xref: /openbmc/linux/fs/f2fs/super.c (revision 3d745ea5)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/statfs.h>
12 #include <linux/buffer_head.h>
13 #include <linux/backing-dev.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 #include <linux/unicode.h>
27 #include <linux/part_stat.h>
28 
29 #include "f2fs.h"
30 #include "node.h"
31 #include "segment.h"
32 #include "xattr.h"
33 #include "gc.h"
34 #include "trace.h"
35 
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/f2fs.h>
38 
39 static struct kmem_cache *f2fs_inode_cachep;
40 
41 #ifdef CONFIG_F2FS_FAULT_INJECTION
42 
43 const char *f2fs_fault_name[FAULT_MAX] = {
44 	[FAULT_KMALLOC]		= "kmalloc",
45 	[FAULT_KVMALLOC]	= "kvmalloc",
46 	[FAULT_PAGE_ALLOC]	= "page alloc",
47 	[FAULT_PAGE_GET]	= "page get",
48 	[FAULT_ALLOC_BIO]	= "alloc bio",
49 	[FAULT_ALLOC_NID]	= "alloc nid",
50 	[FAULT_ORPHAN]		= "orphan",
51 	[FAULT_BLOCK]		= "no more block",
52 	[FAULT_DIR_DEPTH]	= "too big dir depth",
53 	[FAULT_EVICT_INODE]	= "evict_inode fail",
54 	[FAULT_TRUNCATE]	= "truncate fail",
55 	[FAULT_READ_IO]		= "read IO error",
56 	[FAULT_CHECKPOINT]	= "checkpoint error",
57 	[FAULT_DISCARD]		= "discard error",
58 	[FAULT_WRITE_IO]	= "write IO error",
59 };
60 
61 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
62 							unsigned int type)
63 {
64 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
65 
66 	if (rate) {
67 		atomic_set(&ffi->inject_ops, 0);
68 		ffi->inject_rate = rate;
69 	}
70 
71 	if (type)
72 		ffi->inject_type = type;
73 
74 	if (!rate && !type)
75 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
76 }
77 #endif
78 
79 /* f2fs-wide shrinker description */
80 static struct shrinker f2fs_shrinker_info = {
81 	.scan_objects = f2fs_shrink_scan,
82 	.count_objects = f2fs_shrink_count,
83 	.seeks = DEFAULT_SEEKS,
84 };
85 
86 enum {
87 	Opt_gc_background,
88 	Opt_disable_roll_forward,
89 	Opt_norecovery,
90 	Opt_discard,
91 	Opt_nodiscard,
92 	Opt_noheap,
93 	Opt_heap,
94 	Opt_user_xattr,
95 	Opt_nouser_xattr,
96 	Opt_acl,
97 	Opt_noacl,
98 	Opt_active_logs,
99 	Opt_disable_ext_identify,
100 	Opt_inline_xattr,
101 	Opt_noinline_xattr,
102 	Opt_inline_xattr_size,
103 	Opt_inline_data,
104 	Opt_inline_dentry,
105 	Opt_noinline_dentry,
106 	Opt_flush_merge,
107 	Opt_noflush_merge,
108 	Opt_nobarrier,
109 	Opt_fastboot,
110 	Opt_extent_cache,
111 	Opt_noextent_cache,
112 	Opt_noinline_data,
113 	Opt_data_flush,
114 	Opt_reserve_root,
115 	Opt_resgid,
116 	Opt_resuid,
117 	Opt_mode,
118 	Opt_io_size_bits,
119 	Opt_fault_injection,
120 	Opt_fault_type,
121 	Opt_lazytime,
122 	Opt_nolazytime,
123 	Opt_quota,
124 	Opt_noquota,
125 	Opt_usrquota,
126 	Opt_grpquota,
127 	Opt_prjquota,
128 	Opt_usrjquota,
129 	Opt_grpjquota,
130 	Opt_prjjquota,
131 	Opt_offusrjquota,
132 	Opt_offgrpjquota,
133 	Opt_offprjjquota,
134 	Opt_jqfmt_vfsold,
135 	Opt_jqfmt_vfsv0,
136 	Opt_jqfmt_vfsv1,
137 	Opt_whint,
138 	Opt_alloc,
139 	Opt_fsync,
140 	Opt_test_dummy_encryption,
141 	Opt_checkpoint_disable,
142 	Opt_checkpoint_disable_cap,
143 	Opt_checkpoint_disable_cap_perc,
144 	Opt_checkpoint_enable,
145 	Opt_compress_algorithm,
146 	Opt_compress_log_size,
147 	Opt_compress_extension,
148 	Opt_err,
149 };
150 
151 static match_table_t f2fs_tokens = {
152 	{Opt_gc_background, "background_gc=%s"},
153 	{Opt_disable_roll_forward, "disable_roll_forward"},
154 	{Opt_norecovery, "norecovery"},
155 	{Opt_discard, "discard"},
156 	{Opt_nodiscard, "nodiscard"},
157 	{Opt_noheap, "no_heap"},
158 	{Opt_heap, "heap"},
159 	{Opt_user_xattr, "user_xattr"},
160 	{Opt_nouser_xattr, "nouser_xattr"},
161 	{Opt_acl, "acl"},
162 	{Opt_noacl, "noacl"},
163 	{Opt_active_logs, "active_logs=%u"},
164 	{Opt_disable_ext_identify, "disable_ext_identify"},
165 	{Opt_inline_xattr, "inline_xattr"},
166 	{Opt_noinline_xattr, "noinline_xattr"},
167 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
168 	{Opt_inline_data, "inline_data"},
169 	{Opt_inline_dentry, "inline_dentry"},
170 	{Opt_noinline_dentry, "noinline_dentry"},
171 	{Opt_flush_merge, "flush_merge"},
172 	{Opt_noflush_merge, "noflush_merge"},
173 	{Opt_nobarrier, "nobarrier"},
174 	{Opt_fastboot, "fastboot"},
175 	{Opt_extent_cache, "extent_cache"},
176 	{Opt_noextent_cache, "noextent_cache"},
177 	{Opt_noinline_data, "noinline_data"},
178 	{Opt_data_flush, "data_flush"},
179 	{Opt_reserve_root, "reserve_root=%u"},
180 	{Opt_resgid, "resgid=%u"},
181 	{Opt_resuid, "resuid=%u"},
182 	{Opt_mode, "mode=%s"},
183 	{Opt_io_size_bits, "io_bits=%u"},
184 	{Opt_fault_injection, "fault_injection=%u"},
185 	{Opt_fault_type, "fault_type=%u"},
186 	{Opt_lazytime, "lazytime"},
187 	{Opt_nolazytime, "nolazytime"},
188 	{Opt_quota, "quota"},
189 	{Opt_noquota, "noquota"},
190 	{Opt_usrquota, "usrquota"},
191 	{Opt_grpquota, "grpquota"},
192 	{Opt_prjquota, "prjquota"},
193 	{Opt_usrjquota, "usrjquota=%s"},
194 	{Opt_grpjquota, "grpjquota=%s"},
195 	{Opt_prjjquota, "prjjquota=%s"},
196 	{Opt_offusrjquota, "usrjquota="},
197 	{Opt_offgrpjquota, "grpjquota="},
198 	{Opt_offprjjquota, "prjjquota="},
199 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
200 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
201 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
202 	{Opt_whint, "whint_mode=%s"},
203 	{Opt_alloc, "alloc_mode=%s"},
204 	{Opt_fsync, "fsync_mode=%s"},
205 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
206 	{Opt_checkpoint_disable, "checkpoint=disable"},
207 	{Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
208 	{Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
209 	{Opt_checkpoint_enable, "checkpoint=enable"},
210 	{Opt_compress_algorithm, "compress_algorithm=%s"},
211 	{Opt_compress_log_size, "compress_log_size=%u"},
212 	{Opt_compress_extension, "compress_extension=%s"},
213 	{Opt_err, NULL},
214 };
215 
216 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
217 {
218 	struct va_format vaf;
219 	va_list args;
220 	int level;
221 
222 	va_start(args, fmt);
223 
224 	level = printk_get_level(fmt);
225 	vaf.fmt = printk_skip_level(fmt);
226 	vaf.va = &args;
227 	printk("%c%cF2FS-fs (%s): %pV\n",
228 	       KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
229 
230 	va_end(args);
231 }
232 
233 #ifdef CONFIG_UNICODE
234 static const struct f2fs_sb_encodings {
235 	__u16 magic;
236 	char *name;
237 	char *version;
238 } f2fs_sb_encoding_map[] = {
239 	{F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"},
240 };
241 
242 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb,
243 				 const struct f2fs_sb_encodings **encoding,
244 				 __u16 *flags)
245 {
246 	__u16 magic = le16_to_cpu(sb->s_encoding);
247 	int i;
248 
249 	for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
250 		if (magic == f2fs_sb_encoding_map[i].magic)
251 			break;
252 
253 	if (i >= ARRAY_SIZE(f2fs_sb_encoding_map))
254 		return -EINVAL;
255 
256 	*encoding = &f2fs_sb_encoding_map[i];
257 	*flags = le16_to_cpu(sb->s_encoding_flags);
258 
259 	return 0;
260 }
261 #endif
262 
263 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
264 {
265 	block_t limit = min((sbi->user_block_count << 1) / 1000,
266 			sbi->user_block_count - sbi->reserved_blocks);
267 
268 	/* limit is 0.2% */
269 	if (test_opt(sbi, RESERVE_ROOT) &&
270 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
271 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
272 		f2fs_info(sbi, "Reduce reserved blocks for root = %u",
273 			  F2FS_OPTION(sbi).root_reserved_blocks);
274 	}
275 	if (!test_opt(sbi, RESERVE_ROOT) &&
276 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
277 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
278 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
279 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
280 		f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
281 			  from_kuid_munged(&init_user_ns,
282 					   F2FS_OPTION(sbi).s_resuid),
283 			  from_kgid_munged(&init_user_ns,
284 					   F2FS_OPTION(sbi).s_resgid));
285 }
286 
287 static void init_once(void *foo)
288 {
289 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
290 
291 	inode_init_once(&fi->vfs_inode);
292 }
293 
294 #ifdef CONFIG_QUOTA
295 static const char * const quotatypes[] = INITQFNAMES;
296 #define QTYPE2NAME(t) (quotatypes[t])
297 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
298 							substring_t *args)
299 {
300 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
301 	char *qname;
302 	int ret = -EINVAL;
303 
304 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
305 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
306 		return -EINVAL;
307 	}
308 	if (f2fs_sb_has_quota_ino(sbi)) {
309 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
310 		return 0;
311 	}
312 
313 	qname = match_strdup(args);
314 	if (!qname) {
315 		f2fs_err(sbi, "Not enough memory for storing quotafile name");
316 		return -ENOMEM;
317 	}
318 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
319 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
320 			ret = 0;
321 		else
322 			f2fs_err(sbi, "%s quota file already specified",
323 				 QTYPE2NAME(qtype));
324 		goto errout;
325 	}
326 	if (strchr(qname, '/')) {
327 		f2fs_err(sbi, "quotafile must be on filesystem root");
328 		goto errout;
329 	}
330 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
331 	set_opt(sbi, QUOTA);
332 	return 0;
333 errout:
334 	kvfree(qname);
335 	return ret;
336 }
337 
338 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
339 {
340 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
341 
342 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
343 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
344 		return -EINVAL;
345 	}
346 	kvfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
347 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
348 	return 0;
349 }
350 
351 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
352 {
353 	/*
354 	 * We do the test below only for project quotas. 'usrquota' and
355 	 * 'grpquota' mount options are allowed even without quota feature
356 	 * to support legacy quotas in quota files.
357 	 */
358 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
359 		f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
360 		return -1;
361 	}
362 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
363 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
364 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
365 		if (test_opt(sbi, USRQUOTA) &&
366 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
367 			clear_opt(sbi, USRQUOTA);
368 
369 		if (test_opt(sbi, GRPQUOTA) &&
370 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
371 			clear_opt(sbi, GRPQUOTA);
372 
373 		if (test_opt(sbi, PRJQUOTA) &&
374 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
375 			clear_opt(sbi, PRJQUOTA);
376 
377 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
378 				test_opt(sbi, PRJQUOTA)) {
379 			f2fs_err(sbi, "old and new quota format mixing");
380 			return -1;
381 		}
382 
383 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
384 			f2fs_err(sbi, "journaled quota format not specified");
385 			return -1;
386 		}
387 	}
388 
389 	if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
390 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
391 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
392 	}
393 	return 0;
394 }
395 #endif
396 
397 static int parse_options(struct super_block *sb, char *options)
398 {
399 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
400 	substring_t args[MAX_OPT_ARGS];
401 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
402 	char *p, *name;
403 	int arg = 0, ext_cnt;
404 	kuid_t uid;
405 	kgid_t gid;
406 #ifdef CONFIG_QUOTA
407 	int ret;
408 #endif
409 
410 	if (!options)
411 		return 0;
412 
413 	while ((p = strsep(&options, ",")) != NULL) {
414 		int token;
415 		if (!*p)
416 			continue;
417 		/*
418 		 * Initialize args struct so we know whether arg was
419 		 * found; some options take optional arguments.
