1 /* 2 * fs/f2fs/super.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/fs.h> 14 #include <linux/statfs.h> 15 #include <linux/buffer_head.h> 16 #include <linux/backing-dev.h> 17 #include <linux/kthread.h> 18 #include <linux/parser.h> 19 #include <linux/mount.h> 20 #include <linux/seq_file.h> 21 #include <linux/proc_fs.h> 22 #include <linux/random.h> 23 #include <linux/exportfs.h> 24 #include <linux/blkdev.h> 25 #include <linux/f2fs_fs.h> 26 #include <linux/sysfs.h> 27 28 #include "f2fs.h" 29 #include "node.h" 30 #include "segment.h" 31 #include "xattr.h" 32 #include "gc.h" 33 #include "trace.h" 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/f2fs.h> 37 38 static struct proc_dir_entry *f2fs_proc_root; 39 static struct kmem_cache *f2fs_inode_cachep; 40 static struct kset *f2fs_kset; 41 42 enum { 43 Opt_gc_background, 44 Opt_disable_roll_forward, 45 Opt_norecovery, 46 Opt_discard, 47 Opt_noheap, 48 Opt_user_xattr, 49 Opt_nouser_xattr, 50 Opt_acl, 51 Opt_noacl, 52 Opt_active_logs, 53 Opt_disable_ext_identify, 54 Opt_inline_xattr, 55 Opt_inline_data, 56 Opt_inline_dentry, 57 Opt_flush_merge, 58 Opt_nobarrier, 59 Opt_fastboot, 60 Opt_extent_cache, 61 Opt_noinline_data, 62 Opt_err, 63 }; 64 65 static match_table_t f2fs_tokens = { 66 {Opt_gc_background, "background_gc=%s"}, 67 {Opt_disable_roll_forward, "disable_roll_forward"}, 68 {Opt_norecovery, "norecovery"}, 69 {Opt_discard, "discard"}, 70 {Opt_noheap, "no_heap"}, 71 {Opt_user_xattr, "user_xattr"}, 72 {Opt_nouser_xattr, "nouser_xattr"}, 73 {Opt_acl, "acl"}, 74 {Opt_noacl, "noacl"}, 75 {Opt_active_logs, "active_logs=%u"}, 76 {Opt_disable_ext_identify, "disable_ext_identify"}, 77 {Opt_inline_xattr, "inline_xattr"}, 78 {Opt_inline_data, "inline_data"}, 79 {Opt_inline_dentry, "inline_dentry"}, 80 {Opt_flush_merge, "flush_merge"}, 81 {Opt_nobarrier, "nobarrier"}, 82 {Opt_fastboot, "fastboot"}, 83 {Opt_extent_cache, "extent_cache"}, 84 {Opt_noinline_data, "noinline_data"}, 85 {Opt_err, NULL}, 86 }; 87 88 /* Sysfs support for f2fs */ 89 enum { 90 GC_THREAD, /* struct f2fs_gc_thread */ 91 SM_INFO, /* struct f2fs_sm_info */ 92 NM_INFO, /* struct f2fs_nm_info */ 93 F2FS_SBI, /* struct f2fs_sb_info */ 94 }; 95 96 struct f2fs_attr { 97 struct attribute attr; 98 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *); 99 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *, 100 const char *, size_t); 101 int struct_type; 102 int offset; 103 }; 104 105 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type) 106 { 107 if (struct_type == GC_THREAD) 108 return (unsigned char *)sbi->gc_thread; 109 else if (struct_type == SM_INFO) 110 return (unsigned char *)SM_I(sbi); 111 else if (struct_type == NM_INFO) 112 return (unsigned char *)NM_I(sbi); 113 else if (struct_type == F2FS_SBI) 114 return (unsigned char *)sbi; 115 return NULL; 116 } 117 118 static ssize_t f2fs_sbi_show(struct f2fs_attr *a, 119 struct f2fs_sb_info *sbi, char *buf) 120 { 121 unsigned char *ptr = NULL; 122 unsigned int *ui; 123 124 ptr = __struct_ptr(sbi, a->struct_type); 125 if (!ptr) 126 return -EINVAL; 127 128 ui = (unsigned int *)(ptr + a->offset); 129 130 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 131 } 132 133 static ssize_t f2fs_sbi_store(struct f2fs_attr *a, 134 struct f2fs_sb_info *sbi, 135 const char *buf, size_t count) 136 { 137 unsigned char *ptr; 138 unsigned long t; 139 unsigned int *ui; 140 ssize_t ret; 141 142 ptr = __struct_ptr(sbi, a->struct_type); 143 if (!ptr) 144 return -EINVAL; 145 146 ui = (unsigned int *)(ptr + a->offset); 147 148 ret = kstrtoul(skip_spaces(buf), 0, &t); 149 if (ret < 0) 150 return ret; 151 *ui = t; 152 return count; 153 } 154 155 static ssize_t f2fs_attr_show(struct kobject *kobj, 156 struct attribute *attr, char *buf) 157 { 158 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 159 s_kobj); 160 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 161 162 return a->show ? a->show(a, sbi, buf) : 0; 163 } 164 165 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr, 166 const char *buf, size_t len) 167 { 168 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 169 s_kobj); 170 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 171 172 return a->store ? a->store(a, sbi, buf, len) : 0; 173 } 174 175 static void f2fs_sb_release(struct kobject *kobj) 176 { 177 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 178 s_kobj); 179 complete(&sbi->s_kobj_unregister); 180 } 181 182 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \ 183 static struct f2fs_attr f2fs_attr_##_name = { \ 184 .attr = {.name = __stringify(_name), .mode = _mode }, \ 185 .show = _show, \ 186 .store = _store, \ 187 .struct_type = _struct_type, \ 188 .offset = _offset \ 189 } 190 191 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \ 192 F2FS_ATTR_OFFSET(struct_type, name, 0644, \ 193 f2fs_sbi_show, f2fs_sbi_store, \ 194 offsetof(struct struct_name, elname)) 195 196 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time); 197 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time); 198 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time); 199 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle); 200 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments); 201 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards); 202 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections); 203 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy); 204 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util); 205 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks); 206 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh); 207 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search); 208 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level); 209 210 #define ATTR_LIST(name) (&f2fs_attr_##name.attr) 211 static struct attribute *f2fs_attrs[] = { 212 ATTR_LIST(gc_min_sleep_time), 213 ATTR_LIST(gc_max_sleep_time), 214 ATTR_LIST(gc_no_gc_sleep_time), 215 ATTR_LIST(gc_idle), 216 ATTR_LIST(reclaim_segments), 217 ATTR_LIST(max_small_discards), 218 ATTR_LIST(batched_trim_sections), 219 ATTR_LIST(ipu_policy), 220 ATTR_LIST(min_ipu_util), 221 ATTR_LIST(min_fsync_blocks), 222 ATTR_LIST(max_victim_search), 223 ATTR_LIST(dir_level), 224 ATTR_LIST(ram_thresh), 225 NULL, 226 }; 227 228 static const struct sysfs_ops f2fs_attr_ops = { 229 .show = f2fs_attr_show, 230 .store = f2fs_attr_store, 231 }; 232 233 static struct kobj_type f2fs_ktype = { 234 .default_attrs = f2fs_attrs, 235 .sysfs_ops = &f2fs_attr_ops, 236 .release = f2fs_sb_release, 237 }; 238 239 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) 240 { 241 struct va_format vaf; 242 va_list args; 243 244 va_start(args, fmt); 245 vaf.fmt = fmt; 246 vaf.va = &args; 247 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); 248 va_end(args); 249 } 250 251 static void init_once(void *foo) 252 { 253 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 254 255 inode_init_once(&fi->vfs_inode); 256 } 257 258 static int parse_options(struct super_block *sb, char *options) 259 { 260 struct f2fs_sb_info *sbi = F2FS_SB(sb); 261 substring_t args[MAX_OPT_ARGS]; 262 char *p, *name; 263 int arg = 0; 264 265 if (!options) 266 return 0; 267 268 while ((p = strsep(&options, ",")) != NULL) { 269 int token; 270 if (!*p) 271 continue; 272 /* 273 * Initialize args struct so we know whether arg was 274 * found; some options take optional arguments. 275 */ 276 args[0].to = args[0].from = NULL; 277 token = match_token(p, f2fs_tokens, args); 278 279 switch (token) { 280 case Opt_gc_background: 281 name = match_strdup(&args[0]); 282 283 if (!name) 284 return -ENOMEM; 285 if (strlen(name) == 2 && !strncmp(name, "on", 2)) 286 set_opt(sbi, BG_GC); 287 else if (strlen(name) == 3 && !strncmp(name, "off", 3)) 288 clear_opt(sbi, BG_GC); 289 else { 290 kfree(name); 291 return -EINVAL; 292 } 293 kfree(name); 294 break; 295 case Opt_disable_roll_forward: 296 set_opt(sbi, DISABLE_ROLL_FORWARD); 297 break; 298 case Opt_norecovery: 299 /* this option mounts f2fs with ro */ 300 set_opt(sbi, DISABLE_ROLL_FORWARD); 301 if (!f2fs_readonly(sb)) 302 return -EINVAL; 303 break; 304 case Opt_discard: 305 set_opt(sbi, DISCARD); 306 break; 307 case Opt_noheap: 308 set_opt(sbi, NOHEAP); 309 break; 310 #ifdef CONFIG_F2FS_FS_XATTR 311 case Opt_user_xattr: 312 set_opt(sbi, XATTR_USER); 313 break; 314 case Opt_nouser_xattr: 315 clear_opt(sbi, XATTR_USER); 316 break; 317 case Opt_inline_xattr: 318 set_opt(sbi, INLINE_XATTR); 319 break; 320 #else 321 case Opt_user_xattr: 322 f2fs_msg(sb, KERN_INFO, 323 "user_xattr options not supported"); 324 break; 325 case Opt_nouser_xattr: 326 f2fs_msg(sb, KERN_INFO, 327 "nouser_xattr options not supported"); 328 break; 329 case Opt_inline_xattr: 330 f2fs_msg(sb, KERN_INFO, 331 "inline_xattr options not supported"); 332 break; 333 #endif 334 #ifdef CONFIG_F2FS_FS_POSIX_ACL 335 case Opt_acl: 336 set_opt(sbi, POSIX_ACL); 337 break; 338 case Opt_noacl: 339 clear_opt(sbi, POSIX_ACL); 340 break; 341 #else 342 case Opt_acl: 343 f2fs_msg(sb, KERN_INFO, "acl options not supported"); 344 break; 345 case Opt_noacl: 346 f2fs_msg(sb, KERN_INFO, "noacl options not supported"); 347 break; 348 #endif 349 case Opt_active_logs: 350 if (args->from && match_int(args, &arg)) 351 return -EINVAL; 352 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 