xref: /openbmc/linux/fs/f2fs/super.c (revision 4bce6fce)
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27 
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37 
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41 
42 enum {
43 	Opt_gc_background,
44 	Opt_disable_roll_forward,
45 	Opt_norecovery,
46 	Opt_discard,
47 	Opt_noheap,
48 	Opt_user_xattr,
49 	Opt_nouser_xattr,
50 	Opt_acl,
51 	Opt_noacl,
52 	Opt_active_logs,
53 	Opt_disable_ext_identify,
54 	Opt_inline_xattr,
55 	Opt_inline_data,
56 	Opt_inline_dentry,
57 	Opt_flush_merge,
58 	Opt_nobarrier,
59 	Opt_fastboot,
60 	Opt_extent_cache,
61 	Opt_noinline_data,
62 	Opt_err,
63 };
64 
65 static match_table_t f2fs_tokens = {
66 	{Opt_gc_background, "background_gc=%s"},
67 	{Opt_disable_roll_forward, "disable_roll_forward"},
68 	{Opt_norecovery, "norecovery"},
69 	{Opt_discard, "discard"},
70 	{Opt_noheap, "no_heap"},
71 	{Opt_user_xattr, "user_xattr"},
72 	{Opt_nouser_xattr, "nouser_xattr"},
73 	{Opt_acl, "acl"},
74 	{Opt_noacl, "noacl"},
75 	{Opt_active_logs, "active_logs=%u"},
76 	{Opt_disable_ext_identify, "disable_ext_identify"},
77 	{Opt_inline_xattr, "inline_xattr"},
78 	{Opt_inline_data, "inline_data"},
79 	{Opt_inline_dentry, "inline_dentry"},
80 	{Opt_flush_merge, "flush_merge"},
81 	{Opt_nobarrier, "nobarrier"},
82 	{Opt_fastboot, "fastboot"},
83 	{Opt_extent_cache, "extent_cache"},
84 	{Opt_noinline_data, "noinline_data"},
85 	{Opt_err, NULL},
86 };
87 
88 /* Sysfs support for f2fs */
89 enum {
90 	GC_THREAD,	/* struct f2fs_gc_thread */
91 	SM_INFO,	/* struct f2fs_sm_info */
92 	NM_INFO,	/* struct f2fs_nm_info */
93 	F2FS_SBI,	/* struct f2fs_sb_info */
94 };
95 
96 struct f2fs_attr {
97 	struct attribute attr;
98 	ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
99 	ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
100 			 const char *, size_t);
101 	int struct_type;
102 	int offset;
103 };
104 
105 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
106 {
107 	if (struct_type == GC_THREAD)
108 		return (unsigned char *)sbi->gc_thread;
109 	else if (struct_type == SM_INFO)
110 		return (unsigned char *)SM_I(sbi);
111 	else if (struct_type == NM_INFO)
112 		return (unsigned char *)NM_I(sbi);
113 	else if (struct_type == F2FS_SBI)
114 		return (unsigned char *)sbi;
115 	return NULL;
116 }
117 
118 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
119 			struct f2fs_sb_info *sbi, char *buf)
120 {
121 	unsigned char *ptr = NULL;
122 	unsigned int *ui;
123 
124 	ptr = __struct_ptr(sbi, a->struct_type);
125 	if (!ptr)
126 		return -EINVAL;
127 
128 	ui = (unsigned int *)(ptr + a->offset);
129 
130 	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
131 }
132 
133 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
134 			struct f2fs_sb_info *sbi,
135 			const char *buf, size_t count)
136 {
137 	unsigned char *ptr;
138 	unsigned long t;
139 	unsigned int *ui;
140 	ssize_t ret;
141 
142 	ptr = __struct_ptr(sbi, a->struct_type);
143 	if (!ptr)
144 		return -EINVAL;
145 
146 	ui = (unsigned int *)(ptr + a->offset);
147 
148 	ret = kstrtoul(skip_spaces(buf), 0, &t);
149 	if (ret < 0)
150 		return ret;
151 	*ui = t;
152 	return count;
153 }
154 
155 static ssize_t f2fs_attr_show(struct kobject *kobj,
156 				struct attribute *attr, char *buf)
157 {
158 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
159 								s_kobj);
160 	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
161 
162 	return a->show ? a->show(a, sbi, buf) : 0;
163 }
164 
165 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
166 						const char *buf, size_t len)
167 {
168 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
169 									s_kobj);
170 	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
171 
172 	return a->store ? a->store(a, sbi, buf, len) : 0;
173 }
174 
175 static void f2fs_sb_release(struct kobject *kobj)
176 {
177 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
178 								s_kobj);
179 	complete(&sbi->s_kobj_unregister);
180 }
181 
182 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
183 static struct f2fs_attr f2fs_attr_##_name = {			\
184 	.attr = {.name = __stringify(_name), .mode = _mode },	\
185 	.show	= _show,					\
186 	.store	= _store,					\
187 	.struct_type = _struct_type,				\
188 	.offset = _offset					\
189 }