420 		 */
421 		args[0].to = args[0].from = NULL;
422 		token = match_token(p, f2fs_tokens, args);
423 
424 		switch (token) {
425 		case Opt_gc_background:
426 			name = match_strdup(&args[0]);
427 
428 			if (!name)
429 				return -ENOMEM;
430 			if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
431 				set_opt(sbi, BG_GC);
432 				clear_opt(sbi, FORCE_FG_GC);
433 			} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
434 				clear_opt(sbi, BG_GC);
435 				clear_opt(sbi, FORCE_FG_GC);
436 			} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
437 				set_opt(sbi, BG_GC);
438 				set_opt(sbi, FORCE_FG_GC);
439 			} else {
440 				kvfree(name);
441 				return -EINVAL;
442 			}
443 			kvfree(name);
444 			break;
445 		case Opt_disable_roll_forward:
446 			set_opt(sbi, DISABLE_ROLL_FORWARD);
447 			break;
448 		case Opt_norecovery:
449 			/* this option mounts f2fs with ro */
450 			set_opt(sbi, DISABLE_ROLL_FORWARD);
451 			if (!f2fs_readonly(sb))
452 				return -EINVAL;
453 			break;
454 		case Opt_discard:
455 			set_opt(sbi, DISCARD);
456 			break;
457 		case Opt_nodiscard:
458 			if (f2fs_sb_has_blkzoned(sbi)) {
459 				f2fs_warn(sbi, "discard is required for zoned block devices");
460 				return -EINVAL;
461 			}
462 			clear_opt(sbi, DISCARD);
463 			break;
464 		case Opt_noheap:
465 			set_opt(sbi, NOHEAP);
466 			break;
467 		case Opt_heap:
468 			clear_opt(sbi, NOHEAP);
469 			break;
470 #ifdef CONFIG_F2FS_FS_XATTR
471 		case Opt_user_xattr:
472 			set_opt(sbi, XATTR_USER);
473 			break;
474 		case Opt_nouser_xattr:
475 			clear_opt(sbi, XATTR_USER);
476 			break;
477 		case Opt_inline_xattr:
478 			set_opt(sbi, INLINE_XATTR);
479 			break;
480 		case Opt_noinline_xattr:
481 			clear_opt(sbi, INLINE_XATTR);
482 			break;
483 		case Opt_inline_xattr_size:
484 			if (args->from && match_int(args, &arg))
485 				return -EINVAL;
486 			set_opt(sbi, INLINE_XATTR_SIZE);
487 			F2FS_OPTION(sbi).inline_xattr_size = arg;
488 			break;
489 #else
490 		case Opt_user_xattr:
491 			f2fs_info(sbi, "user_xattr options not supported");
492 			break;
493 		case Opt_nouser_xattr:
494 			f2fs_info(sbi, "nouser_xattr options not supported");
495 			break;
496 		case Opt_inline_xattr:
497 			f2fs_info(sbi, "inline_xattr options not supported");
498 			break;
499 		case Opt_noinline_xattr:
500 			f2fs_info(sbi, "noinline_xattr options not supported");
501 			break;
502 #endif
503 #ifdef CONFIG_F2FS_FS_POSIX_ACL
504 		case Opt_acl:
505 			set_opt(sbi, POSIX_ACL);
506 			break;
507 		case Opt_noacl:
508 			clear_opt(sbi, POSIX_ACL);
509 			break;
510 #else
511 		case Opt_acl:
512 			f2fs_info(sbi, "acl options not supported");
513 			break;
514 		case Opt_noacl:
515 			f2fs_info(sbi, "noacl options not supported");
516 			break;
517 #endif
518 		case Opt_active_logs:
519 			if (args->from && match_int(args, &arg))
520 				return -EINVAL;
521 			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
522 				return -EINVAL;
523 			F2FS_OPTION(sbi).active_logs = arg;
524 			break;
525 		case Opt_disable_ext_identify:
526 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
527 			break;
528 		case Opt_inline_data:
529 			set_opt(sbi, INLINE_DATA);
530 			break;
531 		case Opt_inline_dentry:
532 			set_opt(sbi, INLINE_DENTRY);
533 			break;
534 		case Opt_noinline_dentry:
535 			clear_opt(sbi, INLINE_DENTRY);
536 			break;
537 		case Opt_flush_merge:
538 			set_opt(sbi, FLUSH_MERGE);
539 			break;
540 		case Opt_noflush_merge:
541 			clear_opt(sbi, FLUSH_MERGE);
542 			break;
543 		case Opt_nobarrier:
544 			set_opt(sbi, NOBARRIER);
545 			break;
546 		case Opt_fastboot:
547 			set_opt(sbi, FASTBOOT);
548 			break;
549 		case Opt_extent_cache:
550 			set_opt(sbi, EXTENT_CACHE);
551 			break;
552 		case Opt_noextent_cache:
553 			clear_opt(sbi, EXTENT_CACHE);
554 			break;
555 		case Opt_noinline_data:
556 			clear_opt(sbi, INLINE_DATA);
557 			break;
558 		case Opt_data_flush:
559 			set_opt(sbi, DATA_FLUSH);
560 			break;
561 		case Opt_reserve_root:
562 			if (args->from && match_int(args, &arg))
563 				return -EINVAL;
564 			if (test_opt(sbi, RESERVE_ROOT)) {
565 				f2fs_info(sbi, "Preserve previous reserve_root=%u",
566 					  F2FS_OPTION(sbi).root_reserved_blocks);
567 			} else {
568 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
569 				set_opt(sbi, RESERVE_ROOT);
570 			}
571 			break;
572 		case Opt_resuid:
573 			if (args->from && match_int(args, &arg))
574 				return -EINVAL;
575 			uid = make_kuid(current_user_ns(), arg);
576 			if (!uid_valid(uid)) {
577 				f2fs_err(sbi, "Invalid uid value %d", arg);
578 				return -EINVAL;
579 			}
580 			F2FS_OPTION(sbi).s_resuid = uid;
581 			break;
582 		case Opt_resgid:
583 			if (args->from && match_int(args, &arg))
584 				return -EINVAL;
585 			gid = make_kgid(current_user_ns(), arg);
586 			if (!gid_valid(gid)) {
587 				f2fs_err(sbi, "Invalid gid value %d", arg);
588 				return -EINVAL;
589 			}
590 			F2FS_OPTION(sbi).s_resgid = gid;
591 			break;
592 		case Opt_mode:
593 			name = match_strdup(&args[0]);
594 
595 			if (!name)
596 				return -ENOMEM;
597 			if (strlen(name) == 8 &&
598 					!strncmp(name, "adaptive", 8)) {
599 				if (f2fs_sb_has_blkzoned(sbi)) {
600 					f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
601 					kvfree(name);
602 					return -EINVAL;
603 				}
604 				set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
605 			} else if (strlen(name) == 3 &&
606 					!strncmp(name, "lfs", 3)) {
607 				set_opt_mode(sbi, F2FS_MOUNT_LFS);
608 			} else {
609 				kvfree(name);
610 				return -EINVAL;
611 			}
612 			kvfree(name);
613 			break;
614 		case Opt_io_size_bits:
615 			if (args->from && match_int(args, &arg))
616 				return -EINVAL;
617 			if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) {
618 				f2fs_warn(sbi, "Not support %d, larger than %d",
619 					  1 << arg, BIO_MAX_PAGES);
620 				return -EINVAL;
621 			}
622 			F2FS_OPTION(sbi).write_io_size_bits = arg;
623 			break;
624 #ifdef CONFIG_F2FS_FAULT_INJECTION
625 		case Opt_fault_injection:
626 			if (args->from && match_int(args, &arg))
627 				return -EINVAL;
628 			f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
629 			set_opt(sbi, FAULT_INJECTION);
630 			break;
631 
632 		case Opt_fault_type:
633 			if (args->from && match_int(args, &arg))
634 				return -EINVAL;
635 			f2fs_build_fault_attr(sbi, 0, arg);
636 			set_opt(sbi, FAULT_INJECTION);
637 			break;
638 #else
639 		case Opt_fault_injection:
640 			f2fs_info(sbi, "fault_injection options not supported");
641 			break;
642 
643 		case Opt_fault_type:
644 			f2fs_info(sbi, "fault_type options not supported");
645 			break;
646 #endif
647 		case Opt_lazytime:
648 			sb->s_flags |= SB_LAZYTIME;
649 			break;
650 		case Opt_nolazytime:
651 			sb->s_flags &= ~SB_LAZYTIME;
652 			break;
653 #ifdef CONFIG_QUOTA
654 		case Opt_quota:
655 		case Opt_usrquota:
656 			set_opt(sbi, USRQUOTA);
657 			break;
658 		case Opt_grpquota:
659 			set_opt(sbi, GRPQUOTA);
660 			break;
661 		case Opt_prjquota:
662 			set_opt(sbi, PRJQUOTA);
663 			break;
664 		case Opt_usrjquota:
665 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
666 			if (ret)
667 				return ret;
668 			break;
669 		case Opt_grpjquota:
670 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
671 			if (ret)
672 				return ret;
673 			break;
674 		case Opt_prjjquota:
675 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
676 			if (ret)
677 				return ret;
678 			break;
679 		case Opt_offusrjquota:
680 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
681 			if (ret)
682 				return ret;
683 			break;
684 		case Opt_offgrpjquota:
685 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
686 			if (ret)
687 				return ret;
688 			break;
689 		case Opt_offprjjquota:
690 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
691 			if (ret)
692 				return ret;
693 			break;
694 		case Opt_jqfmt_vfsold:
695 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
696 			break;
697 		case Opt_jqfmt_vfsv0:
698 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
699 			break;
700 		case Opt_jqfmt_vfsv1:
701 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
702 			break;
703 		case Opt_noquota:
704 			clear_opt(sbi, QUOTA);
705 			clear_opt(sbi, USRQUOTA);
706 			clear_opt(sbi, GRPQUOTA);
707 			clear_opt(sbi, PRJQUOTA);
708 			break;
709 #else
710 		case Opt_quota:
711 		case Opt_usrquota:
712 		case Opt_grpquota:
713 		case Opt_prjquota:
714 		case Opt_usrjquota:
715 		case Opt_grpjquota:
716 		case Opt_prjjquota:
717 		case Opt_offusrjquota:
718 		case Opt_offgrpjquota:
719 		case Opt_offprjjquota:
720 		case Opt_jqfmt_vfsold:
721 		case Opt_jqfmt_vfsv0:
722 		case Opt_jqfmt_vfsv1:
723 		case Opt_noquota:
724 			f2fs_info(sbi, "quota operations not supported");
725 			break;
726 #endif
727 		case Opt_whint:
728 			name = match_strdup(&args[0]);
729 			if (!name)
730 				return -ENOMEM;
731 			if (strlen(name) == 10 &&
732 					!strncmp(name, "user-based", 10)) {
733 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
734 			} else if (strlen(name) == 3 &&
735 					!strncmp(name, "off", 3)) {
736 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
737 			} else if (strlen(name) == 8 &&
738 					!strncmp(name, "fs-based", 8)) {
739 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
740 			} else {
741 				kvfree(name);
742 				return -EINVAL;
743 			}
744 			kvfree(name);
745 			break;
746 		case Opt_alloc:
747 			name = match_strdup(&args[0]);
748 			if (!name)
749 				return -ENOMEM;
750 
751 			if (strlen(name) == 7 &&
752 					!strncmp(name, "default", 7)) {
753 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
754 			} else if (strlen(name) == 5 &&
755 					!strncmp(name, "reuse", 5)) {
756 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
757 			} else {
758 				kvfree(name);
759 				return -EINVAL;
760 			}
761 			kvfree(name);
762 			break;
763 		case Opt_fsync:
764 			name = match_strdup(&args[0]);
765 			if (!name)
766 				return -ENOMEM;
767 			if (strlen(name) == 5 &&
768 					!strncmp(name, "posix", 5)) {
769 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
770 			} else if (strlen(name) == 6 &&
771 					!strncmp(name, "strict", 6)) {
772 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
773 			} else if (strlen(name) == 9 &&
774 					!strncmp(name, "nobarrier", 9)) {
775 				F2FS_OPTION(sbi).fsync_mode =
776 							FSYNC_MODE_NOBARRIER;
777 			} else {
778 				kvfree(name);
779 				return -EINVAL;
780 			}
781 			kvfree(name);
782 			break;
783 		case Opt_test_dummy_encryption:
784 #ifdef CONFIG_FS_ENCRYPTION
785 			if (!f2fs_sb_has_encrypt(sbi)) {
786 				f2fs_err(sbi, "Encrypt feature is off");
787 				return -EINVAL;
788 			}
789 
790 			F2FS_OPTION(sbi).test_dummy_encryption = true;
791 			f2fs_info(sbi, "Test dummy encryption mode enabled");
792 #else
793 			f2fs_info(sbi, "Test dummy encryption mount option ignored");
794 #endif
795 			break;
796 		case Opt_checkpoint_disable_cap_perc:
797 			if (args->from && match_int(args, &arg))
798 				return -EINVAL;
799 			if (arg < 0 || arg > 100)
800 				return -EINVAL;
801 			if (arg == 100)
802 				F2FS_OPTION(sbi).unusable_cap =
803 					sbi->user_block_count;
804 			else
805 				F2FS_OPTION(sbi).unusable_cap =
806 					(sbi->user_block_count / 100) *	arg;
807 			set_opt(sbi, DISABLE_CHECKPOINT);
808 			break;
809 		case Opt_checkpoint_disable_cap:
810 			if (args->from && match_int(args, &arg))
811 				return -EINVAL;
812 			F2FS_OPTION(sbi).unusable_cap = arg;
813 			set_opt(sbi, DISABLE_CHECKPOINT);
814 			break;
815 		case Opt_checkpoint_disable:
816 			set_opt(sbi, DISABLE_CHECKPOINT);
817 			break;
818 		case Opt_checkpoint_enable:
819 			clear_opt(sbi, DISABLE_CHECKPOINT);
820 			break;
821 		case Opt_compress_algorithm:
822 			if (!f2fs_sb_has_compression(sbi)) {
823 				f2fs_err(sbi, "Compression feature if off");
824 				return -EINVAL;
825 			}
826 			name = match_strdup(&args[0]);
827 			if (!name)
828 				return -ENOMEM;
829 			if (strlen(name) == 3 && !strcmp(name, "lzo")) {
830 				F2FS_OPTION(sbi).compress_algorithm =
831 								COMPRESS_LZO;
832 			} else if (strlen(name) == 3 &&
833 					!strcmp(name, "lz4")) {
834 				F2FS_OPTION(sbi).compress_algorithm =
835 								COMPRESS_LZ4;
836 			} else {
837 				kfree(name);
838 				return -EINVAL;
839 			}
840 			kfree(name);
841 			break;
842 		case Opt_compress_log_size:
843 			if (!f2fs_sb_has_compression(sbi)) {
844 				f2fs_err(sbi, "Compression feature is off");
845 				return -EINVAL;
846 			}
847 			if (args->from && match_int(args, &arg))
848 				return -EINVAL;
849 			if (arg < MIN_COMPRESS_LOG_SIZE ||
850 				arg > MAX_COMPRESS_LOG_SIZE) {
851 				f2fs_err(sbi,
852 					"Compress cluster log size is out of range");
853 				return -EINVAL;
854 			}
855 			F2FS_OPTION(sbi).compress_log_size = arg;
856 			break;
857 		case Opt_compress_extension:
858 			if (!f2fs_sb_has_compression(sbi)) {
859 				f2fs_err(sbi, "Compression feature is off");
860 				return -EINVAL;
861 			}
862 			name = match_strdup(&args[0]);
863 			if (!name)
864 				return -ENOMEM;
865 
866 			ext = F2FS_OPTION(sbi).extensions;
867 			ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
868 
869 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
870 				ext_cnt >= COMPRESS_EXT_NUM) {
871 				f2fs_err(sbi,
872 					"invalid extension length/number");
873 				kfree(name);
874 				return -EINVAL;
875 			}
876 
877 			strcpy(ext[ext_cnt], name);
878 			F2FS_OPTION(sbi).compress_ext_cnt++;
879 			kfree(name);
880 			break;
881 		default:
882 			f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
883 				 p);
884 			return -EINVAL;
885 		}
886 	}
887 #ifdef CONFIG_QUOTA
888 	if (f2fs_check_quota_options(sbi))
889 		return -EINVAL;
890 #else
891 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
892 		f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
893 		return -EINVAL;
894 	}
895 	if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
896 		f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
897 		return -EINVAL;
898 	}
899 #endif
900 #ifndef CONFIG_UNICODE
901 	if (f2fs_sb_has_casefold(sbi)) {
902 		f2fs_err(sbi,
903 			"Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
904 		return -EINVAL;
905 	}
906 #endif
907 
908 	if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
909 		f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
910 			 F2FS_IO_SIZE_KB(sbi));
911 		return -EINVAL;
912 	}
913 
914 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
915 		int min_size, max_size;
916 
917 		if (!f2fs_sb_has_extra_attr(sbi) ||
918 			!f2fs_sb_has_flexible_inline_xattr(sbi)) {
919 			f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
920 			return -EINVAL;
921 		}
922 		if (!test_opt(sbi, INLINE_XATTR)) {
923 			f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
924 			return -EINVAL;
925 		}
926 
927 		min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
928 		max_size = MAX_INLINE_XATTR_SIZE;
929 
930 		if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
931 				F2FS_OPTION(sbi).inline_xattr_size > max_size) {
932 			f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
933 				 min_size, max_size);
934 			return -EINVAL;
935 		}
936 	}
937 
938 	if (test_opt(sbi, DISABLE_CHECKPOINT) && test_opt(sbi, LFS)) {
939 		f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n");
940 		return -EINVAL;
941 	}
942 
943 	/* Not pass down write hints if the number of active logs is lesser
944 	 * than NR_CURSEG_TYPE.
945 	 */
946 	if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
947 		F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
948 	return 0;
949 }
950 
951 static struct inode *f2fs_alloc_inode(struct super_block *sb)
952 {
953 	struct f2fs_inode_info *fi;
954 
955 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
956 	if (!fi)
957 		return NULL;
958 
959 	init_once((void *) fi);
960 
961 	/* Initialize f2fs-specific inode info */
962 	atomic_set(&fi->dirty_pages, 0);
963 	init_rwsem(&fi->i_sem);
964 	INIT_LIST_HEAD(&fi->dirty_list);
965 	INIT_LIST_HEAD(&fi->gdirty_list);
966 	INIT_LIST_HEAD(&fi->inmem_ilist);
967 	INIT_LIST_HEAD(&fi->inmem_pages);
968 	mutex_init(&fi->inmem_lock);
969 	init_rwsem(&fi->i_gc_rwsem[READ]);
970 	init_rwsem(&fi->i_gc_rwsem[WRITE]);
971 	init_rwsem(&fi->i_mmap_sem);
972 	init_rwsem(&fi->i_xattr_sem);
973 
974 	/* Will be used by directory only */
975 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
976 
977 	return &fi->vfs_inode;
978 }
979 
980 static int f2fs_drop_inode(struct inode *inode)
981 {
982 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
983 	int ret;
984 
985 	/*
986 	 * during filesystem shutdown, if checkpoint is disabled,
987 	 * drop useless meta/node dirty pages.
