1 /* 2 * fs/f2fs/super.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/fs.h> 14 #include <linux/statfs.h> 15 #include <linux/buffer_head.h> 16 #include <linux/backing-dev.h> 17 #include <linux/kthread.h> 18 #include <linux/parser.h> 19 #include <linux/mount.h> 20 #include <linux/seq_file.h> 21 #include <linux/proc_fs.h> 22 #include <linux/random.h> 23 #include <linux/exportfs.h> 24 #include <linux/blkdev.h> 25 #include <linux/f2fs_fs.h> 26 #include <linux/sysfs.h> 27 28 #include "f2fs.h" 29 #include "node.h" 30 #include "segment.h" 31 #include "xattr.h" 32 #include "gc.h" 33 #include "trace.h" 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/f2fs.h> 37 38 static struct proc_dir_entry *f2fs_proc_root; 39 static struct kmem_cache *f2fs_inode_cachep; 40 static struct kset *f2fs_kset; 41 42 #ifdef CONFIG_F2FS_FAULT_INJECTION 43 44 char *fault_name[FAULT_MAX] = { 45 [FAULT_KMALLOC] = "kmalloc", 46 [FAULT_PAGE_ALLOC] = "page alloc", 47 [FAULT_ALLOC_NID] = "alloc nid", 48 [FAULT_ORPHAN] = "orphan", 49 [FAULT_BLOCK] = "no more block", 50 [FAULT_DIR_DEPTH] = "too big dir depth", 51 [FAULT_EVICT_INODE] = "evict_inode fail", 52 [FAULT_IO] = "IO error", 53 [FAULT_CHECKPOINT] = "checkpoint error", 54 }; 55 56 static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, 57 unsigned int rate) 58 { 59 struct f2fs_fault_info *ffi = &sbi->fault_info; 60 61 if (rate) { 62 atomic_set(&ffi->inject_ops, 0); 63 ffi->inject_rate = rate; 64 ffi->inject_type = (1 << FAULT_MAX) - 1; 65 } else { 66 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 67 } 68 } 69 #endif 70 71 /* f2fs-wide shrinker description */ 72 static struct shrinker f2fs_shrinker_info = { 73 .scan_objects = f2fs_shrink_scan, 74 .count_objects = f2fs_shrink_count, 75 .seeks = DEFAULT_SEEKS, 76 }; 77 78 enum { 79 Opt_gc_background, 80 Opt_disable_roll_forward, 81 Opt_norecovery, 82 Opt_discard, 83 Opt_nodiscard, 84 Opt_noheap, 85 Opt_user_xattr, 86 Opt_nouser_xattr, 87 Opt_acl, 88 Opt_noacl, 89 Opt_active_logs, 90 Opt_disable_ext_identify, 91 Opt_inline_xattr, 92 Opt_inline_data, 93 Opt_inline_dentry, 94 Opt_noinline_dentry, 95 Opt_flush_merge, 96 Opt_noflush_merge, 97 Opt_nobarrier, 98 Opt_fastboot, 99 Opt_extent_cache, 100 Opt_noextent_cache, 101 Opt_noinline_data, 102 Opt_data_flush, 103 Opt_mode, 104 Opt_fault_injection, 105 Opt_lazytime, 106 Opt_nolazytime, 107 Opt_err, 108 }; 109 110 static match_table_t f2fs_tokens = { 111 {Opt_gc_background, "background_gc=%s"}, 112 {Opt_disable_roll_forward, "disable_roll_forward"}, 113 {Opt_norecovery, "norecovery"}, 114 {Opt_discard, "discard"}, 115 {Opt_nodiscard, "nodiscard"}, 116 {Opt_noheap, "no_heap"}, 117 {Opt_user_xattr, "user_xattr"}, 118 {Opt_nouser_xattr, "nouser_xattr"}, 119 {Opt_acl, "acl"}, 120 {Opt_noacl, "noacl"}, 121 {Opt_active_logs, "active_logs=%u"}, 122 {Opt_disable_ext_identify, "disable_ext_identify"}, 123 {Opt_inline_xattr, "inline_xattr"}, 124 {Opt_inline_data, "inline_data"}, 125 {Opt_inline_dentry, "inline_dentry"}, 126 {Opt_noinline_dentry, "noinline_dentry"}, 127 {Opt_flush_merge, "flush_merge"}, 128 {Opt_noflush_merge, "noflush_merge"}, 129 {Opt_nobarrier, "nobarrier"}, 130 {Opt_fastboot, "fastboot"}, 131 {Opt_extent_cache, "extent_cache"}, 132 {Opt_noextent_cache, "noextent_cache"}, 133 {Opt_noinline_data, "noinline_data"}, 134 {Opt_data_flush, "data_flush"}, 135 {Opt_mode, "mode=%s"}, 136 {Opt_fault_injection, "fault_injection=%u"}, 137 {Opt_lazytime, "lazytime"}, 138 {Opt_nolazytime, "nolazytime"}, 139 {Opt_err, NULL}, 140 }; 141 142 /* Sysfs support for f2fs */ 143 enum { 144 GC_THREAD, /* struct f2fs_gc_thread */ 145 SM_INFO, /* struct f2fs_sm_info */ 146 NM_INFO, /* struct f2fs_nm_info */ 147 F2FS_SBI, /* struct f2fs_sb_info */ 148 #ifdef CONFIG_F2FS_FAULT_INJECTION 149 FAULT_INFO_RATE, /* struct f2fs_fault_info */ 150 FAULT_INFO_TYPE, /* struct f2fs_fault_info */ 151 #endif 152 }; 153 154 struct f2fs_attr { 155 struct attribute attr; 156 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *); 157 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *, 158 const char *, size_t); 159 int struct_type; 160 int offset; 161 }; 162 163 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type) 164 { 165 if (struct_type == GC_THREAD) 166 return (unsigned char *)sbi->gc_thread; 167 else if (struct_type == SM_INFO) 168 return (unsigned char *)SM_I(sbi); 169 else if (struct_type == NM_INFO) 170 return (unsigned char *)NM_I(sbi); 171 else if (struct_type == F2FS_SBI) 172 return (unsigned char *)sbi; 173 #ifdef CONFIG_F2FS_FAULT_INJECTION 174 else if (struct_type == FAULT_INFO_RATE || 175 struct_type == FAULT_INFO_TYPE) 176 return (unsigned char *)&sbi->fault_info; 177 #endif 178 return NULL; 179 } 180 181 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a, 182 struct f2fs_sb_info *sbi, char *buf) 183 { 184 struct super_block *sb = sbi->sb; 185 186 if (!sb->s_bdev->bd_part) 187 return snprintf(buf, PAGE_SIZE, "0\n"); 188 189 return snprintf(buf, PAGE_SIZE, "%llu\n", 190 (unsigned long long)(sbi->kbytes_written + 191 BD_PART_WRITTEN(sbi))); 192 } 193 194 static ssize_t f2fs_sbi_show(struct f2fs_attr *a, 195 struct f2fs_sb_info *sbi, char *buf) 196 { 197 unsigned char *ptr = NULL; 198 unsigned int *ui; 199 200 ptr = __struct_ptr(sbi, a->struct_type); 201 if (!ptr) 202 return -EINVAL; 203 204 ui = (unsigned int *)(ptr + a->offset); 205 206 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 207 } 208 209 static ssize_t f2fs_sbi_store(struct f2fs_attr *a, 210 struct f2fs_sb_info *sbi, 211 const char *buf, size_t count) 212 { 213 unsigned char *ptr; 214 unsigned long t; 215 unsigned int *ui; 216 ssize_t ret; 217 218 ptr = __struct_ptr(sbi, a->struct_type); 219 if (!ptr) 220 return -EINVAL; 221 222 ui = (unsigned int *)(ptr + a->offset); 223 224 ret = kstrtoul(skip_spaces(buf), 0, &t); 225 if (ret < 0) 226 return ret; 227 #ifdef CONFIG_F2FS_FAULT_INJECTION 228 if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX)) 229 return -EINVAL; 230 #endif 231 *ui = t; 232 return count; 233 } 234 235 static ssize_t f2fs_attr_show(struct kobject *kobj, 236 struct attribute *attr, char *buf) 237 { 238 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 239 s_kobj); 240 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 241 242 return a->show ? a->show(a, sbi, buf) : 0; 243 } 244 245 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr, 246 const char *buf, size_t len) 247 { 248 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 249 s_kobj); 250 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 251 252 return a->store ? a->store(a, sbi, buf, len) : 0; 253 } 254 255 static void f2fs_sb_release(struct kobject *kobj) 256 { 257 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 258 s_kobj); 259 complete(&sbi->s_kobj_unregister); 260 } 261 262 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \ 263 static struct f2fs_attr f2fs_attr_##_name = { \ 264 .attr = {.name = __stringify(_name), .mode = _mode }, \ 265 .show = _show, \ 266 .store = _store, \ 267 .struct_type = _struct_type, \ 268 .offset = _offset \ 269 } 270 271 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \ 272 F2FS_ATTR_OFFSET(struct_type, name, 0644, \ 273 f2fs_sbi_show, f2fs_sbi_store, \ 274 offsetof(struct struct_name, elname)) 275 276 #define F2FS_GENERAL_RO_ATTR(name) \ 277 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL) 278 279 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time); 280 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time); 281 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time); 282 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle); 283 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments); 284 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards); 285 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections); 286 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy); 287 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util); 288 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks); 289 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh); 