1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/sched/mm.h> 12 #include <linux/statfs.h> 13 #include <linux/buffer_head.h> 14 #include <linux/kthread.h> 15 #include <linux/parser.h> 16 #include <linux/mount.h> 17 #include <linux/seq_file.h> 18 #include <linux/proc_fs.h> 19 #include <linux/random.h> 20 #include <linux/exportfs.h> 21 #include <linux/blkdev.h> 22 #include <linux/quotaops.h> 23 #include <linux/f2fs_fs.h> 24 #include <linux/sysfs.h> 25 #include <linux/quota.h> 26 #include <linux/unicode.h> 27 #include <linux/part_stat.h> 28 #include <linux/zstd.h> 29 #include <linux/lz4.h> 30 31 #include "f2fs.h" 32 #include "node.h" 33 #include "segment.h" 34 #include "xattr.h" 35 #include "gc.h" 36 #include "iostat.h" 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/f2fs.h> 40 41 static struct kmem_cache *f2fs_inode_cachep; 42 43 #ifdef CONFIG_F2FS_FAULT_INJECTION 44 45 const char *f2fs_fault_name[FAULT_MAX] = { 46 [FAULT_KMALLOC] = "kmalloc", 47 [FAULT_KVMALLOC] = "kvmalloc", 48 [FAULT_PAGE_ALLOC] = "page alloc", 49 [FAULT_PAGE_GET] = "page get", 50 [FAULT_ALLOC_NID] = "alloc nid", 51 [FAULT_ORPHAN] = "orphan", 52 [FAULT_BLOCK] = "no more block", 53 [FAULT_DIR_DEPTH] = "too big dir depth", 54 [FAULT_EVICT_INODE] = "evict_inode fail", 55 [FAULT_TRUNCATE] = "truncate fail", 56 [FAULT_READ_IO] = "read IO error", 57 [FAULT_CHECKPOINT] = "checkpoint error", 58 [FAULT_DISCARD] = "discard error", 59 [FAULT_WRITE_IO] = "write IO error", 60 [FAULT_SLAB_ALLOC] = "slab alloc", 61 [FAULT_DQUOT_INIT] = "dquot initialize", 62 }; 63 64 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 65 unsigned int type) 66 { 67 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 68 69 if (rate) { 70 atomic_set(&ffi->inject_ops, 0); 71 ffi->inject_rate = rate; 72 } 73 74 if (type) 75 ffi->inject_type = type; 76 77 if (!rate && !type) 78 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 79 } 80 #endif 81 82 /* f2fs-wide shrinker description */ 83 static struct shrinker f2fs_shrinker_info = { 84 .scan_objects = f2fs_shrink_scan, 85 .count_objects = f2fs_shrink_count, 86 .seeks = DEFAULT_SEEKS, 87 }; 88 89 enum { 90 Opt_gc_background, 91 Opt_disable_roll_forward, 92 Opt_norecovery, 93 Opt_discard, 94 Opt_nodiscard, 95 Opt_noheap, 96 Opt_heap, 97 Opt_user_xattr, 98 Opt_nouser_xattr, 99 Opt_acl, 100 Opt_noacl, 101 Opt_active_logs, 102 Opt_disable_ext_identify, 103 Opt_inline_xattr, 104 Opt_noinline_xattr, 105 Opt_inline_xattr_size, 106 Opt_inline_data, 107 Opt_inline_dentry, 108 Opt_noinline_dentry, 109 Opt_flush_merge, 110 Opt_noflush_merge, 111 Opt_nobarrier, 112 Opt_fastboot, 113 Opt_extent_cache, 114 Opt_noextent_cache, 115 Opt_noinline_data, 116 Opt_data_flush, 117 Opt_reserve_root, 118 Opt_resgid, 119 Opt_resuid, 120 Opt_mode, 121 Opt_io_size_bits, 122 Opt_fault_injection, 123 Opt_fault_type, 124 Opt_lazytime, 125 Opt_nolazytime, 126 Opt_quota, 127 Opt_noquota, 128 Opt_usrquota, 129 Opt_grpquota, 130 Opt_prjquota, 131 Opt_usrjquota, 132 Opt_grpjquota, 133 Opt_prjjquota, 134 Opt_offusrjquota, 135 Opt_offgrpjquota, 136 Opt_offprjjquota, 137 Opt_jqfmt_vfsold, 138 Opt_jqfmt_vfsv0, 139 Opt_jqfmt_vfsv1, 140 Opt_whint, 141 Opt_alloc, 142 Opt_fsync, 143 Opt_test_dummy_encryption, 144 Opt_inlinecrypt, 145 Opt_checkpoint_disable, 146 Opt_checkpoint_disable_cap, 147 Opt_checkpoint_disable_cap_perc, 148 Opt_checkpoint_enable, 149 Opt_checkpoint_merge, 150 Opt_nocheckpoint_merge, 151 Opt_compress_algorithm, 152 Opt_compress_log_size, 153 Opt_compress_extension, 154 Opt_nocompress_extension, 155 Opt_compress_chksum, 156 Opt_compress_mode, 157 Opt_compress_cache, 158 Opt_atgc, 159 Opt_gc_merge, 160 Opt_nogc_merge, 161 Opt_discard_unit, 162 Opt_err, 163 }; 164 165 static match_table_t f2fs_tokens = { 166 {Opt_gc_background, "background_gc=%s"}, 167 {Opt_disable_roll_forward, "disable_roll_forward"}, 168 {Opt_norecovery, "norecovery"}, 169 {Opt_discard, "discard"}, 170 {Opt_nodiscard, "nodiscard"}, 171 {Opt_noheap, "no_heap"}, 172 {Opt_heap, "heap"}, 173 {Opt_user_xattr, "user_xattr"}, 174 {Opt_nouser_xattr, "nouser_xattr"}, 175 {Opt_acl, "acl"}, 176 {Opt_noacl, "noacl"}, 177 {Opt_active_logs, "active_logs=%u"}, 178 {Opt_disable_ext_identify, "disable_ext_identify"}, 179 {Opt_inline_xattr, "inline_xattr"}, 180 {Opt_noinline_xattr, "noinline_xattr"}, 181 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 182 {Opt_inline_data, "inline_data"}, 183 {Opt_inline_dentry, "inline_dentry"}, 184 {Opt_noinline_dentry, "noinline_dentry"}, 185 {Opt_flush_merge, "flush_merge"}, 186 {Opt_noflush_merge, "noflush_merge"}, 187 {Opt_nobarrier, "nobarrier"}, 188 {Opt_fastboot, "fastboot"}, 189 {Opt_extent_cache, "extent_cache"}, 190 {Opt_noextent_cache, "noextent_cache"}, 191 {Opt_noinline_data, "noinline_data"}, 192 {Opt_data_flush, "data_flush"}, 193 {Opt_reserve_root, "reserve_root=%u"}, 194 {Opt_resgid, "resgid=%u"}, 195 {Opt_resuid, "resuid=%u"}, 196 {Opt_mode, "mode=%s"}, 197 {Opt_io_size_bits, "io_bits=%u"}, 198 {Opt_fault_injection, "fault_injection=%u"}, 199 {Opt_fault_type, "fault_type=%u"}, 200 {Opt_lazytime, "lazytime"}, 201 {Opt_nolazytime, "nolazytime"}, 202 {Opt_quota, "quota"}, 203 {Opt_noquota, "noquota"}, 204 {Opt_usrquota, "usrquota"}, 205 {Opt_grpquota, "grpquota"}, 206 {Opt_prjquota, "prjquota"}, 207 {Opt_usrjquota, "usrjquota=%s"}, 208 {Opt_grpjquota, "grpjquota=%s"}, 209 {Opt_prjjquota, "prjjquota=%s"}, 210 {Opt_offusrjquota, "usrjquota="}, 211 {Opt_offgrpjquota, "grpjquota="}, 212 {Opt_offprjjquota, "prjjquota="}, 213 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 214 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 215 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 216 {Opt_whint, "whint_mode=%s"}, 217 {Opt_alloc, "alloc_mode=%s"}, 218 {Opt_fsync, "fsync_mode=%s"}, 219 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 220 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 221 {Opt_inlinecrypt, "inlinecrypt"}, 222 {Opt_checkpoint_disable, "checkpoint=disable"}, 223 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"}, 224 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"}, 225 {Opt_checkpoint_enable, "checkpoint=enable"}, 226 {Opt_checkpoint_merge, "checkpoint_merge"}, 227 {Opt_nocheckpoint_merge, "nocheckpoint_merge"}, 228 {Opt_compress_algorithm, "compress_algorithm=%s"}, 229 {Opt_compress_log_size, "compress_log_size=%u"}, 230 {Opt_compress_extension, "compress_extension=%s"}, 231 {Opt_nocompress_extension, "nocompress_extension=%s"}, 232 {Opt_compress_chksum, "compress_chksum"}, 233 {Opt_compress_mode, "compress_mode=%s"}, 234 {Opt_compress_cache, "compress_cache"}, 235 {Opt_atgc, "atgc"}, 236 {Opt_gc_merge, "gc_merge"}, 237 {Opt_nogc_merge, "nogc_merge"}, 238 {Opt_discard_unit, "discard_unit=%s"}, 239 {Opt_err, NULL}, 240 }; 241 242 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...) 243 { 244 struct va_format vaf; 245 va_list args; 246 int level; 247 248 va_start(args, fmt); 249 250 level = printk_get_level(fmt); 251 vaf.fmt = printk_skip_level(fmt); 252 vaf.va = &args; 253 printk("%c%cF2FS-fs (%s): %pV\n", 254 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 255 256 va_end(args); 257 } 258 259 #ifdef CONFIG_UNICODE 260 static const struct f2fs_sb_encodings { 261 __u16 magic; 262 char *name; 263 unsigned int version; 264 } f2fs_sb_encoding_map[] = { 265 {F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 266 }; 267 268 static const struct f2fs_sb_encodings * 269 f2fs_sb_read_encoding(const struct f2fs_super_block *sb) 270 { 271 __u16 magic = le16_to_cpu(sb->s_encoding); 272 int i; 273 274 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++) 275 if (magic == f2fs_sb_encoding_map[i].magic) 276 return &f2fs_sb_encoding_map[i]; 277 278 return NULL; 279 } 280 281 struct kmem_cache *f2fs_cf_name_slab; 282 static int __init f2fs_create_casefold_cache(void) 283 { 284 f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name", 285 F2FS_NAME_LEN); 286 if (!f2fs_cf_name_slab) 287 return -ENOMEM; 288 return 0; 289 } 290 291 static void f2fs_destroy_casefold_cache(void) 292 { 293 kmem_cache_destroy(f2fs_cf_name_slab); 294 } 295 #else 296 static int __init f2fs_create_casefold_cache(void) { return 0; } 297 static void f2fs_destroy_casefold_cache(void) { } 298 #endif 299 300 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 301 { 302 block_t limit = min((sbi->user_block_count << 1) / 1000, 303 sbi->user_block_count - sbi->reserved_blocks); 304 305 /* limit is 0.2% */ 306 if (test_opt(sbi, RESERVE_ROOT) && 307 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 308 F2FS_OPTION(sbi).root_reserved_blocks = limit; 309 f2fs_info(sbi, "Reduce reserved blocks for root = %u", 310 F2FS_OPTION(sbi).root_reserved_blocks); 311 } 312 if (!test_opt(sbi, RESERVE_ROOT) && 313 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 314 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 315 !gid_eq(F2FS_OPTION(sbi).s_resgid, 316 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 317 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 318 from_kuid_munged(&init_user_ns, 319 F2FS_OPTION(sbi).s_resuid), 320 from_kgid_munged(&init_user_ns, 321 F2FS_OPTION(sbi).s_resgid)); 322 } 323 324 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi) 325 { 326 if (!F2FS_OPTION(sbi).unusable_cap_perc) 327 return; 328 329 if (F2FS_OPTION(sbi).unusable_cap_perc == 100) 330 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count; 331 else 332 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) * 333 F2FS_OPTION(sbi).unusable_cap_perc; 334 335 f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%", 336 F2FS_OPTION(sbi).unusable_cap, 337 F2FS_OPTION(sbi).unusable_cap_perc); 338 } 339 340 static void init_once(void *foo) 341 { 342 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 343 344 inode_init_once(&fi->vfs_inode); 345 } 346 347 #ifdef CONFIG_QUOTA 348 static const char * const quotatypes[] = INITQFNAMES; 349 #define QTYPE2NAME(t) (quotatypes[t]) 350 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 351 substring_t *args) 352 { 353 struct f2fs_sb_info *sbi = F2FS_SB(sb); 354 char *qname; 355 int ret = -EINVAL; 356 357 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 358 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 359 return -EINVAL; 360 } 361 if (f2fs_sb_has_quota_ino(sbi)) { 362 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name"); 363 return 0; 364 } 365 366 qname = match_strdup(args); 367 if (!qname) { 368 f2fs_err(sbi, "Not enough memory for storing quotafile name"); 369 return -ENOMEM; 370 } 371 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 372 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 373 ret = 0; 374 else 375 f2fs_err(sbi, "%s quota file already specified", 376 QTYPE2NAME(qtype)); 377 goto errout; 378 } 379 if (strchr(qname, '/')) { 380 f2fs_err(sbi, "quotafile must be on filesystem root"); 381 goto errout; 382 } 383 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 384 set_opt(sbi, QUOTA); 385 return 0; 386 errout: 387 kfree(qname); 388 return ret; 389 } 390 391 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 392 { 393 struct f2fs_sb_info *sbi = F2FS_SB(sb); 394 395 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 396 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 397 return -EINVAL; 398 } 399 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 400 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 401 return 0; 402 } 403 404 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 405 { 406 /* 407 * We do the test below only for project quotas. 'usrquota' and 408 * 'grpquota' mount options are allowed even without quota feature 409 * to support legacy quotas in quota files. 410 */ 411 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 412 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement."); 413 return -1; 414 } 415 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 416 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 417 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 418 if (test_opt(sbi, USRQUOTA) && 419 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 420 clear_opt(sbi, USRQUOTA); 421 422 if (test_opt(sbi, GRPQUOTA) && 423 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 424 clear_opt(sbi, GRPQUOTA); 425 426 if (test_opt(sbi, PRJQUOTA) && 427 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 428 clear_opt(sbi, PRJQUOTA); 429 430 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 431 test_opt(sbi, PRJQUOTA)) { 432 f2fs_err(sbi, "old and new quota format mixing"); 433 return -1; 434 } 435 436 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 437 f2fs_err(sbi, "journaled quota format not specified"); 438 return -1; 439 } 440 } 441 442 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 443 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt"); 444 F2FS_OPTION(sbi).s_jquota_fmt = 0; 445 } 446 return 0; 447 } 448 #endif 449 450 static int f2fs_set_test_dummy_encryption(struct super_block *sb, 451 const char *opt, 452 const substring_t *arg, 453 bool is_remount) 454 { 455 struct f2fs_sb_info *sbi = F2FS_SB(sb); 456 #ifdef CONFIG_FS_ENCRYPTION 457 int err; 458 459 if (!f2fs_sb_has_encrypt(sbi)) { 460 f2fs_err(sbi, "Encrypt feature is off"); 461 return -EINVAL; 462 } 463 464 /* 465 * This mount option is just for testing, and it's not worthwhile to 466 * implement the extra complexity (e.g. RCU protection) that would be 467 * needed to allow it to be set or changed during remount. We do allow 468 * it to be specified during remount, but only if there is no change. 469 */ 470 if (is_remount && !F2FS_OPTION(sbi).dummy_enc_policy.policy) { 471 f2fs_warn(sbi, "Can't set test_dummy_encryption on remount"); 472 return -EINVAL; 473 } 474 err = fscrypt_set_test_dummy_encryption( 475 sb, arg->from, &F2FS_OPTION(sbi).dummy_enc_policy); 476 if (err) { 477 if (err == -EEXIST) 478 f2fs_warn(sbi, 479 "Can't change test_dummy_encryption on remount"); 480 else if (err == -EINVAL) 481 f2fs_warn(sbi, "Value of option \"%s\" is unrecognized", 482 opt); 483 else 484 f2fs_warn(sbi, "Error processing option \"%s\" [%d]", 485 opt, err); 486 return -EINVAL; 487 } 488 f2fs_warn(sbi, "Test dummy encryption mode enabled"); 489 #else 490 f2fs_warn(sbi, "Test dummy encryption mount option ignored"); 491 #endif 492 return 0; 493 } 494 495 #ifdef CONFIG_F2FS_FS_COMPRESSION 496 /* 497 * 1. The same extension name cannot not appear in both compress and non-compress extension 498 * at the same time. 499 * 2. If the compress extension specifies all files, the types specified by the non-compress 500 * extension will be treated as special cases and will not be compressed. 501 * 3. Don't allow the non-compress extension specifies all files. 