xref: /openbmc/linux/fs/f2fs/super.c (revision 4c5a116a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/statfs.h>
12 #include <linux/buffer_head.h>
13 #include <linux/backing-dev.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 #include <linux/unicode.h>
27 #include <linux/part_stat.h>
28 
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "gc.h"
34 #include "trace.h"
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/f2fs.h>
38 
39 static struct kmem_cache *f2fs_inode_cachep;
40 
41 #ifdef CONFIG_F2FS_FAULT_INJECTION
42 
43 const char *f2fs_fault_name[FAULT_MAX] = {
44 	[FAULT_KMALLOC]		= "kmalloc",
45 	[FAULT_KVMALLOC]	= "kvmalloc",
46 	[FAULT_PAGE_ALLOC]	= "page alloc",
47 	[FAULT_PAGE_GET]	= "page get",
48 	[FAULT_ALLOC_BIO]	= "alloc bio",
49 	[FAULT_ALLOC_NID]	= "alloc nid",
50 	[FAULT_ORPHAN]		= "orphan",
51 	[FAULT_BLOCK]		= "no more block",
52 	[FAULT_DIR_DEPTH]	= "too big dir depth",
53 	[FAULT_EVICT_INODE]	= "evict_inode fail",
54 	[FAULT_TRUNCATE]	= "truncate fail",
55 	[FAULT_READ_IO]		= "read IO error",
56 	[FAULT_CHECKPOINT]	= "checkpoint error",
57 	[FAULT_DISCARD]		= "discard error",
58 	[FAULT_WRITE_IO]	= "write IO error",
59 };
60 
61 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
62 							unsigned int type)
63 {
64 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
65 
66 	if (rate) {
67 		atomic_set(&ffi->inject_ops, 0);
68 		ffi->inject_rate = rate;
69 	}
70 
71 	if (type)
72 		ffi->inject_type = type;
73 
74 	if (!rate && !type)
75 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
76 }
77 #endif
78 
79 /* f2fs-wide shrinker description */
80 static struct shrinker f2fs_shrinker_info = {
81 	.scan_objects = f2fs_shrink_scan,
82 	.count_objects = f2fs_shrink_count,
83 	.seeks = DEFAULT_SEEKS,
84 };
85 
86 enum {
87 	Opt_gc_background,
88 	Opt_disable_roll_forward,
89 	Opt_norecovery,
90 	Opt_discard,
91 	Opt_nodiscard,
92 	Opt_noheap,
93 	Opt_heap,
94 	Opt_user_xattr,
95 	Opt_nouser_xattr,
96 	Opt_acl,
97 	Opt_noacl,
98 	Opt_active_logs,
99 	Opt_disable_ext_identify,
100 	Opt_inline_xattr,
101 	Opt_noinline_xattr,
102 	Opt_inline_xattr_size,
103 	Opt_inline_data,
104 	Opt_inline_dentry,
105 	Opt_noinline_dentry,
106 	Opt_flush_merge,
107 	Opt_noflush_merge,
108 	Opt_nobarrier,
109 	Opt_fastboot,
110 	Opt_extent_cache,
111 	Opt_noextent_cache,
112 	Opt_noinline_data,
113 	Opt_data_flush,
114 	Opt_reserve_root,
115 	Opt_resgid,
116 	Opt_resuid,
117 	Opt_mode,
118 	Opt_io_size_bits,
119 	Opt_fault_injection,
120 	Opt_fault_type,
121 	Opt_lazytime,
122 	Opt_nolazytime,
123 	Opt_quota,
124 	Opt_noquota,
125 	Opt_usrquota,
126 	Opt_grpquota,
127 	Opt_prjquota,
128 	Opt_usrjquota,
129 	Opt_grpjquota,
130 	Opt_prjjquota,
131 	Opt_offusrjquota,
132 	Opt_offgrpjquota,
133 	Opt_offprjjquota,
134 	Opt_jqfmt_vfsold,
135 	Opt_jqfmt_vfsv0,
136 	Opt_jqfmt_vfsv1,
137 	Opt_whint,
138 	Opt_alloc,
139 	Opt_fsync,
140 	Opt_test_dummy_encryption,
141 	Opt_inlinecrypt,
142 	Opt_checkpoint_disable,
143 	Opt_checkpoint_disable_cap,
144 	Opt_checkpoint_disable_cap_perc,
145 	Opt_checkpoint_enable,
146 	Opt_compress_algorithm,
147 	Opt_compress_log_size,
148 	Opt_compress_extension,
149 	Opt_err,
150 };
151 
152 static match_table_t f2fs_tokens = {
153 	{Opt_gc_background, "background_gc=%s"},
154 	{Opt_disable_roll_forward, "disable_roll_forward"},
155 	{Opt_norecovery, "norecovery"},
156 	{Opt_discard, "discard"},
157 	{Opt_nodiscard, "nodiscard"},
158 	{Opt_noheap, "no_heap"},
159 	{Opt_heap, "heap"},
160 	{Opt_user_xattr, "user_xattr"},
161 	{Opt_nouser_xattr, "nouser_xattr"},
162 	{Opt_acl, "acl"},
163 	{Opt_noacl, "noacl"},
164 	{Opt_active_logs, "active_logs=%u"},
165 	{Opt_disable_ext_identify, "disable_ext_identify"},
166 	{Opt_inline_xattr, "inline_xattr"},
167 	{Opt_noinline_xattr, "noinline_xattr"},
168 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
169 	{Opt_inline_data, "inline_data"},
170 	{Opt_inline_dentry, "inline_dentry"},
171 	{Opt_noinline_dentry, "noinline_dentry"},
172 	{Opt_flush_merge, "flush_merge"},
173 	{Opt_noflush_merge, "noflush_merge"},
174 	{Opt_nobarrier, "nobarrier"},
175 	{Opt_fastboot, "fastboot"},
176 	{Opt_extent_cache, "extent_cache"},
177 	{Opt_noextent_cache, "noextent_cache"},
178 	{Opt_noinline_data, "noinline_data"},
179 	{Opt_data_flush, "data_flush"},
180 	{Opt_reserve_root, "reserve_root=%u"},
181 	{Opt_resgid, "resgid=%u"},
182 	{Opt_resuid, "resuid=%u"},
183 	{Opt_mode, "mode=%s"},
184 	{Opt_io_size_bits, "io_bits=%u"},
185 	{Opt_fault_injection, "fault_injection=%u"},
186 	{Opt_fault_type, "fault_type=%u"},
187 	{Opt_lazytime, "lazytime"},
188 	{Opt_nolazytime, "nolazytime"},
189 	{Opt_quota, "quota"},
190 	{Opt_noquota, "noquota"},
191 	{Opt_usrquota, "usrquota"},
192 	{Opt_grpquota, "grpquota"},
193 	{Opt_prjquota, "prjquota"},
194 	{Opt_usrjquota, "usrjquota=%s"},
195 	{Opt_grpjquota, "grpjquota=%s"},
196 	{Opt_prjjquota, "prjjquota=%s"},
197 	{Opt_offusrjquota, "usrjquota="},
198 	{Opt_offgrpjquota, "grpjquota="},
199 	{Opt_offprjjquota, "prjjquota="},
200 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
201 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
202 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
203 	{Opt_whint, "whint_mode=%s"},
204 	{Opt_alloc, "alloc_mode=%s"},
205 	{Opt_fsync, "fsync_mode=%s"},
206 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
207 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
208 	{Opt_inlinecrypt, "inlinecrypt"},
209 	{Opt_checkpoint_disable, "checkpoint=disable"},
210 	{Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
211 	{Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
212 	{Opt_checkpoint_enable, "checkpoint=enable"},
213 	{Opt_compress_algorithm, "compress_algorithm=%s"},
214 	{Opt_compress_log_size, "compress_log_size=%u"},
215 	{Opt_compress_extension, "compress_extension=%s"},
216 	{Opt_err, NULL},
217 };
218 
219 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
220 {
221 	struct va_format vaf;
222 	va_list args;
223 	int level;
224 
225 	va_start(args, fmt);
226 
227 	level = printk_get_level(fmt);
228 	vaf.fmt = printk_skip_level(fmt);
229 	vaf.va = &args;
230 	printk("%c%cF2FS-fs (%s): %pV\n",
231 	       KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
232 
233 	va_end(args);
234 }
235 
236 #ifdef CONFIG_UNICODE
237 static const struct f2fs_sb_encodings {
238 	__u16 magic;
239 	char *name;
240 	char *version;
241 } f2fs_sb_encoding_map[] = {
242 	{F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"},
243 };
244 
245 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb,
246 				 const struct f2fs_sb_encodings **encoding,
247 				 __u16 *flags)
248 {
249 	__u16 magic = le16_to_cpu(sb->s_encoding);
250 	int i;
251 
252 	for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
253 		if (magic == f2fs_sb_encoding_map[i].magic)
254 			break;
255 
256 	if (i >= ARRAY_SIZE(f2fs_sb_encoding_map))
257 		return -EINVAL;
258 
259 	*encoding = &f2fs_sb_encoding_map[i];
260 	*flags = le16_to_cpu(sb->s_encoding_flags);
261 
262 	return 0;
263 }
264 #endif
265 
266 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
267 {
268 	block_t limit = min((sbi->user_block_count << 1) / 1000,
269 			sbi->user_block_count - sbi->reserved_blocks);
270 
271 	/* limit is 0.2% */
272 	if (test_opt(sbi, RESERVE_ROOT) &&
273 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
274 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
275 		f2fs_info(sbi, "Reduce reserved blocks for root = %u",
276 			  F2FS_OPTION(sbi).root_reserved_blocks);
277 	}
278 	if (!test_opt(sbi, RESERVE_ROOT) &&
279 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
280 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
281 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
282 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
283 		f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
284 			  from_kuid_munged(&init_user_ns,
285 					   F2FS_OPTION(sbi).s_resuid),
286 			  from_kgid_munged(&init_user_ns,
287 					   F2FS_OPTION(sbi).s_resgid));
288 }
289 
290 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
291 {
292 	if (!F2FS_OPTION(sbi).unusable_cap_perc)
293 		return;
294 
295 	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
296 		F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
297 	else
298 		F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
299 					F2FS_OPTION(sbi).unusable_cap_perc;
300 
301 	f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
302 			F2FS_OPTION(sbi).unusable_cap,
303 			F2FS_OPTION(sbi).unusable_cap_perc);
304 }
305 
306 static void init_once(void *foo)
307 {
308 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
309 
310 	inode_init_once(&fi->vfs_inode);
311 }
312 
313 #ifdef CONFIG_QUOTA
314 static const char * const quotatypes[] = INITQFNAMES;
315 #define QTYPE2NAME(t) (quotatypes[t])
316 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
317 							substring_t *args)
318 {
319 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
320 	char *qname;
321 	int ret = -EINVAL;
322 
323 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
324 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
325 		return -EINVAL;
326 	}
327 	if (f2fs_sb_has_quota_ino(sbi)) {
328 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
329 		return 0;
330 	}
331 
332 	qname = match_strdup(args);
333 	if (!qname) {
334 		f2fs_err(sbi, "Not enough memory for storing quotafile name");
335 		return -ENOMEM;
336 	}
337 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
338 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
339 			ret = 0;
340 		else
341 			f2fs_err(sbi, "%s quota file already specified",
342 				 QTYPE2NAME(qtype));
343 		goto errout;
344 	}
345 	if (strchr(qname, '/')) {
346 		f2fs_err(sbi, "quotafile must be on filesystem root");
347 		goto errout;
348 	}
349 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
350 	set_opt(sbi, QUOTA);
351 	return 0;
352 errout:
353 	kvfree(qname);
354 	return ret;
355 }
356 
357 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
358 {
359 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
360 
361 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
362 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
363 		return -EINVAL;
364 	}
365 	kvfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
366 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
367 	return 0;
368 }
369 
370 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
371 {
372 	/*
373 	 * We do the test below only for project quotas. 'usrquota' and
374 	 * 'grpquota' mount options are allowed even without quota feature
375 	 * to support legacy quotas in quota files.
376 	 */
377 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
378 		f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
379 		return -1;
380 	}
381 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
382 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
383 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
384 		if (test_opt(sbi, USRQUOTA) &&
385 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
386 			clear_opt(sbi, USRQUOTA);
387 
388 		if (test_opt(sbi, GRPQUOTA) &&
389 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
390 			clear_opt(sbi, GRPQUOTA);
391 
392 		if (test_opt(sbi, PRJQUOTA) &&
393 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
394 			clear_opt(sbi, PRJQUOTA);
395 
396 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
397 				test_opt(sbi, PRJQUOTA)) {
398 			f2fs_err(sbi, "old and new quota format mixing");
399 			return -1;
400 		}
401 
402 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
403 			f2fs_err(sbi, "journaled quota format not specified");
404 			return -1;
405 		}
406 	}
407 
408 	if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
409 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
410 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
411 	}
412 	return 0;
413 }
414 #endif
415 
416 static int f2fs_set_test_dummy_encryption(struct super_block *sb,
417 					  const char *opt,
418 					  const substring_t *arg,
419 					  bool is_remount)
420 {
421 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
422 #ifdef CONFIG_FS_ENCRYPTION
423 	int err;
424 
425 	if (!f2fs_sb_has_encrypt(sbi)) {
426 		f2fs_err(sbi, "Encrypt feature is off");
427 		return -EINVAL;
428 	}
429 
430 	/*
431 	 * This mount option is just for testing, and it's not worthwhile to
432 	 * implement the extra complexity (e.g. RCU protection) that would be
433 	 * needed to allow it to be set or changed during remount.  We do allow
434 	 * it to be specified during remount, but only if there is no change.
435 	 */
436 	if (is_remount && !F2FS_OPTION(sbi).dummy_enc_ctx.ctx) {
437 		f2fs_warn(sbi, "Can't set test_dummy_encryption on remount");
438 		return -EINVAL;
439 	}
440 	err = fscrypt_set_test_dummy_encryption(
441 		sb, arg, &F2FS_OPTION(sbi).dummy_enc_ctx);
442 	if (err) {
443 		if (err == -EEXIST)
444 			f2fs_warn(sbi,
445 				  "Can't change test_dummy_encryption on remount");
446 		else if (err == -EINVAL)
447 			f2fs_warn(sbi, "Value of option \"%s\" is unrecognized",
448 				  opt);
449 		else
450 			f2fs_warn(sbi, "Error processing option \"%s\" [%d]",
451 				  opt, err);
452 		return -EINVAL;
453 	}
454 	f2fs_warn(sbi, "Test dummy encryption mode enabled");
455 #else
456 	f2fs_warn(sbi, "Test dummy encryption mount option ignored");
457 #endif
458 	return 0;
459 }
460 
461 static int parse_options(struct super_block *sb, char *options, bool is_remount)
462 {
463 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
464 	substring_t args[MAX_OPT_ARGS];
465 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
466 	char *p, *name;
467 	int arg = 0, ext_cnt;
468 	kuid_t uid;
469 	kgid_t gid;
470 	int ret;
471 
472 	if (!options)
473 		return 0;
474 
475 	while ((p = strsep(&options, ",")) != NULL) {
476 		int token;
477 		if (!*p)
478 			continue;
479 		/*
480 		 * Initialize args struct so we know whether arg was
481 		 * found; some options take optional arguments.