290 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages); 291 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio); 292 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search); 293 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level); 294 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]); 295 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]); 296 #ifdef CONFIG_F2FS_FAULT_INJECTION 297 F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate); 298 F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type); 299 #endif 300 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes); 301 302 #define ATTR_LIST(name) (&f2fs_attr_##name.attr) 303 static struct attribute *f2fs_attrs[] = { 304 ATTR_LIST(gc_min_sleep_time), 305 ATTR_LIST(gc_max_sleep_time), 306 ATTR_LIST(gc_no_gc_sleep_time), 307 ATTR_LIST(gc_idle), 308 ATTR_LIST(reclaim_segments), 309 ATTR_LIST(max_small_discards), 310 ATTR_LIST(batched_trim_sections), 311 ATTR_LIST(ipu_policy), 312 ATTR_LIST(min_ipu_util), 313 ATTR_LIST(min_fsync_blocks), 314 ATTR_LIST(max_victim_search), 315 ATTR_LIST(dir_level), 316 ATTR_LIST(ram_thresh), 317 ATTR_LIST(ra_nid_pages), 318 ATTR_LIST(dirty_nats_ratio), 319 ATTR_LIST(cp_interval), 320 ATTR_LIST(idle_interval), 321 #ifdef CONFIG_F2FS_FAULT_INJECTION 322 ATTR_LIST(inject_rate), 323 ATTR_LIST(inject_type), 324 #endif 325 ATTR_LIST(lifetime_write_kbytes), 326 NULL, 327 }; 328 329 static const struct sysfs_ops f2fs_attr_ops = { 330 .show = f2fs_attr_show, 331 .store = f2fs_attr_store, 332 }; 333 334 static struct kobj_type f2fs_ktype = { 335 .default_attrs = f2fs_attrs, 336 .sysfs_ops = &f2fs_attr_ops, 337 .release = f2fs_sb_release, 338 }; 339 340 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) 341 { 342 struct va_format vaf; 343 va_list args; 344 345 va_start(args, fmt); 346 vaf.fmt = fmt; 347 vaf.va = &args; 348 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); 349 va_end(args); 350 } 351 352 static void init_once(void *foo) 353 { 354 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 355 356 inode_init_once(&fi->vfs_inode); 357 } 358 359 static int parse_options(struct super_block *sb, char *options) 360 { 361 struct f2fs_sb_info *sbi = F2FS_SB(sb); 362 struct request_queue *q; 363 substring_t args[MAX_OPT_ARGS]; 364 char *p, *name; 365 int arg = 0; 366 367 if (!options) 368 return 0; 369 370 while ((p = strsep(&options, ",")) != NULL) { 371 int token; 372 if (!*p) 373 continue; 374 /* 375 * Initialize args struct so we know whether arg was 376 * found; some options take optional arguments. 377 */ 378 args[0].to = args[0].from = NULL; 379 token = match_token(p, f2fs_tokens, args); 380 381 switch (token) { 382 case Opt_gc_background: 383 name = match_strdup(&args[0]); 384 385 if (!name) 386 return -ENOMEM; 387 if (strlen(name) == 2 && !strncmp(name, "on", 2)) { 388 set_opt(sbi, BG_GC); 389 clear_opt(sbi, FORCE_FG_GC); 390 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) { 391 clear_opt(sbi, BG_GC); 392 clear_opt(sbi, FORCE_FG_GC); 393 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) { 394 set_opt(sbi, BG_GC); 395 set_opt(sbi, FORCE_FG_GC); 396 } else { 397 kfree(name); 398 return -EINVAL; 399 } 400 kfree(name); 401 break; 402 case Opt_disable_roll_forward: 403 set_opt(sbi, DISABLE_ROLL_FORWARD); 404 break; 405 case Opt_norecovery: 406 /* this option mounts f2fs with ro */ 407 set_opt(sbi, DISABLE_ROLL_FORWARD); 408 if (!f2fs_readonly(sb)) 409 return -EINVAL; 410 break; 411 case Opt_discard: 412 q = bdev_get_queue(sb->s_bdev); 413 if (blk_queue_discard(q)) { 414 set_opt(sbi, DISCARD); 415 } else if (!f2fs_sb_mounted_blkzoned(sb)) { 416 f2fs_msg(sb, KERN_WARNING, 417 "mounting with \"discard\" option, but " 418 "the device does not support discard"); 419 } 420 break; 421 case Opt_nodiscard: 422 if (f2fs_sb_mounted_blkzoned(sb)) { 423 f2fs_msg(sb, KERN_WARNING, 424 "discard is required for zoned block devices"); 425 return -EINVAL; 426 } 427 clear_opt(sbi, DISCARD); 428 break; 429 case Opt_noheap: 430 set_opt(sbi, NOHEAP); 431 break; 432 #ifdef CONFIG_F2FS_FS_XATTR 433 case Opt_user_xattr: 434 set_opt(sbi, XATTR_USER); 435 break; 436 case Opt_nouser_xattr: 437 clear_opt(sbi, XATTR_USER); 438 break; 439 case Opt_inline_xattr: 440 set_opt(sbi, INLINE_XATTR); 441 break; 442 #else 443 case Opt_user_xattr: 444 f2fs_msg(sb, KERN_INFO, 445 "user_xattr options not supported"); 446 break; 447 case Opt_nouser_xattr: 448 f2fs_msg(sb, KERN_INFO, 449 "nouser_xattr options not supported"); 450 break; 451 case Opt_inline_xattr: 452 f2fs_msg(sb, KERN_INFO, 453 "inline_xattr options not supported"); 454 break; 455 #endif 456 #ifdef CONFIG_F2FS_FS_POSIX_ACL 457 case Opt_acl: 458 set_opt(sbi, POSIX_ACL); 459 break; 460 case Opt_noacl: 461 clear_opt(sbi, POSIX_ACL); 462 break; 463 #else 464 case Opt_acl: 465 f2fs_msg(sb, KERN_INFO, "acl options not supported"); 466 break; 467 case Opt_noacl: 468 f2fs_msg(sb, KERN_INFO, "noacl options not supported"); 469 break; 470 #endif 471 case Opt_active_logs: 472 if (args->from && match_int(args, &arg)) 473 return -EINVAL; 474 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 475 return -EINVAL; 476 sbi->active_logs = arg; 477 break; 478 case Opt_disable_ext_identify: 479 set_opt(sbi, DISABLE_EXT_IDENTIFY); 480 break; 481 case Opt_inline_data: 482 set_opt(sbi, INLINE_DATA); 483 break; 484 case Opt_inline_dentry: 485 set_opt(sbi, INLINE_DENTRY); 486 break; 487 case Opt_noinline_dentry: 488 clear_opt(sbi, INLINE_DENTRY); 489 break; 490 case Opt_flush_merge: 491 set_opt(sbi, FLUSH_MERGE); 492 break; 493 case Opt_noflush_merge: 494 clear_opt(sbi, FLUSH_MERGE); 495 break; 496 case Opt_nobarrier: 497 set_opt(sbi, NOBARRIER); 498 break; 499 case Opt_fastboot: 500 set_opt(sbi, FASTBOOT); 501 break; 502 case Opt_extent_cache: 503 set_opt(sbi, EXTENT_CACHE); 504 break; 505 case Opt_noextent_cache: 506 clear_opt(sbi, EXTENT_CACHE); 507 break; 508 case Opt_noinline_data: 509 clear_opt(sbi, INLINE_DATA); 510 break; 511 case Opt_data_flush: 512 set_opt(sbi, DATA_FLUSH); 513 break; 514 case Opt_mode: 515 name = match_strdup(&args[0]); 516 517 if (!name) 518 return -ENOMEM; 519 if (strlen(name) == 8 && 520 !strncmp(name, "adaptive", 8)) { 521 if (f2fs_sb_mounted_blkzoned(sb)) { 522 f2fs_msg(sb, KERN_WARNING, 523 "adaptive mode is not allowed with " 524 "zoned block device feature"); 525 kfree(name); 526 return -EINVAL; 527 } 528 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 529 } else if (strlen(name) == 3 && 530 !strncmp(name, "lfs", 3)) { 531 set_opt_mode(sbi, F2FS_MOUNT_LFS); 532 } else { 533 kfree(name); 534 return -EINVAL; 535 } 536 kfree(name); 537 break; 538 case Opt_fault_injection: 539 if (args->from && match_int(args, &arg)) 540 return -EINVAL; 541 #ifdef CONFIG_F2FS_FAULT_INJECTION 542 f2fs_build_fault_attr(sbi, arg); 543 #else 544 f2fs_msg(sb, KERN_INFO, 545 "FAULT_INJECTION was not selected"); 546 #endif 547 break; 548 case Opt_lazytime: 549 sb->s_flags |= MS_LAZYTIME; 550 break; 551 case Opt_nolazytime: 552 sb->s_flags &= ~MS_LAZYTIME; 553 break; 554 default: 555 f2fs_msg(sb, KERN_ERR, 556 "Unrecognized mount option \"%s\" or missing value", 557 p); 558 return -EINVAL; 559 } 560 } 561 return 0; 562 } 563 564 static struct inode *f2fs_alloc_inode(struct super_block *sb) 565 { 566 struct f2fs_inode_info *fi; 567 568 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 569 if (!fi) 570 return NULL; 571 572 init_once((void *) fi); 573 574 /* Initialize f2fs-specific inode info */ 575 fi->vfs_inode.i_version = 1; 576 atomic_set(&fi->dirty_pages, 0); 577 fi->i_current_depth = 1; 578 fi->i_advise = 0; 579 init_rwsem(&fi->i_sem); 580 INIT_LIST_HEAD(&fi->dirty_list); 581 INIT_LIST_HEAD(&fi->gdirty_list); 582 INIT_LIST_HEAD(&fi->inmem_pages); 583 mutex_init(&fi->inmem_lock); 584 init_rwsem(&fi->dio_rwsem[READ]); 585 init_rwsem(&fi->dio_rwsem[WRITE]); 586 587 /* Will be used by directory only */ 588 fi->i_dir_level = F2FS_SB(sb)->dir_level; 589 return &fi->vfs_inode; 590 } 591 592 static int f2fs_drop_inode(struct inode *inode) 593 { 594 /* 595 * This is to avoid a deadlock condition like below. 