502 */ 503 static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi) 504 { 505 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 506 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 507 int ext_cnt, noext_cnt, index = 0, no_index = 0; 508 509 ext = F2FS_OPTION(sbi).extensions; 510 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 511 noext = F2FS_OPTION(sbi).noextensions; 512 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 513 514 if (!noext_cnt) 515 return 0; 516 517 for (no_index = 0; no_index < noext_cnt; no_index++) { 518 if (!strcasecmp("*", noext[no_index])) { 519 f2fs_info(sbi, "Don't allow the nocompress extension specifies all files"); 520 return -EINVAL; 521 } 522 for (index = 0; index < ext_cnt; index++) { 523 if (!strcasecmp(ext[index], noext[no_index])) { 524 f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension", 525 ext[index]); 526 return -EINVAL; 527 } 528 } 529 } 530 return 0; 531 } 532 533 #ifdef CONFIG_F2FS_FS_LZ4 534 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str) 535 { 536 #ifdef CONFIG_F2FS_FS_LZ4HC 537 unsigned int level; 538 #endif 539 540 if (strlen(str) == 3) { 541 F2FS_OPTION(sbi).compress_level = 0; 542 return 0; 543 } 544 545 #ifdef CONFIG_F2FS_FS_LZ4HC 546 str += 3; 547 548 if (str[0] != ':') { 549 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 550 return -EINVAL; 551 } 552 if (kstrtouint(str + 1, 10, &level)) 553 return -EINVAL; 554 555 if (level < LZ4HC_MIN_CLEVEL || level > LZ4HC_MAX_CLEVEL) { 556 f2fs_info(sbi, "invalid lz4hc compress level: %d", level); 557 return -EINVAL; 558 } 559 560 F2FS_OPTION(sbi).compress_level = level; 561 return 0; 562 #else 563 f2fs_info(sbi, "kernel doesn't support lz4hc compression"); 564 return -EINVAL; 565 #endif 566 } 567 #endif 568 569 #ifdef CONFIG_F2FS_FS_ZSTD 570 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str) 571 { 572 unsigned int level; 573 int len = 4; 574 575 if (strlen(str) == len) { 576 F2FS_OPTION(sbi).compress_level = 0; 577 return 0; 578 } 579 580 str += len; 581 582 if (str[0] != ':') { 583 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 584 return -EINVAL; 585 } 586 if (kstrtouint(str + 1, 10, &level)) 587 return -EINVAL; 588 589 if (!level || level > zstd_max_clevel()) { 590 f2fs_info(sbi, "invalid zstd compress level: %d", level); 591 return -EINVAL; 592 } 593 594 F2FS_OPTION(sbi).compress_level = level; 595 return 0; 596 } 597 #endif 598 #endif 599 600 static int parse_options(struct super_block *sb, char *options, bool is_remount) 601 { 602 struct f2fs_sb_info *sbi = F2FS_SB(sb); 603 substring_t args[MAX_OPT_ARGS]; 604 #ifdef CONFIG_F2FS_FS_COMPRESSION 605 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 606 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 607 int ext_cnt, noext_cnt; 608 #endif 609 char *p, *name; 610 int arg = 0; 611 kuid_t uid; 612 kgid_t gid; 613 int ret; 614 615 if (!options) 616 goto default_check; 617 618 while ((p = strsep(&options, ",")) != NULL) { 619 int token; 620 621 if (!*p) 622 continue; 623 /* 624 * Initialize args struct so we know whether arg was 625 * found; some options take optional arguments. 626 */ 627 args[0].to = args[0].from = NULL; 628 token = match_token(p, f2fs_tokens, args); 629 630 switch (token) { 631 case Opt_gc_background: 632 name = match_strdup(&args[0]); 633 634 if (!name) 635 return -ENOMEM; 636 if (!strcmp(name, "on")) { 637 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 638 } else if (!strcmp(name, "off")) { 639 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF; 640 } else if (!strcmp(name, "sync")) { 641 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC; 642 } else { 643 kfree(name); 644 return -EINVAL; 645 } 646 kfree(name); 647 break; 648 case Opt_disable_roll_forward: 649 set_opt(sbi, DISABLE_ROLL_FORWARD); 650 break; 651 case Opt_norecovery: 652 /* this option mounts f2fs with ro */ 653 set_opt(sbi, NORECOVERY); 654 if (!f2fs_readonly(sb)) 655 return -EINVAL; 656 break; 657 case Opt_discard: 658 if (!f2fs_hw_support_discard(sbi)) { 659 f2fs_warn(sbi, "device does not support discard"); 660 break; 661 } 662 set_opt(sbi, DISCARD); 663 break; 664 case Opt_nodiscard: 665 if (f2fs_hw_should_discard(sbi)) { 666 f2fs_warn(sbi, "discard is required for zoned block devices"); 667 return -EINVAL; 668 } 669 clear_opt(sbi, DISCARD); 670 break; 671 case Opt_noheap: 672 set_opt(sbi, NOHEAP); 673 break; 674 case Opt_heap: 675 clear_opt(sbi, NOHEAP); 676 break; 677 #ifdef CONFIG_F2FS_FS_XATTR 678 case Opt_user_xattr: 679 set_opt(sbi, XATTR_USER); 680 break; 681 case Opt_nouser_xattr: 682 clear_opt(sbi, XATTR_USER); 683 break; 684 case Opt_inline_xattr: 685 set_opt(sbi, INLINE_XATTR); 686 break; 687 case Opt_noinline_xattr: 688 clear_opt(sbi, INLINE_XATTR); 689 break; 690 case Opt_inline_xattr_size: 691 if (args->from && match_int(args, &arg)) 692 return -EINVAL; 693 set_opt(sbi, INLINE_XATTR_SIZE); 694 F2FS_OPTION(sbi).inline_xattr_size = arg; 695 break; 696 #else 697 case Opt_user_xattr: 698 f2fs_info(sbi, "user_xattr options not supported"); 699 break; 700 case Opt_nouser_xattr: 701 f2fs_info(sbi, "nouser_xattr options not supported"); 702 break; 703 case Opt_inline_xattr: 704 f2fs_info(sbi, "inline_xattr options not supported"); 705 break; 706 case Opt_noinline_xattr: 707 f2fs_info(sbi, "noinline_xattr options not supported"); 708 break; 709 #endif 710 #ifdef CONFIG_F2FS_FS_POSIX_ACL 711 case Opt_acl: 712 set_opt(sbi, POSIX_ACL); 713 break; 714 case Opt_noacl: 715 clear_opt(sbi, POSIX_ACL); 716 break; 717 #else 718 case Opt_acl: 719 f2fs_info(sbi, "acl options not supported"); 720 break; 721 case Opt_noacl: 722 f2fs_info(sbi, "noacl options not supported"); 723 break; 724 #endif 725 case Opt_active_logs: 726 if (args->from && match_int(args, &arg)) 727 return -EINVAL; 728 if (arg != 2 && arg != 4 && 729 arg != NR_CURSEG_PERSIST_TYPE) 730 return -EINVAL; 731 F2FS_OPTION(sbi).active_logs = arg; 732 break; 733 case Opt_disable_ext_identify: 734 set_opt(sbi, DISABLE_EXT_IDENTIFY); 735 break; 736 case Opt_inline_data: 737 set_opt(sbi, INLINE_DATA); 738 break; 739 case Opt_inline_dentry: 740 set_opt(sbi, INLINE_DENTRY); 741 break; 742 case Opt_noinline_dentry: 743 clear_opt(sbi, INLINE_DENTRY); 744 break; 745 case Opt_flush_merge: 746 set_opt(sbi, FLUSH_MERGE); 747 break; 748 case Opt_noflush_merge: 749 clear_opt(sbi, FLUSH_MERGE); 750 break; 751 case Opt_nobarrier: 752 set_opt(sbi, NOBARRIER); 753 break; 754 case Opt_fastboot: 755 set_opt(sbi, FASTBOOT); 756 break; 757 case Opt_extent_cache: 758 set_opt(sbi, EXTENT_CACHE); 759 break; 760 case Opt_noextent_cache: 761 clear_opt(sbi, EXTENT_CACHE); 762 break; 763 case Opt_noinline_data: 764 clear_opt(sbi, INLINE_DATA); 765 break; 766 case Opt_data_flush: 767 set_opt(sbi, DATA_FLUSH); 768 break; 769 case Opt_reserve_root: 770 if (args->from && match_int(args, &arg)) 771 return -EINVAL; 772 if (test_opt(sbi, RESERVE_ROOT)) { 773 f2fs_info(sbi, "Preserve previous reserve_root=%u", 774 F2FS_OPTION(sbi).root_reserved_blocks); 775 } else { 776 F2FS_OPTION(sbi).root_reserved_blocks = arg; 777 set_opt(sbi, RESERVE_ROOT); 778 } 779 break; 780 case Opt_resuid: 781 if (args->from && match_int(args, &arg)) 782 return -EINVAL; 783 uid = make_kuid(current_user_ns(), arg); 784 if (!uid_valid(uid)) { 785 f2fs_err(sbi, "Invalid uid value %d", arg); 786 return -EINVAL; 787 } 788 F2FS_OPTION(sbi).s_resuid = uid; 789 break; 790 case Opt_resgid: 791 if (args->from && match_int(args, &arg)) 792 return -EINVAL; 793 gid = make_kgid(current_user_ns(), arg); 794 if (!gid_valid(gid)) { 795 f2fs_err(sbi, "Invalid gid value %d", arg); 796 return -EINVAL; 797 } 798 F2FS_OPTION(sbi).s_resgid = gid; 799 break; 800 case Opt_mode: 801 name = match_strdup(&args[0]); 802 803 if (!name) 804 return -ENOMEM; 805 if (!strcmp(name, "adaptive")) { 806 if (f2fs_sb_has_blkzoned(sbi)) { 807 f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature"); 808 kfree(name); 809 return -EINVAL; 810 } 811 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 812 } else if (!strcmp(name, "lfs")) { 813 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 814 } else if (!strcmp(name, "fragment:segment")) { 815 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_SEG; 816 } else if (!strcmp(name, "fragment:block")) { 817 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_BLK; 818 } else { 819 kfree(name); 820 return -EINVAL; 821 } 822 kfree(name); 823 break; 824 case Opt_io_size_bits: 825 if (args->from && match_int(args, &arg)) 826 return -EINVAL; 827 if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_VECS)) { 828 f2fs_warn(sbi, "Not support %d, larger than %d", 829 1 << arg, BIO_MAX_VECS); 830 return -EINVAL; 831 } 832 F2FS_OPTION(sbi).write_io_size_bits = arg; 833 break; 834 #ifdef CONFIG_F2FS_FAULT_INJECTION 835 case Opt_fault_injection: 836 if (args->from && match_int(args, &arg)) 837 return -EINVAL; 838 f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE); 839 set_opt(sbi, FAULT_INJECTION); 840 break; 841 842 case Opt_fault_type: 843 if (args->from && match_int(args, &arg)) 844 return -EINVAL; 845 f2fs_build_fault_attr(sbi, 0, arg); 846 set_opt(sbi, FAULT_INJECTION); 847 break; 848 #else 849 case Opt_fault_injection: 850 f2fs_info(sbi, "fault_injection options not supported"); 851 break; 852 853 case Opt_fault_type: 854 f2fs_info(sbi, "fault_type options not supported"); 855 break; 856 #endif 857 case Opt_lazytime: 858 sb->s_flags |= SB_LAZYTIME; 859 break; 860 case Opt_nolazytime: 861 sb->s_flags &= ~SB_LAZYTIME; 862 break; 863 #ifdef CONFIG_QUOTA 864 case Opt_quota: 865 case Opt_usrquota: 866 set_opt(sbi, USRQUOTA); 867 break; 868 case Opt_grpquota: 869 set_opt(sbi, GRPQUOTA); 870 break; 871 case Opt_prjquota: 872 set_opt(sbi, PRJQUOTA); 873 break; 874 case Opt_usrjquota: 875 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 876 if (ret) 877 return ret; 878 break; 879 case Opt_grpjquota: 880 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 881 if (ret) 882 return ret; 883 break; 884 case Opt_prjjquota: 885 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 886 if (ret) 887 return ret; 888 break; 889 case Opt_offusrjquota: 890 ret = f2fs_clear_qf_name(sb, USRQUOTA); 891 if (ret) 892 return ret; 893 break; 894 case Opt_offgrpjquota: 895 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 896 if (ret) 897 return ret; 898 break; 899 case Opt_offprjjquota: 900 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 901 if (ret) 902 return ret; 903 break; 904 case Opt_jqfmt_vfsold: 905 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 906 break; 907 case Opt_jqfmt_vfsv0: 908 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 909 break; 910 case Opt_jqfmt_vfsv1: 911 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 912 break; 913 case Opt_noquota: 914 clear_opt(sbi, QUOTA); 915 clear_opt(sbi, USRQUOTA); 916 clear_opt(sbi, GRPQUOTA); 917 clear_opt(sbi, PRJQUOTA); 918 break; 919 #else 920 case Opt_quota: 921 case Opt_usrquota: 922 case Opt_grpquota: 923 case Opt_prjquota: 924 case Opt_usrjquota: 925 case Opt_grpjquota: 926 case Opt_prjjquota: 927 case Opt_offusrjquota: 928 case Opt_offgrpjquota: 929 case Opt_offprjjquota: 930 case Opt_jqfmt_vfsold: 931 case Opt_jqfmt_vfsv0: 932 case Opt_jqfmt_vfsv1: 933 case Opt_noquota: 934 f2fs_info(sbi, "quota operations not supported"); 935 break; 936 #endif 937 case Opt_whint: 938 name = match_strdup(&args[0]); 939 if (!name) 940 return -ENOMEM; 941 if (!strcmp(name, "user-based")) { 942 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER; 943 } else if (!strcmp(name, "off")) { 944 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 945 } else if (!strcmp(name, "fs-based")) { 946 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS; 947 } else { 948 kfree(name); 949 return -EINVAL; 950 } 951 kfree(name); 952 break; 953 case Opt_alloc: 954 name = match_strdup(&args[0]); 955 if (!name) 956 return -ENOMEM; 957 958 if (!strcmp(name, "default")) { 959 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 960 } else if (!strcmp(name, "reuse")) { 961 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 962 } else { 963 kfree(name); 964 return -EINVAL; 965 } 966 kfree(name); 967 break; 968 case Opt_fsync: 969 name = match_strdup(&args[0]); 970 if (!name) 971 return -ENOMEM; 972 if (!strcmp(name, "posix")) { 973 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 974 } else if (!strcmp(name, "strict")) { 975 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 976 } else if (!strcmp(name, "nobarrier")) { 977 F2FS_OPTION(sbi).fsync_mode = 978 FSYNC_MODE_NOBARRIER; 979 } else { 980 kfree(name); 981 return -EINVAL; 982 } 983 kfree(name); 984 break; 985 case Opt_test_dummy_encryption: 986 ret = f2fs_set_test_dummy_encryption(sb, p, &args[0], 987 is_remount); 988 if (ret) 989 return ret; 990 break; 991 case Opt_inlinecrypt: 992 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 993 sb->s_flags |= SB_INLINECRYPT; 994 #else 995 f2fs_info(sbi, "inline encryption not supported"); 996 #endif 997 break; 998 case Opt_checkpoint_disable_cap_perc: 999 if (args->from && match_int(args, &arg)) 1000 return -EINVAL; 1001 if (arg < 0 || arg > 100) 1002 return -EINVAL; 1003 F2FS_OPTION(sbi).unusable_cap_perc = arg; 1004 set_opt(sbi, DISABLE_CHECKPOINT); 1005 break; 1006 case Opt_checkpoint_disable_cap: 1007 if (args->from && match_int(args, &arg)) 1008 return -EINVAL; 1009 F2FS_OPTION(sbi).unusable_cap = arg; 1010 set_opt(sbi, DISABLE_CHECKPOINT); 1011 break; 1012 case Opt_checkpoint_disable: 1013 set_opt(sbi, DISABLE_CHECKPOINT); 1014 break; 1015 case Opt_checkpoint_enable: 1016 clear_opt(sbi, DISABLE_CHECKPOINT); 1017 break; 1018 case Opt_checkpoint_merge: 1019 set_opt(sbi, MERGE_CHECKPOINT); 1020 break; 1021 case Opt_nocheckpoint_merge: 1022 clear_opt(sbi, MERGE_CHECKPOINT); 1023 break; 1024 #ifdef CONFIG_F2FS_FS_COMPRESSION 1025 case Opt_compress_algorithm: 1026 if (!f2fs_sb_has_compression(sbi)) { 1027 f2fs_info(sbi, "Image doesn't support compression"); 1028 break; 1029 } 1030 name = match_strdup(&args[0]); 1031 if (!name) 1032 return -ENOMEM; 1033 if (!strcmp(name, "lzo")) { 1034 #ifdef CONFIG_F2FS_FS_LZO 1035 F2FS_OPTION(sbi).compress_level = 0; 1036 F2FS_OPTION(sbi).compress_algorithm = 1037 COMPRESS_LZO; 1038 #else 1039 f2fs_info(sbi, "kernel doesn't support lzo compression"); 1040 #endif 1041 } else if (!strncmp(name, "lz4", 3)) { 1042 #ifdef CONFIG_F2FS_FS_LZ4 1043 ret = f2fs_set_lz4hc_level(sbi, name); 1044 if (ret) { 1045 kfree(name); 1046 return -EINVAL; 1047 } 1048 F2FS_OPTION(sbi).compress_algorithm = 1049 COMPRESS_LZ4; 1050 #else 1051 f2fs_info(sbi, "kernel doesn't support lz4 compression"); 1052 #endif 1053 } else if (!strncmp(name, "zstd", 4)) { 1054 #ifdef CONFIG_F2FS_FS_ZSTD 1055 ret = f2fs_set_zstd_level(sbi, name); 1056 if (ret) { 1057 kfree(name); 1058 return -EINVAL; 1059 } 1060 F2FS_OPTION(sbi).compress_algorithm = 1061 COMPRESS_ZSTD; 1062 #else 1063 f2fs_info(sbi, "kernel doesn't support zstd compression"); 1064 #endif 1065 } else if (!strcmp(name, "lzo-rle")) { 1066 #ifdef CONFIG_F2FS_FS_LZORLE 1067 F2FS_OPTION(sbi).compress_level = 0; 1068 F2FS_OPTION(sbi).compress_algorithm = 1069 COMPRESS_LZORLE; 1070 #else 1071 f2fs_info(sbi, "kernel doesn't support lzorle compression"); 1072 #endif 1073 } else { 1074 kfree(name); 1075 return -EINVAL; 1076 } 1077 kfree(name); 1078 break; 1079 case Opt_compress_log_size: 1080 if (!f2fs_sb_has_compression(sbi)) { 1081 f2fs_info(sbi, "Image doesn't support compression"); 1082 break; 1083 } 1084 if (args->from && match_int(args, &arg)) 1085 return -EINVAL; 1086 if (arg < MIN_COMPRESS_LOG_SIZE || 1087 arg > MAX_COMPRESS_LOG_SIZE) { 1088 f2fs_err(sbi, 1089 "Compress cluster log size is out of range"); 1090 return -EINVAL; 1091 } 1092 F2FS_OPTION(sbi).compress_log_size = arg; 1093 break; 1094 case Opt_compress_extension: 1095 if (!f2fs_sb_has_compression(sbi)) { 1096 f2fs_info(sbi, "Image doesn't support compression"); 1097 break; 1098 } 1099 name = match_strdup(&args[0]); 1100 if (!name) 1101 return -ENOMEM; 1102 1103 ext = F2FS_OPTION(sbi).extensions; 1104 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 1105 1106 if (strlen(name) >= F2FS_EXTENSION_LEN || 1107 ext_cnt >= COMPRESS_EXT_NUM) { 1108 f2fs_err(sbi, 1109 "invalid extension length/number"); 1110 kfree(name); 1111 return -EINVAL; 1112 } 1113 1114 strcpy(ext[ext_cnt], name); 1115 F2FS_OPTION(sbi).compress_ext_cnt++; 1116 kfree(name); 1117 break; 1118 case Opt_nocompress_extension: 1119 if (!f2fs_sb_has_compression(sbi)) { 1120 f2fs_info(sbi, "Image doesn't support compression"); 1121 break; 1122 } 1123 name = match_strdup(&args[0]); 1124 if (!name) 1125 return -ENOMEM; 1126 1127 noext = F2FS_OPTION(sbi).noextensions; 1128 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 1129 1130 if (strlen(name) >= F2FS_EXTENSION_LEN || 1131 noext_cnt >= COMPRESS_EXT_NUM) { 1132 f2fs_err(sbi, 1133 "invalid extension length/number"); 1134 kfree(name); 1135 return -EINVAL; 1136 } 1137 1138 strcpy(noext[noext_cnt], name); 1139 F2FS_OPTION(sbi).nocompress_ext_cnt++; 1140 kfree(name); 1141 break; 1142 case Opt_compress_chksum: 1143 F2FS_OPTION(sbi).compress_chksum = true; 1144 break; 1145 case Opt_compress_mode: 1146 name = match_strdup(&args[0]); 1147 if (!name) 1148 return -ENOMEM; 1149 if (!strcmp(name, "fs")) { 1150 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 1151 } else if (!strcmp(name, "user")) { 1152 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER; 1153 } else { 1154 kfree(name); 1155 return -EINVAL; 1156 } 1157 kfree(name); 1158 break; 1159 case Opt_compress_cache: 1160 set_opt(sbi, COMPRESS_CACHE); 1161 break; 1162 #else 1163 case Opt_compress_algorithm: 1164 case Opt_compress_log_size: 1165 case Opt_compress_extension: 1166 case Opt_nocompress_extension: 1167 case Opt_compress_chksum: 1168 case Opt_compress_mode: 1169 case Opt_compress_cache: 1170 f2fs_info(sbi, "compression options not supported"); 1171 break; 1172 #endif 1173 case Opt_atgc: 1174 set_opt(sbi, ATGC); 1175 break; 1176 case Opt_gc_merge: 1177 set_opt(sbi, GC_MERGE); 1178 break; 1179 case Opt_nogc_merge: 1180 clear_opt(sbi, GC_MERGE); 1181 break; 1182 case Opt_discard_unit: 1183 name = match_strdup(&args[0]); 1184 if (!name) 1185 return -ENOMEM; 1186 if (!strcmp(name, "block")) { 1187 F2FS_OPTION(sbi).discard_unit = 1188 DISCARD_UNIT_BLOCK; 1189 } else if (!strcmp(name, "segment")) { 1190 F2FS_OPTION(sbi).discard_unit = 1191 DISCARD_UNIT_SEGMENT; 1192 } else if (!strcmp(name, "section")) { 1193 F2FS_OPTION(sbi).discard_unit = 1194 DISCARD_UNIT_SECTION; 1195 } else { 1196 kfree(name); 1197 return -EINVAL; 1198 } 1199 kfree(name); 1200 break; 1201 default: 1202 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value", 1203 p); 1204 return -EINVAL; 1205 } 1206 } 1207 default_check: 1208 #ifdef CONFIG_QUOTA 1209 if (f2fs_check_quota_options(sbi)) 1210 return -EINVAL; 1211 #else 1212 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 1213 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1214 return -EINVAL; 1215 } 1216 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 1217 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1218 return -EINVAL; 1219 } 1220 #endif 1221 #ifndef CONFIG_UNICODE 1222 if (f2fs_sb_has_casefold(sbi)) { 1223 f2fs_err(sbi, 1224 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 1225 return -EINVAL; 1226 } 1227 #endif 1228 /* 1229 * The BLKZONED feature indicates that the drive was formatted with 1230 * zone alignment optimization. This is optional for host-aware 1231 * devices, but mandatory for host-managed zoned block devices. 