482 		 */
483 		args[0].to = args[0].from = NULL;
484 		token = match_token(p, f2fs_tokens, args);
485 
486 		switch (token) {
487 		case Opt_gc_background:
488 			name = match_strdup(&args[0]);
489 
490 			if (!name)
491 				return -ENOMEM;
492 			if (!strcmp(name, "on")) {
493 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
494 			} else if (!strcmp(name, "off")) {
495 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF;
496 			} else if (!strcmp(name, "sync")) {
497 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC;
498 			} else {
499 				kvfree(name);
500 				return -EINVAL;
501 			}
502 			kvfree(name);
503 			break;
504 		case Opt_disable_roll_forward:
505 			set_opt(sbi, DISABLE_ROLL_FORWARD);
506 			break;
507 		case Opt_norecovery:
508 			/* this option mounts f2fs with ro */
509 			set_opt(sbi, NORECOVERY);
510 			if (!f2fs_readonly(sb))
511 				return -EINVAL;
512 			break;
513 		case Opt_discard:
514 			set_opt(sbi, DISCARD);
515 			break;
516 		case Opt_nodiscard:
517 			if (f2fs_sb_has_blkzoned(sbi)) {
518 				f2fs_warn(sbi, "discard is required for zoned block devices");
519 				return -EINVAL;
520 			}
521 			clear_opt(sbi, DISCARD);
522 			break;
523 		case Opt_noheap:
524 			set_opt(sbi, NOHEAP);
525 			break;
526 		case Opt_heap:
527 			clear_opt(sbi, NOHEAP);
528 			break;
529 #ifdef CONFIG_F2FS_FS_XATTR
530 		case Opt_user_xattr:
531 			set_opt(sbi, XATTR_USER);
532 			break;
533 		case Opt_nouser_xattr:
534 			clear_opt(sbi, XATTR_USER);
535 			break;
536 		case Opt_inline_xattr:
537 			set_opt(sbi, INLINE_XATTR);
538 			break;
539 		case Opt_noinline_xattr:
540 			clear_opt(sbi, INLINE_XATTR);
541 			break;
542 		case Opt_inline_xattr_size:
543 			if (args->from && match_int(args, &arg))
544 				return -EINVAL;
545 			set_opt(sbi, INLINE_XATTR_SIZE);
546 			F2FS_OPTION(sbi).inline_xattr_size = arg;
547 			break;
548 #else
549 		case Opt_user_xattr:
550 			f2fs_info(sbi, "user_xattr options not supported");
551 			break;
552 		case Opt_nouser_xattr:
553 			f2fs_info(sbi, "nouser_xattr options not supported");
554 			break;
555 		case Opt_inline_xattr:
556 			f2fs_info(sbi, "inline_xattr options not supported");
557 			break;
558 		case Opt_noinline_xattr:
559 			f2fs_info(sbi, "noinline_xattr options not supported");
560 			break;
561 #endif
562 #ifdef CONFIG_F2FS_FS_POSIX_ACL
563 		case Opt_acl:
564 			set_opt(sbi, POSIX_ACL);
565 			break;
566 		case Opt_noacl:
567 			clear_opt(sbi, POSIX_ACL);
568 			break;
569 #else
570 		case Opt_acl:
571 			f2fs_info(sbi, "acl options not supported");
572 			break;
573 		case Opt_noacl:
574 			f2fs_info(sbi, "noacl options not supported");
575 			break;
576 #endif
577 		case Opt_active_logs:
578 			if (args->from && match_int(args, &arg))
579 				return -EINVAL;
580 			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
581 				return -EINVAL;
582 			F2FS_OPTION(sbi).active_logs = arg;
583 			break;
584 		case Opt_disable_ext_identify:
585 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
586 			break;
587 		case Opt_inline_data:
588 			set_opt(sbi, INLINE_DATA);
589 			break;
590 		case Opt_inline_dentry:
591 			set_opt(sbi, INLINE_DENTRY);
592 			break;
593 		case Opt_noinline_dentry:
594 			clear_opt(sbi, INLINE_DENTRY);
595 			break;
596 		case Opt_flush_merge:
597 			set_opt(sbi, FLUSH_MERGE);
598 			break;
599 		case Opt_noflush_merge:
600 			clear_opt(sbi, FLUSH_MERGE);
601 			break;
602 		case Opt_nobarrier:
603 			set_opt(sbi, NOBARRIER);
604 			break;
605 		case Opt_fastboot:
606 			set_opt(sbi, FASTBOOT);
607 			break;
608 		case Opt_extent_cache:
609 			set_opt(sbi, EXTENT_CACHE);
610 			break;
611 		case Opt_noextent_cache:
612 			clear_opt(sbi, EXTENT_CACHE);
613 			break;
614 		case Opt_noinline_data:
615 			clear_opt(sbi, INLINE_DATA);
616 			break;
617 		case Opt_data_flush:
618 			set_opt(sbi, DATA_FLUSH);
619 			break;
620 		case Opt_reserve_root:
621 			if (args->from && match_int(args, &arg))
622 				return -EINVAL;
623 			if (test_opt(sbi, RESERVE_ROOT)) {
624 				f2fs_info(sbi, "Preserve previous reserve_root=%u",
625 					  F2FS_OPTION(sbi).root_reserved_blocks);
626 			} else {
627 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
628 				set_opt(sbi, RESERVE_ROOT);
629 			}
630 			break;
631 		case Opt_resuid:
632 			if (args->from && match_int(args, &arg))
633 				return -EINVAL;
634 			uid = make_kuid(current_user_ns(), arg);
635 			if (!uid_valid(uid)) {
636 				f2fs_err(sbi, "Invalid uid value %d", arg);
637 				return -EINVAL;
638 			}
639 			F2FS_OPTION(sbi).s_resuid = uid;
640 			break;
641 		case Opt_resgid:
642 			if (args->from && match_int(args, &arg))
643 				return -EINVAL;
644 			gid = make_kgid(current_user_ns(), arg);
645 			if (!gid_valid(gid)) {
646 				f2fs_err(sbi, "Invalid gid value %d", arg);
647 				return -EINVAL;
648 			}
649 			F2FS_OPTION(sbi).s_resgid = gid;
650 			break;
651 		case Opt_mode:
652 			name = match_strdup(&args[0]);
653 
654 			if (!name)
655 				return -ENOMEM;
656 			if (!strcmp(name, "adaptive")) {
657 				if (f2fs_sb_has_blkzoned(sbi)) {
658 					f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
659 					kvfree(name);
660 					return -EINVAL;
661 				}
662 				F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
663 			} else if (!strcmp(name, "lfs")) {
664 				F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
665 			} else {
666 				kvfree(name);
667 				return -EINVAL;
668 			}
669 			kvfree(name);
670 			break;
671 		case Opt_io_size_bits:
672 			if (args->from && match_int(args, &arg))
673 				return -EINVAL;
674 			if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) {
675 				f2fs_warn(sbi, "Not support %d, larger than %d",
676 					  1 << arg, BIO_MAX_PAGES);
677 				return -EINVAL;
678 			}
679 			F2FS_OPTION(sbi).write_io_size_bits = arg;
680 			break;
681 #ifdef CONFIG_F2FS_FAULT_INJECTION
682 		case Opt_fault_injection:
683 			if (args->from && match_int(args, &arg))
684 				return -EINVAL;
685 			f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
686 			set_opt(sbi, FAULT_INJECTION);
687 			break;
688 
689 		case Opt_fault_type:
690 			if (args->from && match_int(args, &arg))
691 				return -EINVAL;
692 			f2fs_build_fault_attr(sbi, 0, arg);
693 			set_opt(sbi, FAULT_INJECTION);
694 			break;
695 #else
696 		case Opt_fault_injection:
697 			f2fs_info(sbi, "fault_injection options not supported");
698 			break;
699 
700 		case Opt_fault_type:
701 			f2fs_info(sbi, "fault_type options not supported");
702 			break;
703 #endif
704 		case Opt_lazytime:
705 			sb->s_flags |= SB_LAZYTIME;
706 			break;
707 		case Opt_nolazytime:
708 			sb->s_flags &= ~SB_LAZYTIME;
709 			break;
710 #ifdef CONFIG_QUOTA
711 		case Opt_quota:
712 		case Opt_usrquota:
713 			set_opt(sbi, USRQUOTA);
714 			break;
715 		case Opt_grpquota:
716 			set_opt(sbi, GRPQUOTA);
717 			break;
718 		case Opt_prjquota:
719 			set_opt(sbi, PRJQUOTA);
720 			break;
721 		case Opt_usrjquota:
722 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
723 			if (ret)
724 				return ret;
725 			break;
726 		case Opt_grpjquota:
727 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
728 			if (ret)
729 				return ret;
730 			break;
731 		case Opt_prjjquota:
732 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
733 			if (ret)
734 				return ret;
735 			break;
736 		case Opt_offusrjquota:
737 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
738 			if (ret)
739 				return ret;
740 			break;
741 		case Opt_offgrpjquota:
742 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
743 			if (ret)
744 				return ret;
745 			break;
746 		case Opt_offprjjquota:
747 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
748 			if (ret)
749 				return ret;
750 			break;
751 		case Opt_jqfmt_vfsold:
752 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
753 			break;
754 		case Opt_jqfmt_vfsv0:
755 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
756 			break;
757 		case Opt_jqfmt_vfsv1:
758 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
759 			break;
760 		case Opt_noquota:
761 			clear_opt(sbi, QUOTA);
762 			clear_opt(sbi, USRQUOTA);
763 			clear_opt(sbi, GRPQUOTA);
764 			clear_opt(sbi, PRJQUOTA);
765 			break;
766 #else
767 		case Opt_quota:
768 		case Opt_usrquota:
769 		case Opt_grpquota:
770 		case Opt_prjquota:
771 		case Opt_usrjquota:
772 		case Opt_grpjquota:
773 		case Opt_prjjquota:
774 		case Opt_offusrjquota:
775 		case Opt_offgrpjquota:
776 		case Opt_offprjjquota:
777 		case Opt_jqfmt_vfsold:
778 		case Opt_jqfmt_vfsv0:
779 		case Opt_jqfmt_vfsv1:
780 		case Opt_noquota:
781 			f2fs_info(sbi, "quota operations not supported");
782 			break;
783 #endif
784 		case Opt_whint:
785 			name = match_strdup(&args[0]);
786 			if (!name)
787 				return -ENOMEM;
788 			if (!strcmp(name, "user-based")) {
789 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
790 			} else if (!strcmp(name, "off")) {
791 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
792 			} else if (!strcmp(name, "fs-based")) {
793 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
794 			} else {
795 				kvfree(name);
796 				return -EINVAL;
797 			}
798 			kvfree(name);
799 			break;
800 		case Opt_alloc:
801 			name = match_strdup(&args[0]);
802 			if (!name)
803 				return -ENOMEM;
804 
805 			if (!strcmp(name, "default")) {
806 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
807 			} else if (!strcmp(name, "reuse")) {
808 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
809 			} else {
810 				kvfree(name);
811 				return -EINVAL;
812 			}
813 			kvfree(name);
814 			break;
815 		case Opt_fsync:
816 			name = match_strdup(&args[0]);
817 			if (!name)
818 				return -ENOMEM;
819 			if (!strcmp(name, "posix")) {
820 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
821 			} else if (!strcmp(name, "strict")) {
822 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
823 			} else if (!strcmp(name, "nobarrier")) {
824 				F2FS_OPTION(sbi).fsync_mode =
825 							FSYNC_MODE_NOBARRIER;
826 			} else {
827 				kvfree(name);
828 				return -EINVAL;
829 			}
830 			kvfree(name);
831 			break;
832 		case Opt_test_dummy_encryption:
833 			ret = f2fs_set_test_dummy_encryption(sb, p, &args[0],
834 							     is_remount);
835 			if (ret)
836 				return ret;
837 			break;
838 		case Opt_inlinecrypt:
839 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
840 			sb->s_flags |= SB_INLINECRYPT;
841 #else
842 			f2fs_info(sbi, "inline encryption not supported");
843 #endif
844 			break;
845 		case Opt_checkpoint_disable_cap_perc:
846 			if (args->from && match_int(args, &arg))
847 				return -EINVAL;
848 			if (arg < 0 || arg > 100)
849 				return -EINVAL;
850 			F2FS_OPTION(sbi).unusable_cap_perc = arg;
851 			set_opt(sbi, DISABLE_CHECKPOINT);
852 			break;
853 		case Opt_checkpoint_disable_cap:
854 			if (args->from && match_int(args, &arg))
855 				return -EINVAL;
856 			F2FS_OPTION(sbi).unusable_cap = arg;
857 			set_opt(sbi, DISABLE_CHECKPOINT);
858 			break;
859 		case Opt_checkpoint_disable:
860 			set_opt(sbi, DISABLE_CHECKPOINT);
861 			break;
862 		case Opt_checkpoint_enable:
863 			clear_opt(sbi, DISABLE_CHECKPOINT);
864 			break;
865 		case Opt_compress_algorithm:
866 			if (!f2fs_sb_has_compression(sbi)) {
867 				f2fs_err(sbi, "Compression feature if off");
868 				return -EINVAL;
869 			}
870 			name = match_strdup(&args[0]);
871 			if (!name)
872 				return -ENOMEM;
873 			if (!strcmp(name, "lzo")) {
874 				F2FS_OPTION(sbi).compress_algorithm =
875 								COMPRESS_LZO;
876 			} else if (!strcmp(name, "lz4")) {
877 				F2FS_OPTION(sbi).compress_algorithm =
878 								COMPRESS_LZ4;
879 			} else if (!strcmp(name, "zstd")) {
880 				F2FS_OPTION(sbi).compress_algorithm =
881 								COMPRESS_ZSTD;
882 			} else if (!strcmp(name, "lzo-rle")) {
883 				F2FS_OPTION(sbi).compress_algorithm =
884 								COMPRESS_LZORLE;
885 			} else {
886 				kfree(name);
887 				return -EINVAL;
888 			}
889 			kfree(name);
890 			break;
891 		case Opt_compress_log_size:
892 			if (!f2fs_sb_has_compression(sbi)) {
893 				f2fs_err(sbi, "Compression feature is off");
894 				return -EINVAL;
895 			}
896 			if (args->from && match_int(args, &arg))
897 				return -EINVAL;
898 			if (arg < MIN_COMPRESS_LOG_SIZE ||
899 				arg > MAX_COMPRESS_LOG_SIZE) {
900 				f2fs_err(sbi,
901 					"Compress cluster log size is out of range");
902 				return -EINVAL;
903 			}
904 			F2FS_OPTION(sbi).compress_log_size = arg;
905 			break;
906 		case Opt_compress_extension:
907 			if (!f2fs_sb_has_compression(sbi)) {
908 				f2fs_err(sbi, "Compression feature is off");
909 				return -EINVAL;
910 			}
911 			name = match_strdup(&args[0]);
912 			if (!name)
913 				return -ENOMEM;
914 
915 			ext = F2FS_OPTION(sbi).extensions;
916 			ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
917 
918 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
919 				ext_cnt >= COMPRESS_EXT_NUM) {
920 				f2fs_err(sbi,
921 					"invalid extension length/number");
922 				kfree(name);
923 				return -EINVAL;
924 			}
925 
926 			strcpy(ext[ext_cnt], name);
927 			F2FS_OPTION(sbi).compress_ext_cnt++;
928 			kfree(name);
929 			break;
930 		default:
931 			f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
932 				 p);
933 			return -EINVAL;
934 		}
935 	}
936 #ifdef CONFIG_QUOTA
937 	if (f2fs_check_quota_options(sbi))
938 		return -EINVAL;
939 #else
940 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
941 		f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
942 		return -EINVAL;
943 	}
944 	if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
945 		f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
946 		return -EINVAL;
947 	}
948 #endif
949 #ifndef CONFIG_UNICODE
950 	if (f2fs_sb_has_casefold(sbi)) {
951 		f2fs_err(sbi,
952 			"Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
953 		return -EINVAL;
954 	}
955 #endif
956 
957 	if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) {
958 		f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
959 			 F2FS_IO_SIZE_KB(sbi));
960 		return -EINVAL;
961 	}
962 
963 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
964 		int min_size, max_size;
965 
966 		if (!f2fs_sb_has_extra_attr(sbi) ||
967 			!f2fs_sb_has_flexible_inline_xattr(sbi)) {
968 			f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
969 			return -EINVAL;
970 		}
971 		if (!test_opt(sbi, INLINE_XATTR)) {
972 			f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
973 			return -EINVAL;
974 		}
975 
976 		min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
977 		max_size = MAX_INLINE_XATTR_SIZE;
978 
979 		if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
980 				F2FS_OPTION(sbi).inline_xattr_size > max_size) {
981 			f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
982 				 min_size, max_size);
983 			return -EINVAL;
984 		}
985 	}
986 
987 	if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) {
988 		f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n");
989 		return -EINVAL;
990 	}
991 
992 	/* Not pass down write hints if the number of active logs is lesser
993 	 * than NR_CURSEG_TYPE.
994 	 */
995 	if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
996 		F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
997 	return 0;
998 }
999 
1000 static struct inode *f2fs_alloc_inode(struct super_block *sb)
1001 {
1002 	struct f2fs_inode_info *fi;
1003 
1004 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
1005 	if (!fi)
1006 		return NULL;
1007 
1008 	init_once((void *) fi);
1009 
1010 	/* Initialize f2fs-specific inode info */
1011 	atomic_set(&fi->dirty_pages, 0);
1012 	init_rwsem(&fi->i_sem);
1013 	spin_lock_init(&fi->i_size_lock);
1014 	INIT_LIST_HEAD(&fi->dirty_list);
1015 	INIT_LIST_HEAD(&fi->gdirty_list);
1016 	INIT_LIST_HEAD(&fi->inmem_ilist);
1017 	INIT_LIST_HEAD(&fi->inmem_pages);
1018 	mutex_init(&fi->inmem_lock);
1019 	init_rwsem(&fi->i_gc_rwsem[READ]);
1020 	init_rwsem(&fi->i_gc_rwsem[WRITE]);
1021 	init_rwsem(&fi->i_mmap_sem);
1022 	init_rwsem(&fi->i_xattr_sem);
1023 
1024 	/* Will be used by directory only */
1025 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
1026 
1027 	return &fi->vfs_inode;
1028 }
1029 
1030 static int f2fs_drop_inode(struct inode *inode)
1031 {
1032 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1033 	int ret;
1034 
1035 	/*
1036 	 * during filesystem shutdown, if checkpoint is disabled,
1037 	 * drop useless meta/node dirty pages.
