1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/statfs.h> 12 #include <linux/buffer_head.h> 13 #include <linux/backing-dev.h> 14 #include <linux/kthread.h> 15 #include <linux/parser.h> 16 #include <linux/mount.h> 17 #include <linux/seq_file.h> 18 #include <linux/proc_fs.h> 19 #include <linux/random.h> 20 #include <linux/exportfs.h> 21 #include <linux/blkdev.h> 22 #include <linux/quotaops.h> 23 #include <linux/f2fs_fs.h> 24 #include <linux/sysfs.h> 25 #include <linux/quota.h> 26 #include <linux/unicode.h> 27 #include <linux/part_stat.h> 28 29 #include "f2fs.h" 30 #include "node.h" 31 #include "segment.h" 32 #include "xattr.h" 33 #include "gc.h" 34 #include "trace.h" 35 36 #define CREATE_TRACE_POINTS 37 #include <trace/events/f2fs.h> 38 39 static struct kmem_cache *f2fs_inode_cachep; 40 41 #ifdef CONFIG_F2FS_FAULT_INJECTION 42 43 const char *f2fs_fault_name[FAULT_MAX] = { 44 [FAULT_KMALLOC] = "kmalloc", 45 [FAULT_KVMALLOC] = "kvmalloc", 46 [FAULT_PAGE_ALLOC] = "page alloc", 47 [FAULT_PAGE_GET] = "page get", 48 [FAULT_ALLOC_BIO] = "alloc bio", 49 [FAULT_ALLOC_NID] = "alloc nid", 50 [FAULT_ORPHAN] = "orphan", 51 [FAULT_BLOCK] = "no more block", 52 [FAULT_DIR_DEPTH] = "too big dir depth", 53 [FAULT_EVICT_INODE] = "evict_inode fail", 54 [FAULT_TRUNCATE] = "truncate fail", 55 [FAULT_READ_IO] = "read IO error", 56 [FAULT_CHECKPOINT] = "checkpoint error", 57 [FAULT_DISCARD] = "discard error", 58 [FAULT_WRITE_IO] = "write IO error", 59 }; 60 61 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 62 unsigned int type) 63 { 64 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 65 66 if (rate) { 67 atomic_set(&ffi->inject_ops, 0); 68 ffi->inject_rate = rate; 69 } 70 71 if (type) 72 ffi->inject_type = type; 73 74 if (!rate && !type) 75 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 76 } 77 #endif 78 79 /* f2fs-wide shrinker description */ 80 static struct shrinker f2fs_shrinker_info = { 81 .scan_objects = f2fs_shrink_scan, 82 .count_objects = f2fs_shrink_count, 83 .seeks = DEFAULT_SEEKS, 84 }; 85 86 enum { 87 Opt_gc_background, 88 Opt_disable_roll_forward, 89 Opt_norecovery, 90 Opt_discard, 91 Opt_nodiscard, 92 Opt_noheap, 93 Opt_heap, 94 Opt_user_xattr, 95 Opt_nouser_xattr, 96 Opt_acl, 97 Opt_noacl, 98 Opt_active_logs, 99 Opt_disable_ext_identify, 100 Opt_inline_xattr, 101 Opt_noinline_xattr, 102 Opt_inline_xattr_size, 103 Opt_inline_data, 104 Opt_inline_dentry, 105 Opt_noinline_dentry, 106 Opt_flush_merge, 107 Opt_noflush_merge, 108 Opt_nobarrier, 109 Opt_fastboot, 110 Opt_extent_cache, 111 Opt_noextent_cache, 112 Opt_noinline_data, 113 Opt_data_flush, 114 Opt_reserve_root, 115 Opt_resgid, 116 Opt_resuid, 117 Opt_mode, 118 Opt_io_size_bits, 119 Opt_fault_injection, 120 Opt_fault_type, 121 Opt_lazytime, 122 Opt_nolazytime, 123 Opt_quota, 124 Opt_noquota, 125 Opt_usrquota, 126 Opt_grpquota, 127 Opt_prjquota, 128 Opt_usrjquota, 129 Opt_grpjquota, 130 Opt_prjjquota, 131 Opt_offusrjquota, 132 Opt_offgrpjquota, 133 Opt_offprjjquota, 134 Opt_jqfmt_vfsold, 135 Opt_jqfmt_vfsv0, 136 Opt_jqfmt_vfsv1, 137 Opt_whint, 138 Opt_alloc, 139 Opt_fsync, 140 Opt_test_dummy_encryption, 141 Opt_checkpoint_disable, 142 Opt_checkpoint_disable_cap, 143 Opt_checkpoint_disable_cap_perc, 144 Opt_checkpoint_enable, 145 Opt_compress_algorithm, 146 Opt_compress_log_size, 147 Opt_compress_extension, 148 Opt_err, 149 }; 150 151 static match_table_t f2fs_tokens = { 152 {Opt_gc_background, "background_gc=%s"}, 153 {Opt_disable_roll_forward, "disable_roll_forward"}, 154 {Opt_norecovery, "norecovery"}, 155 {Opt_discard, "discard"}, 156 {Opt_nodiscard, "nodiscard"}, 157 {Opt_noheap, "no_heap"}, 158 {Opt_heap, "heap"}, 159 {Opt_user_xattr, "user_xattr"}, 160 {Opt_nouser_xattr, "nouser_xattr"}, 161 {Opt_acl, "acl"}, 162 {Opt_noacl, "noacl"}, 163 {Opt_active_logs, "active_logs=%u"}, 164 {Opt_disable_ext_identify, "disable_ext_identify"}, 165 {Opt_inline_xattr, "inline_xattr"}, 166 {Opt_noinline_xattr, "noinline_xattr"}, 167 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 168 {Opt_inline_data, "inline_data"}, 169 {Opt_inline_dentry, "inline_dentry"}, 170 {Opt_noinline_dentry, "noinline_dentry"}, 171 {Opt_flush_merge, "flush_merge"}, 172 {Opt_noflush_merge, "noflush_merge"}, 173 {Opt_nobarrier, "nobarrier"}, 174 {Opt_fastboot, "fastboot"}, 175 {Opt_extent_cache, "extent_cache"}, 176 {Opt_noextent_cache, "noextent_cache"}, 177 {Opt_noinline_data, "noinline_data"}, 178 {Opt_data_flush, "data_flush"}, 179 {Opt_reserve_root, "reserve_root=%u"}, 180 {Opt_resgid, "resgid=%u"}, 181 {Opt_resuid, "resuid=%u"}, 182 {Opt_mode, "mode=%s"}, 183 {Opt_io_size_bits, "io_bits=%u"}, 184 {Opt_fault_injection, "fault_injection=%u"}, 185 {Opt_fault_type, "fault_type=%u"}, 186 {Opt_lazytime, "lazytime"}, 187 {Opt_nolazytime, "nolazytime"}, 188 {Opt_quota, "quota"}, 189 {Opt_noquota, "noquota"}, 190 {Opt_usrquota, "usrquota"}, 191 {Opt_grpquota, "grpquota"}, 192 {Opt_prjquota, "prjquota"}, 193 {Opt_usrjquota, "usrjquota=%s"}, 194 {Opt_grpjquota, "grpjquota=%s"}, 195 {Opt_prjjquota, "prjjquota=%s"}, 196 {Opt_offusrjquota, "usrjquota="}, 197 {Opt_offgrpjquota, "grpjquota="}, 198 {Opt_offprjjquota, "prjjquota="}, 199 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 200 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 201 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 202 {Opt_whint, "whint_mode=%s"}, 203 {Opt_alloc, "alloc_mode=%s"}, 204 {Opt_fsync, "fsync_mode=%s"}, 205 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 206 {Opt_checkpoint_disable, "checkpoint=disable"}, 207 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"}, 208 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"}, 209 {Opt_checkpoint_enable, "checkpoint=enable"}, 210 {Opt_compress_algorithm, "compress_algorithm=%s"}, 211 {Opt_compress_log_size, "compress_log_size=%u"}, 212 {Opt_compress_extension, "compress_extension=%s"}, 213 {Opt_err, NULL}, 214 }; 215 216 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...) 217 { 218 struct va_format vaf; 219 va_list args; 220 int level; 221 222 va_start(args, fmt); 223 224 level = printk_get_level(fmt); 225 vaf.fmt = printk_skip_level(fmt); 226 vaf.va = &args; 227 printk("%c%cF2FS-fs (%s): %pV\n", 228 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 229 230 va_end(args); 231 } 232 233 #ifdef CONFIG_UNICODE 234 static const struct f2fs_sb_encodings { 235 __u16 magic; 236 char *name; 237 char *version; 238 } f2fs_sb_encoding_map[] = { 239 {F2FS_ENC_UTF8_12_1, "utf8", "12.1.0"}, 240 }; 241 242 static int f2fs_sb_read_encoding(const struct f2fs_super_block *sb, 243 const struct f2fs_sb_encodings **encoding, 244 __u16 *flags) 245 { 246 __u16 magic = le16_to_cpu(sb->s_encoding); 247 int i; 248 249 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++) 250 if (magic == f2fs_sb_encoding_map[i].magic) 251 break; 252 253 if (i >= ARRAY_SIZE(f2fs_sb_encoding_map)) 254 return -EINVAL; 255 256 *encoding = &f2fs_sb_encoding_map[i]; 257 *flags = le16_to_cpu(sb->s_encoding_flags); 258 259 return 0; 260 } 261 #endif 262 263 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 264 { 265 block_t limit = min((sbi->user_block_count << 1) / 1000, 266 sbi->user_block_count - sbi->reserved_blocks); 267 268 /* limit is 0.2% */ 269 if (test_opt(sbi, RESERVE_ROOT) && 270 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 271 F2FS_OPTION(sbi).root_reserved_blocks = limit; 272 f2fs_info(sbi, "Reduce reserved blocks for root = %u", 273 F2FS_OPTION(sbi).root_reserved_blocks); 274 } 275 if (!test_opt(sbi, RESERVE_ROOT) && 276 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 277 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 278 !gid_eq(F2FS_OPTION(sbi).s_resgid, 279 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 280 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 281 from_kuid_munged(&init_user_ns, 282 F2FS_OPTION(sbi).s_resuid), 283 from_kgid_munged(&init_user_ns, 284 F2FS_OPTION(sbi).s_resgid)); 285 } 286 287 static void init_once(void *foo) 288 { 289 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 290 291 inode_init_once(&fi->vfs_inode); 292 } 293 294 #ifdef CONFIG_QUOTA 295 static const char * const quotatypes[] = INITQFNAMES; 296 #define QTYPE2NAME(t) (quotatypes[t]) 297 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 298 substring_t *args) 299 { 300 struct f2fs_sb_info *sbi = F2FS_SB(sb); 301 char *qname; 302 int ret = -EINVAL; 303 304 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 305 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 306 return -EINVAL; 307 } 308 if (f2fs_sb_has_quota_ino(sbi)) { 309 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name"); 310 return 0; 311 } 312 313 qname = match_strdup(args); 314 if (!qname) { 315 f2fs_err(sbi, "Not enough memory for storing quotafile name"); 316 return -ENOMEM; 317 } 318 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 319 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 320 ret = 0; 321 else 322 f2fs_err(sbi, "%s quota file already specified", 323 QTYPE2NAME(qtype)); 324 goto errout; 325 } 326 if (strchr(qname, '/')) { 327 f2fs_err(sbi, "quotafile must be on filesystem root"); 328 goto errout; 329 } 330 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 331 set_opt(sbi, QUOTA); 332 return 0; 333 errout: 334 kvfree(qname); 335 return ret; 336 } 337 338 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 339 { 340 struct f2fs_sb_info *sbi = F2FS_SB(sb); 341 342 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 343 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 344 return -EINVAL; 345 } 346 kvfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 347 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 348 return 0; 349 } 350 351 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 352 { 353 /* 354 * We do the test below only for project quotas. 'usrquota' and 355 * 'grpquota' mount options are allowed even without quota feature 356 * to support legacy quotas in quota files. 357 */ 358 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 359 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement."); 360 return -1; 361 } 362 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 363 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 364 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 365 if (test_opt(sbi, USRQUOTA) && 366 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 367 clear_opt(sbi, USRQUOTA); 368 369 if (test_opt(sbi, GRPQUOTA) && 370 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 371 clear_opt(sbi, GRPQUOTA); 372 373 if (test_opt(sbi, PRJQUOTA) && 374 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 375 clear_opt(sbi, PRJQUOTA); 376 377 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 378 test_opt(sbi, PRJQUOTA)) { 379 f2fs_err(sbi, "old and new quota format mixing"); 380 return -1; 381 } 382 383 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 384 f2fs_err(sbi, "journaled quota format not specified"); 385 return -1; 386 } 387 } 388 389 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 390 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt"); 391 F2FS_OPTION(sbi).s_jquota_fmt = 0; 392 } 393 return 0; 394 } 395 #endif 396 397 static int parse_options(struct super_block *sb, char *options) 398 { 399 struct f2fs_sb_info *sbi = F2FS_SB(sb); 400 substring_t args[MAX_OPT_ARGS]; 401 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 402 char *p, *name; 403 int arg = 0, ext_cnt; 404 kuid_t uid; 405 kgid_t gid; 406 #ifdef CONFIG_QUOTA 407 int ret; 408 #endif 409 410 if (!options) 411 return 0; 412 413 while ((p = strsep(&options, ",")) != NULL) { 414 int token; 415 if (!*p) 416 continue; 417 /* 418 * Initialize args struct so we know whether arg was 419 * found; some options take optional arguments. 420 */ 421 args[0].to = args[0].from = NULL; 422 token = match_token(p, f2fs_tokens, args); 423 424 switch (token) { 425 case Opt_gc_background: 426 name = match_strdup(&args[0]); 427 428 if (!name) 429 return -ENOMEM; 430 if (strlen(name) == 2 && !strncmp(name, "on", 2)) { 431 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 432 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) { 433 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF; 434 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) { 435 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC; 436 } else { 437 kvfree(name); 438 return -EINVAL; 439 } 440 kvfree(name); 441 break; 442 case Opt_disable_roll_forward: 443 set_opt(sbi, DISABLE_ROLL_FORWARD); 444 break; 445 case Opt_norecovery: 446 /* this option mounts f2fs with ro */ 447 set_opt(sbi, NORECOVERY); 448 if (!f2fs_readonly(sb)) 449 return -EINVAL; 450 break; 451 case Opt_discard: 452 set_opt(sbi, DISCARD); 453 break; 454 case Opt_nodiscard: 455 if (f2fs_sb_has_blkzoned(sbi)) { 456 f2fs_warn(sbi, "discard is required for zoned block devices"); 457 return -EINVAL; 458 } 459 clear_opt(sbi, DISCARD); 460 break; 461 case Opt_noheap: 462 set_opt(sbi, NOHEAP); 463 break; 464 case Opt_heap: 465 clear_opt(sbi, NOHEAP); 466 break; 467 #ifdef CONFIG_F2FS_FS_XATTR 468 case Opt_user_xattr: 469 set_opt(sbi, XATTR_USER); 470 break; 471 case Opt_nouser_xattr: 472 clear_opt(sbi, XATTR_USER); 473 break; 474 case Opt_inline_xattr: 475 set_opt(sbi, INLINE_XATTR); 476 break; 477 case Opt_noinline_xattr: 478 clear_opt(sbi, INLINE_XATTR); 479 break; 480 case Opt_inline_xattr_size: 481 if (args->from && match_int(args, &arg)) 482 return -EINVAL; 483 set_opt(sbi, INLINE_XATTR_SIZE); 484 F2FS_OPTION(sbi).inline_xattr_size = arg; 485 break; 486 #else 487 case Opt_user_xattr: 488 f2fs_info(sbi, "user_xattr options not supported"); 489 break; 490 case Opt_nouser_xattr: 491 f2fs_info(sbi, "nouser_xattr options not supported"); 492 break; 493 case Opt_inline_xattr: 494 f2fs_info(sbi, "inline_xattr options not supported"); 495 break; 496 case Opt_noinline_xattr: 497 f2fs_info(sbi, "noinline_xattr options not supported"); 498 break; 499 #endif 500 #ifdef CONFIG_F2FS_FS_POSIX_ACL 501 case Opt_acl: 502 set_opt(sbi, POSIX_ACL); 503 break; 504 case Opt_noacl: 505 clear_opt(sbi, POSIX_ACL); 506 break; 507 #else 508 case Opt_acl: 509 f2fs_info(sbi, "acl options not supported"); 510 break; 511 case Opt_noacl: 512 f2fs_info(sbi, "noacl options not supported"); 513 break; 514 #endif 515 case Opt_active_logs: 516 if (args->from && match_int(args, &arg)) 517 return -EINVAL; 518 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 