596 * writeback_single_inode(inode) 597 * - f2fs_write_data_page 598 * - f2fs_gc -> iput -> evict 599 * - inode_wait_for_writeback(inode) 600 */ 601 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 602 if (!inode->i_nlink && !is_bad_inode(inode)) { 603 /* to avoid evict_inode call simultaneously */ 604 atomic_inc(&inode->i_count); 605 spin_unlock(&inode->i_lock); 606 607 /* some remained atomic pages should discarded */ 608 if (f2fs_is_atomic_file(inode)) 609 drop_inmem_pages(inode); 610 611 /* should remain fi->extent_tree for writepage */ 612 f2fs_destroy_extent_node(inode); 613 614 sb_start_intwrite(inode->i_sb); 615 f2fs_i_size_write(inode, 0); 616 617 if (F2FS_HAS_BLOCKS(inode)) 618 f2fs_truncate(inode); 619 620 sb_end_intwrite(inode->i_sb); 621 622 fscrypt_put_encryption_info(inode, NULL); 623 spin_lock(&inode->i_lock); 624 atomic_dec(&inode->i_count); 625 } 626 return 0; 627 } 628 629 return generic_drop_inode(inode); 630 } 631 632 int f2fs_inode_dirtied(struct inode *inode, bool sync) 633 { 634 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 635 int ret = 0; 636 637 spin_lock(&sbi->inode_lock[DIRTY_META]); 638 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 639 ret = 1; 640 } else { 641 set_inode_flag(inode, FI_DIRTY_INODE); 642 stat_inc_dirty_inode(sbi, DIRTY_META); 643 } 644 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 645 list_add_tail(&F2FS_I(inode)->gdirty_list, 646 &sbi->inode_list[DIRTY_META]); 647 inc_page_count(sbi, F2FS_DIRTY_IMETA); 648 } 649 spin_unlock(&sbi->inode_lock[DIRTY_META]); 650 return ret; 651 } 652 653 void f2fs_inode_synced(struct inode *inode) 654 { 655 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 656 657 spin_lock(&sbi->inode_lock[DIRTY_META]); 658 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 659 spin_unlock(&sbi->inode_lock[DIRTY_META]); 660 return; 661 } 662 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 663 list_del_init(&F2FS_I(inode)->gdirty_list); 664 dec_page_count(sbi, F2FS_DIRTY_IMETA); 665 } 666 clear_inode_flag(inode, FI_DIRTY_INODE); 667 clear_inode_flag(inode, FI_AUTO_RECOVER); 668 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 669 spin_unlock(&sbi->inode_lock[DIRTY_META]); 670 } 671 672 /* 673 * f2fs_dirty_inode() is called from __mark_inode_dirty() 674 * 675 * We should call set_dirty_inode to write the dirty inode through write_inode. 676 */ 677 static void f2fs_dirty_inode(struct inode *inode, int flags) 678 { 679 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 680 681 if (inode->i_ino == F2FS_NODE_INO(sbi) || 682 inode->i_ino == F2FS_META_INO(sbi)) 683 return; 684 685 if (flags == I_DIRTY_TIME) 686 return; 687 688 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 689 clear_inode_flag(inode, FI_AUTO_RECOVER); 690 691 f2fs_inode_dirtied(inode, false); 692 } 693 694 static void f2fs_i_callback(struct rcu_head *head) 695 { 696 struct inode *inode = container_of(head, struct inode, i_rcu); 697 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 698 } 699 700 static void f2fs_destroy_inode(struct inode *inode) 701 { 702 call_rcu(&inode->i_rcu, f2fs_i_callback); 703 } 704 705 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 706 { 707 percpu_counter_destroy(&sbi->alloc_valid_block_count); 708 percpu_counter_destroy(&sbi->total_valid_inode_count); 709 } 710 711 static void destroy_device_list(struct f2fs_sb_info *sbi) 712 { 713 int i; 714 715 for (i = 0; i < sbi->s_ndevs; i++) { 716 blkdev_put(FDEV(i).bdev, FMODE_EXCL); 717 #ifdef CONFIG_BLK_DEV_ZONED 718 kfree(FDEV(i).blkz_type); 719 #endif 720 } 721 kfree(sbi->devs); 722 } 723 724 static void f2fs_put_super(struct super_block *sb) 725 { 726 struct f2fs_sb_info *sbi = F2FS_SB(sb); 727 728 if (sbi->s_proc) { 729 remove_proc_entry("segment_info", sbi->s_proc); 730 remove_proc_entry("segment_bits", sbi->s_proc); 731 remove_proc_entry(sb->s_id, f2fs_proc_root); 732 } 733 kobject_del(&sbi->s_kobj); 734 735 stop_gc_thread(sbi); 736 737 /* prevent remaining shrinker jobs */ 738 mutex_lock(&sbi->umount_mutex); 739 740 /* 741 * We don't need to do checkpoint when superblock is clean. 742 * But, the previous checkpoint was not done by umount, it needs to do 743 * clean checkpoint again. 744 */ 745 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 746 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 747 struct cp_control cpc = { 748 .reason = CP_UMOUNT, 749 }; 750 write_checkpoint(sbi, &cpc); 751 } 752 753 /* write_checkpoint can update stat informaion */ 754 f2fs_destroy_stats(sbi); 755 756 /* 757 * normally superblock is clean, so we need to release this. 758 * In addition, EIO will skip do checkpoint, we need this as well. 759 */ 760 release_ino_entry(sbi, true); 761 762 f2fs_leave_shrinker(sbi); 763 mutex_unlock(&sbi->umount_mutex); 764 765 /* our cp_error case, we can wait for any writeback page */ 766 f2fs_flush_merged_bios(sbi); 767 768 iput(sbi->node_inode); 769 iput(sbi->meta_inode); 770 771 /* destroy f2fs internal modules */ 772 destroy_node_manager(sbi); 773 destroy_segment_manager(sbi); 774 775 kfree(sbi->ckpt); 776 kobject_put(&sbi->s_kobj); 777 wait_for_completion(&sbi->s_kobj_unregister); 778 779 sb->s_fs_info = NULL; 780 if (sbi->s_chksum_driver) 781 crypto_free_shash(sbi->s_chksum_driver); 782 kfree(sbi->raw_super); 783 784 destroy_device_list(sbi); 785 786 destroy_percpu_info(sbi); 787 kfree(sbi); 788 } 789 790 int f2fs_sync_fs(struct super_block *sb, int sync) 791 { 792 struct f2fs_sb_info *sbi = F2FS_SB(sb); 793 int err = 0; 794 795 trace_f2fs_sync_fs(sb, sync); 796 797 if (sync) { 798 struct cp_control cpc; 799 800 cpc.reason = __get_cp_reason(sbi); 801 802 mutex_lock(&sbi->gc_mutex); 803 err = write_checkpoint(sbi, &cpc); 804 mutex_unlock(&sbi->gc_mutex); 805 } 806 f2fs_trace_ios(NULL, 1); 807 808 return err; 809 } 810 811 static int f2fs_freeze(struct super_block *sb) 812 { 813 if (f2fs_readonly(sb)) 814 return 0; 815 816 /* IO error happened before */ 817 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 818 return -EIO; 819 820 /* must be clean, since sync_filesystem() was already called */ 821 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 822 return -EINVAL; 823 return 0; 824 } 825 826 static int f2fs_unfreeze(struct super_block *sb) 827 { 828 return 0; 829 } 830 831 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 832 { 833 struct super_block *sb = dentry->d_sb; 834 struct f2fs_sb_info *sbi = F2FS_SB(sb); 835 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 836 block_t total_count, user_block_count, start_count, ovp_count; 837 838 total_count = le64_to_cpu(sbi->raw_super->block_count); 839 user_block_count = sbi->user_block_count; 840 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 841 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg; 842 buf->f_type = F2FS_SUPER_MAGIC; 843 buf->f_bsize = sbi->blocksize; 844 845 buf->f_blocks = total_count - start_count; 846 buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count; 847 buf->f_bavail = user_block_count - valid_user_blocks(sbi); 848 849 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 850 buf->f_ffree = min(buf->f_files - valid_node_count(sbi), 851 buf->f_bavail); 852 853 buf->f_namelen = F2FS_NAME_LEN; 854 buf->f_fsid.val[0] = (u32)id; 855 buf->f_fsid.val[1] = (u32)(id >> 32); 856 857 return 0; 858 } 859 860 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 861 { 862 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 863 864 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) { 865 if (test_opt(sbi, FORCE_FG_GC)) 866 seq_printf(seq, ",background_gc=%s", "sync"); 867 else 868 seq_printf(seq, ",background_gc=%s", "on"); 869 } else { 870 seq_printf(seq, ",background_gc=%s", "off"); 871 } 872 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 873 seq_puts(seq, ",disable_roll_forward"); 874 if (test_opt(sbi, DISCARD)) 875 seq_puts(seq, ",discard"); 876 if (test_opt(sbi, NOHEAP)) 877 seq_puts(seq, ",no_heap_alloc"); 878 #ifdef CONFIG_F2FS_FS_XATTR 