 2330 /* 2331 * f2fs_iget isn't quite right if the inode is currently unallocated! 2332 * However f2fs_iget currently does appropriate checks to handle stale 2333 * inodes so everything is OK. 2334 */ 2335 inode = f2fs_iget(sb, ino); 2336 if (IS_ERR(inode)) 2337 return ERR_CAST(inode); 2338 if (unlikely(generation && inode->i_generation != generation)) { 2339 /* we didn't find the right inode.. */ 2340 iput(inode); 2341 return ERR_PTR(-ESTALE); 2342 } 2343 return inode; 2344 } 2345 2346 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 2347 int fh_len, int fh_type) 2348 { 2349 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 2350 f2fs_nfs_get_inode); 2351 } 2352 2353 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 2354 int fh_len, int fh_type) 2355 { 2356 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 2357 f2fs_nfs_get_inode); 2358 } 2359 2360 static const struct export_operations f2fs_export_ops = { 2361 .fh_to_dentry = f2fs_fh_to_dentry, 2362 .fh_to_parent = f2fs_fh_to_parent, 2363 .get_parent = f2fs_get_parent, 2364 }; 2365 2366 static loff_t max_file_blocks(void) 2367 { 2368 loff_t result = 0; 2369 loff_t leaf_count = DEF_ADDRS_PER_BLOCK; 2370 2371 /* 2372 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 2373 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 2374 * space in inode.i_addr, it will be more safe to reassign 2375 * result as zero. 2376 */ 2377 2378 /* two direct node blocks */ 2379 result += (leaf_count * 2); 2380 2381 /* two indirect node blocks */ 2382 leaf_count *= NIDS_PER_BLOCK; 2383 result += (leaf_count * 2); 2384 2385 /* one double indirect node block */ 2386 leaf_count *= NIDS_PER_BLOCK; 2387 result += leaf_count; 2388 2389 return result; 2390 } 2391 2392 static int __f2fs_commit_super(struct buffer_head *bh, 2393 struct f2fs_super_block *super) 2394 { 2395 lock_buffer(bh); 2396 if (super) 2397 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 2398 set_buffer_dirty(bh); 2399 unlock_buffer(bh); 2400 2401 /* it's rare case, we can do fua all the time */ 2402 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 2403 } 2404 2405 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 2406 struct buffer_head *bh) 2407 { 2408 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2409 (bh->b_data + F2FS_SUPER_OFFSET); 2410 struct super_block *sb = sbi->sb; 2411 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2412 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 2413 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 2414 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 2415 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2416 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2417 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 2418 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 2419 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 2420 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 2421 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2422 u32 segment_count = le32_to_cpu(raw_super->segment_count); 2423 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2424 u64 main_end_blkaddr = main_blkaddr + 2425 (segment_count_main << log_blocks_per_seg); 2426 u64 seg_end_blkaddr = segment0_blkaddr + 2427 (segment_count << log_blocks_per_seg); 2428 2429 if (segment0_blkaddr != cp_blkaddr) { 2430 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 2431 segment0_blkaddr, cp_blkaddr); 2432 return true; 2433 } 2434 2435 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 2436 sit_blkaddr) { 2437 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 2438 cp_blkaddr, sit_blkaddr, 2439 segment_count_ckpt << log_blocks_per_seg); 2440 return true; 2441 } 2442 2443 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 2444 nat_blkaddr) { 2445 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 2446 sit_blkaddr, nat_blkaddr, 2447 segment_count_sit << log_blocks_per_seg); 2448 return true; 2449 } 2450 2451 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 2452 ssa_blkaddr) { 2453 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 2454 nat_blkaddr, ssa_blkaddr, 2455 segment_count_nat << log_blocks_per_seg); 2456 return true; 2457 } 2458 2459 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 2460 main_blkaddr) { 2461 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 2462 ssa_blkaddr, main_blkaddr, 2463 segment_count_ssa << log_blocks_per_seg); 2464 return true; 2465 } 2466 2467 if (main_end_blkaddr > seg_end_blkaddr) { 2468 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)", 2469 main_blkaddr, 2470 segment0_blkaddr + 2471 (segment_count << log_blocks_per_seg), 2472 segment_count_main << log_blocks_per_seg); 2473 return true; 2474 } else if (main_end_blkaddr < seg_end_blkaddr) { 2475 int err = 0; 2476 char *res; 2477 2478 /* fix in-memory information all the time */ 2479 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 2480 segment0_blkaddr) >> log_blocks_per_seg); 2481 2482 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 2483 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2484 res = "internally"; 2485 } else { 2486 err = __f2fs_commit_super(bh, NULL); 2487 res = err ? "failed" : "done"; 2488 } 2489 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%u) block(%u)", 2490 res, main_blkaddr, 2491 segment0_blkaddr + 2492 (segment_count << log_blocks_per_seg), 2493 segment_count_main << log_blocks_per_seg); 2494 if (err) 2495 return true; 2496 } 2497 return false; 2498 } 2499 2500 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 2501 struct buffer_head *bh) 2502 { 2503 