519 return -EINVAL; 520 F2FS_OPTION(sbi).active_logs = arg; 521 break; 522 case Opt_disable_ext_identify: 523 set_opt(sbi, DISABLE_EXT_IDENTIFY); 524 break; 525 case Opt_inline_data: 526 set_opt(sbi, INLINE_DATA); 527 break; 528 case Opt_inline_dentry: 529 set_opt(sbi, INLINE_DENTRY); 530 break; 531 case Opt_noinline_dentry: 532 clear_opt(sbi, INLINE_DENTRY); 533 break; 534 case Opt_flush_merge: 535 set_opt(sbi, FLUSH_MERGE); 536 break; 537 case Opt_noflush_merge: 538 clear_opt(sbi, FLUSH_MERGE); 539 break; 540 case Opt_nobarrier: 541 set_opt(sbi, NOBARRIER); 542 break; 543 case Opt_fastboot: 544 set_opt(sbi, FASTBOOT); 545 break; 546 case Opt_extent_cache: 547 set_opt(sbi, EXTENT_CACHE); 548 break; 549 case Opt_noextent_cache: 550 clear_opt(sbi, EXTENT_CACHE); 551 break; 552 case Opt_noinline_data: 553 clear_opt(sbi, INLINE_DATA); 554 break; 555 case Opt_data_flush: 556 set_opt(sbi, DATA_FLUSH); 557 break; 558 case Opt_reserve_root: 559 if (args->from && match_int(args, &arg)) 560 return -EINVAL; 561 if (test_opt(sbi, RESERVE_ROOT)) { 562 f2fs_info(sbi, "Preserve previous reserve_root=%u", 563 F2FS_OPTION(sbi).root_reserved_blocks); 564 } else { 565 F2FS_OPTION(sbi).root_reserved_blocks = arg; 566 set_opt(sbi, RESERVE_ROOT); 567 } 568 break; 569 case Opt_resuid: 570 if (args->from && match_int(args, &arg)) 571 return -EINVAL; 572 uid = make_kuid(current_user_ns(), arg); 573 if (!uid_valid(uid)) { 574 f2fs_err(sbi, "Invalid uid value %d", arg); 575 return -EINVAL; 576 } 577 F2FS_OPTION(sbi).s_resuid = uid; 578 break; 579 case Opt_resgid: 580 if (args->from && match_int(args, &arg)) 581 return -EINVAL; 582 gid = make_kgid(current_user_ns(), arg); 583 if (!gid_valid(gid)) { 584 f2fs_err(sbi, "Invalid gid value %d", arg); 585 return -EINVAL; 586 } 587 F2FS_OPTION(sbi).s_resgid = gid; 588 break; 589 case Opt_mode: 590 name = match_strdup(&args[0]); 591 592 if (!name) 593 return -ENOMEM; 594 if (strlen(name) == 8 && 595 !strncmp(name, "adaptive", 8)) { 596 if (f2fs_sb_has_blkzoned(sbi)) { 597 f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature"); 598 kvfree(name); 599 return -EINVAL; 600 } 601 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 602 } else if (strlen(name) == 3 && 603 !strncmp(name, "lfs", 3)) { 604 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 605 } else { 606 kvfree(name); 607 return -EINVAL; 608 } 609 kvfree(name); 610 break; 611 case Opt_io_size_bits: 612 if (args->from && match_int(args, &arg)) 613 return -EINVAL; 614 if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_PAGES)) { 615 f2fs_warn(sbi, "Not support %d, larger than %d", 616 1 << arg, BIO_MAX_PAGES); 617 return -EINVAL; 618 } 619 F2FS_OPTION(sbi).write_io_size_bits = arg; 620 break; 621 #ifdef CONFIG_F2FS_FAULT_INJECTION 622 case Opt_fault_injection: 623 if (args->from && match_int(args, &arg)) 624 return -EINVAL; 625 f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE); 626 set_opt(sbi, FAULT_INJECTION); 627 break; 628 629 case Opt_fault_type: 630 if (args->from && match_int(args, &arg)) 631 return -EINVAL; 632 f2fs_build_fault_attr(sbi, 0, arg); 633 set_opt(sbi, FAULT_INJECTION); 634 break; 635 #else 636 case Opt_fault_injection: 637 f2fs_info(sbi, "fault_injection options not supported"); 638 break; 639 640 case Opt_fault_type: 641 f2fs_info(sbi, "fault_type options not supported"); 642 break; 643 #endif 644 case Opt_lazytime: 645 sb->s_flags |= SB_LAZYTIME; 646 break; 647 case Opt_nolazytime: 648 sb->s_flags &= ~SB_LAZYTIME; 649 break; 650 #ifdef CONFIG_QUOTA 651 case Opt_quota: 652 case Opt_usrquota: 653 set_opt(sbi, USRQUOTA); 654 break; 655 case Opt_grpquota: 656 set_opt(sbi, GRPQUOTA); 657 break; 658 case Opt_prjquota: 659 set_opt(sbi, PRJQUOTA); 660 break; 661 case Opt_usrjquota: 662 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 663 if (ret) 664 return ret; 665 break; 666 case Opt_grpjquota: 667 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 668 if (ret) 669 return ret; 670 break; 671 case Opt_prjjquota: 672 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 673 if (ret) 674 return ret; 675 break; 676 case Opt_offusrjquota: 677 ret = f2fs_clear_qf_name(sb, USRQUOTA); 678 if (ret) 679 return ret; 680 break; 681 case Opt_offgrpjquota: 682 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 683 if (ret) 684 return ret; 685 break; 686 case Opt_offprjjquota: 687 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 688 if (ret) 689 return ret; 690 break; 691 case Opt_jqfmt_vfsold: 692 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 693 break; 694 case Opt_jqfmt_vfsv0: 695 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 696 break; 697 case Opt_jqfmt_vfsv1: 698 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 699 break; 700 case Opt_noquota: 701 clear_opt(sbi, QUOTA); 702 clear_opt(sbi, USRQUOTA); 703 clear_opt(sbi, GRPQUOTA); 704 clear_opt(sbi, PRJQUOTA); 705 break; 706 #else 707 case Opt_quota: 708 case Opt_usrquota: 709 case Opt_grpquota: 710 case Opt_prjquota: 711 case Opt_usrjquota: 712 case Opt_grpjquota: 713 case Opt_prjjquota: 714 case Opt_offusrjquota: 715 case Opt_offgrpjquota: 716 case Opt_offprjjquota: 717 case Opt_jqfmt_vfsold: 718 case Opt_jqfmt_vfsv0: 719 case Opt_jqfmt_vfsv1: 720 case Opt_noquota: 721 f2fs_info(sbi, "quota operations not supported"); 722 break; 723 #endif 724 case Opt_whint: 725 name = match_strdup(&args[0]); 726 if (!name) 727 return -ENOMEM; 728 if (strlen(name) == 10 && 729 !strncmp(name, "user-based", 10)) { 730 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER; 731 } else if (strlen(name) == 3 && 732 !strncmp(name, "off", 3)) { 733 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 734 } else if (strlen(name) == 8 && 735 !strncmp(name, "fs-based", 8)) { 736 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS; 737 } else { 738 kvfree(name); 739 return -EINVAL; 740 } 741 kvfree(name); 742 break; 743 case Opt_alloc: 744 name = match_strdup(&args[0]); 745 if (!name) 746 return -ENOMEM; 747 748 if (strlen(name) == 7 && 749 !strncmp(name, "default", 7)) { 750 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 751 } else if (strlen(name) == 5 && 752 !strncmp(name, "reuse", 5)) { 753 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 754 } else { 755 kvfree(name); 756 return -EINVAL; 757 } 758 kvfree(name); 759 break; 760 case Opt_fsync: 761 name = match_strdup(&args[0]); 762 if (!name) 763 return -ENOMEM; 764 if (strlen(name) == 5 && 765 !strncmp(name, "posix", 5)) { 766 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 767 } else if (strlen(name) == 6 && 768 !strncmp(name, "strict", 6)) { 769 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 770 } else if (strlen(name) == 9 && 771 !strncmp(name, "nobarrier", 9)) { 772 F2FS_OPTION(sbi).fsync_mode = 773 FSYNC_MODE_NOBARRIER; 774 } else { 775 kvfree(name); 776 return -EINVAL; 777 } 778 kvfree(name); 779 break; 780 case Opt_test_dummy_encryption: 781 #ifdef CONFIG_FS_ENCRYPTION 782 if (!f2fs_sb_has_encrypt(sbi)) { 783 f2fs_err(sbi, "Encrypt feature is off"); 784 return -EINVAL; 785 } 786 787 F2FS_OPTION(sbi).test_dummy_encryption = true; 788 f2fs_info(sbi, "Test dummy encryption mode enabled"); 789 #else 790 f2fs_info(sbi, "Test dummy encryption mount option ignored"); 791 #endif 792 break; 793 case Opt_checkpoint_disable_cap_perc: 794 if (args->from && match_int(args, &arg)) 795 return -EINVAL; 796 if (arg < 0 || arg > 100) 797 return -EINVAL; 798 if (arg == 100) 799 F2FS_OPTION(sbi).unusable_cap = 800 sbi->user_block_count; 801 else 802 F2FS_OPTION(sbi).unusable_cap = 803 (sbi->user_block_count / 100) * arg; 804 set_opt(sbi, DISABLE_CHECKPOINT); 805 break; 806 case Opt_checkpoint_disable_cap: 807 if (args->from && match_int(args, &arg)) 808 return -EINVAL; 809 F2FS_OPTION(sbi).unusable_cap = arg; 810 set_opt(sbi, DISABLE_CHECKPOINT); 811 break; 812 case Opt_checkpoint_disable: 813 set_opt(sbi, DISABLE_CHECKPOINT); 814 break; 815 case Opt_checkpoint_enable: 816 clear_opt(sbi, DISABLE_CHECKPOINT); 817 break; 818 case Opt_compress_algorithm: 819 if (!f2fs_sb_has_compression(sbi)) { 820 f2fs_err(sbi, "Compression feature if off"); 821 return -EINVAL; 822 } 823 name = match_strdup(&args[0]); 824 if (!name) 825 return -ENOMEM; 826 if (strlen(name) == 3 && !strcmp(name, "lzo")) { 827 F2FS_OPTION(sbi).compress_algorithm = 828 COMPRESS_LZO; 829 } else if (strlen(name) == 3 && 830 !strcmp(name, "lz4")) { 831 F2FS_OPTION(sbi).compress_algorithm = 832 COMPRESS_LZ4; 833 } else if (strlen(name) == 4 && 834 !strcmp(name, "zstd")) { 835 F2FS_OPTION(sbi).compress_algorithm = 836 COMPRESS_ZSTD; 837 } else { 838 kfree(name); 839 return -EINVAL; 840 } 841 kfree(name); 842 break; 843 case Opt_compress_log_size: 844 if (!f2fs_sb_has_compression(sbi)) { 845 f2fs_err(sbi, "Compression feature is off"); 846 return -EINVAL; 847 } 848 if (args->from && match_int(args, &arg)) 849 return -EINVAL; 850 if (arg < MIN_COMPRESS_LOG_SIZE || 851 arg > MAX_COMPRESS_LOG_SIZE) { 852 f2fs_err(sbi, 853 "Compress cluster log size is out of range"); 854 return -EINVAL; 855 } 856 F2FS_OPTION(sbi).compress_log_size = arg; 857 break; 858 case Opt_compress_extension: 859 if (!f2fs_sb_has_compression(sbi)) { 860 f2fs_err(sbi, "Compression feature is off"); 861 return -EINVAL; 862 } 863 name = match_strdup(&args[0]); 864 if (!name) 865 return -ENOMEM; 866 867 ext = F2FS_OPTION(sbi).extensions; 868 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 869 870 if (strlen(name) >= F2FS_EXTENSION_LEN || 871 ext_cnt >= COMPRESS_EXT_NUM) { 872 f2fs_err(sbi, 873 "invalid extension length/number"); 874 kfree(name); 875 return -EINVAL; 876 } 877 878 strcpy(ext[ext_cnt], name); 879 F2FS_OPTION(sbi).compress_ext_cnt++; 880 kfree(name); 881 break; 882 default: 883 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value", 884 p); 885 return -EINVAL; 886 } 887 } 888 #ifdef CONFIG_QUOTA 889 if (f2fs_check_quota_options(sbi)) 890 return -EINVAL; 891 #else 892 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 893 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 894 return -EINVAL; 895 } 896 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 897 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 898 return -EINVAL; 899 } 900 #endif 901 #ifndef CONFIG_UNICODE 902 if (f2fs_sb_has_casefold(sbi)) { 903 f2fs_err(sbi, 904 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 905 return -EINVAL; 906 } 907 #endif 908 909 if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) { 910 f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO", 911 F2FS_IO_SIZE_KB(sbi)); 912 return -EINVAL; 913 } 914 915 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 916 int min_size, max_size; 917 918 if (!f2fs_sb_has_extra_attr(sbi) || 919 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 920 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off"); 921 return -EINVAL; 922 } 923 if (!test_opt(sbi, INLINE_XATTR)) { 924 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option"); 925 return -EINVAL; 926 } 927 928 min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32); 929 max_size = MAX_INLINE_XATTR_SIZE; 930 931 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 932 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 933 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d", 934 min_size, max_size); 935 return -EINVAL; 936 } 937 } 938 939 if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) { 940 f2fs_err(sbi, "LFS not compatible with checkpoint=disable\n"); 941 return -EINVAL; 942 } 943 944 /* Not pass down write hints if the number of active logs is lesser 945 * than NR_CURSEG_TYPE. 946 */ 947 if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE) 948 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 949 return 0; 950 } 951 952 static struct inode *f2fs_alloc_inode(struct super_block *sb) 953 { 954 struct f2fs_inode_info *fi; 955 956 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 957 if (!fi) 958 return NULL; 959 960 init_once((void *) fi); 961 962 /* Initialize f2fs-specific inode info */ 963 atomic_set(&fi->dirty_pages, 0); 964 init_rwsem(&fi->i_sem); 965 spin_lock_init(&fi->i_size_lock); 966 INIT_LIST_HEAD(&fi->dirty_list); 967 INIT_LIST_HEAD(&fi->gdirty_list); 968 INIT_LIST_HEAD(&fi->inmem_ilist); 969 INIT_LIST_HEAD(&fi->inmem_pages); 970 mutex_init(&fi->inmem_lock); 971 init_rwsem(&fi->i_gc_rwsem[READ]); 972 init_rwsem(&fi->i_gc_rwsem[WRITE]); 973 init_rwsem(&fi->i_mmap_sem); 974 init_rwsem(&fi->i_xattr_sem); 975 976 /* Will be used by directory only */ 977 fi->i_dir_level = F2FS_SB(sb)->dir_level; 978 979 return &fi->vfs_inode; 980 } 981 982 static int f2fs_drop_inode(struct inode *inode) 983 { 984 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 985 int ret; 986 987 /* 988 * during filesystem shutdown, if checkpoint is disabled, 989 * drop useless meta/node dirty pages. 990 */ 991 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 992 if (inode->i_ino == F2FS_NODE_INO(sbi) || 993 inode->i_ino == F2FS_META_INO(sbi)) { 994 trace_f2fs_drop_inode(inode, 1); 995 return 1; 996 } 997 } 998 999 /* 1000 * This is to avoid a deadlock condition like below. 