879 if (test_opt(sbi, XATTR_USER)) 880 seq_puts(seq, ",user_xattr"); 881 else 882 seq_puts(seq, ",nouser_xattr"); 883 if (test_opt(sbi, INLINE_XATTR)) 884 seq_puts(seq, ",inline_xattr"); 885 #endif 886 #ifdef CONFIG_F2FS_FS_POSIX_ACL 887 if (test_opt(sbi, POSIX_ACL)) 888 seq_puts(seq, ",acl"); 889 else 890 seq_puts(seq, ",noacl"); 891 #endif 892 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 893 seq_puts(seq, ",disable_ext_identify"); 894 if (test_opt(sbi, INLINE_DATA)) 895 seq_puts(seq, ",inline_data"); 896 else 897 seq_puts(seq, ",noinline_data"); 898 if (test_opt(sbi, INLINE_DENTRY)) 899 seq_puts(seq, ",inline_dentry"); 900 else 901 seq_puts(seq, ",noinline_dentry"); 902 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 903 seq_puts(seq, ",flush_merge"); 904 if (test_opt(sbi, NOBARRIER)) 905 seq_puts(seq, ",nobarrier"); 906 if (test_opt(sbi, FASTBOOT)) 907 seq_puts(seq, ",fastboot"); 908 if (test_opt(sbi, EXTENT_CACHE)) 909 seq_puts(seq, ",extent_cache"); 910 else 911 seq_puts(seq, ",noextent_cache"); 912 if (test_opt(sbi, DATA_FLUSH)) 913 seq_puts(seq, ",data_flush"); 914 915 seq_puts(seq, ",mode="); 916 if (test_opt(sbi, ADAPTIVE)) 917 seq_puts(seq, "adaptive"); 918 else if (test_opt(sbi, LFS)) 919 seq_puts(seq, "lfs"); 920 seq_printf(seq, ",active_logs=%u", sbi->active_logs); 921 922 return 0; 923 } 924 925 static int segment_info_seq_show(struct seq_file *seq, void *offset) 926 { 927 struct super_block *sb = seq->private; 928 struct f2fs_sb_info *sbi = F2FS_SB(sb); 929 unsigned int total_segs = 930 le32_to_cpu(sbi->raw_super->segment_count_main); 931 int i; 932 933 seq_puts(seq, "format: segment_type|valid_blocks\n" 934 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n"); 935 936 for (i = 0; i < total_segs; i++) { 937 struct seg_entry *se = get_seg_entry(sbi, i); 938 939 if ((i % 10) == 0) 940 seq_printf(seq, "%-10d", i); 941 seq_printf(seq, "%d|%-3u", se->type, 942 get_valid_blocks(sbi, i, 1)); 943 if ((i % 10) == 9 || i == (total_segs - 1)) 944 seq_putc(seq, '\n'); 945 else 946 seq_putc(seq, ' '); 947 } 948 949 return 0; 950 } 951 952 static int segment_bits_seq_show(struct seq_file *seq, void *offset) 953 { 954 struct super_block *sb = seq->private; 955 struct f2fs_sb_info *sbi = F2FS_SB(sb); 956 unsigned int total_segs = 957 le32_to_cpu(sbi->raw_super->segment_count_main); 958 int i, j; 959 960 seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n" 961 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n"); 962 963 for (i = 0; i < total_segs; i++) { 964 struct seg_entry *se = get_seg_entry(sbi, i); 965 966 seq_printf(seq, "%-10d", i); 967 seq_printf(seq, "%d|%-3u|", se->type, 968 get_valid_blocks(sbi, i, 1)); 969 for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++) 970 seq_printf(seq, " %.2x", se->cur_valid_map[j]); 971 seq_putc(seq, '\n'); 972 } 973 return 0; 974 } 975 976 #define F2FS_PROC_FILE_DEF(_name) \ 977 static int _name##_open_fs(struct inode *inode, struct file *file) \ 978 { \ 979 return single_open(file, _name##_seq_show, PDE_DATA(inode)); \ 980 } \ 981 \ 982 static const struct file_operations f2fs_seq_##_name##_fops = { \ 983 .open = _name##_open_fs, \ 984 .read = seq_read, \ 985 .llseek = seq_lseek, \ 986 .release = single_release, \ 987 }; 988 989 F2FS_PROC_FILE_DEF(segment_info); 990 F2FS_PROC_FILE_DEF(segment_bits); 991 992 static void default_options(struct f2fs_sb_info *sbi) 993 { 994 /* init some FS parameters */ 995 sbi->active_logs = NR_CURSEG_TYPE; 996 997 set_opt(sbi, BG_GC); 998 set_opt(sbi, INLINE_DATA); 999 set_opt(sbi, INLINE_DENTRY); 1000 set_opt(sbi, EXTENT_CACHE); 1001 sbi->sb->s_flags |= MS_LAZYTIME; 1002 set_opt(sbi, FLUSH_MERGE); 1003 if (f2fs_sb_mounted_blkzoned(sbi->sb)) { 1004 set_opt_mode(sbi, F2FS_MOUNT_LFS); 1005 set_opt(sbi, DISCARD); 1006 } else { 1007 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 1008 } 1009 1010 #ifdef CONFIG_F2FS_FS_XATTR 1011 set_opt(sbi, XATTR_USER); 1012 #endif 1013 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1014 set_opt(sbi, POSIX_ACL); 1015 #endif 1016 1017 #ifdef CONFIG_F2FS_FAULT_INJECTION 1018 f2fs_build_fault_attr(sbi, 0); 1019 #endif 1020 } 1021 1022 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 1023 { 1024 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1025 struct f2fs_mount_info org_mount_opt; 1026 int err, active_logs; 1027 bool need_restart_gc = false; 1028 bool need_stop_gc = false; 1029 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 1030 #ifdef CONFIG_F2FS_FAULT_INJECTION 1031 struct f2fs_fault_info ffi = sbi->fault_info; 1032 #endif 1033 1034 /* 1035 * Save the old mount options in case we 1036 * need to restore them. 1037 */ 1038 org_mount_opt = sbi->mount_opt; 1039 active_logs = sbi->active_logs; 1040 1041 /* recover superblocks we couldn't write due to previous RO mount */ 1042 if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 1043 err = f2fs_commit_super(sbi, false); 1044 f2fs_msg(sb, KERN_INFO, 1045 "Try to recover all the superblocks, ret: %d", err); 1046 if (!err) 1047 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1048 } 1049 1050 sbi->mount_opt.opt = 0; 1051 default_options(sbi); 1052 1053 /* parse mount options */ 1054 err = parse_options(sb, data); 1055 if (err) 1056 goto restore_opts; 1057 1058 /* 1059 * Previous and new state of filesystem is RO, 1060 * so skip checking GC and FLUSH_MERGE conditions. 1061 */ 1062 if (f2fs_readonly(sb) && (*flags & MS_RDONLY)) 1063 goto skip; 1064 1065 /* disallow enable/disable extent_cache dynamically */ 1066 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 1067 err = -EINVAL; 1068 f2fs_msg(sbi->sb, KERN_WARNING, 1069 "switch extent_cache option is not allowed"); 1070 goto restore_opts; 1071 } 1072 1073 /* 1074 * We stop the GC thread if FS is mounted as RO 1075 * or if background_gc = off is passed in mount 1076 * option. Also sync the filesystem. 1077 */ 1078 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) { 1079 if (sbi->gc_thread) { 1080 stop_gc_thread(sbi); 1081 need_restart_gc = true; 1082 } 1083 } else if (!sbi->gc_thread) { 1084 err = start_gc_thread(sbi); 1085 if (err) 1086 goto restore_opts; 1087 need_stop_gc = true; 1088 } 1089 1090 if (*flags & MS_RDONLY) { 1091 writeback_inodes_sb(sb, WB_REASON_SYNC); 1092 sync_inodes_sb(sb); 1093 1094 set_sbi_flag(sbi, SBI_IS_DIRTY); 1095 set_sbi_flag(sbi, SBI_IS_CLOSE); 1096 f2fs_sync_fs(sb, 1); 1097 clear_sbi_flag(sbi, SBI_IS_CLOSE); 1098 } 1099 1100 /* 1101 * We stop issue flush thread if FS is mounted as RO 1102 * or if flush_merge is not passed in mount option. 1103 */ 1104 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 1105 clear_opt(sbi, FLUSH_MERGE); 1106 destroy_flush_cmd_control(sbi, false); 1107 } else { 1108 err = create_flush_cmd_control(sbi); 1109 if (err) 1110 goto restore_gc; 1111 } 1112 skip: 1113 /* Update the POSIXACL Flag */ 1114 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 1115 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 1116 1117 return 0; 1118 restore_gc: 1119 if (need_restart_gc) { 1120 if (start_gc_thread(sbi)) 1121 f2fs_msg(sbi->sb, KERN_WARNING, 1122 "background gc thread has stopped"); 1123 } else if (need_stop_gc) { 1124 stop_gc_thread(sbi); 1125 } 1126 restore_opts: 1127 sbi->mount_opt = org_mount_opt; 1128 sbi->active_logs = active_logs; 1129 #ifdef CONFIG_F2FS_FAULT_INJECTION 1130 sbi->fault_info = ffi; 1131 #endif 1132 return err; 1133 } 1134 1135 static struct super_operations f2fs_sops = { 1136 .alloc_inode = f2fs_alloc_inode, 1137 .drop_inode = f2fs_drop_inode, 1138 .destroy_inode = f2fs_destroy_inode, 1139 .write_inode = f2fs_write_inode, 1140 .dirty_inode = f2fs_dirty_inode, 1141 .show_options = f2fs_show_options, 1142 .evict_inode = f2fs_evict_inode, 1143 .put_super = f2fs_put_super, 1144 .sync_fs = f2fs_sync_fs, 1145 .freeze_fs = f2fs_freeze, 1146 .unfreeze_fs = f2fs_unfreeze, 1147 .statfs = f2fs_statfs, 1148 .remount_fs = f2fs_remount, 1149 }; 1150 1151 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1152 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 1153 { 1154 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 1155 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 1156 ctx, len, NULL); 1157 } 1158 1159 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 1160 void *fs_data) 1161 { 1162 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 1163 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 1164 ctx, len, fs_data, XATTR_CREATE); 1165 } 1166 1167 static unsigned f2fs_max_namelen(struct inode *inode) 1168 { 1169 return S_ISLNK(inode->i_mode) ? 