988 	 */
989 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
990 		if (inode->i_ino == F2FS_NODE_INO(sbi) ||
991 			inode->i_ino == F2FS_META_INO(sbi)) {
992 			trace_f2fs_drop_inode(inode, 1);
993 			return 1;
994 		}
995 	}
996 
997 	/*
998 	 * This is to avoid a deadlock condition like below.
999 	 * writeback_single_inode(inode)
1000 	 *  - f2fs_write_data_page
1001 	 *    - f2fs_gc -> iput -> evict
1002 	 *       - inode_wait_for_writeback(inode)
1003 	 */
1004 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1005 		if (!inode->i_nlink && !is_bad_inode(inode)) {
1006 			/* to avoid evict_inode call simultaneously */
1007 			atomic_inc(&inode->i_count);
1008 			spin_unlock(&inode->i_lock);
1009 
1010 			/* some remained atomic pages should discarded */
1011 			if (f2fs_is_atomic_file(inode))
1012 				f2fs_drop_inmem_pages(inode);
1013 
1014 			/* should remain fi->extent_tree for writepage */
1015 			f2fs_destroy_extent_node(inode);
1016 
1017 			sb_start_intwrite(inode->i_sb);
1018 			f2fs_i_size_write(inode, 0);
1019 
1020 			f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1021 					inode, NULL, 0, DATA);
1022 			truncate_inode_pages_final(inode->i_mapping);
1023 
1024 			if (F2FS_HAS_BLOCKS(inode))
1025 				f2fs_truncate(inode);
1026 
1027 			sb_end_intwrite(inode->i_sb);
1028 
1029 			spin_lock(&inode->i_lock);
1030 			atomic_dec(&inode->i_count);
1031 		}
1032 		trace_f2fs_drop_inode(inode, 0);
1033 		return 0;
1034 	}
1035 	ret = generic_drop_inode(inode);
1036 	if (!ret)
1037 		ret = fscrypt_drop_inode(inode);
1038 	trace_f2fs_drop_inode(inode, ret);
1039 	return ret;
1040 }
1041 
1042 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1043 {
1044 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1045 	int ret = 0;
1046 
1047 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1048 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1049 		ret = 1;
1050 	} else {
1051 		set_inode_flag(inode, FI_DIRTY_INODE);
1052 		stat_inc_dirty_inode(sbi, DIRTY_META);
1053 	}
1054 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1055 		list_add_tail(&F2FS_I(inode)->gdirty_list,
1056 				&sbi->inode_list[DIRTY_META]);
1057 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
1058 	}
1059 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1060 	return ret;
1061 }
1062 
1063 void f2fs_inode_synced(struct inode *inode)
1064 {
1065 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1066 
1067 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1068 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1069 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1070 		return;
1071 	}
1072 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1073 		list_del_init(&F2FS_I(inode)->gdirty_list);
1074 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
1075 	}
1076 	clear_inode_flag(inode, FI_DIRTY_INODE);
1077 	clear_inode_flag(inode, FI_AUTO_RECOVER);
1078 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1079 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1080 }
1081 
1082 /*
1083  * f2fs_dirty_inode() is called from __mark_inode_dirty()
1084  *
1085  * We should call set_dirty_inode to write the dirty inode through write_inode.
1086  */
1087 static void f2fs_dirty_inode(struct inode *inode, int flags)
1088 {
1089 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1090 
1091 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1092 			inode->i_ino == F2FS_META_INO(sbi))
1093 		return;
1094 
1095 	if (flags == I_DIRTY_TIME)
1096 		return;
1097 
1098 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1099 		clear_inode_flag(inode, FI_AUTO_RECOVER);
1100 
1101 	f2fs_inode_dirtied(inode, false);
1102 }
1103 
1104 static void f2fs_free_inode(struct inode *inode)
1105 {
1106 	fscrypt_free_inode(inode);
1107 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1108 }
1109 
1110 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1111 {
1112 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
1113 	percpu_counter_destroy(&sbi->total_valid_inode_count);
1114 }
1115 
1116 static void destroy_device_list(struct f2fs_sb_info *sbi)
1117 {
1118 	int i;
1119 
1120 	for (i = 0; i < sbi->s_ndevs; i++) {
1121 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1122 #ifdef CONFIG_BLK_DEV_ZONED
1123 		kvfree(FDEV(i).blkz_seq);
1124 #endif
1125 	}
1126 	kvfree(sbi->devs);
1127 }
1128 
1129 static void f2fs_put_super(struct super_block *sb)
1130 {
1131 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1132 	int i;
1133 	bool dropped;
1134 
1135 	f2fs_quota_off_umount(sb);
1136 
1137 	/* prevent remaining shrinker jobs */
1138 	mutex_lock(&sbi->umount_mutex);
1139 
1140 	/*
1141 	 * We don't need to do checkpoint when superblock is clean.
1142 	 * But, the previous checkpoint was not done by umount, it needs to do
1143 	 * clean checkpoint again.
1144 	 */
1145 	if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1146 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1147 		struct cp_control cpc = {
1148 			.reason = CP_UMOUNT,
1149 		};
1150 		f2fs_write_checkpoint(sbi, &cpc);
1151 	}
1152 
1153 	/* be sure to wait for any on-going discard commands */
1154 	dropped = f2fs_issue_discard_timeout(sbi);
1155 
1156 	if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1157 					!sbi->discard_blks && !dropped) {
1158 		struct cp_control cpc = {
1159 			.reason = CP_UMOUNT | CP_TRIMMED,
1160 		};
1161 		f2fs_write_checkpoint(sbi, &cpc);
1162 	}
1163 
1164 	/*
1165 	 * normally superblock is clean, so we need to release this.
1166 	 * In addition, EIO will skip do checkpoint, we need this as well.
1167 	 */
1168 	f2fs_release_ino_entry(sbi, true);
1169 
1170 	f2fs_leave_shrinker(sbi);
1171 	mutex_unlock(&sbi->umount_mutex);
1172 
1173 	/* our cp_error case, we can wait for any writeback page */
1174 	f2fs_flush_merged_writes(sbi);
1175 
1176 	f2fs_wait_on_all_pages_writeback(sbi);
1177 
1178 	f2fs_bug_on(sbi, sbi->fsync_node_num);
1179 
1180 	iput(sbi->node_inode);
1181 	sbi->node_inode = NULL;
1182 
1183 	iput(sbi->meta_inode);
1184 	sbi->meta_inode = NULL;
1185 
1186 	/*
1187 	 * iput() can update stat information, if f2fs_write_checkpoint()
1188 	 * above failed with error.
1189 	 */
1190 	f2fs_destroy_stats(sbi);
1191 
1192 	/* destroy f2fs internal modules */
1193 	f2fs_destroy_node_manager(sbi);
1194 	f2fs_destroy_segment_manager(sbi);
1195 
1196 	f2fs_destroy_post_read_wq(sbi);
1197 
1198 	kvfree(sbi->ckpt);
1199 
1200 	f2fs_unregister_sysfs(sbi);
1201 
1202 	sb->s_fs_info = NULL;
1203 	if (sbi->s_chksum_driver)
1204 		crypto_free_shash(sbi->s_chksum_driver);
1205 	kvfree(sbi->raw_super);
1206 
1207 	destroy_device_list(sbi);
1208 	mempool_destroy(sbi->write_io_dummy);
1209 #ifdef CONFIG_QUOTA
1210 	for (i = 0; i < MAXQUOTAS; i++)
1211 		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1212 #endif
1213 	destroy_percpu_info(sbi);
1214 	for (i = 0; i < NR_PAGE_TYPE; i++)
1215 		kvfree(sbi->write_io[i]);
1216 #ifdef CONFIG_UNICODE
1217 	utf8_unload(sbi->s_encoding);
1218 #endif
1219 	kvfree(sbi);
1220 }
1221 
1222 int f2fs_sync_fs(struct super_block *sb, int sync)
1223 {
1224 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1225 	int err = 0;
1226 
1227 	if (unlikely(f2fs_cp_error(sbi)))
1228 		return 0;
1229 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1230 		return 0;
1231 
1232 	trace_f2fs_sync_fs(sb, sync);
1233 
1234 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1235 		return -EAGAIN;
1236 
1237 	if (sync) {
1238 		struct cp_control cpc;
1239 
1240 		cpc.reason = __get_cp_reason(sbi);
1241 
1242 		down_write(&sbi->gc_lock);
1243 		err = f2fs_write_checkpoint(sbi, &cpc);
1244 		up_write(&sbi->gc_lock);
1245 	}
1246 	f2fs_trace_ios(NULL, 1);
1247 
1248 	return err;
1249 }
1250 
1251 static int f2fs_freeze(struct super_block *sb)
1252 {
1253 	if (f2fs_readonly(sb))
1254 		return 0;
1255 
1256 	/* IO error happened before */
1257 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1258 		return -EIO;
1259 
1260 	/* must be clean, since sync_filesystem() was already called */
1261 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1262 		return -EINVAL;
1263 	return 0;
1264 }
1265 
1266 static int f2fs_unfreeze(struct super_block *sb)
1267 {
1268 	return 0;
1269 }
1270 
1271 #ifdef CONFIG_QUOTA
1272 static int f2fs_statfs_project(struct super_block *sb,
1273 				kprojid_t projid, struct kstatfs *buf)
1274 {
1275 	struct kqid qid;
1276 	struct dquot *dquot;
1277 	u64 limit;
1278 	u64 curblock;
1279 
1280 	qid = make_kqid_projid(projid);
1281 	dquot = dqget(sb, qid);
1282 	if (IS_ERR(dquot))
1283 		return PTR_ERR(dquot);
1284 	spin_lock(&dquot->dq_dqb_lock);
1285 
1286 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1287 					dquot->dq_dqb.dqb_bhardlimit);
1288 	if (limit)
1289 		limit >>= sb->s_blocksize_bits;
1290 
1291 	if (limit && buf->f_blocks > limit) {
1292 		curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
1293 		buf->f_blocks = limit;
1294 		buf->f_bfree = buf->f_bavail =
1295 			(buf->f_blocks > curblock) ?
1296 			 (buf->f_blocks - curblock) : 0;
1297 	}
1298 
1299 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1300 					dquot->dq_dqb.dqb_ihardlimit);
1301 
1302 	if (limit && buf->f_files > limit) {
1303 		buf->f_files = limit;
1304 		buf->f_ffree =
1305 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1306 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1307 	}
1308 
1309 	spin_unlock(&dquot->dq_dqb_lock);
1310 	dqput(dquot);
1311 	return 0;
1312 }
1313 #endif
1314 
1315 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1316 {
1317 	struct super_block *sb = dentry->d_sb;
1318 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1319 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1320 	block_t total_count, user_block_count, start_count;
1321 	u64 avail_node_count;
1322 
1323 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1324 	user_block_count = sbi->user_block_count;
1325 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1326 	buf->f_type = F2FS_SUPER_MAGIC;
1327 	buf->f_bsize = sbi->blocksize;
1328 
1329 	buf->f_blocks = total_count - start_count;
1330 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1331 						sbi->current_reserved_blocks;
1332 
1333 	spin_lock(&sbi->stat_lock);
1334 	if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1335 		buf->f_bfree = 0;
1336 	else
1337 		buf->f_bfree -= sbi->unusable_block_count;
1338 	spin_unlock(&sbi->stat_lock);
1339 
1340 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1341 		buf->f_bavail = buf->f_bfree -
1342 				F2FS_OPTION(sbi).root_reserved_blocks;
1343 	else
1344 		buf->f_bavail = 0;
1345 
1346 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1347 
1348 	if (avail_node_count > user_block_count) {
1349 		buf->f_files = user_block_count;
1350 		buf->f_ffree = buf->f_bavail;
1351 	} else {
1352 		buf->f_files = avail_node_count;
1353 		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1354 					buf->f_bavail);
1355 	}
1356 
1357 	buf->f_namelen = F2FS_NAME_LEN;
1358 	buf->f_fsid.val[0] = (u32)id;
1359 	buf->f_fsid.val[1] = (u32)(id >> 32);
1360 
1361 #ifdef CONFIG_QUOTA
1362 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1363 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1364 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1365 	}
1366 #endif
1367 	return 0;
1368 }
1369 
1370 static inline void f2fs_show_quota_options(struct seq_file *seq,
1371 					   struct super_block *sb)
1372 {
1373 #ifdef CONFIG_QUOTA
1374 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1375 
1376 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1377 		char *fmtname = "";
1378 
1379 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1380 		case QFMT_VFS_OLD:
1381 			fmtname = "vfsold";
1382 			break;
1383 		case QFMT_VFS_V0:
1384 			fmtname = "vfsv0";
1385 			break;
1386 		case QFMT_VFS_V1:
1387 			fmtname = "vfsv1";
1388 			break;
1389 		}
1390 		seq_printf(seq, ",jqfmt=%s", fmtname);
1391 	}
1392 
1393 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1394 		seq_show_option(seq, "usrjquota",
1395 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1396 
1397 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1398 		seq_show_option(seq, "grpjquota",
1399 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1400 
1401 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1402 		seq_show_option(seq, "prjjquota",
1403 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1404 #endif
1405 }
1406 
1407 static inline void f2fs_show_compress_options(struct seq_file *seq,
1408 							struct super_block *sb)
1409 {
1410 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1411 	char *algtype = "";
1412 	int i;
1413 
1414 	if (!f2fs_sb_has_compression(sbi))
1415 		return;
1416 
1417 	switch (F2FS_OPTION(sbi).compress_algorithm) {
1418 	case COMPRESS_LZO:
1419 		algtype = "lzo";
1420 		break;
1421 	case COMPRESS_LZ4:
1422 		algtype = "lz4";
1423 		break;
1424 	}
1425 	seq_printf(seq, ",compress_algorithm=%s", algtype);
1426 
1427 	seq_printf(seq, ",compress_log_size=%u",
1428 			F2FS_OPTION(sbi).compress_log_size);
1429 
1430 	for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1431 		seq_printf(seq, ",compress_extension=%s",
1432 			F2FS_OPTION(sbi).extensions[i]);
1433 	}
1434 }
1435 
1436 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1437 {
1438 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1439 
1440 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1441 		if (test_opt(sbi, FORCE_FG_GC))
1442 			seq_printf(seq, ",background_gc=%s", "sync");
1443 		else
1444 			seq_printf(seq, ",background_gc=%s", "on");
1445 	} else {
1446 		seq_printf(seq, ",background_gc=%s", "off");
1447 	}
1448 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1449 		seq_puts(seq, ",disable_roll_forward");
1450 	if (test_opt(sbi, DISCARD))
1451 		seq_puts(seq, ",discard");
1452 	else
1453 		seq_puts(seq, ",nodiscard");
1454 	if (test_opt(sbi, NOHEAP))
1455 		seq_puts(seq, ",no_heap");
1456 	else
1457 		seq_puts(seq, ",heap");
1458 #ifdef CONFIG_F2FS_FS_XATTR
1459 	if (test_opt(sbi, XATTR_USER))
1460 		seq_puts(seq, ",user_xattr");
1461 	else
1462 		seq_puts(seq, ",nouser_xattr");
1463 	if (test_opt(sbi, INLINE_XATTR))
1464 		seq_puts(seq, ",inline_xattr");
1465 	else
1466 		seq_puts(seq, ",noinline_xattr");
1467 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1468 		seq_printf(seq, ",inline_xattr_size=%u",
1469 					F2FS_OPTION(sbi).inline_xattr_size);
1470 #endif
1471 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1472 	if (test_opt(sbi, POSIX_ACL))
1473 		seq_puts(seq, ",acl");
1474 	else
1475 		seq_puts(seq, ",noacl");
1476 #endif
1477 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1478 		seq_puts(seq, ",disable_ext_identify");
1479 	if (test_opt(sbi, INLINE_DATA))
1480 		seq_puts(seq, ",inline_data");
1481 	else
1482 		seq_puts(seq, ",noinline_data");
1483 	if (test_opt(sbi, INLINE_DENTRY))
1484 		seq_puts(seq, ",inline_dentry");
1485 	else
1486 		seq_puts(seq, ",noinline_dentry");
1487 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1488 		seq_puts(seq, ",flush_merge");
1489 	if (test_opt(sbi, NOBARRIER))
1490 		seq_puts(seq, ",nobarrier");
1491 	if (test_opt(sbi, FASTBOOT))
1492 		seq_puts(seq, ",fastboot");
1493 	if (test_opt(sbi, EXTENT_CACHE))
1494 		seq_puts(seq, ",extent_cache");
1495 	else
1496 		seq_puts(seq, ",noextent_cache");
1497 	if (test_opt(sbi, DATA_FLUSH))
1498 		seq_puts(seq, ",data_flush");
1499 
1500 	seq_puts(seq, ",mode=");
1501 	if (test_opt(sbi, ADAPTIVE))
1502 		seq_puts(seq, "adaptive");
1503 	else if (test_opt(sbi, LFS))
1504 		seq_puts(seq, "lfs");
1505 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1506 	if (test_opt(sbi, RESERVE_ROOT))
1507 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1508 				F2FS_OPTION(sbi).root_reserved_blocks,
1509 				from_kuid_munged(&init_user_ns,
1510 					F2FS_OPTION(sbi).s_resuid),
1511 				from_kgid_munged(&init_user_ns,
1512 					F2FS_OPTION(sbi).s_resgid));
1513 	if (F2FS_IO_SIZE_BITS(sbi))
1514 		seq_printf(seq, ",io_bits=%u",
1515 				F2FS_OPTION(sbi).write_io_size_bits);
1516 #ifdef CONFIG_F2FS_FAULT_INJECTION
1517 	if (test_opt(sbi, FAULT_INJECTION)) {
1518 		seq_printf(seq, ",fault_injection=%u",
1519 				F2FS_OPTION(sbi).fault_info.inject_rate);
1520 		seq_printf(seq, ",fault_type=%u",
1521 				F2FS_OPTION(sbi).fault_info.inject_type);
1522 	}
1523 #endif
1524 #ifdef CONFIG_QUOTA
1525 	if (test_opt(sbi, QUOTA))
1526 		seq_puts(seq, ",quota");
1527 	if (test_opt(sbi, USRQUOTA))
1528 		seq_puts(seq, ",usrquota");
1529 	if (test_opt(sbi, GRPQUOTA))
1530 		seq_puts(seq, ",grpquota");
1531 	if (test_opt(sbi, PRJQUOTA))
1532 		seq_puts(seq, ",prjquota");
1533 #endif
1534 	f2fs_show_quota_options(seq, sbi->sb);
1535 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1536 		seq_printf(seq, ",whint_mode=%s", "user-based");
1537 	else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1538 		seq_printf(seq, ",whint_mode=%s", "fs-based");
1539 #ifdef CONFIG_FS_ENCRYPTION
1540 	if (F2FS_OPTION(sbi).test_dummy_encryption)
1541 		seq_puts(seq, ",test_dummy_encryption");
1542 #endif
1543 
1544 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1545 		seq_printf(seq, ",alloc_mode=%s", "default");
1546 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1547 		seq_printf(seq, ",alloc_mode=%s", "reuse");
1548 
1549 	if (test_opt(sbi, DISABLE_CHECKPOINT))
1550 		seq_printf(seq, ",checkpoint=disable:%u",
1551 				F2FS_OPTION(sbi).unusable_cap);
1552 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1553 		seq_printf(seq, ",fsync_mode=%s", "posix");
1554 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1555 		seq_printf(seq, ",fsync_mode=%s", "strict");
1556 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1557 		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1558 
1559 	f2fs_show_compress_options(seq, sbi->sb);
1560 	return 0;
1561 }
1562 
1563 static void default_options(struct f2fs_sb_info *sbi)
1564 {
1565 	/* init some FS parameters */
1566 	F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1567 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1568 	F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1569 	F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1570 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1571 	F2FS_OPTION(sbi).test_dummy_encryption = false;
1572 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1573 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1574 	F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZO;
1575 	F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
1576 	F2FS_OPTION(sbi).compress_ext_cnt = 0;
1577 
1578 	set_opt(sbi, BG_GC);
1579 	set_opt(sbi, INLINE_XATTR);
1580 	set_opt(sbi, INLINE_DATA);
1581 	set_opt(sbi, INLINE_DENTRY);
1582 	set_opt(sbi, EXTENT_CACHE);
1583 	set_opt(sbi, NOHEAP);
1584 	clear_opt(sbi, DISABLE_CHECKPOINT);
1585 	F2FS_OPTION(sbi).unusable_cap = 0;
1586 	sbi->sb->s_flags |= SB_LAZYTIME;
1587 	set_opt(sbi, FLUSH_MERGE);
1588 	set_opt(sbi, DISCARD);
1589 	if (f2fs_sb_has_blkzoned(sbi))
1590 		set_opt_mode(sbi, F2FS_MOUNT_LFS);
1591 	else
1592 		set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1593 
1594 #ifdef CONFIG_F2FS_FS_XATTR
1595 	set_opt(sbi, XATTR_USER);
1596 #endif
1597 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1598 	set_opt(sbi, POSIX_ACL);
1599 #endif
1600 
1601 	f2fs_build_fault_attr(sbi, 0, 0);
1602 }
1603 
1604 #ifdef CONFIG_QUOTA
1605 static int f2fs_enable_quotas(struct super_block *sb);
1606 #endif
1607 
1608 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
1609 {
1610 	unsigned int s_flags = sbi->sb->s_flags;
1611 	struct cp_control cpc;
1612 	int err = 0;
1613 	int ret;
1614 	block_t unusable;
1615 
1616 	if (s_flags & SB_RDONLY) {
1617 		f2fs_err(sbi, "checkpoint=disable on readonly fs");
1618 		return -EINVAL;
1619 	}
1620 	sbi->sb->s_flags |= SB_ACTIVE;
1621 
1622 	f2fs_update_time(sbi, DISABLE_TIME);
1623 
1624 	while (!f2fs_time_over(sbi, DISABLE_TIME)) {
1625 		down_write(&sbi->gc_lock);
1626 		err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1627 		if (err == -ENODATA) {
1628 			err = 0;
1629 			break;
1630 		}
1631 		if (err && err != -EAGAIN)
1632 			break;
1633 	}
1634 
1635 	ret = sync_filesystem(sbi->sb);
1636 	if (ret || err) {
1637 		err = ret ? ret: err;
1638 		goto restore_flag;
1639 	}
1640 
1641 	unusable = f2fs_get_unusable_blocks(sbi);
1642 	if (f2fs_disable_cp_again(sbi, unusable)) {
1643 		err = -EAGAIN;
1644 		goto restore_flag;
1645 	}
1646 
1647 	down_write(&sbi->gc_lock);
1648 	cpc.reason = CP_PAUSE;
1649 	set_sbi_flag(sbi, SBI_CP_DISABLED);
1650 	err = f2fs_write_checkpoint(sbi, &cpc);
1651 	if (err)
1652 		goto out_unlock;
1653 
1654 	spin_lock(&sbi->stat_lock);
1655 	sbi->unusable_block_count = unusable;
1656 	spin_unlock(&sbi->stat_lock);
1657 
1658 out_unlock:
1659 	up_write(&sbi->gc_lock);
1660 restore_flag:
1661 	sbi->sb->s_flags = s_flags;	/* Restore MS_RDONLY status */
1662 	return err;
1663 }
1664 
1665 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
1666 {
1667 	down_write(&sbi->gc_lock);
1668 	f2fs_dirty_to_prefree(sbi);
1669 
1670 	clear_sbi_flag(sbi, SBI_CP_DISABLED);
1671 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1672 	up_write(&sbi->gc_lock);
1673 
1674 	f2fs_sync_fs(sbi->sb, 1);
1675 }
1676 
1677 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1678 {
1679 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1680 	struct f2fs_mount_info org_mount_opt;
1681 	unsigned long old_sb_flags;
1682 	int err;
1683 	bool need_restart_gc = false;
1684 	bool need_stop_gc = false;
1685 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1686 	bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT);
1687 	bool no_io_align = !F2FS_IO_ALIGNED(sbi);
1688 	bool checkpoint_changed;
1689 #ifdef CONFIG_QUOTA
1690 	int i, j;
1691 #endif
1692 
1693 	/*
1694 	 * Save the old mount options in case we
1695 	 * need to restore them.
1696 	 */
1697 	org_mount_opt = sbi->mount_opt;
1698 	old_sb_flags = sb->s_flags;
1699 
1700 #ifdef CONFIG_QUOTA
1701 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1702 	for (i = 0; i < MAXQUOTAS; i++) {
1703 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1704 			org_mount_opt.s_qf_names[i] =
1705 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1706 				GFP_KERNEL);
1707 			if (!org_mount_opt.s_qf_names[i]) {
1708 				for (j = 0; j < i; j++)
1709 					kvfree(org_mount_opt.s_qf_names[j]);
1710 				return -ENOMEM;
1711 			}
1712 		} else {
1713 			org_mount_opt.s_qf_names[i] = NULL;
1714 		}
1715 	}
1716 #endif
1717 
1718 	/* recover superblocks we couldn't write due to previous RO mount */
1719 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1720 		err = f2fs_commit_super(sbi, false);
1721 		f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
1722 			  err);
1723 		if (!err)
1724 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1725 	}
1726 
1727 	default_options(sbi);
1728 
1729 	/* parse mount options */
1730 	err = parse_options(sb, data);
1731 	if (err)
1732 		goto restore_opts;
1733 	checkpoint_changed =
1734 			disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT);
1735 
1736 	/*
1737 	 * Previous and new state of filesystem is RO,
1738 	 * so skip checking GC and FLUSH_MERGE conditions.
1739 	 */
1740 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1741 		goto skip;
1742 
1743 #ifdef CONFIG_QUOTA
1744 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1745 		err = dquot_suspend(sb, -1);
1746 		if (err < 0)
1747 			goto restore_opts;
1748 	} else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
1749 		/* dquot_resume needs RW */
1750 		sb->s_flags &= ~SB_RDONLY;
1751 		if (sb_any_quota_suspended(sb)) {
1752 			dquot_resume(sb, -1);
1753 		} else if (f2fs_sb_has_quota_ino(sbi)) {
1754 			err = f2fs_enable_quotas(sb);
1755 			if (err)
1756 				goto restore_opts;
1757 		}
1758 	}
1759 #endif
1760 	/* disallow enable/disable extent_cache dynamically */
1761 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1762 		err = -EINVAL;
1763 		f2fs_warn(sbi, "switch extent_cache option is not allowed");
1764 		goto restore_opts;
1765 	}
1766 
1767 	if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
1768 		err = -EINVAL;
1769 		f2fs_warn(sbi, "switch io_bits option is not allowed");
1770 		goto restore_opts;
1771 	}
1772 
1773 	if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
1774 		err = -EINVAL;
1775 		f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
1776 		goto restore_opts;
1777 	}
1778 
1779 	/*
1780 	 * We stop the GC thread if FS is mounted as RO
1781 	 * or if background_gc = off is passed in mount
1782 	 * option. Also sync the filesystem.
1783 	 */
1784 	if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) {
1785 		if (sbi->gc_thread) {
1786 			f2fs_stop_gc_thread(sbi);
1787 			need_restart_gc = true;
1788 		}
1789 	} else if (!sbi->gc_thread) {
1790 		err = f2fs_start_gc_thread(sbi);
1791 		if (err)
1792 			goto restore_opts;
1793 		need_stop_gc = true;
1794 	}
1795 
1796 	if (*flags & SB_RDONLY ||
1797 		F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1798 		writeback_inodes_sb(sb, WB_REASON_SYNC);
1799 		sync_inodes_sb(sb);
1800 
1801 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1802 		set_sbi_flag(sbi, SBI_IS_CLOSE);
1803 		f2fs_sync_fs(sb, 1);
1804 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
1805 	}
1806 
1807 	if (checkpoint_changed) {
1808 		if (test_opt(sbi, DISABLE_CHECKPOINT)) {
1809 			err = f2fs_disable_checkpoint(sbi);
1810 			if (err)
1811 				goto restore_gc;
1812 		} else {
1813 			f2fs_enable_checkpoint(sbi);
1814 		}
1815 	}
1816 
1817 	/*
1818 	 * We stop issue flush thread if FS is mounted as RO
1819 	 * or if flush_merge is not passed in mount option.