1001 * writeback_single_inode(inode) 1002 * - f2fs_write_data_page 1003 * - f2fs_gc -> iput -> evict 1004 * - inode_wait_for_writeback(inode) 1005 */ 1006 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 1007 if (!inode->i_nlink && !is_bad_inode(inode)) { 1008 /* to avoid evict_inode call simultaneously */ 1009 atomic_inc(&inode->i_count); 1010 spin_unlock(&inode->i_lock); 1011 1012 /* some remained atomic pages should discarded */ 1013 if (f2fs_is_atomic_file(inode)) 1014 f2fs_drop_inmem_pages(inode); 1015 1016 /* should remain fi->extent_tree for writepage */ 1017 f2fs_destroy_extent_node(inode); 1018 1019 sb_start_intwrite(inode->i_sb); 1020 f2fs_i_size_write(inode, 0); 1021 1022 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 1023 inode, NULL, 0, DATA); 1024 truncate_inode_pages_final(inode->i_mapping); 1025 1026 if (F2FS_HAS_BLOCKS(inode)) 1027 f2fs_truncate(inode); 1028 1029 sb_end_intwrite(inode->i_sb); 1030 1031 spin_lock(&inode->i_lock); 1032 atomic_dec(&inode->i_count); 1033 } 1034 trace_f2fs_drop_inode(inode, 0); 1035 return 0; 1036 } 1037 ret = generic_drop_inode(inode); 1038 if (!ret) 1039 ret = fscrypt_drop_inode(inode); 1040 trace_f2fs_drop_inode(inode, ret); 1041 return ret; 1042 } 1043 1044 int f2fs_inode_dirtied(struct inode *inode, bool sync) 1045 { 1046 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1047 int ret = 0; 1048 1049 spin_lock(&sbi->inode_lock[DIRTY_META]); 1050 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1051 ret = 1; 1052 } else { 1053 set_inode_flag(inode, FI_DIRTY_INODE); 1054 stat_inc_dirty_inode(sbi, DIRTY_META); 1055 } 1056 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 1057 list_add_tail(&F2FS_I(inode)->gdirty_list, 1058 &sbi->inode_list[DIRTY_META]); 1059 inc_page_count(sbi, F2FS_DIRTY_IMETA); 1060 } 1061 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1062 return ret; 1063 } 1064 1065 void f2fs_inode_synced(struct inode *inode) 1066 { 1067 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1068 1069 spin_lock(&sbi->inode_lock[DIRTY_META]); 1070 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1071 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1072 return; 1073 } 1074 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 1075 list_del_init(&F2FS_I(inode)->gdirty_list); 1076 dec_page_count(sbi, F2FS_DIRTY_IMETA); 1077 } 1078 clear_inode_flag(inode, FI_DIRTY_INODE); 1079 clear_inode_flag(inode, FI_AUTO_RECOVER); 1080 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 1081 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1082 } 1083 1084 /* 1085 * f2fs_dirty_inode() is called from __mark_inode_dirty() 1086 * 1087 * We should call set_dirty_inode to write the dirty inode through write_inode. 1088 */ 1089 static void f2fs_dirty_inode(struct inode *inode, int flags) 1090 { 1091 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1092 1093 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1094 inode->i_ino == F2FS_META_INO(sbi)) 1095 return; 1096 1097 if (flags == I_DIRTY_TIME) 1098 return; 1099 1100 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1101 clear_inode_flag(inode, FI_AUTO_RECOVER); 1102 1103 f2fs_inode_dirtied(inode, false); 1104 } 1105 1106 static void f2fs_free_inode(struct inode *inode) 1107 { 1108 fscrypt_free_inode(inode); 1109 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1110 } 1111 1112 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1113 { 1114 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1115 percpu_counter_destroy(&sbi->total_valid_inode_count); 1116 } 1117 1118 static void destroy_device_list(struct f2fs_sb_info *sbi) 1119 { 1120 int i; 1121 1122 for (i = 0; i < sbi->s_ndevs; i++) { 1123 blkdev_put(FDEV(i).bdev, FMODE_EXCL); 1124 #ifdef CONFIG_BLK_DEV_ZONED 1125 kvfree(FDEV(i).blkz_seq); 1126 #endif 1127 } 1128 kvfree(sbi->devs); 1129 } 1130 1131 static void f2fs_put_super(struct super_block *sb) 1132 { 1133 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1134 int i; 1135 bool dropped; 1136 1137 f2fs_quota_off_umount(sb); 1138 1139 /* prevent remaining shrinker jobs */ 1140 mutex_lock(&sbi->umount_mutex); 1141 1142 /* 1143 * We don't need to do checkpoint when superblock is clean. 1144 * But, the previous checkpoint was not done by umount, it needs to do 1145 * clean checkpoint again. 1146 */ 1147 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1148 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1149 struct cp_control cpc = { 1150 .reason = CP_UMOUNT, 1151 }; 1152 f2fs_write_checkpoint(sbi, &cpc); 1153 } 1154 1155 /* be sure to wait for any on-going discard commands */ 1156 dropped = f2fs_issue_discard_timeout(sbi); 1157 1158 if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) && 1159 !sbi->discard_blks && !dropped) { 1160 struct cp_control cpc = { 1161 .reason = CP_UMOUNT | CP_TRIMMED, 1162 }; 1163 f2fs_write_checkpoint(sbi, &cpc); 1164 } 1165 1166 /* 1167 * normally superblock is clean, so we need to release this. 1168 * In addition, EIO will skip do checkpoint, we need this as well. 1169 */ 1170 f2fs_release_ino_entry(sbi, true); 1171 1172 f2fs_leave_shrinker(sbi); 1173 mutex_unlock(&sbi->umount_mutex); 1174 1175 /* our cp_error case, we can wait for any writeback page */ 1176 f2fs_flush_merged_writes(sbi); 1177 1178 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1179 1180 f2fs_bug_on(sbi, sbi->fsync_node_num); 1181 1182 iput(sbi->node_inode); 1183 sbi->node_inode = NULL; 1184 1185 iput(sbi->meta_inode); 1186 sbi->meta_inode = NULL; 1187 1188 /* 1189 * iput() can update stat information, if f2fs_write_checkpoint() 1190 * above failed with error. 1191 */ 1192 f2fs_destroy_stats(sbi); 1193 1194 /* destroy f2fs internal modules */ 1195 f2fs_destroy_node_manager(sbi); 1196 f2fs_destroy_segment_manager(sbi); 1197 1198 f2fs_destroy_post_read_wq(sbi); 1199 1200 kvfree(sbi->ckpt); 1201 1202 f2fs_unregister_sysfs(sbi); 1203 1204 sb->s_fs_info = NULL; 1205 if (sbi->s_chksum_driver) 1206 crypto_free_shash(sbi->s_chksum_driver); 1207 kvfree(sbi->raw_super); 1208 1209 destroy_device_list(sbi); 1210 f2fs_destroy_xattr_caches(sbi); 1211 mempool_destroy(sbi->write_io_dummy); 1212 #ifdef CONFIG_QUOTA 1213 for (i = 0; i < MAXQUOTAS; i++) 1214 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 1215 #endif 1216 destroy_percpu_info(sbi); 1217 for (i = 0; i < NR_PAGE_TYPE; i++) 1218 kvfree(sbi->write_io[i]); 1219 #ifdef CONFIG_UNICODE 1220 utf8_unload(sbi->s_encoding); 1221 #endif 1222 kvfree(sbi); 1223 } 1224 1225 int f2fs_sync_fs(struct super_block *sb, int sync) 1226 { 1227 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1228 int err = 0; 1229 1230 if (unlikely(f2fs_cp_error(sbi))) 1231 return 0; 1232 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1233 return 0; 1234 1235 trace_f2fs_sync_fs(sb, sync); 1236 1237 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1238 return -EAGAIN; 1239 1240 if (sync) { 1241 struct cp_control cpc; 1242 1243 cpc.reason = __get_cp_reason(sbi); 1244 1245 down_write(&sbi->gc_lock); 1246 err = f2fs_write_checkpoint(sbi, &cpc); 1247 up_write(&sbi->gc_lock); 1248 } 1249 f2fs_trace_ios(NULL, 1); 1250 1251 return err; 1252 } 1253 1254 static int f2fs_freeze(struct super_block *sb) 1255 { 1256 if (f2fs_readonly(sb)) 1257 return 0; 1258 1259 /* IO error happened before */ 1260 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1261 return -EIO; 1262 1263 /* must be clean, since sync_filesystem() was already called */ 1264 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1265 return -EINVAL; 1266 return 0; 1267 } 1268 1269 static int f2fs_unfreeze(struct super_block *sb) 1270 { 1271 return 0; 1272 } 1273 1274 #ifdef CONFIG_QUOTA 1275 static int f2fs_statfs_project(struct super_block *sb, 1276 kprojid_t projid, struct kstatfs *buf) 1277 { 1278 struct kqid qid; 1279 struct dquot *dquot; 1280 u64 limit; 1281 u64 curblock; 1282 1283 qid = make_kqid_projid(projid); 1284 dquot = dqget(sb, qid); 1285 if (IS_ERR(dquot)) 1286 return PTR_ERR(dquot); 1287 spin_lock(&dquot->dq_dqb_lock); 1288 1289 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 1290 dquot->dq_dqb.dqb_bhardlimit); 1291 if (limit) 1292 limit >>= sb->s_blocksize_bits; 1293 1294 if (limit && buf->f_blocks > limit) { 1295 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 1296 buf->f_blocks = limit; 1297 buf->f_bfree = buf->f_bavail = 1298 (buf->f_blocks > curblock) ? 1299 (buf->f_blocks - curblock) : 0; 1300 } 1301 1302 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 1303 dquot->dq_dqb.dqb_ihardlimit); 1304 1305 if (limit && buf->f_files > limit) { 1306 buf->f_files = limit; 1307 buf->f_ffree = 1308 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1309 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1310 } 1311 1312 spin_unlock(&dquot->dq_dqb_lock); 1313 dqput(dquot); 1314 return 0; 1315 } 1316 #endif 1317 1318 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1319 { 1320 struct super_block *sb = dentry->d_sb; 1321 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1322 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1323 block_t total_count, user_block_count, start_count; 1324 u64 avail_node_count; 1325 1326 total_count = le64_to_cpu(sbi->raw_super->block_count); 1327 user_block_count = sbi->user_block_count; 1328 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1329 buf->f_type = F2FS_SUPER_MAGIC; 1330 buf->f_bsize = sbi->blocksize; 1331 1332 buf->f_blocks = total_count - start_count; 1333 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1334 sbi->current_reserved_blocks; 1335 1336 spin_lock(&sbi->stat_lock); 1337 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1338 buf->f_bfree = 0; 1339 else 1340 buf->f_bfree -= sbi->unusable_block_count; 1341 spin_unlock(&sbi->stat_lock); 1342 1343 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1344 buf->f_bavail = buf->f_bfree - 1345 F2FS_OPTION(sbi).root_reserved_blocks; 1346 else 1347 buf->f_bavail = 0; 1348 1349 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 1350 1351 if (avail_node_count > user_block_count) { 1352 buf->f_files = user_block_count; 1353 buf->f_ffree = buf->f_bavail; 1354 } else { 1355 buf->f_files = avail_node_count; 1356 buf->f_ffree = min(avail_node_count - valid_node_count(sbi), 1357 buf->f_bavail); 1358 } 1359 1360 buf->f_namelen = F2FS_NAME_LEN; 1361 buf->f_fsid.val[0] = (u32)id; 1362 buf->f_fsid.val[1] = (u32)(id >> 32); 1363 1364 #ifdef CONFIG_QUOTA 1365 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1366 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1367 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1368 } 1369 #endif 1370 return 0; 1371 } 1372 1373 static inline void f2fs_show_quota_options(struct seq_file *seq, 1374 struct super_block *sb) 1375 { 1376 #ifdef CONFIG_QUOTA 1377 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1378 1379 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1380 char *fmtname = ""; 1381 1382 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1383 case QFMT_VFS_OLD: 1384 fmtname = "vfsold"; 1385 break; 1386 case QFMT_VFS_V0: 1387 fmtname = "vfsv0"; 1388 break; 1389 case QFMT_VFS_V1: 1390 fmtname = "vfsv1"; 1391 break; 1392 } 1393 seq_printf(seq, ",jqfmt=%s", fmtname); 1394 } 1395 1396 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1397 seq_show_option(seq, "usrjquota", 1398 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1399 1400 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1401 seq_show_option(seq, "grpjquota", 1402 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1403 1404 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1405 seq_show_option(seq, "prjjquota", 1406 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1407 #endif 1408 } 1409 1410 static inline void f2fs_show_compress_options(struct seq_file *seq, 1411 struct super_block *sb) 1412 { 1413 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1414 char *algtype = ""; 1415 int i; 1416 1417 if (!f2fs_sb_has_compression(sbi)) 1418 return; 1419 1420 switch (F2FS_OPTION(sbi).compress_algorithm) { 1421 case COMPRESS_LZO: 1422 algtype = "lzo"; 1423 break; 1424 case COMPRESS_LZ4: 1425 algtype = "lz4"; 1426 break; 1427 case COMPRESS_ZSTD: 1428 algtype = "zstd"; 1429 break; 1430 } 1431 seq_printf(seq, ",compress_algorithm=%s", algtype); 1432 1433 seq_printf(seq, ",compress_log_size=%u", 1434 F2FS_OPTION(sbi).compress_log_size); 1435 1436 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) { 1437 seq_printf(seq, ",compress_extension=%s", 1438 F2FS_OPTION(sbi).extensions[i]); 1439 } 1440 } 1441 1442 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1443 { 1444 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1445 1446 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC) 1447 seq_printf(seq, ",background_gc=%s", "sync"); 1448 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON) 1449 seq_printf(seq, ",background_gc=%s", "on"); 1450 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) 1451 seq_printf(seq, ",background_gc=%s", "off"); 1452 1453 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1454 seq_puts(seq, ",disable_roll_forward"); 1455 if (test_opt(sbi, NORECOVERY)) 1456 seq_puts(seq, ",norecovery"); 1457 if (test_opt(sbi, DISCARD)) 1458 seq_puts(seq, ",discard"); 1459 else 1460 seq_puts(seq, ",nodiscard"); 1461 if (test_opt(sbi, NOHEAP)) 1462 seq_puts(seq, ",no_heap"); 1463 else 1464 seq_puts(seq, ",heap"); 1465 #ifdef CONFIG_F2FS_FS_XATTR 1466 if (test_opt(sbi, XATTR_USER)) 1467 seq_puts(seq, ",user_xattr"); 1468 else 1469 seq_puts(seq, ",nouser_xattr"); 1470 if (test_opt(sbi, INLINE_XATTR)) 1471 seq_puts(seq, ",inline_xattr"); 1472 else 1473 seq_puts(seq, ",noinline_xattr"); 1474 if (test_opt(sbi, INLINE_XATTR_SIZE)) 1475 seq_printf(seq, ",inline_xattr_size=%u", 1476 F2FS_OPTION(sbi).inline_xattr_size); 1477 #endif 1478 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1479 if (test_opt(sbi, POSIX_ACL)) 1480 seq_puts(seq, ",acl"); 1481 else 1482 seq_puts(seq, ",noacl"); 1483 #endif 1484 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 1485 seq_puts(seq, ",disable_ext_identify"); 1486 if (test_opt(sbi, INLINE_DATA)) 1487 seq_puts(seq, ",inline_data"); 1488 else 1489 seq_puts(seq, ",noinline_data"); 1490 if (test_opt(sbi, INLINE_DENTRY)) 1491 seq_puts(seq, ",inline_dentry"); 1492 else 1493 seq_puts(seq, ",noinline_dentry"); 1494 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 1495 seq_puts(seq, ",flush_merge"); 1496 if (test_opt(sbi, NOBARRIER)) 1497 seq_puts(seq, ",nobarrier"); 1498 if (test_opt(sbi, FASTBOOT)) 1499 seq_puts(seq, ",fastboot"); 1500 if (test_opt(sbi, EXTENT_CACHE)) 1501 seq_puts(seq, ",extent_cache"); 1502 else 1503 seq_puts(seq, ",noextent_cache"); 1504 if (test_opt(sbi, DATA_FLUSH)) 1505 seq_puts(seq, ",data_flush"); 1506 1507 seq_puts(seq, ",mode="); 1508 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE) 1509 seq_puts(seq, "adaptive"); 1510 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS) 1511 seq_puts(seq, "lfs"); 1512 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 1513 if (test_opt(sbi, RESERVE_ROOT)) 1514 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 1515 F2FS_OPTION(sbi).root_reserved_blocks, 1516 from_kuid_munged(&init_user_ns, 1517 F2FS_OPTION(sbi).s_resuid), 1518 from_kgid_munged(&init_user_ns, 1519 F2FS_OPTION(sbi).s_resgid)); 1520 if (F2FS_IO_SIZE_BITS(sbi)) 1521 seq_printf(seq, ",io_bits=%u", 1522 F2FS_OPTION(sbi).write_io_size_bits); 1523 #ifdef CONFIG_F2FS_FAULT_INJECTION 1524 if (test_opt(sbi, FAULT_INJECTION)) { 1525 seq_printf(seq, ",fault_injection=%u", 1526 F2FS_OPTION(sbi).fault_info.inject_rate); 1527 seq_printf(seq, ",fault_type=%u", 1528 F2FS_OPTION(sbi).fault_info.inject_type); 1529 } 1530 #endif 1531 #ifdef CONFIG_QUOTA 1532 if (test_opt(sbi, QUOTA)) 1533 seq_puts(seq, ",quota"); 1534 if (test_opt(sbi, USRQUOTA)) 1535 seq_puts(seq, ",usrquota"); 1536 if (test_opt(sbi, GRPQUOTA)) 1537 seq_puts(seq, ",grpquota"); 1538 if (test_opt(sbi, PRJQUOTA)) 1539 seq_puts(seq, ",prjquota"); 1540 #endif 1541 f2fs_show_quota_options(seq, sbi->sb); 1542 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) 1543 seq_printf(seq, ",whint_mode=%s", "user-based"); 1544 else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) 1545 seq_printf(seq, ",whint_mode=%s", "fs-based"); 1546 #ifdef CONFIG_FS_ENCRYPTION 1547 if (F2FS_OPTION(sbi).test_dummy_encryption) 1548 seq_puts(seq, ",test_dummy_encryption"); 1549 #endif 1550 1551 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 1552 seq_printf(seq, ",alloc_mode=%s", "default"); 1553 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 1554 seq_printf(seq, ",alloc_mode=%s", "reuse"); 1555 1556 if (test_opt(sbi, DISABLE_CHECKPOINT)) 1557 seq_printf(seq, ",checkpoint=disable:%u", 1558 F2FS_OPTION(sbi).unusable_cap); 1559 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 1560 seq_printf(seq, ",fsync_mode=%s", "posix"); 1561 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 1562 seq_printf(seq, ",fsync_mode=%s", "strict"); 1563 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 1564 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 1565 1566 f2fs_show_compress_options(seq, sbi->sb); 1567 return 0; 1568 } 1569 1570 static void default_options(struct f2fs_sb_info *sbi) 1571 { 1572 /* init some FS parameters */ 1573 F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE; 1574 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 1575 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 1576 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 1577 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1578 F2FS_OPTION(sbi).test_dummy_encryption = false; 1579 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 1580 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 1581 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4; 1582 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE; 1583 F2FS_OPTION(sbi).compress_ext_cnt = 0; 1584 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 1585 1586 set_opt(sbi, INLINE_XATTR); 1587 set_opt(sbi, INLINE_DATA); 1588 set_opt(sbi, INLINE_DENTRY); 1589 set_opt(sbi, EXTENT_CACHE); 1590 set_opt(sbi, NOHEAP); 1591 clear_opt(sbi, DISABLE_CHECKPOINT); 1592 F2FS_OPTION(sbi).unusable_cap = 0; 1593 sbi->sb->s_flags |= SB_LAZYTIME; 1594 set_opt(sbi, FLUSH_MERGE); 1595 set_opt(sbi, DISCARD); 1596 if (f2fs_sb_has_blkzoned(sbi)) 1597 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 1598 else 1599 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 1600 1601 #ifdef CONFIG_F2FS_FS_XATTR 1602 set_opt(sbi, XATTR_USER); 1603 #endif 1604 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1605 set_opt(sbi, POSIX_ACL); 1606 #endif 1607 1608 f2fs_build_fault_attr(sbi, 0, 0); 1609 } 1610 1611 #ifdef CONFIG_QUOTA 1612 static int f2fs_enable_quotas(struct super_block *sb); 1613 #endif 1614 1615 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 1616 { 1617 unsigned int s_flags = sbi->sb->s_flags; 1618 struct cp_control cpc; 1619 int err = 0; 1620 int ret; 1621 block_t unusable; 1622 1623 if (s_flags & SB_RDONLY) { 1624 f2fs_err(sbi, "checkpoint=disable on readonly fs"); 1625 return -EINVAL; 1626 } 1627 sbi->sb->s_flags |= SB_ACTIVE; 1628 1629 f2fs_update_time(sbi, DISABLE_TIME); 1630 1631 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 1632 down_write(&sbi->gc_lock); 1633 err = f2fs_gc(sbi, true, false, NULL_SEGNO); 1634 if (err == -ENODATA) { 1635 err = 0; 1636 break; 1637 } 1638 if (err && err != -EAGAIN) 1639 break; 1640 } 1641 1642 ret = sync_filesystem(sbi->sb); 1643 if (ret || err) { 1644 err = ret ? ret: err; 1645 goto restore_flag; 1646 } 1647 1648 unusable = f2fs_get_unusable_blocks(sbi); 1649 if (f2fs_disable_cp_again(sbi, unusable)) { 1650 err = -EAGAIN; 1651 goto restore_flag; 1652 } 1653 1654 down_write(&sbi->gc_lock); 1655 cpc.reason = CP_PAUSE; 1656 set_sbi_flag(sbi, SBI_CP_DISABLED); 1657 err = f2fs_write_checkpoint(sbi, &cpc); 1658 if (err) 1659 goto out_unlock; 1660 1661 spin_lock(&sbi->stat_lock); 1662 sbi->unusable_block_count = unusable; 1663 spin_unlock(&sbi->stat_lock); 1664 1665 out_unlock: 1666 up_write(&sbi->gc_lock); 1667 restore_flag: 1668 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 1669 return err; 1670 } 1671 1672 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 1673 { 1674 down_write(&sbi->gc_lock); 1675 f2fs_dirty_to_prefree(sbi); 1676 1677 clear_sbi_flag(sbi, SBI_CP_DISABLED); 1678 set_sbi_flag(sbi, SBI_IS_DIRTY); 1679 up_write(&sbi->gc_lock); 1680 1681 f2fs_sync_fs(sbi->sb, 1); 1682 } 1683 1684 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 1685 { 1686 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1687 struct f2fs_mount_info org_mount_opt; 1688 unsigned long old_sb_flags; 1689 int err; 1690 bool need_restart_gc = false; 1691 bool need_stop_gc = false; 1692 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 1693 bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT); 1694 bool no_io_align = !F2FS_IO_ALIGNED(sbi); 1695 bool checkpoint_changed; 1696 #ifdef CONFIG_QUOTA 1697 int i, j; 1698 #endif 1699 1700 /* 1701 * Save the old mount options in case we 1702 * need to restore them. 1703 */ 1704 org_mount_opt = sbi->mount_opt; 1705 old_sb_flags = sb->s_flags; 1706 1707 #ifdef CONFIG_QUOTA 1708 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 1709 for (i = 0; i < MAXQUOTAS; i++) { 1710 if (F2FS_OPTION(sbi).s_qf_names[i]) { 1711 org_mount_opt.s_qf_names[i] = 1712 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 1713 GFP_KERNEL); 1714 if (!org_mount_opt.s_qf_names[i]) { 1715 for (j = 0; j < i; j++) 1716 kvfree(org_mount_opt.s_qf_names[j]); 1717 return -ENOMEM; 1718 } 1719 } else { 1720 org_mount_opt.s_qf_names[i] = NULL; 1721 } 1722 } 1723 #endif 1724 1725 /* recover superblocks we couldn't write due to previous RO mount */ 1726 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 1727 err = f2fs_commit_super(sbi, false); 1728 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d", 1729 err); 1730 if (!err) 1731 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1732 } 1733 1734 default_options(sbi); 1735 1736 /* parse mount options */ 1737 err = parse_options(sb, data); 1738 if (err) 1739 goto restore_opts; 1740 checkpoint_changed = 1741 disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT); 1742 1743 /* 1744 * Previous and new state of filesystem is RO, 1745 * so skip checking GC and FLUSH_MERGE conditions. 1746 */ 1747 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 1748 goto skip; 1749 1750 #ifdef CONFIG_QUOTA 1751 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 1752 err = dquot_suspend(sb, -1); 1753 if (err < 0) 1754 goto restore_opts; 1755 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 1756 /* dquot_resume needs RW */ 1757 sb->s_flags &= ~SB_RDONLY; 1758 if (sb_any_quota_suspended(sb)) { 1759 dquot_resume(sb, -1); 1760 } else if (f2fs_sb_has_quota_ino(sbi)) { 1761 err = f2fs_enable_quotas(sb); 1762 if (err) 1763 goto restore_opts; 1764 } 1765 } 1766 #endif 1767 /* disallow enable/disable extent_cache dynamically */ 1768 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 1769 err = -EINVAL; 1770 f2fs_warn(sbi, "switch extent_cache option is not allowed"); 1771 goto restore_opts; 1772 } 1773 1774 if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) { 1775 err = -EINVAL; 1776 f2fs_warn(sbi, "switch io_bits option is not allowed"); 1777 goto restore_opts; 1778 } 1779 1780 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 1781 err = -EINVAL; 1782 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only"); 1783 goto restore_opts; 1784 } 1785 1786 /* 1787 * We stop the GC thread if FS is mounted as RO 1788 * or if background_gc = off is passed in mount 1789 * option. Also sync the filesystem. 1790 */ 1791 if ((*flags & SB_RDONLY) || 1792 F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) { 1793 if (sbi->gc_thread) { 1794 f2fs_stop_gc_thread(sbi); 1795 need_restart_gc = true; 1796 } 1797 } else if (!sbi->gc_thread) { 1798 err = f2fs_start_gc_thread(sbi); 1799 if (err) 1800 goto restore_opts; 1801 need_stop_gc = true; 1802 } 1803 1804 if (*flags & SB_RDONLY || 1805 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) { 1806 writeback_inodes_sb(sb, WB_REASON_SYNC); 1807 sync_inodes_sb(sb); 1808 1809 set_sbi_flag(sbi, SBI_IS_DIRTY); 1810 set_sbi_flag(sbi, SBI_IS_CLOSE); 1811 f2fs_sync_fs(sb, 1); 1812 clear_sbi_flag(sbi, SBI_IS_CLOSE); 1813 } 1814 1815 if (checkpoint_changed) { 1816 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 1817 err = f2fs_disable_checkpoint(sbi); 1818 if (err) 1819 goto restore_gc; 1820 } else { 1821 f2fs_enable_checkpoint(sbi); 1822 } 1823 } 1824 1825 /* 1826 * We stop issue flush thread if FS is mounted as RO 1827 * or if flush_merge is not passed in mount option. 1828 */ 1829 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 1830 clear_opt(sbi, FLUSH_MERGE); 1831 f2fs_destroy_flush_cmd_control(sbi, false); 1832 } else { 1833 err = f2fs_create_flush_cmd_control(sbi); 1834 if (err) 1835 goto restore_gc; 1836 } 1837 skip: 1838 #ifdef CONFIG_QUOTA 1839 /* Release old quota file names */ 1840 for (i = 0; i < MAXQUOTAS; i++) 1841 kvfree(org_mount_opt.s_qf_names[i]); 1842 #endif 1843 /* Update the POSIXACL Flag */ 1844 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 1845 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 1846 1847 limit_reserve_root(sbi); 1848 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 1849 return 0; 1850 restore_gc: 1851 if (need_restart_gc) { 1852 if (f2fs_start_gc_thread(sbi)) 1853 f2fs_warn(sbi, "background gc thread has stopped"); 1854 } else if (need_stop_gc) { 1855 f2fs_stop_gc_thread(sbi); 1856 } 1857 restore_opts: 1858 #ifdef CONFIG_QUOTA 1859 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 1860 for (i = 0; i < MAXQUOTAS; i++) { 1861 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 1862 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 1863 } 1864 #endif 1865 sbi->mount_opt = org_mount_opt; 1866 sb->s_flags = old_sb_flags; 1867 return err; 1868 } 1869 1870 #ifdef CONFIG_QUOTA 1871 /* Read data from quotafile */ 1872 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 1873 size_t len, loff_t off) 1874 { 1875 struct inode *inode = sb_dqopt(sb)->files[type]; 1876 struct address_space *mapping = inode->i_mapping; 1877 block_t blkidx = F2FS_BYTES_TO_BLK(off); 1878 int offset = off & (sb->s_blocksize - 1); 1879 int tocopy; 1880 size_t toread; 1881 loff_t i_size = i_size_read(inode); 1882 struct page *page; 1883 char *kaddr; 1884 1885 if (off > i_size) 1886 return 0; 1887 1888 if (off + len > i_size) 1889 len = i_size - off; 1890 toread = len; 1891 while (toread > 0) { 1892 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 1893 repeat: 1894 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 1895 if (IS_ERR(page)) { 1896 if (PTR_ERR(page) == -ENOMEM) { 1897 congestion_wait(BLK_RW_ASYNC, 1898 DEFAULT_IO_TIMEOUT); 1899 goto repeat; 1900 } 1901 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1902 return PTR_ERR(page); 1903 } 1904 1905 lock_page(page); 1906 1907 if (unlikely(page->mapping != mapping)) { 1908 f2fs_put_page(page, 1); 1909 goto repeat; 1910 } 1911 if (unlikely(!PageUptodate(page))) { 1912 f2fs_put_page(page, 1); 1913 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1914 return -EIO; 1915 } 1916 1917 kaddr = kmap_atomic(page); 1918 memcpy(data, kaddr + offset, tocopy); 1919 kunmap_atomic(kaddr); 1920 f2fs_put_page(page, 1); 1921 1922 offset = 0; 1923 toread -= tocopy; 1924 data += tocopy; 1925 blkidx++; 1926 } 1927 return len; 1928 } 1929 1930 /* Write to quotafile */ 1931 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 1932 const char *data, size_t len, loff_t off) 1933 { 1934 struct inode *inode = sb_dqopt(sb)->files[type]; 1935 struct address_space *mapping = inode->i_mapping; 1936 const struct address_space_operations *a_ops = mapping->a_ops; 1937 int offset = off & (sb->s_blocksize - 1); 1938 size_t towrite = len; 1939 struct page *page; 1940 void *fsdata = NULL; 1941 char *kaddr; 1942 int err = 0; 1943 int tocopy; 1944 1945 while (towrite > 0) { 1946 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 1947 towrite); 1948 retry: 1949 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0, 1950 &page, &fsdata); 1951 if (unlikely(err)) { 1952 if (err == -ENOMEM) { 1953 congestion_wait(BLK_RW_ASYNC, 1954 DEFAULT_IO_TIMEOUT); 1955 goto retry; 1956 } 1957 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1958 break; 1959 } 1960 1961 kaddr = kmap_atomic(page); 1962 memcpy(kaddr + offset, data, tocopy); 1963 kunmap_atomic(kaddr); 1964 flush_dcache_page(page); 1965 1966 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 1967 page, fsdata); 1968 offset = 0; 1969 towrite -= tocopy; 1970 off += tocopy; 1971 data += tocopy; 1972 cond_resched(); 1973 } 1974 1975 if (len == towrite) 1976 return err; 1977 inode->i_mtime = inode->i_ctime = current_time(inode); 1978 f2fs_mark_inode_dirty_sync(inode, false); 1979 return len - towrite; 1980 } 1981 1982 static struct dquot **f2fs_get_dquots(struct inode *inode) 1983 { 1984 return F2FS_I(inode)->i_dquot; 1985 } 1986 1987 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 1988 { 1989 return &F2FS_I(inode)->i_reserved_quota; 1990 } 1991 1992 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 1993 { 1994 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 1995 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it"); 1996 return 0; 1997 } 1998 1999 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 2000 F2FS_OPTION(sbi).s_jquota_fmt, type); 2001 } 2002 2003 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 2004 { 2005 int enabled = 0; 2006 int i, err; 2007 2008 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 2009 err = f2fs_enable_quotas(sbi->sb); 2010 if (err) { 2011 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err); 2012 return 0; 2013 } 2014 return 1; 2015 } 2016 2017 for (i = 0; i < MAXQUOTAS; i++) { 2018 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2019 err = f2fs_quota_on_mount(sbi, i); 2020 if (!err) { 2021 enabled = 1; 2022 continue; 2023 } 2024 f2fs_err(sbi, "Cannot turn on quotas: %d on %d", 2025 