1170 inode->i_sb->s_blocksize : F2FS_NAME_LEN; 1171 } 1172 1173 static const struct fscrypt_operations f2fs_cryptops = { 1174 .key_prefix = "f2fs:", 1175 .get_context = f2fs_get_context, 1176 .set_context = f2fs_set_context, 1177 .is_encrypted = f2fs_encrypted_inode, 1178 .empty_dir = f2fs_empty_dir, 1179 .max_namelen = f2fs_max_namelen, 1180 }; 1181 #else 1182 static const struct fscrypt_operations f2fs_cryptops = { 1183 .is_encrypted = f2fs_encrypted_inode, 1184 }; 1185 #endif 1186 1187 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 1188 u64 ino, u32 generation) 1189 { 1190 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1191 struct inode *inode; 1192 1193 if (check_nid_range(sbi, ino)) 1194 return ERR_PTR(-ESTALE); 1195 1196 /* 1197 * f2fs_iget isn't quite right if the inode is currently unallocated! 1198 * However f2fs_iget currently does appropriate checks to handle stale 1199 * inodes so everything is OK. 1200 */ 1201 inode = f2fs_iget(sb, ino); 1202 if (IS_ERR(inode)) 1203 return ERR_CAST(inode); 1204 if (unlikely(generation && inode->i_generation != generation)) { 1205 /* we didn't find the right inode.. */ 1206 iput(inode); 1207 return ERR_PTR(-ESTALE); 1208 } 1209 return inode; 1210 } 1211 1212 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 1213 int fh_len, int fh_type) 1214 { 1215 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 1216 f2fs_nfs_get_inode); 1217 } 1218 1219 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 1220 int fh_len, int fh_type) 1221 { 1222 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 1223 f2fs_nfs_get_inode); 1224 } 1225 1226 static const struct export_operations f2fs_export_ops = { 1227 .fh_to_dentry = f2fs_fh_to_dentry, 1228 .fh_to_parent = f2fs_fh_to_parent, 1229 .get_parent = f2fs_get_parent, 1230 }; 1231 1232 static loff_t max_file_blocks(void) 1233 { 1234 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS); 1235 loff_t leaf_count = ADDRS_PER_BLOCK; 1236 1237 /* two direct node blocks */ 1238 result += (leaf_count * 2); 1239 1240 /* two indirect node blocks */ 1241 leaf_count *= NIDS_PER_BLOCK; 1242 result += (leaf_count * 2); 1243 1244 /* one double indirect node block */ 1245 leaf_count *= NIDS_PER_BLOCK; 1246 result += leaf_count; 1247 1248 return result; 1249 } 1250 1251 static int __f2fs_commit_super(struct buffer_head *bh, 1252 struct f2fs_super_block *super) 1253 { 1254 lock_buffer(bh); 1255 if (super) 1256 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 1257 set_buffer_uptodate(bh); 1258 set_buffer_dirty(bh); 1259 unlock_buffer(bh); 1260 1261 /* it's rare case, we can do fua all the time */ 1262 return __sync_dirty_buffer(bh, REQ_PREFLUSH | REQ_FUA); 1263 } 1264 1265 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 1266 struct buffer_head *bh) 1267 { 1268 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 1269 (bh->b_data + F2FS_SUPER_OFFSET); 1270 struct super_block *sb = sbi->sb; 1271 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 1272 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 1273 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 1274 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 1275 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 1276 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 1277 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 1278 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 1279 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 1280 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 1281 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 1282 u32 segment_count = le32_to_cpu(raw_super->segment_count); 1283 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 1284 u64 main_end_blkaddr = main_blkaddr + 1285 (segment_count_main << log_blocks_per_seg); 1286 u64 seg_end_blkaddr = segment0_blkaddr + 1287 (segment_count << log_blocks_per_seg); 1288 1289 if (segment0_blkaddr != cp_blkaddr) { 1290 f2fs_msg(sb, KERN_INFO, 1291 "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 1292 segment0_blkaddr, cp_blkaddr); 1293 return true; 1294 } 1295 1296 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 1297 sit_blkaddr) { 1298 f2fs_msg(sb, KERN_INFO, 1299 "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 1300 cp_blkaddr, sit_blkaddr, 1301 segment_count_ckpt << log_blocks_per_seg); 1302 return true; 1303 } 1304 1305 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 1306 nat_blkaddr) { 1307 f2fs_msg(sb, KERN_INFO, 1308 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 1309 sit_blkaddr, nat_blkaddr, 1310 segment_count_sit << log_blocks_per_seg); 1311 return true; 1312 } 1313 1314 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 1315 ssa_blkaddr) { 1316 f2fs_msg(sb, KERN_INFO, 1317 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 1318 nat_blkaddr, ssa_blkaddr, 1319 segment_count_nat << log_blocks_per_seg); 1320 return true; 1321 } 1322 1323 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 1324 main_blkaddr) { 1325 f2fs_msg(sb, KERN_INFO, 1326 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 1327 ssa_blkaddr, main_blkaddr, 1328 segment_count_ssa << log_blocks_per_seg); 1329 return true; 1330 } 1331 1332 if (main_end_blkaddr > seg_end_blkaddr) { 1333 f2fs_msg(sb, KERN_INFO, 1334 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)", 1335 main_blkaddr, 1336 segment0_blkaddr + 1337 (segment_count << log_blocks_per_seg), 1338 segment_count_main << log_blocks_per_seg); 1339 return true; 1340 } else if (main_end_blkaddr < seg_end_blkaddr) { 1341 int err = 0; 1342 char *res; 1343 1344 /* fix in-memory information all the time */ 1345 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 1346 segment0_blkaddr) >> log_blocks_per_seg); 1347 1348 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 1349 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1350 res = "internally"; 1351 } else { 1352 err = __f2fs_commit_super(bh, NULL); 1353 res = err ? "failed" : "done"; 1354 } 1355 f2fs_msg(sb, KERN_INFO, 1356 "Fix alignment : %s, start(%u) end(%u) block(%u)", 1357 res, main_blkaddr, 1358 segment0_blkaddr + 1359 (segment_count << log_blocks_per_seg), 1360 segment_count_main << log_blocks_per_seg); 1361 if (err) 1362 return true; 1363 } 1364 return false; 1365 } 1366 1367 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 1368 struct buffer_head *bh) 1369 { 1370 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 1371 (bh->b_data + F2FS_SUPER_OFFSET); 1372 struct super_block *sb = sbi->sb; 1373 unsigned int blocksize; 1374 1375 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { 1376 f2fs_msg(sb, KERN_INFO, 1377 "Magic Mismatch, valid(0x%x) - read(0x%x)", 1378 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 1379 return 1; 1380 } 1381 1382 /* Currently, support only 4KB page cache size */ 1383 if (F2FS_BLKSIZE != PAGE_SIZE) { 1384 f2fs_msg(sb, KERN_INFO, 1385 "Invalid page_cache_size (%lu), supports only 4KB\n", 1386 PAGE_SIZE); 1387 return 1; 1388 } 1389 1390 /* Currently, support only 4KB block size */ 1391 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 1392 if (blocksize != F2FS_BLKSIZE) { 1393 f2fs_msg(sb, KERN_INFO, 1394 "Invalid blocksize (%u), supports only 4KB\n", 1395 blocksize); 1396 return 1; 1397 } 1398 1399 /* check log blocks per segment */ 1400 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 1401 f2fs_msg(sb, KERN_INFO, 1402 "Invalid log blocks per segment (%u)\n", 1403 le32_to_cpu(raw_super->log_blocks_per_seg)); 1404 return 1; 1405 } 1406 1407 /* Currently, support 