1232 */ 1233 #ifndef CONFIG_BLK_DEV_ZONED 1234 if (f2fs_sb_has_blkzoned(sbi)) { 1235 f2fs_err(sbi, "Zoned block device support is not enabled"); 1236 return -EINVAL; 1237 } 1238 #endif 1239 if (f2fs_sb_has_blkzoned(sbi)) { 1240 if (F2FS_OPTION(sbi).discard_unit != 1241 DISCARD_UNIT_SECTION) { 1242 f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default"); 1243 F2FS_OPTION(sbi).discard_unit = 1244 DISCARD_UNIT_SECTION; 1245 } 1246 } 1247 1248 #ifdef CONFIG_F2FS_FS_COMPRESSION 1249 if (f2fs_test_compress_extension(sbi)) { 1250 f2fs_err(sbi, "invalid compress or nocompress extension"); 1251 return -EINVAL; 1252 } 1253 #endif 1254 1255 if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) { 1256 f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO", 1257 F2FS_IO_SIZE_KB(sbi)); 1258 return -EINVAL; 1259 } 1260 1261 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 1262 int min_size, max_size; 1263 1264 if (!f2fs_sb_has_extra_attr(sbi) || 1265 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 1266 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off"); 1267 return -EINVAL; 1268 } 1269 if (!test_opt(sbi, INLINE_XATTR)) { 1270 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option"); 1271 return -EINVAL; 1272 } 1273 1274 min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32); 1275 max_size = MAX_INLINE_XATTR_SIZE; 1276 1277 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 1278 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 1279 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d", 1280 min_size, max_size); 1281 return -EINVAL; 1282 } 1283 } 1284 1285 if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) { 1286 f2fs_err(sbi, "LFS not compatible with checkpoint=disable"); 1287 return -EINVAL; 1288 } 1289 1290 /* Not pass down write hints if the number of active logs is lesser 1291 * than NR_CURSEG_PERSIST_TYPE. 1292 */ 1293 if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_PERSIST_TYPE) 1294 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 1295 1296 if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) { 1297 f2fs_err(sbi, "Allow to mount readonly mode only"); 1298 return -EROFS; 1299 } 1300 return 0; 1301 } 1302 1303 static struct inode *f2fs_alloc_inode(struct super_block *sb) 1304 { 1305 struct f2fs_inode_info *fi; 1306 1307 fi = f2fs_kmem_cache_alloc(f2fs_inode_cachep, 1308 GFP_F2FS_ZERO, false, F2FS_SB(sb)); 1309 if (!fi) 1310 return NULL; 1311 1312 init_once((void *) fi); 1313 1314 /* Initialize f2fs-specific inode info */ 1315 atomic_set(&fi->dirty_pages, 0); 1316 atomic_set(&fi->i_compr_blocks, 0); 1317 init_rwsem(&fi->i_sem); 1318 spin_lock_init(&fi->i_size_lock); 1319 INIT_LIST_HEAD(&fi->dirty_list); 1320 INIT_LIST_HEAD(&fi->gdirty_list); 1321 INIT_LIST_HEAD(&fi->inmem_ilist); 1322 INIT_LIST_HEAD(&fi->inmem_pages); 1323 mutex_init(&fi->inmem_lock); 1324 init_rwsem(&fi->i_gc_rwsem[READ]); 1325 init_rwsem(&fi->i_gc_rwsem[WRITE]); 1326 init_rwsem(&fi->i_xattr_sem); 1327 1328 /* Will be used by directory only */ 1329 fi->i_dir_level = F2FS_SB(sb)->dir_level; 1330 1331 return &fi->vfs_inode; 1332 } 1333 1334 static int f2fs_drop_inode(struct inode *inode) 1335 { 1336 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1337 int ret; 1338 1339 /* 1340 * during filesystem shutdown, if checkpoint is disabled, 1341 * drop useless meta/node dirty pages. 1342 */ 1343 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1344 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1345 inode->i_ino == F2FS_META_INO(sbi)) { 1346 trace_f2fs_drop_inode(inode, 1); 1347 return 1; 1348 } 1349 } 1350 1351 /* 1352 * This is to avoid a deadlock condition like below. 1353 * writeback_single_inode(inode) 1354 * - f2fs_write_data_page 1355 * - f2fs_gc -> iput -> evict 1356 * - inode_wait_for_writeback(inode) 1357 */ 1358 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 1359 if (!inode->i_nlink && !is_bad_inode(inode)) { 1360 /* to avoid evict_inode call simultaneously */ 1361 atomic_inc(&inode->i_count); 1362 spin_unlock(&inode->i_lock); 1363 1364 /* some remained atomic pages should discarded */ 1365 if (f2fs_is_atomic_file(inode)) 1366 f2fs_drop_inmem_pages(inode); 1367 1368 /* should remain fi->extent_tree for writepage */ 1369 f2fs_destroy_extent_node(inode); 1370 1371 sb_start_intwrite(inode->i_sb); 1372 f2fs_i_size_write(inode, 0); 1373 1374 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 1375 inode, NULL, 0, DATA); 1376 truncate_inode_pages_final(inode->i_mapping); 1377 1378 if (F2FS_HAS_BLOCKS(inode)) 1379 f2fs_truncate(inode); 1380 1381 sb_end_intwrite(inode->i_sb); 1382 1383 spin_lock(&inode->i_lock); 1384 atomic_dec(&inode->i_count); 1385 } 1386 trace_f2fs_drop_inode(inode, 0); 1387 return 0; 1388 } 1389 ret = generic_drop_inode(inode); 1390 if (!ret) 1391 ret = fscrypt_drop_inode(inode); 1392 trace_f2fs_drop_inode(inode, ret); 1393 return ret; 1394 } 1395 1396 int f2fs_inode_dirtied(struct inode *inode, bool sync) 1397 { 1398 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1399 int ret = 0; 1400 1401 spin_lock(&sbi->inode_lock[DIRTY_META]); 1402 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1403 ret = 1; 1404 } else { 1405 set_inode_flag(inode, FI_DIRTY_INODE); 1406 stat_inc_dirty_inode(sbi, DIRTY_META); 1407 } 1408 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 1409 list_add_tail(&F2FS_I(inode)->gdirty_list, 1410 &sbi->inode_list[DIRTY_META]); 1411 inc_page_count(sbi, F2FS_DIRTY_IMETA); 1412 } 1413 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1414 return ret; 1415 } 1416 1417 void f2fs_inode_synced(struct inode *inode) 1418 { 1419 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1420 1421 spin_lock(&sbi->inode_lock[DIRTY_META]); 1422 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1423 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1424 return; 1425 } 1426 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 1427 list_del_init(&F2FS_I(inode)->gdirty_list); 1428 dec_page_count(sbi, F2FS_DIRTY_IMETA); 1429 } 1430 clear_inode_flag(inode, FI_DIRTY_INODE); 1431 clear_inode_flag(inode, FI_AUTO_RECOVER); 1432 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 1433 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1434 } 1435 1436 /* 1437 * f2fs_dirty_inode() is called from __mark_inode_dirty() 1438 * 1439 * We should call set_dirty_inode to write the dirty inode through write_inode. 1440 */ 1441 static void f2fs_dirty_inode(struct inode *inode, int flags) 1442 { 1443 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1444 1445 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1446 inode->i_ino == F2FS_META_INO(sbi)) 1447 return; 1448 1449 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1450 clear_inode_flag(inode, FI_AUTO_RECOVER); 1451 1452 f2fs_inode_dirtied(inode, false); 1453 } 1454 1455 static void f2fs_free_inode(struct inode *inode) 1456 { 1457 fscrypt_free_inode(inode); 1458 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1459 } 1460 1461 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1462 { 1463 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1464 percpu_counter_destroy(&sbi->total_valid_inode_count); 1465 } 1466 1467 static void destroy_device_list(struct f2fs_sb_info *sbi) 1468 { 1469 int i; 1470 1471 for (i = 0; i < sbi->s_ndevs; i++) { 1472 blkdev_put(FDEV(i).bdev, FMODE_EXCL); 1473 #ifdef CONFIG_BLK_DEV_ZONED 1474 kvfree(FDEV(i).blkz_seq); 1475 kfree(FDEV(i).zone_capacity_blocks); 1476 #endif 1477 } 1478 kvfree(sbi->devs); 1479 } 1480 1481 static void f2fs_put_super(struct super_block *sb) 1482 { 1483 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1484 int i; 1485 bool dropped; 1486 1487 /* unregister procfs/sysfs entries in advance to avoid race case */ 1488 f2fs_unregister_sysfs(sbi); 1489 1490 f2fs_quota_off_umount(sb); 1491 1492 /* prevent remaining shrinker jobs */ 1493 mutex_lock(&sbi->umount_mutex); 1494 1495 /* 1496 * flush all issued checkpoints and stop checkpoint issue thread. 1497 * after then, all checkpoints should be done by each process context. 1498 */ 1499 f2fs_stop_ckpt_thread(sbi); 1500 1501 /* 1502 * We don't need to do checkpoint when superblock is clean. 1503 * But, the previous checkpoint was not done by umount, it needs to do 1504 * clean checkpoint again. 1505 */ 1506 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1507 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1508 struct cp_control cpc = { 1509 .reason = CP_UMOUNT, 1510 }; 1511 f2fs_write_checkpoint(sbi, &cpc); 1512 } 1513 1514 /* be sure to wait for any on-going discard commands */ 1515 dropped = f2fs_issue_discard_timeout(sbi); 1516 1517 if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) && 1518 !sbi->discard_blks && !dropped) { 1519 struct cp_control cpc = { 1520 .reason = CP_UMOUNT | CP_TRIMMED, 1521 }; 1522 f2fs_write_checkpoint(sbi, &cpc); 1523 } 1524 1525 /* 1526 * normally superblock is clean, so we need to release this. 1527 * In addition, EIO will skip do checkpoint, we need this as well. 1528 */ 1529 f2fs_release_ino_entry(sbi, true); 1530 1531 f2fs_leave_shrinker(sbi); 1532 mutex_unlock(&sbi->umount_mutex); 1533 1534 /* our cp_error case, we can wait for any writeback page */ 1535 f2fs_flush_merged_writes(sbi); 1536 1537 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1538 1539 f2fs_bug_on(sbi, sbi->fsync_node_num); 1540 1541 f2fs_destroy_compress_inode(sbi); 1542 1543 iput(sbi->node_inode); 1544 sbi->node_inode = NULL; 1545 1546 iput(sbi->meta_inode); 1547 sbi->meta_inode = NULL; 1548 1549 /* 1550 * iput() can update stat information, if f2fs_write_checkpoint() 1551 * above failed with error. 1552 */ 1553 f2fs_destroy_stats(sbi); 1554 1555 /* destroy f2fs internal modules */ 1556 f2fs_destroy_node_manager(sbi); 1557 f2fs_destroy_segment_manager(sbi); 1558 1559 f2fs_destroy_post_read_wq(sbi); 1560 1561 kvfree(sbi->ckpt); 1562 1563 sb->s_fs_info = NULL; 1564 if (sbi->s_chksum_driver) 1565 crypto_free_shash(sbi->s_chksum_driver); 1566 kfree(sbi->raw_super); 1567 1568 destroy_device_list(sbi); 1569 f2fs_destroy_page_array_cache(sbi); 1570 f2fs_destroy_xattr_caches(sbi); 1571 mempool_destroy(sbi->write_io_dummy); 1572 #ifdef CONFIG_QUOTA 1573 for (i = 0; i < MAXQUOTAS; i++) 1574 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 1575 #endif 1576 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 1577 destroy_percpu_info(sbi); 1578 f2fs_destroy_iostat(sbi); 1579 for (i = 0; i < NR_PAGE_TYPE; i++) 1580 kvfree(sbi->write_io[i]); 1581 #ifdef CONFIG_UNICODE 1582 utf8_unload(sb->s_encoding); 1583 #endif 1584 kfree(sbi); 1585 } 1586 1587 int f2fs_sync_fs(struct super_block *sb, int sync) 1588 { 1589 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1590 int err = 0; 1591 1592 if (unlikely(f2fs_cp_error(sbi))) 1593 return 0; 1594 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1595 return 0; 1596 1597 trace_f2fs_sync_fs(sb, sync); 1598 1599 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1600 return -EAGAIN; 1601 1602 if (sync) 1603 err = f2fs_issue_checkpoint(sbi); 1604 1605 return err; 1606 } 1607 1608 static int f2fs_freeze(struct super_block *sb) 1609 { 1610 if (f2fs_readonly(sb)) 1611 return 0; 1612 1613 /* IO error happened before */ 1614 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1615 return -EIO; 1616 1617 /* must be clean, since sync_filesystem() was already called */ 1618 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1619 return -EINVAL; 1620 1621 /* ensure no checkpoint required */ 1622 if (!llist_empty(&F2FS_SB(sb)->cprc_info.issue_list)) 1623 return -EINVAL; 1624 return 0; 1625 } 1626 1627 static int f2fs_unfreeze(struct super_block *sb) 1628 { 1629 return 0; 1630 } 1631 1632 #ifdef CONFIG_QUOTA 1633 static int f2fs_statfs_project(struct super_block *sb, 1634 kprojid_t projid, struct kstatfs *buf) 1635 { 1636 struct kqid qid; 1637 struct dquot *dquot; 1638 u64 limit; 1639 u64 curblock; 1640 1641 qid = make_kqid_projid(projid); 1642 dquot = dqget(sb, qid); 1643 if (IS_ERR(dquot)) 1644 return PTR_ERR(dquot); 1645 spin_lock(&dquot->dq_dqb_lock); 1646 1647 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 1648 dquot->dq_dqb.dqb_bhardlimit); 1649 if (limit) 1650 limit >>= sb->s_blocksize_bits; 1651 1652 if (limit && buf->f_blocks > limit) { 1653 curblock = (dquot->dq_dqb.dqb_curspace + 1654 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 1655 buf->f_blocks = limit; 1656 buf->f_bfree = buf->f_bavail = 1657 (buf->f_blocks > curblock) ? 