err, i); 2026 } 2027 } 2028 return enabled; 2029 } 2030 2031 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 2032 unsigned int flags) 2033 { 2034 struct inode *qf_inode; 2035 unsigned long qf_inum; 2036 int err; 2037 2038 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 2039 2040 qf_inum = f2fs_qf_ino(sb, type); 2041 if (!qf_inum) 2042 return -EPERM; 2043 2044 qf_inode = f2fs_iget(sb, qf_inum); 2045 if (IS_ERR(qf_inode)) { 2046 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum); 2047 return PTR_ERR(qf_inode); 2048 } 2049 2050 /* Don't account quota for quota files to avoid recursion */ 2051 qf_inode->i_flags |= S_NOQUOTA; 2052 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 2053 iput(qf_inode); 2054 return err; 2055 } 2056 2057 static int f2fs_enable_quotas(struct super_block *sb) 2058 { 2059 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2060 int type, err = 0; 2061 unsigned long qf_inum; 2062 bool quota_mopt[MAXQUOTAS] = { 2063 test_opt(sbi, USRQUOTA), 2064 test_opt(sbi, GRPQUOTA), 2065 test_opt(sbi, PRJQUOTA), 2066 }; 2067 2068 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 2069 f2fs_err(sbi, "quota file may be corrupted, skip loading it"); 2070 return 0; 2071 } 2072 2073 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 2074 2075 for (type = 0; type < MAXQUOTAS; type++) { 2076 qf_inum = f2fs_qf_ino(sb, type); 2077 if (qf_inum) { 2078 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 2079 DQUOT_USAGE_ENABLED | 2080 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 2081 if (err) { 2082 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.", 2083 type, err); 2084 for (type--; type >= 0; type--) 2085 dquot_quota_off(sb, type); 2086 set_sbi_flag(F2FS_SB(sb), 2087 SBI_QUOTA_NEED_REPAIR); 2088 return err; 2089 } 2090 } 2091 } 2092 return 0; 2093 } 2094 2095 int f2fs_quota_sync(struct super_block *sb, int type) 2096 { 2097 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2098 struct quota_info *dqopt = sb_dqopt(sb); 2099 int cnt; 2100 int ret; 2101 2102 /* 2103 * do_quotactl 2104 * f2fs_quota_sync 2105 * down_read(quota_sem) 2106 * dquot_writeback_dquots() 2107 * f2fs_dquot_commit 2108 * block_operation 2109 * down_read(quota_sem) 2110 */ 2111 f2fs_lock_op(sbi); 2112 2113 down_read(&sbi->quota_sem); 2114 ret = dquot_writeback_dquots(sb, type); 2115 if (ret) 2116 goto out; 2117 2118 /* 2119 * Now when everything is written we can discard the pagecache so 2120 * that userspace sees the changes. 2121 */ 2122 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 2123 struct address_space *mapping; 2124 2125 if (type != -1 && cnt != type) 2126 continue; 2127 if (!sb_has_quota_active(sb, cnt)) 2128 continue; 2129 2130 mapping = dqopt->files[cnt]->i_mapping; 2131 2132 ret = filemap_fdatawrite(mapping); 2133 if (ret) 2134 goto out; 2135 2136 /* if we are using journalled quota */ 2137 if (is_journalled_quota(sbi)) 2138 continue; 2139 2140 ret = filemap_fdatawait(mapping); 2141 if (ret) 2142 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2143 2144 inode_lock(dqopt->files[cnt]); 2145 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0); 2146 inode_unlock(dqopt->files[cnt]); 2147 } 2148 out: 2149 if (ret) 2150 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2151 up_read(&sbi->quota_sem); 2152 f2fs_unlock_op(sbi); 2153 return ret; 2154 } 2155 2156 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 2157 const struct path *path) 2158 { 2159 struct inode *inode; 2160 int err; 2161 2162 /* if quota sysfile exists, deny enabling quota with specific file */ 2163 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) { 2164 f2fs_err(F2FS_SB(sb), "quota sysfile already exists"); 2165 return -EBUSY; 2166 } 2167 2168 err = f2fs_quota_sync(sb, type); 2169 if (err) 2170 return err; 2171 2172 err = dquot_quota_on(sb, type, format_id, path); 2173 if (err) 2174 return err; 2175 2176 inode = d_inode(path->dentry); 2177 2178 inode_lock(inode); 2179 F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL; 2180 f2fs_set_inode_flags(inode); 2181 inode_unlock(inode); 2182 f2fs_mark_inode_dirty_sync(inode, false); 2183 2184 return 0; 2185 } 2186 2187 static int __f2fs_quota_off(struct super_block *sb, int type) 2188 { 2189 struct inode *inode = sb_dqopt(sb)->files[type]; 2190 int err; 2191 2192 if (!inode || !igrab(inode)) 2193 return dquot_quota_off(sb, type); 2194 2195 err = f2fs_quota_sync(sb, type); 2196 if (err) 2197 goto out_put; 2198 2199 err = dquot_quota_off(sb, type); 2200 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 2201 goto out_put; 2202 2203 inode_lock(inode); 2204 F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL); 2205 f2fs_set_inode_flags(inode); 2206 inode_unlock(inode); 2207 f2fs_mark_inode_dirty_sync(inode, false); 2208 out_put: 2209 iput(inode); 2210 return err; 2211 } 2212 2213 static int f2fs_quota_off(struct super_block *sb, int type) 2214 { 2215 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2216 int err; 2217 2218 err = __f2fs_quota_off(sb, type); 2219 2220 /* 2221 * quotactl can shutdown journalled quota, result in inconsistence 2222 * between quota record and fs data by following updates, tag the 2223 * flag to let fsck be aware of it. 2224 */ 2225 if (is_journalled_quota(sbi)) 2226 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2227 return err; 2228 } 2229 2230 void f2fs_quota_off_umount(struct super_block *sb) 2231 { 2232 int type; 2233 int err; 2234 2235 for (type = 0; type < MAXQUOTAS; type++) { 2236 err = __f2fs_quota_off(sb, type); 2237 if (err) { 2238 int ret = dquot_quota_off(sb, type); 2239 2240 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.", 2241 type, err, ret); 2242 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2243 } 2244 } 2245 /* 2246 * In case of checkpoint=disable, we must flush quota blocks. 2247 * This can cause NULL exception for node_inode in end_io, since 2248 * put_super already dropped it. 2249 */ 2250 sync_filesystem(sb); 2251 } 2252 2253 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 2254 { 2255 struct quota_info *dqopt = sb_dqopt(sb); 2256 int type; 2257 2258 for (type = 0; type < MAXQUOTAS; type++) { 2259 if (!dqopt->files[type]) 2260 continue; 2261 f2fs_inode_synced(dqopt->files[type]); 2262 } 2263 } 2264 2265 static int f2fs_dquot_commit(struct dquot *dquot) 2266 { 2267 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2268 int ret; 2269 2270 down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING); 2271 ret = dquot_commit(dquot); 2272 if (ret < 0) 2273 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2274 up_read(&sbi->quota_sem); 2275 return ret; 2276 } 2277 2278 static int f2fs_dquot_acquire(struct dquot *dquot) 2279 { 2280 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2281 int ret; 2282 2283 down_read(&sbi->quota_sem); 2284 ret = dquot_acquire(dquot); 2285 if (ret < 0) 2286 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2287 up_read(&sbi->quota_sem); 2288 return ret; 2289 } 2290 2291 static int f2fs_dquot_release(struct dquot *dquot) 2292 { 2293 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2294 int ret = dquot_release(dquot); 2295 2296 if (ret < 0) 2297 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2298 return ret; 2299 } 2300 2301 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 2302 { 2303 struct super_block *sb = dquot->dq_sb; 2304 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2305 int ret = dquot_mark_dquot_dirty(dquot); 2306 2307 /* if we are using journalled quota */ 2308 if (is_journalled_quota(sbi)) 2309 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 2310 2311 return ret; 2312 } 2313 2314 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 2315 { 2316 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2317 int ret = dquot_commit_info(sb, type); 2318 2319 if (ret < 0) 2320 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2321 return ret; 2322 } 2323 2324 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 2325 { 2326 *projid = F2FS_I(inode)->i_projid; 2327 return 0; 2328 } 2329 2330 static const struct dquot_operations f2fs_quota_operations = { 2331 .get_reserved_space = f2fs_get_reserved_space, 2332 .write_dquot = f2fs_dquot_commit, 2333 .acquire_dquot = f2fs_dquot_acquire, 2334 .release_dquot = f2fs_dquot_release, 2335 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 2336 .write_info = f2fs_dquot_commit_info, 2337 .alloc_dquot = dquot_alloc, 2338 .destroy_dquot = dquot_destroy, 2339 .get_projid = f2fs_get_projid, 2340 .get_next_id = dquot_get_next_id, 2341 }; 2342 2343 static const struct quotactl_ops f2fs_quotactl_ops = { 2344 .quota_on = f2fs_quota_on, 2345 .quota_off = f2fs_quota_off, 2346 .quota_sync = f2fs_quota_sync, 2347 .get_state = dquot_get_state, 2348 .set_info = dquot_set_dqinfo, 2349 .get_dqblk = dquot_get_dqblk, 2350 .set_dqblk = dquot_set_dqblk, 2351 .get_nextdqblk = dquot_get_next_dqblk, 2352 }; 2353 #else 2354 int f2fs_quota_sync(struct super_block *sb, int type) 2355 { 2356 return 0; 2357 } 2358 2359 void f2fs_quota_off_umount(struct super_block *sb) 2360 { 2361 } 2362 #endif 2363 2364 static const struct super_operations f2fs_sops = { 2365 .alloc_inode = f2fs_alloc_inode, 2366 .free_inode = f2fs_free_inode, 2367 .drop_inode = f2fs_drop_inode, 2368 .write_inode = f2fs_write_inode, 2369 .dirty_inode = f2fs_dirty_inode, 2370 .show_options = f2fs_show_options, 2371 #ifdef CONFIG_QUOTA 2372 .quota_read = f2fs_quota_read, 2373 .quota_write = f2fs_quota_write, 2374 .get_dquots = f2fs_get_dquots, 2375 #endif 2376 .evict_inode = f2fs_evict_inode, 2377 .put_super = f2fs_put_super, 2378 .sync_fs = f2fs_sync_fs, 2379 .freeze_fs = f2fs_freeze, 2380 .unfreeze_fs = f2fs_unfreeze, 2381 .statfs = f2fs_statfs, 2382 .remount_fs = f2fs_remount, 2383 }; 2384 2385 #ifdef CONFIG_FS_ENCRYPTION 2386 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 2387 { 2388 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2389 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2390 ctx, len, NULL); 2391 } 2392 2393 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 2394 void *fs_data) 2395 { 2396 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2397 2398 /* 2399 * Encrypting the root directory is not allowed because fsck 2400 * expects lost+found directory to exist and remain unencrypted 2401 * if LOST_FOUND feature is enabled. 2402 * 2403 */ 2404 if (f2fs_sb_has_lost_found(sbi) && 2405 inode->i_ino == F2FS_ROOT_INO(sbi)) 2406 return -EPERM; 2407 2408 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2409 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2410 ctx, len, fs_data, XATTR_CREATE); 2411 } 2412 2413 static bool f2fs_dummy_context(struct inode *inode) 2414 { 2415 return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode)); 2416 } 2417 2418 static bool f2fs_has_stable_inodes(struct super_block *sb) 2419 { 2420 return true; 2421 } 2422 2423 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb, 2424 int *ino_bits_ret, int *lblk_bits_ret) 2425 { 2426 *ino_bits_ret = 8 * sizeof(nid_t); 2427 *lblk_bits_ret = 8 * sizeof(block_t); 2428 } 2429 2430 static const struct fscrypt_operations f2fs_cryptops = { 2431 .key_prefix = "f2fs:", 2432 .get_context = f2fs_get_context, 2433 .set_context = f2fs_set_context, 2434 .dummy_context = f2fs_dummy_context, 2435 .empty_dir = f2fs_empty_dir, 2436 .max_namelen = F2FS_NAME_LEN, 2437 .has_stable_inodes = f2fs_has_stable_inodes, 2438 .get_ino_and_lblk_bits = f2fs_get_ino_and_lblk_bits, 2439 }; 2440 #endif 2441 2442 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 2443 u64 ino, u32 generation) 2444 { 2445 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2446 struct inode *inode; 2447 2448 if (f2fs_check_nid_range(sbi, ino)) 2449 return ERR_PTR(-ESTALE); 2450 2451 /* 2452 * f2fs_iget isn't quite right if the inode is currently unallocated! 2453 * However f2fs_iget currently does appropriate checks to handle stale 2454 * inodes so everything is OK. 2455 */ 2456 inode = f2fs_iget(sb, ino); 2457 if (IS_ERR(inode)) 2458 return ERR_CAST(inode); 2459 if (unlikely(generation && inode->i_generation != generation)) { 2460 /* we didn't find the right inode.. */ 2461 iput(inode); 2462 return ERR_PTR(-ESTALE); 2463 } 2464 return inode; 2465 } 2466 2467 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 2468 int fh_len, int fh_type) 2469 { 2470 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 2471 f2fs_nfs_get_inode); 2472 } 2473 2474 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 2475 int fh_len, int fh_type) 2476 { 2477 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 2478 f2fs_nfs_get_inode); 2479 } 2480 2481 static const struct export_operations f2fs_export_ops = { 2482 .fh_to_dentry = f2fs_fh_to_dentry, 2483 .fh_to_parent = f2fs_fh_to_parent, 2484 .get_parent = f2fs_get_parent, 2485 }; 2486 2487 static loff_t max_file_blocks(void) 2488 { 2489 loff_t result = 0; 2490 loff_t leaf_count = DEF_ADDRS_PER_BLOCK; 2491 2492 /* 2493 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 2494 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 2495 * space in inode.i_addr, it will be more safe to reassign 2496 * result as zero. 2497 */ 2498 2499 /* two direct node blocks */ 2500 result += (leaf_count * 2); 2501 2502 /* two indirect node blocks */ 2503 leaf_count *= NIDS_PER_BLOCK; 2504 result += (leaf_count * 2); 2505 2506 /* one double indirect node block */ 2507 leaf_count *= NIDS_PER_BLOCK; 2508 result += leaf_count; 2509 2510 return result; 2511 } 2512 2513 static int __f2fs_commit_super(struct buffer_head *bh, 2514 struct f2fs_super_block *super) 2515 { 2516 lock_buffer(bh); 2517 if (super) 2518 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 2519 set_buffer_dirty(bh); 2520 unlock_buffer(bh); 2521 2522 /* it's rare case, we can do fua all the time */ 2523 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 2524 } 2525 2526 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 2527 struct buffer_head *bh) 2528 { 2529 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2530 (bh->b_data + F2FS_SUPER_OFFSET); 2531 struct super_block *sb = sbi->sb; 2532 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2533 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 2534 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 2535 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 2536 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2537 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2538 