block_t segment_count, segs_per_sec, secs_per_zone; 2504 block_t total_sections, blocks_per_seg; 2505 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2506 (bh->b_data + F2FS_SUPER_OFFSET); 2507 unsigned int blocksize; 2508 size_t crc_offset = 0; 2509 __u32 crc = 0; 2510 2511 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { 2512 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)", 2513 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 2514 return -EINVAL; 2515 } 2516 2517 /* Check checksum_offset and crc in superblock */ 2518 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 2519 crc_offset = le32_to_cpu(raw_super->checksum_offset); 2520 if (crc_offset != 2521 offsetof(struct f2fs_super_block, crc)) { 2522 f2fs_info(sbi, "Invalid SB checksum offset: %zu", 2523 crc_offset); 2524 return -EFSCORRUPTED; 2525 } 2526 crc = le32_to_cpu(raw_super->crc); 2527 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 2528 f2fs_info(sbi, "Invalid SB checksum value: %u", crc); 2529 return -EFSCORRUPTED; 2530 } 2531 } 2532 2533 /* Currently, support only 4KB page cache size */ 2534 if (F2FS_BLKSIZE != PAGE_SIZE) { 2535 f2fs_info(sbi, "Invalid page_cache_size (%lu), supports only 4KB", 2536 PAGE_SIZE); 2537 return -EFSCORRUPTED; 2538 } 2539 2540 /* Currently, support only 4KB block size */ 2541 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 2542 if (blocksize != F2FS_BLKSIZE) { 2543 f2fs_info(sbi, "Invalid blocksize (%u), supports only 4KB", 2544 blocksize); 2545 return -EFSCORRUPTED; 2546 } 2547 2548 /* check log blocks per segment */ 2549 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 2550 f2fs_info(sbi, "Invalid log blocks per segment (%u)", 2551 le32_to_cpu(raw_super->log_blocks_per_seg)); 2552 return -EFSCORRUPTED; 2553 } 2554 2555 /* Currently, support 512/1024/2048/4096 bytes sector size */ 2556 if (le32_to_cpu(raw_super->log_sectorsize) > 2557 F2FS_MAX_LOG_SECTOR_SIZE || 2558 le32_to_cpu(raw_super->log_sectorsize) < 2559 F2FS_MIN_LOG_SECTOR_SIZE) { 2560 f2fs_info(sbi, "Invalid log sectorsize (%u)", 2561 le32_to_cpu(raw_super->log_sectorsize)); 2562 return -EFSCORRUPTED; 2563 } 2564 if (le32_to_cpu(raw_super->log_sectors_per_block) + 2565 le32_to_cpu(raw_super->log_sectorsize) != 2566 F2FS_MAX_LOG_SECTOR_SIZE) { 2567 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)", 2568 le32_to_cpu(raw_super->log_sectors_per_block), 2569 le32_to_cpu(raw_super->log_sectorsize)); 2570 return -EFSCORRUPTED; 2571 } 2572 2573 segment_count = le32_to_cpu(raw_super->segment_count); 2574 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 2575 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 2576 total_sections = le32_to_cpu(raw_super->section_count); 2577 2578 /* blocks_per_seg should be 512, given the above check */ 2579 blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg); 2580 2581 if (segment_count > F2FS_MAX_SEGMENT || 2582 segment_count < F2FS_MIN_SEGMENTS) { 2583 f2fs_info(sbi, "Invalid segment count (%u)", segment_count); 2584 return -EFSCORRUPTED; 2585 } 2586 2587 if (total_sections > segment_count || 2588 total_sections < F2FS_MIN_SEGMENTS || 2589 segs_per_sec > segment_count || !segs_per_sec) { 2590 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)", 2591 segment_count, total_sections, segs_per_sec); 2592 return -EFSCORRUPTED; 2593 } 2594 2595 if ((segment_count / segs_per_sec) < total_sections) { 2596 f2fs_info(sbi, "Small segment_count (%u < %u * %u)", 2597 segment_count, segs_per_sec, total_sections); 2598 return -EFSCORRUPTED; 2599 } 2600 2601 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 2602 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)", 2603 segment_count, le64_to_cpu(raw_super->block_count)); 2604 return -EFSCORRUPTED; 2605 } 2606 2607 if (secs_per_zone > total_sections || !secs_per_zone) { 2608 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)", 2609 secs_per_zone, total_sections); 2610 return -EFSCORRUPTED; 2611 } 2612 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 2613 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 2614 (le32_to_cpu(raw_super->extension_count) + 2615 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 2616 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)", 2617 le32_to_cpu(raw_super->extension_count), 2618 raw_super->hot_ext_count, 2619 F2FS_MAX_EXTENSION); 2620 return -EFSCORRUPTED; 2621 } 2622 2623 if (le32_to_cpu(raw_super->cp_payload) > 2624 (blocks_per_seg - F2FS_CP_PACKS)) { 2625 f2fs_info(sbi, "Insane cp_payload (%u > %u)", 2626 le32_to_cpu(raw_super->cp_payload), 2627 blocks_per_seg - F2FS_CP_PACKS); 2628 return -EFSCORRUPTED; 2629 } 2630 2631 /* check reserved ino info */ 2632 if (le32_to_cpu(raw_super->node_ino) != 1 || 2633 le32_to_cpu(raw_super->meta_ino) != 2 || 2634 le32_to_cpu(raw_super->root_ino) != 3) { 2635 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 2636 le32_to_cpu(raw_super->node_ino), 2637 le32_to_cpu(raw_super->meta_ino), 2638 le32_to_cpu(raw_super->root_ino)); 2639 return -EFSCORRUPTED; 2640 } 2641 2642 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 2643 if (sanity_check_area_boundary(sbi, bh)) 2644 return -EFSCORRUPTED; 2645 2646 return 0; 2647 } 2648 2649 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 2650 { 2651 unsigned int total, fsmeta; 2652 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2653 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2654 unsigned int ovp_segments, reserved_segments; 2655 unsigned int main_segs, blocks_per_seg; 2656 unsigned int sit_segs, nat_segs; 2657 unsigned int sit_bitmap_size, nat_bitmap_size; 2658 