1658 (buf->f_blocks - curblock) : 0; 1659 } 1660 1661 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 1662 dquot->dq_dqb.dqb_ihardlimit); 1663 1664 if (limit && buf->f_files > limit) { 1665 buf->f_files = limit; 1666 buf->f_ffree = 1667 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1668 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1669 } 1670 1671 spin_unlock(&dquot->dq_dqb_lock); 1672 dqput(dquot); 1673 return 0; 1674 } 1675 #endif 1676 1677 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1678 { 1679 struct super_block *sb = dentry->d_sb; 1680 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1681 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1682 block_t total_count, user_block_count, start_count; 1683 u64 avail_node_count; 1684 1685 total_count = le64_to_cpu(sbi->raw_super->block_count); 1686 user_block_count = sbi->user_block_count; 1687 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1688 buf->f_type = F2FS_SUPER_MAGIC; 1689 buf->f_bsize = sbi->blocksize; 1690 1691 buf->f_blocks = total_count - start_count; 1692 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1693 sbi->current_reserved_blocks; 1694 1695 spin_lock(&sbi->stat_lock); 1696 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1697 buf->f_bfree = 0; 1698 else 1699 buf->f_bfree -= sbi->unusable_block_count; 1700 spin_unlock(&sbi->stat_lock); 1701 1702 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1703 buf->f_bavail = buf->f_bfree - 1704 F2FS_OPTION(sbi).root_reserved_blocks; 1705 else 1706 buf->f_bavail = 0; 1707 1708 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 1709 1710 if (avail_node_count > user_block_count) { 1711 buf->f_files = user_block_count; 1712 buf->f_ffree = buf->f_bavail; 1713 } else { 1714 buf->f_files = avail_node_count; 1715 buf->f_ffree = min(avail_node_count - valid_node_count(sbi), 1716 buf->f_bavail); 1717 } 1718 1719 buf->f_namelen = F2FS_NAME_LEN; 1720 buf->f_fsid = u64_to_fsid(id); 1721 1722 #ifdef CONFIG_QUOTA 1723 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1724 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1725 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1726 } 1727 #endif 1728 return 0; 1729 } 1730 1731 static inline void f2fs_show_quota_options(struct seq_file *seq, 1732 struct super_block *sb) 1733 { 1734 #ifdef CONFIG_QUOTA 1735 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1736 1737 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1738 char *fmtname = ""; 1739 1740 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1741 case QFMT_VFS_OLD: 1742 fmtname = "vfsold"; 1743 break; 1744 case QFMT_VFS_V0: 1745 fmtname = "vfsv0"; 1746 break; 1747 case QFMT_VFS_V1: 1748 fmtname = "vfsv1"; 1749 break; 1750 } 1751 seq_printf(seq, ",jqfmt=%s", fmtname); 1752 } 1753 1754 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1755 seq_show_option(seq, "usrjquota", 1756 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1757 1758 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1759 seq_show_option(seq, "grpjquota", 1760 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1761 1762 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1763 seq_show_option(seq, "prjjquota", 1764 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1765 #endif 1766 } 1767 1768 #ifdef CONFIG_F2FS_FS_COMPRESSION 1769 static inline void f2fs_show_compress_options(struct seq_file *seq, 1770 struct super_block *sb) 1771 { 1772 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1773 char *algtype = ""; 1774 int i; 1775 1776 if (!f2fs_sb_has_compression(sbi)) 1777 return; 1778 1779 switch (F2FS_OPTION(sbi).compress_algorithm) { 1780 case COMPRESS_LZO: 1781 algtype = "lzo"; 1782 break; 1783 case COMPRESS_LZ4: 1784 algtype = "lz4"; 1785 break; 1786 case COMPRESS_ZSTD: 1787 algtype = "zstd"; 1788 break; 1789 case COMPRESS_LZORLE: 1790 algtype = "lzo-rle"; 1791 break; 1792 } 1793 seq_printf(seq, ",compress_algorithm=%s", algtype); 1794 1795 if (F2FS_OPTION(sbi).compress_level) 1796 seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level); 1797 1798 seq_printf(seq, ",compress_log_size=%u", 1799 F2FS_OPTION(sbi).compress_log_size); 1800 1801 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) { 1802 seq_printf(seq, ",compress_extension=%s", 1803 F2FS_OPTION(sbi).extensions[i]); 1804 } 1805 1806 for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) { 1807 seq_printf(seq, ",nocompress_extension=%s", 1808 F2FS_OPTION(sbi).noextensions[i]); 1809 } 1810 1811 if (F2FS_OPTION(sbi).compress_chksum) 1812 seq_puts(seq, ",compress_chksum"); 1813 1814 if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS) 1815 seq_printf(seq, ",compress_mode=%s", "fs"); 1816 else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER) 1817 seq_printf(seq, ",compress_mode=%s", "user"); 1818 1819 if (test_opt(sbi, COMPRESS_CACHE)) 1820 seq_puts(seq, ",compress_cache"); 1821 } 1822 #endif 1823 1824 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1825 { 1826 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1827 1828 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC) 1829 seq_printf(seq, ",background_gc=%s", "sync"); 1830 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON) 1831 seq_printf(seq, ",background_gc=%s", "on"); 1832 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) 1833 seq_printf(seq, ",background_gc=%s", "off"); 1834 1835 if (test_opt(sbi, GC_MERGE)) 1836 seq_puts(seq, ",gc_merge"); 1837 1838 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1839 seq_puts(seq, ",disable_roll_forward"); 1840 if (test_opt(sbi, NORECOVERY)) 1841 seq_puts(seq, ",norecovery"); 1842 if (test_opt(sbi, DISCARD)) 1843 seq_puts(seq, ",discard"); 1844 else 1845 seq_puts(seq, ",nodiscard"); 1846 if (test_opt(sbi, NOHEAP)) 1847 seq_puts(seq, ",no_heap"); 1848 else 1849 seq_puts(seq, ",heap"); 1850 #ifdef CONFIG_F2FS_FS_XATTR 1851 if (test_opt(sbi, XATTR_USER)) 1852 seq_puts(seq, ",user_xattr"); 1853 else 1854 seq_puts(seq, ",nouser_xattr"); 1855 if (test_opt(sbi, INLINE_XATTR)) 1856 seq_puts(seq, ",inline_xattr"); 1857 else 1858 seq_puts(seq, ",noinline_xattr"); 1859 if (test_opt(sbi, INLINE_XATTR_SIZE)) 1860 seq_printf(seq, ",inline_xattr_size=%u", 1861 F2FS_OPTION(sbi).inline_xattr_size); 1862 #endif 1863 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1864 if (test_opt(sbi, POSIX_ACL)) 1865 seq_puts(seq, ",acl"); 1866 else 1867 seq_puts(seq, ",noacl"); 1868 #endif 1869 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 1870 seq_puts(seq, ",disable_ext_identify"); 1871 if (test_opt(sbi, INLINE_DATA)) 1872 seq_puts(seq, ",inline_data"); 1873 else 1874 seq_puts(seq, ",noinline_data"); 1875 if (test_opt(sbi, INLINE_DENTRY)) 1876 seq_puts(seq, ",inline_dentry"); 1877 else 1878 seq_puts(seq, ",noinline_dentry"); 1879 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 1880 seq_puts(seq, ",flush_merge"); 1881 if (test_opt(sbi, NOBARRIER)) 1882 seq_puts(seq, ",nobarrier"); 1883 if (test_opt(sbi, FASTBOOT)) 1884 seq_puts(seq, ",fastboot"); 1885 if (test_opt(sbi, EXTENT_CACHE)) 1886 seq_puts(seq, ",extent_cache"); 1887 else 1888 seq_puts(seq, ",noextent_cache"); 1889 if (test_opt(sbi, DATA_FLUSH)) 1890 seq_puts(seq, ",data_flush"); 1891 1892 seq_puts(seq, ",mode="); 1893 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE) 1894 seq_puts(seq, "adaptive"); 1895 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS) 1896 seq_puts(seq, "lfs"); 1897 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG) 1898 seq_puts(seq, "fragment:segment"); 1899 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 1900 seq_puts(seq, "fragment:block"); 1901 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 1902 if (test_opt(sbi, RESERVE_ROOT)) 1903 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 1904 F2FS_OPTION(sbi).root_reserved_blocks, 1905 from_kuid_munged(&init_user_ns, 1906 F2FS_OPTION(sbi).s_resuid), 1907 from_kgid_munged(&init_user_ns, 1908 F2FS_OPTION(sbi).s_resgid)); 1909 if (F2FS_IO_SIZE_BITS(sbi)) 1910 seq_printf(seq, ",io_bits=%u", 1911 F2FS_OPTION(sbi).write_io_size_bits); 1912 #ifdef CONFIG_F2FS_FAULT_INJECTION 1913 if (test_opt(sbi, FAULT_INJECTION)) { 1914 seq_printf(seq, ",fault_injection=%u", 1915 F2FS_OPTION(sbi).fault_info.inject_rate); 1916 seq_printf(seq, ",fault_type=%u", 1917 F2FS_OPTION(sbi).fault_info.inject_type); 1918 } 1919 #endif 1920 #ifdef CONFIG_QUOTA 1921 if (test_opt(sbi, QUOTA)) 1922 seq_puts(seq, ",quota"); 1923 if (test_opt(sbi, USRQUOTA)) 1924 seq_puts(seq, ",usrquota"); 1925 if (test_opt(sbi, GRPQUOTA)) 1926 seq_puts(seq, ",grpquota"); 1927 if (test_opt(sbi, PRJQUOTA)) 1928 seq_puts(seq, ",prjquota"); 1929 #endif 1930 f2fs_show_quota_options(seq, sbi->sb); 1931 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) 1932 seq_printf(seq, ",whint_mode=%s", "user-based"); 1933 else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) 1934 seq_printf(seq, ",whint_mode=%s", "fs-based"); 1935 1936 fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb); 1937 1938 if (sbi->sb->s_flags & SB_INLINECRYPT) 1939 seq_puts(seq, ",inlinecrypt"); 1940 1941 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 1942 seq_printf(seq, ",alloc_mode=%s", "default"); 1943 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 1944 seq_printf(seq, ",alloc_mode=%s", "reuse"); 1945 1946 if (test_opt(sbi, DISABLE_CHECKPOINT)) 1947 seq_printf(seq, ",checkpoint=disable:%u", 1948 F2FS_OPTION(sbi).unusable_cap); 1949 if (test_opt(sbi, MERGE_CHECKPOINT)) 1950 seq_puts(seq, ",checkpoint_merge"); 1951 else 1952 seq_puts(seq, ",nocheckpoint_merge"); 1953 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 1954 seq_printf(seq, ",fsync_mode=%s", "posix"); 1955 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 1956 seq_printf(seq, ",fsync_mode=%s", "strict"); 1957 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 1958 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 1959 1960 #ifdef CONFIG_F2FS_FS_COMPRESSION 1961 f2fs_show_compress_options(seq, sbi->sb); 1962 #endif 1963 1964 if (test_opt(sbi, ATGC)) 1965 seq_puts(seq, ",atgc"); 1966 1967 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK) 1968 seq_printf(seq, ",discard_unit=%s", "block"); 1969 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 1970 seq_printf(seq, ",discard_unit=%s", "segment"); 1971 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 1972 seq_printf(seq, ",discard_unit=%s", "section"); 1973 1974 return 0; 1975 } 1976 1977 static void default_options(struct f2fs_sb_info *sbi) 1978 { 1979 /* init some FS parameters */ 1980 if (f2fs_sb_has_readonly(sbi)) 1981 F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE; 1982 else 1983 F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE; 1984 1985 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 1986 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 1987 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 1988 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1989 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 1990 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 1991 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4; 1992 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE; 1993 F2FS_OPTION(sbi).compress_ext_cnt = 0; 1994 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 1995 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 1996 1997 sbi->sb->s_flags &= ~SB_INLINECRYPT; 1998 1999 set_opt(sbi, INLINE_XATTR); 2000 set_opt(sbi, INLINE_DATA); 2001 set_opt(sbi, INLINE_DENTRY); 2002 set_opt(sbi, EXTENT_CACHE); 2003 set_opt(sbi, NOHEAP); 2004 clear_opt(sbi, DISABLE_CHECKPOINT); 2005 set_opt(sbi, MERGE_CHECKPOINT); 2006 F2FS_OPTION(sbi).unusable_cap = 0; 2007 sbi->sb->s_flags |= SB_LAZYTIME; 2008 set_opt(sbi, FLUSH_MERGE); 2009 if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) 2010 set_opt(sbi, DISCARD); 2011 if (f2fs_sb_has_blkzoned(sbi)) { 2012 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 2013 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION; 2014 } else { 2015 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 2016 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK; 2017 } 2018 2019 #ifdef CONFIG_F2FS_FS_XATTR 2020 set_opt(sbi, XATTR_USER); 2021 #endif 2022 #ifdef CONFIG_F2FS_FS_POSIX_ACL 2023 set_opt(sbi, POSIX_ACL); 2024 #endif 2025 2026 f2fs_build_fault_attr(sbi, 0, 0); 2027 } 2028 2029 #ifdef CONFIG_QUOTA 2030 static int f2fs_enable_quotas(struct super_block *sb); 2031 #endif 2032 2033 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 2034 { 2035 unsigned int s_flags = sbi->sb->s_flags; 2036 struct cp_control cpc; 2037 int err = 0; 2038 int ret; 2039 block_t unusable; 2040 2041 if (s_flags & SB_RDONLY) { 2042 f2fs_err(sbi, "checkpoint=disable on readonly fs"); 2043 return -EINVAL; 2044 } 2045 sbi->sb->s_flags |= SB_ACTIVE; 2046 2047 f2fs_update_time(sbi, DISABLE_TIME); 2048 2049 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 2050 down_write(&sbi->gc_lock); 2051 err = f2fs_gc(sbi, true, false, false, NULL_SEGNO); 2052 if (err == -ENODATA) { 2053 err = 0; 2054 break; 2055 } 2056 if (err && err != -EAGAIN) 2057 break; 2058 } 2059 2060 ret = sync_filesystem(sbi->sb); 2061 if (ret || err) { 2062 err = ret ? ret : err; 2063 goto restore_flag; 2064 } 2065 2066 unusable = f2fs_get_unusable_blocks(sbi); 2067 if (f2fs_disable_cp_again(sbi, unusable)) { 2068 err = -EAGAIN; 2069 goto restore_flag; 2070 } 2071 2072 down_write(&sbi->gc_lock); 2073 cpc.reason = CP_PAUSE; 2074 set_sbi_flag(sbi, SBI_CP_DISABLED); 2075 err = f2fs_write_checkpoint(sbi, &cpc); 2076 if (err) 2077 goto out_unlock; 2078 2079 spin_lock(&sbi->stat_lock); 2080 sbi->unusable_block_count = unusable; 2081 spin_unlock(&sbi->stat_lock); 2082 2083 out_unlock: 2084 up_write(&sbi->gc_lock); 2085 restore_flag: 2086 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2087 return err; 2088 } 2089 2090 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 2091 { 2092 int retry = DEFAULT_RETRY_IO_COUNT; 2093 2094 /* we should flush all the data to keep data consistency */ 2095 do { 2096 sync_inodes_sb(sbi->sb); 2097 cond_resched(); 2098 congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT); 2099 } while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--); 2100 2101 if (unlikely(retry < 0)) 2102 f2fs_warn(sbi, "checkpoint=enable has some unwritten data."); 2103 2104 down_write(&sbi->gc_lock); 2105 f2fs_dirty_to_prefree(sbi); 2106 2107 clear_sbi_flag(sbi, SBI_CP_DISABLED); 2108 set_sbi_flag(sbi, SBI_IS_DIRTY); 2109 up_write(&sbi->gc_lock); 2110 2111 f2fs_sync_fs(sbi->sb, 1); 2112 } 2113 2114 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 2115 { 2116 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2117 struct f2fs_mount_info org_mount_opt; 2118 unsigned long old_sb_flags; 2119 int err; 2120 bool need_restart_gc = false, need_stop_gc = false; 2121 bool need_restart_ckpt = false, need_stop_ckpt = false; 2122 bool need_restart_flush = false, need_stop_flush = false; 2123 bool need_restart_discard = false, need_stop_discard = false; 2124 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 2125 bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT); 2126 bool no_io_align = !F2FS_IO_ALIGNED(sbi); 2127 bool no_atgc = !test_opt(sbi, ATGC); 2128 bool no_discard = !test_opt(sbi, DISCARD); 2129 bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE); 2130 bool block_unit_discard = f2fs_block_unit_discard(sbi); 2131 struct discard_cmd_control *dcc; 2132 #ifdef CONFIG_QUOTA 2133 int i, j; 2134 #endif 2135 2136 /* 2137 * Save the old mount options in case we 2138 * need to restore them. 2139 */ 2140 org_mount_opt = sbi->mount_opt; 2141 old_sb_flags = sb->s_flags; 2142 2143 #ifdef CONFIG_QUOTA 2144 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 2145 for (i = 0; i < MAXQUOTAS; i++) { 2146 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2147 org_mount_opt.s_qf_names[i] = 2148 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 2149 GFP_KERNEL); 2150 if (!org_mount_opt.s_qf_names[i]) { 2151 for (j = 0; j < i; j++) 2152 kfree(org_mount_opt.s_qf_names[j]); 2153 return -ENOMEM; 2154 } 2155 } else { 2156 org_mount_opt.s_qf_names[i] = NULL; 2157 } 2158 } 2159 #endif 2160 2161 /* recover superblocks we couldn't write due to previous RO mount */ 2162 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 2163 err = f2fs_commit_super(sbi, false); 2164 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d", 2165 err); 2166 if (!err) 2167 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2168 } 2169 2170 default_options(sbi); 2171 2172 /* parse mount options */ 2173 err = parse_options(sb, data, true); 2174 if (err) 2175 goto restore_opts; 2176 2177 /* 2178 * Previous and new state of filesystem is RO, 2179 * so skip checking GC and FLUSH_MERGE conditions. 2180 */ 2181 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 2182 goto skip; 2183 2184 if (f2fs_sb_has_readonly(sbi) && !