353 return -EINVAL; 354 sbi->active_logs = arg; 355 break; 356 case Opt_disable_ext_identify: 357 set_opt(sbi, DISABLE_EXT_IDENTIFY); 358 break; 359 case Opt_inline_data: 360 set_opt(sbi, INLINE_DATA); 361 break; 362 case Opt_inline_dentry: 363 set_opt(sbi, INLINE_DENTRY); 364 break; 365 case Opt_flush_merge: 366 set_opt(sbi, FLUSH_MERGE); 367 break; 368 case Opt_nobarrier: 369 set_opt(sbi, NOBARRIER); 370 break; 371 case Opt_fastboot: 372 set_opt(sbi, FASTBOOT); 373 break; 374 case Opt_extent_cache: 375 set_opt(sbi, EXTENT_CACHE); 376 break; 377 case Opt_noinline_data: 378 clear_opt(sbi, INLINE_DATA); 379 break; 380 default: 381 f2fs_msg(sb, KERN_ERR, 382 "Unrecognized mount option \"%s\" or missing value", 383 p); 384 return -EINVAL; 385 } 386 } 387 return 0; 388 } 389 390 static struct inode *f2fs_alloc_inode(struct super_block *sb) 391 { 392 struct f2fs_inode_info *fi; 393 394 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 395 if (!fi) 396 return NULL; 397 398 init_once((void *) fi); 399 400 /* Initialize f2fs-specific inode info */ 401 fi->vfs_inode.i_version = 1; 402 atomic_set(&fi->dirty_pages, 0); 403 fi->i_current_depth = 1; 404 fi->i_advise = 0; 405 rwlock_init(&fi->ext_lock); 406 init_rwsem(&fi->i_sem); 407 INIT_RADIX_TREE(&fi->inmem_root, GFP_NOFS); 408 INIT_LIST_HEAD(&fi->inmem_pages); 409 mutex_init(&fi->inmem_lock); 410 411 set_inode_flag(fi, FI_NEW_INODE); 412 413 if (test_opt(F2FS_SB(sb), INLINE_XATTR)) 414 set_inode_flag(fi, FI_INLINE_XATTR); 415 416 /* Will be used by directory only */ 417 fi->i_dir_level = F2FS_SB(sb)->dir_level; 418 419 return &fi->vfs_inode; 420 } 421 422 static int f2fs_drop_inode(struct inode *inode) 423 { 424 /* 425 * This is to avoid a deadlock condition like below. 426 * writeback_single_inode(inode) 427 * - f2fs_write_data_page 428 * - f2fs_gc -> iput -> evict 429 * - inode_wait_for_writeback(inode) 430 */ 431 if (!inode_unhashed(inode) && inode->i_state & I_SYNC) 432 return 0; 433 return generic_drop_inode(inode); 434 } 435 436 /* 437 * f2fs_dirty_inode() is called from __mark_inode_dirty() 438 * 439 * We should call set_dirty_inode to write the dirty inode through write_inode. 440 */ 441 static void f2fs_dirty_inode(struct inode *inode, int flags) 442 { 443 set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE); 444 } 445 446 static void f2fs_i_callback(struct rcu_head *head) 447 { 448 struct inode *inode = container_of(head, struct inode, i_rcu); 449 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 450 } 451 452 static void f2fs_destroy_inode(struct inode *inode) 453 { 454 call_rcu(&inode->i_rcu, f2fs_i_callback); 455 } 456 457 static void f2fs_put_super(struct super_block *sb) 458 { 459 struct f2fs_sb_info *sbi = F2FS_SB(sb); 460 461 if (sbi->s_proc) { 462 remove_proc_entry("segment_info", sbi->s_proc); 463 remove_proc_entry(sb->s_id, f2fs_proc_root); 464 } 465 kobject_del(&sbi->s_kobj); 466 467 f2fs_destroy_stats(sbi); 468 stop_gc_thread(sbi); 469 470 /* 471 * We don't need to do checkpoint when superblock is clean. 472 * But, the previous checkpoint was not done by umount, it needs to do 473 * clean checkpoint again. 474 */ 475 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 476 !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) { 477 struct cp_control cpc = { 478 .reason = CP_UMOUNT, 479 }; 480 write_checkpoint(sbi, &cpc); 481 } 482 483 /* 484 * normally superblock is clean, so we need to release this. 485 * In addition, EIO will skip do checkpoint, we need this as well. 486 */ 487 release_dirty_inode(sbi); 488 release_discard_addrs(sbi); 489 490 iput(sbi->node_inode); 491 iput(sbi->meta_inode); 492 493 /* destroy f2fs internal modules */ 494 destroy_node_manager(sbi); 495 destroy_segment_manager(sbi); 496 497 kfree(sbi->ckpt); 498 kobject_put(&sbi->s_kobj); 499 wait_for_completion(&sbi->s_kobj_unregister); 500 501 sb->s_fs_info = NULL; 502 brelse(sbi->raw_super_buf); 503 kfree(sbi); 504 } 505 506 int f2fs_sync_fs(struct super_block *sb, int sync) 507 { 508 struct f2fs_sb_info *sbi = F2FS_SB(sb); 509 510 trace_f2fs_sync_fs(sb, sync); 511 512 if (sync) { 513 struct cp_control cpc; 514 515 cpc.reason = __get_cp_reason(sbi); 516 517 mutex_lock(&sbi->gc_mutex); 518 write_checkpoint(sbi, &cpc); 519 mutex_unlock(&sbi->gc_mutex); 520 } else { 521 f2fs_balance_fs(sbi); 522 } 523 f2fs_trace_ios(NULL, NULL, 1); 524 525 return 0; 526 } 527 528 static int f2fs_freeze(struct super_block *sb) 529 { 530 int err; 531 532 if (f2fs_readonly(sb)) 533 return 0; 534 535 err = f2fs_sync_fs(sb, 1); 536 return err; 537 } 538 539 static int f2fs_unfreeze(struct super_block *sb) 540 { 541 return 0; 542 } 543 544 