unsigned int log_blocks_per_seg; 2659 unsigned int segment_count_main; 2660 unsigned int cp_pack_start_sum, cp_payload; 2661 block_t user_block_count, valid_user_blocks; 2662 block_t avail_node_count, valid_node_count; 2663 int i, j; 2664 2665 total = le32_to_cpu(raw_super->segment_count); 2666 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 2667 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 2668 fsmeta += sit_segs; 2669 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 2670 fsmeta += nat_segs; 2671 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 2672 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 2673 2674 if (unlikely(fsmeta >= total)) 2675 return 1; 2676 2677 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2678 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2679 2680 if (unlikely(fsmeta < F2FS_MIN_SEGMENTS || 2681 ovp_segments == 0 || reserved_segments == 0)) { 2682 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version"); 2683 return 1; 2684 } 2685 2686 user_block_count = le64_to_cpu(ckpt->user_block_count); 2687 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2688 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2689 if (!user_block_count || user_block_count >= 2690 segment_count_main << log_blocks_per_seg) { 2691 f2fs_err(sbi, "Wrong user_block_count: %u", 2692 user_block_count); 2693 return 1; 2694 } 2695 2696 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 2697 if (valid_user_blocks > user_block_count) { 2698 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u", 2699 valid_user_blocks, user_block_count); 2700 return 1; 2701 } 2702 2703 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 2704 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 2705 if (valid_node_count > avail_node_count) { 2706 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u", 2707 valid_node_count, avail_node_count); 2708 return 1; 2709 } 2710 2711 main_segs = le32_to_cpu(raw_super->segment_count_main); 2712 blocks_per_seg = sbi->blocks_per_seg; 2713 2714 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 2715 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 2716 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 2717 return 1; 2718 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 2719 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 2720 le32_to_cpu(ckpt->cur_node_segno[j])) { 2721 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u", 2722 i, j, 2723 le32_to_cpu(ckpt->cur_node_segno[i])); 2724 return 1; 2725 } 2726 } 2727 } 2728 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 2729 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 2730 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 2731 return 1; 2732 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 2733 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 2734 le32_to_cpu(ckpt->cur_data_segno[j])) { 2735 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u", 2736 i, j, 2737 le32_to_cpu(ckpt->cur_data_segno[i])); 2738 return 1; 2739 } 2740 } 2741 } 2742 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 2743 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) { 2744 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 2745 le32_to_cpu(ckpt->cur_data_segno[j])) { 2746 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u", 2747 i, j, 2748 le32_to_cpu(ckpt->cur_node_segno[i])); 2749 return 1; 2750 } 2751 } 2752 } 2753 2754 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 2755 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 2756 2757 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 2758 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 2759 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u", 2760 sit_bitmap_size, nat_bitmap_size); 2761 return 1; 2762 } 2763 2764 cp_pack_start_sum = __start_sum_addr(sbi); 2765 cp_payload = __cp_payload(sbi); 2766 if (cp_pack_start_sum < cp_payload + 1 || 2767 cp_pack_start_sum > blocks_per_seg - 1 - 2768 NR_CURSEG_TYPE) { 2769 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u", 2770 cp_pack_start_sum); 2771 return 1; 2772 } 2773 2774 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && 2775 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { 2776 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, " 2777 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, " 2778 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"", 2779 le32_to_cpu(ckpt->checksum_offset)); 2780 return 1; 2781 } 2782 2783 if (unlikely(f2fs_cp_error(sbi))) { 2784 f2fs_err(sbi, "A bug case: need to run fsck"); 2785 return 1; 2786 } 2787 return 0; 2788 } 2789 2790 static void init_sb_info(struct f2fs_sb_info *sbi) 2791 { 2792 struct f2fs_super_block *raw_super = sbi->raw_super; 2793 int i; 2794 2795 sbi->log_sectors_per_block = 2796 le32_to_cpu(raw_super->log_sectors_per_block); 2797 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 2798 sbi->blocksize = 1 << sbi->log_blocksize; 2799 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2800 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 2801 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 2802 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 2803 sbi->total_sections = le32_to_cpu(raw_super->section_count); 2804 sbi->total_node_count = 2805 (le32_to_cpu(raw_super->segment_count_nat) / 2) 2806 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 2807 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 2808 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 2809 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 2810 