(*flags & SB_RDONLY)) { 2185 err = -EROFS; 2186 goto restore_opts; 2187 } 2188 2189 #ifdef CONFIG_QUOTA 2190 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 2191 err = dquot_suspend(sb, -1); 2192 if (err < 0) 2193 goto restore_opts; 2194 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 2195 /* dquot_resume needs RW */ 2196 sb->s_flags &= ~SB_RDONLY; 2197 if (sb_any_quota_suspended(sb)) { 2198 dquot_resume(sb, -1); 2199 } else if (f2fs_sb_has_quota_ino(sbi)) { 2200 err = f2fs_enable_quotas(sb); 2201 if (err) 2202 goto restore_opts; 2203 } 2204 } 2205 #endif 2206 /* disallow enable atgc dynamically */ 2207 if (no_atgc == !!test_opt(sbi, ATGC)) { 2208 err = -EINVAL; 2209 f2fs_warn(sbi, "switch atgc option is not allowed"); 2210 goto restore_opts; 2211 } 2212 2213 /* disallow enable/disable extent_cache dynamically */ 2214 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 2215 err = -EINVAL; 2216 f2fs_warn(sbi, "switch extent_cache option is not allowed"); 2217 goto restore_opts; 2218 } 2219 2220 if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) { 2221 err = -EINVAL; 2222 f2fs_warn(sbi, "switch io_bits option is not allowed"); 2223 goto restore_opts; 2224 } 2225 2226 if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) { 2227 err = -EINVAL; 2228 f2fs_warn(sbi, "switch compress_cache option is not allowed"); 2229 goto restore_opts; 2230 } 2231 2232 if (block_unit_discard != f2fs_block_unit_discard(sbi)) { 2233 err = -EINVAL; 2234 f2fs_warn(sbi, "switch discard_unit option is not allowed"); 2235 goto restore_opts; 2236 } 2237 2238 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 2239 err = -EINVAL; 2240 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only"); 2241 goto restore_opts; 2242 } 2243 2244 /* 2245 * We stop the GC thread if FS is mounted as RO 2246 * or if background_gc = off is passed in mount 2247 * option. Also sync the filesystem. 2248 */ 2249 if ((*flags & SB_RDONLY) || 2250 (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF && 2251 !test_opt(sbi, GC_MERGE))) { 2252 if (sbi->gc_thread) { 2253 f2fs_stop_gc_thread(sbi); 2254 need_restart_gc = true; 2255 } 2256 } else if (!sbi->gc_thread) { 2257 err = f2fs_start_gc_thread(sbi); 2258 if (err) 2259 goto restore_opts; 2260 need_stop_gc = true; 2261 } 2262 2263 if (*flags & SB_RDONLY || 2264 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) { 2265 sync_inodes_sb(sb); 2266 2267 set_sbi_flag(sbi, SBI_IS_DIRTY); 2268 set_sbi_flag(sbi, SBI_IS_CLOSE); 2269 f2fs_sync_fs(sb, 1); 2270 clear_sbi_flag(sbi, SBI_IS_CLOSE); 2271 } 2272 2273 if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) || 2274 !test_opt(sbi, MERGE_CHECKPOINT)) { 2275 f2fs_stop_ckpt_thread(sbi); 2276 need_restart_ckpt = true; 2277 } else { 2278 err = f2fs_start_ckpt_thread(sbi); 2279 if (err) { 2280 f2fs_err(sbi, 2281 "Failed to start F2FS issue_checkpoint_thread (%d)", 2282 err); 2283 goto restore_gc; 2284 } 2285 need_stop_ckpt = true; 2286 } 2287 2288 /* 2289 * We stop issue flush thread if FS is mounted as RO 2290 * or if flush_merge is not passed in mount option. 2291 */ 2292 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 2293 clear_opt(sbi, FLUSH_MERGE); 2294 f2fs_destroy_flush_cmd_control(sbi, false); 2295 need_restart_flush = true; 2296 } else { 2297 err = f2fs_create_flush_cmd_control(sbi); 2298 if (err) 2299 goto restore_ckpt; 2300 need_stop_flush = true; 2301 } 2302 2303 if (no_discard == !!test_opt(sbi, DISCARD)) { 2304 if (test_opt(sbi, DISCARD)) { 2305 err = f2fs_start_discard_thread(sbi); 2306 if (err) 2307 goto restore_flush; 2308 need_stop_discard = true; 2309 } else { 2310 dcc = SM_I(sbi)->dcc_info; 2311 f2fs_stop_discard_thread(sbi); 2312 if (atomic_read(&dcc->discard_cmd_cnt)) 2313 f2fs_issue_discard_timeout(sbi); 2314 need_restart_discard = true; 2315 } 2316 } 2317 2318 if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) { 2319 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2320 err = f2fs_disable_checkpoint(sbi); 2321 if (err) 2322 goto restore_discard; 2323 } else { 2324 f2fs_enable_checkpoint(sbi); 2325 } 2326 } 2327 2328 skip: 2329 #ifdef CONFIG_QUOTA 2330 /* Release old quota file names */ 2331 for (i = 0; i < MAXQUOTAS; i++) 2332 kfree(org_mount_opt.s_qf_names[i]); 2333 #endif 2334 /* Update the POSIXACL Flag */ 2335 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 2336 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 2337 2338 limit_reserve_root(sbi); 2339 adjust_unusable_cap_perc(sbi); 2340 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 2341 return 0; 2342 restore_discard: 2343 if (need_restart_discard) { 2344 if (f2fs_start_discard_thread(sbi)) 2345 f2fs_warn(sbi, "discard has been stopped"); 2346 } else if (need_stop_discard) { 2347 f2fs_stop_discard_thread(sbi); 2348 } 2349 restore_flush: 2350 if (need_restart_flush) { 2351 if (f2fs_create_flush_cmd_control(sbi)) 2352 f2fs_warn(sbi, "background flush thread has stopped"); 2353 } else if (need_stop_flush) { 2354 clear_opt(sbi, FLUSH_MERGE); 2355 f2fs_destroy_flush_cmd_control(sbi, false); 2356 } 2357 restore_ckpt: 2358 if (need_restart_ckpt) { 2359 if (f2fs_start_ckpt_thread(sbi)) 2360 f2fs_warn(sbi, "background ckpt thread has stopped"); 2361 } else if (need_stop_ckpt) { 2362 f2fs_stop_ckpt_thread(sbi); 2363 } 2364 restore_gc: 2365 if (need_restart_gc) { 2366 if (f2fs_start_gc_thread(sbi)) 2367 f2fs_warn(sbi, "background gc thread has stopped"); 2368 } else if (need_stop_gc) { 2369 f2fs_stop_gc_thread(sbi); 2370 } 2371 restore_opts: 2372 #ifdef CONFIG_QUOTA 2373 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 2374 for (i = 0; i < MAXQUOTAS; i++) { 2375 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 2376 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 2377 } 2378 #endif 2379 sbi->mount_opt = org_mount_opt; 2380 sb->s_flags = old_sb_flags; 2381 return err; 2382 } 2383 2384 #ifdef CONFIG_QUOTA 2385 /* Read data from quotafile */ 2386 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 2387 size_t len, loff_t off) 2388 { 2389 struct inode *inode = sb_dqopt(sb)->files[type]; 2390 struct address_space *mapping = inode->i_mapping; 2391 block_t blkidx = F2FS_BYTES_TO_BLK(off); 2392 int offset = off & (sb->s_blocksize - 1); 2393 int tocopy; 2394 size_t toread; 2395 loff_t i_size = i_size_read(inode); 2396 struct page *page; 2397 char *kaddr; 2398 2399 if (off > i_size) 2400 return 0; 2401 2402 if (off + len > i_size) 2403 len = i_size - off; 2404 toread = len; 2405 while (toread > 0) { 2406 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 2407 repeat: 2408 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 2409 if (IS_ERR(page)) { 2410 if (PTR_ERR(page) == -ENOMEM) { 2411 memalloc_retry_wait(GFP_NOFS); 2412 goto repeat; 2413 } 2414 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2415 return PTR_ERR(page); 2416 } 2417 2418 lock_page(page); 2419 2420 if (unlikely(page->mapping != mapping)) { 2421 f2fs_put_page(page, 1); 2422 goto repeat; 2423 } 2424 if (unlikely(!PageUptodate(page))) { 2425 f2fs_put_page(page, 1); 2426 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2427 return -EIO; 2428 } 2429 2430 kaddr = kmap_atomic(page); 2431 memcpy(data, kaddr + offset, tocopy); 2432 kunmap_atomic(kaddr); 2433 f2fs_put_page(page, 1); 2434 2435 offset = 0; 2436 toread -= tocopy; 2437 data += tocopy; 2438 blkidx++; 2439 } 2440 return len; 2441 } 2442 2443 /* Write to quotafile */ 2444 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 2445 const char *data, size_t len, loff_t off) 2446 { 2447 struct inode *inode = sb_dqopt(sb)->files[type]; 2448 struct address_space *mapping = inode->i_mapping; 2449 const struct address_space_operations *a_ops = mapping->a_ops; 2450 int offset = off & (sb->s_blocksize - 1); 2451 size_t towrite = len; 2452 struct page *page; 2453 void *fsdata = NULL; 2454 char *kaddr; 2455 int err = 0; 2456 int tocopy; 2457 2458 while (towrite > 0) { 2459 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 2460 towrite); 2461 retry: 2462 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0, 2463 &page, &fsdata); 2464 if (unlikely(err)) { 2465 if (err == -ENOMEM) { 2466 congestion_wait(BLK_RW_ASYNC, 2467 DEFAULT_IO_TIMEOUT); 2468 goto retry; 2469 } 2470 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2471 break; 2472 } 2473 2474 kaddr = kmap_atomic(page); 2475 memcpy(kaddr + offset, data, tocopy); 2476 kunmap_atomic(kaddr); 2477 flush_dcache_page(page); 2478 2479 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 2480 page, fsdata); 2481 offset = 0; 2482 towrite -= tocopy; 2483 off += tocopy; 2484 data += tocopy; 2485 cond_resched(); 2486 } 2487 2488 if (len == towrite) 2489 return err; 2490 inode->i_mtime = inode->i_ctime = current_time(inode); 2491 f2fs_mark_inode_dirty_sync(inode, false); 2492 return len - towrite; 2493 } 2494 2495 int f2fs_dquot_initialize(struct inode *inode) 2496 { 2497 if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT)) { 2498 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_DQUOT_INIT); 2499 return -ESRCH; 2500 } 2501 2502 return dquot_initialize(inode); 2503 } 2504 2505 static struct dquot **f2fs_get_dquots(struct inode *inode) 2506 { 2507 return F2FS_I(inode)->i_dquot; 2508 } 2509 2510 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 2511 { 2512 return &F2FS_I(inode)->i_reserved_quota; 2513 } 2514 2515 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 2516 { 2517 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 2518 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it"); 2519 return 0; 2520 } 2521 2522 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 2523 F2FS_OPTION(sbi).s_jquota_fmt, type); 2524 } 2525 2526 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 2527 { 2528 int enabled = 0; 2529 int i, err; 2530 2531 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 2532 err = f2fs_enable_quotas(sbi->sb); 2533 if (err) { 2534 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err); 2535 return 0; 2536 } 2537 return 1; 2538 } 2539 2540 for (i = 0; i < MAXQUOTAS; i++) { 2541 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2542 err = f2fs_quota_on_mount(sbi, i); 2543 if (!err) { 2544 enabled = 1; 2545 continue; 2546 } 2547 f2fs_err(sbi, "Cannot turn on quotas: %d on %d", 2548 err, i); 2549 } 2550 } 2551 return enabled; 2552 } 2553 2554 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 2555 unsigned int flags) 2556 { 2557 struct inode *qf_inode; 2558 unsigned long qf_inum; 2559 int err; 2560 2561 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 2562 2563 qf_inum = f2fs_qf_ino(sb, type); 2564 if (!qf_inum) 2565 return -EPERM; 2566 2567 qf_inode = f2fs_iget(sb, qf_inum); 2568 if (IS_ERR(qf_inode)) { 2569 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum); 2570 return PTR_ERR(qf_inode); 2571 } 2572 2573 /* Don't account quota for quota files to avoid recursion */ 2574 qf_inode->i_flags |= S_NOQUOTA; 2575 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 2576 iput(qf_inode); 2577 return err; 2578 } 2579 2580 static int f2fs_enable_quotas(struct super_block *sb) 2581 { 2582 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2583 int type, err = 0; 2584 unsigned long qf_inum; 2585 bool quota_mopt[MAXQUOTAS] = { 2586 test_opt(sbi, USRQUOTA), 2587 test_opt(sbi, GRPQUOTA), 2588 test_opt(sbi, PRJQUOTA), 2589 }; 2590 2591 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 2592 f2fs_err(sbi, "quota file may be corrupted, skip loading it"); 2593 return 0; 2594 } 2595 2596 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 2597 2598 for (type = 0; type < MAXQUOTAS; type++) { 2599 qf_inum = f2fs_qf_ino(sb, type); 2600 if (qf_inum) { 2601 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 2602 DQUOT_USAGE_ENABLED | 2603 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 2604 if (err) { 2605 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.", 2606 type, err); 2607 for (type--; type >= 0; type--) 2608 dquot_quota_off(sb, type); 2609 set_sbi_flag(F2FS_SB(sb), 2610 SBI_QUOTA_NEED_REPAIR); 2611 return err; 2612 } 2613 } 2614 } 2615 return 0; 2616 } 2617 2618 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type) 2619 { 2620 struct quota_info *dqopt = sb_dqopt(sbi->sb); 2621 struct address_space *mapping = dqopt->files[type]->i_mapping; 2622 int ret = 0; 2623 2624 ret = dquot_writeback_dquots(sbi->sb, type); 2625 if (ret) 2626 goto out; 2627 2628 ret = filemap_fdatawrite(mapping); 2629 if (ret) 2630 goto out; 2631 2632 /* if we are using journalled quota */ 2633 if (is_journalled_quota(sbi)) 2634 goto out; 2635 2636 ret = filemap_fdatawait(mapping); 2637 2638 truncate_inode_pages(&dqopt->files[type]->i_data, 0); 2639 out: 2640 if (ret) 2641 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2642 return ret; 2643 } 2644 2645 int f2fs_quota_sync(struct super_block *sb, int type) 2646 { 2647 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2648 struct quota_info *dqopt = sb_dqopt(sb); 2649 int cnt; 2650 int ret; 2651 2652 /* 2653 * Now when everything is written we can discard the pagecache so 2654 * that userspace sees the changes. 2655 */ 2656 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 2657 2658 if (type != -1 && cnt != type) 2659 continue; 2660 2661 if (!sb_has_quota_active(sb, type)) 2662 return 0; 2663 2664 inode_lock(dqopt->files[cnt]); 2665 2666 /* 2667 * do_quotactl 2668 * f2fs_quota_sync 2669 * down_read(quota_sem) 2670 * dquot_writeback_dquots() 2671 * f2fs_dquot_commit 2672 * block_operation 2673 * down_read(quota_sem) 2674 */ 2675 f2fs_lock_op(sbi); 2676 down_read(&sbi->quota_sem); 2677 2678 ret = f2fs_quota_sync_file(sbi, cnt); 2679 2680 up_read(&sbi->quota_sem); 2681 f2fs_unlock_op(sbi); 2682 2683 inode_unlock(dqopt->files[cnt]); 2684 2685 if (ret) 2686 break; 2687 } 2688 return ret; 2689 } 2690 2691 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 2692 const struct path *path) 2693 { 2694 struct inode *inode; 2695 int err; 2696 2697 /* if quota sysfile exists, deny enabling quota with specific file */ 2698 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) { 2699 f2fs_err(F2FS_SB(sb), "quota sysfile already exists"); 2700 return -EBUSY; 2701 } 2702 2703 err = f2fs_quota_sync(sb, type); 2704 if (err) 2705 return err; 2706 2707 err = dquot_quota_on(sb, type, format_id, path); 2708 if (err) 2709 return err; 2710 2711 inode = d_inode(path->dentry); 2712 2713 inode_lock(inode); 2714 F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL; 2715 f2fs_set_inode_flags(inode); 2716 inode_unlock(inode); 2717 f2fs_mark_inode_dirty_sync(inode, false); 2718 2719 return 0; 2720 } 2721 2722 static int __f2fs_quota_off(struct super_block *sb, int type) 2723 { 2724 struct inode *inode = sb_dqopt(sb)->files[type]; 2725 int err; 2726 2727 if (!inode || !igrab(inode)) 2728 return dquot_quota_off(sb, type); 2729 2730 err = f2fs_quota_sync(sb, type); 2731 if (err) 2732 goto out_put; 2733 2734 err = dquot_quota_off(sb, type); 2735 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 2736 goto out_put; 2737 2738 inode_lock(inode); 2739 F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL); 2740 f2fs_set_inode_flags(inode); 2741 inode_unlock(inode); 2742 f2fs_mark_inode_dirty_sync(inode, false); 2743 out_put: 2744 iput(inode); 2745 return err; 2746 } 2747 2748 static int f2fs_quota_off(struct super_block *sb, int type) 2749 { 2750 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2751 int err; 2752 2753 err = __f2fs_quota_off(sb, type); 2754 2755 /* 2756 * quotactl can shutdown journalled quota, result in inconsistence 2757 * between quota record and fs data by following updates, tag the 2758 * flag to let fsck be aware of it. 2759 */ 2760 if (is_journalled_quota(sbi)) 2761 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2762 return err; 2763 } 2764 2765 void f2fs_quota_off_umount(struct super_block *sb) 2766 { 2767 int type; 2768 int err; 2769 2770 for (type = 0; type < MAXQUOTAS; type++) { 2771 err = __f2fs_quota_off(sb, type); 2772 if (err) { 2773 int ret = dquot_quota_off(sb, type); 2774 2775 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.", 2776 type, err, ret); 2777 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2778 } 2779 } 2780 /* 2781 * In case of checkpoint=disable, we must flush quota blocks. 