190 
191 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname)	\
192 	F2FS_ATTR_OFFSET(struct_type, name, 0644,		\
193 		f2fs_sbi_show, f2fs_sbi_store,			\
194 		offsetof(struct struct_name, elname))
195 
196 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
197 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
198 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
199 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
200 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
201 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
202 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
203 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
204 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
205 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
206 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
207 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
208 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
209 
210 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
211 static struct attribute *f2fs_attrs[] = {
212 	ATTR_LIST(gc_min_sleep_time),
213 	ATTR_LIST(gc_max_sleep_time),
214 	ATTR_LIST(gc_no_gc_sleep_time),
215 	ATTR_LIST(gc_idle),
216 	ATTR_LIST(reclaim_segments),
217 	ATTR_LIST(max_small_discards),
218 	ATTR_LIST(batched_trim_sections),
219 	ATTR_LIST(ipu_policy),
220 	ATTR_LIST(min_ipu_util),
221 	ATTR_LIST(min_fsync_blocks),
222 	ATTR_LIST(max_victim_search),
223 	ATTR_LIST(dir_level),
224 	ATTR_LIST(ram_thresh),
225 	NULL,
226 };
227 
228 static const struct sysfs_ops f2fs_attr_ops = {
229 	.show	= f2fs_attr_show,
230 	.store	= f2fs_attr_store,
231 };
232 
233 static struct kobj_type f2fs_ktype = {
234 	.default_attrs	= f2fs_attrs,
235 	.sysfs_ops	= &f2fs_attr_ops,
236 	.release	= f2fs_sb_release,
237 };
238 
239 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
240 {
241 	struct va_format vaf;
242 	va_list args;
243 
244 	va_start(args, fmt);
245 	vaf.fmt = fmt;
246 	vaf.va = &args;
247 	printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
248 	va_end(args);
249 }
250 
251 static void init_once(void *foo)
252 {
253 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
254 
255 	inode_init_once(&fi->vfs_inode);
256 }
257 
258 static int parse_options(struct super_block *sb, char *options)
259 {
260 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
261 	substring_t args[MAX_OPT_ARGS];
262 	char *p, *name;
263 	int arg = 0;
264 
265 	if (!options)
266 		return 0;
267 
268 	while ((p = strsep(&options, ",")) != NULL) {
269 		int token;
270 		if (!*p)
271 			continue;
272 		/*
273 		 * Initialize args struct so we know whether arg was
274 		 * found; some options take optional arguments.
275 		 */
276 		args[0].to = args[0].from = NULL;
277 		token = match_token(p, f2fs_tokens, args);
278 
279 		switch (token) {
280 		case Opt_gc_background:
281 			name = match_strdup(&args[0]);
282 
283 			if (!name)
284 				return -ENOMEM;
285 			if (strlen(name) == 2 && !strncmp(name, "on", 2))
286 				set_opt(sbi, BG_GC);
287 			else if (strlen(name) == 3 && !strncmp(name, "off", 3))
288 				clear_opt(sbi, BG_GC);
289 			else {
290 				kfree(name);
291 				return -EINVAL;
292 			}
293 			kfree(name);
294 			break;
295 		case Opt_disable_roll_forward:
296 			set_opt(sbi, DISABLE_ROLL_FORWARD);
297 			break;
298 		case Opt_norecovery:
299 			/* this option mounts f2fs with ro */
300 			set_opt(sbi, DISABLE_ROLL_FORWARD);
301 			if (!f2fs_readonly(sb))
302 				return -EINVAL;
303 			break;
304 		case Opt_discard:
305 			set_opt(sbi, DISCARD);
306 			break;
307 		case Opt_noheap:
308 			set_opt(sbi, NOHEAP);
309 			break;
310 #ifdef CONFIG_F2FS_FS_XATTR
311 		case Opt_user_xattr:
312 			set_opt(sbi, XATTR_USER);
313 			break;
314 		case Opt_nouser_xattr:
315 			clear_opt(sbi, XATTR_USER);
316 			break;
317 		case Opt_inline_xattr:
318 			set_opt(sbi, INLINE_XATTR);
319 			break;
320 #else
321 		case Opt_user_xattr:
322 			f2fs_msg(sb, KERN_INFO,
323 				"user_xattr options not supported");
324 			break;
325 		case Opt_nouser_xattr:
326 			f2fs_msg(sb, KERN_INFO,
327 				"nouser_xattr options not supported");
328 			break;
329 		case Opt_inline_xattr:
330 			f2fs_msg(sb, KERN_INFO,
331 				"inline_xattr options not supported");
332 			break;
333 #endif