sbi->cur_victim_sec = NULL_SECNO; 2811 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 2812 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 2813 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 2814 sbi->migration_granularity = sbi->segs_per_sec; 2815 2816 sbi->dir_level = DEF_DIR_LEVEL; 2817 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 2818 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 2819 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 2820 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 2821 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 2822 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 2823 DEF_UMOUNT_DISCARD_TIMEOUT; 2824 clear_sbi_flag(sbi, SBI_NEED_FSCK); 2825 2826 for (i = 0; i < NR_COUNT_TYPE; i++) 2827 atomic_set(&sbi->nr_pages[i], 0); 2828 2829 for (i = 0; i < META; i++) 2830 atomic_set(&sbi->wb_sync_req[i], 0); 2831 2832 INIT_LIST_HEAD(&sbi->s_list); 2833 mutex_init(&sbi->umount_mutex); 2834 init_rwsem(&sbi->io_order_lock); 2835 spin_lock_init(&sbi->cp_lock); 2836 2837 sbi->dirty_device = 0; 2838 spin_lock_init(&sbi->dev_lock); 2839 2840 init_rwsem(&sbi->sb_lock); 2841 } 2842 2843 static int init_percpu_info(struct f2fs_sb_info *sbi) 2844 { 2845 int err; 2846 2847 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 2848 if (err) 2849 return err; 2850 2851 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 2852 GFP_KERNEL); 2853 if (err) 2854 percpu_counter_destroy(&sbi->alloc_valid_block_count); 2855 2856 return err; 2857 } 2858 2859 #ifdef CONFIG_BLK_DEV_ZONED 2860 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 2861 { 2862 struct block_device *bdev = FDEV(devi).bdev; 2863 sector_t nr_sectors = bdev->bd_part->nr_sects; 2864 sector_t sector = 0; 2865 struct blk_zone *zones; 2866 unsigned int i, nr_zones; 2867 unsigned int n = 0; 2868 int err = -EIO; 2869 2870 if (!f2fs_sb_has_blkzoned(sbi)) 2871 return 0; 2872 2873 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 2874 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev))) 2875 return -EINVAL; 2876 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)); 2877 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz != 2878 __ilog2_u32(sbi->blocks_per_blkz)) 2879 return -EINVAL; 2880 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz); 2881 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >> 2882 sbi->log_blocks_per_blkz; 2883 if (nr_sectors & (bdev_zone_sectors(bdev) - 1)) 2884 FDEV(devi).nr_blkz++; 2885 2886 FDEV(devi).blkz_seq = f2fs_kzalloc(sbi, 2887 BITS_TO_LONGS(FDEV(devi).nr_blkz) 2888 * sizeof(unsigned long), 2889 GFP_KERNEL); 2890 if (!FDEV(devi).blkz_seq) 2891 return -ENOMEM; 2892 2893 #define F2FS_REPORT_NR_ZONES 4096 2894 2895 zones = f2fs_kzalloc(sbi, 2896 array_size(F2FS_REPORT_NR_ZONES, 2897 sizeof(struct blk_zone)), 2898 GFP_KERNEL); 2899 if (!zones) 2900 return -ENOMEM; 2901 2902 /* Get block zones type */ 2903 while (zones && sector < nr_sectors) { 2904 2905 nr_zones = F2FS_REPORT_NR_ZONES; 2906 err = blkdev_report_zones(bdev, sector, zones, &nr_zones); 2907 if (err) 2908 break; 2909 if (!nr_zones) { 2910 err = -EIO; 2911 break; 2912 } 2913 2914 for (i = 0; i < nr_zones; i++) { 2915 if (zones[i].type != BLK_ZONE_TYPE_CONVENTIONAL) 2916 set_bit(n, FDEV(devi).blkz_seq); 2917 sector += zones[i].len; 2918 n++; 2919 } 2920 } 2921 2922 kvfree(zones); 2923 2924 return err; 2925 } 2926 #endif 2927 2928 /* 2929 * Read f2fs raw super block. 2930 * Because we have two copies of super block, so read both of them 2931 * to get the first valid one. If any one of them is broken, we pass 2932 * them recovery flag back to the caller. 2933 */ 2934 static int read_raw_super_block(struct f2fs_sb_info *sbi, 2935 struct f2fs_super_block **raw_super, 2936 int *valid_super_block, int *recovery) 2937 { 2938 struct super_block *sb = sbi->sb; 2939 int block; 2940 struct buffer_head *bh; 2941 struct f2fs_super_block *super; 2942 int err = 0; 2943 2944 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 2945 if (!super) 2946 return -ENOMEM; 2947 2948 for (block = 0; block < 2; block++) { 2949 bh = sb_bread(sb, block); 2950 if (!bh) { 2951 f2fs_err(sbi, "Unable to read %dth superblock", 2952 block + 1); 2953 err = -EIO; 2954 continue; 2955 } 2956 2957 /* sanity checking of raw super */ 2958 err = sanity_check_raw_super(sbi, bh); 2959 if (err) { 2960 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock", 2961 block + 1); 2962 brelse(bh); 2963 continue; 2964 } 2965 2966 if (!*raw_super) { 2967 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 2968 sizeof(*super)); 2969 *valid_super_block = block; 2970 *raw_super = super; 2971 } 2972 brelse(bh); 2973 } 2974 2975 /* Fail to read any one of the superblocks*/ 2976 if (err < 0) 2977 *recovery = 1; 2978 2979 /* No valid superblock */ 2980 if (!