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 545 { 546 struct super_block *sb = dentry->d_sb; 547 struct f2fs_sb_info *sbi = F2FS_SB(sb); 548 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 549 block_t total_count, user_block_count, start_count, ovp_count; 550 551 total_count = le64_to_cpu(sbi->raw_super->block_count); 552 user_block_count = sbi->user_block_count; 553 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 554 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg; 555 buf->f_type = F2FS_SUPER_MAGIC; 556 buf->f_bsize = sbi->blocksize; 557 558 buf->f_blocks = total_count - start_count; 559 buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count; 560 buf->f_bavail = user_block_count - valid_user_blocks(sbi); 561 562 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 563 buf->f_ffree = buf->f_files - valid_inode_count(sbi); 564 565 buf->f_namelen = F2FS_NAME_LEN; 566 buf->f_fsid.val[0] = (u32)id; 567 buf->f_fsid.val[1] = (u32)(id >> 32); 568 569 return 0; 570 } 571 572 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 573 { 574 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 575 576 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) 577 seq_printf(seq, ",background_gc=%s", "on"); 578 else 579 seq_printf(seq, ",background_gc=%s", "off"); 580 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 581 seq_puts(seq, ",disable_roll_forward"); 582 if (test_opt(sbi, DISCARD)) 583 seq_puts(seq, ",discard"); 584 if (test_opt(sbi, NOHEAP)) 585 seq_puts(seq, ",no_heap_alloc"); 586 #ifdef CONFIG_F2FS_FS_XATTR 587 if (test_opt(sbi, XATTR_USER)) 588 seq_puts(seq, ",user_xattr"); 589 else 590 seq_puts(seq, ",nouser_xattr"); 591 if (test_opt(sbi, INLINE_XATTR)) 592 seq_puts(seq, ",inline_xattr"); 593 #endif 594 #ifdef CONFIG_F2FS_FS_POSIX_ACL 595 if (test_opt(sbi, POSIX_ACL)) 596 seq_puts(seq, ",acl"); 597 else 598 seq_puts(seq, ",noacl"); 599 #endif 600 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 601 seq_puts(seq, ",disable_ext_identify"); 602 if (test_opt(sbi, INLINE_DATA)) 603 seq_puts(seq, ",inline_data"); 604 else 605 seq_puts(seq, ",noinline_data"); 606 if (test_opt(sbi, INLINE_DENTRY)) 607 seq_puts(seq, ",inline_dentry"); 608 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 609 seq_puts(seq, ",flush_merge"); 610 if (test_opt(sbi, NOBARRIER)) 611 seq_puts(seq, ",nobarrier"); 612 if (test_opt(sbi, FASTBOOT)) 613 seq_puts(seq, ",fastboot"); 614 if (test_opt(sbi, EXTENT_CACHE)) 615 seq_puts(seq, ",extent_cache"); 616 seq_printf(seq, ",active_logs=%u", sbi->active_logs); 617 618 return 0; 619 } 620 621 static int segment_info_seq_show(struct seq_file *seq, void *offset) 622 { 623 struct super_block *sb = seq->private; 624 struct f2fs_sb_info *sbi = F2FS_SB(sb); 625 unsigned int total_segs = 626 le32_to_cpu(sbi->raw_super->segment_count_main); 627 int i; 628 629 seq_puts(seq, "format: segment_type|valid_blocks\n" 630 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n"); 631 632 for (i = 0; i < total_segs; i++) { 633 struct seg_entry *se = get_seg_entry(sbi, i); 634 635 if ((i % 10) == 0) 636 seq_printf(seq, "%-5d", i); 637 seq_printf(seq, "%d|%-3u", se->type, 638 get_valid_blocks(sbi, i, 1)); 639 if ((i % 10) == 9 || i == (total_segs - 1)) 640 seq_putc(seq, '\n'); 641 else 642 seq_putc(seq, ' '); 643 } 644 645 return 0; 646 } 647 648 static int segment_info_open_fs(struct inode *inode, struct file *file) 649 { 650 return single_open(file, segment_info_seq_show, PDE_DATA(inode)); 651 } 652 653 static const struct file_operations f2fs_seq_segment_info_fops = { 654 .owner = THIS_MODULE, 655 .open = segment_info_open_fs, 656 .read = seq_read, 657 .llseek = seq_lseek, 658 .release = single_release, 659 }; 660 661 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 662 { 663 struct f2fs_sb_info *sbi = F2FS_SB(sb); 664 struct f2fs_mount_info org_mount_opt; 665 int err, active_logs; 666 bool need_restart_gc = false; 667 bool need_stop_gc = false; 668 669 sync_filesystem(sb); 670 671 /* 672 * Save the old mount options in case we 673 * need to restore them. 674 */ 675 org_mount_opt = sbi->mount_opt; 676 active_logs = sbi->active_logs; 677 678 sbi->mount_opt.opt = 0; 679 sbi->active_logs = NR_CURSEG_TYPE; 680 681 /* parse mount options */ 682 err = parse_options(sb, data); 683 if (err) 684 goto restore_opts; 685 686 /* 687 * Previous and new state of filesystem is RO, 688 * so skip checking GC and FLUSH_MERGE conditions. 689 */ 690 if (f2fs_readonly(sb) && (*flags & MS_RDONLY)) 691 goto skip; 692 693 /* 694 * We stop the GC thread if FS is mounted as RO 695 * or if background_gc = off is passed in mount 696 * option. Also sync the filesystem. 