334 #ifdef CONFIG_F2FS_FS_POSIX_ACL
335 		case Opt_acl:
336 			set_opt(sbi, POSIX_ACL);
337 			break;
338 		case Opt_noacl:
339 			clear_opt(sbi, POSIX_ACL);
340 			break;
341 #else
342 		case Opt_acl:
343 			f2fs_msg(sb, KERN_INFO, "acl options not supported");
344 			break;
345 		case Opt_noacl:
346 			f2fs_msg(sb, KERN_INFO, "noacl options not supported");
347 			break;
348 #endif
349 		case Opt_active_logs:
350 			if (args->from && match_int(args, &arg))
351 				return -EINVAL;
352 			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
353 				return -EINVAL;
354 			sbi->active_logs = arg;
355 			break;
356 		case Opt_disable_ext_identify:
357 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
358 			break;
359 		case Opt_inline_data:
360 			set_opt(sbi, INLINE_DATA);
361 			break;
362 		case Opt_inline_dentry:
363 			set_opt(sbi, INLINE_DENTRY);
364 			break;
365 		case Opt_flush_merge:
366 			set_opt(sbi, FLUSH_MERGE);
367 			break;
368 		case Opt_nobarrier:
369 			set_opt(sbi, NOBARRIER);
370 			break;
371 		case Opt_fastboot:
372 			set_opt(sbi, FASTBOOT);
373 			break;
374 		case Opt_extent_cache:
375 			set_opt(sbi, EXTENT_CACHE);
376 			break;
377 		case Opt_noinline_data:
378 			clear_opt(sbi, INLINE_DATA);
379 			break;
380 		default:
381 			f2fs_msg(sb, KERN_ERR,
382 				"Unrecognized mount option \"%s\" or missing value",
383 				p);
384 			return -EINVAL;
385 		}
386 	}
387 	return 0;
388 }
389 
390 static struct inode *f2fs_alloc_inode(struct super_block *sb)
391 {
392 	struct f2fs_inode_info *fi;
393 
394 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
395 	if (!fi)
396 		return NULL;
397 
398 	init_once((void *) fi);
399 
400 	/* Initialize f2fs-specific inode info */
401 	fi->vfs_inode.i_version = 1;
402 	atomic_set(&fi->dirty_pages, 0);
403 	fi->i_current_depth = 1;
404 	fi->i_advise = 0;
405 	rwlock_init(&fi->ext_lock);
406 	init_rwsem(&fi->i_sem);
407 	INIT_RADIX_TREE(&fi->inmem_root, GFP_NOFS);
408 	INIT_LIST_HEAD(&fi->inmem_pages);
409 	mutex_init(&fi->inmem_lock);
410 
411 	set_inode_flag(fi, FI_NEW_INODE);
412 
413 	if (test_opt(F2FS_SB(sb), INLINE_XATTR))
414 		set_inode_flag(fi, FI_INLINE_XATTR);
415 
416 	/* Will be used by directory only */
417 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
418 
419 	return &fi->vfs_inode;
420 }
421 
422 static int f2fs_drop_inode(struct inode *inode)
423 {
424 	/*
425 	 * This is to avoid a deadlock condition like below.
426 	 * writeback_single_inode(inode)
427 	 *  - f2fs_write_data_page
428 	 *    - f2fs_gc -> iput -> evict
429 	 *       - inode_wait_for_writeback(inode)
430 	 */
431 	if (!inode_unhashed(inode) && inode->i_state & I_SYNC)
432 		return 0;
433 	return generic_drop_inode(inode);
434 }
435 
436 /*
437  * f2fs_dirty_inode() is called from __mark_inode_dirty()
438  *
439  * We should call set_dirty_inode to write the dirty inode through write_inode.
440  */
441 static void f2fs_dirty_inode(struct inode *inode, int flags)
442 {
443 	set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
444 }
445 
446 static void f2fs_i_callback(struct rcu_head *head)
447 {
448 	struct inode *inode = container_of(head, struct inode, i_rcu);
449 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
450 }
451 
452 static void f2fs_destroy_inode(struct inode *inode)
453 {
454 	call_rcu(&inode->i_rcu, f2fs_i_callback);
455 }
456 
457 static void f2fs_put_super(struct super_block *sb)
458 {
459 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
460 
461 	if (sbi->s_proc) {
462 		remove_proc_entry("segment_info", sbi->s_proc);
463 		remove_proc_entry(sb->s_id, f2fs_proc_root);
464 	}
465 	kobject_del(&sbi->s_kobj);
466 
467 	f2fs_destroy_stats(sbi);
468 	stop_gc_thread(sbi);
469 
470 	/*
471 	 * We don't need to do checkpoint when superblock is clean.
472 	 * But, the previous checkpoint was not done by umount, it needs to do
473 	 * clean checkpoint again.
474 	 */
475 	if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
476 			!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
477 		struct cp_control cpc = {
478 			.reason = CP_UMOUNT,
479 		};
480 		write_checkpoint(sbi, &cpc);
481 	}
482 
483 	/*
484 	 * normally superblock is clean, so we need to release this.
485 	 * In addition, EIO will skip do checkpoint, we need this as well.