*raw_super) 2981 kvfree(super); 2982 else 2983 err = 0; 2984 2985 return err; 2986 } 2987 2988 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 2989 { 2990 struct buffer_head *bh; 2991 __u32 crc = 0; 2992 int err; 2993 2994 if ((recover && f2fs_readonly(sbi->sb)) || 2995 bdev_read_only(sbi->sb->s_bdev)) { 2996 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2997 return -EROFS; 2998 } 2999 3000 /* we should update superblock crc here */ 3001 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 3002 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 3003 offsetof(struct f2fs_super_block, crc)); 3004 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 3005 } 3006 3007 /* write back-up superblock first */ 3008 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 3009 if (!bh) 3010 return -EIO; 3011 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3012 brelse(bh); 3013 3014 /* if we are in recovery path, skip writing valid superblock */ 3015 if (recover || err) 3016 return err; 3017 3018 /* write current valid superblock */ 3019 bh = sb_bread(sbi->sb, sbi->valid_super_block); 3020 if (!bh) 3021 return -EIO; 3022 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3023 brelse(bh); 3024 return err; 3025 } 3026 3027 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 3028 { 3029 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3030 unsigned int max_devices = MAX_DEVICES; 3031 int i; 3032 3033 /* Initialize single device information */ 3034 if (!RDEV(0).path[0]) { 3035 if (!bdev_is_zoned(sbi->sb->s_bdev)) 3036 return 0; 3037 max_devices = 1; 3038 } 3039 3040 /* 3041 * Initialize multiple devices information, or single 3042 * zoned block device information. 3043 */ 3044 sbi->devs = f2fs_kzalloc(sbi, 3045 array_size(max_devices, 3046 sizeof(struct f2fs_dev_info)), 3047 GFP_KERNEL); 3048 if (!sbi->devs) 3049 return -ENOMEM; 3050 3051 for (i = 0; i < max_devices; i++) { 3052 3053 if (i > 0 && !RDEV(i).path[0]) 3054 break; 3055 3056 if (max_devices == 1) { 3057 /* Single zoned block device mount */ 3058 FDEV(0).bdev = 3059 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev, 3060 sbi->sb->s_mode, sbi->sb->s_type); 3061 } else { 3062 /* Multi-device mount */ 3063 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 3064 FDEV(i).total_segments = 3065 le32_to_cpu(RDEV(i).total_segments); 3066 if (i == 0) { 3067 FDEV(i).start_blk = 0; 3068 FDEV(i).end_blk = FDEV(i).start_blk + 3069 (FDEV(i).total_segments << 3070 sbi->log_blocks_per_seg) - 1 + 3071 le32_to_cpu(raw_super->segment0_blkaddr); 3072 } else { 3073 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 3074 FDEV(i).end_blk = FDEV(i).start_blk + 3075 (FDEV(i).total_segments << 3076 sbi->log_blocks_per_seg) - 1; 3077 } 3078 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 3079 sbi->sb->s_mode, sbi->sb->s_type); 3080 } 3081 if (IS_ERR(FDEV(i).bdev)) 3082 return PTR_ERR(FDEV(i).bdev); 3083 3084 /* to release errored devices */ 3085 sbi->s_ndevs = i + 1; 3086 3087 #ifdef CONFIG_BLK_DEV_ZONED 3088 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 3089 !f2fs_sb_has_blkzoned(sbi)) { 3090 f2fs_err(sbi, "Zoned block device feature not enabled\n"); 3091 return -EINVAL; 3092 } 3093 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 3094 if (init_blkz_info(sbi, i)) { 3095 f2fs_err(sbi, "Failed to initialize F2FS blkzone information"); 3096 return -EINVAL; 3097 } 3098 if (max_devices == 1) 3099 break; 3100 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 3101 i, FDEV(i).path, 3102 FDEV(i).total_segments, 3103 FDEV(i).start_blk, FDEV(i).end_blk, 3104 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 3105 "Host-aware" : "Host-managed"); 3106 continue; 3107 } 3108 #endif 3109 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x", 3110 i, FDEV(i).path, 3111 FDEV(i).total_segments, 3112 FDEV(i).start_blk, FDEV(i).end_blk); 3113 } 3114 f2fs_info(sbi, 3115 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi)); 3116 return 0; 3117 } 3118 3119 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi) 3120 { 3121 #ifdef CONFIG_UNICODE 3122 if (f2fs_sb_has_casefold(sbi) && !sbi->s_encoding) { 3123 const struct f2fs_sb_encodings *encoding_info; 3124 struct unicode_map *encoding; 3125 __u16 encoding_flags; 3126 3127 if (f2fs_sb_has_encrypt(sbi)) { 3128 f2fs_err(sbi, 3129 "Can't mount with encoding and encryption"); 3130 return -EINVAL; 3131 } 3132 3133 if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info, 3134 &encoding_flags)) { 3135 f2fs_err(sbi, 3136 "Encoding requested by superblock is unknown"); 3137 return -EINVAL; 3138 } 3139 3140 encoding = utf8_load(encoding_info->version); 3141 if (IS_ERR(encoding)) { 3142 f2fs_err(sbi, 3143 "can't mount with superblock charset: %s-%s " 3144 "not supported by the kernel. flags: 0x%x.", 3145 encoding_info->name, encoding_info->version, 3146 encoding_flags); 3147 return PTR_ERR(encoding); 3148 } 3149 f2fs_info(sbi, "Using encoding defined by superblock: " 3150 "%s-%s with flags 0x%hx", encoding_info->name, 3151 encoding_info->version?:"\b", encoding_flags); 3152 3153 sbi->s_encoding = encoding; 3154 sbi->s_encoding_flags = encoding_flags; 3155 sbi->sb->s_d_op = &f2fs_dentry_ops; 3156 } 3157 #else 3158 if (f2fs_sb_has_casefold(sbi)) { 3159 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 3160 return -EINVAL; 3161 } 3162 #endif 3163 return 0; 3164 } 3165 3166 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 3167 { 3168 struct f2fs_sm_info *sm_i = SM_I(sbi); 3169 3170 /* adjust parameters according to the volume size */ 3171 if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) { 3172 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 3173 sm_i->dcc_info->discard_granularity = 1; 3174 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE; 3175 } 3176 3177 sbi->readdir_ra = 1; 3178 } 3179 3180 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 3181 { 3182 struct f2fs_sb_info *sbi; 3183 struct f2fs_super_block *raw_super; 3184 struct inode *root; 3185 int err; 3186 bool skip_recovery = false, need_fsck = false; 3187 char *options = NULL; 3188 int recovery, i, valid_super_block; 3189 struct curseg_info *seg_i; 3190 int retry_cnt = 1; 3191 3192 try_onemore: 3193 err = -EINVAL; 3194 raw_super = NULL; 3195 valid_super_block = -1; 3196 recovery = 0; 3197 3198 /* allocate memory for f2fs-specific super block info */ 3199 