1038 	 */
1039 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1040 		if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1041 			inode->i_ino == F2FS_META_INO(sbi)) {
1042 			trace_f2fs_drop_inode(inode, 1);
1043 			return 1;
1044 		}
1045 	}
1046 
1047 	/*
1048 	 * This is to avoid a deadlock condition like below.
1049 	 * writeback_single_inode(inode)
1050 	 *  - f2fs_write_data_page
1051 	 *    - f2fs_gc -> iput -> evict
1052 	 *       - inode_wait_for_writeback(inode)
1053 	 */
1054 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1055 		if (!inode->i_nlink && !is_bad_inode(inode)) {
1056 			/* to avoid evict_inode call simultaneously */
1057 			atomic_inc(&inode->i_count);
1058 			spin_unlock(&inode->i_lock);
1059 
1060 			/* some remained atomic pages should discarded */
1061 			if (f2fs_is_atomic_file(inode))
1062 				f2fs_drop_inmem_pages(inode);
1063 
1064 			/* should remain fi->extent_tree for writepage */
1065 			f2fs_destroy_extent_node(inode);
1066 
1067 			sb_start_intwrite(inode->i_sb);
1068 			f2fs_i_size_write(inode, 0);
1069 
1070 			f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1071 					inode, NULL, 0, DATA);
1072 			truncate_inode_pages_final(inode->i_mapping);
1073 
1074 			if (F2FS_HAS_BLOCKS(inode))
1075 				f2fs_truncate(inode);
1076 
1077 			sb_end_intwrite(inode->i_sb);
1078 
1079 			spin_lock(&inode->i_lock);
1080 			atomic_dec(&inode->i_count);
1081 		}
1082 		trace_f2fs_drop_inode(inode, 0);
1083 		return 0;
1084 	}
1085 	ret = generic_drop_inode(inode);
1086 	if (!ret)
1087 		ret = fscrypt_drop_inode(inode);
1088 	trace_f2fs_drop_inode(inode, ret);
1089 	return ret;
1090 }
1091 
1092 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1093 {
1094 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1095 	int ret = 0;
1096 
1097 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1098 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1099 		ret = 1;
1100 	} else {
1101 		set_inode_flag(inode, FI_DIRTY_INODE);
1102 		stat_inc_dirty_inode(sbi, DIRTY_META);
1103 	}
1104 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1105 		list_add_tail(&F2FS_I(inode)->gdirty_list,
1106 				&sbi->inode_list[DIRTY_META]);
1107 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
1108 	}
1109 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1110 	return ret;
1111 }
1112 
1113 void f2fs_inode_synced(struct inode *inode)
1114 {
1115 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1116 
1117 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1118 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1119 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1120 		return;
1121 	}
1122 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1123 		list_del_init(&F2FS_I(inode)->gdirty_list);
1124 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
1125 	}
1126 	clear_inode_flag(inode, FI_DIRTY_INODE);
1127 	clear_inode_flag(inode, FI_AUTO_RECOVER);
1128 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1129 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1130 }
1131 
1132 /*
1133  * f2fs_dirty_inode() is called from __mark_inode_dirty()
1134  *
1135  * We should call set_dirty_inode to write the dirty inode through write_inode.
1136  */
1137 static void f2fs_dirty_inode(struct inode *inode, int flags)
1138 {
1139 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1140 
1141 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1142 			inode->i_ino == F2FS_META_INO(sbi))
1143 		return;
1144 
1145 	if (flags == I_DIRTY_TIME)
1146 		return;
1147 
1148 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1149 		clear_inode_flag(inode, FI_AUTO_RECOVER);
1150 
1151 	f2fs_inode_dirtied(inode, false);
1152 }
1153 
1154 static void f2fs_free_inode(struct inode *inode)
1155 {
1156 	fscrypt_free_inode(inode);
1157 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1158 }
1159 
1160 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1161 {
1162 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
1163 	percpu_counter_destroy(&sbi->total_valid_inode_count);
1164 }
1165 
1166 static void destroy_device_list(struct f2fs_sb_info *sbi)
1167 {
1168 	int i;
1169 
1170 	for (i = 0; i < sbi->s_ndevs; i++) {
1171 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1172 #ifdef CONFIG_BLK_DEV_ZONED
1173 		kvfree(FDEV(i).blkz_seq);
1174 #endif
1175 	}
1176 	kvfree(sbi->devs);
1177 }
1178 
1179 static void f2fs_put_super(struct super_block *sb)
1180 {
1181 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1182 	int i;
1183 	bool dropped;
1184 
1185 	f2fs_quota_off_umount(sb);
1186 
1187 	/* prevent remaining shrinker jobs */
1188 	mutex_lock(&sbi->umount_mutex);
1189 
1190 	/*
1191 	 * We don't need to do checkpoint when superblock is clean.
1192 	 * But, the previous checkpoint was not done by umount, it needs to do
1193 	 * clean checkpoint again.
1194 	 */
1195 	if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1196 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1197 		struct cp_control cpc = {
1198 			.reason = CP_UMOUNT,
1199 		};
1200 		f2fs_write_checkpoint(sbi, &cpc);
1201 	}
1202 
1203 	/* be sure to wait for any on-going discard commands */
1204 	dropped = f2fs_issue_discard_timeout(sbi);
1205 
1206 	if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1207 					!sbi->discard_blks && !dropped) {
1208 		struct cp_control cpc = {
1209 			.reason = CP_UMOUNT | CP_TRIMMED,
1210 		};
1211 		f2fs_write_checkpoint(sbi, &cpc);
1212 	}
1213 
1214 	/*
1215 	 * normally superblock is clean, so we need to release this.
1216 	 * In addition, EIO will skip do checkpoint, we need this as well.
1217 	 */
1218 	f2fs_release_ino_entry(sbi, true);
1219 
1220 	f2fs_leave_shrinker(sbi);
1221 	mutex_unlock(&sbi->umount_mutex);
1222 
1223 	/* our cp_error case, we can wait for any writeback page */
1224 	f2fs_flush_merged_writes(sbi);
1225 
1226 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1227 
1228 	f2fs_bug_on(sbi, sbi->fsync_node_num);
1229 
1230 	iput(sbi->node_inode);
1231 	sbi->node_inode = NULL;
1232 
1233 	iput(sbi->meta_inode);
1234 	sbi->meta_inode = NULL;
1235 
1236 	/*
1237 	 * iput() can update stat information, if f2fs_write_checkpoint()
1238 	 * above failed with error.
1239 	 */
1240 	f2fs_destroy_stats(sbi);
1241 
1242 	/* destroy f2fs internal modules */
1243 	f2fs_destroy_node_manager(sbi);
1244 	f2fs_destroy_segment_manager(sbi);
1245 
1246 	f2fs_destroy_post_read_wq(sbi);
1247 
1248 	kvfree(sbi->ckpt);
1249 
1250 	f2fs_unregister_sysfs(sbi);
1251 
1252 	sb->s_fs_info = NULL;
1253 	if (sbi->s_chksum_driver)
1254 		crypto_free_shash(sbi->s_chksum_driver);
1255 	kvfree(sbi->raw_super);
1256 
1257 	destroy_device_list(sbi);
1258 	f2fs_destroy_xattr_caches(sbi);
1259 	mempool_destroy(sbi->write_io_dummy);
1260 #ifdef CONFIG_QUOTA
1261 	for (i = 0; i < MAXQUOTAS; i++)
1262 		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1263 #endif
1264 	fscrypt_free_dummy_context(&F2FS_OPTION(sbi).dummy_enc_ctx);
1265 	destroy_percpu_info(sbi);
1266 	for (i = 0; i < NR_PAGE_TYPE; i++)
1267 		kvfree(sbi->write_io[i]);
1268 #ifdef CONFIG_UNICODE
1269 	utf8_unload(sbi->s_encoding);
1270 #endif
1271 	kvfree(sbi);
1272 }
1273 
1274 int f2fs_sync_fs(struct super_block *sb, int sync)
1275 {
1276 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1277 	int err = 0;
1278 
1279 	if (unlikely(f2fs_cp_error(sbi)))
1280 		return 0;
1281 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1282 		return 0;
1283 
1284 	trace_f2fs_sync_fs(sb, sync);
1285 
1286 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1287 		return -EAGAIN;
1288 
1289 	if (sync) {
1290 		struct cp_control cpc;
1291 
1292 		cpc.reason = __get_cp_reason(sbi);
1293 
1294 		down_write(&sbi->gc_lock);
1295 		err = f2fs_write_checkpoint(sbi, &cpc);
1296 		up_write(&sbi->gc_lock);
1297 	}
1298 	f2fs_trace_ios(NULL, 1);
1299 
1300 	return err;
1301 }
1302 
1303 static int f2fs_freeze(struct super_block *sb)
1304 {
1305 	if (f2fs_readonly(sb))
1306 		return 0;
1307 
1308 	/* IO error happened before */
1309 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1310 		return -EIO;
1311 
1312 	/* must be clean, since sync_filesystem() was already called */
1313 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1314 		return -EINVAL;
1315 	return 0;
1316 }
1317 
1318 static int f2fs_unfreeze(struct super_block *sb)
1319 {
1320 	return 0;
1321 }
1322 
1323 #ifdef CONFIG_QUOTA
1324 static int f2fs_statfs_project(struct super_block *sb,
1325 				kprojid_t projid, struct kstatfs *buf)
1326 {
1327 	struct kqid qid;
1328 	struct dquot *dquot;
1329 	u64 limit;
1330 	u64 curblock;
1331 
1332 	qid = make_kqid_projid(projid);
1333 	dquot = dqget(sb, qid);
1334 	if (IS_ERR(dquot))
1335 		return PTR_ERR(dquot);
1336 	spin_lock(&dquot->dq_dqb_lock);
1337 
1338 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1339 					dquot->dq_dqb.dqb_bhardlimit);
1340 	if (limit)
1341 		limit >>= sb->s_blocksize_bits;
1342 
1343 	if (limit && buf->f_blocks > limit) {
1344 		curblock = (dquot->dq_dqb.dqb_curspace +
1345 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1346 		buf->f_blocks = limit;
1347 		buf->f_bfree = buf->f_bavail =
1348 			(buf->f_blocks > curblock) ?
1349 			 (buf->f_blocks - curblock) : 0;
1350 	}
1351 
1352 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1353 					dquot->dq_dqb.dqb_ihardlimit);
1354 
1355 	if (limit && buf->f_files > limit) {
1356 		buf->f_files = limit;
1357 		buf->f_ffree =
1358 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1359 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1360 	}
1361 
1362 	spin_unlock(&dquot->dq_dqb_lock);
1363 	dqput(dquot);
1364 	return 0;
1365 }
1366 #endif
1367 
1368 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1369 {
1370 	struct super_block *sb = dentry->d_sb;
1371 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1372 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1373 	block_t total_count, user_block_count, start_count;
1374 	u64 avail_node_count;
1375 
1376 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1377 	user_block_count = sbi->user_block_count;
1378 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1379 	buf->f_type = F2FS_SUPER_MAGIC;
1380 	buf->f_bsize = sbi->blocksize;
1381 
1382 	buf->f_blocks = total_count - start_count;
1383 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1384 						sbi->current_reserved_blocks;
1385 
1386 	spin_lock(&sbi->stat_lock);
1387 	if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1388 		buf->f_bfree = 0;
1389 	else
1390 		buf->f_bfree -= sbi->unusable_block_count;
1391 	spin_unlock(&sbi->stat_lock);
1392 
1393 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1394 		buf->f_bavail = buf->f_bfree -
1395 				F2FS_OPTION(sbi).root_reserved_blocks;
1396 	else
1397 		buf->f_bavail = 0;
1398 
1399 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1400 
1401 	if (avail_node_count > user_block_count) {
1402 		buf->f_files = user_block_count;
1403 		buf->f_ffree = buf->f_bavail;
1404 	} else {
1405 		buf->f_files = avail_node_count;
1406 		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1407 					buf->f_bavail);
1408 	}
1409 
1410 	buf->f_namelen = F2FS_NAME_LEN;
1411 	buf->f_fsid.val[0] = (u32)id;
1412 	buf->f_fsid.val[1] = (u32)(id >> 32);
1413 
1414 #ifdef CONFIG_QUOTA
1415 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1416 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1417 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1418 	}
1419 #endif
1420 	return 0;
1421 }
1422 
1423 static inline void f2fs_show_quota_options(struct seq_file *seq,
1424 					   struct super_block *sb)
1425 {
1426 #ifdef CONFIG_QUOTA
1427 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1428 
1429 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1430 		char *fmtname = "";
1431 
1432 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1433 		case QFMT_VFS_OLD:
1434 			fmtname = "vfsold";
1435 			break;
1436 		case QFMT_VFS_V0:
1437 			fmtname = "vfsv0";
1438 			break;
1439 		case QFMT_VFS_V1:
1440 			fmtname = "vfsv1";
1441 			break;
1442 		}
1443 		seq_printf(seq, ",jqfmt=%s", fmtname);
1444 	}
1445 
1446 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1447 		seq_show_option(seq, "usrjquota",
1448 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1449 
1450 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1451 		seq_show_option(seq, "grpjquota",
1452 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1453 
1454 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1455 		seq_show_option(seq, "prjjquota",
1456 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1457 #endif
1458 }
1459 
1460 static inline void f2fs_show_compress_options(struct seq_file *seq,
1461 							struct super_block *sb)
1462 {
1463 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1464 	char *algtype = "";
1465 	int i;
1466 
1467 	if (!f2fs_sb_has_compression(sbi))
1468 		return;
1469 
1470 	switch (F2FS_OPTION(sbi).compress_algorithm) {
1471 	case COMPRESS_LZO:
1472 		algtype = "lzo";
1473 		break;
1474 	case COMPRESS_LZ4:
1475 		algtype = "lz4";
1476 		break;
1477 	case COMPRESS_ZSTD:
1478 		algtype = "zstd";
1479 		break;