486 	 */
487 	release_dirty_inode(sbi);
488 	release_discard_addrs(sbi);
489 
490 	iput(sbi->node_inode);
491 	iput(sbi->meta_inode);
492 
493 	/* destroy f2fs internal modules */
494 	destroy_node_manager(sbi);
495 	destroy_segment_manager(sbi);
496 
497 	kfree(sbi->ckpt);
498 	kobject_put(&sbi->s_kobj);
499 	wait_for_completion(&sbi->s_kobj_unregister);
500 
501 	sb->s_fs_info = NULL;
502 	brelse(sbi->raw_super_buf);
503 	kfree(sbi);
504 }
505 
506 int f2fs_sync_fs(struct super_block *sb, int sync)
507 {
508 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
509 
510 	trace_f2fs_sync_fs(sb, sync);
511 
512 	if (sync) {
513 		struct cp_control cpc;
514 
515 		cpc.reason = __get_cp_reason(sbi);
516 
517 		mutex_lock(&sbi->gc_mutex);
518 		write_checkpoint(sbi, &cpc);
519 		mutex_unlock(&sbi->gc_mutex);
520 	} else {
521 		f2fs_balance_fs(sbi);
522 	}
523 	f2fs_trace_ios(NULL, NULL, 1);
524 
525 	return 0;
526 }
527 
528 static int f2fs_freeze(struct super_block *sb)
529 {
530 	int err;
531 
532 	if (f2fs_readonly(sb))
533 		return 0;
534 
535 	err = f2fs_sync_fs(sb, 1);
536 	return err;
537 }
538 
539 static int f2fs_unfreeze(struct super_block *sb)
540 {
541 	return 0;
542 }
543 
544 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
545 {
546 	struct super_block *sb = dentry->d_sb;
547 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
548 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
549 	block_t total_count, user_block_count, start_count, ovp_count;
550 
551 	total_count = le64_to_cpu(sbi->raw_super->block_count);
552 	user_block_count = sbi->user_block_count;
553 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
554 	ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
555 	buf->f_type = F2FS_SUPER_MAGIC;
556 	buf->f_bsize = sbi->blocksize;
557 
558 	buf->f_blocks = total_count - start_count;
559 	buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
560 	buf->f_bavail = user_block_count - valid_user_blocks(sbi);
561 
562 	buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
563 	buf->f_ffree = buf->f_files - valid_inode_count(sbi);
564 
565 	buf->f_namelen = F2FS_NAME_LEN;
566 	buf->f_fsid.val[0] = (u32)id;
567 	buf->f_fsid.val[1] = (u32)(id >> 32);
568 
569 	return 0;
570 }
571 
572 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
573 {
574 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
575 
576 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC))
577 		seq_printf(seq, ",background_gc=%s", "on");
578 	else
579 		seq_printf(seq, ",background_gc=%s", "off");
580 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
581 		seq_puts(seq, ",disable_roll_forward");
582 	if (test_opt(sbi, DISCARD))
583 		seq_puts(seq, ",discard");
584 	if (test_opt(sbi, NOHEAP))
585 		seq_puts(seq, ",no_heap_alloc");
586 #ifdef CONFIG_F2FS_FS_XATTR
587 	if (test_opt(sbi, XATTR_USER))
588 		seq_puts(seq, ",user_xattr");
589 	else
590 		seq_puts(seq, ",nouser_xattr");
591 	if (test_opt(sbi, INLINE_XATTR))
592 		seq_puts(seq, ",inline_xattr");
593 #endif
594 #ifdef CONFIG_F2FS_FS_POSIX_ACL
595 	if (test_opt(sbi, POSIX_ACL))
596 		seq_puts(seq, ",acl");
597 	else
598 		seq_puts(seq, ",noacl");
599 #endif
600 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
601 		seq_puts(seq, ",disable_ext_identify");
602 	if (test_opt(sbi, INLINE_DATA))
603 		seq_puts(seq, ",inline_data");
604 	else
605 		seq_puts(seq, ",noinline_data");
606 	if (test_opt(sbi, INLINE_DENTRY))
607 		seq_puts(seq, ",inline_dentry");
608 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
609 		seq_puts(seq, ",flush_merge");
610 	if (test_opt(sbi, NOBARRIER))
611 		seq_puts(seq, ",nobarrier");
612 	if (test_opt(sbi, FASTBOOT))
613 		seq_puts(seq, ",fastboot");
614 	if (test_opt(sbi, EXTENT_CACHE))
615 		seq_puts(seq, ",extent_cache");
616 	seq_printf(seq, ",active_logs=%u", sbi->active_logs);
617 
618 	return 0;
619 }
620 
621 static int segment_info_seq_show(struct seq_file *seq, void *offset)
622 {
623 	struct super_block *sb = seq->private;
624 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
625 	unsigned int total_segs =
626 			le32_to_cpu(sbi->raw_super->segment_count_main);
627 	int i;
628 
629 	seq_puts(seq, "format: segment_type|valid_blocks\n"
630 		"segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
631 
632 	for (i = 0; i < total_segs; i++) {
633 		struct seg_entry *se = get_seg_entry(sbi, i);
634 
635 		if ((i % 10) == 0)
636 			seq_printf(seq, "%-5d", i);
637 		seq_printf(seq, "%d|%-3u", se->type,
638 					get_valid_blocks(sbi, i, 1));
639 		if ((i % 10) == 9 || i == (total_segs - 1))
640 			seq_putc(seq, '\n');
641 		else
642 			seq_putc(seq, ' ');
643 	}
644 
645 	return 0;
646 }
647 
648 static int segment_info_open_fs(struct inode *inode, struct file *file)
649 {
650 	return single_open(file, segment_info_seq_show, PDE_DATA(inode));
651 }
652 
653 static const struct file_operations f2fs_seq_segment_info_fops = {
654 	.owner = THIS_MODULE,
655 	.open = segment_info_open_fs,
656 	.read = seq_read,
657 	.llseek = seq_lseek,
658 	.release = single_release,
659 };
660 
661 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
662 {
663 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
664 	struct f2fs_mount_info org_mount_opt;
665 	int err, active_logs;
666 	bool need_restart_gc = false;
667 	bool need_stop_gc = false;
668 
669 	sync_filesystem(sb);
670 
671 	/*
672 	 * Save the old mount options in case we
673 	 * need to restore them.
674 	 */
675 	org_mount_opt = sbi->mount_opt;
676 	active_logs = sbi->active_logs;
677 
678 	sbi->mount_opt.opt = 0;
679 	sbi->active_logs = NR_CURSEG_TYPE;
680 
681 	/* parse mount options */
682 	err = parse_options(sb, data);
683 	if (err)
684 		goto restore_opts;
685 
686 	/*
687 	 * Previous and new state of filesystem is RO,
688 	 * so skip checking GC and FLUSH_MERGE conditions.