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 3200 if (!sbi) 3201 return -ENOMEM; 3202 3203 sbi->sb = sb; 3204 3205 /* Load the checksum driver */ 3206 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 3207 if (IS_ERR(sbi->s_chksum_driver)) { 3208 f2fs_err(sbi, "Cannot load crc32 driver."); 3209 err = PTR_ERR(sbi->s_chksum_driver); 3210 sbi->s_chksum_driver = NULL; 3211 goto free_sbi; 3212 } 3213 3214 /* set a block size */ 3215 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 3216 f2fs_err(sbi, "unable to set blocksize"); 3217 goto free_sbi; 3218 } 3219 3220 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 3221 &recovery); 3222 if (err) 3223 goto free_sbi; 3224 3225 sb->s_fs_info = sbi; 3226 sbi->raw_super = raw_super; 3227 3228 /* precompute checksum seed for metadata */ 3229 if (f2fs_sb_has_inode_chksum(sbi)) 3230 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 3231 sizeof(raw_super->uuid)); 3232 3233 /* 3234 * The BLKZONED feature indicates that the drive was formatted with 3235 * zone alignment optimization. This is optional for host-aware 3236 * devices, but mandatory for host-managed zoned block devices. 3237 */ 3238 #ifndef CONFIG_BLK_DEV_ZONED 3239 if (f2fs_sb_has_blkzoned(sbi)) { 3240 f2fs_err(sbi, "Zoned block device support is not enabled"); 3241 err = -EOPNOTSUPP; 3242 goto free_sb_buf; 3243 } 3244 #endif 3245 default_options(sbi); 3246 /* parse mount options */ 3247 options = kstrdup((const char *)data, GFP_KERNEL); 3248 if (data && !options) { 3249 err = -ENOMEM; 3250 goto free_sb_buf; 3251 } 3252 3253 err = parse_options(sb, options); 3254 if (err) 3255 goto free_options; 3256 3257 sbi->max_file_blocks = max_file_blocks(); 3258 sb->s_maxbytes = sbi->max_file_blocks << 3259 le32_to_cpu(raw_super->log_blocksize); 3260 sb->s_max_links = F2FS_LINK_MAX; 3261 3262 err = f2fs_setup_casefold(sbi); 3263 if (err) 3264 goto free_options; 3265 3266 #ifdef CONFIG_QUOTA 3267 sb->dq_op = &f2fs_quota_operations; 3268 sb->s_qcop = &f2fs_quotactl_ops; 3269 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 3270 3271 if (f2fs_sb_has_quota_ino(sbi)) { 3272 for (i = 0; i < MAXQUOTAS; i++) { 3273 if (f2fs_qf_ino(sbi->sb, i)) 3274 sbi->nquota_files++; 3275 } 3276 } 3277 #endif 3278 3279 sb->s_op = &f2fs_sops; 3280 #ifdef CONFIG_FS_ENCRYPTION 3281 sb->s_cop = &f2fs_cryptops; 3282 #endif 3283 #ifdef CONFIG_FS_VERITY 3284 sb->s_vop = &f2fs_verityops; 3285 #endif 3286 sb->s_xattr = f2fs_xattr_handlers; 3287 sb->s_export_op = &f2fs_export_ops; 3288 sb->s_magic = F2FS_SUPER_MAGIC; 3289 sb->s_time_gran = 1; 3290 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3291 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 3292 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 3293 sb->s_iflags |= SB_I_CGROUPWB; 3294 3295 /* init f2fs-specific super block info */ 3296 sbi->valid_super_block = valid_super_block; 3297 mutex_init(&sbi->gc_mutex); 3298 mutex_init(&sbi->writepages); 3299 mutex_init(&sbi->cp_mutex); 3300 mutex_init(&sbi->resize_mutex); 3301 init_rwsem(&sbi->node_write); 3302 init_rwsem(&sbi->node_change); 3303 3304 /* disallow all the data/node/meta page writes */ 3305 set_sbi_flag(sbi, SBI_POR_DOING); 3306 spin_lock_init(&sbi->stat_lock); 3307 3308 /* init iostat info */ 3309 spin_lock_init(&sbi->iostat_lock); 3310 sbi->iostat_enable = false; 3311 3312 for (i = 0; i < NR_PAGE_TYPE; i++) { 3313 int n = (i == META) ? 1: NR_TEMP_TYPE; 3314 int j; 3315 3316 sbi->write_io[i] = 3317 f2fs_kmalloc(sbi, 3318 array_size(n, 3319 sizeof(struct f2fs_bio_info)), 3320 GFP_KERNEL); 3321 if (!sbi->write_io[i]) { 3322 err = -ENOMEM; 3323 goto free_bio_info; 3324 } 3325 3326 for (j = HOT; j < n; j++) { 3327 init_rwsem(&sbi->write_io[i][j].io_rwsem); 3328 sbi->write_io[i][j].sbi = sbi; 3329 sbi->write_io[i][j].bio = NULL; 3330 spin_lock_init(&sbi->write_io[i][j].io_lock); 3331 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 3332 } 3333 } 3334 3335 init_rwsem(&sbi->cp_rwsem); 3336 init_rwsem(&sbi->quota_sem); 3337 init_waitqueue_head(&sbi->cp_wait); 3338 init_sb_info(sbi); 3339 3340 err = init_percpu_info(sbi); 3341 if (err) 3342 goto free_bio_info; 3343 3344 if (F2FS_IO_ALIGNED(sbi)) { 3345 sbi->write_io_dummy = 3346 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); 3347 if (!sbi->write_io_dummy) { 3348 err = -ENOMEM; 3349 goto free_percpu; 3350 } 3351 } 3352 3353 /* get an inode for meta space */ 3354 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 3355 if (IS_ERR(sbi->meta_inode)) { 3356 f2fs_err(sbi, "Failed to read F2FS meta data inode"); 3357 err = PTR_ERR(sbi->meta_inode); 3358 goto free_io_dummy; 3359 } 3360 3361 err = f2fs_get_valid_checkpoint(sbi); 3362 if (err) { 3363 f2fs_err(sbi, "Failed to get valid F2FS checkpoint"); 3364 goto free_meta_inode; 3365 } 3366 3367 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 3368 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3369 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 3370 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 3371 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 3372 } 3373 3374 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG)) 3375 set_sbi_flag(sbi, SBI_NEED_FSCK); 3376 3377 /* Initialize device list */ 3378 err = f2fs_scan_devices(sbi); 3379 if (err) { 3380 f2fs_err(sbi, "Failed to find devices"); 3381 goto free_devices; 3382 } 3383 3384 sbi->total_valid_node_count = 3385 le32_to_cpu(sbi->ckpt->valid_node_count); 3386 percpu_counter_set(&sbi->total_valid_inode_count, 3387 le32_to_cpu(sbi->ckpt->valid_inode_count)); 3388 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 