697 */ 698 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) { 699 if (sbi->gc_thread) { 700 stop_gc_thread(sbi); 701 f2fs_sync_fs(sb, 1); 702 need_restart_gc = true; 703 } 704 } else if (!sbi->gc_thread) { 705 err = start_gc_thread(sbi); 706 if (err) 707 goto restore_opts; 708 need_stop_gc = true; 709 } 710 711 /* 712 * We stop issue flush thread if FS is mounted as RO 713 * or if flush_merge is not passed in mount option. 714 */ 715 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 716 destroy_flush_cmd_control(sbi); 717 } else if (!SM_I(sbi)->cmd_control_info) { 718 err = create_flush_cmd_control(sbi); 719 if (err) 720 goto restore_gc; 721 } 722 skip: 723 /* Update the POSIXACL Flag */ 724 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 725 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 726 return 0; 727 restore_gc: 728 if (need_restart_gc) { 729 if (start_gc_thread(sbi)) 730 f2fs_msg(sbi->sb, KERN_WARNING, 731 "background gc thread has stopped"); 732 } else if (need_stop_gc) { 733 stop_gc_thread(sbi); 734 } 735 restore_opts: 736 sbi->mount_opt = org_mount_opt; 737 sbi->active_logs = active_logs; 738 return err; 739 } 740 741 static struct super_operations f2fs_sops = { 742 .alloc_inode = f2fs_alloc_inode, 743 .drop_inode = f2fs_drop_inode, 744 .destroy_inode = f2fs_destroy_inode, 745 .write_inode = f2fs_write_inode, 746 .dirty_inode = f2fs_dirty_inode, 747 .show_options = f2fs_show_options, 748 .evict_inode = f2fs_evict_inode, 749 .put_super = f2fs_put_super, 750 .sync_fs = f2fs_sync_fs, 751 .freeze_fs = f2fs_freeze, 752 .unfreeze_fs = f2fs_unfreeze, 753 .statfs = f2fs_statfs, 754 .remount_fs = f2fs_remount, 755 }; 756 757 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 758 u64 ino, u32 generation) 759 { 760 struct f2fs_sb_info *sbi = F2FS_SB(sb); 761 struct inode *inode; 762 763 if (check_nid_range(sbi, ino)) 764 return ERR_PTR(-ESTALE); 765 766 /* 767 * f2fs_iget isn't quite right if the inode is currently unallocated! 768 * However f2fs_iget currently does appropriate checks to handle stale 769 * inodes so everything is OK. 770 */ 771 inode = f2fs_iget(sb, ino); 772 if (IS_ERR(inode)) 773 return ERR_CAST(inode); 774 if (unlikely(generation && inode->i_generation != generation)) { 775 /* we didn't find the right inode.. */ 776 iput(inode); 777 return ERR_PTR(-ESTALE); 778 } 779 return inode; 780 } 781 782 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 783 int fh_len, int fh_type) 784 { 785 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 786 f2fs_nfs_get_inode); 787 } 788 789 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 790 int fh_len, int fh_type) 791 { 792 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 793 f2fs_nfs_get_inode); 794 } 795 796 static const struct export_operations f2fs_export_ops = { 797 .fh_to_dentry = f2fs_fh_to_dentry, 798 .fh_to_parent = f2fs_fh_to_parent, 799 .get_parent = f2fs_get_parent, 800 }; 801 802 static loff_t max_file_size(unsigned bits) 803 { 804 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS); 805 loff_t leaf_count = ADDRS_PER_BLOCK; 806 807 /* two direct node blocks */ 808 result += (leaf_count * 2); 809 810 /* two indirect node blocks */ 811 leaf_count *= NIDS_PER_BLOCK; 812 result += (leaf_count * 2); 813 814 /* one double indirect node block */ 815 leaf_count *= NIDS_PER_BLOCK; 816 result += leaf_count; 817 818 result <<= bits; 819 return result; 820 } 821 822 static int sanity_check_raw_super(struct super_block *sb, 823 struct f2fs_super_block *raw_super) 824 { 825 unsigned int blocksize; 826 827 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { 828 f2fs_msg(sb, KERN_INFO, 829 "Magic Mismatch, valid(0x%x) - read(0x%x)", 830 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 831 return 1; 832 } 833 834 /* Currently, support only 4KB page cache size */ 835 if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) { 836 f2fs_msg(sb, KERN_INFO, 837 "Invalid page_cache_size (%lu), supports only 4KB\n", 838 PAGE_CACHE_SIZE); 839 return 1; 840 } 841 842 /* Currently, support only 4KB block size */ 843 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 844 if (blocksize != F2FS_BLKSIZE) { 845 f2fs_msg(sb, KERN_INFO, 846 "Invalid blocksize (%u), supports only 4KB\n", 847 blocksize); 848 return 1; 849 } 850 851 /* Currently, support 512/1024/2048/4096 bytes sector size */ 852 if (le32_to_cpu(raw_super->log_sectorsize) > 853 F2FS_MAX_LOG_SECTOR_SIZE || 854 le32_to_cpu(raw_super->log_sectorsize) < 855 F2FS_MIN_LOG_SECTOR_SIZE) { 856 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)", 857 le32_to_cpu(raw_super->log_sectorsize)); 858 return 1; 