512/1024/2048/4096 bytes sector size */ 1408 if (le32_to_cpu(raw_super->log_sectorsize) > 1409 F2FS_MAX_LOG_SECTOR_SIZE || 1410 le32_to_cpu(raw_super->log_sectorsize) < 1411 F2FS_MIN_LOG_SECTOR_SIZE) { 1412 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)", 1413 le32_to_cpu(raw_super->log_sectorsize)); 1414 return 1; 1415 } 1416 if (le32_to_cpu(raw_super->log_sectors_per_block) + 1417 le32_to_cpu(raw_super->log_sectorsize) != 1418 F2FS_MAX_LOG_SECTOR_SIZE) { 1419 f2fs_msg(sb, KERN_INFO, 1420 "Invalid log sectors per block(%u) log sectorsize(%u)", 1421 le32_to_cpu(raw_super->log_sectors_per_block), 1422 le32_to_cpu(raw_super->log_sectorsize)); 1423 return 1; 1424 } 1425 1426 /* check reserved ino info */ 1427 if (le32_to_cpu(raw_super->node_ino) != 1 || 1428 le32_to_cpu(raw_super->meta_ino) != 2 || 1429 le32_to_cpu(raw_super->root_ino) != 3) { 1430 f2fs_msg(sb, KERN_INFO, 1431 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 1432 le32_to_cpu(raw_super->node_ino), 1433 le32_to_cpu(raw_super->meta_ino), 1434 le32_to_cpu(raw_super->root_ino)); 1435 return 1; 1436 } 1437 1438 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 1439 if (sanity_check_area_boundary(sbi, bh)) 1440 return 1; 1441 1442 return 0; 1443 } 1444 1445 int sanity_check_ckpt(struct f2fs_sb_info *sbi) 1446 { 1447 unsigned int total, fsmeta; 1448 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1449 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 1450 unsigned int ovp_segments, reserved_segments; 1451 1452 total = le32_to_cpu(raw_super->segment_count); 1453 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 1454 fsmeta += le32_to_cpu(raw_super->segment_count_sit); 1455 fsmeta += le32_to_cpu(raw_super->segment_count_nat); 1456 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 1457 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 1458 1459 if (unlikely(fsmeta >= total)) 1460 return 1; 1461 1462 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 1463 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 1464 1465 if (unlikely(fsmeta < F2FS_MIN_SEGMENTS || 1466 ovp_segments == 0 || reserved_segments == 0)) { 1467 f2fs_msg(sbi->sb, KERN_ERR, 1468 "Wrong layout: check mkfs.f2fs version"); 1469 return 1; 1470 } 1471 1472 if (unlikely(f2fs_cp_error(sbi))) { 1473 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); 1474 return 1; 1475 } 1476 return 0; 1477 } 1478 1479 static void init_sb_info(struct f2fs_sb_info *sbi) 1480 { 1481 struct f2fs_super_block *raw_super = sbi->raw_super; 1482 int i; 1483 1484 sbi->log_sectors_per_block = 1485 le32_to_cpu(raw_super->log_sectors_per_block); 1486 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 1487 sbi->blocksize = 1 << sbi->log_blocksize; 1488 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 1489 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 1490 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 1491 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 1492 sbi->total_sections = le32_to_cpu(raw_super->section_count); 1493 sbi->total_node_count = 1494 (le32_to_cpu(raw_super->segment_count_nat) / 2) 1495 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 1496 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 1497 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 1498 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 1499 sbi->cur_victim_sec = NULL_SECNO; 1500 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 1501 1502 sbi->dir_level = DEF_DIR_LEVEL; 1503 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 1504 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 1505 clear_sbi_flag(sbi, SBI_NEED_FSCK); 1506 1507 for (i = 0; i < NR_COUNT_TYPE; i++) 1508 atomic_set(&sbi->nr_pages[i], 0); 1509 1510 INIT_LIST_HEAD(&sbi->s_list); 1511 mutex_init(&sbi->umount_mutex); 1512 mutex_init(&sbi->wio_mutex[NODE]); 1513 mutex_init(&sbi->wio_mutex[DATA]); 1514 spin_lock_init(&sbi->cp_lock); 1515 } 1516 1517 static int init_percpu_info(struct f2fs_sb_info *sbi) 1518 { 1519 int err; 1520 1521 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 1522 if (err) 1523 return err; 1524 1525 return percpu_counter_init(&sbi->total_valid_inode_count, 0, 1526 GFP_KERNEL); 1527 } 1528 1529 #ifdef CONFIG_BLK_DEV_ZONED 1530 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 1531 { 1532 struct block_device *bdev = FDEV(devi).bdev; 1533 sector_t nr_sectors = bdev->bd_part->nr_sects; 1534 sector_t sector = 0; 1535 struct blk_zone *zones; 1536 unsigned int i, nr_zones; 1537 unsigned int n = 0; 1538 int err = -EIO; 1539 1540 if (!f2fs_sb_mounted_blkzoned(sbi->sb)) 1541 return 0; 1542 1543 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 1544 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev))) 1545 return -EINVAL; 1546 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)); 1547 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz != 1548 __ilog2_u32(sbi->blocks_per_blkz)) 1549 return -EINVAL; 1550 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz); 1551 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >> 1552 sbi->log_blocks_per_blkz; 1553 if (nr_sectors & (bdev_zone_sectors(bdev) - 1)) 1554 FDEV(devi).nr_blkz++; 1555 1556 FDEV(devi).blkz_type = kmalloc(FDEV(devi).nr_blkz, GFP_KERNEL); 1557 if (!FDEV(devi).blkz_type) 1558 return -ENOMEM; 1559 1560 #define F2FS_REPORT_NR_ZONES 4096 1561 1562 zones = kcalloc(F2FS_REPORT_NR_ZONES, sizeof(struct blk_zone), 1563 GFP_KERNEL); 1564 if (!zones) 1565 return -ENOMEM; 1566 1567 /* Get block zones type */ 1568 while (zones && sector < nr_sectors) { 1569 1570 nr_zones = F2FS_REPORT_NR_ZONES; 1571 err = blkdev_report_zones(bdev, sector, 1572 zones, &nr_zones, 1573 GFP_KERNEL); 1574 if (err) 1575 break; 1576 if (!nr_zones) { 1577 err = -EIO; 1578 break; 1579 } 1580 1581 for (i = 0; i < nr_zones; i++) { 1582 FDEV(devi).blkz_type[n] = zones[i].type; 1583 sector += zones[i].len; 1584 n++; 1585 } 1586 } 1587 1588 kfree(zones); 1589 1590 return err; 1591 } 1592 #endif 1593 1594 /* 1595 * Read f2fs raw super block. 1596 * Because we have two copies of super block, so read both of them 1597 * to get the first valid one. If any one of them is broken, we pass 1598 * them recovery flag back to the caller. 1599 */ 1600 static int read_raw_super_block(struct f2fs_sb_info *sbi, 1601 struct f2fs_super_block **raw_super, 1602 int *valid_super_block, int *recovery) 1603 { 1604 struct super_block *sb = sbi->sb; 1605 int block; 1606 struct buffer_head *bh; 1607 struct f2fs_super_block *super; 1608 int err = 0; 1609 1610 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 1611 if (!super) 1612 return -ENOMEM; 1613 1614 for (block = 0; block < 2; block++) { 1615 bh = sb_bread(sb, block); 1616 if (!bh) { 1617 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock", 1618 block + 1); 1619 err = -EIO; 1620 continue; 1621 } 1622 1623 /* sanity checking of raw super */ 1624 if (sanity_check_raw_super(sbi, bh)) { 1625 f2fs_msg(sb, KERN_ERR, 1626 "Can't find valid F2FS filesystem in %dth superblock", 1627 block + 1); 1628 err = -EINVAL; 1629 brelse(bh); 1630 continue; 1631 } 1632 1633 if (!*raw_super) { 1634 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 1635 sizeof(*super)); 1636 *valid_super_block = block; 1637 *raw_super = super; 1638 } 1639 brelse(bh); 1640 } 1641 1642 /* Fail to read any one of the superblocks*/ 1643 if (err < 0) 1644 *recovery = 1; 1645 1646 /* No valid superblock */ 1647 if (!