2782 * This can cause NULL exception for node_inode in end_io, since 2783 * put_super already dropped it. 2784 */ 2785 sync_filesystem(sb); 2786 } 2787 2788 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 2789 { 2790 struct quota_info *dqopt = sb_dqopt(sb); 2791 int type; 2792 2793 for (type = 0; type < MAXQUOTAS; type++) { 2794 if (!dqopt->files[type]) 2795 continue; 2796 f2fs_inode_synced(dqopt->files[type]); 2797 } 2798 } 2799 2800 static int f2fs_dquot_commit(struct dquot *dquot) 2801 { 2802 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2803 int ret; 2804 2805 down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING); 2806 ret = dquot_commit(dquot); 2807 if (ret < 0) 2808 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2809 up_read(&sbi->quota_sem); 2810 return ret; 2811 } 2812 2813 static int f2fs_dquot_acquire(struct dquot *dquot) 2814 { 2815 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2816 int ret; 2817 2818 down_read(&sbi->quota_sem); 2819 ret = dquot_acquire(dquot); 2820 if (ret < 0) 2821 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2822 up_read(&sbi->quota_sem); 2823 return ret; 2824 } 2825 2826 static int f2fs_dquot_release(struct dquot *dquot) 2827 { 2828 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2829 int ret = dquot_release(dquot); 2830 2831 if (ret < 0) 2832 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2833 return ret; 2834 } 2835 2836 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 2837 { 2838 struct super_block *sb = dquot->dq_sb; 2839 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2840 int ret = dquot_mark_dquot_dirty(dquot); 2841 2842 /* if we are using journalled quota */ 2843 if (is_journalled_quota(sbi)) 2844 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 2845 2846 return ret; 2847 } 2848 2849 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 2850 { 2851 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2852 int ret = dquot_commit_info(sb, type); 2853 2854 if (ret < 0) 2855 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2856 return ret; 2857 } 2858 2859 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 2860 { 2861 *projid = F2FS_I(inode)->i_projid; 2862 return 0; 2863 } 2864 2865 static const struct dquot_operations f2fs_quota_operations = { 2866 .get_reserved_space = f2fs_get_reserved_space, 2867 .write_dquot = f2fs_dquot_commit, 2868 .acquire_dquot = f2fs_dquot_acquire, 2869 .release_dquot = f2fs_dquot_release, 2870 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 2871 .write_info = f2fs_dquot_commit_info, 2872 .alloc_dquot = dquot_alloc, 2873 .destroy_dquot = dquot_destroy, 2874 .get_projid = f2fs_get_projid, 2875 .get_next_id = dquot_get_next_id, 2876 }; 2877 2878 static const struct quotactl_ops f2fs_quotactl_ops = { 2879 .quota_on = f2fs_quota_on, 2880 .quota_off = f2fs_quota_off, 2881 .quota_sync = f2fs_quota_sync, 2882 .get_state = dquot_get_state, 2883 .set_info = dquot_set_dqinfo, 2884 .get_dqblk = dquot_get_dqblk, 2885 .set_dqblk = dquot_set_dqblk, 2886 .get_nextdqblk = dquot_get_next_dqblk, 2887 }; 2888 #else 2889 int f2fs_dquot_initialize(struct inode *inode) 2890 { 2891 return 0; 2892 } 2893 2894 int f2fs_quota_sync(struct super_block *sb, int type) 2895 { 2896 return 0; 2897 } 2898 2899 void f2fs_quota_off_umount(struct super_block *sb) 2900 { 2901 } 2902 #endif 2903 2904 static const struct super_operations f2fs_sops = { 2905 .alloc_inode = f2fs_alloc_inode, 2906 .free_inode = f2fs_free_inode, 2907 .drop_inode = f2fs_drop_inode, 2908 .write_inode = f2fs_write_inode, 2909 .dirty_inode = f2fs_dirty_inode, 2910 .show_options = f2fs_show_options, 2911 #ifdef CONFIG_QUOTA 2912 .quota_read = f2fs_quota_read, 2913 .quota_write = f2fs_quota_write, 2914 .get_dquots = f2fs_get_dquots, 2915 #endif 2916 .evict_inode = f2fs_evict_inode, 2917 .put_super = f2fs_put_super, 2918 .sync_fs = f2fs_sync_fs, 2919 .freeze_fs = f2fs_freeze, 2920 .unfreeze_fs = f2fs_unfreeze, 2921 .statfs = f2fs_statfs, 2922 .remount_fs = f2fs_remount, 2923 }; 2924 2925 #ifdef CONFIG_FS_ENCRYPTION 2926 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 2927 { 2928 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2929 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2930 ctx, len, NULL); 2931 } 2932 2933 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 2934 void *fs_data) 2935 { 2936 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2937 2938 /* 2939 * Encrypting the root directory is not allowed because fsck 2940 * expects lost+found directory to exist and remain unencrypted 2941 * if LOST_FOUND feature is enabled. 2942 * 2943 */ 2944 if (f2fs_sb_has_lost_found(sbi) && 2945 inode->i_ino == F2FS_ROOT_INO(sbi)) 2946 return -EPERM; 2947 2948 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2949 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2950 ctx, len, fs_data, XATTR_CREATE); 2951 } 2952 2953 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb) 2954 { 2955 return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy; 2956 } 2957 2958 static bool f2fs_has_stable_inodes(struct super_block *sb) 2959 { 2960 return true; 2961 } 2962 2963 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb, 2964 int *ino_bits_ret, int *lblk_bits_ret) 2965 { 2966 *ino_bits_ret = 8 * sizeof(nid_t); 2967 *lblk_bits_ret = 8 * sizeof(block_t); 2968 } 2969 2970 static int f2fs_get_num_devices(struct super_block *sb) 2971 { 2972 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2973 2974 if (f2fs_is_multi_device(sbi)) 2975 return sbi->s_ndevs; 2976 return 1; 2977 } 2978 2979 static void f2fs_get_devices(struct super_block *sb, 2980 struct request_queue **devs) 2981 { 2982 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2983 int i; 2984 2985 for (i = 0; i < sbi->s_ndevs; i++) 2986 devs[i] = bdev_get_queue(FDEV(i).bdev); 2987 } 2988 2989 static const struct fscrypt_operations f2fs_cryptops = { 2990 .key_prefix = "f2fs:", 2991 .get_context = f2fs_get_context, 2992 .set_context = f2fs_set_context, 2993 .get_dummy_policy = f2fs_get_dummy_policy, 2994 .empty_dir = f2fs_empty_dir, 2995 .has_stable_inodes = f2fs_has_stable_inodes, 2996 .get_ino_and_lblk_bits = f2fs_get_ino_and_lblk_bits, 2997 .get_num_devices = f2fs_get_num_devices, 2998 .get_devices = f2fs_get_devices, 2999 }; 3000 #endif 3001 3002 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 3003 u64 ino, u32 generation) 3004 { 3005 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3006 struct inode *inode; 3007 3008 if (f2fs_check_nid_range(sbi, ino)) 3009 return ERR_PTR(-ESTALE); 3010 3011 /* 3012 * f2fs_iget isn't quite right if the inode is currently unallocated! 3013 * However f2fs_iget currently does appropriate checks to handle stale 3014 * inodes so everything is OK. 3015 */ 3016 inode = f2fs_iget(sb, ino); 3017 if (IS_ERR(inode)) 3018 return ERR_CAST(inode); 3019 if (unlikely(generation && inode->i_generation != generation)) { 3020 /* we didn't find the right inode.. */ 3021 iput(inode); 3022 return ERR_PTR(-ESTALE); 3023 } 3024 return inode; 3025 } 3026 3027 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 3028 int fh_len, int fh_type) 3029 { 3030 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 3031 f2fs_nfs_get_inode); 3032 } 3033 3034 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 3035 int fh_len, int fh_type) 3036 { 3037 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 3038 f2fs_nfs_get_inode); 3039 } 3040 3041 static const struct export_operations f2fs_export_ops = { 3042 .fh_to_dentry = f2fs_fh_to_dentry, 3043 .fh_to_parent = f2fs_fh_to_parent, 3044 .get_parent = f2fs_get_parent, 3045 }; 3046 3047 loff_t max_file_blocks(struct inode *inode) 3048 { 3049 loff_t result = 0; 3050 loff_t leaf_count; 3051 3052 /* 3053 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 3054 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 3055 * space in inode.i_addr, it will be more safe to reassign 3056 * result as zero. 3057 */ 3058 3059 if (inode && f2fs_compressed_file(inode)) 3060 leaf_count = ADDRS_PER_BLOCK(inode); 3061 else 3062 leaf_count = DEF_ADDRS_PER_BLOCK; 3063 3064 /* two direct node blocks */ 3065 result += (leaf_count * 2); 3066 3067 /* two indirect node blocks */ 3068 leaf_count *= NIDS_PER_BLOCK; 3069 result += (leaf_count * 2); 3070 3071 /* one double indirect node block */ 3072 leaf_count *= NIDS_PER_BLOCK; 3073 result += leaf_count; 3074 3075 return result; 3076 } 3077 3078 static int __f2fs_commit_super(struct buffer_head *bh, 3079 struct f2fs_super_block *super) 3080 { 3081 lock_buffer(bh); 3082 if (super) 3083 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 3084 set_buffer_dirty(bh); 3085 unlock_buffer(bh); 3086 3087 /* it's rare case, we can do fua all the time */ 3088 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 3089 } 3090 3091 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 3092 struct buffer_head *bh) 3093 { 3094 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 3095 (bh->b_data + F2FS_SUPER_OFFSET); 3096 struct super_block *sb = sbi->sb; 3097 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 3098 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 3099 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 3100 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 3101 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 3102 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 3103 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 3104 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 3105 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 3106 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 3107 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3108 u32 segment_count = le32_to_cpu(raw_super->segment_count); 3109 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3110 u64 main_end_blkaddr = main_blkaddr + 3111 (segment_count_main << log_blocks_per_seg); 3112 u64 seg_end_blkaddr = segment0_blkaddr + 3113 (segment_count << log_blocks_per_seg); 3114 3115 if (segment0_blkaddr != cp_blkaddr) { 3116 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 3117 segment0_blkaddr, cp_blkaddr); 3118 return true; 3119 } 3120 3121 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 3122 sit_blkaddr) { 3123 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 3124 cp_blkaddr, sit_blkaddr, 3125 segment_count_ckpt << log_blocks_per_seg); 3126 return true; 3127 } 3128 3129 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 3130 nat_blkaddr) { 3131 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 3132 sit_blkaddr, nat_blkaddr, 3133 segment_count_sit << log_blocks_per_seg); 3134 return true; 3135 } 3136 3137 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 3138 ssa_blkaddr) { 3139 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 3140 nat_blkaddr, ssa_blkaddr, 3141 segment_count_nat << log_blocks_per_seg); 3142 return true; 3143 } 3144 3145 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 3146 main_blkaddr) { 3147 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 3148 ssa_blkaddr, main_blkaddr, 3149 segment_count_ssa << log_blocks_per_seg); 3150 return true; 3151 } 3152 3153 if (main_end_blkaddr > seg_end_blkaddr) { 3154 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)", 3155 main_blkaddr, seg_end_blkaddr, 3156 segment_count_main << log_blocks_per_seg); 3157 return true; 3158 } else if (main_end_blkaddr < seg_end_blkaddr) { 3159 int err = 0; 3160 char *res; 3161 3162 /* fix in-memory information all the time */ 3163 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 3164 segment0_blkaddr) >> log_blocks_per_seg); 3165 3166 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 3167 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3168 res = "internally"; 3169 } else { 3170 err = __f2fs_commit_super(bh, NULL); 3171 res = err ? "failed" : "done"; 3172 } 3173 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)", 3174 res, main_blkaddr, seg_end_blkaddr, 3175 segment_count_main << log_blocks_per_seg); 3176 if (err) 3177 return true; 3178 } 3179 return false; 3180 } 3181 3182 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 3183 struct buffer_head *bh) 3184 { 3185 block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main; 3186 block_t total_sections, blocks_per_seg; 3187 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 3188 (bh->b_data + F2FS_SUPER_OFFSET); 3189 size_t crc_offset = 0; 3190 __u32 crc = 0; 3191 3192 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { 3193 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)", 3194 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 3195 return -EINVAL; 3196 } 3197 3198 /* Check checksum_offset and crc in superblock */ 3199 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 3200 crc_offset = le32_to_cpu(raw_super->checksum_offset); 3201 if (crc_offset != 3202 offsetof(struct f2fs_super_block, crc)) { 3203 f2fs_info(sbi, "Invalid SB checksum offset: %zu", 3204 crc_offset); 3205 return -EFSCORRUPTED; 3206 } 3207 crc = le32_to_cpu(raw_super->crc); 3208 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 3209 f2fs_info(sbi, "Invalid SB checksum value: %u", crc); 3210 return -EFSCORRUPTED; 3211 } 3212 } 3213 3214 /* Currently, support only 4KB block size */ 3215 if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) { 3216 f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u", 3217 le32_to_cpu(raw_super->log_blocksize), 3218 F2FS_BLKSIZE_BITS); 3219 return -EFSCORRUPTED; 3220 } 3221 3222 /* check log blocks per segment */ 3223 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 3224 f2fs_info(sbi, "Invalid log blocks per segment (%u)", 3225 le32_to_cpu(raw_super->log_blocks_per_seg)); 3226 return -EFSCORRUPTED; 3227 } 3228 3229 /* Currently, support 512/1024/2048/4096 bytes sector size */ 3230 if (le32_to_cpu(raw_super->log_sectorsize) > 3231 F2FS_MAX_LOG_SECTOR_SIZE || 3232 le32_to_cpu(raw_super->log_sectorsize) < 3233 F2FS_MIN_LOG_SECTOR_SIZE) { 3234 f2fs_info(sbi, "Invalid log sectorsize (%u)", 3235 le32_to_cpu(raw_super->log_sectorsize)); 3236 return -EFSCORRUPTED; 3237 } 3238 if (le32_to_cpu(raw_super->log_sectors_per_block) + 3239 le32_to_cpu(raw_super->log_sectorsize) != 3240 F2FS_MAX_LOG_SECTOR_SIZE) { 3241 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)", 3242 le32_to_cpu(raw_super->log_sectors_per_block), 3243 le32_to_cpu(raw_super->log_sectorsize)); 3244 return -EFSCORRUPTED; 3245 } 3246 3247 segment_count = le32_to_cpu(raw_super->segment_count); 3248 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3249 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3250 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3251 total_sections = le32_to_cpu(raw_super->section_count); 3252 3253 /* blocks_per_seg should be 512, given the above check */ 3254 blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg); 3255 3256 if (segment_count > F2FS_MAX_SEGMENT || 3257 segment_count < F2FS_MIN_SEGMENTS) { 3258 f2fs_info(sbi, "Invalid segment count (%u)", segment_count); 3259 return -EFSCORRUPTED; 3260 } 3261 3262 if (total_sections > segment_count_main || total_sections < 1 || 3263 segs_per_sec > segment_count || !segs_per_sec) { 3264 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)", 3265 segment_count, total_sections, segs_per_sec); 3266 return -EFSCORRUPTED; 3267 } 3268 3269 if (segment_count_main != total_sections * segs_per_sec) { 3270 f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)", 3271 segment_count_main, total_sections, segs_per_sec); 3272 return -EFSCORRUPTED; 3273 } 3274 3275 if ((segment_count / segs_per_sec) < total_sections) { 3276 f2fs_info(sbi, "Small segment_count (%u < %u * %u)", 3277 segment_count, segs_per_sec, total_sections); 3278 return -EFSCORRUPTED; 3279 } 3280 3281 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 3282 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)", 3283 segment_count, le64_to_cpu(raw_super->block_count)); 3284 return -EFSCORRUPTED; 3285 } 3286 3287 if (RDEV(0).path[0]) { 3288 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments); 3289 int i = 1; 3290 3291 while (i < MAX_DEVICES && RDEV(i).path[0]) { 3292 dev_seg_count += le32_to_cpu(RDEV(i).total_segments); 3293 