3389 sbi->total_valid_block_count = 3390 le64_to_cpu(sbi->ckpt->valid_block_count); 3391 sbi->last_valid_block_count = sbi->total_valid_block_count; 3392 sbi->reserved_blocks = 0; 3393 sbi->current_reserved_blocks = 0; 3394 limit_reserve_root(sbi); 3395 3396 for (i = 0; i < NR_INODE_TYPE; i++) { 3397 INIT_LIST_HEAD(&sbi->inode_list[i]); 3398 spin_lock_init(&sbi->inode_lock[i]); 3399 } 3400 mutex_init(&sbi->flush_lock); 3401 3402 f2fs_init_extent_cache_info(sbi); 3403 3404 f2fs_init_ino_entry_info(sbi); 3405 3406 f2fs_init_fsync_node_info(sbi); 3407 3408 /* setup f2fs internal modules */ 3409 err = f2fs_build_segment_manager(sbi); 3410 if (err) { 3411 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)", 3412 err); 3413 goto free_sm; 3414 } 3415 err = f2fs_build_node_manager(sbi); 3416 if (err) { 3417 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)", 3418 err); 3419 goto free_nm; 3420 } 3421 3422 /* For write statistics */ 3423 if (sb->s_bdev->bd_part) 3424 sbi->sectors_written_start = 3425 (u64)part_stat_read(sb->s_bdev->bd_part, 3426 sectors[STAT_WRITE]); 3427 3428 /* Read accumulated write IO statistics if exists */ 3429 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 3430 if (__exist_node_summaries(sbi)) 3431 sbi->kbytes_written = 3432 le64_to_cpu(seg_i->journal->info.kbytes_written); 3433 3434 f2fs_build_gc_manager(sbi); 3435 3436 err = f2fs_build_stats(sbi); 3437 if (err) 3438 goto free_nm; 3439 3440 /* get an inode for node space */ 3441 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 3442 if (IS_ERR(sbi->node_inode)) { 3443 f2fs_err(sbi, "Failed to read node inode"); 3444 err = PTR_ERR(sbi->node_inode); 3445 goto free_stats; 3446 } 3447 3448 /* read root inode and dentry */ 3449 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 3450 if (IS_ERR(root)) { 3451 f2fs_err(sbi, "Failed to read root inode"); 3452 err = PTR_ERR(root); 3453 goto free_node_inode; 3454 } 3455 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 3456 !root->i_size || !root->i_nlink) { 3457 iput(root); 3458 err = -EINVAL; 3459 goto free_node_inode; 3460 } 3461 3462 sb->s_root = d_make_root(root); /* allocate root dentry */ 3463 if (!sb->s_root) { 3464 err = -ENOMEM; 3465 goto free_node_inode; 3466 } 3467 3468 err = f2fs_register_sysfs(sbi); 3469 if (err) 3470 goto free_root_inode; 3471 3472 #ifdef CONFIG_QUOTA 3473 /* Enable quota usage during mount */ 3474 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 3475 err = f2fs_enable_quotas(sb); 3476 if (err) 3477 f2fs_err(sbi, "Cannot turn on quotas: error %d", err); 3478 } 3479 #endif 3480 /* if there are nt orphan nodes free them */ 3481 err = f2fs_recover_orphan_inodes(sbi); 3482 if (err) 3483 goto free_meta; 3484 3485 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 3486 goto reset_checkpoint; 3487 3488 /* recover fsynced data */ 3489 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 3490 /* 3491 * mount should be failed, when device has readonly mode, and 3492 * previous checkpoint was not done by clean system shutdown. 3493 */ 3494 if (f2fs_hw_is_readonly(sbi)) { 3495 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 3496 err = -EROFS; 3497 f2fs_err(sbi, "Need to recover fsync data, but write access unavailable"); 3498 goto free_meta; 3499 } 3500 f2fs_info(sbi, "write access unavailable, skipping recovery"); 3501 goto reset_checkpoint; 3502 } 3503 3504 if (need_fsck) 3505 set_sbi_flag(sbi, SBI_NEED_FSCK); 3506 3507 if (skip_recovery) 3508 goto reset_checkpoint; 3509 3510 err = f2fs_recover_fsync_data(sbi, false); 3511 if (err < 0) { 3512 if (err != -ENOMEM) 3513 skip_recovery = true; 3514 need_fsck = true; 3515 f2fs_err(sbi, "Cannot recover all fsync data errno=%d", 3516 err); 3517 goto free_meta; 3518 } 3519 } else { 3520 err = f2fs_recover_fsync_data(sbi, true); 3521 3522 if (!f2fs_readonly(sb) && err > 0) { 3523 err = -EINVAL; 3524 f2fs_err(sbi, "Need to recover fsync data"); 3525 goto free_meta; 3526 } 3527 } 3528 reset_checkpoint: 3529 /* f2fs_recover_fsync_data() cleared this already */ 3530 clear_sbi_flag(sbi, SBI_POR_DOING); 3531 3532 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 3533 err = f2fs_disable_checkpoint(sbi); 3534 if (err) 3535 goto sync_free_meta; 3536 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 3537 f2fs_enable_checkpoint(sbi); 3538 } 3539 3540 /* 3541 * If filesystem is not mounted as read-only then 3542 * do start the gc_thread. 3543 */ 3544 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) { 3545 /* After POR, we can run background GC thread.*/ 3546 err = f2fs_start_gc_thread(sbi); 3547 if (err) 3548 goto sync_free_meta; 3549 } 3550 kvfree(options); 3551 3552 /* recover broken superblock */ 3553 if (recovery) { 3554 err = f2fs_commit_super(sbi, true); 3555 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d", 3556 sbi->valid_super_block ? 1 : 2, err); 3557 } 3558 3559 f2fs_join_shrinker(sbi); 3560 3561 f2fs_tuning_parameters(sbi); 3562 3563 f2fs_notice(sbi, "Mounted with checkpoint version = %llx", 3564 cur_cp_version(F2FS_CKPT(sbi))); 3565 f2fs_update_time(sbi, CP_TIME); 3566 f2fs_update_time(sbi, REQ_TIME); 3567 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 3568 return 0; 3569 3570 sync_free_meta: 3571 /* safe to flush all the data */ 3572 sync_filesystem(sbi->sb); 3573 retry_cnt = 0; 3574 3575 free_meta: 3576 #ifdef CONFIG_QUOTA 3577 f2fs_truncate_quota_inode_pages(sb); 3578 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 3579 f2fs_quota_off_umount(sbi->sb); 3580 #endif 3581 /* 3582 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 3583 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 3584 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 3585 * falls into an infinite loop in f2fs_sync_meta_pages(). 