*raw_super) 1648 kfree(super); 1649 else 1650 err = 0; 1651 1652 return err; 1653 } 1654 1655 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 1656 { 1657 struct buffer_head *bh; 1658 int err; 1659 1660 if ((recover && f2fs_readonly(sbi->sb)) || 1661 bdev_read_only(sbi->sb->s_bdev)) { 1662 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1663 return -EROFS; 1664 } 1665 1666 /* write back-up superblock first */ 1667 bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1); 1668 if (!bh) 1669 return -EIO; 1670 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 1671 brelse(bh); 1672 1673 /* if we are in recovery path, skip writing valid superblock */ 1674 if (recover || err) 1675 return err; 1676 1677 /* write current valid superblock */ 1678 bh = sb_getblk(sbi->sb, sbi->valid_super_block); 1679 if (!bh) 1680 return -EIO; 1681 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 1682 brelse(bh); 1683 return err; 1684 } 1685 1686 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 1687 { 1688 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 1689 int i; 1690 1691 for (i = 0; i < MAX_DEVICES; i++) { 1692 if (!RDEV(i).path[0]) 1693 return 0; 1694 1695 if (i == 0) { 1696 sbi->devs = kzalloc(sizeof(struct f2fs_dev_info) * 1697 MAX_DEVICES, GFP_KERNEL); 1698 if (!sbi->devs) 1699 return -ENOMEM; 1700 } 1701 1702 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 1703 FDEV(i).total_segments = le32_to_cpu(RDEV(i).total_segments); 1704 if (i == 0) { 1705 FDEV(i).start_blk = 0; 1706 FDEV(i).end_blk = FDEV(i).start_blk + 1707 (FDEV(i).total_segments << 1708 sbi->log_blocks_per_seg) - 1 + 1709 le32_to_cpu(raw_super->segment0_blkaddr); 1710 } else { 1711 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 1712 FDEV(i).end_blk = FDEV(i).start_blk + 1713 (FDEV(i).total_segments << 1714 sbi->log_blocks_per_seg) - 1; 1715 } 1716 1717 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 1718 sbi->sb->s_mode, sbi->sb->s_type); 1719 if (IS_ERR(FDEV(i).bdev)) 1720 return PTR_ERR(FDEV(i).bdev); 1721 1722 /* to release errored devices */ 1723 sbi->s_ndevs = i + 1; 1724 1725 #ifdef CONFIG_BLK_DEV_ZONED 1726 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 1727 !f2fs_sb_mounted_blkzoned(sbi->sb)) { 1728 f2fs_msg(sbi->sb, KERN_ERR, 1729 "Zoned block device feature not enabled\n"); 1730 return -EINVAL; 1731 } 1732 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 1733 if (init_blkz_info(sbi, i)) { 1734 f2fs_msg(sbi->sb, KERN_ERR, 1735 "Failed to initialize F2FS blkzone information"); 1736 return -EINVAL; 1737 } 1738 f2fs_msg(sbi->sb, KERN_INFO, 1739 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 1740 i, FDEV(i).path, 1741 FDEV(i).total_segments, 1742 FDEV(i).start_blk, FDEV(i).end_blk, 1743 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 1744 "Host-aware" : "Host-managed"); 1745 continue; 1746 } 1747 #endif 1748 f2fs_msg(sbi->sb, KERN_INFO, 1749 "Mount Device [%2d]: %20s, %8u, %8x - %8x", 1750 i, FDEV(i).path, 1751 FDEV(i).total_segments, 1752 FDEV(i).start_blk, FDEV(i).end_blk); 1753 } 1754 return 0; 1755 } 1756 1757 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 1758 { 1759 struct f2fs_sb_info *sbi; 1760 struct f2fs_super_block *raw_super; 1761 struct inode *root; 1762 int err; 1763 bool retry = true, need_fsck = false; 1764 char *options = NULL; 1765 int recovery, i, valid_super_block; 1766 struct curseg_info *seg_i; 1767 1768 try_onemore: 1769 err = -EINVAL; 1770 raw_super = NULL; 1771 valid_super_block = -1; 1772 recovery = 0; 1773 1774 /* allocate memory for f2fs-specific super block info */ 1775 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 1776 if (!sbi) 1777 return -ENOMEM; 1778 1779 sbi->sb = sb; 1780 1781 /* Load the checksum driver */ 1782 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 1783 if (IS_ERR(sbi->s_chksum_driver)) { 1784 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver."); 1785 err = PTR_ERR(sbi->s_chksum_driver); 1786 sbi->s_chksum_driver = NULL; 1787 goto free_sbi; 1788 } 1789 1790 /* set a block size */ 1791 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 1792 f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); 1793 goto free_sbi; 1794 } 1795 1796 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 1797 &recovery); 1798 if (err) 1799 goto free_sbi; 1800 1801 sb->s_fs_info = sbi; 1802 sbi->raw_super = raw_super; 1803 1804 /* 1805 * The BLKZONED feature indicates that the drive was formatted with 1806 * zone alignment optimization. This is optional for host-aware 1807 * devices, but mandatory for host-managed zoned block devices. 1808 */ 1809 #ifndef CONFIG_BLK_DEV_ZONED 1810 if (f2fs_sb_mounted_blkzoned(sb)) { 1811 f2fs_msg(sb, KERN_ERR, 1812 "Zoned block device support is not enabled\n"); 1813 goto free_sb_buf; 1814 } 1815 #endif 1816 default_options(sbi); 1817 /* parse mount options */ 1818 options = kstrdup((const char *)data, GFP_KERNEL); 1819 if (data && !options) { 1820 err = -ENOMEM; 1821 goto free_sb_buf; 1822 } 1823 1824 err = parse_options(sb, options); 1825 if (err) 1826 goto free_options; 1827 1828 sbi->max_file_blocks = max_file_blocks(); 1829 sb->s_maxbytes = sbi->max_file_blocks << 1830 le32_to_cpu(raw_super->log_blocksize); 1831 sb->s_max_links = F2FS_LINK_MAX; 1832 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 1833 1834 sb->s_op = &f2fs_sops; 1835 sb->s_cop = &f2fs_cryptops; 1836 sb->s_xattr = f2fs_xattr_handlers; 1837 sb->s_export_op = &f2fs_export_ops; 1838 sb->s_magic = F2FS_SUPER_MAGIC; 1839 sb->s_time_gran = 1; 1840 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 1841 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 1842 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 1843 1844 /* init f2fs-specific super block info */ 1845 sbi->valid_super_block = valid_super_block; 1846 mutex_init(&sbi->gc_mutex); 1847 mutex_init(&sbi->cp_mutex); 1848 init_rwsem(&sbi->node_write); 1849 1850 /* disallow all the data/node/meta page writes */ 1851 set_sbi_flag(sbi, SBI_POR_DOING); 1852 spin_lock_init(&sbi->stat_lock); 1853 1854 init_rwsem(&sbi->read_io.io_rwsem); 1855 sbi->read_io.sbi = sbi; 1856 sbi->read_io.bio = NULL; 1857 for (i = 0; i < NR_PAGE_TYPE; i++) { 1858 init_rwsem(&sbi->write_io[i].io_rwsem); 1859 sbi->write_io[i].sbi = sbi; 1860 sbi->write_io[i].bio = NULL; 1861 } 1862 1863 init_rwsem(&sbi->cp_rwsem); 1864 init_waitqueue_head(&sbi->cp_wait); 1865 init_sb_info(sbi); 1866 1867 err = init_percpu_info(sbi); 1868 if (err) 1869 goto free_options; 1870 1871 /* get an inode for meta space */ 1872 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 1873 if (IS_ERR(sbi->meta_inode)) { 1874 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); 1875 err = PTR_ERR(sbi->meta_inode); 1876 goto free_options; 1877 } 1878 1879 err = get_valid_checkpoint(sbi); 1880 if (err) { 1881 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); 1882 goto free_meta_inode; 1883 } 1884 1885 /* Initialize device list */ 1886 err = f2fs_scan_devices(sbi); 1887 if (err) { 1888 f2fs_msg(sb, KERN_ERR, "Failed to find devices"); 1889 goto free_devices; 1890 } 1891 1892 sbi->total_valid_node_count = 1893 le32_to_cpu(sbi->ckpt->valid_node_count); 1894 percpu_counter_set(&sbi->total_valid_inode_count, 1895 le32_to_cpu(sbi->ckpt->valid_inode_count)); 1896 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 1897 sbi->total_valid_block_count = 1898 le64_to_cpu(sbi->ckpt->valid_block_count); 1899 sbi->last_valid_block_count = sbi->total_valid_block_count; 1900 1901 for (i = 0; i < NR_INODE_TYPE; i++) { 1902 INIT_LIST_HEAD(&sbi->inode_list[i]); 1903 spin_lock_init(&sbi->inode_lock[i]); 1904 } 1905 1906 init_extent_cache_info(sbi); 1907 1908 init_ino_entry_info(sbi); 1909 1910 /* setup f2fs internal modules */ 1911 err = build_segment_manager(sbi); 1912 if (err) { 1913 f2fs_msg(sb, KERN_ERR, 1914 "Failed to initialize F2FS segment manager"); 1915 goto free_sm; 1916 } 1917 err = build_node_manager(sbi); 1918 if (err) { 1919 f2fs_msg(sb, KERN_ERR, 1920 "Failed to initialize F2FS node manager"); 1921 goto free_nm; 1922 } 1923 1924 /* For write statistics */ 1925 if (sb->s_bdev->bd_part) 1926 sbi->sectors_written_start = 1927 (u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]); 1928 1929 /* Read accumulated write IO statistics if exists */ 1930 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 1931 if (__exist_node_summaries(sbi)) 1932 sbi->kbytes_written = 1933 le64_to_cpu(seg_i->journal->info.kbytes_written); 1934 1935 build_gc_manager(sbi); 1936 1937 /* get an inode for node space */ 1938 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 1939 if (IS_ERR(sbi->node_inode)) { 1940 f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); 