689 	 */
690 	if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
691 		goto skip;
692 
693 	/*
694 	 * We stop the GC thread if FS is mounted as RO
695 	 * or if background_gc = off is passed in mount
696 	 * option. Also sync the filesystem.
697 	 */
698 	if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
699 		if (sbi->gc_thread) {
700 			stop_gc_thread(sbi);
701 			f2fs_sync_fs(sb, 1);
702 			need_restart_gc = true;
703 		}
704 	} else if (!sbi->gc_thread) {
705 		err = start_gc_thread(sbi);
706 		if (err)
707 			goto restore_opts;
708 		need_stop_gc = true;
709 	}
710 
711 	/*
712 	 * We stop issue flush thread if FS is mounted as RO
713 	 * or if flush_merge is not passed in mount option.
714 	 */
715 	if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
716 		destroy_flush_cmd_control(sbi);
717 	} else if (!SM_I(sbi)->cmd_control_info) {
718 		err = create_flush_cmd_control(sbi);
719 		if (err)
720 			goto restore_gc;
721 	}
722 skip:
723 	/* Update the POSIXACL Flag */
724 	 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
725 		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
726 	return 0;
727 restore_gc:
728 	if (need_restart_gc) {
729 		if (start_gc_thread(sbi))
730 			f2fs_msg(sbi->sb, KERN_WARNING,
731 				"background gc thread has stopped");
732 	} else if (need_stop_gc) {
733 		stop_gc_thread(sbi);
734 	}
735 restore_opts:
736 	sbi->mount_opt = org_mount_opt;
737 	sbi->active_logs = active_logs;
738 	return err;
739 }
740 
741 static struct super_operations f2fs_sops = {
742 	.alloc_inode	= f2fs_alloc_inode,
743 	.drop_inode	= f2fs_drop_inode,
744 	.destroy_inode	= f2fs_destroy_inode,
745 	.write_inode	= f2fs_write_inode,
746 	.dirty_inode	= f2fs_dirty_inode,
747 	.show_options	= f2fs_show_options,
748 	.evict_inode	= f2fs_evict_inode,
749 	.put_super	= f2fs_put_super,
750 	.sync_fs	= f2fs_sync_fs,
751 	.freeze_fs	= f2fs_freeze,
752 	.unfreeze_fs	= f2fs_unfreeze,
753 	.statfs		= f2fs_statfs,
754 	.remount_fs	= f2fs_remount,
755 };
756 
757 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
758 		u64 ino, u32 generation)
759 {
760 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
761 	struct inode *inode;
762 
763 	if (check_nid_range(sbi, ino))
764 		return ERR_PTR(-ESTALE);
765 
766 	/*
767 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
768 	 * However f2fs_iget currently does appropriate checks to handle stale
769 	 * inodes so everything is OK.
770 	 */
771 	inode = f2fs_iget(sb, ino);
772 	if (IS_ERR(inode))
773 		return ERR_CAST(inode);
774 	if (unlikely(generation && inode->i_generation != generation)) {
775 		/* we didn't find the right inode.. */
776 		iput(inode);
777 		return ERR_PTR(-ESTALE);
778 	}
779 	return inode;
780 }
781 
782 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
783 		int fh_len, int fh_type)
784 {
785 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
786 				    f2fs_nfs_get_inode);
787 }
788 
789 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
790 		int fh_len, int fh_type)
791 {
792 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
793 				    f2fs_nfs_get_inode);
794 }
795 
796 static const struct export_operations f2fs_export_ops = {
797 	.fh_to_dentry = f2fs_fh_to_dentry,
798 	.fh_to_parent = f2fs_fh_to_parent,
799 	.get_parent = f2fs_get_parent,
800 };
801 
802 static loff_t max_file_size(unsigned bits)
803 {
804 	loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
805 	loff_t leaf_count = ADDRS_PER_BLOCK;
806 
807 	/* two direct node blocks */
808 	result += (leaf_count * 2);
809 
810 	/* two indirect node blocks */
811 	leaf_count *= NIDS_PER_BLOCK;
812 	result += (leaf_count * 2);
813 
814 	/* one double indirect node block */
815 	leaf_count *= NIDS_PER_BLOCK;
816 	result += leaf_count;
817 
818 	result <<= bits;
819 	return result;
820 }
821 
822 static int sanity_check_raw_super(struct super_block *sb,
823 			struct f2fs_super_block *raw_super)
824 {
825 	unsigned int blocksize;
826 
827 	if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
828 		f2fs_msg(sb, KERN_INFO,
829 			"Magic Mismatch, valid(0x%x) - read(0x%x)",
830 			F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
831 		return 1;
832 	}
833 
834 	/* Currently, support only 4KB page cache size */
835 	if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
836 		f2fs_msg(sb, KERN_INFO,
837 			"Invalid page_cache_size (%lu), supports only 4KB\n",
838 			PAGE_CACHE_SIZE);
839 		return 1;
840 	}
841 
842 	/* Currently, support only 4KB block size */
843 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
844 	if (blocksize != F2FS_BLKSIZE) {
845 		f2fs_msg(sb, KERN_INFO,
846 			"Invalid blocksize (%u), supports only 4KB\n",
847 			blocksize);
848 		return 1;
849 	}
850 
851 	/* Currently, support 512/1024/2048/4096 bytes sector size */
852 	if (le32_to_cpu(raw_super->log_sectorsize) >
853 				F2FS_MAX_LOG_SECTOR_SIZE ||
854 		le32_to_cpu(raw_super->log_sectorsize) <
855 				F2FS_MIN_LOG_SECTOR_SIZE) {
856 		f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
857 			le32_to_cpu(raw_super->log_sectorsize));
858 		return 1;
859 	}
860 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