1480 	case COMPRESS_LZORLE:
1481 		algtype = "lzo-rle";
1482 		break;
1483 	}
1484 	seq_printf(seq, ",compress_algorithm=%s", algtype);
1485 
1486 	seq_printf(seq, ",compress_log_size=%u",
1487 			F2FS_OPTION(sbi).compress_log_size);
1488 
1489 	for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1490 		seq_printf(seq, ",compress_extension=%s",
1491 			F2FS_OPTION(sbi).extensions[i]);
1492 	}
1493 }
1494 
1495 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1496 {
1497 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1498 
1499 	if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
1500 		seq_printf(seq, ",background_gc=%s", "sync");
1501 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
1502 		seq_printf(seq, ",background_gc=%s", "on");
1503 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
1504 		seq_printf(seq, ",background_gc=%s", "off");
1505 
1506 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1507 		seq_puts(seq, ",disable_roll_forward");
1508 	if (test_opt(sbi, NORECOVERY))
1509 		seq_puts(seq, ",norecovery");
1510 	if (test_opt(sbi, DISCARD))
1511 		seq_puts(seq, ",discard");
1512 	else
1513 		seq_puts(seq, ",nodiscard");
1514 	if (test_opt(sbi, NOHEAP))
1515 		seq_puts(seq, ",no_heap");
1516 	else
1517 		seq_puts(seq, ",heap");
1518 #ifdef CONFIG_F2FS_FS_XATTR
1519 	if (test_opt(sbi, XATTR_USER))
1520 		seq_puts(seq, ",user_xattr");
1521 	else
1522 		seq_puts(seq, ",nouser_xattr");
1523 	if (test_opt(sbi, INLINE_XATTR))
1524 		seq_puts(seq, ",inline_xattr");
1525 	else
1526 		seq_puts(seq, ",noinline_xattr");
1527 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1528 		seq_printf(seq, ",inline_xattr_size=%u",
1529 					F2FS_OPTION(sbi).inline_xattr_size);
1530 #endif
1531 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1532 	if (test_opt(sbi, POSIX_ACL))
1533 		seq_puts(seq, ",acl");
1534 	else
1535 		seq_puts(seq, ",noacl");
1536 #endif
1537 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1538 		seq_puts(seq, ",disable_ext_identify");
1539 	if (test_opt(sbi, INLINE_DATA))
1540 		seq_puts(seq, ",inline_data");
1541 	else
1542 		seq_puts(seq, ",noinline_data");
1543 	if (test_opt(sbi, INLINE_DENTRY))
1544 		seq_puts(seq, ",inline_dentry");
1545 	else
1546 		seq_puts(seq, ",noinline_dentry");
1547 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1548 		seq_puts(seq, ",flush_merge");
1549 	if (test_opt(sbi, NOBARRIER))
1550 		seq_puts(seq, ",nobarrier");
1551 	if (test_opt(sbi, FASTBOOT))
1552 		seq_puts(seq, ",fastboot");
1553 	if (test_opt(sbi, EXTENT_CACHE))
1554 		seq_puts(seq, ",extent_cache");
1555 	else
1556 		seq_puts(seq, ",noextent_cache");
1557 	if (test_opt(sbi, DATA_FLUSH))
1558 		seq_puts(seq, ",data_flush");
1559 
1560 	seq_puts(seq, ",mode=");
1561 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
1562 		seq_puts(seq, "adaptive");
1563 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
1564 		seq_puts(seq, "lfs");
1565 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1566 	if (test_opt(sbi, RESERVE_ROOT))
1567 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1568 				F2FS_OPTION(sbi).root_reserved_blocks,
1569 				from_kuid_munged(&init_user_ns,
1570 					F2FS_OPTION(sbi).s_resuid),
1571 				from_kgid_munged(&init_user_ns,
1572 					F2FS_OPTION(sbi).s_resgid));
1573 	if (F2FS_IO_SIZE_BITS(sbi))
1574 		seq_printf(seq, ",io_bits=%u",
1575 				F2FS_OPTION(sbi).write_io_size_bits);
1576 #ifdef CONFIG_F2FS_FAULT_INJECTION
1577 	if (test_opt(sbi, FAULT_INJECTION)) {
1578 		seq_printf(seq, ",fault_injection=%u",
1579 				F2FS_OPTION(sbi).fault_info.inject_rate);
1580 		seq_printf(seq, ",fault_type=%u",
1581 				F2FS_OPTION(sbi).fault_info.inject_type);
1582 	}
1583 #endif
1584 #ifdef CONFIG_QUOTA
1585 	if (test_opt(sbi, QUOTA))
1586 		seq_puts(seq, ",quota");
1587 	if (test_opt(sbi, USRQUOTA))
1588 		seq_puts(seq, ",usrquota");
1589 	if (test_opt(sbi, GRPQUOTA))
1590 		seq_puts(seq, ",grpquota");
1591 	if (test_opt(sbi, PRJQUOTA))
1592 		seq_puts(seq, ",prjquota");
1593 #endif
1594 	f2fs_show_quota_options(seq, sbi->sb);
1595 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1596 		seq_printf(seq, ",whint_mode=%s", "user-based");
1597 	else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1598 		seq_printf(seq, ",whint_mode=%s", "fs-based");
1599 
1600 	fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
1601 
1602 	if (sbi->sb->s_flags & SB_INLINECRYPT)
1603 		seq_puts(seq, ",inlinecrypt");
1604 
1605 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1606 		seq_printf(seq, ",alloc_mode=%s", "default");
1607 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1608 		seq_printf(seq, ",alloc_mode=%s", "reuse");
1609 
1610 	if (test_opt(sbi, DISABLE_CHECKPOINT))
1611 		seq_printf(seq, ",checkpoint=disable:%u",
1612 				F2FS_OPTION(sbi).unusable_cap);
1613 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1614 		seq_printf(seq, ",fsync_mode=%s", "posix");
1615 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1616 		seq_printf(seq, ",fsync_mode=%s", "strict");
1617 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1618 		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1619 
1620 	f2fs_show_compress_options(seq, sbi->sb);
1621 	return 0;
1622 }
1623 
1624 static void default_options(struct f2fs_sb_info *sbi)
1625 {
1626 	/* init some FS parameters */
1627 	F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1628 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1629 	F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1630 	F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1631 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1632 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1633 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1634 	F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
1635 	F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
1636 	F2FS_OPTION(sbi).compress_ext_cnt = 0;
1637 	F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
1638 
1639 	sbi->sb->s_flags &= ~SB_INLINECRYPT;
1640 
1641 	set_opt(sbi, INLINE_XATTR);
1642 	set_opt(sbi, INLINE_DATA);
1643 	set_opt(sbi, INLINE_DENTRY);
1644 	set_opt(sbi, EXTENT_CACHE);
1645 	set_opt(sbi, NOHEAP);
1646 	clear_opt(sbi, DISABLE_CHECKPOINT);
1647 	F2FS_OPTION(sbi).unusable_cap = 0;
1648 	sbi->sb->s_flags |= SB_LAZYTIME;
1649 	set_opt(sbi, FLUSH_MERGE);
1650 	set_opt(sbi, DISCARD);
1651 	if (f2fs_sb_has_blkzoned(sbi))
1652 		F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
1653 	else
1654 		F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
1655 
1656 #ifdef CONFIG_F2FS_FS_XATTR
1657 	set_opt(sbi, XATTR_USER);
1658 #endif
1659 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1660 	set_opt(sbi, POSIX_ACL);
1661 #endif
1662 
1663 	f2fs_build_fault_attr(sbi, 0, 0);
1664 }
1665 
1666 #ifdef CONFIG_QUOTA
1667 static int f2fs_enable_quotas(struct super_block *sb);
1668 #endif
1669 
1670 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
1671 {
1672 	unsigned int s_flags = sbi->sb->s_flags;
1673 	struct cp_control cpc;
1674 	int err = 0;
1675 	int ret;
1676 	block_t unusable;
1677 
1678 	if (s_flags & SB_RDONLY) {
1679 		f2fs_err(sbi, "checkpoint=disable on readonly fs");
1680 		return -EINVAL;
1681 	}
1682 	sbi->sb->s_flags |= SB_ACTIVE;
1683 
1684 	f2fs_update_time(sbi, DISABLE_TIME);
1685 
1686 	while (!f2fs_time_over(sbi, DISABLE_TIME)) {
1687 		down_write(&sbi->gc_lock);
1688 		err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1689 		if (err == -ENODATA) {
1690 			err = 0;
1691 			break;
1692 		}
1693 		if (err && err != -EAGAIN)
1694 			break;
1695 	}
1696 
1697 	ret = sync_filesystem(sbi->sb);
1698 	if (ret || err) {
1699 		err = ret ? ret: err;
1700 		goto restore_flag;
1701 	}
1702 
1703 	unusable = f2fs_get_unusable_blocks(sbi);
1704 	if (f2fs_disable_cp_again(sbi, unusable)) {
1705 		err = -EAGAIN;
1706 		goto restore_flag;
1707 	}
1708 
1709 	down_write(&sbi->gc_lock);
1710 	cpc.reason = CP_PAUSE;
1711 	set_sbi_flag(sbi, SBI_CP_DISABLED);
1712 	err = f2fs_write_checkpoint(sbi, &cpc);
1713 	if (err)
1714 		goto out_unlock;
1715 
1716 	spin_lock(&sbi->stat_lock);
1717 	sbi->unusable_block_count = unusable;
1718 	spin_unlock(&sbi->stat_lock);
1719 
1720 out_unlock:
1721 	up_write(&sbi->gc_lock);
1722 restore_flag:
1723 	sbi->sb->s_flags = s_flags;	/* Restore SB_RDONLY status */
1724 	return err;
1725 }
1726 
1727 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
1728 {
1729 	down_write(&sbi->gc_lock);
1730 	f2fs_dirty_to_prefree(sbi);
1731 
1732 	clear_sbi_flag(sbi, SBI_CP_DISABLED);
1733 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1734 	up_write(&sbi->gc_lock);
1735 
1736 	f2fs_sync_fs(sbi->sb, 1);
1737 }
1738 
1739 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1740 {
1741 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1742 	struct f2fs_mount_info org_mount_opt;
1743 	unsigned long old_sb_flags;
1744 	int err;
1745 	bool need_restart_gc = false;
1746 	bool need_stop_gc = false;
1747 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1748 	bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT);
1749 	bool no_io_align = !F2FS_IO_ALIGNED(sbi);
1750 	bool checkpoint_changed;
1751 #ifdef CONFIG_QUOTA
1752 	int i, j;
1753 #endif
1754 
1755 	/*
1756 	 * Save the old mount options in case we
1757 	 * need to restore them.
1758 	 */
1759 	org_mount_opt = sbi->mount_opt;
1760 	old_sb_flags = sb->s_flags;
1761 
1762 #ifdef CONFIG_QUOTA
1763 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1764 	for (i = 0; i < MAXQUOTAS; i++) {
1765 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1766 			org_mount_opt.s_qf_names[i] =
1767 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1768 				GFP_KERNEL);
1769 			if (!org_mount_opt.s_qf_names[i]) {
1770 				for (j = 0; j < i; j++)
1771 					kvfree(org_mount_opt.s_qf_names[j]);
1772 				return -ENOMEM;
1773 			}
1774 		} else {
1775 			org_mount_opt.s_qf_names[i] = NULL;
1776 		}
1777 	}
1778 #endif
1779 
1780 	/* recover superblocks we couldn't write due to previous RO mount */
1781 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1782 		err = f2fs_commit_super(sbi, false);
1783 		f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
1784 			  err);
1785 		if (!err)
1786 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1787 	}
1788 
1789 	default_options(sbi);
1790 
1791 	/* parse mount options */
1792 	err = parse_options(sb, data, true);
1793 	if (err)
1794 		goto restore_opts;
1795 	checkpoint_changed =
1796 			disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT);
1797 
1798 	/*
1799 	 * Previous and new state of filesystem is RO,
1800 	 * so skip checking GC and FLUSH_MERGE conditions.
1801 	 */
1802 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1803 		goto skip;
1804 
1805 #ifdef CONFIG_QUOTA
1806 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1807 		err = dquot_suspend(sb, -1);
1808 		if (err < 0)
1809 			goto restore_opts;
1810 	} else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
1811 		/* dquot_resume needs RW */
1812 		sb->s_flags &= ~SB_RDONLY;
1813 		if (sb_any_quota_suspended(sb)) {
1814 			dquot_resume(sb, -1);
1815 		} else if (f2fs_sb_has_quota_ino(sbi)) {
1816 			err = f2fs_enable_quotas(sb);
1817 			if (err)
1818 				goto restore_opts;
1819 		}
1820 	}
1821 #endif
1822 	/* disallow enable/disable extent_cache dynamically */
1823 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1824 		err = -EINVAL;
1825 		f2fs_warn(sbi, "switch extent_cache option is not allowed");
1826 		goto restore_opts;
1827 	}
1828 
1829 	if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
1830 		err = -EINVAL;
1831 		f2fs_warn(sbi, "switch io_bits option is not allowed");
1832 		goto restore_opts;
1833 	}
1834 
1835 	if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
1836 		err = -EINVAL;
1837 		f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
1838 		goto restore_opts;
1839 	}
1840 
1841 	/*
1842 	 * We stop the GC thread if FS is mounted as RO
1843 	 * or if background_gc = off is passed in mount
1844 	 * option. Also sync the filesystem.
1845 	 */
1846 	if ((*flags & SB_RDONLY) ||
1847 			F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) {
1848 		if (sbi->gc_thread) {
1849 			f2fs_stop_gc_thread(sbi);
1850 			need_restart_gc = true;
1851 		}
1852 	} else if (!sbi->gc_thread) {
1853 		err = f2fs_start_gc_thread(sbi);
1854 		if (err)
1855 			goto restore_opts;
1856 		need_stop_gc = true;
1857 	}
1858 
1859 	if (*flags & SB_RDONLY ||
1860 		F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1861 		writeback_inodes_sb(sb, WB_REASON_SYNC);
1862 		sync_inodes_sb(sb);
1863 
1864 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1865 		set_sbi_flag(sbi, SBI_IS_CLOSE);
1866 		f2fs_sync_fs(sb, 1);
1867 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
1868 	}
1869 
1870 	if (checkpoint_changed) {
1871 		if (test_opt(sbi, DISABLE_CHECKPOINT)) {
1872 			err = f2fs_disable_checkpoint(sbi);
1873 			if (err)
1874 				goto restore_gc;
1875 		} else {
1876 			f2fs_enable_checkpoint(sbi);
1877 		}
1878 	}
1879 
1880 	/*
1881 	 * We stop issue flush thread if FS is mounted as RO
1882 	 * or if flush_merge is not passed in mount option.