859 } 860 if (le32_to_cpu(raw_super->log_sectors_per_block) + 861 le32_to_cpu(raw_super->log_sectorsize) != 862 F2FS_MAX_LOG_SECTOR_SIZE) { 863 f2fs_msg(sb, KERN_INFO, 864 "Invalid log sectors per block(%u) log sectorsize(%u)", 865 le32_to_cpu(raw_super->log_sectors_per_block), 866 le32_to_cpu(raw_super->log_sectorsize)); 867 return 1; 868 } 869 return 0; 870 } 871 872 static int sanity_check_ckpt(struct f2fs_sb_info *sbi) 873 { 874 unsigned int total, fsmeta; 875 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 876 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 877 878 total = le32_to_cpu(raw_super->segment_count); 879 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 880 fsmeta += le32_to_cpu(raw_super->segment_count_sit); 881 fsmeta += le32_to_cpu(raw_super->segment_count_nat); 882 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 883 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 884 885 if (unlikely(fsmeta >= total)) 886 return 1; 887 888 if (unlikely(f2fs_cp_error(sbi))) { 889 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); 890 return 1; 891 } 892 return 0; 893 } 894 895 static void init_sb_info(struct f2fs_sb_info *sbi) 896 { 897 struct f2fs_super_block *raw_super = sbi->raw_super; 898 int i; 899 900 sbi->log_sectors_per_block = 901 le32_to_cpu(raw_super->log_sectors_per_block); 902 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 903 sbi->blocksize = 1 << sbi->log_blocksize; 904 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 905 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 906 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 907 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 908 sbi->total_sections = le32_to_cpu(raw_super->section_count); 909 sbi->total_node_count = 910 (le32_to_cpu(raw_super->segment_count_nat) / 2) 911 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 912 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 913 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 914 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 915 sbi->cur_victim_sec = NULL_SECNO; 916 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 917 918 for (i = 0; i < NR_COUNT_TYPE; i++) 919 atomic_set(&sbi->nr_pages[i], 0); 920 921 sbi->dir_level = DEF_DIR_LEVEL; 922 clear_sbi_flag(sbi, SBI_NEED_FSCK); 923 } 924 925 /* 926 * Read f2fs raw super block. 927 * Because we have two copies of super block, so read the first one at first, 928 * if the first one is invalid, move to read the second one. 929 */ 930 static int read_raw_super_block(struct super_block *sb, 931 struct f2fs_super_block **raw_super, 932 struct buffer_head **raw_super_buf) 933 { 934 int block = 0; 935 936 retry: 937 *raw_super_buf = sb_bread(sb, block); 938 if (!*raw_super_buf) { 939 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock", 940 block + 1); 941 if (block == 0) { 942 block++; 943 goto retry; 944 } else { 945 return -EIO; 946 } 947 } 948 949 *raw_super = (struct f2fs_super_block *) 950 ((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET); 951 952 /* sanity checking of raw super */ 953 if (sanity_check_raw_super(sb, *raw_super)) { 954 brelse(*raw_super_buf); 955 f2fs_msg(sb, KERN_ERR, 956 "Can't find valid F2FS filesystem in %dth superblock", 957 block + 1); 958 if (block == 0) { 959 block++; 960 goto retry; 961 } else { 962 return -EINVAL; 963 } 964 } 965 966 return 0; 967 } 968 969 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 970 { 971 struct f2fs_sb_info *sbi; 972 struct f2fs_super_block *raw_super = NULL; 973 struct buffer_head *raw_super_buf; 974 struct inode *root; 975 long err = -EINVAL; 976 bool retry = true, need_fsck = false; 977 char *options = NULL; 978 int i; 979 980 try_onemore: 981 /* allocate memory for f2fs-specific super block info */ 982 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 983 if (!sbi) 984 return -ENOMEM; 985 986 /* set a block size */ 987 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 988 f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); 989 goto free_sbi; 990 } 991 992 err = read_raw_super_block(sb, &raw_super, &raw_super_buf); 993 if (err) 994 goto free_sbi; 995 996 sb->s_fs_info = sbi; 997 /* init some FS parameters */ 998 sbi->active_logs = NR_CURSEG_TYPE; 999 1000 set_opt(sbi, BG_GC); 1001 set_opt(sbi, INLINE_DATA); 1002 1003 #ifdef CONFIG_F2FS_FS_XATTR 1004 set_opt(sbi, XATTR_USER); 1005 #endif 1006 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1007 set_opt(sbi, POSIX_ACL); 1008 #endif 1009 /* parse mount options */ 1010 options = kstrdup((const char *)data, GFP_KERNEL); 1011 if (data && !options) { 1012 err = -ENOMEM; 1013 goto free_sb_buf; 