861 		le32_to_cpu(raw_super->log_sectorsize) !=
862 			F2FS_MAX_LOG_SECTOR_SIZE) {
863 		f2fs_msg(sb, KERN_INFO,
864 			"Invalid log sectors per block(%u) log sectorsize(%u)",
865 			le32_to_cpu(raw_super->log_sectors_per_block),
866 			le32_to_cpu(raw_super->log_sectorsize));
867 		return 1;
868 	}
869 	return 0;
870 }
871 
872 static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
873 {
874 	unsigned int total, fsmeta;
875 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
876 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
877 
878 	total = le32_to_cpu(raw_super->segment_count);
879 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
880 	fsmeta += le32_to_cpu(raw_super->segment_count_sit);
881 	fsmeta += le32_to_cpu(raw_super->segment_count_nat);
882 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
883 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
884 
885 	if (unlikely(fsmeta >= total))
886 		return 1;
887 
888 	if (unlikely(f2fs_cp_error(sbi))) {
889 		f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
890 		return 1;
891 	}
892 	return 0;
893 }
894 
895 static void init_sb_info(struct f2fs_sb_info *sbi)
896 {
897 	struct f2fs_super_block *raw_super = sbi->raw_super;
898 	int i;
899 
900 	sbi->log_sectors_per_block =
901 		le32_to_cpu(raw_super->log_sectors_per_block);
902 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
903 	sbi->blocksize = 1 << sbi->log_blocksize;
904 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
905 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
906 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
907 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
908 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
909 	sbi->total_node_count =
910 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
911 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
912 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
913 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
914 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
915 	sbi->cur_victim_sec = NULL_SECNO;
916 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
917 
918 	for (i = 0; i < NR_COUNT_TYPE; i++)
919 		atomic_set(&sbi->nr_pages[i], 0);
920 
921 	sbi->dir_level = DEF_DIR_LEVEL;
922 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
923 }
924 
925 /*
926  * Read f2fs raw super block.
927  * Because we have two copies of super block, so read the first one at first,
928  * if the first one is invalid, move to read the second one.
929  */
930 static int read_raw_super_block(struct super_block *sb,
931 			struct f2fs_super_block **raw_super,
932 			struct buffer_head **raw_super_buf)
933 {
934 	int block = 0;
935 
936 retry:
937 	*raw_super_buf = sb_bread(sb, block);
938 	if (!*raw_super_buf) {
939 		f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
940 				block + 1);
941 		if (block == 0) {
942 			block++;
943 			goto retry;
944 		} else {
945 			return -EIO;
946 		}
947 	}
948 
949 	*raw_super = (struct f2fs_super_block *)
950 		((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET);
951 
952 	/* sanity checking of raw super */
953 	if (sanity_check_raw_super(sb, *raw_super)) {
954 		brelse(*raw_super_buf);
955 		f2fs_msg(sb, KERN_ERR,
956 			"Can't find valid F2FS filesystem in %dth superblock",
957 								block + 1);
958 		if (block == 0) {
959 			block++;
960 			goto retry;
961 		} else {
962 			return -EINVAL;
963 		}
964 	}
965 
966 	return 0;
967 }
968 
969 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
970 {
971 	struct f2fs_sb_info *sbi;
972 	struct f2fs_super_block *raw_super = NULL;
973 	struct buffer_head *raw_super_buf;
974 	struct inode *root;
975 	long err = -EINVAL;
976 	bool retry = true, need_fsck = false;
977 	char *options = NULL;
978 	int i;
979 
980 try_onemore:
981 	/* allocate memory for f2fs-specific super block info */
982 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
983 	if (!sbi)
984 		return -ENOMEM;
985 
986 	/* set a block size */
987 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
988 		f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
989 		goto free_sbi;
990 	}
991 
992 	err = read_raw_super_block(sb, &raw_super, &raw_super_buf);
993 	if (err)
994 		goto free_sbi;
995 
996 	sb->s_fs_info = sbi;
997 	/* init some FS parameters */
998 	sbi->active_logs = NR_CURSEG_TYPE;
999 
1000 	set_opt(sbi, BG_GC);
1001 	set_opt(sbi, INLINE_DATA);
1002 
1003 #ifdef CONFIG_F2FS_FS_XATTR
1004 	set_opt(sbi, XATTR_USER);
1005 #endif
1006 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1007 	set_opt(sbi, POSIX_ACL);
1008 #endif
1009 	/* parse mount options */
1010 	options = kstrdup((const char *)data, GFP_KERNEL);
1011 	if (data && !options) {
1012 		err = -ENOMEM;
1013 		goto free_sb_buf;
1014 	}
1015 
1016 	err = parse_options(sb, options);
1017 	if (err)
1018 		goto free_options;
1019 
1020 	sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
1021 	sb->s_max_links = F2FS_LINK_MAX;
1022 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1023 
1024 	sb->s_op = &f2fs_sops;
1025 	sb->s_xattr = f2fs_xattr_handlers;
1026 	sb->s_export_op = &f2fs_export_ops;