1883 	 */
1884 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1885 		clear_opt(sbi, FLUSH_MERGE);
1886 		f2fs_destroy_flush_cmd_control(sbi, false);
1887 	} else {
1888 		err = f2fs_create_flush_cmd_control(sbi);
1889 		if (err)
1890 			goto restore_gc;
1891 	}
1892 skip:
1893 #ifdef CONFIG_QUOTA
1894 	/* Release old quota file names */
1895 	for (i = 0; i < MAXQUOTAS; i++)
1896 		kvfree(org_mount_opt.s_qf_names[i]);
1897 #endif
1898 	/* Update the POSIXACL Flag */
1899 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1900 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1901 
1902 	limit_reserve_root(sbi);
1903 	adjust_unusable_cap_perc(sbi);
1904 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
1905 	return 0;
1906 restore_gc:
1907 	if (need_restart_gc) {
1908 		if (f2fs_start_gc_thread(sbi))
1909 			f2fs_warn(sbi, "background gc thread has stopped");
1910 	} else if (need_stop_gc) {
1911 		f2fs_stop_gc_thread(sbi);
1912 	}
1913 restore_opts:
1914 #ifdef CONFIG_QUOTA
1915 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1916 	for (i = 0; i < MAXQUOTAS; i++) {
1917 		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1918 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1919 	}
1920 #endif
1921 	sbi->mount_opt = org_mount_opt;
1922 	sb->s_flags = old_sb_flags;
1923 	return err;
1924 }
1925 
1926 #ifdef CONFIG_QUOTA
1927 /* Read data from quotafile */
1928 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1929 			       size_t len, loff_t off)
1930 {
1931 	struct inode *inode = sb_dqopt(sb)->files[type];
1932 	struct address_space *mapping = inode->i_mapping;
1933 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
1934 	int offset = off & (sb->s_blocksize - 1);
1935 	int tocopy;
1936 	size_t toread;
1937 	loff_t i_size = i_size_read(inode);
1938 	struct page *page;
1939 	char *kaddr;
1940 
1941 	if (off > i_size)
1942 		return 0;
1943 
1944 	if (off + len > i_size)
1945 		len = i_size - off;
1946 	toread = len;
1947 	while (toread > 0) {
1948 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1949 repeat:
1950 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1951 		if (IS_ERR(page)) {
1952 			if (PTR_ERR(page) == -ENOMEM) {
1953 				congestion_wait(BLK_RW_ASYNC,
1954 						DEFAULT_IO_TIMEOUT);
1955 				goto repeat;
1956 			}
1957 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1958 			return PTR_ERR(page);
1959 		}
1960 
1961 		lock_page(page);
1962 
1963 		if (unlikely(page->mapping != mapping)) {
1964 			f2fs_put_page(page, 1);
1965 			goto repeat;
1966 		}
1967 		if (unlikely(!PageUptodate(page))) {
1968 			f2fs_put_page(page, 1);
1969 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1970 			return -EIO;
1971 		}
1972 
1973 		kaddr = kmap_atomic(page);
1974 		memcpy(data, kaddr + offset, tocopy);
1975 		kunmap_atomic(kaddr);
1976 		f2fs_put_page(page, 1);
1977 
1978 		offset = 0;
1979 		toread -= tocopy;
1980 		data += tocopy;
1981 		blkidx++;
1982 	}
1983 	return len;
1984 }
1985 
1986 /* Write to quotafile */
1987 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1988 				const char *data, size_t len, loff_t off)
1989 {
1990 	struct inode *inode = sb_dqopt(sb)->files[type];
1991 	struct address_space *mapping = inode->i_mapping;
1992 	const struct address_space_operations *a_ops = mapping->a_ops;
1993 	int offset = off & (sb->s_blocksize - 1);
1994 	size_t towrite = len;
1995 	struct page *page;
1996 	void *fsdata = NULL;
1997 	char *kaddr;
1998 	int err = 0;
1999 	int tocopy;
2000 
2001 	while (towrite > 0) {
2002 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
2003 								towrite);
2004 retry:
2005 		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
2006 							&page, &fsdata);
2007 		if (unlikely(err)) {
2008 			if (err == -ENOMEM) {
2009 				congestion_wait(BLK_RW_ASYNC,
2010 						DEFAULT_IO_TIMEOUT);
2011 				goto retry;
2012 			}
2013 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2014 			break;
2015 		}
2016 
2017 		kaddr = kmap_atomic(page);
2018 		memcpy(kaddr + offset, data, tocopy);
2019 		kunmap_atomic(kaddr);
2020 		flush_dcache_page(page);
2021 
2022 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
2023 						page, fsdata);
2024 		offset = 0;
2025 		towrite -= tocopy;
2026 		off += tocopy;
2027 		data += tocopy;
2028 		cond_resched();
2029 	}
2030 
2031 	if (len == towrite)
2032 		return err;
2033 	inode->i_mtime = inode->i_ctime = current_time(inode);
2034 	f2fs_mark_inode_dirty_sync(inode, false);
2035 	return len - towrite;
2036 }
2037 
2038 static struct dquot **f2fs_get_dquots(struct inode *inode)
2039 {
2040 	return F2FS_I(inode)->i_dquot;
2041 }
2042 
2043 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
2044 {
2045 	return &F2FS_I(inode)->i_reserved_quota;
2046 }
2047 
2048 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
2049 {
2050 	if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
2051 		f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
2052 		return 0;
2053 	}
2054 
2055 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
2056 					F2FS_OPTION(sbi).s_jquota_fmt, type);
2057 }
2058 
2059 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
2060 {
2061 	int enabled = 0;
2062 	int i, err;
2063 
2064 	if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
2065 		err = f2fs_enable_quotas(sbi->sb);
2066 		if (err) {
2067 			f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2068 			return 0;
2069 		}
2070 		return 1;
2071 	}
2072 
2073 	for (i = 0; i < MAXQUOTAS; i++) {
2074 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2075 			err = f2fs_quota_on_mount(sbi, i);
2076 			if (!err) {
2077 				enabled = 1;
2078 				continue;
2079 			}
2080 			f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2081 				 err, i);
2082 		}
2083 	}
2084 	return enabled;
2085 }
2086 
2087 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2088 			     unsigned int flags)
2089 {
2090 	struct inode *qf_inode;
2091 	unsigned long qf_inum;
2092 	int err;
2093 
2094 	BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2095 
2096 	qf_inum = f2fs_qf_ino(sb, type);
2097 	if (!qf_inum)
2098 		return -EPERM;
2099 
2100 	qf_inode = f2fs_iget(sb, qf_inum);
2101 	if (IS_ERR(qf_inode)) {
2102 		f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2103 		return PTR_ERR(qf_inode);
2104 	}
2105 
2106 	/* Don't account quota for quota files to avoid recursion */
2107 	qf_inode->i_flags |= S_NOQUOTA;
2108 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2109 	iput(qf_inode);
2110 	return err;
2111 }
2112 
2113 static int f2fs_enable_quotas(struct super_block *sb)
2114 {
2115 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2116 	int type, err = 0;
2117 	unsigned long qf_inum;
2118 	bool quota_mopt[MAXQUOTAS] = {
2119 		test_opt(sbi, USRQUOTA),
2120 		test_opt(sbi, GRPQUOTA),
2121 		test_opt(sbi, PRJQUOTA),
2122 	};
2123 
2124 	if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2125 		f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2126 		return 0;
2127 	}
2128 
2129 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2130 
2131 	for (type = 0; type < MAXQUOTAS; type++) {
2132 		qf_inum = f2fs_qf_ino(sb, type);
2133 		if (qf_inum) {
2134 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2135 				DQUOT_USAGE_ENABLED |
2136 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2137 			if (err) {
2138 				f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2139 					 type, err);
2140 				for (type--; type >= 0; type--)
2141 					dquot_quota_off(sb, type);
2142 				set_sbi_flag(F2FS_SB(sb),
2143 						SBI_QUOTA_NEED_REPAIR);
2144 				return err;
2145 			}
2146 		}
2147 	}
2148 	return 0;
2149 }
2150 
2151 int f2fs_quota_sync(struct super_block *sb, int type)
2152 {
2153 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2154 	struct quota_info *dqopt = sb_dqopt(sb);
2155 	int cnt;
2156 	int ret;
2157 
2158 	/*
2159 	 * do_quotactl
2160 	 *  f2fs_quota_sync
2161 	 *  down_read(quota_sem)
2162 	 *  dquot_writeback_dquots()
2163 	 *  f2fs_dquot_commit
2164 	 *                            block_operation
2165 	 *                            down_read(quota_sem)
2166 	 */
2167 	f2fs_lock_op(sbi);
2168 
2169 	down_read(&sbi->quota_sem);
2170 	ret = dquot_writeback_dquots(sb, type);
2171 	if (ret)
2172 		goto out;
2173 
2174 	/*
2175 	 * Now when everything is written we can discard the pagecache so
2176 	 * that userspace sees the changes.
2177 	 */
2178 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2179 		struct address_space *mapping;
2180 
2181 		if (type != -1 && cnt != type)
2182 			continue;
2183 		if (!sb_has_quota_active(sb, cnt))
2184 			continue;
2185 
2186 		mapping = dqopt->files[cnt]->i_mapping;
2187 
2188 		ret = filemap_fdatawrite(mapping);
2189 		if (ret)
2190 			goto out;
2191 
2192 		/* if we are using journalled quota */
2193 		if (is_journalled_quota(sbi))
2194 			continue;
2195 
2196 		ret = filemap_fdatawait(mapping);
2197 		if (ret)
2198 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2199 
2200 		inode_lock(dqopt->files[cnt]);
2201 		truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
2202 		inode_unlock(dqopt->files[cnt]);
2203 	}
2204 out:
2205 	if (ret)
2206 		set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2207 	up_read(&sbi->quota_sem);
2208 	f2fs_unlock_op(sbi);
2209 	return ret;
2210 }
2211 
2212 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2213 							const struct path *path)
2214 {
2215 	struct inode *inode;
2216 	int err;
2217 
2218 	/* if quota sysfile exists, deny enabling quota with specific file */
2219 	if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2220 		f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2221 		return -EBUSY;
2222 	}
2223 
2224 	err = f2fs_quota_sync(sb, type);
2225 	if (err)
2226 		return err;
2227 
2228 	err = dquot_quota_on(sb, type, format_id, path);
2229 	if (err)
2230 		return err;
2231 
2232 	inode = d_inode(path->dentry);
2233 
2234 	inode_lock(inode);
2235 	F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2236 	f2fs_set_inode_flags(inode);
2237 	inode_unlock(inode);
2238 	f2fs_mark_inode_dirty_sync(inode, false);
2239 
2240 	return 0;
2241 }
2242 
2243 static int __f2fs_quota_off(struct super_block *sb, int type)
2244 {
2245 	struct inode *inode = sb_dqopt(sb)->files[type];
2246 	int err;
2247 
2248 	if (!inode || !igrab(inode))
2249 		return dquot_quota_off(sb, type);
2250 
2251 	err = f2fs_quota_sync(sb, type);
2252 	if (err)
2253 		goto out_put;
2254 
2255 	err = dquot_quota_off(sb, type);
2256 	if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2257 		goto out_put;
2258 
2259 	inode_lock(inode);
2260 	F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2261 	f2fs_set_inode_flags(inode);
2262 	inode_unlock(inode);
2263 	f2fs_mark_inode_dirty_sync(inode, false);
2264 out_put:
2265 	iput(inode);
2266 	return err;
2267 }
2268 
2269 static int f2fs_quota_off(struct super_block *sb, int type)
2270 {
2271 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2272 	int err;
2273 
2274 	err = __f2fs_quota_off(sb, type);
2275 
2276 	/*
2277 	 * quotactl can shutdown journalled quota, result in inconsistence
2278 	 * between quota record and fs data by following updates, tag the
2279 	 * flag to let fsck be aware of it.
2280 	 */
2281 	if (is_journalled_quota(sbi))
2282 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2283 	return err;
2284 }
2285 
2286 void f2fs_quota_off_umount(struct super_block *sb)
2287 {
2288 	int type;
2289 	int err;
2290 
2291 	for (type = 0; type < MAXQUOTAS; type++) {
2292 		err = __f2fs_quota_off(sb, type);
2293 		if (err) {
2294 			int ret = dquot_quota_off(sb, type);
2295 
2296 			f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2297 				 type, err, ret);
2298 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2299 		}
2300 	}
2301 	/*
2302 	 * In case of checkpoint=disable, we must flush quota blocks.
2303 	 * This can cause NULL exception for node_inode in end_io, since
2304 	 * put_super already dropped it.
2305 	 */
2306 	sync_filesystem(sb);
2307 }
2308 
2309 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2310 {
2311 	struct quota_info *dqopt = sb_dqopt(sb);
2312 	int type;
2313 
2314 	for (type = 0; type < MAXQUOTAS; type++) {
2315 		if (!dqopt->files[type])
2316 			continue;
2317 		f2fs_inode_synced(dqopt->files[type]);
2318 	}
2319 }
2320 
2321 static int f2fs_dquot_commit(struct dquot *dquot)
2322 {
2323 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2324 	int ret;
2325 
2326 	down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
2327 	ret = dquot_commit(dquot);
2328 	if (ret < 0)
2329 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2330 	up_read(&sbi->quota_sem);
2331 	return ret;
2332 }
2333 
2334 static int f2fs_dquot_acquire(struct dquot *dquot)
2335 {
2336 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2337 	int ret;
2338 
2339 	down_read(&sbi->quota_sem);
2340 	ret = dquot_acquire(dquot);
2341 	if (ret < 0)
2342 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2343 	up_read(&sbi->quota_sem);
2344 	return ret;
2345 }
2346 
2347 static int f2fs_dquot_release(struct dquot *dquot)
2348 {
2349 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2350 	int ret = dquot_release(dquot);
2351 
2352 	if (ret < 0)
2353 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2354 	return ret;
2355 }
2356 
2357 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2358 {
2359 	struct super_block *sb = dquot->dq_sb;
2360 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2361 	int ret = dquot_mark_dquot_dirty(dquot);
2362 
2363 	/* if we are using journalled quota */
2364 	if (is_journalled_quota(sbi))
2365 		set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2366 
2367 	return ret;
2368 }
2369 
2370 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2371 {
2372 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2373 	int ret = dquot_commit_info(sb, type);
2374 
2375 	if (ret < 0)
2376 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2377 	return ret;
2378 }
2379 
2380 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2381 {
2382 	*projid = F2FS_I(inode)->i_projid;
2383 	return 0;
2384 }
2385 
2386 static const struct dquot_operations f2fs_quota_operations = {
2387 	.get_reserved_space = f2fs_get_reserved_space,
2388 	.write_dquot	= f2fs_dquot_commit,
2389 	.acquire_dquot	= f2fs_dquot_acquire,
2390 	.release_dquot	= f2fs_dquot_release,
2391 	.mark_dirty	= f2fs_dquot_mark_dquot_dirty,
2392 	.write_info	= f2fs_dquot_commit_info,
2393 	.alloc_dquot	= dquot_alloc,
2394 	.destroy_dquot	= dquot_destroy,
2395 	.get_projid	= f2fs_get_projid,
2396 	.get_next_id	= dquot_get_next_id,
2397 };
2398 
2399 static const struct quotactl_ops f2fs_quotactl_ops = {
2400 	.quota_on	= f2fs_quota_on,
2401 	.quota_off	= f2fs_quota_off,
2402 	.quota_sync	= f2fs_quota_sync,
2403 	.get_state	= dquot_get_state,
2404 	.set_info	= dquot_set_dqinfo,
2405 	.get_dqblk	= dquot_get_dqblk,
2406 	.set_dqblk	= dquot_set_dqblk,
2407 	.get_nextdqblk	= dquot_get_next_dqblk,
2408 };
2409 #else
2410 int f2fs_quota_sync(struct super_block *sb, int type)
2411 {
2412 	return 0;
2413 }
2414 
2415 void f2fs_quota_off_umount(struct super_block *sb)
2416 {
2417 }
2418 #endif
2419 
2420 static const struct super_operations f2fs_sops = {
2421 	.alloc_inode	= f2fs_alloc_inode,
2422 	.free_inode	= f2fs_free_inode,
2423 	.drop_inode	= f2fs_drop_inode,
2424 	.write_inode	= f2fs_write_inode,
2425 	.dirty_inode	= f2fs_dirty_inode,
2426 	.show_options	= f2fs_show_options,
2427 #ifdef CONFIG_QUOTA
2428 	.quota_read	= f2fs_quota_read,
2429 	.quota_write	= f2fs_quota_write,
2430 	.get_dquots	= f2fs_get_dquots,
2431 #endif
2432 	.evict_inode	= f2fs_evict_inode,
2433 	.put_super	= f2fs_put_super,
2434 	.sync_fs	= f2fs_sync_fs,
2435 	.freeze_fs	= f2fs_freeze,
2436 	.unfreeze_fs	= f2fs_unfreeze,
2437 	.statfs		= f2fs_statfs,
2438 	.remount_fs	= f2fs_remount,
2439 };
2440 
2441 #ifdef CONFIG_FS_ENCRYPTION
2442 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2443 {
2444 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2445 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2446 				ctx, len, NULL);
2447 }
2448 
2449 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2450 							void *fs_data)
2451 {
2452 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2453 
2454 	/*
2455 	 * Encrypting the root directory is not allowed because fsck
2456 	 * expects lost+found directory to exist and remain unencrypted
2457 	 * if LOST_FOUND feature is enabled.
2458 	 *
2459 	 */
2460 	if (f2fs_sb_has_lost_found(sbi) &&
2461 			inode->i_ino == F2FS_ROOT_INO(sbi))
2462 		return -EPERM;
2463 
2464 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2465 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2466 				ctx, len, fs_data, XATTR_CREATE);
2467 }
2468 
2469 static const union fscrypt_context *
2470 f2fs_get_dummy_context(struct super_block *sb)
2471 {
2472 	return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_ctx.ctx;
2473 }
2474 
2475 static bool f2fs_has_stable_inodes(struct super_block *sb)
2476 {
2477 	return true;
2478 }
2479 
2480 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
2481 				       int *ino_bits_ret, int *lblk_bits_ret)
2482 {
2483 	*ino_bits_ret = 8 * sizeof(nid_t);
2484 	*lblk_bits_ret = 8 * sizeof(block_t);
2485 }
2486 
2487 static int f2fs_get_num_devices(struct super_block *sb)
2488 {
2489 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2490 
2491 	if (f2fs_is_multi_device(sbi))
2492 		return sbi->s_ndevs;
2493 	return 1;
2494 }
2495 
2496 static void f2fs_get_devices(struct super_block *sb,
2497 			     struct request_queue **devs)
2498 {
2499 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2500 	int i;
2501 
2502 	for (i = 0; i < sbi->s_ndevs; i++)
2503 		devs[i] = bdev_get_queue(FDEV(i).bdev);
2504 }
2505 
2506 static const struct fscrypt_operations f2fs_cryptops = {
2507 	.key_prefix		= "f2fs:",
2508 	.get_context		= f2fs_get_context,
2509 	.set_context		= f2fs_set_context,
2510 	.get_dummy_context	= f2fs_get_dummy_context,
2511 	.empty_dir		= f2fs_empty_dir,
2512 	.max_namelen		= F2FS_NAME_LEN,
2513 	.has_stable_inodes	= f2fs_has_stable_inodes,
2514 	.get_ino_and_lblk_bits	= f2fs_get_ino_and_lblk_bits,
2515 	.get_num_devices	= f2fs_get_num_devices,
2516 	.get_devices		= f2fs_get_devices,
2517 };
2518 #endif
2519 
2520 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2521 		u64 ino, u32 generation)
2522 {
2523 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2524 	struct inode *inode;
2525 
2526 	if (f2fs_check_nid_range(sbi, ino))
2527 		return ERR_PTR(-ESTALE);
2528 
2529 	/*
2530 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
2531 	 * However f2fs_iget currently does appropriate checks to handle stale
2532 	 * inodes so everything is OK.