3586 */ 3587 truncate_inode_pages_final(META_MAPPING(sbi)); 3588 /* evict some inodes being cached by GC */ 3589 evict_inodes(sb); 3590 f2fs_unregister_sysfs(sbi); 3591 free_root_inode: 3592 dput(sb->s_root); 3593 sb->s_root = NULL; 3594 free_node_inode: 3595 f2fs_release_ino_entry(sbi, true); 3596 truncate_inode_pages_final(NODE_MAPPING(sbi)); 3597 iput(sbi->node_inode); 3598 sbi->node_inode = NULL; 3599 free_stats: 3600 f2fs_destroy_stats(sbi); 3601 free_nm: 3602 f2fs_destroy_node_manager(sbi); 3603 free_sm: 3604 f2fs_destroy_segment_manager(sbi); 3605 free_devices: 3606 destroy_device_list(sbi); 3607 kvfree(sbi->ckpt); 3608 free_meta_inode: 3609 make_bad_inode(sbi->meta_inode); 3610 iput(sbi->meta_inode); 3611 sbi->meta_inode = NULL; 3612 free_io_dummy: 3613 mempool_destroy(sbi->write_io_dummy); 3614 free_percpu: 3615 destroy_percpu_info(sbi); 3616 free_bio_info: 3617 for (i = 0; i < NR_PAGE_TYPE; i++) 3618 kvfree(sbi->write_io[i]); 3619 3620 #ifdef CONFIG_UNICODE 3621 utf8_unload(sbi->s_encoding); 3622 #endif 3623 free_options: 3624 #ifdef CONFIG_QUOTA 3625 for (i = 0; i < MAXQUOTAS; i++) 3626 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 3627 #endif 3628 kvfree(options); 3629 free_sb_buf: 3630 kvfree(raw_super); 3631 free_sbi: 3632 if (sbi->s_chksum_driver) 3633 crypto_free_shash(sbi->s_chksum_driver); 3634 kvfree(sbi); 3635 3636 /* give only one another chance */ 3637 if (retry_cnt > 0 && skip_recovery) { 3638 retry_cnt--; 3639 shrink_dcache_sb(sb); 3640 goto try_onemore; 3641 } 3642 return err; 3643 } 3644 3645 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 3646 const char *dev_name, void *data) 3647 { 3648 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 3649 } 3650 3651 static void kill_f2fs_super(struct super_block *sb) 3652 { 3653 if (sb->s_root) { 3654 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3655 3656 set_sbi_flag(sbi, SBI_IS_CLOSE); 3657 f2fs_stop_gc_thread(sbi); 3658 f2fs_stop_discard_thread(sbi); 3659 3660 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 3661 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 3662 struct cp_control cpc = { 3663 .reason = CP_UMOUNT, 3664 }; 3665 f2fs_write_checkpoint(sbi, &cpc); 3666 } 3667 3668 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 3669 sb->s_flags &= ~SB_RDONLY; 3670 } 3671 kill_block_super(sb); 3672 } 3673 3674 static struct file_system_type f2fs_fs_type = { 3675 .owner = THIS_MODULE, 3676 .name = "f2fs", 3677 .mount = f2fs_mount, 3678 .kill_sb = kill_f2fs_super, 3679 .fs_flags = FS_REQUIRES_DEV, 3680 }; 3681 MODULE_ALIAS_FS("f2fs"); 3682 3683 static int __init init_inodecache(void) 3684 { 3685 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 3686 sizeof(struct f2fs_inode_info), 0, 3687 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 3688 if (!f2fs_inode_cachep) 3689 return -ENOMEM; 3690 return 0; 3691 } 3692 3693 static void destroy_inodecache(void) 3694 { 3695 /* 3696 * Make sure all delayed rcu free inodes are flushed before we 3697 * destroy cache. 3698 */ 3699 rcu_barrier(); 3700 kmem_cache_destroy(f2fs_inode_cachep); 3701 } 3702 3703 static int __init init_f2fs_fs(void) 3704 { 3705 int err; 3706 3707 if (PAGE_SIZE != F2FS_BLKSIZE) { 3708 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n", 3709 PAGE_SIZE, F2FS_BLKSIZE); 3710 return -EINVAL; 3711 } 3712 3713 f2fs_build_trace_ios(); 3714 3715 err = init_inodecache(); 3716 if (err) 3717 goto fail; 3718 err = f2fs_create_node_manager_caches(); 3719 if (err) 3720 goto free_inodecache; 3721 err = f2fs_create_segment_manager_caches(); 3722 if (err) 3723 goto free_node_manager_caches; 3724 err = f2fs_create_checkpoint_caches(); 3725 if (err) 3726 goto free_segment_manager_caches; 3727 err = f2fs_create_extent_cache(); 3728 if (err) 3729 goto free_checkpoint_caches; 3730 err = f2fs_init_sysfs(); 3731 if (err) 3732 goto free_extent_cache; 3733 err = register_shrinker(&f2fs_shrinker_info); 3734 if (err) 3735 goto free_sysfs; 3736 err = register_filesystem(&f2fs_fs_type); 3737 if (err) 3738 goto free_shrinker; 3739 f2fs_create_root_stats(); 3740 err = f2fs_init_post_read_processing(); 3741 if (err) 3742 goto free_root_stats; 3743 return 0; 3744 3745 free_root_stats: 3746 f2fs_destroy_root_stats(); 3747 unregister_filesystem(&f2fs_fs_type); 3748 free_shrinker: 3749 unregister_shrinker(&f2fs_shrinker_info); 3750 free_sysfs: 3751 f2fs_exit_sysfs(); 3752 free_extent_cache: 3753 f2fs_destroy_extent_cache(); 3754 free_checkpoint_caches: 3755 f2fs_destroy_checkpoint_caches(); 3756 free_segment_manager_caches: 3757 f2fs_destroy_segment_manager_caches(); 3758 free_node_manager_caches: 3759 f2fs_destroy_node_manager_caches(); 3760 free_inodecache: 3761 destroy_inodecache(); 3762 fail: 3763 return err; 3764 } 3765 3766 static void __exit exit_f2fs_fs(void) 3767 { 3768 f2fs_destroy_post_read_processing(); 3769 f2fs_destroy_root_stats(); 3770 unregister_filesystem(&f2fs_fs_type); 3771 unregister_shrinker(&f2fs_shrinker_info); 3772 f2fs_exit_sysfs(); 3773 f2fs_destroy_extent_cache(); 3774 f2fs_destroy_checkpoint_caches(); 3775 f2fs_destroy_segment_manager_caches(); 3776 f2fs_destroy_node_manager_caches(); 3777 destroy_inodecache(); 3778 f2fs_destroy_trace_ios(); 3779 } 3780 3781 module_init(init_f2fs_fs) 3782 module_exit(exit_f2fs_fs) 3783 3784 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 3785 MODULE_DESCRIPTION("Flash Friendly File System"); 3786 MODULE_LICENSE("GPL"); 3787 3788