1027 	sb->s_magic = F2FS_SUPER_MAGIC;
1028 	sb->s_time_gran = 1;
1029 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1030 		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1031 	memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1032 
1033 	/* init f2fs-specific super block info */
1034 	sbi->sb = sb;
1035 	sbi->raw_super = raw_super;
1036 	sbi->raw_super_buf = raw_super_buf;
1037 	mutex_init(&sbi->gc_mutex);
1038 	mutex_init(&sbi->cp_mutex);
1039 	init_rwsem(&sbi->node_write);
1040 	clear_sbi_flag(sbi, SBI_POR_DOING);
1041 	spin_lock_init(&sbi->stat_lock);
1042 
1043 	init_rwsem(&sbi->read_io.io_rwsem);
1044 	sbi->read_io.sbi = sbi;
1045 	sbi->read_io.bio = NULL;
1046 	for (i = 0; i < NR_PAGE_TYPE; i++) {
1047 		init_rwsem(&sbi->write_io[i].io_rwsem);
1048 		sbi->write_io[i].sbi = sbi;
1049 		sbi->write_io[i].bio = NULL;
1050 	}
1051 
1052 	init_rwsem(&sbi->cp_rwsem);
1053 	init_waitqueue_head(&sbi->cp_wait);
1054 	init_sb_info(sbi);
1055 
1056 	/* get an inode for meta space */
1057 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1058 	if (IS_ERR(sbi->meta_inode)) {
1059 		f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1060 		err = PTR_ERR(sbi->meta_inode);
1061 		goto free_options;
1062 	}
1063 
1064 	err = get_valid_checkpoint(sbi);
1065 	if (err) {
1066 		f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1067 		goto free_meta_inode;
1068 	}
1069 
1070 	/* sanity checking of checkpoint */
1071 	err = -EINVAL;
1072 	if (sanity_check_ckpt(sbi)) {
1073 		f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
1074 		goto free_cp;
1075 	}
1076 
1077 	sbi->total_valid_node_count =
1078 				le32_to_cpu(sbi->ckpt->valid_node_count);
1079 	sbi->total_valid_inode_count =
1080 				le32_to_cpu(sbi->ckpt->valid_inode_count);
1081 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1082 	sbi->total_valid_block_count =
1083 				le64_to_cpu(sbi->ckpt->valid_block_count);
1084 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1085 	sbi->alloc_valid_block_count = 0;
1086 	INIT_LIST_HEAD(&sbi->dir_inode_list);
1087 	spin_lock_init(&sbi->dir_inode_lock);
1088 
1089 	init_extent_cache_info(sbi);
1090 
1091 	init_ino_entry_info(sbi);
1092 
1093 	/* setup f2fs internal modules */
1094 	err = build_segment_manager(sbi);
1095 	if (err) {
1096 		f2fs_msg(sb, KERN_ERR,
1097 			"Failed to initialize F2FS segment manager");
1098 		goto free_sm;
1099 	}
1100 	err = build_node_manager(sbi);
1101 	if (err) {
1102 		f2fs_msg(sb, KERN_ERR,
1103 			"Failed to initialize F2FS node manager");
1104 		goto free_nm;
1105 	}
1106 
1107 	build_gc_manager(sbi);
1108 
1109 	/* get an inode for node space */
1110 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1111 	if (IS_ERR(sbi->node_inode)) {
1112 		f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1113 		err = PTR_ERR(sbi->node_inode);
1114 		goto free_nm;
1115 	}
1116 
1117 	/* if there are nt orphan nodes free them */
1118 	recover_orphan_inodes(sbi);
1119 
1120 	/* read root inode and dentry */
1121 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1122 	if (IS_ERR(root)) {
1123 		f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1124 		err = PTR_ERR(root);
1125 		goto free_node_inode;
1126 	}
1127 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1128 		iput(root);
1129 		err = -EINVAL;
1130 		goto free_node_inode;
1131 	}
1132 
1133 	sb->s_root = d_make_root(root); /* allocate root dentry */
1134 	if (!sb->s_root) {
1135 		err = -ENOMEM;
1136 		goto free_root_inode;
1137 	}
1138 
1139 	err = f2fs_build_stats(sbi);
1140 	if (err)
1141 		goto free_root_inode;
1142 
1143 	if (f2fs_proc_root)
1144 		sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1145 
1146 	if (sbi->s_proc)
1147 		proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1148 				 &f2fs_seq_segment_info_fops, sb);
1149 
1150 	if (test_opt(sbi, DISCARD)) {
1151 		struct request_queue *q = bdev_get_queue(sb->s_bdev);
1152 		if (!blk_queue_discard(q))
1153 			f2fs_msg(sb, KERN_WARNING,
1154 					"mounting with \"discard\" option, but "
1155 					"the device does not support discard");
1156 	}
1157 
1158 	sbi->s_kobj.kset = f2fs_kset;
1159 	init_completion(&sbi->s_kobj_unregister);
1160 	err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1161 							"%s", sb->s_id);
1162 	if (err)
1163 		goto free_proc;
1164 
1165 	/* recover fsynced data */
1166 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1167 		/*
1168 		 * mount should be failed, when device has readonly mode, and
1169 		 * previous checkpoint was not done by clean system shutdown.
1170 		 */
1171 		if (bdev_read_only(sb->s_bdev) &&
1172 				!is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1173 			err = -EROFS;
1174 			goto free_kobj;
1175 		}
1176 
1177 		if (need_fsck)
1178 			set_sbi_flag(sbi, SBI_NEED_FSCK);
1179 
1180 		err = recover_fsync_data(sbi);
1181 		if (err) {
1182 			need_fsck = true;
1183 			f2fs_msg(sb, KERN_ERR,
1184 				"Cannot recover all fsync data errno=%ld", err);
1185 			goto free_kobj;
1186 		}
1187 	}
1188 
1189 	/*
1190 	 * If filesystem is not mounted as read-only then
1191 	 * do start the gc_thread.