1820 	 */
1821 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1822 		clear_opt(sbi, FLUSH_MERGE);
1823 		f2fs_destroy_flush_cmd_control(sbi, false);
1824 	} else {
1825 		err = f2fs_create_flush_cmd_control(sbi);
1826 		if (err)
1827 			goto restore_gc;
1828 	}
1829 skip:
1830 #ifdef CONFIG_QUOTA
1831 	/* Release old quota file names */
1832 	for (i = 0; i < MAXQUOTAS; i++)
1833 		kvfree(org_mount_opt.s_qf_names[i]);
1834 #endif
1835 	/* Update the POSIXACL Flag */
1836 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1837 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1838 
1839 	limit_reserve_root(sbi);
1840 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
1841 	return 0;
1842 restore_gc:
1843 	if (need_restart_gc) {
1844 		if (f2fs_start_gc_thread(sbi))
1845 			f2fs_warn(sbi, "background gc thread has stopped");
1846 	} else if (need_stop_gc) {
1847 		f2fs_stop_gc_thread(sbi);
1848 	}
1849 restore_opts:
1850 #ifdef CONFIG_QUOTA
1851 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1852 	for (i = 0; i < MAXQUOTAS; i++) {
1853 		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1854 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1855 	}
1856 #endif
1857 	sbi->mount_opt = org_mount_opt;
1858 	sb->s_flags = old_sb_flags;
1859 	return err;
1860 }
1861 
1862 #ifdef CONFIG_QUOTA
1863 /* Read data from quotafile */
1864 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1865 			       size_t len, loff_t off)
1866 {
1867 	struct inode *inode = sb_dqopt(sb)->files[type];
1868 	struct address_space *mapping = inode->i_mapping;
1869 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
1870 	int offset = off & (sb->s_blocksize - 1);
1871 	int tocopy;
1872 	size_t toread;
1873 	loff_t i_size = i_size_read(inode);
1874 	struct page *page;
1875 	char *kaddr;
1876 
1877 	if (off > i_size)
1878 		return 0;
1879 
1880 	if (off + len > i_size)
1881 		len = i_size - off;
1882 	toread = len;
1883 	while (toread > 0) {
1884 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1885 repeat:
1886 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1887 		if (IS_ERR(page)) {
1888 			if (PTR_ERR(page) == -ENOMEM) {
1889 				congestion_wait(BLK_RW_ASYNC, HZ/50);
1890 				goto repeat;
1891 			}
1892 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1893 			return PTR_ERR(page);
1894 		}
1895 
1896 		lock_page(page);
1897 
1898 		if (unlikely(page->mapping != mapping)) {
1899 			f2fs_put_page(page, 1);
1900 			goto repeat;
1901 		}
1902 		if (unlikely(!PageUptodate(page))) {
1903 			f2fs_put_page(page, 1);
1904 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1905 			return -EIO;
1906 		}
1907 
1908 		kaddr = kmap_atomic(page);
1909 		memcpy(data, kaddr + offset, tocopy);
1910 		kunmap_atomic(kaddr);
1911 		f2fs_put_page(page, 1);
1912 
1913 		offset = 0;
1914 		toread -= tocopy;
1915 		data += tocopy;
1916 		blkidx++;
1917 	}
1918 	return len;
1919 }
1920 
1921 /* Write to quotafile */
1922 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1923 				const char *data, size_t len, loff_t off)
1924 {
1925 	struct inode *inode = sb_dqopt(sb)->files[type];
1926 	struct address_space *mapping = inode->i_mapping;
1927 	const struct address_space_operations *a_ops = mapping->a_ops;
1928 	int offset = off & (sb->s_blocksize - 1);
1929 	size_t towrite = len;
1930 	struct page *page;
1931 	char *kaddr;
1932 	int err = 0;
1933 	int tocopy;
1934 
1935 	while (towrite > 0) {
1936 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1937 								towrite);
1938 retry:
1939 		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1940 							&page, NULL);
1941 		if (unlikely(err)) {
1942 			if (err == -ENOMEM) {
1943 				congestion_wait(BLK_RW_ASYNC, HZ/50);
1944 				goto retry;
1945 			}
1946 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1947 			break;
1948 		}
1949 
1950 		kaddr = kmap_atomic(page);
1951 		memcpy(kaddr + offset, data, tocopy);
1952 		kunmap_atomic(kaddr);
1953 		flush_dcache_page(page);
1954 
1955 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1956 						page, NULL);
1957 		offset = 0;
1958 		towrite -= tocopy;
1959 		off += tocopy;
1960 		data += tocopy;
1961 		cond_resched();
1962 	}
1963 
1964 	if (len == towrite)
1965 		return err;
1966 	inode->i_mtime = inode->i_ctime = current_time(inode);
1967 	f2fs_mark_inode_dirty_sync(inode, false);
1968 	return len - towrite;
1969 }
1970 
1971 static struct dquot **f2fs_get_dquots(struct inode *inode)
1972 {
1973 	return F2FS_I(inode)->i_dquot;
1974 }
1975 
1976 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1977 {
1978 	return &F2FS_I(inode)->i_reserved_quota;
1979 }
1980 
1981 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1982 {
1983 	if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
1984 		f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
1985 		return 0;
1986 	}
1987 
1988 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
1989 					F2FS_OPTION(sbi).s_jquota_fmt, type);
1990 }
1991 
1992 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1993 {
1994 	int enabled = 0;
1995 	int i, err;
1996 
1997 	if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
1998 		err = f2fs_enable_quotas(sbi->sb);
1999 		if (err) {
2000 			f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2001 			return 0;
2002 		}
2003 		return 1;
2004 	}
2005 
2006 	for (i = 0; i < MAXQUOTAS; i++) {
2007 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2008 			err = f2fs_quota_on_mount(sbi, i);
2009 			if (!err) {
2010 				enabled = 1;
2011 				continue;
2012 			}
2013 			f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2014 				 err, i);
2015 		}
2016 	}
2017 	return enabled;
2018 }
2019 
2020 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2021 			     unsigned int flags)
2022 {
2023 	struct inode *qf_inode;
2024 	unsigned long qf_inum;
2025 	int err;
2026 
2027 	BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2028 
2029 	qf_inum = f2fs_qf_ino(sb, type);
2030 	if (!qf_inum)
2031 		return -EPERM;
2032 
2033 	qf_inode = f2fs_iget(sb, qf_inum);
2034 	if (IS_ERR(qf_inode)) {
2035 		f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2036 		return PTR_ERR(qf_inode);
2037 	}
2038 
2039 	/* Don't account quota for quota files to avoid recursion */
2040 	qf_inode->i_flags |= S_NOQUOTA;
2041 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2042 	iput(qf_inode);
2043 	return err;
2044 }
2045 
2046 static int f2fs_enable_quotas(struct super_block *sb)
2047 {
2048 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2049 	int type, err = 0;
2050 	unsigned long qf_inum;
2051 	bool quota_mopt[MAXQUOTAS] = {
2052 		test_opt(sbi, USRQUOTA),
2053 		test_opt(sbi, GRPQUOTA),
2054 		test_opt(sbi, PRJQUOTA),
2055 	};
2056 
2057 	if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2058 		f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2059 		return 0;
2060 	}
2061 
2062 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2063 
2064 	for (type = 0; type < MAXQUOTAS; type++) {
2065 		qf_inum = f2fs_qf_ino(sb, type);
2066 		if (qf_inum) {
2067 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2068 				DQUOT_USAGE_ENABLED |
2069 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2070 			if (err) {
2071 				f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2072 					 type, err);
2073 				for (type--; type >= 0; type--)
2074 					dquot_quota_off(sb, type);
2075 				set_sbi_flag(F2FS_SB(sb),
2076 						SBI_QUOTA_NEED_REPAIR);
2077 				return err;
2078 			}
2079 		}
2080 	}
2081 	return 0;
2082 }
2083 
2084 int f2fs_quota_sync(struct super_block *sb, int type)
2085 {
2086 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2087 	struct quota_info *dqopt = sb_dqopt(sb);
2088 	int cnt;
2089 	int ret;
2090 
2091 	/*
2092 	 * do_quotactl
2093 	 *  f2fs_quota_sync
2094 	 *  down_read(quota_sem)
2095 	 *  dquot_writeback_dquots()
2096 	 *  f2fs_dquot_commit
2097 	 *                            block_operation
2098 	 *                            down_read(quota_sem)
2099 	 */
2100 	f2fs_lock_op(sbi);
2101 
2102 	down_read(&sbi->quota_sem);
2103 	ret = dquot_writeback_dquots(sb, type);
2104 	if (ret)
2105 		goto out;
2106 
2107 	/*
2108 	 * Now when everything is written we can discard the pagecache so
2109 	 * that userspace sees the changes.
2110 	 */
2111 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2112 		struct address_space *mapping;
2113 
2114 		if (type != -1 && cnt != type)
2115 			continue;
2116 		if (!sb_has_quota_active(sb, cnt))
2117 			continue;
2118 
2119 		mapping = dqopt->files[cnt]->i_mapping;
2120 
2121 		ret = filemap_fdatawrite(mapping);
2122 		if (ret)
2123 			goto out;
2124 
2125 		/* if we are using journalled quota */
2126 		if (is_journalled_quota(sbi))
2127 			continue;
2128 
2129 		ret = filemap_fdatawait(mapping);
2130 		if (ret)
2131 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2132 
2133 		inode_lock(dqopt->files[cnt]);
2134 		truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
2135 		inode_unlock(dqopt->files[cnt]);
2136 	}
2137 out:
2138 	if (ret)
2139 		set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2140 	up_read(&sbi->quota_sem);
2141 	f2fs_unlock_op(sbi);
2142 	return ret;
2143 }
2144 
2145 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2146 							const struct path *path)
2147 {
2148 	struct inode *inode;
2149 	int err;
2150 
2151 	/* if quota sysfile exists, deny enabling quota with specific file */
2152 	if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2153 		f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2154 		return -EBUSY;
2155 	}
2156 
2157 	err = f2fs_quota_sync(sb, type);
2158 	if (err)
2159 		return err;
2160 
2161 	err = dquot_quota_on(sb, type, format_id, path);
2162 	if (err)
2163 		return err;
2164 
2165 	inode = d_inode(path->dentry);
2166 
2167 	inode_lock(inode);
2168 	F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2169 	f2fs_set_inode_flags(inode);
2170 	inode_unlock(inode);
2171 	f2fs_mark_inode_dirty_sync(inode, false);
2172 
2173 	return 0;
2174 }
2175 
2176 static int __f2fs_quota_off(struct super_block *sb, int type)
2177 {
2178 	struct inode *inode = sb_dqopt(sb)->files[type];
2179 	int err;
2180 
2181 	if (!inode || !igrab(inode))
2182 		return dquot_quota_off(sb, type);
2183 
2184 	err = f2fs_quota_sync(sb, type);
2185 	if (err)
2186 		goto out_put;
2187 
2188 	err = dquot_quota_off(sb, type);
2189 	if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2190 		goto out_put;
2191 
2192 	inode_lock(inode);
2193 	F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2194 	f2fs_set_inode_flags(inode);
2195 	inode_unlock(inode);
2196 	f2fs_mark_inode_dirty_sync(inode, false);
2197 out_put:
2198 	iput(inode);
2199 	return err;
2200 }
2201 
2202 static int f2fs_quota_off(struct super_block *sb, int type)
2203 {
2204 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2205 	int err;
2206 
2207 	err = __f2fs_quota_off(sb, type);
2208 
2209 	/*
2210 	 * quotactl can shutdown journalled quota, result in inconsistence
2211 	 * between quota record and fs data by following updates, tag the
2212 	 * flag to let fsck be aware of it.
2213 	 */
2214 	if (is_journalled_quota(sbi))
2215 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2216 	return err;
2217 }
2218 
2219 void f2fs_quota_off_umount(struct super_block *sb)
2220 {
2221 	int type;
2222 	int err;
2223 
2224 	for (type = 0; type < MAXQUOTAS; type++) {
2225 		err = __f2fs_quota_off(sb, type);
2226 		if (err) {
2227 			int ret = dquot_quota_off(sb, type);
2228 
2229 			f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2230 				 type, err, ret);
2231 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2232 		}
2233 	}
2234 	/*
2235 	 * In case of checkpoint=disable, we must flush quota blocks.
2236 	 * This can cause NULL exception for node_inode in end_io, since
2237 	 * put_super already dropped it.
2238 	 */
2239 	sync_filesystem(sb);
2240 }
2241 
2242 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2243 {
2244 	struct quota_info *dqopt = sb_dqopt(sb);
2245 	int type;
2246 
2247 	for (type = 0; type < MAXQUOTAS; type++) {
2248 		if (!dqopt->files[type])
2249 			continue;
2250 		f2fs_inode_synced(dqopt->files[type]);
2251 	}
2252 }
2253 
2254 static int f2fs_dquot_commit(struct dquot *dquot)
2255 {
2256 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2257 	int ret;
2258 
2259 	down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
2260 	ret = dquot_commit(dquot);
2261 	if (ret < 0)
2262 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2263 	up_read(&sbi->quota_sem);
2264 	return ret;
2265 }
2266 
2267 static int f2fs_dquot_acquire(struct dquot *dquot)
2268 {
2269 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2270 	int ret;
2271 
2272 	down_read(&sbi->quota_sem);
2273 	ret = dquot_acquire(dquot);
2274 	if (ret < 0)
2275 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2276 	up_read(&sbi->quota_sem);
2277 	return ret;
2278 }
2279 
2280 static int f2fs_dquot_release(struct dquot *dquot)
2281 {
2282 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2283 	int ret = dquot_release(dquot);
2284 
2285 	if (ret < 0)
2286 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2287 	return ret;
2288 }
2289 
2290 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2291 {
2292 	struct super_block *sb = dquot->dq_sb;
2293 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2294 	int ret = dquot_mark_dquot_dirty(dquot);
2295 
2296 	/* if we are using journalled quota */
2297 	if (is_journalled_quota(sbi))
2298 		set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2299 
2300 	return ret;
2301 }
2302 
2303 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2304 {
2305 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2306 	int ret = dquot_commit_info(sb, type);
2307 
2308 	if (ret < 0)
2309 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2310 	return ret;
2311 }
2312 
2313 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2314 {
2315 	*projid = F2FS_I(inode)->i_projid;
2316 	return 0;
2317 }
2318 
2319 static const struct dquot_operations f2fs_quota_operations = {
2320 	.get_reserved_space = f2fs_get_reserved_space,
2321 	.write_dquot	= f2fs_dquot_commit,
2322 	.acquire_dquot	= f2fs_dquot_acquire,
2323 	.release_dquot	= f2fs_dquot_release,
2324 	.mark_dirty	= f2fs_dquot_mark_dquot_dirty,
2325 	.write_info	= f2fs_dquot_commit_info,
2326 	.alloc_dquot	= dquot_alloc,
2327 	.destroy_dquot	= dquot_destroy,
2328 	.get_projid	= f2fs_get_projid,
2329 	.get_next_id	= dquot_get_next_id,
2330 };
2331 
2332 static const struct quotactl_ops f2fs_quotactl_ops = {
2333 	.quota_on	= f2fs_quota_on,
2334 	.quota_off	= f2fs_quota_off,
2335 	.quota_sync	= f2fs_quota_sync,
2336 	.get_state	= dquot_get_state,
2337 	.set_info	= dquot_set_dqinfo,
2338 	.get_dqblk	= dquot_get_dqblk,
2339 	.set_dqblk	= dquot_set_dqblk,
2340 	.get_nextdqblk	= dquot_get_next_dqblk,
2341 };
2342 #else
2343 int f2fs_quota_sync(struct super_block *sb, int type)
2344 {
2345 	return 0;
2346 }
2347 
2348 void f2fs_quota_off_umount(struct super_block *sb)
2349 {
2350 }
2351 #endif
2352 
2353 static const struct super_operations f2fs_sops = {
2354 	.alloc_inode	= f2fs_alloc_inode,
2355 	.free_inode	= f2fs_free_inode,
2356 	.drop_inode	= f2fs_drop_inode,
2357 	.write_inode	= f2fs_write_inode,
2358 	.dirty_inode	= f2fs_dirty_inode,
2359 	.show_options	= f2fs_show_options,
2360 #ifdef CONFIG_QUOTA
2361 	.quota_read	= f2fs_quota_read,
2362 	.quota_write	= f2fs_quota_write,
2363 	.get_dquots	= f2fs_get_dquots,
2364 #endif
2365 	.evict_inode	= f2fs_evict_inode,
2366 	.put_super	= f2fs_put_super,
2367 	.sync_fs	= f2fs_sync_fs,
2368 	.freeze_fs	= f2fs_freeze,
2369 	.unfreeze_fs	= f2fs_unfreeze,
2370 	.statfs		= f2fs_statfs,
2371 	.remount_fs	= f2fs_remount,
2372 };
2373 
2374 #ifdef CONFIG_FS_ENCRYPTION
2375 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2376 {
2377 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2378 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2379 				ctx, len, NULL);
2380 }
2381 
2382 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2383 							void *fs_data)
2384 {
2385 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2386 
2387 	/*
2388 	 * Encrypting the root directory is not allowed because fsck
2389 	 * expects lost+found directory to exist and remain unencrypted
2390 	 * if LOST_FOUND feature is enabled.
2391 	 *
2392 	 */
2393 	if (f2fs_sb_has_lost_found(sbi) &&
2394 			inode->i_ino == F2FS_ROOT_INO(sbi))
2395 		return -EPERM;
2396 
2397 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2398 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2399 				ctx, len, fs_data, XATTR_CREATE);
2400 }
2401 
2402 static bool f2fs_dummy_context(struct inode *inode)
2403 {
2404 	return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode));
2405 }
2406 
2407 static bool f2fs_has_stable_inodes(struct super_block *sb)
2408 {
2409 	return true;
2410 }
2411 
2412 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
2413 				       int *ino_bits_ret, int *lblk_bits_ret)
2414 {
2415 	*ino_bits_ret = 8 * sizeof(nid_t);
2416 	*lblk_bits_ret = 8 * sizeof(block_t);
2417 }
2418 
2419 static const struct fscrypt_operations f2fs_cryptops = {
2420 	.key_prefix		= "f2fs:",
2421 	.get_context		= f2fs_get_context,
2422 	.set_context		= f2fs_set_context,
2423 	.dummy_context		= f2fs_dummy_context,
2424 	.empty_dir		= f2fs_empty_dir,
2425 	.max_namelen		= F2FS_NAME_LEN,
2426 	.has_stable_inodes	= f2fs_has_stable_inodes,
2427 	.get_ino_and_lblk_bits	= f2fs_get_ino_and_lblk_bits,
2428 };
2429 #endif
2430 
2431 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2432 		u64 ino, u32 generation)
2433 {
2434 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2435 	struct inode *inode;
2436 
2437 	if (f2fs_check_nid_range(sbi, ino))
2438 		return ERR_PTR(-ESTALE);
2439 
2440 	/*
2441 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
2442 	 * However f2fs_iget currently does appropriate checks to handle stale
2443 	 * inodes so everything is OK.
2444 	 */
2445 	inode = f2fs_iget(sb, ino);
2446 	if (IS_ERR(inode))
2447 		return ERR_CAST(inode);
2448 	if (unlikely(generation && inode->i_generation != generation)) {
2449 		/* we didn't find the right inode.. */
2450 		iput(inode);
2451 		return ERR_PTR(-ESTALE);
2452 	}
2453 	return inode;
2454 }
2455 
2456 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2457 		int fh_len, int fh_type)
2458 {
2459 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2460 				    f2fs_nfs_get_inode);
2461 }
2462 
2463 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2464 		int fh_len, int fh_type)
2465 {
2466 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2467 				    f2fs_nfs_get_inode);
2468 }
2469 
2470 static const struct export_operations f2fs_export_ops = {
2471 	.fh_to_dentry = f2fs_fh_to_dentry,
2472 	.fh_to_parent = f2fs_fh_to_parent,
2473 	.get_parent = f2fs_get_parent,
2474 };
2475 
2476 static loff_t max_file_blocks(void)
2477 {
2478 	loff_t result = 0;
2479 	loff_t leaf_count = DEF_ADDRS_PER_BLOCK;
2480 
2481 	/*
2482 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2483 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2484 	 * space in inode.i_addr, it will be more safe to reassign
2485 	 * result as zero.