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 2539 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 2540 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 2541 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 2542 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2543 u32 segment_count = le32_to_cpu(raw_super->segment_count); 2544 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2545 u64 main_end_blkaddr = main_blkaddr + 2546 (segment_count_main << log_blocks_per_seg); 2547 u64 seg_end_blkaddr = segment0_blkaddr + 2548 (segment_count << log_blocks_per_seg); 2549 2550 if (segment0_blkaddr != cp_blkaddr) { 2551 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 2552 segment0_blkaddr, cp_blkaddr); 2553 return true; 2554 } 2555 2556 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 2557 sit_blkaddr) { 2558 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 2559 cp_blkaddr, sit_blkaddr, 2560 segment_count_ckpt << log_blocks_per_seg); 2561 return true; 2562 } 2563 2564 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 2565 nat_blkaddr) { 2566 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 2567 sit_blkaddr, nat_blkaddr, 2568 segment_count_sit << log_blocks_per_seg); 2569 return true; 2570 } 2571 2572 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 2573 ssa_blkaddr) { 2574 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 2575 nat_blkaddr, ssa_blkaddr, 2576 segment_count_nat << log_blocks_per_seg); 2577 return true; 2578 } 2579 2580 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 2581 main_blkaddr) { 2582 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 2583 ssa_blkaddr, main_blkaddr, 2584 segment_count_ssa << log_blocks_per_seg); 2585 return true; 2586 } 2587 2588 if (main_end_blkaddr > seg_end_blkaddr) { 2589 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)", 2590 main_blkaddr, 2591 segment0_blkaddr + 2592 (segment_count << log_blocks_per_seg), 2593 segment_count_main << log_blocks_per_seg); 2594 return true; 2595 } else if (main_end_blkaddr < seg_end_blkaddr) { 2596 int err = 0; 2597 char *res; 2598 2599 /* fix in-memory information all the time */ 2600 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 2601 segment0_blkaddr) >> log_blocks_per_seg); 2602 2603 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 2604 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2605 res = "internally"; 2606 } else { 2607 err = __f2fs_commit_super(bh, NULL); 2608 res = err ? "failed" : "done"; 2609 } 2610 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%u) block(%u)", 2611 res, main_blkaddr, 2612 segment0_blkaddr + 2613 (segment_count << log_blocks_per_seg), 2614 segment_count_main << log_blocks_per_seg); 2615 if (err) 2616 return true; 2617 } 2618 return false; 2619 } 2620 2621 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 2622 struct buffer_head *bh) 2623 { 2624 block_t segment_count, segs_per_sec, secs_per_zone; 2625 block_t total_sections, blocks_per_seg; 2626 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2627 (bh->b_data + F2FS_SUPER_OFFSET); 2628 unsigned int blocksize; 2629 size_t crc_offset = 0; 2630 __u32 crc = 0; 2631 2632 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { 2633 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)", 2634 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 2635 return -EINVAL; 2636 } 2637 2638 /* Check checksum_offset and crc in superblock */ 2639 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 2640 crc_offset = le32_to_cpu(raw_super->checksum_offset); 2641 if (crc_offset != 2642 offsetof(struct f2fs_super_block, crc)) { 2643 f2fs_info(sbi, "Invalid SB checksum offset: %zu", 2644 crc_offset); 2645 return -EFSCORRUPTED; 2646 } 2647 crc = le32_to_cpu(raw_super->crc); 2648 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 2649 f2fs_info(sbi, "Invalid SB checksum value: %u", crc); 2650 return -EFSCORRUPTED; 2651 } 2652 } 2653 2654 /* Currently, support only 4KB page cache size */ 2655 if (F2FS_BLKSIZE != PAGE_SIZE) { 2656 f2fs_info(sbi, "Invalid page_cache_size (%lu), supports only 4KB", 2657 PAGE_SIZE); 2658 return -EFSCORRUPTED; 2659 } 2660 2661 /* Currently, support only 4KB block size */ 2662 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 2663 if (blocksize != F2FS_BLKSIZE) { 2664 f2fs_info(sbi, "Invalid blocksize (%u), supports only 4KB", 2665 blocksize); 2666 return -EFSCORRUPTED; 2667 } 2668 2669 /* check log blocks per segment */ 2670 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 2671 f2fs_info(sbi, "Invalid log blocks per segment (%u)", 2672 le32_to_cpu(raw_super->log_blocks_per_seg)); 2673 return -EFSCORRUPTED; 2674 } 2675 2676 /* Currently, support 512/1024/2048/4096 bytes sector size */ 2677 if (le32_to_cpu(raw_super->log_sectorsize) > 2678 F2FS_MAX_LOG_SECTOR_SIZE || 2679 le32_to_cpu(raw_super->log_sectorsize) < 2680 F2FS_MIN_LOG_SECTOR_SIZE) { 2681 f2fs_info(sbi, "Invalid log sectorsize (%u)", 2682 le32_to_cpu(raw_super->log_sectorsize)); 2683 return -EFSCORRUPTED; 2684 } 2685 if (le32_to_cpu(raw_super->log_sectors_per_block) + 2686 le32_to_cpu(raw_super->log_sectorsize) != 2687 F2FS_MAX_LOG_SECTOR_SIZE) { 2688 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)", 2689 le32_to_cpu(raw_super->log_sectors_per_block), 2690 le32_to_cpu(raw_super->log_sectorsize)); 2691 return -EFSCORRUPTED; 2692 } 2693 2694 segment_count = le32_to_cpu(raw_super->segment_count); 2695 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 2696 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 2697 total_sections = le32_to_cpu(raw_super->section_count); 2698 2699 /* blocks_per_seg should be 512, given the above check */ 2700 blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg); 2701 2702 if (segment_count > F2FS_MAX_SEGMENT || 2703 segment_count < F2FS_MIN_SEGMENTS) { 2704 f2fs_info(sbi, "Invalid segment count (%u)", segment_count); 2705 return -EFSCORRUPTED; 2706 } 2707 2708 if (total_sections > segment_count || 2709 total_sections < F2FS_MIN_SEGMENTS || 2710 segs_per_sec > segment_count || !segs_per_sec) { 2711 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)", 2712 segment_count, total_sections, segs_per_sec); 2713 return -EFSCORRUPTED; 2714 } 2715 2716 if ((segment_count / segs_per_sec) < total_sections) { 2717 f2fs_info(sbi, "Small segment_count (%u < %u * %u)", 2718 segment_count, segs_per_sec, total_sections); 2719 return -EFSCORRUPTED; 2720 } 2721 2722 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 2723 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)", 2724 segment_count, le64_to_cpu(raw_super->block_count)); 2725 return -EFSCORRUPTED; 2726 } 2727 2728 if (RDEV(0).path[0]) { 2729 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments); 2730 int i = 1; 2731 2732 while (i < MAX_DEVICES && RDEV(i).path[0]) { 2733 dev_seg_count += le32_to_cpu(RDEV(i).total_segments); 2734 i++; 2735 } 2736 if (segment_count != dev_seg_count) { 2737 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)", 2738 segment_count, dev_seg_count); 2739 return -EFSCORRUPTED; 2740 } 2741 } 2742 2743 if (secs_per_zone > total_sections || !secs_per_zone) { 2744 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)", 2745 secs_per_zone, total_sections); 2746 return -EFSCORRUPTED; 2747 } 2748 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 2749 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 2750 (le32_to_cpu(raw_super->extension_count) + 2751 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 2752 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)", 2753 le32_to_cpu(raw_super->extension_count), 2754 raw_super->hot_ext_count, 2755 F2FS_MAX_EXTENSION); 2756 return -EFSCORRUPTED; 2757 } 2758 2759 if (le32_to_cpu(raw_super->cp_payload) > 2760 (blocks_per_seg - F2FS_CP_PACKS)) { 2761 f2fs_info(sbi, "Insane cp_payload (%u > %u)", 2762 le32_to_cpu(raw_super->cp_payload), 2763 blocks_per_seg - F2FS_CP_PACKS); 2764 return -EFSCORRUPTED; 2765 } 2766 2767 /* check reserved ino info */ 2768 if (le32_to_cpu(raw_super->node_ino) != 1 || 2769 le32_to_cpu(raw_super->meta_ino) != 2 || 2770 le32_to_cpu(raw_super->root_ino) != 3) { 2771 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 2772 le32_to_cpu(raw_super->node_ino), 2773 le32_to_cpu(raw_super->meta_ino), 2774 le32_to_cpu(raw_super->root_ino)); 2775 return -EFSCORRUPTED; 2776 } 2777 2778 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 2779 if (sanity_check_area_boundary(sbi, bh)) 2780 return -EFSCORRUPTED; 2781 2782 return 0; 2783 } 2784 2785 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 2786 { 2787 unsigned int total, fsmeta; 2788 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2789 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2790 unsigned int ovp_segments, reserved_segments; 2791 unsigned int main_segs, blocks_per_seg; 2792 unsigned int sit_segs, nat_segs; 2793 unsigned int sit_bitmap_size, nat_bitmap_size; 2794 unsigned int log_blocks_per_seg; 2795 unsigned int segment_count_main; 2796 unsigned int cp_pack_start_sum, cp_payload; 2797 block_t user_block_count, valid_user_blocks; 2798 block_t avail_node_count, valid_node_count; 2799 int i, j; 2800 2801 total = le32_to_cpu(raw_super->segment_count); 2802 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 2803 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 2804 fsmeta += sit_segs; 2805 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 2806 fsmeta += nat_segs; 2807 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 2808 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 2809 2810 if (unlikely(fsmeta >= total)) 2811 return 1; 2812 2813 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2814 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2815 2816 if (unlikely(fsmeta < F2FS_MIN_SEGMENTS || 2817 ovp_segments == 0 || reserved_segments == 0)) { 2818 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version"); 2819 return 1; 2820 } 2821 2822 user_block_count = le64_to_cpu(ckpt->user_block_count); 2823 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2824 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2825 if (!user_block_count || user_block_count >= 2826 segment_count_main << log_blocks_per_seg) { 2827 f2fs_err(sbi, "Wrong user_block_count: %u", 2828 user_block_count); 2829 return 1; 2830 } 2831 2832 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 2833 if (valid_user_blocks > user_block_count) { 2834 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u", 2835 valid_user_blocks, user_block_count); 2836 return 1; 2837 } 2838 2839 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 2840 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 2841 if (valid_node_count > avail_node_count) { 2842 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u", 2843 valid_node_count, avail_node_count); 2844 return 1; 2845 } 2846 2847 main_segs = le32_to_cpu(raw_super->segment_count_main); 2848 blocks_per_seg = sbi->blocks_per_seg; 2849 2850 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 2851 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 2852 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 2853 return 1; 2854 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 2855 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 2856 le32_to_cpu(ckpt->cur_node_segno[j])) { 2857 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u", 2858 i, j, 2859 le32_to_cpu(ckpt->cur_node_segno[i])); 2860 return 1; 2861 } 2862 } 2863 } 2864 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 2865 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 2866 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 2867 return 1; 2868 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 2869 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 2870 le32_to_cpu(ckpt->cur_data_segno[j])) { 2871 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u", 2872 i, j, 2873 le32_to_cpu(ckpt->cur_data_segno[i])); 2874 return 1; 2875 } 2876 } 2877 } 2878 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 2879 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) { 2880 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 2881 le32_to_cpu(ckpt->cur_data_segno[j])) { 2882 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u", 2883 i, j, 2884 le32_to_cpu(ckpt->cur_node_segno[i])); 2885 return 1; 2886 } 2887 } 2888 } 2889 2890 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 2891 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 2892 2893 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 2894 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 2895 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u", 2896 sit_bitmap_size, nat_bitmap_size); 2897 return 1; 2898 } 2899 2900 cp_pack_start_sum = __start_sum_addr(sbi); 2901 cp_payload = __cp_payload(sbi); 2902 if (cp_pack_start_sum < cp_payload + 1 || 2903 cp_pack_start_sum > blocks_per_seg - 1 - 2904 NR_CURSEG_TYPE) { 2905 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u", 2906 cp_pack_start_sum); 2907 return 1; 2908 } 2909 2910 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && 2911 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { 2912 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, " 2913 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, " 2914 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"", 2915 le32_to_cpu(ckpt->checksum_offset)); 2916 return 1; 2917 } 2918 2919 if (unlikely(f2fs_cp_error(sbi))) { 2920 f2fs_err(sbi, "A bug case: need to run fsck"); 2921 return 1; 2922 } 2923 return 0; 2924 } 2925 2926 static void init_sb_info(struct f2fs_sb_info *sbi) 2927 { 2928 struct f2fs_super_block *raw_super = sbi->raw_super; 2929 int i; 2930 2931 sbi->log_sectors_per_block = 2932 le32_to_cpu(raw_super->log_sectors_per_block); 2933 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 2934 sbi->blocksize = 1 << sbi->log_blocksize; 2935 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2936 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 2937 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 2938 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 2939 sbi->total_sections = le32_to_cpu(raw_super->section_count); 2940 sbi->total_node_count = 2941 (le32_to_cpu(raw_super->segment_count_nat) / 2) 2942 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 2943 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 2944 