1192 	 */
1193 	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1194 		/* After POR, we can run background GC thread.*/
1195 		err = start_gc_thread(sbi);
1196 		if (err)
1197 			goto free_kobj;
1198 	}
1199 	kfree(options);
1200 	return 0;
1201 
1202 free_kobj:
1203 	kobject_del(&sbi->s_kobj);
1204 free_proc:
1205 	if (sbi->s_proc) {
1206 		remove_proc_entry("segment_info", sbi->s_proc);
1207 		remove_proc_entry(sb->s_id, f2fs_proc_root);
1208 	}
1209 	f2fs_destroy_stats(sbi);
1210 free_root_inode:
1211 	dput(sb->s_root);
1212 	sb->s_root = NULL;
1213 free_node_inode:
1214 	iput(sbi->node_inode);
1215 free_nm:
1216 	destroy_node_manager(sbi);
1217 free_sm:
1218 	destroy_segment_manager(sbi);
1219 free_cp:
1220 	kfree(sbi->ckpt);
1221 free_meta_inode:
1222 	make_bad_inode(sbi->meta_inode);
1223 	iput(sbi->meta_inode);
1224 free_options:
1225 	kfree(options);
1226 free_sb_buf:
1227 	brelse(raw_super_buf);
1228 free_sbi:
1229 	kfree(sbi);
1230 
1231 	/* give only one another chance */
1232 	if (retry) {
1233 		retry = false;
1234 		shrink_dcache_sb(sb);
1235 		goto try_onemore;
1236 	}
1237 	return err;
1238 }
1239 
1240 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1241 			const char *dev_name, void *data)
1242 {
1243 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1244 }
1245 
1246 static void kill_f2fs_super(struct super_block *sb)
1247 {
1248 	if (sb->s_root)
1249 		set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1250 	kill_block_super(sb);
1251 }
1252 
1253 static struct file_system_type f2fs_fs_type = {
1254 	.owner		= THIS_MODULE,
1255 	.name		= "f2fs",
1256 	.mount		= f2fs_mount,
1257 	.kill_sb	= kill_f2fs_super,
1258 	.fs_flags	= FS_REQUIRES_DEV,
1259 };
1260 MODULE_ALIAS_FS("f2fs");
1261 
1262 static int __init init_inodecache(void)
1263 {
1264 	f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
1265 			sizeof(struct f2fs_inode_info));
1266 	if (!f2fs_inode_cachep)
1267 		return -ENOMEM;
1268 	return 0;
1269 }
1270 
1271 static void destroy_inodecache(void)
1272 {
1273 	/*
1274 	 * Make sure all delayed rcu free inodes are flushed before we
1275 	 * destroy cache.
1276 	 */
1277 	rcu_barrier();
1278 	kmem_cache_destroy(f2fs_inode_cachep);
1279 }
1280 
1281 static int __init init_f2fs_fs(void)
1282 {
1283 	int err;
1284 
1285 	f2fs_build_trace_ios();
1286 
1287 	err = init_inodecache();
1288 	if (err)
1289 		goto fail;
1290 	err = create_node_manager_caches();
1291 	if (err)
1292 		goto free_inodecache;
1293 	err = create_segment_manager_caches();
1294 	if (err)
1295 		goto free_node_manager_caches;
1296 	err = create_checkpoint_caches();
1297 	if (err)
1298 		goto free_segment_manager_caches;
1299 	err = create_extent_cache();
1300 	if (err)
1301 		goto free_checkpoint_caches;
1302 	f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1303 	if (!f2fs_kset) {
1304 		err = -ENOMEM;
1305 		goto free_extent_cache;
1306 	}
1307 	err = register_filesystem(&f2fs_fs_type);
1308 	if (err)
1309 		goto free_kset;
1310 	f2fs_create_root_stats();
1311 	f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1312 	return 0;
1313 
1314 free_kset:
1315 	kset_unregister(f2fs_kset);
1316 free_extent_cache:
1317 	destroy_extent_cache();
1318 free_checkpoint_caches:
1319 	destroy_checkpoint_caches();
1320 free_segment_manager_caches:
1321 	destroy_segment_manager_caches();
1322 free_node_manager_caches:
1323 	destroy_node_manager_caches();
1324 free_inodecache:
1325 	destroy_inodecache();
1326 fail:
1327 	return err;
1328 }
1329 
1330 static void __exit exit_f2fs_fs(void)
1331 {
1332 	remove_proc_entry("fs/f2fs", NULL);
1333 	f2fs_destroy_root_stats();
1334 	unregister_filesystem(&f2fs_fs_type);
1335 	destroy_extent_cache();
1336 	destroy_checkpoint_caches();
1337 	destroy_segment_manager_caches();
1338 	destroy_node_manager_caches();
1339 	destroy_inodecache();
1340 	kset_unregister(f2fs_kset);
1341 	f2fs_destroy_trace_ios();
1342 }
1343 
1344 module_init(init_f2fs_fs)
1345 module_exit(exit_f2fs_fs)
1346 
1347 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1348 MODULE_DESCRIPTION("Flash Friendly File System");
1349 MODULE_LICENSE("GPL");
1350