1014 } 1015 1016 err = parse_options(sb, options); 1017 if (err) 1018 goto free_options; 1019 1020 sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize)); 1021 sb->s_max_links = F2FS_LINK_MAX; 1022 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 1023 1024 sb->s_op = &f2fs_sops; 1025 sb->s_xattr = f2fs_xattr_handlers; 1026 sb->s_export_op = &f2fs_export_ops; 1027 sb->s_magic = F2FS_SUPER_MAGIC; 1028 sb->s_time_gran = 1; 1029 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 1030 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 1031 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 1032 1033 /* init f2fs-specific super block info */ 1034 sbi->sb = sb; 1035 sbi->raw_super = raw_super; 1036 sbi->raw_super_buf = raw_super_buf; 1037 mutex_init(&sbi->gc_mutex); 1038 mutex_init(&sbi->cp_mutex); 1039 init_rwsem(&sbi->node_write); 1040 clear_sbi_flag(sbi, SBI_POR_DOING); 1041 spin_lock_init(&sbi->stat_lock); 1042 1043 init_rwsem(&sbi->read_io.io_rwsem); 1044 sbi->read_io.sbi = sbi; 1045 sbi->read_io.bio = NULL; 1046 for (i = 0; i < NR_PAGE_TYPE; i++) { 1047 init_rwsem(&sbi->write_io[i].io_rwsem); 1048 sbi->write_io[i].sbi = sbi; 1049 sbi->write_io[i].bio = NULL; 1050 } 1051 1052 init_rwsem(&sbi->cp_rwsem); 1053 init_waitqueue_head(&sbi->cp_wait); 1054 init_sb_info(sbi); 1055 1056 /* get an inode for meta space */ 1057 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 1058 if (IS_ERR(sbi->meta_inode)) { 1059 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); 1060 err = PTR_ERR(sbi->meta_inode); 1061 goto free_options; 1062 } 1063 1064 err = get_valid_checkpoint(sbi); 1065 if (err) { 1066 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); 1067 goto free_meta_inode; 1068 } 1069 1070 /* sanity checking of checkpoint */ 1071 err = -EINVAL; 1072 if (sanity_check_ckpt(sbi)) { 1073 f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint"); 1074 goto free_cp; 1075 } 1076 1077 sbi->total_valid_node_count = 1078 le32_to_cpu(sbi->ckpt->valid_node_count); 1079 sbi->total_valid_inode_count = 1080 le32_to_cpu(sbi->ckpt->valid_inode_count); 1081 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 1082 sbi->total_valid_block_count = 1083 le64_to_cpu(sbi->ckpt->valid_block_count); 1084 sbi->last_valid_block_count = sbi->total_valid_block_count; 1085 sbi->alloc_valid_block_count = 0; 1086 INIT_LIST_HEAD(&sbi->dir_inode_list); 1087 spin_lock_init(&sbi->dir_inode_lock); 1088 1089 init_extent_cache_info(sbi); 1090 1091 init_ino_entry_info(sbi); 1092 1093 /* setup f2fs internal modules */ 1094 err = build_segment_manager(sbi); 1095 if (err) { 1096 f2fs_msg(sb, KERN_ERR, 1097 "Failed to initialize F2FS segment manager"); 1098 goto free_sm; 1099 } 1100 err = build_node_manager(sbi); 1101 if (err) { 1102 f2fs_msg(sb, KERN_ERR, 1103 "Failed to initialize F2FS node manager"); 1104 goto free_nm; 1105 } 1106 1107 build_gc_manager(sbi); 1108 1109 /* get an inode for node space */ 1110 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 1111 if (IS_ERR(sbi->node_inode)) { 1112 f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); 1113 err = PTR_ERR(sbi->node_inode); 1114 goto free_nm; 1115 } 1116 1117 /* if there are nt orphan nodes free them */ 1118 recover_orphan_inodes(sbi); 1119 1120 /* read root inode and dentry */ 1121 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 1122 if (IS_ERR(root)) { 1123 f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); 1124 err = PTR_ERR(root); 1125 goto free_node_inode; 1126 } 1127 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 1128 iput(root); 1129 err = -EINVAL; 1130 goto free_node_inode; 1131 } 1132 1133 sb->s_root = d_make_root(root); /* allocate root dentry */ 1134 if (!sb->s_root) { 1135 err = -ENOMEM; 1136 goto free_root_inode; 1137 } 1138 1139 err = f2fs_build_stats(sbi); 1140 if (err) 1141 goto free_root_inode; 1142 1143 if (f2fs_proc_root) 1144 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root); 1145 1146 if (sbi->s_proc) 1147 proc_create_data("segment_info", S_IRUGO, sbi->s_proc, 1148 &f2fs_seq_segment_info_fops, sb); 1149 1150 if (test_opt(sbi, DISCARD)) { 1151 struct request_queue *q = bdev_get_queue(sb->s_bdev); 1152 if (!blk_queue_discard(q)) 1153 f2fs_msg(sb, KERN_WARNING, 1154 "mounting with \"discard\" option, but " 1155 "the device does not support discard"); 1156 } 1157 1158 sbi->s_kobj.kset = f2fs_kset; 1159 init_completion(&sbi->s_kobj_unregister); 1160 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL, 1161 "%s", sb->s_id); 1162 if (err) 1163 goto free_proc; 1164 1165 /* recover fsynced data */ 1166 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 1167 /* 1168 * mount should be failed, when device has readonly mode, and 1169 * previous checkpoint was not done by clean system shutdown. 