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 2945 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 2946 sbi->cur_victim_sec = NULL_SECNO; 2947 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 2948 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 2949 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 2950 sbi->migration_granularity = sbi->segs_per_sec; 2951 2952 sbi->dir_level = DEF_DIR_LEVEL; 2953 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 2954 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 2955 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 2956 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 2957 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 2958 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 2959 DEF_UMOUNT_DISCARD_TIMEOUT; 2960 clear_sbi_flag(sbi, SBI_NEED_FSCK); 2961 2962 for (i = 0; i < NR_COUNT_TYPE; i++) 2963 atomic_set(&sbi->nr_pages[i], 0); 2964 2965 for (i = 0; i < META; i++) 2966 atomic_set(&sbi->wb_sync_req[i], 0); 2967 2968 INIT_LIST_HEAD(&sbi->s_list); 2969 mutex_init(&sbi->umount_mutex); 2970 init_rwsem(&sbi->io_order_lock); 2971 spin_lock_init(&sbi->cp_lock); 2972 2973 sbi->dirty_device = 0; 2974 spin_lock_init(&sbi->dev_lock); 2975 2976 init_rwsem(&sbi->sb_lock); 2977 init_rwsem(&sbi->pin_sem); 2978 } 2979 2980 static int init_percpu_info(struct f2fs_sb_info *sbi) 2981 { 2982 int err; 2983 2984 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 2985 if (err) 2986 return err; 2987 2988 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 2989 GFP_KERNEL); 2990 if (err) 2991 percpu_counter_destroy(&sbi->alloc_valid_block_count); 2992 2993 return err; 2994 } 2995 2996 #ifdef CONFIG_BLK_DEV_ZONED 2997 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx, 2998 void *data) 2999 { 3000 struct f2fs_dev_info *dev = data; 3001 3002 if (zone->type != BLK_ZONE_TYPE_CONVENTIONAL) 3003 set_bit(idx, dev->blkz_seq); 3004 return 0; 3005 } 3006 3007 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 3008 { 3009 struct block_device *bdev = FDEV(devi).bdev; 3010 sector_t nr_sectors = bdev->bd_part->nr_sects; 3011 int ret; 3012 3013 if (!f2fs_sb_has_blkzoned(sbi)) 3014 return 0; 3015 3016 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 3017 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev))) 3018 return -EINVAL; 3019 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)); 3020 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz != 3021 __ilog2_u32(sbi->blocks_per_blkz)) 3022 return -EINVAL; 3023 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz); 3024 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >> 3025 sbi->log_blocks_per_blkz; 3026 if (nr_sectors & (bdev_zone_sectors(bdev) - 1)) 3027 FDEV(devi).nr_blkz++; 3028 3029 FDEV(devi).blkz_seq = f2fs_kzalloc(sbi, 3030 BITS_TO_LONGS(FDEV(devi).nr_blkz) 3031 * sizeof(unsigned long), 3032 GFP_KERNEL); 3033 if (!FDEV(devi).blkz_seq) 3034 return -ENOMEM; 3035 3036 /* Get block zones type */ 3037 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb, 3038 &FDEV(devi)); 3039 if (ret < 0) 3040 return ret; 3041 3042 return 0; 3043 } 3044 #endif 3045 3046 /* 3047 * Read f2fs raw super block. 3048 * Because we have two copies of super block, so read both of them 3049 * to get the first valid one. If any one of them is broken, we pass 3050 * them recovery flag back to the caller. 3051 */ 3052 static int read_raw_super_block(struct f2fs_sb_info *sbi, 3053 struct f2fs_super_block **raw_super, 3054 int *valid_super_block, int *recovery) 3055 { 3056 struct super_block *sb = sbi->sb; 3057 int block; 3058 struct buffer_head *bh; 3059 struct f2fs_super_block *super; 3060 int err = 0; 3061 3062 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 3063 if (!super) 3064 return -ENOMEM; 3065 3066 for (block = 0; block < 2; block++) { 3067 bh = sb_bread(sb, block); 3068 if (!bh) { 3069 f2fs_err(sbi, "Unable to read %dth superblock", 3070 block + 1); 3071 err = -EIO; 3072 *recovery = 1; 3073 continue; 3074 } 3075 3076 /* sanity checking of raw super */ 3077 err = sanity_check_raw_super(sbi, bh); 3078 if (err) { 3079 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock", 3080 block + 1); 3081 brelse(bh); 3082 *recovery = 1; 3083 continue; 3084 } 3085 3086 if (!*raw_super) { 3087 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 3088 sizeof(*super)); 3089 *valid_super_block = block; 3090 *raw_super = super; 3091 } 3092 brelse(bh); 3093 } 3094 3095 /* No valid superblock */ 3096 if (!*raw_super) 3097 kvfree(super); 3098 else 3099 err = 0; 3100 3101 return err; 3102 } 3103 3104 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 3105 { 3106 struct buffer_head *bh; 3107 __u32 crc = 0; 3108 int err; 3109 3110 if ((recover && f2fs_readonly(sbi->sb)) || 3111 bdev_read_only(sbi->sb->s_bdev)) { 3112 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3113 return -EROFS; 3114 } 3115 3116 /* we should update superblock crc here */ 3117 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 3118 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 3119 offsetof(struct f2fs_super_block, crc)); 3120 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 3121 } 3122 3123 /* write back-up superblock first */ 3124 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 3125 if (!bh) 3126 return -EIO; 3127 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3128 brelse(bh); 3129 3130 /* if we are in recovery path, skip writing valid superblock */ 3131 if (recover || err) 3132 return err; 3133 3134 /* write current valid superblock */ 3135 bh = sb_bread(sbi->sb, sbi->valid_super_block); 3136 if (!bh) 3137 return -EIO; 3138 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3139 brelse(bh); 3140 return err; 3141 } 3142 3143 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 3144 { 3145 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3146 unsigned int max_devices = MAX_DEVICES; 3147 int i; 3148 3149 /* Initialize single device information */ 3150 if (!RDEV(0).path[0]) { 3151 if (!bdev_is_zoned(sbi->sb->s_bdev)) 3152 return 0; 3153 max_devices = 1; 3154 } 3155 3156 /* 3157 * Initialize multiple devices information, or single 3158 * zoned block device information. 3159 */ 3160 sbi->devs = f2fs_kzalloc(sbi, 3161 array_size(max_devices, 3162 sizeof(struct f2fs_dev_info)), 3163 GFP_KERNEL); 3164 if (!sbi->devs) 3165 return -ENOMEM; 3166 3167 for (i = 0; i < max_devices; i++) { 3168 3169 if (i > 0 && !RDEV(i).path[0]) 3170 break; 3171 3172 if (max_devices == 1) { 3173 /* Single zoned block device mount */ 3174 FDEV(0).bdev = 3175 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev, 3176 sbi->sb->s_mode, sbi->sb->s_type); 3177 } else { 3178 /* Multi-device mount */ 3179 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 3180 FDEV(i).total_segments = 3181 le32_to_cpu(RDEV(i).total_segments); 3182 if (i == 0) { 3183 FDEV(i).start_blk = 0; 3184 FDEV(i).end_blk = FDEV(i).start_blk + 3185 (FDEV(i).total_segments << 3186 sbi->log_blocks_per_seg) - 1 + 3187 le32_to_cpu(raw_super->segment0_blkaddr); 3188 } else { 3189 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 3190 FDEV(i).end_blk = FDEV(i).start_blk + 3191 (FDEV(i).total_segments << 3192 sbi->log_blocks_per_seg) - 1; 3193 } 3194 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 3195 sbi->sb->s_mode, sbi->sb->s_type); 3196 } 3197 if (IS_ERR(FDEV(i).bdev)) 3198 return PTR_ERR(FDEV(i).bdev); 3199 3200 /* to release errored devices */ 3201 sbi->s_ndevs = i + 1; 3202 3203 #ifdef CONFIG_BLK_DEV_ZONED 3204 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 3205 !f2fs_sb_has_blkzoned(sbi)) { 3206 f2fs_err(sbi, "Zoned block device feature not enabled\n"); 3207 return -EINVAL; 3208 } 3209 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 3210 if (init_blkz_info(sbi, i)) { 3211 f2fs_err(sbi, "Failed to initialize F2FS blkzone information"); 3212 return -EINVAL; 3213 } 3214 if (max_devices == 1) 3215 break; 3216 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 3217 i, FDEV(i).path, 3218 FDEV(i).total_segments, 3219 FDEV(i).start_blk, FDEV(i).end_blk, 3220 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 3221 "Host-aware" : "Host-managed"); 3222 continue; 3223 } 3224 #endif 3225 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x", 3226 i, FDEV(i).path, 3227 FDEV(i).total_segments, 3228 FDEV(i).start_blk, FDEV(i).end_blk); 3229 } 3230 f2fs_info(sbi, 3231 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi)); 3232 return 0; 3233 } 3234 3235 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi) 3236 { 3237 #ifdef CONFIG_UNICODE 3238 if (f2fs_sb_has_casefold(sbi) && !sbi->s_encoding) { 3239 const struct f2fs_sb_encodings *encoding_info; 3240 struct unicode_map *encoding; 3241 __u16 encoding_flags; 3242 3243 if (f2fs_sb_has_encrypt(sbi)) { 3244 f2fs_err(sbi, 3245 "Can't mount with encoding and encryption"); 3246 return -EINVAL; 3247 } 3248 3249 if (f2fs_sb_read_encoding(sbi->raw_super, &encoding_info, 3250 &encoding_flags)) { 3251 f2fs_err(sbi, 3252 "Encoding requested by superblock is unknown"); 3253 return -EINVAL; 3254 } 3255 3256 encoding = utf8_load(encoding_info->version); 3257 if (IS_ERR(encoding)) { 3258 f2fs_err(sbi, 3259 "can't mount with superblock charset: %s-%s " 3260 "not supported by the kernel. flags: 0x%x.", 3261 encoding_info->name, encoding_info->version, 3262 encoding_flags); 3263 return PTR_ERR(encoding); 3264 } 3265 f2fs_info(sbi, "Using encoding defined by superblock: " 3266 "%s-%s with flags 0x%hx", encoding_info->name, 3267 encoding_info->version?:"\b", encoding_flags); 3268 3269 sbi->s_encoding = encoding; 3270 sbi->s_encoding_flags = encoding_flags; 3271 sbi->sb->s_d_op = &f2fs_dentry_ops; 3272 } 3273 #else 3274 if (f2fs_sb_has_casefold(sbi)) { 3275 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 3276 return -EINVAL; 3277 } 3278 #endif 3279 return 0; 3280 } 3281 3282 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 3283 { 3284 struct f2fs_sm_info *sm_i = SM_I(sbi); 3285 3286 /* adjust parameters according to the volume size */ 3287 if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) { 3288 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 3289 sm_i->dcc_info->discard_granularity = 1; 3290 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE; 3291 } 3292 3293 sbi->readdir_ra = 1; 3294 } 3295 3296 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 3297 { 3298 struct f2fs_sb_info *sbi; 3299 struct f2fs_super_block *raw_super; 3300 struct inode *root; 3301 int err; 3302 bool skip_recovery = false, need_fsck = false; 3303 char *options = NULL; 3304 int recovery, i, valid_super_block; 3305 struct curseg_info *seg_i; 3306 int retry_cnt = 1; 3307 3308 try_onemore: 3309 err = -EINVAL; 3310 raw_super = NULL; 3311 valid_super_block = -1; 3312 recovery = 0; 3313 3314 /* allocate memory for f2fs-specific super block info */ 3315 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 3316 if (!sbi) 3317 return -ENOMEM; 3318 3319 sbi->sb = sb; 3320 3321 /* Load the checksum driver */ 3322 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 3323 if (IS_ERR(sbi->s_chksum_driver)) { 3324 f2fs_err(sbi, "Cannot load crc32 driver."); 3325 err = PTR_ERR(sbi->s_chksum_driver); 3326 sbi->s_chksum_driver = NULL; 3327 goto free_sbi; 3328 } 3329 3330 /* set a block size */ 3331 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 3332 f2fs_err(sbi, "unable to set blocksize"); 3333 goto free_sbi; 3334 } 3335 3336 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 3337 &recovery); 3338 if (err) 3339 goto free_sbi; 3340 3341 sb->s_fs_info = sbi; 3342 sbi->raw_super = raw_super; 3343 3344 /* precompute checksum seed for metadata */ 3345 if (f2fs_sb_has_inode_chksum(sbi)) 3346 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 3347 sizeof(raw_super->uuid)); 3348 3349 /* 3350 * The BLKZONED feature indicates that the drive was formatted with 3351 * zone alignment optimization. This is optional for host-aware 3352 * devices, but mandatory for host-managed zoned block devices. 3353 */ 3354 #ifndef CONFIG_BLK_DEV_ZONED 3355 if (f2fs_sb_has_blkzoned(sbi)) { 3356 f2fs_err(sbi, "Zoned block device support is not enabled"); 3357 err = -EOPNOTSUPP; 3358 goto free_sb_buf; 3359 } 3360 #endif 3361 default_options(sbi); 3362 /* parse mount options */ 3363 options = kstrdup((const char *)data, GFP_KERNEL); 3364 if (data && !options) { 3365 err = -ENOMEM; 3366 goto free_sb_buf; 3367 } 3368 3369 err = parse_options(sb, options); 3370 if (err) 3371 goto free_options; 3372 3373 sbi->max_file_blocks = max_file_blocks(); 3374 sb->s_maxbytes = sbi->max_file_blocks << 3375 le32_to_cpu(raw_super->log_blocksize); 3376 sb->s_max_links = F2FS_LINK_MAX; 3377 3378 err = f2fs_setup_casefold(sbi); 3379 if (err) 3380 goto free_options; 3381 3382 #ifdef CONFIG_QUOTA 3383 sb->dq_op = &f2fs_quota_operations; 3384 sb->s_qcop = &f2fs_quotactl_ops; 3385 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 3386 3387 if (f2fs_sb_has_quota_ino(sbi)) { 3388 for (i = 0; i < MAXQUOTAS; i++) { 3389 if (f2fs_qf_ino(sbi->sb, i)) 3390 sbi->nquota_files++; 3391 } 3392 } 3393 #endif 3394 3395 sb->s_op = &f2fs_sops; 3396 #ifdef CONFIG_FS_ENCRYPTION 3397 sb->s_cop = &f2fs_cryptops; 3398 #endif 3399 #ifdef CONFIG_FS_VERITY 3400 sb->s_vop = &f2fs_verityops; 3401 #endif 3402 sb->s_xattr = f2fs_xattr_handlers; 3403 sb->s_export_op = &f2fs_export_ops; 3404 sb->s_magic = F2FS_SUPER_MAGIC; 3405 sb->s_time_gran = 1; 3406 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3407 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 3408 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 3409 sb->s_iflags |= SB_I_CGROUPWB; 3410 3411 /* init f2fs-specific super block info */ 3412 sbi->valid_super_block = valid_super_block; 3413 init_rwsem(&sbi->gc_lock); 3414 mutex_init(&sbi->writepages); 3415 mutex_init(&sbi->cp_mutex); 3416 mutex_init(&sbi->resize_mutex); 3417 init_rwsem(&sbi->node_write); 3418 init_rwsem(&sbi->node_change); 3419 3420 /* disallow all the data/node/meta page writes */ 3421 set_sbi_flag(sbi, SBI_POR_DOING); 3422 spin_lock_init(&sbi->stat_lock); 3423 3424 /* init iostat info */ 3425 spin_lock_init(&sbi->iostat_lock); 3426 sbi->iostat_enable = false; 3427 3428 for (i = 0; i < NR_PAGE_TYPE; i++) { 3429 int n = (i == META) ? 