2533 	 */
2534 	inode = f2fs_iget(sb, ino);
2535 	if (IS_ERR(inode))
2536 		return ERR_CAST(inode);
2537 	if (unlikely(generation && inode->i_generation != generation)) {
2538 		/* we didn't find the right inode.. */
2539 		iput(inode);
2540 		return ERR_PTR(-ESTALE);
2541 	}
2542 	return inode;
2543 }
2544 
2545 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2546 		int fh_len, int fh_type)
2547 {
2548 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2549 				    f2fs_nfs_get_inode);
2550 }
2551 
2552 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2553 		int fh_len, int fh_type)
2554 {
2555 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2556 				    f2fs_nfs_get_inode);
2557 }
2558 
2559 static const struct export_operations f2fs_export_ops = {
2560 	.fh_to_dentry = f2fs_fh_to_dentry,
2561 	.fh_to_parent = f2fs_fh_to_parent,
2562 	.get_parent = f2fs_get_parent,
2563 };
2564 
2565 static loff_t max_file_blocks(void)
2566 {
2567 	loff_t result = 0;
2568 	loff_t leaf_count = DEF_ADDRS_PER_BLOCK;
2569 
2570 	/*
2571 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2572 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2573 	 * space in inode.i_addr, it will be more safe to reassign
2574 	 * result as zero.
2575 	 */
2576 
2577 	/* two direct node blocks */
2578 	result += (leaf_count * 2);
2579 
2580 	/* two indirect node blocks */
2581 	leaf_count *= NIDS_PER_BLOCK;
2582 	result += (leaf_count * 2);
2583 
2584 	/* one double indirect node block */
2585 	leaf_count *= NIDS_PER_BLOCK;
2586 	result += leaf_count;
2587 
2588 	return result;
2589 }
2590 
2591 static int __f2fs_commit_super(struct buffer_head *bh,
2592 			struct f2fs_super_block *super)
2593 {
2594 	lock_buffer(bh);
2595 	if (super)
2596 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2597 	set_buffer_dirty(bh);
2598 	unlock_buffer(bh);
2599 
2600 	/* it's rare case, we can do fua all the time */
2601 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2602 }
2603 
2604 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2605 					struct buffer_head *bh)
2606 {
2607 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2608 					(bh->b_data + F2FS_SUPER_OFFSET);
2609 	struct super_block *sb = sbi->sb;
2610 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2611 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2612 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2613 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2614 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2615 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2616 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2617 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2618 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2619 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2620 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2621 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
2622 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2623 	u64 main_end_blkaddr = main_blkaddr +
2624 				(segment_count_main << log_blocks_per_seg);
2625 	u64 seg_end_blkaddr = segment0_blkaddr +
2626 				(segment_count << log_blocks_per_seg);
2627 
2628 	if (segment0_blkaddr != cp_blkaddr) {
2629 		f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2630 			  segment0_blkaddr, cp_blkaddr);
2631 		return true;
2632 	}
2633 
2634 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2635 							sit_blkaddr) {
2636 		f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2637 			  cp_blkaddr, sit_blkaddr,
2638 			  segment_count_ckpt << log_blocks_per_seg);
2639 		return true;
2640 	}
2641 
2642 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2643 							nat_blkaddr) {
2644 		f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2645 			  sit_blkaddr, nat_blkaddr,
2646 			  segment_count_sit << log_blocks_per_seg);
2647 		return true;
2648 	}
2649 
2650 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2651 							ssa_blkaddr) {
2652 		f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2653 			  nat_blkaddr, ssa_blkaddr,
2654 			  segment_count_nat << log_blocks_per_seg);
2655 		return true;
2656 	}
2657 
2658 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2659 							main_blkaddr) {
2660 		f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2661 			  ssa_blkaddr, main_blkaddr,
2662 			  segment_count_ssa << log_blocks_per_seg);
2663 		return true;
2664 	}
2665 
2666 	if (main_end_blkaddr > seg_end_blkaddr) {
2667 		f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2668 			  main_blkaddr,
2669 			  segment0_blkaddr +
2670 			  (segment_count << log_blocks_per_seg),
2671 			  segment_count_main << log_blocks_per_seg);
2672 		return true;
2673 	} else if (main_end_blkaddr < seg_end_blkaddr) {
2674 		int err = 0;
2675 		char *res;
2676 
2677 		/* fix in-memory information all the time */
2678 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2679 				segment0_blkaddr) >> log_blocks_per_seg);
2680 
2681 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2682 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2683 			res = "internally";
2684 		} else {
2685 			err = __f2fs_commit_super(bh, NULL);
2686 			res = err ? "failed" : "done";
2687 		}
2688 		f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%u) block(%u)",
2689 			  res, main_blkaddr,
2690 			  segment0_blkaddr +
2691 			  (segment_count << log_blocks_per_seg),
2692 			  segment_count_main << log_blocks_per_seg);
2693 		if (err)
2694 			return true;
2695 	}
2696 	return false;
2697 }
2698 
2699 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2700 				struct buffer_head *bh)
2701 {
2702 	block_t segment_count, segs_per_sec, secs_per_zone;
2703 	block_t total_sections, blocks_per_seg;
2704 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2705 					(bh->b_data + F2FS_SUPER_OFFSET);
2706 	unsigned int blocksize;
2707 	size_t crc_offset = 0;
2708 	__u32 crc = 0;
2709 
2710 	if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
2711 		f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
2712 			  F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2713 		return -EINVAL;
2714 	}
2715 
2716 	/* Check checksum_offset and crc in superblock */
2717 	if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
2718 		crc_offset = le32_to_cpu(raw_super->checksum_offset);
2719 		if (crc_offset !=
2720 			offsetof(struct f2fs_super_block, crc)) {
2721 			f2fs_info(sbi, "Invalid SB checksum offset: %zu",
2722 				  crc_offset);
2723 			return -EFSCORRUPTED;
2724 		}
2725 		crc = le32_to_cpu(raw_super->crc);
2726 		if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
2727 			f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
2728 			return -EFSCORRUPTED;
2729 		}
2730 	}
2731 
2732 	/* Currently, support only 4KB page cache size */
2733 	if (F2FS_BLKSIZE != PAGE_SIZE) {
2734 		f2fs_info(sbi, "Invalid page_cache_size (%lu), supports only 4KB",
2735 			  PAGE_SIZE);
2736 		return -EFSCORRUPTED;
2737 	}
2738 
2739 	/* Currently, support only 4KB block size */
2740 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2741 	if (blocksize != F2FS_BLKSIZE) {
2742 		f2fs_info(sbi, "Invalid blocksize (%u), supports only 4KB",
2743 			  blocksize);
2744 		return -EFSCORRUPTED;
2745 	}
2746 
2747 	/* check log blocks per segment */
2748 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2749 		f2fs_info(sbi, "Invalid log blocks per segment (%u)",
2750 			  le32_to_cpu(raw_super->log_blocks_per_seg));
2751 		return -EFSCORRUPTED;
2752 	}
2753 
2754 	/* Currently, support 512/1024/2048/4096 bytes sector size */
2755 	if (le32_to_cpu(raw_super->log_sectorsize) >
2756 				F2FS_MAX_LOG_SECTOR_SIZE ||
2757 		le32_to_cpu(raw_super->log_sectorsize) <
2758 				F2FS_MIN_LOG_SECTOR_SIZE) {
2759 		f2fs_info(sbi, "Invalid log sectorsize (%u)",
2760 			  le32_to_cpu(raw_super->log_sectorsize));
2761 		return -EFSCORRUPTED;
2762 	}
2763 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
2764 		le32_to_cpu(raw_super->log_sectorsize) !=
2765 			F2FS_MAX_LOG_SECTOR_SIZE) {
2766 		f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
2767 			  le32_to_cpu(raw_super->log_sectors_per_block),
2768 			  le32_to_cpu(raw_super->log_sectorsize));
2769 		return -EFSCORRUPTED;
2770 	}
2771 
2772 	segment_count = le32_to_cpu(raw_super->segment_count);
2773 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2774 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2775 	total_sections = le32_to_cpu(raw_super->section_count);
2776 
2777 	/* blocks_per_seg should be 512, given the above check */
2778 	blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2779 
2780 	if (segment_count > F2FS_MAX_SEGMENT ||
2781 				segment_count < F2FS_MIN_SEGMENTS) {
2782 		f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
2783 		return -EFSCORRUPTED;
2784 	}
2785 
2786 	if (total_sections > segment_count ||
2787 			total_sections < F2FS_MIN_SEGMENTS ||
2788 			segs_per_sec > segment_count || !segs_per_sec) {
2789 		f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
2790 			  segment_count, total_sections, segs_per_sec);
2791 		return -EFSCORRUPTED;
2792 	}
2793 
2794 	if ((segment_count / segs_per_sec) < total_sections) {
2795 		f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
2796 			  segment_count, segs_per_sec, total_sections);
2797 		return -EFSCORRUPTED;
2798 	}
2799 
2800 	if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
2801 		f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
2802 			  segment_count, le64_to_cpu(raw_super->block_count));
2803 		return -EFSCORRUPTED;
2804 	}
2805 
2806 	if (RDEV(0).path[0]) {
2807 		block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
2808 		int i = 1;
2809 
2810 		while (i < MAX_DEVICES && RDEV(i).path[0]) {
2811 			dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
2812 			i++;
2813 		}
2814 		if (segment_count != dev_seg_count) {
2815 			f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
2816 					segment_count, dev_seg_count);
2817 			return -EFSCORRUPTED;
2818 		}
2819 	}
2820 
2821 	if (secs_per_zone > total_sections || !secs_per_zone) {
2822 		f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
2823 			  secs_per_zone, total_sections);
2824 		return -EFSCORRUPTED;
2825 	}
2826 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2827 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2828 			(le32_to_cpu(raw_super->extension_count) +
2829 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2830 		f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
2831 			  le32_to_cpu(raw_super->extension_count),
2832 			  raw_super->hot_ext_count,
2833 			  F2FS_MAX_EXTENSION);
2834 		return -EFSCORRUPTED;
2835 	}
2836 
2837 	if (le32_to_cpu(raw_super->cp_payload) >
2838 				(blocks_per_seg - F2FS_CP_PACKS)) {
2839 		f2fs_info(sbi, "Insane cp_payload (%u > %u)",
2840 			  le32_to_cpu(raw_super->cp_payload),
2841 			  blocks_per_seg - F2FS_CP_PACKS);
2842 		return -EFSCORRUPTED;
2843 	}
2844 
2845 	/* check reserved ino info */
2846 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
2847 		le32_to_cpu(raw_super->meta_ino) != 2 ||
2848 		le32_to_cpu(raw_super->root_ino) != 3) {
2849 		f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2850 			  le32_to_cpu(raw_super->node_ino),
2851 			  le32_to_cpu(raw_super->meta_ino),
2852 			  le32_to_cpu(raw_super->root_ino));
2853 		return -EFSCORRUPTED;
2854 	}
2855 
2856 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2857 	if (sanity_check_area_boundary(sbi, bh))
2858 		return -EFSCORRUPTED;
2859 
2860 	return 0;
2861 }
2862 
2863 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
2864 {
2865 	unsigned int total, fsmeta;
2866 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2867 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2868 	unsigned int ovp_segments, reserved_segments;
2869 	unsigned int main_segs, blocks_per_seg;
2870 	unsigned int sit_segs, nat_segs;
2871 	unsigned int sit_bitmap_size, nat_bitmap_size;
2872 	unsigned int log_blocks_per_seg;
2873 	unsigned int segment_count_main;
2874 	unsigned int cp_pack_start_sum, cp_payload;
2875 	block_t user_block_count, valid_user_blocks;
2876 	block_t avail_node_count, valid_node_count;
2877 	int i, j;
2878 
2879 	total = le32_to_cpu(raw_super->segment_count);
2880 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2881 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2882 	fsmeta += sit_segs;
2883 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2884 	fsmeta += nat_segs;
2885 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2886 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2887 
2888 	if (unlikely(fsmeta >= total))
2889 		return 1;
2890 
2891 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2892 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2893 
2894 	if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2895 			ovp_segments == 0 || reserved_segments == 0)) {
2896 		f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
2897 		return 1;
2898 	}
2899 
2900 	user_block_count = le64_to_cpu(ckpt->user_block_count);
2901 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2902 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2903 	if (!user_block_count || user_block_count >=
2904 			segment_count_main << log_blocks_per_seg) {
2905 		f2fs_err(sbi, "Wrong user_block_count: %u",
2906 			 user_block_count);
2907 		return 1;
2908 	}
2909 
2910 	valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
2911 	if (valid_user_blocks > user_block_count) {
2912 		f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
2913 			 valid_user_blocks, user_block_count);
2914 		return 1;
2915 	}
2916 
2917 	valid_node_count = le32_to_cpu(ckpt->valid_node_count);
2918 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
2919 	if (valid_node_count > avail_node_count) {
2920 		f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
2921 			 valid_node_count, avail_node_count);
2922 		return 1;
2923 	}
2924 
2925 	main_segs = le32_to_cpu(raw_super->segment_count_main);
2926 	blocks_per_seg = sbi->blocks_per_seg;
2927 
2928 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2929 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2930 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2931 			return 1;
2932 		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
2933 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2934 				le32_to_cpu(ckpt->cur_node_segno[j])) {
2935 				f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
2936 					 i, j,
2937 					 le32_to_cpu(ckpt->cur_node_segno[i]));
2938 				return 1;
2939 			}
2940 		}
2941 	}
2942 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2943 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2944 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2945 			return 1;
2946 		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
2947 			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
2948 				le32_to_cpu(ckpt->cur_data_segno[j])) {
2949 				f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
2950 					 i, j,
2951 					 le32_to_cpu(ckpt->cur_data_segno[i]));
2952 				return 1;
2953 			}
2954 		}
2955 	}
2956 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2957 		for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
2958 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2959 				le32_to_cpu(ckpt->cur_data_segno[j])) {
2960 				f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
2961 					 i, j,
2962 					 le32_to_cpu(ckpt->cur_node_segno[i]));
2963 				return 1;
2964 			}
2965 		}
2966 	}
2967 
2968 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2969 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2970 
2971 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
2972 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
2973 		f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
2974 			 sit_bitmap_size, nat_bitmap_size);
2975 		return 1;
2976 	}
2977 
2978 	cp_pack_start_sum = __start_sum_addr(sbi);
2979 	cp_payload = __cp_payload(sbi);
2980 	if (cp_pack_start_sum < cp_payload + 1 ||
2981 		cp_pack_start_sum > blocks_per_seg - 1 -
2982 			NR_CURSEG_TYPE) {
2983 		f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
2984 			 cp_pack_start_sum);
2985 		return 1;
2986 	}
2987 
2988 	if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
2989 		le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
2990 		f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
2991 			  "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
2992 			  "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
2993 			  le32_to_cpu(ckpt->checksum_offset));
2994 		return 1;
2995 	}
2996 
2997 	if (unlikely(f2fs_cp_error(sbi))) {
2998 		f2fs_err(sbi, "A bug case: need to run fsck");
2999 		return 1;
3000 	}
3001 	return 0;
3002 }
3003 
3004 static void init_sb_info(struct f2fs_sb_info *sbi)
3005 {
3006 	struct f2fs_super_block *raw_super = sbi->raw_super;
3007 	int i;
3008 
3009 	sbi->log_sectors_per_block =
3010 		le32_to_cpu(raw_super->log_sectors_per_block);
3011 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
3012 	sbi->blocksize = 1 << sbi->log_blocksize;
3013 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3014 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
3015 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3016 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3017 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
3018 	sbi->total_node_count =
3019 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
3020 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
3021 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
3022 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
3023 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
3024 	sbi->cur_victim_sec = NULL_SECNO;
3025 	sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
3026 	sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
3027 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
3028 	sbi->migration_granularity = sbi->segs_per_sec;
3029 
3030 	sbi->dir_level = DEF_DIR_LEVEL;
3031 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
3032 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
3033 	sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
3034 	sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
3035 	sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
3036 	sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
3037 				DEF_UMOUNT_DISCARD_TIMEOUT;
3038 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
3039 
3040 	for (i = 0; i < NR_COUNT_TYPE; i++)
3041 		atomic_set(&sbi->nr_pages[i], 0);
3042 
3043 	for (i = 0; i < META; i++)
3044 		atomic_set(&sbi->wb_sync_req[i], 0);
3045 
3046 	INIT_LIST_HEAD(&sbi->s_list);
3047 	mutex_init(&sbi->umount_mutex);
3048 	init_rwsem(&sbi->io_order_lock);
3049 	spin_lock_init(&sbi->cp_lock);
3050 
3051 	sbi->dirty_device = 0;
3052 	spin_lock_init(&sbi->dev_lock);
3053 
3054 	init_rwsem(&sbi->sb_lock);
3055 	init_rwsem(&sbi->pin_sem);
3056 }
3057 
3058 static int init_percpu_info(struct f2fs_sb_info *sbi)
3059 {
3060 	int err;
3061 
3062 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
3063 	if (err)
3064 		return err;
3065 
3066 	err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
3067 								GFP_KERNEL);
3068 	if (err)
3069 		percpu_counter_destroy(&sbi->alloc_valid_block_count);
3070 
3071 	return err;
3072 }
3073 
3074 #ifdef CONFIG_BLK_DEV_ZONED
3075 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
3076 			       void *data)
3077 {
3078 	struct f2fs_dev_info *dev = data;
3079 
3080 	if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL)
3081 		set_bit(idx, dev->blkz_seq);
3082 	return 0;
3083 }
3084 
3085 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
3086 {
3087 	struct block_device *bdev = FDEV(devi).bdev;
3088 	sector_t nr_sectors = bdev->bd_part->nr_sects;
3089 	int ret;
3090 
3091 	if (!f2fs_sb_has_blkzoned(sbi))
3092 		return 0;
3093 
3094 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3095 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
3096 		return -EINVAL;
3097 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
3098 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
3099 				__ilog2_u32(sbi->blocks_per_blkz))
3100 		return -EINVAL;
3101 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
3102 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
3103 					sbi->log_blocks_per_blkz;
3104 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
3105 		FDEV(devi).nr_blkz++;
3106 
3107 	FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
3108 					BITS_TO_LONGS(FDEV(devi).nr_blkz)
3109 					* sizeof(unsigned long),
3110 					GFP_KERNEL);
3111 	if (!FDEV(devi).blkz_seq)
3112 		return -ENOMEM;
3113 
3114 	/* Get block zones type */
3115 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3116 				  &FDEV(devi));
3117 	if (ret < 0)
3118 		return ret;
3119 
3120 	return 0;
3121 }
3122 #endif
3123 
3124 /*
3125  * Read f2fs raw super block.