1170 */ 1171 if (bdev_read_only(sb->s_bdev) && 1172 !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) { 1173 err = -EROFS; 1174 goto free_kobj; 1175 } 1176 1177 if (need_fsck) 1178 set_sbi_flag(sbi, SBI_NEED_FSCK); 1179 1180 err = recover_fsync_data(sbi); 1181 if (err) { 1182 need_fsck = true; 1183 f2fs_msg(sb, KERN_ERR, 1184 "Cannot recover all fsync data errno=%ld", err); 1185 goto free_kobj; 1186 } 1187 } 1188 1189 /* 1190 * If filesystem is not mounted as read-only then 1191 * do start the gc_thread. 1192 */ 1193 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) { 1194 /* After POR, we can run background GC thread.*/ 1195 err = start_gc_thread(sbi); 1196 if (err) 1197 goto free_kobj; 1198 } 1199 kfree(options); 1200 return 0; 1201 1202 free_kobj: 1203 kobject_del(&sbi->s_kobj); 1204 free_proc: 1205 if (sbi->s_proc) { 1206 remove_proc_entry("segment_info", sbi->s_proc); 1207 remove_proc_entry(sb->s_id, f2fs_proc_root); 1208 } 1209 f2fs_destroy_stats(sbi); 1210 free_root_inode: 1211 dput(sb->s_root); 1212 sb->s_root = NULL; 1213 free_node_inode: 1214 iput(sbi->node_inode); 1215 free_nm: 1216 destroy_node_manager(sbi); 1217 free_sm: 1218 destroy_segment_manager(sbi); 1219 free_cp: 1220 kfree(sbi->ckpt); 1221 free_meta_inode: 1222 make_bad_inode(sbi->meta_inode); 1223 iput(sbi->meta_inode); 1224 free_options: 1225 kfree(options); 1226 free_sb_buf: 1227 brelse(raw_super_buf); 1228 free_sbi: 1229 kfree(sbi); 1230 1231 /* give only one another chance */ 1232 if (retry) { 1233 retry = false; 1234 shrink_dcache_sb(sb); 1235 goto try_onemore; 1236 } 1237 return err; 1238 } 1239 1240 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 1241 const char *dev_name, void *data) 1242 { 1243 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 1244 } 1245 1246 static void kill_f2fs_super(struct super_block *sb) 1247 { 1248 if (sb->s_root) 1249 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE); 1250 kill_block_super(sb); 1251 } 1252 1253 static struct file_system_type f2fs_fs_type = { 1254 .owner = THIS_MODULE, 1255 .name = "f2fs", 1256 .mount = f2fs_mount, 1257 .kill_sb = kill_f2fs_super, 1258 .fs_flags = FS_REQUIRES_DEV, 1259 }; 1260 MODULE_ALIAS_FS("f2fs"); 1261 1262 static int __init init_inodecache(void) 1263 { 1264 f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache", 1265 sizeof(struct f2fs_inode_info)); 1266 if (!f2fs_inode_cachep) 1267 return -ENOMEM; 1268 return 0; 1269 } 1270 1271 static void destroy_inodecache(void) 1272 { 1273 /* 1274 * Make sure all delayed rcu free inodes are flushed before we 1275 * destroy cache. 1276 */ 1277 rcu_barrier(); 1278 kmem_cache_destroy(f2fs_inode_cachep); 1279 } 1280 1281 static int __init init_f2fs_fs(void) 1282 { 1283 int err; 1284 1285 f2fs_build_trace_ios(); 1286 1287 err = init_inodecache(); 1288 if (err) 1289 goto fail; 1290 err = create_node_manager_caches(); 1291 if (err) 1292 goto free_inodecache; 1293 err = create_segment_manager_caches(); 1294 if (err) 1295 goto free_node_manager_caches; 1296 err = create_checkpoint_caches(); 1297 if (err) 1298 goto free_segment_manager_caches; 1299 err = create_extent_cache(); 1300 if (err) 1301 goto free_checkpoint_caches; 1302 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj); 1303 if (!f2fs_kset) { 1304 err = -ENOMEM; 1305 goto free_extent_cache; 1306 } 1307 err = register_filesystem(&f2fs_fs_type); 1308 if (err) 1309 goto free_kset; 1310 f2fs_create_root_stats(); 1311 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL); 1312 return 0; 1313 1314 free_kset: 1315 kset_unregister(f2fs_kset); 1316 free_extent_cache: 1317 destroy_extent_cache(); 1318 free_checkpoint_caches: 1319 destroy_checkpoint_caches(); 1320 free_segment_manager_caches: 1321 destroy_segment_manager_caches(); 1322 free_node_manager_caches: 1323 destroy_node_manager_caches(); 1324 free_inodecache: 1325 destroy_inodecache(); 1326 fail: 1327 return err; 1328 } 1329 1330 static void __exit exit_f2fs_fs(void) 1331 { 1332 remove_proc_entry("fs/f2fs", NULL); 1333 f2fs_destroy_root_stats(); 1334 unregister_filesystem(&f2fs_fs_type); 1335 destroy_extent_cache(); 1336 destroy_checkpoint_caches(); 1337 destroy_segment_manager_caches(); 1338 destroy_node_manager_caches(); 1339 destroy_inodecache(); 1340 kset_unregister(f2fs_kset); 1341 f2fs_destroy_trace_ios(); 1342 } 1343 1344 module_init(init_f2fs_fs) 1345 module_exit(exit_f2fs_fs) 1346 1347 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 1348 MODULE_DESCRIPTION("Flash Friendly File System"); 1349 MODULE_LICENSE("GPL"); 1350