2486 	 */
2487 
2488 	/* two direct node blocks */
2489 	result += (leaf_count * 2);
2490 
2491 	/* two indirect node blocks */
2492 	leaf_count *= NIDS_PER_BLOCK;
2493 	result += (leaf_count * 2);
2494 
2495 	/* one double indirect node block */
2496 	leaf_count *= NIDS_PER_BLOCK;
2497 	result += leaf_count;
2498 
2499 	return result;
2500 }
2501 
2502 static int __f2fs_commit_super(struct buffer_head *bh,
2503 			struct f2fs_super_block *super)
2504 {
2505 	lock_buffer(bh);
2506 	if (super)
2507 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2508 	set_buffer_dirty(bh);
2509 	unlock_buffer(bh);
2510 
2511 	/* it's rare case, we can do fua all the time */
2512 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2513 }
2514 
2515 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2516 					struct buffer_head *bh)
2517 {
2518 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2519 					(bh->b_data + F2FS_SUPER_OFFSET);
2520 	struct super_block *sb = sbi->sb;
2521 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2522 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2523 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2524 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2525 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2526 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2527 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2528 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2529 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2530 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2531 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2532 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
2533 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2534 	u64 main_end_blkaddr = main_blkaddr +
2535 				(segment_count_main << log_blocks_per_seg);
2536 	u64 seg_end_blkaddr = segment0_blkaddr +
2537 				(segment_count << log_blocks_per_seg);
2538 
2539 	if (segment0_blkaddr != cp_blkaddr) {
2540 		f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2541 			  segment0_blkaddr, cp_blkaddr);
2542 		return true;
2543 	}
2544 
2545 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2546 							sit_blkaddr) {
2547 		f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2548 			  cp_blkaddr, sit_blkaddr,
2549 			  segment_count_ckpt << log_blocks_per_seg);
2550 		return true;
2551 	}
2552 
2553 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2554 							nat_blkaddr) {
2555 		f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2556 			  sit_blkaddr, nat_blkaddr,
2557 			  segment_count_sit << log_blocks_per_seg);
2558 		return true;
2559 	}
2560 
2561 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2562 							ssa_blkaddr) {
2563 		f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2564 			  nat_blkaddr, ssa_blkaddr,
2565 			  segment_count_nat << log_blocks_per_seg);
2566 		return true;
2567 	}
2568 
2569 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2570 							main_blkaddr) {
2571 		f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2572 			  ssa_blkaddr, main_blkaddr,
2573 			  segment_count_ssa << log_blocks_per_seg);
2574 		return true;
2575 	}
2576 
2577 	if (main_end_blkaddr > seg_end_blkaddr) {
2578 		f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2579 			  main_blkaddr,
2580 			  segment0_blkaddr +
2581 			  (segment_count << log_blocks_per_seg),
2582 			  segment_count_main << log_blocks_per_seg);
2583 		return true;
2584 	} else if (main_end_blkaddr < seg_end_blkaddr) {
2585 		int err = 0;
2586 		char *res;
2587 
2588 		/* fix in-memory information all the time */
2589 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2590 				segment0_blkaddr) >> log_blocks_per_seg);
2591 
2592 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2593 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2594 			res = "internally";
2595 		} else {
2596 			err = __f2fs_commit_super(bh, NULL);
2597 			res = err ? "failed" : "done";
2598 		}
2599 		f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%u) block(%u)",
2600 			  res, main_blkaddr,
2601 			  segment0_blkaddr +
2602 			  (segment_count << log_blocks_per_seg),
2603 			  segment_count_main << log_blocks_per_seg);
2604 		if (err)
2605 			return true;
2606 	}
2607 	return false;
2608 }
2609 
2610 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2611 				struct buffer_head *bh)
2612 {
2613 	block_t segment_count, segs_per_sec, secs_per_zone;
2614 	block_t total_sections, blocks_per_seg;
2615 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2616 					(bh->b_data + F2FS_SUPER_OFFSET);
2617 	unsigned int blocksize;
2618 	size_t crc_offset = 0;
2619 	__u32 crc = 0;
2620 
2621 	if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
2622 		f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
2623 			  F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2624 		return -EINVAL;
2625 	}
2626 
2627 	/* Check checksum_offset and crc in superblock */
2628 	if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
2629 		crc_offset = le32_to_cpu(raw_super->checksum_offset);
2630 		if (crc_offset !=
2631 			offsetof(struct f2fs_super_block, crc)) {
2632 			f2fs_info(sbi, "Invalid SB checksum offset: %zu",
2633 				  crc_offset);
2634 			return -EFSCORRUPTED;
2635 		}
2636 		crc = le32_to_cpu(raw_super->crc);
2637 		if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
2638 			f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
2639 			return -EFSCORRUPTED;
2640 		}
2641 	}
2642 
2643 	/* Currently, support only 4KB page cache size */
2644 	if (F2FS_BLKSIZE != PAGE_SIZE) {
2645 		f2fs_info(sbi, "Invalid page_cache_size (%lu), supports only 4KB",
2646 			  PAGE_SIZE);
2647 		return -EFSCORRUPTED;
2648 	}
2649 
2650 	/* Currently, support only 4KB block size */
2651 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2652 	if (blocksize != F2FS_BLKSIZE) {
2653 		f2fs_info(sbi, "Invalid blocksize (%u), supports only 4KB",
2654 			  blocksize);
2655 		return -EFSCORRUPTED;
2656 	}
2657 
2658 	/* check log blocks per segment */
2659 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2660 		f2fs_info(sbi, "Invalid log blocks per segment (%u)",
2661 			  le32_to_cpu(raw_super->log_blocks_per_seg));
2662 		return -EFSCORRUPTED;
2663 	}
2664 
2665 	/* Currently, support 512/1024/2048/4096 bytes sector size */
2666 	if (le32_to_cpu(raw_super->log_sectorsize) >
2667 				F2FS_MAX_LOG_SECTOR_SIZE ||
2668 		le32_to_cpu(raw_super->log_sectorsize) <
2669 				F2FS_MIN_LOG_SECTOR_SIZE) {
2670 		f2fs_info(sbi, "Invalid log sectorsize (%u)",
2671 			  le32_to_cpu(raw_super->log_sectorsize));
2672 		return -EFSCORRUPTED;
2673 	}
2674 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
2675 		le32_to_cpu(raw_super->log_sectorsize) !=
2676 			F2FS_MAX_LOG_SECTOR_SIZE) {
2677 		f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
2678 			  le32_to_cpu(raw_super->log_sectors_per_block),
2679 			  le32_to_cpu(raw_super->log_sectorsize));
2680 		return -EFSCORRUPTED;
2681 	}
2682 
2683 	segment_count = le32_to_cpu(raw_super->segment_count);
2684 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2685 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2686 	total_sections = le32_to_cpu(raw_super->section_count);
2687 
2688 	/* blocks_per_seg should be 512, given the above check */
2689 	blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2690 
2691 	if (segment_count > F2FS_MAX_SEGMENT ||
2692 				segment_count < F2FS_MIN_SEGMENTS) {
2693 		f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
2694 		return -EFSCORRUPTED;
2695 	}
2696 
2697 	if (total_sections > segment_count ||
2698 			total_sections < F2FS_MIN_SEGMENTS ||
2699 			segs_per_sec > segment_count || !segs_per_sec) {
2700 		f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
2701 			  segment_count, total_sections, segs_per_sec);
2702 		return -EFSCORRUPTED;
2703 	}
2704 
2705 	if ((segment_count / segs_per_sec) < total_sections) {
2706 		f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
2707 			  segment_count, segs_per_sec, total_sections);
2708 		return -EFSCORRUPTED;
2709 	}
2710 
2711 	if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
2712 		f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
2713 			  segment_count, le64_to_cpu(raw_super->block_count));
2714 		return -EFSCORRUPTED;
2715 	}
2716 
2717 	if (RDEV(0).path[0]) {
2718 		block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
2719 		int i = 1;
2720 
2721 		while (i < MAX_DEVICES && RDEV(i).path[0]) {
2722 			dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
2723 			i++;
2724 		}
2725 		if (segment_count != dev_seg_count) {
2726 			f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
2727 					segment_count, dev_seg_count);
2728 			return -EFSCORRUPTED;
2729 		}
2730 	}
2731 
2732 	if (secs_per_zone > total_sections || !secs_per_zone) {
2733 		f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
2734 			  secs_per_zone, total_sections);
2735 		return -EFSCORRUPTED;
2736 	}
2737 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2738 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2739 			(le32_to_cpu(raw_super->extension_count) +
2740 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2741 		f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
2742 			  le32_to_cpu(raw_super->extension_count),
2743 			  raw_super->hot_ext_count,
2744 			  F2FS_MAX_EXTENSION);
2745 		return -EFSCORRUPTED;
2746 	}
2747 
2748 	if (le32_to_cpu(raw_super->cp_payload) >
2749 				(blocks_per_seg - F2FS_CP_PACKS)) {
2750 		f2fs_info(sbi, "Insane cp_payload (%u > %u)",
2751 			  le32_to_cpu(raw_super->cp_payload),
2752 			  blocks_per_seg - F2FS_CP_PACKS);
2753 		return -EFSCORRUPTED;
2754 	}
2755 
2756 	/* check reserved ino info */
2757 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
2758 		le32_to_cpu(raw_super->meta_ino) != 2 ||
2759 		le32_to_cpu(raw_super->root_ino) != 3) {
2760 		f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2761 			  le32_to_cpu(raw_super->node_ino),
2762 			  le32_to_cpu(raw_super->meta_ino),
2763 			  le32_to_cpu(raw_super->root_ino));
2764 		return -EFSCORRUPTED;
2765 	}
2766 
2767 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2768 	if (sanity_check_area_boundary(sbi, bh))
2769 		return -EFSCORRUPTED;
2770 
2771 	return 0;
2772 }
2773 
2774 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
2775 {
2776 	unsigned int total, fsmeta;
2777 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2778 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2779 	unsigned int ovp_segments, reserved_segments;
2780 	unsigned int main_segs, blocks_per_seg;
2781 	unsigned int sit_segs, nat_segs;
2782 	unsigned int sit_bitmap_size, nat_bitmap_size;
2783 	unsigned int log_blocks_per_seg;
2784 	unsigned int segment_count_main;
2785 	unsigned int cp_pack_start_sum, cp_payload;
2786 	block_t user_block_count, valid_user_blocks;
2787 	block_t avail_node_count, valid_node_count;
2788 	int i, j;
2789 
2790 	total = le32_to_cpu(raw_super->segment_count);
2791 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2792 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2793 	fsmeta += sit_segs;
2794 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2795 	fsmeta += nat_segs;
2796 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2797 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2798 
2799 	if (unlikely(fsmeta >= total))
2800 		return 1;
2801 
2802 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2803 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2804 
2805 	if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2806 			ovp_segments == 0 || reserved_segments == 0)) {
2807 		f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
2808 		return 1;
2809 	}
2810 
2811 	user_block_count = le64_to_cpu(ckpt->user_block_count);
2812 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2813 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2814 	if (!user_block_count || user_block_count >=
2815 			segment_count_main << log_blocks_per_seg) {
2816 		f2fs_err(sbi, "Wrong user_block_count: %u",
2817 			 user_block_count);
2818 		return 1;
2819 	}
2820 
2821 	valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
2822 	if (valid_user_blocks > user_block_count) {
2823 		f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
2824 			 valid_user_blocks, user_block_count);
2825 		return 1;
2826 	}
2827 
2828 	valid_node_count = le32_to_cpu(ckpt->valid_node_count);
2829 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
2830 	if (valid_node_count > avail_node_count) {
2831 		f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
2832 			 valid_node_count, avail_node_count);
2833 		return 1;
2834 	}
2835 
2836 	main_segs = le32_to_cpu(raw_super->segment_count_main);
2837 	blocks_per_seg = sbi->blocks_per_seg;
2838 
2839 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2840 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2841 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2842 			return 1;
2843 		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
2844 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2845 				le32_to_cpu(ckpt->cur_node_segno[j])) {
2846 				f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
2847 					 i, j,
2848 					 le32_to_cpu(ckpt->cur_node_segno[i]));
2849 				return 1;
2850 			}
2851 		}
2852 	}
2853 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2854 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2855 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2856 			return 1;
2857 		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
2858 			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
2859 				le32_to_cpu(ckpt->cur_data_segno[j])) {
2860 				f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
2861 					 i, j,
2862 					 le32_to_cpu(ckpt->cur_data_segno[i]));
2863 				return 1;
2864 			}
2865 		}
2866 	}
2867 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2868 		for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
2869 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2870 				le32_to_cpu(ckpt->cur_data_segno[j])) {
2871 				f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
2872 					 i, j,
2873 					 le32_to_cpu(ckpt->cur_node_segno[i]));
2874 				return 1;
2875 			}
2876 		}
2877 	}
2878 
2879 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2880 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2881 
2882 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
2883 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
2884 		f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
2885 			 sit_bitmap_size, nat_bitmap_size);
2886 		return 1;
2887 	}
2888 
2889 	cp_pack_start_sum = __start_sum_addr(sbi);
2890 	cp_payload = __cp_payload(sbi);
2891 	if (cp_pack_start_sum < cp_payload + 1 ||
2892 		cp_pack_start_sum > blocks_per_seg - 1 -
2893 			NR_CURSEG_TYPE) {
2894 		f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
2895 			 cp_pack_start_sum);
2896 		return 1;
2897 	}
2898 
2899 	if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
2900 		le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
2901 		f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
2902 			  "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
2903 			  "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
2904 			  le32_to_cpu(ckpt->checksum_offset));
2905 		return 1;
2906 	}
2907 
2908 	if (unlikely(f2fs_cp_error(sbi))) {
2909 		f2fs_err(sbi, "A bug case: need to run fsck");
2910 		return 1;
2911 	}
2912 	return 0;
2913 }
2914 
2915 static void init_sb_info(struct f2fs_sb_info *sbi)
2916 {
2917 	struct f2fs_super_block *raw_super = sbi->raw_super;
2918 	int i;
2919 
2920 	sbi->log_sectors_per_block =
2921 		le32_to_cpu(raw_super->log_sectors_per_block);
2922 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2923 	sbi->blocksize = 1 << sbi->log_blocksize;
2924 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2925 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2926 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2927 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2928 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
2929 	sbi->total_node_count =
2930 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
2931 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2932 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2933 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2934 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2935 	sbi->cur_victim_sec = NULL_SECNO;
2936 	sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
2937 	sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
2938 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2939 	sbi->migration_granularity = sbi->segs_per_sec;
2940 
2941 	sbi->dir_level = DEF_DIR_LEVEL;
2942 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2943 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2944 	sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
2945 	sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
2946 	sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
2947 	sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
2948 				DEF_UMOUNT_DISCARD_TIMEOUT;
2949 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
2950 
2951 	for (i = 0; i < NR_COUNT_TYPE; i++)
2952 		atomic_set(&sbi->nr_pages[i], 0);
2953 
2954 	for (i = 0; i < META; i++)
2955 		atomic_set(&sbi->wb_sync_req[i], 0);
2956 
2957 	INIT_LIST_HEAD(&sbi->s_list);
2958 	mutex_init(&sbi->umount_mutex);
2959 	init_rwsem(&sbi->io_order_lock);
2960 	spin_lock_init(&sbi->cp_lock);
2961 
2962 	sbi->dirty_device = 0;
2963 	spin_lock_init(&sbi->dev_lock);
2964 
2965 	init_rwsem(&sbi->sb_lock);
2966 	init_rwsem(&sbi->pin_sem);
2967 }
2968 
2969 static int init_percpu_info(struct f2fs_sb_info *sbi)
2970 {
2971 	int err;
2972 
2973 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2974 	if (err)
2975 		return err;
2976 
2977 	err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
2978 								GFP_KERNEL);
2979 	if (err)
2980 		percpu_counter_destroy(&sbi->alloc_valid_block_count);
2981 
2982 	return err;
2983 }
2984 
2985 #ifdef CONFIG_BLK_DEV_ZONED
2986 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
2987 			       void *data)
2988 {
2989 	struct f2fs_dev_info *dev = data;
2990 
2991 	if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL)
2992 		set_bit(idx, dev->blkz_seq);
2993 	return 0;
2994 }
2995 
2996 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2997 {
2998 	struct block_device *bdev = FDEV(devi).bdev;
2999 	sector_t nr_sectors = bdev->bd_part->nr_sects;
3000 	int ret;
3001 
3002 	if (!f2fs_sb_has_blkzoned(sbi))
3003 		return 0;
3004 
3005 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3006 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
3007 		return -EINVAL;
3008 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
3009 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
3010 				__ilog2_u32(sbi->blocks_per_blkz))
3011 		return -EINVAL;
3012 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
3013 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
3014 					sbi->log_blocks_per_blkz;
3015 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
3016 		FDEV(devi).nr_blkz++;
3017 
3018 	FDEV(devi).blkz_seq = f2fs_kzalloc(sbi,
3019 					BITS_TO_LONGS(FDEV(devi).nr_blkz)
3020 					* sizeof(unsigned long),
3021 					GFP_KERNEL);
3022 	if (!FDEV(devi).blkz_seq)
3023 		return -ENOMEM;
3024 
3025 	/* Get block zones type */
3026 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3027 				  &FDEV(devi));
3028 	if (ret < 0)
3029 		return ret;
3030 
3031 	return 0;
3032 }
3033 #endif
3034 
3035 /*
3036  * Read f2fs raw super block.