3126  * Because we have two copies of super block, so read both of them
3127  * to get the first valid one. If any one of them is broken, we pass
3128  * them recovery flag back to the caller.
3129  */
3130 static int read_raw_super_block(struct f2fs_sb_info *sbi,
3131 			struct f2fs_super_block **raw_super,
3132 			int *valid_super_block, int *recovery)
3133 {
3134 	struct super_block *sb = sbi->sb;
3135 	int block;
3136 	struct buffer_head *bh;
3137 	struct f2fs_super_block *super;
3138 	int err = 0;
3139 
3140 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3141 	if (!super)
3142 		return -ENOMEM;
3143 
3144 	for (block = 0; block < 2; block++) {
3145 		bh = sb_bread(sb, block);
3146 		if (!bh) {
3147 			f2fs_err(sbi, "Unable to read %dth superblock",
3148 				 block + 1);
3149 			err = -EIO;
3150 			*recovery = 1;
3151 			continue;
3152 		}
3153 
3154 		/* sanity checking of raw super */
3155 		err = sanity_check_raw_super(sbi, bh);
3156 		if (err) {
3157 			f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3158 				 block + 1);
3159 			brelse(bh);
3160 			*recovery = 1;
3161 			continue;
3162 		}
3163 
3164 		if (!*raw_super) {
3165 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3166 							sizeof(*super));
3167 			*valid_super_block = block;
3168 			*raw_super = super;
3169 		}
3170 		brelse(bh);
3171 	}
3172 
3173 	/* No valid superblock */
3174 	if (!*raw_super)
3175 		kvfree(super);
3176 	else
3177 		err = 0;
3178 
3179 	return err;
3180 }
3181 
3182 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3183 {
3184 	struct buffer_head *bh;
3185 	__u32 crc = 0;
3186 	int err;
3187 
3188 	if ((recover && f2fs_readonly(sbi->sb)) ||
3189 				bdev_read_only(sbi->sb->s_bdev)) {
3190 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3191 		return -EROFS;
3192 	}
3193 
3194 	/* we should update superblock crc here */
3195 	if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3196 		crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3197 				offsetof(struct f2fs_super_block, crc));
3198 		F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3199 	}
3200 
3201 	/* write back-up superblock first */
3202 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3203 	if (!bh)
3204 		return -EIO;
3205 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3206 	brelse(bh);
3207 
3208 	/* if we are in recovery path, skip writing valid superblock */
3209 	if (recover || err)
3210 		return err;
3211 
3212 	/* write current valid superblock */
3213 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
3214 	if (!bh)
3215 		return -EIO;
3216 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3217 	brelse(bh);
3218 	return err;
3219 }
3220 
3221 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3222 {
3223 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3224 	unsigned int max_devices = MAX_DEVICES;
3225 	int i;
3226 
3227 	/* Initialize single device information */
3228 	if (!RDEV(0).path[0]) {
3229 		if (!bdev_is_zoned(sbi->sb->s_bdev))
3230 			return 0;
3231 		max_devices = 1;
3232 	}
3233 
3234 	/*
3235 	 * Initialize multiple devices information, or single
3236 	 * zoned block device information.
3237 	 */
3238 	sbi->devs = f2fs_kzalloc(sbi,
3239 				 array_size(max_devices,
3240 					    sizeof(struct f2fs_dev_info)),
3241 				 GFP_KERNEL);
3242 	if (!sbi->devs)
3243 		return -ENOMEM;
3244 
3245 	for (i = 0; i < max_devices; i++) {
3246 
3247 		if (i > 0 && !RDEV(i).path[0])
3248 			break;
3249 
3250 		if (max_devices == 1) {
3251 			/* Single zoned block device mount */
3252 			FDEV(0).bdev =
3253 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3254 					sbi->sb->s_mode, sbi->sb->s_type);
3255 		} else {
3256 			/* Multi-device mount */
3257 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3258 			FDEV(i).total_segments =
3259 				le32_to_cpu(RDEV(i).total_segments);
3260 			if (i == 0) {
3261 				FDEV(i).start_blk = 0;
3262 				FDEV(i).end_blk = FDEV(i).start_blk +
3263 				    (FDEV(i).total_segments <<
3264 				    sbi->log_blocks_per_seg) - 1 +
3265 				    le32_to_cpu(raw_super->segment0_blkaddr);
3266 			} else {
3267 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3268 				FDEV(i).end_blk = FDEV(i).start_blk +
3269 					(FDEV(i).total_segments <<
3270 					sbi->log_blocks_per_seg) - 1;
3271 			}
3272 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3273 					sbi->sb->s_mode, sbi->sb->s_type);
3274 		}
3275 		if (IS_ERR(FDEV(i).bdev))
3276 			return PTR_ERR(FDEV(i).bdev);
3277 
3278 		/* to release errored devices */
3279 		sbi->s_ndevs = i + 1;
3280 
3281 #ifdef CONFIG_BLK_DEV_ZONED
3282 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3283 				!f2fs_sb_has_blkzoned(sbi)) {
3284 			f2fs_err(sbi, "Zoned block device feature not enabled\n");
3285 			return -EINVAL;
3286 		}
3287 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3288 			if (init_blkz_info(sbi, i)) {
3289 				f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
3290 				return -EINVAL;
3291 			}
3292 			if (max_devices == 1)
3293 				break;
3294 			f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3295 				  i, FDEV(i).path,
3296 				  FDEV(i).total_segments,
3297 				  FDEV(i).start_blk, FDEV(i).end_blk,
3298 				  bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3299 				  "Host-aware" : "Host-managed");
3300 			continue;
3301 		}
3302 #endif
3303 		f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3304 			  i, FDEV(i).path,
3305 			  FDEV(i).total_segments,
3306 			  FDEV(i).start_blk, FDEV(i).end_blk);
3307 	}
3308 	f2fs_info(sbi,
3309 		  "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3310 	return 0;
3311 }
3312 
3313 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
3314 {
3315 #ifdef CONFIG_UNICODE
3316 	if (f2fs_sb_has_casefold(sbi) && !sbi->s_encoding) {
3317 		const struct f2fs_sb_encodings *encoding_info;
3318 		struct unicode_map *encoding;
3319 		__u16 encoding_flags;
3320 
3321 		if (f2fs_sb_has_encrypt(sbi)) {
3322 			f2fs_err(sbi,
3323 				"Can't mount with encoding and encryption");
3324 			return -EINVAL;
3325 		}
3326 
3327 		if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info,
3328 					  &encoding_flags)) {
3329 			f2fs_err(sbi,
3330 				 "Encoding requested by superblock is unknown");
3331 			return -EINVAL;
3332 		}
3333 
3334 		encoding = utf8_load(encoding_info->version);
3335 		if (IS_ERR(encoding)) {
3336 			f2fs_err(sbi,
3337 				 "can't mount with superblock charset: %s-%s "
3338 				 "not supported by the kernel. flags: 0x%x.",
3339 				 encoding_info->name, encoding_info->version,
3340 				 encoding_flags);
3341 			return PTR_ERR(encoding);
3342 		}
3343 		f2fs_info(sbi, "Using encoding defined by superblock: "
3344 			 "%s-%s with flags 0x%hx", encoding_info->name,
3345 			 encoding_info->version?:"\b", encoding_flags);
3346 
3347 		sbi->s_encoding = encoding;
3348 		sbi->s_encoding_flags = encoding_flags;
3349 		sbi->sb->s_d_op = &f2fs_dentry_ops;
3350 	}
3351 #else
3352 	if (f2fs_sb_has_casefold(sbi)) {
3353 		f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
3354 		return -EINVAL;
3355 	}
3356 #endif
3357 	return 0;
3358 }
3359 
3360 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3361 {
3362 	struct f2fs_sm_info *sm_i = SM_I(sbi);
3363 
3364 	/* adjust parameters according to the volume size */
3365 	if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3366 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3367 		sm_i->dcc_info->discard_granularity = 1;
3368 		sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3369 	}
3370 
3371 	sbi->readdir_ra = 1;
3372 }
3373 
3374 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3375 {
3376 	struct f2fs_sb_info *sbi;
3377 	struct f2fs_super_block *raw_super;
3378 	struct inode *root;
3379 	int err;
3380 	bool skip_recovery = false, need_fsck = false;
3381 	char *options = NULL;
3382 	int recovery, i, valid_super_block;
3383 	struct curseg_info *seg_i;
3384 	int retry_cnt = 1;
3385 
3386 try_onemore:
3387 	err = -EINVAL;
3388 	raw_super = NULL;
3389 	valid_super_block = -1;
3390 	recovery = 0;
3391 
3392 	/* allocate memory for f2fs-specific super block info */
3393 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3394 	if (!sbi)
3395 		return -ENOMEM;
3396 
3397 	sbi->sb = sb;
3398 
3399 	/* Load the checksum driver */
3400 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3401 	if (IS_ERR(sbi->s_chksum_driver)) {
3402 		f2fs_err(sbi, "Cannot load crc32 driver.");
3403 		err = PTR_ERR(sbi->s_chksum_driver);
3404 		sbi->s_chksum_driver = NULL;
3405 		goto free_sbi;
3406 	}
3407 
3408 	/* set a block size */
3409 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3410 		f2fs_err(sbi, "unable to set blocksize");
3411 		goto free_sbi;
3412 	}
3413 
3414 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3415 								&recovery);
3416 	if (err)
3417 		goto free_sbi;
3418 
3419 	sb->s_fs_info = sbi;
3420 	sbi->raw_super = raw_super;
3421 
3422 	/* precompute checksum seed for metadata */
3423 	if (f2fs_sb_has_inode_chksum(sbi))
3424 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3425 						sizeof(raw_super->uuid));
3426 
3427 	/*
3428 	 * The BLKZONED feature indicates that the drive was formatted with
3429 	 * zone alignment optimization. This is optional for host-aware
3430 	 * devices, but mandatory for host-managed zoned block devices.
3431 	 */
3432 #ifndef CONFIG_BLK_DEV_ZONED
3433 	if (f2fs_sb_has_blkzoned(sbi)) {
3434 		f2fs_err(sbi, "Zoned block device support is not enabled");
3435 		err = -EOPNOTSUPP;
3436 		goto free_sb_buf;
3437 	}
3438 #endif
3439 	default_options(sbi);
3440 	/* parse mount options */
3441 	options = kstrdup((const char *)data, GFP_KERNEL);
3442 	if (data && !options) {
3443 		err = -ENOMEM;
3444 		goto free_sb_buf;
3445 	}
3446 
3447 	err = parse_options(sb, options, false);
3448 	if (err)
3449 		goto free_options;
3450 
3451 	sbi->max_file_blocks = max_file_blocks();
3452 	sb->s_maxbytes = sbi->max_file_blocks <<
3453 				le32_to_cpu(raw_super->log_blocksize);
3454 	sb->s_max_links = F2FS_LINK_MAX;
3455 
3456 	err = f2fs_setup_casefold(sbi);
3457 	if (err)
3458 		goto free_options;
3459 
3460 #ifdef CONFIG_QUOTA
3461 	sb->dq_op = &f2fs_quota_operations;
3462 	sb->s_qcop = &f2fs_quotactl_ops;
3463 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3464 
3465 	if (f2fs_sb_has_quota_ino(sbi)) {
3466 		for (i = 0; i < MAXQUOTAS; i++) {
3467 			if (f2fs_qf_ino(sbi->sb, i))
3468 				sbi->nquota_files++;
3469 		}
3470 	}
3471 #endif
3472 
3473 	sb->s_op = &f2fs_sops;
3474 #ifdef CONFIG_FS_ENCRYPTION
3475 	sb->s_cop = &f2fs_cryptops;
3476 #endif
3477 #ifdef CONFIG_FS_VERITY
3478 	sb->s_vop = &f2fs_verityops;
3479 #endif
3480 	sb->s_xattr = f2fs_xattr_handlers;
3481 	sb->s_export_op = &f2fs_export_ops;
3482 	sb->s_magic = F2FS_SUPER_MAGIC;
3483 	sb->s_time_gran = 1;
3484 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3485 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3486 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3487 	sb->s_iflags |= SB_I_CGROUPWB;
3488 
3489 	/* init f2fs-specific super block info */
3490 	sbi->valid_super_block = valid_super_block;
3491 	init_rwsem(&sbi->gc_lock);
3492 	mutex_init(&sbi->writepages);
3493 	mutex_init(&sbi->cp_mutex);
3494 	init_rwsem(&sbi->node_write);
3495 	init_rwsem(&sbi->node_change);
3496 
3497 	/* disallow all the data/node/meta page writes */
3498 	set_sbi_flag(sbi, SBI_POR_DOING);
3499 	spin_lock_init(&sbi->stat_lock);
3500 
3501 	/* init iostat info */
3502 	spin_lock_init(&sbi->iostat_lock);
3503 	sbi->iostat_enable = false;
3504 	sbi->iostat_period_ms = DEFAULT_IOSTAT_PERIOD_MS;
3505 
3506 	for (i = 0; i < NR_PAGE_TYPE; i++) {
3507 		int n = (i == META) ? 1: NR_TEMP_TYPE;
3508 		int j;
3509 
3510 		sbi->write_io[i] =
3511 			f2fs_kmalloc(sbi,
3512 				     array_size(n,
3513 						sizeof(struct f2fs_bio_info)),
3514 				     GFP_KERNEL);
3515 		if (!sbi->write_io[i]) {
3516 			err = -ENOMEM;
3517 			goto free_bio_info;
3518 		}
3519 
3520 		for (j = HOT; j < n; j++) {
3521 			init_rwsem(&sbi->write_io[i][j].io_rwsem);
3522 			sbi->write_io[i][j].sbi = sbi;
3523 			sbi->write_io[i][j].bio = NULL;
3524 			spin_lock_init(&sbi->write_io[i][j].io_lock);
3525 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
3526 			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
3527 			init_rwsem(&sbi->write_io[i][j].bio_list_lock);
3528 		}
3529 	}
3530 
3531 	init_rwsem(&sbi->cp_rwsem);
3532 	init_rwsem(&sbi->quota_sem);
3533 	init_waitqueue_head(&sbi->cp_wait);
3534 	init_sb_info(sbi);
3535 
3536 	err = init_percpu_info(sbi);
3537 	if (err)
3538 		goto free_bio_info;
3539 
3540 	if (F2FS_IO_ALIGNED(sbi)) {
3541 		sbi->write_io_dummy =
3542 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
3543 		if (!sbi->write_io_dummy) {
3544 			err = -ENOMEM;
3545 			goto free_percpu;
3546 		}
3547 	}
3548 
3549 	/* init per sbi slab cache */
3550 	err = f2fs_init_xattr_caches(sbi);
3551 	if (err)
3552 		goto free_io_dummy;
3553 
3554 	/* get an inode for meta space */
3555 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
3556 	if (IS_ERR(sbi->meta_inode)) {
3557 		f2fs_err(sbi, "Failed to read F2FS meta data inode");
3558 		err = PTR_ERR(sbi->meta_inode);
3559 		goto free_xattr_cache;
3560 	}
3561 
3562 	err = f2fs_get_valid_checkpoint(sbi);
3563 	if (err) {
3564 		f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
3565 		goto free_meta_inode;
3566 	}
3567 
3568 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
3569 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3570 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
3571 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3572 		sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
3573 	}
3574 
3575 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
3576 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3577 
3578 	/* Initialize device list */
3579 	err = f2fs_scan_devices(sbi);
3580 	if (err) {
3581 		f2fs_err(sbi, "Failed to find devices");
3582 		goto free_devices;
3583 	}
3584 
3585 	err = f2fs_init_post_read_wq(sbi);
3586 	if (err) {
3587 		f2fs_err(sbi, "Failed to initialize post read workqueue");
3588 		goto free_devices;
3589 	}
3590 
3591 	sbi->total_valid_node_count =
3592 				le32_to_cpu(sbi->ckpt->valid_node_count);
3593 	percpu_counter_set(&sbi->total_valid_inode_count,
3594 				le32_to_cpu(sbi->ckpt->valid_inode_count));
3595 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
3596 	sbi->total_valid_block_count =
3597 				le64_to_cpu(sbi->ckpt->valid_block_count);
3598 	sbi->last_valid_block_count = sbi->total_valid_block_count;
3599 	sbi->reserved_blocks = 0;
3600 	sbi->current_reserved_blocks = 0;
3601 	limit_reserve_root(sbi);
3602 	adjust_unusable_cap_perc(sbi);
3603 
3604 	for (i = 0; i < NR_INODE_TYPE; i++) {
3605 		INIT_LIST_HEAD(&sbi->inode_list[i]);
3606 		spin_lock_init(&sbi->inode_lock[i]);
3607 	}
3608 	mutex_init(&sbi->flush_lock);
3609 
3610 	f2fs_init_extent_cache_info(sbi);
3611 
3612 	f2fs_init_ino_entry_info(sbi);
3613 
3614 	f2fs_init_fsync_node_info(sbi);
3615 
3616 	/* setup f2fs internal modules */
3617 	err = f2fs_build_segment_manager(sbi);
3618 	if (err) {
3619 		f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
3620 			 err);
3621 		goto free_sm;
3622 	}
3623 	err = f2fs_build_node_manager(sbi);
3624 	if (err) {
3625 		f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
3626 			 err);
3627 		goto free_nm;
3628 	}
3629 
3630 	/* For write statistics */
3631 	if (sb->s_bdev->bd_part)
3632 		sbi->sectors_written_start =
3633 			(u64)part_stat_read(sb->s_bdev->bd_part,
3634 					    sectors[STAT_WRITE]);
3635 
3636 	/* Read accumulated write IO statistics if exists */
3637 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
3638 	if (__exist_node_summaries(sbi))
3639 		sbi->kbytes_written =
3640 			le64_to_cpu(seg_i->journal->info.kbytes_written);
3641 
3642 	f2fs_build_gc_manager(sbi);
3643 
3644 	err = f2fs_build_stats(sbi);
3645 	if (err)
3646 		goto free_nm;
3647 
3648 	/* get an inode for node space */
3649 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
3650 	if (IS_ERR(sbi->node_inode)) {
3651 		f2fs_err(sbi, "Failed to read node inode");
3652 		err = PTR_ERR(sbi->node_inode);
3653 		goto free_stats;
3654 	}
3655 
3656 	/* read root inode and dentry */
3657 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
3658 	if (IS_ERR(root)) {
3659 		f2fs_err(sbi, "Failed to read root inode");
3660 		err = PTR_ERR(root);
3661 		goto free_node_inode;
3662 	}
3663 	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
3664 			!root->i_size || !root->i_nlink) {
3665 		iput(root);
3666 		err = -EINVAL;
3667 		goto free_node_inode;
3668 	}
3669 
3670 	sb->s_root = d_make_root(root); /* allocate root dentry */
3671 	if (!sb->s_root) {
3672 		err = -ENOMEM;
3673 		goto free_node_inode;
3674 	}
3675 
3676 	err = f2fs_register_sysfs(sbi);
3677 	if (err)
3678 		goto free_root_inode;
3679 
3680 #ifdef CONFIG_QUOTA
3681 	/* Enable quota usage during mount */
3682 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
3683 		err = f2fs_enable_quotas(sb);
3684 		if (err)
3685 			f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
3686 	}
3687 #endif
3688 	/* if there are any orphan inodes, free them */
3689 	err = f2fs_recover_orphan_inodes(sbi);
3690 	if (err)
3691 		goto free_meta;
3692 
3693 	if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
3694 		goto reset_checkpoint;
3695 
3696 	/* recover fsynced data */
3697 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
3698 			!test_opt(sbi, NORECOVERY)) {
3699 		/*
3700 		 * mount should be failed, when device has readonly mode, and
3701 		 * previous checkpoint was not done by clean system shutdown.