1: NR_TEMP_TYPE; 3430 int j; 3431 3432 sbi->write_io[i] = 3433 f2fs_kmalloc(sbi, 3434 array_size(n, 3435 sizeof(struct f2fs_bio_info)), 3436 GFP_KERNEL); 3437 if (!sbi->write_io[i]) { 3438 err = -ENOMEM; 3439 goto free_bio_info; 3440 } 3441 3442 for (j = HOT; j < n; j++) { 3443 init_rwsem(&sbi->write_io[i][j].io_rwsem); 3444 sbi->write_io[i][j].sbi = sbi; 3445 sbi->write_io[i][j].bio = NULL; 3446 spin_lock_init(&sbi->write_io[i][j].io_lock); 3447 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 3448 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list); 3449 init_rwsem(&sbi->write_io[i][j].bio_list_lock); 3450 } 3451 } 3452 3453 init_rwsem(&sbi->cp_rwsem); 3454 init_rwsem(&sbi->quota_sem); 3455 init_waitqueue_head(&sbi->cp_wait); 3456 init_sb_info(sbi); 3457 3458 err = init_percpu_info(sbi); 3459 if (err) 3460 goto free_bio_info; 3461 3462 if (F2FS_IO_ALIGNED(sbi)) { 3463 sbi->write_io_dummy = 3464 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); 3465 if (!sbi->write_io_dummy) { 3466 err = -ENOMEM; 3467 goto free_percpu; 3468 } 3469 } 3470 3471 /* init per sbi slab cache */ 3472 err = f2fs_init_xattr_caches(sbi); 3473 if (err) 3474 goto free_io_dummy; 3475 3476 /* get an inode for meta space */ 3477 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 3478 if (IS_ERR(sbi->meta_inode)) { 3479 f2fs_err(sbi, "Failed to read F2FS meta data inode"); 3480 err = PTR_ERR(sbi->meta_inode); 3481 goto free_xattr_cache; 3482 } 3483 3484 err = f2fs_get_valid_checkpoint(sbi); 3485 if (err) { 3486 f2fs_err(sbi, "Failed to get valid F2FS checkpoint"); 3487 goto free_meta_inode; 3488 } 3489 3490 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 3491 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3492 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 3493 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 3494 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 3495 } 3496 3497 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG)) 3498 set_sbi_flag(sbi, SBI_NEED_FSCK); 3499 3500 /* Initialize device list */ 3501 err = f2fs_scan_devices(sbi); 3502 if (err) { 3503 f2fs_err(sbi, "Failed to find devices"); 3504 goto free_devices; 3505 } 3506 3507 err = f2fs_init_post_read_wq(sbi); 3508 if (err) { 3509 f2fs_err(sbi, "Failed to initialize post read workqueue"); 3510 goto free_devices; 3511 } 3512 3513 sbi->total_valid_node_count = 3514 le32_to_cpu(sbi->ckpt->valid_node_count); 3515 percpu_counter_set(&sbi->total_valid_inode_count, 3516 le32_to_cpu(sbi->ckpt->valid_inode_count)); 3517 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 3518 sbi->total_valid_block_count = 3519 le64_to_cpu(sbi->ckpt->valid_block_count); 3520 sbi->last_valid_block_count = sbi->total_valid_block_count; 3521 sbi->reserved_blocks = 0; 3522 sbi->current_reserved_blocks = 0; 3523 limit_reserve_root(sbi); 3524 3525 for (i = 0; i < NR_INODE_TYPE; i++) { 3526 INIT_LIST_HEAD(&sbi->inode_list[i]); 3527 spin_lock_init(&sbi->inode_lock[i]); 3528 } 3529 mutex_init(&sbi->flush_lock); 3530 3531 f2fs_init_extent_cache_info(sbi); 3532 3533 f2fs_init_ino_entry_info(sbi); 3534 3535 f2fs_init_fsync_node_info(sbi); 3536 3537 /* setup f2fs internal modules */ 3538 err = f2fs_build_segment_manager(sbi); 3539 if (err) { 3540 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)", 3541 err); 3542 goto free_sm; 3543 } 3544 err = f2fs_build_node_manager(sbi); 3545 if (err) { 3546 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)", 3547 err); 3548 goto free_nm; 3549 } 3550 3551 /* For write statistics */ 3552 if (sb->s_bdev->bd_part) 3553 sbi->sectors_written_start = 3554 (u64)part_stat_read(sb->s_bdev->bd_part, 3555 sectors[STAT_WRITE]); 3556 3557 /* Read accumulated write IO statistics if exists */ 3558 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 3559 if (__exist_node_summaries(sbi)) 3560 sbi->kbytes_written = 3561 le64_to_cpu(seg_i->journal->info.kbytes_written); 3562 3563 f2fs_build_gc_manager(sbi); 3564 3565 err = f2fs_build_stats(sbi); 3566 if (err) 3567 goto free_nm; 3568 3569 /* get an inode for node space */ 3570 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 3571 if (IS_ERR(sbi->node_inode)) { 3572 f2fs_err(sbi, "Failed to read node inode"); 3573 err = PTR_ERR(sbi->node_inode); 3574 goto free_stats; 3575 } 3576 3577 /* read root inode and dentry */ 3578 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 3579 if (IS_ERR(root)) { 3580 f2fs_err(sbi, "Failed to read root inode"); 3581 err = PTR_ERR(root); 3582 goto free_node_inode; 3583 } 3584 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 3585 !root->i_size || !root->i_nlink) { 3586 iput(root); 3587 err = -EINVAL; 3588 goto free_node_inode; 3589 } 3590 3591 sb->s_root = d_make_root(root); /* allocate root dentry */ 3592 if (!sb->s_root) { 3593 err = -ENOMEM; 3594 goto free_node_inode; 3595 } 3596 3597 err = f2fs_register_sysfs(sbi); 3598 if (err) 3599 goto free_root_inode; 3600 3601 #ifdef CONFIG_QUOTA 3602 /* Enable quota usage during mount */ 3603 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 3604 err = f2fs_enable_quotas(sb); 3605 if (err) 3606 f2fs_err(sbi, "Cannot turn on quotas: error %d", err); 3607 } 3608 #endif 3609 /* if there are any orphan inodes, free them */ 3610 err = f2fs_recover_orphan_inodes(sbi); 3611 if (err) 3612 goto free_meta; 3613 3614 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 3615 goto reset_checkpoint; 3616 3617 /* recover fsynced data */ 3618 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) && 3619 !test_opt(sbi, NORECOVERY)) { 3620 /* 3621 * mount should be failed, when device has readonly mode, and 3622 * previous checkpoint was not done by clean system shutdown. 3623 */ 3624 if (f2fs_hw_is_readonly(sbi)) { 3625 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 3626 err = -EROFS; 3627 f2fs_err(sbi, "Need to recover fsync data, but write access unavailable"); 3628 goto free_meta; 3629 } 3630 f2fs_info(sbi, "write access unavailable, skipping recovery"); 3631 goto reset_checkpoint; 3632 } 3633 3634 if (need_fsck) 3635 set_sbi_flag(sbi, SBI_NEED_FSCK); 3636 3637 if (skip_recovery) 3638 goto reset_checkpoint; 3639 3640 err = f2fs_recover_fsync_data(sbi, false); 3641 if (err < 0) { 3642 if (err != -ENOMEM) 3643 skip_recovery = true; 3644 need_fsck = true; 3645 f2fs_err(sbi, "Cannot recover all fsync data errno=%d", 3646 err); 3647 goto free_meta; 3648 } 3649 } else { 3650 err = f2fs_recover_fsync_data(sbi, true); 3651 3652 if (!f2fs_readonly(sb) && err > 0) { 3653 err = -EINVAL; 3654 f2fs_err(sbi, "Need to recover fsync data"); 3655 goto free_meta; 3656 } 3657 } 3658 3659 /* 3660 * If the f2fs is not readonly and fsync data recovery succeeds, 3661 * check zoned block devices' write pointer consistency. 3662 */ 3663 if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) { 3664 err = f2fs_check_write_pointer(sbi); 3665 if (err) 3666 goto free_meta; 3667 } 3668 3669 reset_checkpoint: 3670 /* f2fs_recover_fsync_data() cleared this already */ 3671 clear_sbi_flag(sbi, SBI_POR_DOING); 3672 3673 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 3674 err = f2fs_disable_checkpoint(sbi); 3675 if (err) 3676 goto sync_free_meta; 3677 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 3678 f2fs_enable_checkpoint(sbi); 3679 } 3680 3681 /* 3682 * If filesystem is not mounted as read-only then 3683 * do start the gc_thread. 3684 */ 3685 if (F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF && !f2fs_readonly(sb)) { 3686 /* After POR, we can run background GC thread.*/ 3687 err = f2fs_start_gc_thread(sbi); 3688 if (err) 3689 goto sync_free_meta; 3690 } 3691 kvfree(options); 3692 3693 /* recover broken superblock */ 3694 if (recovery) { 3695 err = f2fs_commit_super(sbi, true); 3696 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d", 3697 sbi->valid_super_block ? 1 : 2, err); 3698 } 3699 3700 f2fs_join_shrinker(sbi); 3701 3702 f2fs_tuning_parameters(sbi); 3703 3704 f2fs_notice(sbi, "Mounted with checkpoint version = %llx", 3705 cur_cp_version(F2FS_CKPT(sbi))); 3706 f2fs_update_time(sbi, CP_TIME); 3707 f2fs_update_time(sbi, REQ_TIME); 3708 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 3709 return 0; 3710 3711 sync_free_meta: 3712 /* safe to flush all the data */ 3713 sync_filesystem(sbi->sb); 3714 retry_cnt = 0; 3715 3716 free_meta: 3717 #ifdef CONFIG_QUOTA 3718 f2fs_truncate_quota_inode_pages(sb); 3719 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 3720 f2fs_quota_off_umount(sbi->sb); 3721 #endif 3722 /* 3723 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 3724 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 3725 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 3726 * falls into an infinite loop in f2fs_sync_meta_pages(). 3727 */ 3728 truncate_inode_pages_final(META_MAPPING(sbi)); 3729 /* evict some inodes being cached by GC */ 3730 evict_inodes(sb); 3731 f2fs_unregister_sysfs(sbi); 3732 free_root_inode: 3733 dput(sb->s_root); 3734 sb->s_root = NULL; 3735 free_node_inode: 3736 f2fs_release_ino_entry(sbi, true); 3737 truncate_inode_pages_final(NODE_MAPPING(sbi)); 3738 iput(sbi->node_inode); 3739 sbi->node_inode = NULL; 3740 free_stats: 3741 f2fs_destroy_stats(sbi); 3742 free_nm: 3743 f2fs_destroy_node_manager(sbi); 3744 free_sm: 3745 f2fs_destroy_segment_manager(sbi); 3746 f2fs_destroy_post_read_wq(sbi); 3747 free_devices: 3748 destroy_device_list(sbi); 3749 kvfree(sbi->ckpt); 3750 free_meta_inode: 3751 make_bad_inode(sbi->meta_inode); 3752 iput(sbi->meta_inode); 3753 sbi->meta_inode = NULL; 3754 free_xattr_cache: 3755 f2fs_destroy_xattr_caches(sbi); 3756 free_io_dummy: 3757 mempool_destroy(sbi->write_io_dummy); 3758 free_percpu: 3759 destroy_percpu_info(sbi); 3760 free_bio_info: 3761 for (i = 0; i < NR_PAGE_TYPE; i++) 3762 kvfree(sbi->write_io[i]); 3763 3764 #ifdef CONFIG_UNICODE 3765 utf8_unload(sbi->s_encoding); 3766 #endif 3767 free_options: 3768 #ifdef CONFIG_QUOTA 3769 for (i = 0; i < MAXQUOTAS; i++) 3770 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 3771 #endif 3772 kvfree(options); 3773 free_sb_buf: 3774 kvfree(raw_super); 3775 free_sbi: 3776 if (sbi->s_chksum_driver) 3777 crypto_free_shash(sbi->s_chksum_driver); 3778 kvfree(sbi); 3779 3780 /* give only one another chance */ 3781 if (retry_cnt > 0 && skip_recovery) { 3782 retry_cnt--; 3783 shrink_dcache_sb(sb); 3784 goto try_onemore; 3785 } 3786 return err; 3787 } 3788 3789 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 3790 const char *dev_name, void *data) 3791 { 3792 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 3793 } 3794 3795 static void kill_f2fs_super(struct super_block *sb) 3796 { 3797 if (sb->s_root) { 3798 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3799 3800 set_sbi_flag(sbi, SBI_IS_CLOSE); 3801 f2fs_stop_gc_thread(sbi); 3802 f2fs_stop_discard_thread(sbi); 3803 3804 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 3805 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 3806 struct cp_control cpc = { 3807 .reason = CP_UMOUNT, 3808 }; 3809 f2fs_write_checkpoint(sbi, &cpc); 3810 } 3811 3812 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 3813 sb->s_flags &= ~SB_RDONLY; 3814 } 3815 kill_block_super(sb); 3816 } 3817 3818 static struct file_system_type f2fs_fs_type = { 3819 .owner = THIS_MODULE, 3820 .name = "f2fs", 3821 .mount = f2fs_mount, 3822 .kill_sb = kill_f2fs_super, 3823 .fs_flags = FS_REQUIRES_DEV, 3824 }; 3825 MODULE_ALIAS_FS("f2fs"); 3826 3827 static int __init init_inodecache(void) 3828 { 3829 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 3830 sizeof(struct f2fs_inode_info), 0, 3831 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 3832 if (!f2fs_inode_cachep) 3833 return -ENOMEM; 3834 return 0; 3835 } 3836 3837 static void destroy_inodecache(void) 3838 { 3839 /* 3840 * Make sure all delayed rcu free inodes are flushed before we 3841 * destroy cache. 3842 */ 3843 rcu_barrier(); 3844 kmem_cache_destroy(f2fs_inode_cachep); 3845 } 3846 3847 static int __init init_f2fs_fs(void) 3848 { 3849 int err; 3850 3851 if (PAGE_SIZE != F2FS_BLKSIZE) { 3852 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n", 3853 PAGE_SIZE, F2FS_BLKSIZE); 3854 return -EINVAL; 3855 } 3856 3857 f2fs_build_trace_ios(); 3858 3859 err = init_inodecache(); 3860 if (err) 3861 goto fail; 3862 err = f2fs_create_node_manager_caches(); 3863 if (err) 3864 goto free_inodecache; 3865 err = f2fs_create_segment_manager_caches(); 3866 if (err) 3867 goto free_node_manager_caches; 3868 err = f2fs_create_checkpoint_caches(); 3869 if (err) 3870 goto free_segment_manager_caches; 3871 err = f2fs_create_extent_cache(); 3872 if (err) 3873 goto free_checkpoint_caches; 3874 err = f2fs_init_sysfs(); 3875 if (err) 3876 goto free_extent_cache; 3877 err = register_shrinker(&f2fs_shrinker_info); 3878 if (err) 3879 goto free_sysfs; 3880 err = register_filesystem(&f2fs_fs_type); 3881 if (err) 3882 goto free_shrinker; 3883 f2fs_create_root_stats(); 3884 err = f2fs_init_post_read_processing(); 3885 if (err) 3886 goto free_root_stats; 3887 err = f2fs_init_bio_entry_cache(); 3888 if (err) 3889 goto free_post_read; 3890 err = f2fs_init_bioset(); 3891 if (err) 3892 goto free_bio_enrty_cache; 3893 return 0; 3894 free_bio_enrty_cache: 3895 f2fs_destroy_bio_entry_cache(); 3896 free_post_read: 3897 f2fs_destroy_post_read_processing(); 3898 free_root_stats: 3899 f2fs_destroy_root_stats(); 3900 unregister_filesystem(&f2fs_fs_type); 3901 free_shrinker: 3902 unregister_shrinker(&f2fs_shrinker_info); 3903 free_sysfs: 3904 f2fs_exit_sysfs(); 3905 free_extent_cache: 3906 f2fs_destroy_extent_cache(); 3907 free_checkpoint_caches: 3908 f2fs_destroy_checkpoint_caches(); 3909 free_segment_manager_caches: 3910 f2fs_destroy_segment_manager_caches(); 3911 free_node_manager_caches: 3912 f2fs_destroy_node_manager_caches(); 3913 free_inodecache: 3914 destroy_inodecache(); 3915 fail: 3916 return err; 3917 } 3918 3919 static void __exit exit_f2fs_fs(void) 3920 { 3921 f2fs_destroy_bioset(); 3922 f2fs_destroy_bio_entry_cache(); 3923 f2fs_destroy_post_read_processing(); 3924 f2fs_destroy_root_stats(); 3925 unregister_filesystem(&f2fs_fs_type); 3926 unregister_shrinker(&f2fs_shrinker_info); 3927 f2fs_exit_sysfs(); 3928 f2fs_destroy_extent_cache(); 3929 f2fs_destroy_checkpoint_caches(); 3930 f2fs_destroy_segment_manager_caches(); 3931 f2fs_destroy_node_manager_caches(); 3932 destroy_inodecache(); 3933 f2fs_destroy_trace_ios(); 3934 } 3935 3936 module_init(init_f2fs_fs) 3937 module_exit(exit_f2fs_fs) 3938 3939 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 3940 MODULE_DESCRIPTION("Flash Friendly File System"); 3941 MODULE_LICENSE("GPL"); 3942 3943