3037  * Because we have two copies of super block, so read both of them
3038  * to get the first valid one. If any one of them is broken, we pass
3039  * them recovery flag back to the caller.
3040  */
3041 static int read_raw_super_block(struct f2fs_sb_info *sbi,
3042 			struct f2fs_super_block **raw_super,
3043 			int *valid_super_block, int *recovery)
3044 {
3045 	struct super_block *sb = sbi->sb;
3046 	int block;
3047 	struct buffer_head *bh;
3048 	struct f2fs_super_block *super;
3049 	int err = 0;
3050 
3051 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3052 	if (!super)
3053 		return -ENOMEM;
3054 
3055 	for (block = 0; block < 2; block++) {
3056 		bh = sb_bread(sb, block);
3057 		if (!bh) {
3058 			f2fs_err(sbi, "Unable to read %dth superblock",
3059 				 block + 1);
3060 			err = -EIO;
3061 			*recovery = 1;
3062 			continue;
3063 		}
3064 
3065 		/* sanity checking of raw super */
3066 		err = sanity_check_raw_super(sbi, bh);
3067 		if (err) {
3068 			f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3069 				 block + 1);
3070 			brelse(bh);
3071 			*recovery = 1;
3072 			continue;
3073 		}
3074 
3075 		if (!*raw_super) {
3076 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3077 							sizeof(*super));
3078 			*valid_super_block = block;
3079 			*raw_super = super;
3080 		}
3081 		brelse(bh);
3082 	}
3083 
3084 	/* No valid superblock */
3085 	if (!*raw_super)
3086 		kvfree(super);
3087 	else
3088 		err = 0;
3089 
3090 	return err;
3091 }
3092 
3093 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3094 {
3095 	struct buffer_head *bh;
3096 	__u32 crc = 0;
3097 	int err;
3098 
3099 	if ((recover && f2fs_readonly(sbi->sb)) ||
3100 				bdev_read_only(sbi->sb->s_bdev)) {
3101 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3102 		return -EROFS;
3103 	}
3104 
3105 	/* we should update superblock crc here */
3106 	if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3107 		crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3108 				offsetof(struct f2fs_super_block, crc));
3109 		F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3110 	}
3111 
3112 	/* write back-up superblock first */
3113 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3114 	if (!bh)
3115 		return -EIO;
3116 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3117 	brelse(bh);
3118 
3119 	/* if we are in recovery path, skip writing valid superblock */
3120 	if (recover || err)
3121 		return err;
3122 
3123 	/* write current valid superblock */
3124 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
3125 	if (!bh)
3126 		return -EIO;
3127 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3128 	brelse(bh);
3129 	return err;
3130 }
3131 
3132 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3133 {
3134 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3135 	unsigned int max_devices = MAX_DEVICES;
3136 	int i;
3137 
3138 	/* Initialize single device information */
3139 	if (!RDEV(0).path[0]) {
3140 		if (!bdev_is_zoned(sbi->sb->s_bdev))
3141 			return 0;
3142 		max_devices = 1;
3143 	}
3144 
3145 	/*
3146 	 * Initialize multiple devices information, or single
3147 	 * zoned block device information.
3148 	 */
3149 	sbi->devs = f2fs_kzalloc(sbi,
3150 				 array_size(max_devices,
3151 					    sizeof(struct f2fs_dev_info)),
3152 				 GFP_KERNEL);
3153 	if (!sbi->devs)
3154 		return -ENOMEM;
3155 
3156 	for (i = 0; i < max_devices; i++) {
3157 
3158 		if (i > 0 && !RDEV(i).path[0])
3159 			break;
3160 
3161 		if (max_devices == 1) {
3162 			/* Single zoned block device mount */
3163 			FDEV(0).bdev =
3164 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3165 					sbi->sb->s_mode, sbi->sb->s_type);
3166 		} else {
3167 			/* Multi-device mount */
3168 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3169 			FDEV(i).total_segments =
3170 				le32_to_cpu(RDEV(i).total_segments);
3171 			if (i == 0) {
3172 				FDEV(i).start_blk = 0;
3173 				FDEV(i).end_blk = FDEV(i).start_blk +
3174 				    (FDEV(i).total_segments <<
3175 				    sbi->log_blocks_per_seg) - 1 +
3176 				    le32_to_cpu(raw_super->segment0_blkaddr);
3177 			} else {
3178 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3179 				FDEV(i).end_blk = FDEV(i).start_blk +
3180 					(FDEV(i).total_segments <<
3181 					sbi->log_blocks_per_seg) - 1;
3182 			}
3183 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3184 					sbi->sb->s_mode, sbi->sb->s_type);
3185 		}
3186 		if (IS_ERR(FDEV(i).bdev))
3187 			return PTR_ERR(FDEV(i).bdev);
3188 
3189 		/* to release errored devices */
3190 		sbi->s_ndevs = i + 1;
3191 
3192 #ifdef CONFIG_BLK_DEV_ZONED
3193 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3194 				!f2fs_sb_has_blkzoned(sbi)) {
3195 			f2fs_err(sbi, "Zoned block device feature not enabled\n");
3196 			return -EINVAL;
3197 		}
3198 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3199 			if (init_blkz_info(sbi, i)) {
3200 				f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
3201 				return -EINVAL;
3202 			}
3203 			if (max_devices == 1)
3204 				break;
3205 			f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3206 				  i, FDEV(i).path,
3207 				  FDEV(i).total_segments,
3208 				  FDEV(i).start_blk, FDEV(i).end_blk,
3209 				  bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3210 				  "Host-aware" : "Host-managed");
3211 			continue;
3212 		}
3213 #endif
3214 		f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3215 			  i, FDEV(i).path,
3216 			  FDEV(i).total_segments,
3217 			  FDEV(i).start_blk, FDEV(i).end_blk);
3218 	}
3219 	f2fs_info(sbi,
3220 		  "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3221 	return 0;
3222 }
3223 
3224 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
3225 {
3226 #ifdef CONFIG_UNICODE
3227 	if (f2fs_sb_has_casefold(sbi) && !sbi->s_encoding) {
3228 		const struct f2fs_sb_encodings *encoding_info;
3229 		struct unicode_map *encoding;
3230 		__u16 encoding_flags;
3231 
3232 		if (f2fs_sb_has_encrypt(sbi)) {
3233 			f2fs_err(sbi,
3234 				"Can't mount with encoding and encryption");
3235 			return -EINVAL;
3236 		}
3237 
3238 		if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info,
3239 					  &encoding_flags)) {
3240 			f2fs_err(sbi,
3241 				 "Encoding requested by superblock is unknown");
3242 			return -EINVAL;
3243 		}
3244 
3245 		encoding = utf8_load(encoding_info->version);
3246 		if (IS_ERR(encoding)) {
3247 			f2fs_err(sbi,
3248 				 "can't mount with superblock charset: %s-%s "
3249 				 "not supported by the kernel. flags: 0x%x.",
3250 				 encoding_info->name, encoding_info->version,
3251 				 encoding_flags);
3252 			return PTR_ERR(encoding);
3253 		}
3254 		f2fs_info(sbi, "Using encoding defined by superblock: "
3255 			 "%s-%s with flags 0x%hx", encoding_info->name,
3256 			 encoding_info->version?:"\b", encoding_flags);
3257 
3258 		sbi->s_encoding = encoding;
3259 		sbi->s_encoding_flags = encoding_flags;
3260 		sbi->sb->s_d_op = &f2fs_dentry_ops;
3261 	}
3262 #else
3263 	if (f2fs_sb_has_casefold(sbi)) {
3264 		f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
3265 		return -EINVAL;
3266 	}
3267 #endif
3268 	return 0;
3269 }
3270 
3271 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3272 {
3273 	struct f2fs_sm_info *sm_i = SM_I(sbi);
3274 
3275 	/* adjust parameters according to the volume size */
3276 	if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3277 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3278 		sm_i->dcc_info->discard_granularity = 1;
3279 		sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3280 	}
3281 
3282 	sbi->readdir_ra = 1;
3283 }
3284 
3285 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3286 {
3287 	struct f2fs_sb_info *sbi;
3288 	struct f2fs_super_block *raw_super;
3289 	struct inode *root;
3290 	int err;
3291 	bool skip_recovery = false, need_fsck = false;
3292 	char *options = NULL;
3293 	int recovery, i, valid_super_block;
3294 	struct curseg_info *seg_i;
3295 	int retry_cnt = 1;
3296 
3297 try_onemore:
3298 	err = -EINVAL;
3299 	raw_super = NULL;
3300 	valid_super_block = -1;
3301 	recovery = 0;
3302 
3303 	/* allocate memory for f2fs-specific super block info */
3304 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3305 	if (!sbi)
3306 		return -ENOMEM;
3307 
3308 	sbi->sb = sb;
3309 
3310 	/* Load the checksum driver */
3311 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3312 	if (IS_ERR(sbi->s_chksum_driver)) {
3313 		f2fs_err(sbi, "Cannot load crc32 driver.");
3314 		err = PTR_ERR(sbi->s_chksum_driver);
3315 		sbi->s_chksum_driver = NULL;
3316 		goto free_sbi;
3317 	}
3318 
3319 	/* set a block size */
3320 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3321 		f2fs_err(sbi, "unable to set blocksize");
3322 		goto free_sbi;
3323 	}
3324 
3325 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3326 								&recovery);
3327 	if (err)
3328 		goto free_sbi;
3329 
3330 	sb->s_fs_info = sbi;
3331 	sbi->raw_super = raw_super;
3332 
3333 	/* precompute checksum seed for metadata */
3334 	if (f2fs_sb_has_inode_chksum(sbi))
3335 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3336 						sizeof(raw_super->uuid));
3337 
3338 	/*
3339 	 * The BLKZONED feature indicates that the drive was formatted with
3340 	 * zone alignment optimization. This is optional for host-aware
3341 	 * devices, but mandatory for host-managed zoned block devices.