3702 		 */
3703 		if (f2fs_hw_is_readonly(sbi)) {
3704 			if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3705 				err = -EROFS;
3706 				f2fs_err(sbi, "Need to recover fsync data, but write access unavailable");
3707 				goto free_meta;
3708 			}
3709 			f2fs_info(sbi, "write access unavailable, skipping recovery");
3710 			goto reset_checkpoint;
3711 		}
3712 
3713 		if (need_fsck)
3714 			set_sbi_flag(sbi, SBI_NEED_FSCK);
3715 
3716 		if (skip_recovery)
3717 			goto reset_checkpoint;
3718 
3719 		err = f2fs_recover_fsync_data(sbi, false);
3720 		if (err < 0) {
3721 			if (err != -ENOMEM)
3722 				skip_recovery = true;
3723 			need_fsck = true;
3724 			f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
3725 				 err);
3726 			goto free_meta;
3727 		}
3728 	} else {
3729 		err = f2fs_recover_fsync_data(sbi, true);
3730 
3731 		if (!f2fs_readonly(sb) && err > 0) {
3732 			err = -EINVAL;
3733 			f2fs_err(sbi, "Need to recover fsync data");
3734 			goto free_meta;
3735 		}
3736 	}
3737 
3738 	/*
3739 	 * If the f2fs is not readonly and fsync data recovery succeeds,
3740 	 * check zoned block devices' write pointer consistency.
3741 	 */
3742 	if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
3743 		err = f2fs_check_write_pointer(sbi);
3744 		if (err)
3745 			goto free_meta;
3746 	}
3747 
3748 reset_checkpoint:
3749 	/* f2fs_recover_fsync_data() cleared this already */
3750 	clear_sbi_flag(sbi, SBI_POR_DOING);
3751 
3752 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
3753 		err = f2fs_disable_checkpoint(sbi);
3754 		if (err)
3755 			goto sync_free_meta;
3756 	} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
3757 		f2fs_enable_checkpoint(sbi);
3758 	}
3759 
3760 	/*
3761 	 * If filesystem is not mounted as read-only then
3762 	 * do start the gc_thread.
3763 	 */
3764 	if (F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF && !f2fs_readonly(sb)) {
3765 		/* After POR, we can run background GC thread.*/
3766 		err = f2fs_start_gc_thread(sbi);
3767 		if (err)
3768 			goto sync_free_meta;
3769 	}
3770 	kvfree(options);
3771 
3772 	/* recover broken superblock */
3773 	if (recovery) {
3774 		err = f2fs_commit_super(sbi, true);
3775 		f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
3776 			  sbi->valid_super_block ? 1 : 2, err);
3777 	}
3778 
3779 	f2fs_join_shrinker(sbi);
3780 
3781 	f2fs_tuning_parameters(sbi);
3782 
3783 	f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
3784 		    cur_cp_version(F2FS_CKPT(sbi)));
3785 	f2fs_update_time(sbi, CP_TIME);
3786 	f2fs_update_time(sbi, REQ_TIME);
3787 	clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3788 	return 0;
3789 
3790 sync_free_meta:
3791 	/* safe to flush all the data */
3792 	sync_filesystem(sbi->sb);
3793 	retry_cnt = 0;
3794 
3795 free_meta:
3796 #ifdef CONFIG_QUOTA
3797 	f2fs_truncate_quota_inode_pages(sb);
3798 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
3799 		f2fs_quota_off_umount(sbi->sb);
3800 #endif
3801 	/*
3802 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3803 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3804 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3805 	 * falls into an infinite loop in f2fs_sync_meta_pages().
3806 	 */
3807 	truncate_inode_pages_final(META_MAPPING(sbi));
3808 	/* evict some inodes being cached by GC */
3809 	evict_inodes(sb);
3810 	f2fs_unregister_sysfs(sbi);
3811 free_root_inode:
3812 	dput(sb->s_root);
3813 	sb->s_root = NULL;
3814 free_node_inode:
3815 	f2fs_release_ino_entry(sbi, true);
3816 	truncate_inode_pages_final(NODE_MAPPING(sbi));
3817 	iput(sbi->node_inode);
3818 	sbi->node_inode = NULL;
3819 free_stats:
3820 	f2fs_destroy_stats(sbi);
3821 free_nm:
3822 	f2fs_destroy_node_manager(sbi);
3823 free_sm:
3824 	f2fs_destroy_segment_manager(sbi);
3825 	f2fs_destroy_post_read_wq(sbi);
3826 free_devices:
3827 	destroy_device_list(sbi);
3828 	kvfree(sbi->ckpt);
3829 free_meta_inode:
3830 	make_bad_inode(sbi->meta_inode);
3831 	iput(sbi->meta_inode);
3832 	sbi->meta_inode = NULL;
3833 free_xattr_cache:
3834 	f2fs_destroy_xattr_caches(sbi);
3835 free_io_dummy:
3836 	mempool_destroy(sbi->write_io_dummy);
3837 free_percpu:
3838 	destroy_percpu_info(sbi);
3839 free_bio_info:
3840 	for (i = 0; i < NR_PAGE_TYPE; i++)
3841 		kvfree(sbi->write_io[i]);
3842 
3843 #ifdef CONFIG_UNICODE
3844 	utf8_unload(sbi->s_encoding);
3845 #endif
3846 free_options:
3847 #ifdef CONFIG_QUOTA
3848 	for (i = 0; i < MAXQUOTAS; i++)
3849 		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
3850 #endif
3851 	fscrypt_free_dummy_context(&F2FS_OPTION(sbi).dummy_enc_ctx);
3852 	kvfree(options);
3853 free_sb_buf:
3854 	kvfree(raw_super);
3855 free_sbi:
3856 	if (sbi->s_chksum_driver)
3857 		crypto_free_shash(sbi->s_chksum_driver);
3858 	kvfree(sbi);
3859 
3860 	/* give only one another chance */
3861 	if (retry_cnt > 0 && skip_recovery) {
3862 		retry_cnt--;
3863 		shrink_dcache_sb(sb);
3864 		goto try_onemore;
3865 	}
3866 	return err;
3867 }
3868 
3869 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3870 			const char *dev_name, void *data)
3871 {
3872 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3873 }
3874 
3875 static void kill_f2fs_super(struct super_block *sb)
3876 {
3877 	if (sb->s_root) {
3878 		struct f2fs_sb_info *sbi = F2FS_SB(sb);
3879 
3880 		set_sbi_flag(sbi, SBI_IS_CLOSE);
3881 		f2fs_stop_gc_thread(sbi);
3882 		f2fs_stop_discard_thread(sbi);
3883 
3884 		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
3885 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3886 			struct cp_control cpc = {
3887 				.reason = CP_UMOUNT,
3888 			};
3889 			f2fs_write_checkpoint(sbi, &cpc);
3890 		}
3891 
3892 		if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
3893 			sb->s_flags &= ~SB_RDONLY;
3894 	}
3895 	kill_block_super(sb);
3896 }
3897 
3898 static struct file_system_type f2fs_fs_type = {
3899 	.owner		= THIS_MODULE,
3900 	.name		= "f2fs",
3901 	.mount		= f2fs_mount,
3902 	.kill_sb	= kill_f2fs_super,
3903 	.fs_flags	= FS_REQUIRES_DEV,
3904 };
3905 MODULE_ALIAS_FS("f2fs");
3906 
3907 static int __init init_inodecache(void)
3908 {
3909 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3910 			sizeof(struct f2fs_inode_info), 0,
3911 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3912 	if (!f2fs_inode_cachep)
3913 		return -ENOMEM;
3914 	return 0;
3915 }
3916 
3917 static void destroy_inodecache(void)
3918 {
3919 	/*
3920 	 * Make sure all delayed rcu free inodes are flushed before we
3921 	 * destroy cache.
3922 	 */
3923 	rcu_barrier();
3924 	kmem_cache_destroy(f2fs_inode_cachep);
3925 }
3926 
3927 static int __init init_f2fs_fs(void)
3928 {
3929 	int err;
3930 
3931 	if (PAGE_SIZE != F2FS_BLKSIZE) {
3932 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
3933 				PAGE_SIZE, F2FS_BLKSIZE);
3934 		return -EINVAL;
3935 	}
3936 
3937 	f2fs_build_trace_ios();
3938 
3939 	err = init_inodecache();
3940 	if (err)
3941 		goto fail;
3942 	err = f2fs_create_node_manager_caches();
3943 	if (err)
3944 		goto free_inodecache;
3945 	err = f2fs_create_segment_manager_caches();
3946 	if (err)
3947 		goto free_node_manager_caches;
3948 	err = f2fs_create_checkpoint_caches();
3949 	if (err)
3950 		goto free_segment_manager_caches;
3951 	err = f2fs_create_extent_cache();
3952 	if (err)
3953 		goto free_checkpoint_caches;
3954 	err = f2fs_init_sysfs();
3955 	if (err)
3956 		goto free_extent_cache;
3957 	err = register_shrinker(&f2fs_shrinker_info);
3958 	if (err)
3959 		goto free_sysfs;
3960 	err = register_filesystem(&f2fs_fs_type);
3961 	if (err)
3962 		goto free_shrinker;
3963 	f2fs_create_root_stats();
3964 	err = f2fs_init_post_read_processing();
3965 	if (err)
3966 		goto free_root_stats;
3967 	err = f2fs_init_bio_entry_cache();
3968 	if (err)
3969 		goto free_post_read;
3970 	err = f2fs_init_bioset();
3971 	if (err)
3972 		goto free_bio_enrty_cache;
3973 	err = f2fs_init_compress_mempool();
3974 	if (err)
3975 		goto free_bioset;
3976 	return 0;
3977 free_bioset:
3978 	f2fs_destroy_bioset();
3979 free_bio_enrty_cache:
3980 	f2fs_destroy_bio_entry_cache();
3981 free_post_read:
3982 	f2fs_destroy_post_read_processing();
3983 free_root_stats:
3984 	f2fs_destroy_root_stats();
3985 	unregister_filesystem(&f2fs_fs_type);
3986 free_shrinker:
3987 	unregister_shrinker(&f2fs_shrinker_info);
3988 free_sysfs:
3989 	f2fs_exit_sysfs();
3990 free_extent_cache:
3991 	f2fs_destroy_extent_cache();
3992 free_checkpoint_caches:
3993 	f2fs_destroy_checkpoint_caches();
3994 free_segment_manager_caches:
3995 	f2fs_destroy_segment_manager_caches();
3996 free_node_manager_caches:
3997 	f2fs_destroy_node_manager_caches();
3998 free_inodecache:
3999 	destroy_inodecache();
4000 fail:
4001 	return err;
4002 }
4003 
4004 static void __exit exit_f2fs_fs(void)
4005 {
4006 	f2fs_destroy_compress_mempool();
4007 	f2fs_destroy_bioset();
4008 	f2fs_destroy_bio_entry_cache();
4009 	f2fs_destroy_post_read_processing();
4010 	f2fs_destroy_root_stats();
4011 	unregister_filesystem(&f2fs_fs_type);
4012 	unregister_shrinker(&f2fs_shrinker_info);
4013 	f2fs_exit_sysfs();
4014 	f2fs_destroy_extent_cache();
4015 	f2fs_destroy_checkpoint_caches();
4016 	f2fs_destroy_segment_manager_caches();
4017 	f2fs_destroy_node_manager_caches();
4018 	destroy_inodecache();
4019 	f2fs_destroy_trace_ios();
4020 }
4021 
4022 module_init(init_f2fs_fs)
4023 module_exit(exit_f2fs_fs)
4024 
4025 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
4026 MODULE_DESCRIPTION("Flash Friendly File System");
4027 MODULE_LICENSE("GPL");
4028 
4029