i++; 3294 } 3295 if (segment_count != dev_seg_count) { 3296 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)", 3297 segment_count, dev_seg_count); 3298 return -EFSCORRUPTED; 3299 } 3300 } else { 3301 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) && 3302 !bdev_is_zoned(sbi->sb->s_bdev)) { 3303 f2fs_info(sbi, "Zoned block device path is missing"); 3304 return -EFSCORRUPTED; 3305 } 3306 } 3307 3308 if (secs_per_zone > total_sections || !secs_per_zone) { 3309 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)", 3310 secs_per_zone, total_sections); 3311 return -EFSCORRUPTED; 3312 } 3313 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 3314 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 3315 (le32_to_cpu(raw_super->extension_count) + 3316 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 3317 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)", 3318 le32_to_cpu(raw_super->extension_count), 3319 raw_super->hot_ext_count, 3320 F2FS_MAX_EXTENSION); 3321 return -EFSCORRUPTED; 3322 } 3323 3324 if (le32_to_cpu(raw_super->cp_payload) >= 3325 (blocks_per_seg - F2FS_CP_PACKS - 3326 NR_CURSEG_PERSIST_TYPE)) { 3327 f2fs_info(sbi, "Insane cp_payload (%u >= %u)", 3328 le32_to_cpu(raw_super->cp_payload), 3329 blocks_per_seg - F2FS_CP_PACKS - 3330 NR_CURSEG_PERSIST_TYPE); 3331 return -EFSCORRUPTED; 3332 } 3333 3334 /* check reserved ino info */ 3335 if (le32_to_cpu(raw_super->node_ino) != 1 || 3336 le32_to_cpu(raw_super->meta_ino) != 2 || 3337 le32_to_cpu(raw_super->root_ino) != 3) { 3338 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 3339 le32_to_cpu(raw_super->node_ino), 3340 le32_to_cpu(raw_super->meta_ino), 3341 le32_to_cpu(raw_super->root_ino)); 3342 return -EFSCORRUPTED; 3343 } 3344 3345 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 3346 if (sanity_check_area_boundary(sbi, bh)) 3347 return -EFSCORRUPTED; 3348 3349 return 0; 3350 } 3351 3352 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 3353 { 3354 unsigned int total, fsmeta; 3355 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3356 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3357 unsigned int ovp_segments, reserved_segments; 3358 unsigned int main_segs, blocks_per_seg; 3359 unsigned int sit_segs, nat_segs; 3360 unsigned int sit_bitmap_size, nat_bitmap_size; 3361 unsigned int log_blocks_per_seg; 3362 unsigned int segment_count_main; 3363 unsigned int cp_pack_start_sum, cp_payload; 3364 block_t user_block_count, valid_user_blocks; 3365 block_t avail_node_count, valid_node_count; 3366 unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks; 3367 int i, j; 3368 3369 total = le32_to_cpu(raw_super->segment_count); 3370 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 3371 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 3372 fsmeta += sit_segs; 3373 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 3374 fsmeta += nat_segs; 3375 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 3376 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 3377 3378 if (unlikely(fsmeta >= total)) 3379 return 1; 3380 3381 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 3382 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 3383 3384 if (!f2fs_sb_has_readonly(sbi) && 3385 unlikely(fsmeta < F2FS_MIN_META_SEGMENTS || 3386 ovp_segments == 0 || reserved_segments == 0)) { 3387 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version"); 3388 return 1; 3389 } 3390 user_block_count = le64_to_cpu(ckpt->user_block_count); 3391 segment_count_main = le32_to_cpu(raw_super->segment_count_main) + 3392 (f2fs_sb_has_readonly(sbi) ? 1 : 0); 3393 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3394 if (!user_block_count || user_block_count >= 3395 segment_count_main << log_blocks_per_seg) { 3396 f2fs_err(sbi, "Wrong user_block_count: %u", 3397 user_block_count); 3398 return 1; 3399 } 3400 3401 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 3402 if (valid_user_blocks > user_block_count) { 3403 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u", 3404 valid_user_blocks, user_block_count); 3405 return 1; 3406 } 3407 3408 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 3409 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 3410 if (valid_node_count > avail_node_count) { 3411 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u", 3412 valid_node_count, avail_node_count); 3413 return 1; 3414 } 3415 3416 main_segs = le32_to_cpu(raw_super->segment_count_main); 3417 blocks_per_seg = sbi->blocks_per_seg; 3418 3419 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3420 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 3421 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 3422 return 1; 3423 3424 if (f2fs_sb_has_readonly(sbi)) 3425 goto check_data; 3426 3427 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 3428 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3429 le32_to_cpu(ckpt->cur_node_segno[j])) { 3430 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u", 3431 i, j, 3432 le32_to_cpu(ckpt->cur_node_segno[i])); 3433 return 1; 3434 } 3435 } 3436 } 3437 check_data: 3438 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 3439 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 3440 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 3441 return 1; 3442 3443 if (f2fs_sb_has_readonly(sbi)) 3444 goto skip_cross; 3445 3446 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 3447 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 3448 le32_to_cpu(ckpt->cur_data_segno[j])) { 3449 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u", 3450 i, j, 3451 le32_to_cpu(ckpt->cur_data_segno[i])); 3452 return 1; 3453 } 3454 } 3455 } 3456 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3457 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) { 3458 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3459 le32_to_cpu(ckpt->cur_data_segno[j])) { 3460 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u", 3461 i, j, 3462 le32_to_cpu(ckpt->cur_node_segno[i])); 3463 return 1; 3464 } 3465 } 3466 } 3467 skip_cross: 3468 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 3469 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 3470 3471 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 3472 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 3473 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u", 3474 sit_bitmap_size, nat_bitmap_size); 3475 return 1; 3476 } 3477 3478 cp_pack_start_sum = __start_sum_addr(sbi); 3479 cp_payload = __cp_payload(sbi); 3480 if (cp_pack_start_sum < cp_payload + 1 || 3481 cp_pack_start_sum > blocks_per_seg - 1 - 3482 NR_CURSEG_PERSIST_TYPE) { 3483 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u", 3484 cp_pack_start_sum); 3485 return 1; 3486 } 3487 3488 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && 3489 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { 3490 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, " 3491 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, " 3492 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"", 3493 le32_to_cpu(ckpt->checksum_offset)); 3494 return 1; 3495 } 3496 3497 nat_blocks = nat_segs << log_blocks_per_seg; 3498 nat_bits_bytes = nat_blocks / BITS_PER_BYTE; 3499 nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3500 if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) && 3501 (cp_payload + F2FS_CP_PACKS + 3502 NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) { 3503 f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)", 3504 cp_payload, nat_bits_blocks); 3505 return 1; 3506 } 3507 3508 if (unlikely(f2fs_cp_error(sbi))) { 3509 f2fs_err(sbi, "A bug case: need to run fsck"); 3510 return 1; 3511 } 3512 return 0; 3513 } 3514 3515 static void init_sb_info(struct f2fs_sb_info *sbi) 3516 { 3517 struct f2fs_super_block *raw_super = sbi->raw_super; 3518 int i; 3519 3520 sbi->log_sectors_per_block = 3521 le32_to_cpu(raw_super->log_sectors_per_block); 3522 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 3523 sbi->blocksize = 1 << sbi->log_blocksize; 3524 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3525 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 3526 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3527 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3528 sbi->total_sections = le32_to_cpu(raw_super->section_count); 3529 sbi->total_node_count = 3530 (le32_to_cpu(raw_super->segment_count_nat) / 2) 3531 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 3532 F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino); 3533 F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino); 3534 F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino); 3535 sbi->cur_victim_sec = NULL_SECNO; 3536 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 3537 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 3538 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 3539 sbi->migration_granularity = sbi->segs_per_sec; 3540 sbi->seq_file_ra_mul = MIN_RA_MUL; 3541 sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE; 3542 sbi->max_fragment_hole = DEF_FRAGMENT_SIZE; 3543 3544 sbi->dir_level = DEF_DIR_LEVEL; 3545 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 3546 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 3547 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 3548 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 3549 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 3550 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 3551 DEF_UMOUNT_DISCARD_TIMEOUT; 3552 clear_sbi_flag(sbi, SBI_NEED_FSCK); 3553 3554 for (i = 0; i < NR_COUNT_TYPE; i++) 3555 atomic_set(&sbi->nr_pages[i], 0); 3556 3557 for (i = 0; i < META; i++) 3558 atomic_set(&sbi->wb_sync_req[i], 0); 3559 3560 INIT_LIST_HEAD(&sbi->s_list); 3561 mutex_init(&sbi->umount_mutex); 3562 init_rwsem(&sbi->io_order_lock); 3563 spin_lock_init(&sbi->cp_lock); 3564 3565 sbi->dirty_device = 0; 3566 spin_lock_init(&sbi->dev_lock); 3567 3568 init_rwsem(&sbi->sb_lock); 3569 init_rwsem(&sbi->pin_sem); 3570 } 3571 3572 static int init_percpu_info(struct f2fs_sb_info *sbi) 3573 { 3574 int err; 3575 3576 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 3577 if (err) 3578 return err; 3579 3580 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 3581 GFP_KERNEL); 3582 if (err) 3583 percpu_counter_destroy(&sbi->alloc_valid_block_count); 3584 3585 return err; 3586 } 3587 3588 #ifdef CONFIG_BLK_DEV_ZONED 3589 3590 struct f2fs_report_zones_args { 3591 struct f2fs_dev_info *dev; 3592 bool zone_cap_mismatch; 3593 }; 3594 3595 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx, 3596 void *data) 3597 { 3598 struct f2fs_report_zones_args *rz_args = data; 3599 3600 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 3601 return 0; 3602 3603 set_bit(idx, rz_args->dev->blkz_seq); 3604 rz_args->dev->zone_capacity_blocks[idx] = zone->capacity >> 3605 F2FS_LOG_SECTORS_PER_BLOCK; 3606 if (zone->len != zone->capacity && !rz_args->zone_cap_mismatch) 3607 rz_args->zone_cap_mismatch = true; 3608 3609 return 0; 3610 } 3611 3612 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 3613 { 3614 struct block_device *bdev = FDEV(devi).bdev; 3615 sector_t nr_sectors = bdev_nr_sectors(bdev); 3616 struct f2fs_report_zones_args rep_zone_arg; 3617 int ret; 3618 3619 if (!f2fs_sb_has_blkzoned(sbi)) 3620 return 0; 3621 3622 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 3623 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev))) 3624 return -EINVAL; 3625 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)); 3626 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz != 3627 __ilog2_u32(sbi->blocks_per_blkz)) 3628 return -EINVAL; 3629 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz); 3630 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >> 3631 sbi->log_blocks_per_blkz; 3632 if (nr_sectors & (bdev_zone_sectors(bdev) - 1)) 3633 FDEV(devi).nr_blkz++; 3634 3635 FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi, 3636 BITS_TO_LONGS(FDEV(devi).nr_blkz) 3637 * sizeof(unsigned long), 3638 GFP_KERNEL); 3639 if (!FDEV(devi).blkz_seq) 3640 return -ENOMEM; 3641 3642 /* Get block zones type and zone-capacity */ 3643 FDEV(devi).zone_capacity_blocks = f2fs_kzalloc(sbi, 3644 FDEV(devi).nr_blkz * sizeof(block_t), 3645 GFP_KERNEL); 3646 if (!FDEV(devi).zone_capacity_blocks) 3647 return -ENOMEM; 3648 3649 rep_zone_arg.dev = &FDEV(devi); 3650 rep_zone_arg.zone_cap_mismatch = false; 3651 3652 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb, 3653 &rep_zone_arg); 3654 if (ret < 0) 3655 return ret; 3656 3657 if (!rep_zone_arg.zone_cap_mismatch) { 3658 kfree(FDEV(devi).zone_capacity_blocks); 3659 FDEV(devi).zone_capacity_blocks = NULL; 3660 } 3661 3662 return 0; 3663 } 3664 #endif 3665 3666 /* 3667 * Read f2fs raw super block. 3668 * Because we have two copies of super block, so read both of them 3669 * to get the first valid one. If any one of them is broken, we pass 3670 * them recovery flag back to the caller. 3671 */ 3672 static int read_raw_super_block(struct f2fs_sb_info *sbi, 3673 struct f2fs_super_block **raw_super, 3674 int *valid_super_block, int *recovery) 3675 { 3676 struct super_block *sb = sbi->sb; 3677 int block; 3678 struct buffer_head *bh; 3679 struct f2fs_super_block *super; 3680 int err = 0; 3681 3682 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 3683 if (!super) 3684 return -ENOMEM; 3685 3686 for (block = 0; block < 2; block++) { 3687 bh = sb_bread(sb, block); 3688 if (!bh) { 3689 f2fs_err(sbi, "Unable to read %dth superblock", 3690 block + 1); 3691 err = -EIO; 3692 *recovery = 1; 3693 continue; 3694 } 3695 3696 /* sanity checking of raw super */ 3697 err = sanity_check_raw_super(sbi, bh); 3698 if (err) { 3699 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock", 3700 block + 1); 3701 brelse(bh); 3702 *recovery = 1; 3703 continue; 3704 } 3705 3706 if (!*raw_super) { 3707 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 3708 sizeof(*super)); 3709 *valid_super_block = block; 3710 *raw_super = super; 3711 } 3712 brelse(bh); 3713 } 3714 3715 /* No valid superblock */ 3716 if (!*raw_super) 3717 kfree(super); 3718 else 3719 err = 0; 3720 3721 return err; 3722 } 3723 3724 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 3725 { 3726 struct buffer_head *bh; 3727 __u32 crc = 0; 3728 int err; 3729 3730 if ((recover && f2fs_readonly(sbi->sb)) || 3731 bdev_read_only(sbi->sb->s_bdev)) { 3732 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3733 return -EROFS; 3734 } 3735 3736 /* we should update superblock crc here */ 3737 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 3738 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 3739 offsetof(struct f2fs_super_block, crc)); 3740 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 3741 } 3742 3743 /* write back-up superblock first */ 3744 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 3745 if (!bh) 3746 return -EIO; 3747 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3748 brelse(bh); 3749 3750 /* if we are in recovery path, skip writing valid superblock */ 3751 if (recover || err) 3752 return err; 3753 3754 /* write current valid superblock */ 3755 bh = sb_bread(sbi->sb, sbi->valid_super_block); 3756 if (!bh) 3757 return -EIO; 3758 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3759 brelse(bh); 3760 return err; 3761 } 3762 3763 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 3764 { 3765 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3766 unsigned int max_devices = MAX_DEVICES; 3767 unsigned int logical_blksize; 3768 int i; 3769 3770 /* Initialize single device information */ 3771 if (!RDEV(0).path[0]) { 3772 if (!bdev_is_zoned(sbi->sb->s_bdev)) 3773 return 0; 3774 max_devices = 1; 3775 } 3776 3777 /* 3778 * Initialize multiple devices information, or single 3779 * zoned block device information. 