3342 	 */
3343 #ifndef CONFIG_BLK_DEV_ZONED
3344 	if (f2fs_sb_has_blkzoned(sbi)) {
3345 		f2fs_err(sbi, "Zoned block device support is not enabled");
3346 		err = -EOPNOTSUPP;
3347 		goto free_sb_buf;
3348 	}
3349 #endif
3350 	default_options(sbi);
3351 	/* parse mount options */
3352 	options = kstrdup((const char *)data, GFP_KERNEL);
3353 	if (data && !options) {
3354 		err = -ENOMEM;
3355 		goto free_sb_buf;
3356 	}
3357 
3358 	err = parse_options(sb, options);
3359 	if (err)
3360 		goto free_options;
3361 
3362 	sbi->max_file_blocks = max_file_blocks();
3363 	sb->s_maxbytes = sbi->max_file_blocks <<
3364 				le32_to_cpu(raw_super->log_blocksize);
3365 	sb->s_max_links = F2FS_LINK_MAX;
3366 
3367 	err = f2fs_setup_casefold(sbi);
3368 	if (err)
3369 		goto free_options;
3370 
3371 #ifdef CONFIG_QUOTA
3372 	sb->dq_op = &f2fs_quota_operations;
3373 	sb->s_qcop = &f2fs_quotactl_ops;
3374 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3375 
3376 	if (f2fs_sb_has_quota_ino(sbi)) {
3377 		for (i = 0; i < MAXQUOTAS; i++) {
3378 			if (f2fs_qf_ino(sbi->sb, i))
3379 				sbi->nquota_files++;
3380 		}
3381 	}
3382 #endif
3383 
3384 	sb->s_op = &f2fs_sops;
3385 #ifdef CONFIG_FS_ENCRYPTION
3386 	sb->s_cop = &f2fs_cryptops;
3387 #endif
3388 #ifdef CONFIG_FS_VERITY
3389 	sb->s_vop = &f2fs_verityops;
3390 #endif
3391 	sb->s_xattr = f2fs_xattr_handlers;
3392 	sb->s_export_op = &f2fs_export_ops;
3393 	sb->s_magic = F2FS_SUPER_MAGIC;
3394 	sb->s_time_gran = 1;
3395 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3396 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3397 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3398 	sb->s_iflags |= SB_I_CGROUPWB;
3399 
3400 	/* init f2fs-specific super block info */
3401 	sbi->valid_super_block = valid_super_block;
3402 	init_rwsem(&sbi->gc_lock);
3403 	mutex_init(&sbi->writepages);
3404 	mutex_init(&sbi->cp_mutex);
3405 	mutex_init(&sbi->resize_mutex);
3406 	init_rwsem(&sbi->node_write);
3407 	init_rwsem(&sbi->node_change);
3408 
3409 	/* disallow all the data/node/meta page writes */
3410 	set_sbi_flag(sbi, SBI_POR_DOING);
3411 	spin_lock_init(&sbi->stat_lock);
3412 
3413 	/* init iostat info */
3414 	spin_lock_init(&sbi->iostat_lock);
3415 	sbi->iostat_enable = false;
3416 
3417 	for (i = 0; i < NR_PAGE_TYPE; i++) {
3418 		int n = (i == META) ? 1: NR_TEMP_TYPE;
3419 		int j;
3420 
3421 		sbi->write_io[i] =
3422 			f2fs_kmalloc(sbi,
3423 				     array_size(n,
3424 						sizeof(struct f2fs_bio_info)),
3425 				     GFP_KERNEL);
3426 		if (!sbi->write_io[i]) {
3427 			err = -ENOMEM;
3428 			goto free_bio_info;
3429 		}
3430 
3431 		for (j = HOT; j < n; j++) {
3432 			init_rwsem(&sbi->write_io[i][j].io_rwsem);
3433 			sbi->write_io[i][j].sbi = sbi;
3434 			sbi->write_io[i][j].bio = NULL;
3435 			spin_lock_init(&sbi->write_io[i][j].io_lock);
3436 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
3437 			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
3438 			init_rwsem(&sbi->write_io[i][j].bio_list_lock);
3439 		}
3440 	}
3441 
3442 	init_rwsem(&sbi->cp_rwsem);
3443 	init_rwsem(&sbi->quota_sem);
3444 	init_waitqueue_head(&sbi->cp_wait);
3445 	init_sb_info(sbi);
3446 
3447 	err = init_percpu_info(sbi);
3448 	if (err)
3449 		goto free_bio_info;
3450 
3451 	if (F2FS_IO_ALIGNED(sbi)) {
3452 		sbi->write_io_dummy =
3453 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
3454 		if (!sbi->write_io_dummy) {
3455 			err = -ENOMEM;
3456 			goto free_percpu;
3457 		}
3458 	}
3459 
3460 	/* get an inode for meta space */
3461 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
3462 	if (IS_ERR(sbi->meta_inode)) {
3463 		f2fs_err(sbi, "Failed to read F2FS meta data inode");
3464 		err = PTR_ERR(sbi->meta_inode);
3465 		goto free_io_dummy;
3466 	}
3467 
3468 	err = f2fs_get_valid_checkpoint(sbi);
3469 	if (err) {
3470 		f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
3471 		goto free_meta_inode;
3472 	}
3473 
3474 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
3475 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3476 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
3477 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3478 		sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
3479 	}
3480 
3481 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
3482 		set_sbi_flag(sbi, SBI_NEED_FSCK);
3483 
3484 	/* Initialize device list */
3485 	err = f2fs_scan_devices(sbi);
3486 	if (err) {
3487 		f2fs_err(sbi, "Failed to find devices");
3488 		goto free_devices;
3489 	}
3490 
3491 	err = f2fs_init_post_read_wq(sbi);
3492 	if (err) {
3493 		f2fs_err(sbi, "Failed to initialize post read workqueue");
3494 		goto free_devices;
3495 	}
3496 
3497 	sbi->total_valid_node_count =
3498 				le32_to_cpu(sbi->ckpt->valid_node_count);
3499 	percpu_counter_set(&sbi->total_valid_inode_count,
3500 				le32_to_cpu(sbi->ckpt->valid_inode_count));
3501 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
3502 	sbi->total_valid_block_count =
3503 				le64_to_cpu(sbi->ckpt->valid_block_count);
3504 	sbi->last_valid_block_count = sbi->total_valid_block_count;
3505 	sbi->reserved_blocks = 0;
3506 	sbi->current_reserved_blocks = 0;
3507 	limit_reserve_root(sbi);
3508 
3509 	for (i = 0; i < NR_INODE_TYPE; i++) {
3510 		INIT_LIST_HEAD(&sbi->inode_list[i]);
3511 		spin_lock_init(&sbi->inode_lock[i]);
3512 	}
3513 	mutex_init(&sbi->flush_lock);
3514 
3515 	f2fs_init_extent_cache_info(sbi);
3516 
3517 	f2fs_init_ino_entry_info(sbi);
3518 
3519 	f2fs_init_fsync_node_info(sbi);
3520 
3521 	/* setup f2fs internal modules */
3522 	err = f2fs_build_segment_manager(sbi);
3523 	if (err) {
3524 		f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
3525 			 err);
3526 		goto free_sm;
3527 	}
3528 	err = f2fs_build_node_manager(sbi);
3529 	if (err) {
3530 		f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
3531 			 err);
3532 		goto free_nm;
3533 	}
3534 
3535 	/* For write statistics */
3536 	if (sb->s_bdev->bd_part)
3537 		sbi->sectors_written_start =
3538 			(u64)part_stat_read(sb->s_bdev->bd_part,
3539 					    sectors[STAT_WRITE]);
3540 
3541 	/* Read accumulated write IO statistics if exists */
3542 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
3543 	if (__exist_node_summaries(sbi))
3544 		sbi->kbytes_written =
3545 			le64_to_cpu(seg_i->journal->info.kbytes_written);
3546 
3547 	f2fs_build_gc_manager(sbi);
3548 
3549 	err = f2fs_build_stats(sbi);
3550 	if (err)
3551 		goto free_nm;
3552 
3553 	/* get an inode for node space */
3554 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
3555 	if (IS_ERR(sbi->node_inode)) {
3556 		f2fs_err(sbi, "Failed to read node inode");
3557 		err = PTR_ERR(sbi->node_inode);
3558 		goto free_stats;
3559 	}
3560 
3561 	/* read root inode and dentry */
3562 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
3563 	if (IS_ERR(root)) {
3564 		f2fs_err(sbi, "Failed to read root inode");
3565 		err = PTR_ERR(root);
3566 		goto free_node_inode;
3567 	}
3568 	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
3569 			!root->i_size || !root->i_nlink) {
3570 		iput(root);
3571 		err = -EINVAL;
3572 		goto free_node_inode;
3573 	}
3574 
3575 	sb->s_root = d_make_root(root); /* allocate root dentry */
3576 	if (!sb->s_root) {
3577 		err = -ENOMEM;
3578 		goto free_node_inode;
3579 	}
3580 
3581 	err = f2fs_register_sysfs(sbi);
3582 	if (err)
3583 		goto free_root_inode;
3584 
3585 #ifdef CONFIG_QUOTA
3586 	/* Enable quota usage during mount */
3587 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
3588 		err = f2fs_enable_quotas(sb);
3589 		if (err)
3590 			f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
3591 	}
3592 #endif
3593 	/* if there are nt orphan nodes free them */
3594 	err = f2fs_recover_orphan_inodes(sbi);
3595 	if (err)
3596 		goto free_meta;
3597 
3598 	if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
3599 		goto reset_checkpoint;
3600 
3601 	/* recover fsynced data */
3602 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
3603 		/*
3604 		 * mount should be failed, when device has readonly mode, and
3605 		 * previous checkpoint was not done by clean system shutdown.
3606 		 */
3607 		if (f2fs_hw_is_readonly(sbi)) {
3608 			if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3609 				err = -EROFS;
3610 				f2fs_err(sbi, "Need to recover fsync data, but write access unavailable");
3611 				goto free_meta;
3612 			}
3613 			f2fs_info(sbi, "write access unavailable, skipping recovery");
3614 			goto reset_checkpoint;
3615 		}
3616 
3617 		if (need_fsck)
3618 			set_sbi_flag(sbi, SBI_NEED_FSCK);
3619 
3620 		if (skip_recovery)
3621 			goto reset_checkpoint;
3622 
3623 		err = f2fs_recover_fsync_data(sbi, false);
3624 		if (err < 0) {
3625 			if (err != -ENOMEM)
3626 				skip_recovery = true;
3627 			need_fsck = true;
3628 			f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
3629 				 err);
3630 			goto free_meta;
3631 		}
3632 	} else {
3633 		err = f2fs_recover_fsync_data(sbi, true);
3634 
3635 		if (!f2fs_readonly(sb) && err > 0) {
3636 			err = -EINVAL;
3637 			f2fs_err(sbi, "Need to recover fsync data");
3638 			goto free_meta;
3639 		}
3640 	}
3641 
3642 	/*
3643 	 * If the f2fs is not readonly and fsync data recovery succeeds,
3644 	 * check zoned block devices' write pointer consistency.
3645 	 */
3646 	if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
3647 		err = f2fs_check_write_pointer(sbi);
3648 		if (err)
3649 			goto free_meta;
3650 	}
3651 
3652 reset_checkpoint:
3653 	/* f2fs_recover_fsync_data() cleared this already */
3654 	clear_sbi_flag(sbi, SBI_POR_DOING);
3655 
3656 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
3657 		err = f2fs_disable_checkpoint(sbi);
3658 		if (err)
3659 			goto sync_free_meta;
3660 	} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
3661 		f2fs_enable_checkpoint(sbi);
3662 	}
3663 
3664 	/*
3665 	 * If filesystem is not mounted as read-only then
3666 	 * do start the gc_thread.
3667 	 */
3668 	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
3669 		/* After POR, we can run background GC thread.*/
3670 		err = f2fs_start_gc_thread(sbi);
3671 		if (err)
3672 			goto sync_free_meta;
3673 	}
3674 	kvfree(options);
3675 
3676 	/* recover broken superblock */
3677 	if (recovery) {
3678 		err = f2fs_commit_super(sbi, true);
3679 		f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
3680 			  sbi->valid_super_block ? 1 : 2, err);
3681 	}
3682 
3683 	f2fs_join_shrinker(sbi);
3684 
3685 	f2fs_tuning_parameters(sbi);
3686 
3687 	f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
3688 		    cur_cp_version(F2FS_CKPT(sbi)));
3689 	f2fs_update_time(sbi, CP_TIME);
3690 	f2fs_update_time(sbi, REQ_TIME);
3691 	clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
3692 	return 0;
3693 
3694 sync_free_meta:
3695 	/* safe to flush all the data */
3696 	sync_filesystem(sbi->sb);
3697 	retry_cnt = 0;
3698 
3699 free_meta:
3700 #ifdef CONFIG_QUOTA
3701 	f2fs_truncate_quota_inode_pages(sb);
3702 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
3703 		f2fs_quota_off_umount(sbi->sb);
3704 #endif
3705 	/*
3706 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3707 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3708 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3709 	 * falls into an infinite loop in f2fs_sync_meta_pages().
3710 	 */
3711 	truncate_inode_pages_final(META_MAPPING(sbi));
3712 	/* evict some inodes being cached by GC */
3713 	evict_inodes(sb);
3714 	f2fs_unregister_sysfs(sbi);
3715 free_root_inode:
3716 	dput(sb->s_root);
3717 	sb->s_root = NULL;
3718 free_node_inode:
3719 	f2fs_release_ino_entry(sbi, true);
3720 	truncate_inode_pages_final(NODE_MAPPING(sbi));
3721 	iput(sbi->node_inode);
3722 	sbi->node_inode = NULL;
3723 free_stats:
3724 	f2fs_destroy_stats(sbi);
3725 free_nm:
3726 	f2fs_destroy_node_manager(sbi);
3727 free_sm:
3728 	f2fs_destroy_segment_manager(sbi);
3729 	f2fs_destroy_post_read_wq(sbi);
3730 free_devices:
3731 	destroy_device_list(sbi);
3732 	kvfree(sbi->ckpt);
3733 free_meta_inode:
3734 	make_bad_inode(sbi->meta_inode);
3735 	iput(sbi->meta_inode);
3736 	sbi->meta_inode = NULL;
3737 free_io_dummy:
3738 	mempool_destroy(sbi->write_io_dummy);
3739 free_percpu:
3740 	destroy_percpu_info(sbi);
3741 free_bio_info:
3742 	for (i = 0; i < NR_PAGE_TYPE; i++)
3743 		kvfree(sbi->write_io[i]);
3744 
3745 #ifdef CONFIG_UNICODE
3746 	utf8_unload(sbi->s_encoding);
3747 #endif
3748 free_options:
3749 #ifdef CONFIG_QUOTA
3750 	for (i = 0; i < MAXQUOTAS; i++)
3751 		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
3752 #endif
3753 	kvfree(options);
3754 free_sb_buf:
3755 	kvfree(raw_super);
3756 free_sbi:
3757 	if (sbi->s_chksum_driver)
3758 		crypto_free_shash(sbi->s_chksum_driver);
3759 	kvfree(sbi);
3760 
3761 	/* give only one another chance */
3762 	if (retry_cnt > 0 && skip_recovery) {
3763 		retry_cnt--;
3764 		shrink_dcache_sb(sb);
3765 		goto try_onemore;
3766 	}
3767 	return err;
3768 }
3769 
3770 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3771 			const char *dev_name, void *data)
3772 {
3773 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3774 }
3775 
3776 static void kill_f2fs_super(struct super_block *sb)
3777 {
3778 	if (sb->s_root) {
3779 		struct f2fs_sb_info *sbi = F2FS_SB(sb);
3780 
3781 		set_sbi_flag(sbi, SBI_IS_CLOSE);
3782 		f2fs_stop_gc_thread(sbi);
3783 		f2fs_stop_discard_thread(sbi);
3784 
3785 		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
3786 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3787 			struct cp_control cpc = {
3788 				.reason = CP_UMOUNT,
3789 			};
3790 			f2fs_write_checkpoint(sbi, &cpc);
3791 		}
3792 
3793 		if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
3794 			sb->s_flags &= ~SB_RDONLY;
3795 	}
3796 	kill_block_super(sb);
3797 }
3798 
3799 static struct file_system_type f2fs_fs_type = {
3800 	.owner		= THIS_MODULE,
3801 	.name		= "f2fs",
3802 	.mount		= f2fs_mount,
3803 	.kill_sb	= kill_f2fs_super,
3804 	.fs_flags	= FS_REQUIRES_DEV,
3805 };
3806 MODULE_ALIAS_FS("f2fs");
3807 
3808 static int __init init_inodecache(void)
3809 {
3810 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3811 			sizeof(struct f2fs_inode_info), 0,
3812 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3813 	if (!f2fs_inode_cachep)
3814 		return -ENOMEM;
3815 	return 0;
3816 }
3817 
3818 static void destroy_inodecache(void)
3819 {
3820 	/*
3821 	 * Make sure all delayed rcu free inodes are flushed before we
3822 	 * destroy cache.
3823 	 */
3824 	rcu_barrier();
3825 	kmem_cache_destroy(f2fs_inode_cachep);
3826 }
3827 
3828 static int __init init_f2fs_fs(void)
3829 {
3830 	int err;
3831 
3832 	if (PAGE_SIZE != F2FS_BLKSIZE) {
3833 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
3834 				PAGE_SIZE, F2FS_BLKSIZE);
3835 		return -EINVAL;
3836 	}
3837 
3838 	f2fs_build_trace_ios();
3839 
3840 	err = init_inodecache();
3841 	if (err)
3842 		goto fail;
3843 	err = f2fs_create_node_manager_caches();
3844 	if (err)
3845 		goto free_inodecache;
3846 	err = f2fs_create_segment_manager_caches();
3847 	if (err)
3848 		goto free_node_manager_caches;
3849 	err = f2fs_create_checkpoint_caches();
3850 	if (err)
3851 		goto free_segment_manager_caches;
3852 	err = f2fs_create_extent_cache();
3853 	if (err)
3854 		goto free_checkpoint_caches;
3855 	err = f2fs_init_sysfs();
3856 	if (err)
3857 		goto free_extent_cache;
3858 	err = register_shrinker(&f2fs_shrinker_info);
3859 	if (err)
3860 		goto free_sysfs;
3861 	err = register_filesystem(&f2fs_fs_type);
3862 	if (err)
3863 		goto free_shrinker;
3864 	f2fs_create_root_stats();
3865 	err = f2fs_init_post_read_processing();
3866 	if (err)
3867 		goto free_root_stats;
3868 	err = f2fs_init_bio_entry_cache();
3869 	if (err)
3870 		goto free_post_read;
3871 	err = f2fs_init_bioset();
3872 	if (err)
3873 		goto free_bio_enrty_cache;
3874 	return 0;
3875 free_bio_enrty_cache:
3876 	f2fs_destroy_bio_entry_cache();
3877 free_post_read:
3878 	f2fs_destroy_post_read_processing();
3879 free_root_stats:
3880 	f2fs_destroy_root_stats();
3881 	unregister_filesystem(&f2fs_fs_type);
3882 free_shrinker:
3883 	unregister_shrinker(&f2fs_shrinker_info);
3884 free_sysfs:
3885 	f2fs_exit_sysfs();
3886 free_extent_cache:
3887 	f2fs_destroy_extent_cache();
3888 free_checkpoint_caches:
3889 	f2fs_destroy_checkpoint_caches();
3890 free_segment_manager_caches:
3891 	f2fs_destroy_segment_manager_caches();
3892 free_node_manager_caches:
3893 	f2fs_destroy_node_manager_caches();
3894 free_inodecache:
3895 	destroy_inodecache();
3896 fail:
3897 	return err;
3898 }
3899 
3900 static void __exit exit_f2fs_fs(void)
3901 {
3902 	f2fs_destroy_bioset();
3903 	f2fs_destroy_bio_entry_cache();
3904 	f2fs_destroy_post_read_processing();
3905 	f2fs_destroy_root_stats();
3906 	unregister_filesystem(&f2fs_fs_type);
3907 	unregister_shrinker(&f2fs_shrinker_info);
3908 	f2fs_exit_sysfs();
3909 	f2fs_destroy_extent_cache();
3910 	f2fs_destroy_checkpoint_caches();
3911 	f2fs_destroy_segment_manager_caches();
3912 	f2fs_destroy_node_manager_caches();
3913 	destroy_inodecache();
3914 	f2fs_destroy_trace_ios();
3915 }
3916 
3917 module_init(init_f2fs_fs)
3918 module_exit(exit_f2fs_fs)
3919 
3920 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
3921 MODULE_DESCRIPTION("Flash Friendly File System");
3922 MODULE_LICENSE("GPL");
3923 
3924