1941 err = PTR_ERR(sbi->node_inode); 1942 goto free_nm; 1943 } 1944 1945 f2fs_join_shrinker(sbi); 1946 1947 /* if there are nt orphan nodes free them */ 1948 err = recover_orphan_inodes(sbi); 1949 if (err) 1950 goto free_node_inode; 1951 1952 /* read root inode and dentry */ 1953 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 1954 if (IS_ERR(root)) { 1955 f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); 1956 err = PTR_ERR(root); 1957 goto free_node_inode; 1958 } 1959 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 1960 iput(root); 1961 err = -EINVAL; 1962 goto free_node_inode; 1963 } 1964 1965 sb->s_root = d_make_root(root); /* allocate root dentry */ 1966 if (!sb->s_root) { 1967 err = -ENOMEM; 1968 goto free_root_inode; 1969 } 1970 1971 err = f2fs_build_stats(sbi); 1972 if (err) 1973 goto free_root_inode; 1974 1975 if (f2fs_proc_root) 1976 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root); 1977 1978 if (sbi->s_proc) { 1979 proc_create_data("segment_info", S_IRUGO, sbi->s_proc, 1980 &f2fs_seq_segment_info_fops, sb); 1981 proc_create_data("segment_bits", S_IRUGO, sbi->s_proc, 1982 &f2fs_seq_segment_bits_fops, sb); 1983 } 1984 1985 sbi->s_kobj.kset = f2fs_kset; 1986 init_completion(&sbi->s_kobj_unregister); 1987 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL, 1988 "%s", sb->s_id); 1989 if (err) 1990 goto free_proc; 1991 1992 /* recover fsynced data */ 1993 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 1994 /* 1995 * mount should be failed, when device has readonly mode, and 1996 * previous checkpoint was not done by clean system shutdown. 1997 */ 1998 if (bdev_read_only(sb->s_bdev) && 1999 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 2000 err = -EROFS; 2001 goto free_kobj; 2002 } 2003 2004 if (need_fsck) 2005 set_sbi_flag(sbi, SBI_NEED_FSCK); 2006 2007 if (!retry) 2008 goto skip_recovery; 2009 2010 err = recover_fsync_data(sbi, false); 2011 if (err < 0) { 2012 need_fsck = true; 2013 f2fs_msg(sb, KERN_ERR, 2014 "Cannot recover all fsync data errno=%d", err); 2015 goto free_kobj; 2016 } 2017 } else { 2018 err = recover_fsync_data(sbi, true); 2019 2020 if (!f2fs_readonly(sb) && err > 0) { 2021 err = -EINVAL; 2022 f2fs_msg(sb, KERN_ERR, 2023 "Need to recover fsync data"); 2024 goto free_kobj; 2025 } 2026 } 2027 skip_recovery: 2028 /* recover_fsync_data() cleared this already */ 2029 clear_sbi_flag(sbi, SBI_POR_DOING); 2030 2031 /* 2032 * If filesystem is not mounted as read-only then 2033 * do start the gc_thread. 2034 */ 2035 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) { 2036 /* After POR, we can run background GC thread.*/ 2037 err = start_gc_thread(sbi); 2038 if (err) 2039 goto free_kobj; 2040 } 2041 kfree(options); 2042 2043 /* recover broken superblock */ 2044 if (recovery) { 2045 err = f2fs_commit_super(sbi, true); 2046 f2fs_msg(sb, KERN_INFO, 2047 "Try to recover %dth superblock, ret: %d", 2048 sbi->valid_super_block ? 1 : 2, err); 2049 } 2050 2051 f2fs_update_time(sbi, CP_TIME); 2052 f2fs_update_time(sbi, REQ_TIME); 2053 return 0; 2054 2055 free_kobj: 2056 f2fs_sync_inode_meta(sbi); 2057 kobject_del(&sbi->s_kobj); 2058 kobject_put(&sbi->s_kobj); 2059 wait_for_completion(&sbi->s_kobj_unregister); 2060 free_proc: 2061 if (sbi->s_proc) { 2062 remove_proc_entry("segment_info", sbi->s_proc); 2063 remove_proc_entry("segment_bits", sbi->s_proc); 2064 remove_proc_entry(sb->s_id, f2fs_proc_root); 2065 } 2066 f2fs_destroy_stats(sbi); 2067 free_root_inode: 2068 dput(sb->s_root); 2069 sb->s_root = NULL; 2070 free_node_inode: 2071 truncate_inode_pages_final(NODE_MAPPING(sbi)); 2072 mutex_lock(&sbi->umount_mutex); 2073 release_ino_entry(sbi, true); 2074 f2fs_leave_shrinker(sbi); 2075 /* 2076 * Some dirty meta pages can be produced by recover_orphan_inodes() 2077 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 2078 * followed by write_checkpoint() through f2fs_write_node_pages(), which 2079 * falls into an infinite loop in sync_meta_pages(). 2080 */ 2081 truncate_inode_pages_final(META_MAPPING(sbi)); 2082 iput(sbi->node_inode); 2083 mutex_unlock(&sbi->umount_mutex); 2084 free_nm: 2085 destroy_node_manager(sbi); 2086 free_sm: 2087 destroy_segment_manager(sbi); 2088 free_devices: 2089 destroy_device_list(sbi); 2090 kfree(sbi->ckpt); 2091 free_meta_inode: 2092 make_bad_inode(sbi->meta_inode); 2093 iput(sbi->meta_inode); 2094 free_options: 2095 destroy_percpu_info(sbi); 2096 kfree(options); 2097 free_sb_buf: 2098 kfree(raw_super); 2099 free_sbi: 2100 if (sbi->s_chksum_driver) 2101 crypto_free_shash(sbi->s_chksum_driver); 2102 kfree(sbi); 2103 2104 /* give only one another chance */ 2105 if (retry) { 2106 retry = false; 2107 shrink_dcache_sb(sb); 2108 goto try_onemore; 2109 } 2110 return err; 2111 } 2112 2113 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 2114 const char *dev_name, void *data) 2115 { 2116 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 2117 } 2118 2119 static void kill_f2fs_super(struct super_block *sb) 2120 { 2121 if (sb->s_root) 2122 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE); 2123 kill_block_super(sb); 2124 } 2125 2126 static struct file_system_type f2fs_fs_type = { 2127 .owner = THIS_MODULE, 2128 .name = "f2fs", 2129 .mount = f2fs_mount, 2130 .kill_sb = kill_f2fs_super, 2131 .fs_flags = FS_REQUIRES_DEV, 2132 }; 2133 MODULE_ALIAS_FS("f2fs"); 2134 2135 static int __init init_inodecache(void) 2136 { 2137 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 2138 sizeof(struct f2fs_inode_info), 0, 2139 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 2140 if (!f2fs_inode_cachep) 2141 return -ENOMEM; 2142 return 0; 2143 } 2144 2145 static void destroy_inodecache(void) 2146 { 2147 /* 2148 * Make sure all delayed rcu free inodes are flushed before we 2149 * destroy cache. 2150 */ 2151 rcu_barrier(); 2152 kmem_cache_destroy(f2fs_inode_cachep); 2153 } 2154 2155 static int __init init_f2fs_fs(void) 2156 { 2157 int err; 2158 2159 f2fs_build_trace_ios(); 2160 2161 err = init_inodecache(); 2162 if (err) 2163 goto fail; 2164 err = create_node_manager_caches(); 2165 if (err) 2166 goto free_inodecache; 2167 err = create_segment_manager_caches(); 2168 if (err) 2169 goto free_node_manager_caches; 2170 err = create_checkpoint_caches(); 2171 if (err) 2172 goto free_segment_manager_caches; 2173 err = create_extent_cache(); 2174 if (err) 2175 goto free_checkpoint_caches; 2176 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj); 2177 if (!f2fs_kset) { 2178 err = -ENOMEM; 2179 goto free_extent_cache; 2180 } 2181 err = register_shrinker(&f2fs_shrinker_info); 2182 if (err) 2183 goto free_kset; 2184 2185 err = register_filesystem(&f2fs_fs_type); 2186 if (err) 2187 goto free_shrinker; 2188 err = f2fs_create_root_stats(); 2189 if (err) 2190 goto free_filesystem; 2191 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL); 2192 return 0; 2193 2194 free_filesystem: 2195 unregister_filesystem(&f2fs_fs_type); 2196 free_shrinker: 2197 unregister_shrinker(&f2fs_shrinker_info); 2198 free_kset: 2199 kset_unregister(f2fs_kset); 2200 free_extent_cache: 2201 destroy_extent_cache(); 2202 free_checkpoint_caches: 2203 destroy_checkpoint_caches(); 2204 free_segment_manager_caches: 2205 destroy_segment_manager_caches(); 2206 free_node_manager_caches: 2207 destroy_node_manager_caches(); 2208 free_inodecache: 2209 destroy_inodecache(); 2210 fail: 2211 return err; 2212 } 2213 2214 static void __exit exit_f2fs_fs(void) 2215 { 2216 remove_proc_entry("fs/f2fs", NULL); 2217 f2fs_destroy_root_stats(); 2218 unregister_filesystem(&f2fs_fs_type); 2219 unregister_shrinker(&f2fs_shrinker_info); 2220 kset_unregister(f2fs_kset); 2221 destroy_extent_cache(); 2222 destroy_checkpoint_caches(); 2223 destroy_segment_manager_caches(); 2224 destroy_node_manager_caches(); 2225 destroy_inodecache(); 2226 f2fs_destroy_trace_ios(); 2227 } 2228 2229 module_init(init_f2fs_fs) 2230 module_exit(exit_f2fs_fs) 2231 2232 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 2233 MODULE_DESCRIPTION("Flash Friendly File System"); 2234 MODULE_LICENSE("GPL"); 2235 2236