3780 */ 3781 sbi->devs = f2fs_kzalloc(sbi, 3782 array_size(max_devices, 3783 sizeof(struct f2fs_dev_info)), 3784 GFP_KERNEL); 3785 if (!sbi->devs) 3786 return -ENOMEM; 3787 3788 logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev); 3789 sbi->aligned_blksize = true; 3790 3791 for (i = 0; i < max_devices; i++) { 3792 3793 if (i > 0 && !RDEV(i).path[0]) 3794 break; 3795 3796 if (max_devices == 1) { 3797 /* Single zoned block device mount */ 3798 FDEV(0).bdev = 3799 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev, 3800 sbi->sb->s_mode, sbi->sb->s_type); 3801 } else { 3802 /* Multi-device mount */ 3803 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 3804 FDEV(i).total_segments = 3805 le32_to_cpu(RDEV(i).total_segments); 3806 if (i == 0) { 3807 FDEV(i).start_blk = 0; 3808 FDEV(i).end_blk = FDEV(i).start_blk + 3809 (FDEV(i).total_segments << 3810 sbi->log_blocks_per_seg) - 1 + 3811 le32_to_cpu(raw_super->segment0_blkaddr); 3812 } else { 3813 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 3814 FDEV(i).end_blk = FDEV(i).start_blk + 3815 (FDEV(i).total_segments << 3816 sbi->log_blocks_per_seg) - 1; 3817 } 3818 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 3819 sbi->sb->s_mode, sbi->sb->s_type); 3820 } 3821 if (IS_ERR(FDEV(i).bdev)) 3822 return PTR_ERR(FDEV(i).bdev); 3823 3824 /* to release errored devices */ 3825 sbi->s_ndevs = i + 1; 3826 3827 if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev)) 3828 sbi->aligned_blksize = false; 3829 3830 #ifdef CONFIG_BLK_DEV_ZONED 3831 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 3832 !f2fs_sb_has_blkzoned(sbi)) { 3833 f2fs_err(sbi, "Zoned block device feature not enabled"); 3834 return -EINVAL; 3835 } 3836 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 3837 if (init_blkz_info(sbi, i)) { 3838 f2fs_err(sbi, "Failed to initialize F2FS blkzone information"); 3839 return -EINVAL; 3840 } 3841 if (max_devices == 1) 3842 break; 3843 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 3844 i, FDEV(i).path, 3845 FDEV(i).total_segments, 3846 FDEV(i).start_blk, FDEV(i).end_blk, 3847 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 3848 "Host-aware" : "Host-managed"); 3849 continue; 3850 } 3851 #endif 3852 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x", 3853 i, FDEV(i).path, 3854 FDEV(i).total_segments, 3855 FDEV(i).start_blk, FDEV(i).end_blk); 3856 } 3857 f2fs_info(sbi, 3858 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi)); 3859 return 0; 3860 } 3861 3862 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi) 3863 { 3864 #ifdef CONFIG_UNICODE 3865 if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) { 3866 const struct f2fs_sb_encodings *encoding_info; 3867 struct unicode_map *encoding; 3868 __u16 encoding_flags; 3869 3870 encoding_info = f2fs_sb_read_encoding(sbi->raw_super); 3871 if (!encoding_info) { 3872 f2fs_err(sbi, 3873 "Encoding requested by superblock is unknown"); 3874 return -EINVAL; 3875 } 3876 3877 encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags); 3878 encoding = utf8_load(encoding_info->version); 3879 if (IS_ERR(encoding)) { 3880 f2fs_err(sbi, 3881 "can't mount with superblock charset: %s-%u.%u.%u " 3882 "not supported by the kernel. flags: 0x%x.", 3883 encoding_info->name, 3884 unicode_major(encoding_info->version), 3885 unicode_minor(encoding_info->version), 3886 unicode_rev(encoding_info->version), 3887 encoding_flags); 3888 return PTR_ERR(encoding); 3889 } 3890 f2fs_info(sbi, "Using encoding defined by superblock: " 3891 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 3892 unicode_major(encoding_info->version), 3893 unicode_minor(encoding_info->version), 3894 unicode_rev(encoding_info->version), 3895 encoding_flags); 3896 3897 sbi->sb->s_encoding = encoding; 3898 sbi->sb->s_encoding_flags = encoding_flags; 3899 } 3900 #else 3901 if (f2fs_sb_has_casefold(sbi)) { 3902 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 3903 return -EINVAL; 3904 } 3905 #endif 3906 return 0; 3907 } 3908 3909 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 3910 { 3911 struct f2fs_sm_info *sm_i = SM_I(sbi); 3912 3913 /* adjust parameters according to the volume size */ 3914 if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) { 3915 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 3916 if (f2fs_block_unit_discard(sbi)) 3917 sm_i->dcc_info->discard_granularity = 1; 3918 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE; 3919 } 3920 3921 sbi->readdir_ra = 1; 3922 } 3923 3924 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 3925 { 3926 struct f2fs_sb_info *sbi; 3927 struct f2fs_super_block *raw_super; 3928 struct inode *root; 3929 int err; 3930 bool skip_recovery = false, need_fsck = false; 3931 char *options = NULL; 3932 int recovery, i, valid_super_block; 3933 struct curseg_info *seg_i; 3934 int retry_cnt = 1; 3935 3936 try_onemore: 3937 err = -EINVAL; 3938 raw_super = NULL; 3939 valid_super_block = -1; 3940 recovery = 0; 3941 3942 /* allocate memory for f2fs-specific super block info */ 3943 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 3944 if (!sbi) 3945 return -ENOMEM; 3946 3947 sbi->sb = sb; 3948 3949 /* Load the checksum driver */ 3950 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 3951 if (IS_ERR(sbi->s_chksum_driver)) { 3952 f2fs_err(sbi, "Cannot load crc32 driver."); 3953 err = PTR_ERR(sbi->s_chksum_driver); 3954 sbi->s_chksum_driver = NULL; 3955 goto free_sbi; 3956 } 3957 3958 /* set a block size */ 3959 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 3960 f2fs_err(sbi, "unable to set blocksize"); 3961 goto free_sbi; 3962 } 3963 3964 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 3965 &recovery); 3966 if (err) 3967 goto free_sbi; 3968 3969 sb->s_fs_info = sbi; 3970 sbi->raw_super = raw_super; 3971 3972 /* precompute checksum seed for metadata */ 3973 if (f2fs_sb_has_inode_chksum(sbi)) 3974 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 3975 sizeof(raw_super->uuid)); 3976 3977 default_options(sbi); 3978 /* parse mount options */ 3979 options = kstrdup((const char *)data, GFP_KERNEL); 3980 if (data && !options) { 3981 err = -ENOMEM; 3982 goto free_sb_buf; 3983 } 3984 3985 err = parse_options(sb, options, false); 3986 if (err) 3987 goto free_options; 3988 3989 sb->s_maxbytes = max_file_blocks(NULL) << 3990 le32_to_cpu(raw_super->log_blocksize); 3991 sb->s_max_links = F2FS_LINK_MAX; 3992 3993 err = f2fs_setup_casefold(sbi); 3994 if (err) 3995 goto free_options; 3996 3997 #ifdef CONFIG_QUOTA 3998 sb->dq_op = &f2fs_quota_operations; 3999 sb->s_qcop = &f2fs_quotactl_ops; 4000 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4001 4002 if (f2fs_sb_has_quota_ino(sbi)) { 4003 for (i = 0; i < MAXQUOTAS; i++) { 4004 if (f2fs_qf_ino(sbi->sb, i)) 4005 sbi->nquota_files++; 4006 } 4007 } 4008 #endif 4009 4010 sb->s_op = &f2fs_sops; 4011 #ifdef CONFIG_FS_ENCRYPTION 4012 sb->s_cop = &f2fs_cryptops; 4013 #endif 4014 #ifdef CONFIG_FS_VERITY 4015 sb->s_vop = &f2fs_verityops; 4016 #endif 4017 sb->s_xattr = f2fs_xattr_handlers; 4018 sb->s_export_op = &f2fs_export_ops; 4019 sb->s_magic = F2FS_SUPER_MAGIC; 4020 sb->s_time_gran = 1; 4021 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4022 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 4023 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 4024 sb->s_iflags |= SB_I_CGROUPWB; 4025 4026 /* init f2fs-specific super block info */ 4027 sbi->valid_super_block = valid_super_block; 4028 init_rwsem(&sbi->gc_lock); 4029 mutex_init(&sbi->writepages); 4030 init_rwsem(&sbi->cp_global_sem); 4031 init_rwsem(&sbi->node_write); 4032 init_rwsem(&sbi->node_change); 4033 4034 /* disallow all the data/node/meta page writes */ 4035 set_sbi_flag(sbi, SBI_POR_DOING); 4036 spin_lock_init(&sbi->stat_lock); 4037 4038 for (i = 0; i < NR_PAGE_TYPE; i++) { 4039 int n = (i == META) ? 1 : NR_TEMP_TYPE; 4040 int j; 4041 4042 sbi->write_io[i] = 4043 f2fs_kmalloc(sbi, 4044 array_size(n, 4045 sizeof(struct f2fs_bio_info)), 4046 GFP_KERNEL); 4047 if (!sbi->write_io[i]) { 4048 err = -ENOMEM; 4049 goto free_bio_info; 4050 } 4051 4052 for (j = HOT; j < n; j++) { 4053 init_rwsem(&sbi->write_io[i][j].io_rwsem); 4054 sbi->write_io[i][j].sbi = sbi; 4055 sbi->write_io[i][j].bio = NULL; 4056 spin_lock_init(&sbi->write_io[i][j].io_lock); 4057 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 4058 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list); 4059 init_rwsem(&sbi->write_io[i][j].bio_list_lock); 4060 } 4061 } 4062 4063 init_rwsem(&sbi->cp_rwsem); 4064 init_rwsem(&sbi->quota_sem); 4065 init_waitqueue_head(&sbi->cp_wait); 4066 init_sb_info(sbi); 4067 4068 err = f2fs_init_iostat(sbi); 4069 if (err) 4070 goto free_bio_info; 4071 4072 err = init_percpu_info(sbi); 4073 if (err) 4074 goto free_iostat; 4075 4076 if (F2FS_IO_ALIGNED(sbi)) { 4077 sbi->write_io_dummy = 4078 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); 4079 if (!sbi->write_io_dummy) { 4080 err = -ENOMEM; 4081 goto free_percpu; 4082 } 4083 } 4084 4085 /* init per sbi slab cache */ 4086 err = f2fs_init_xattr_caches(sbi); 4087 if (err) 4088 goto free_io_dummy; 4089 err = f2fs_init_page_array_cache(sbi); 4090 if (err) 4091 goto free_xattr_cache; 4092 4093 /* get an inode for meta space */ 4094 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 4095 if (IS_ERR(sbi->meta_inode)) { 4096 f2fs_err(sbi, "Failed to read F2FS meta data inode"); 4097 err = PTR_ERR(sbi->meta_inode); 4098 goto free_page_array_cache; 4099 } 4100 4101 err = f2fs_get_valid_checkpoint(sbi); 4102 if (err) { 4103 f2fs_err(sbi, "Failed to get valid F2FS checkpoint"); 4104 goto free_meta_inode; 4105 } 4106 4107 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 4108 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 4109 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 4110 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4111 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 4112 } 4113 4114 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG)) 4115 set_sbi_flag(sbi, SBI_NEED_FSCK); 4116 4117 /* Initialize device list */ 4118 err = f2fs_scan_devices(sbi); 4119 if (err) { 4120 f2fs_err(sbi, "Failed to find devices"); 4121 goto free_devices; 4122 } 4123 4124 err = f2fs_init_post_read_wq(sbi); 4125 if (err) { 4126 f2fs_err(sbi, "Failed to initialize post read workqueue"); 4127 goto free_devices; 4128 } 4129 4130 sbi->total_valid_node_count = 4131 le32_to_cpu(sbi->ckpt->valid_node_count); 4132 percpu_counter_set(&sbi->total_valid_inode_count, 4133 le32_to_cpu(sbi->ckpt->valid_inode_count)); 4134 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 4135 sbi->total_valid_block_count = 4136 le64_to_cpu(sbi->ckpt->valid_block_count); 4137 sbi->last_valid_block_count = sbi->total_valid_block_count; 4138 sbi->reserved_blocks = 0; 4139 sbi->current_reserved_blocks = 0; 4140 limit_reserve_root(sbi); 4141 adjust_unusable_cap_perc(sbi); 4142 4143 for (i = 0; i < NR_INODE_TYPE; i++) { 4144 INIT_LIST_HEAD(&sbi->inode_list[i]); 4145 spin_lock_init(&sbi->inode_lock[i]); 4146 } 4147 mutex_init(&sbi->flush_lock); 4148 4149 f2fs_init_extent_cache_info(sbi); 4150 4151 f2fs_init_ino_entry_info(sbi); 4152 4153 f2fs_init_fsync_node_info(sbi); 4154 4155 /* setup checkpoint request control and start checkpoint issue thread */ 4156 f2fs_init_ckpt_req_control(sbi); 4157 if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) && 4158 test_opt(sbi, MERGE_CHECKPOINT)) { 4159 err = f2fs_start_ckpt_thread(sbi); 4160 if (err) { 4161 f2fs_err(sbi, 4162 "Failed to start F2FS issue_checkpoint_thread (%d)", 4163 err); 4164 goto stop_ckpt_thread; 4165 } 4166 } 4167 4168 /* setup f2fs internal modules */ 4169 err = f2fs_build_segment_manager(sbi); 4170 if (err) { 4171 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)", 4172 err); 4173 goto free_sm; 4174 } 4175 err = f2fs_build_node_manager(sbi); 4176 if (err) { 4177 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)", 4178 err); 4179 goto free_nm; 4180 } 4181 4182 /* For write statistics */ 4183 sbi->sectors_written_start = f2fs_get_sectors_written(sbi); 4184 4185 /* Read accumulated write IO statistics if exists */ 4186 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 4187 if (__exist_node_summaries(sbi)) 4188 sbi->kbytes_written = 4189 le64_to_cpu(seg_i->journal->info.kbytes_written); 4190 4191 f2fs_build_gc_manager(sbi); 4192 4193 err = f2fs_build_stats(sbi); 4194 if (err) 4195 goto free_nm; 4196 4197 /* get an inode for node space */ 4198 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 4199 if (IS_ERR(sbi->node_inode)) { 4200 f2fs_err(sbi, "Failed to read node inode"); 4201 err = PTR_ERR(sbi->node_inode); 4202 goto free_stats; 4203 } 4204 4205 /* read root inode and dentry */ 4206 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 4207 if (IS_ERR(root)) { 4208 f2fs_err(sbi, "Failed to read root inode"); 4209 err = PTR_ERR(root); 4210 goto free_node_inode; 4211 } 4212 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 4213 !root->i_size || !root->i_nlink) { 4214 iput(root); 4215 err = -EINVAL; 4216 goto free_node_inode; 4217 } 4218 4219 sb->s_root = d_make_root(root); /* allocate root dentry */ 4220 if (!sb->s_root) { 4221 err = -ENOMEM; 4222 goto free_node_inode; 4223 } 4224 4225 err = f2fs_init_compress_inode(sbi); 4226 if (err) 4227 goto free_root_inode; 4228 4229 err = f2fs_register_sysfs(sbi); 4230 if (err) 4231 goto free_compress_inode; 4232 4233 #ifdef CONFIG_QUOTA 4234 /* Enable quota usage during mount */ 4235 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 4236 err = f2fs_enable_quotas(sb); 4237 if (err) 4238 f2fs_err(sbi, "Cannot turn on quotas: error %d", err); 4239 } 4240 #endif 4241 /* if there are any orphan inodes, free them */ 4242 err = f2fs_recover_orphan_inodes(sbi); 4243 if (err) 4244 goto free_meta; 4245 4246 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 4247 goto reset_checkpoint; 4248 4249 /* recover fsynced data */ 4250 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) && 4251 !test_opt(sbi, NORECOVERY)) { 4252 /* 4253 * mount should be failed, when device has readonly mode, and 4254 * previous checkpoint was not done by clean system shutdown. 4255 */ 4256 if (f2fs_hw_is_readonly(sbi)) { 4257 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4258 err = f2fs_recover_fsync_data(sbi, true); 4259 if (err > 0) { 4260 err = -EROFS; 4261 f2fs_err(sbi, "Need to recover fsync data, but " 4262 "write access unavailable, please try " 4263 "mount w/ disable_roll_forward or norecovery"); 4264 } 4265 if (err < 0) 4266 goto free_meta; 4267 } 4268 f2fs_info(sbi, "write access unavailable, skipping recovery"); 4269 goto reset_checkpoint; 4270 } 4271 4272 if (need_fsck) 4273 set_sbi_flag(sbi, SBI_NEED_FSCK); 4274 4275 if (skip_recovery) 4276 goto reset_checkpoint; 4277 4278 err = f2fs_recover_fsync_data(sbi, false); 4279 if (err < 0) { 4280 if (err != -ENOMEM) 4281 skip_recovery = true; 4282 need_fsck = true; 4283 f2fs_err(sbi, "Cannot recover all fsync data errno=%d", 4284 err); 4285 goto free_meta; 4286 } 4287 } else { 4288 err = f2fs_recover_fsync_data(sbi, true); 4289 4290 if (!f2fs_readonly(sb) && err > 0) { 4291 err = -EINVAL; 4292 f2fs_err(sbi, "Need to recover fsync data"); 4293 goto free_meta; 4294 } 4295 } 4296 4297 /* 4298 * If the f2fs is not readonly and fsync data recovery succeeds, 4299 * check zoned block devices' write pointer consistency. 4300 */ 4301 if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) { 4302 err = f2fs_check_write_pointer(sbi); 4303 if (err) 4304 goto free_meta; 4305 } 4306 4307 reset_checkpoint: 4308 f2fs_init_inmem_curseg(sbi); 4309 4310 /* f2fs_recover_fsync_data() cleared this already */ 4311 clear_sbi_flag(sbi, SBI_POR_DOING); 4312 4313 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 4314 err = f2fs_disable_checkpoint(sbi); 4315 if (err) 4316 goto sync_free_meta; 4317 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 4318 f2fs_enable_checkpoint(sbi); 4319 } 4320 4321 /* 4322 * If filesystem is not mounted as read-only then 4323 * do start the gc_thread. 4324 */ 4325 if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF || 4326 test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) { 4327 /* After POR, we can run background GC thread.*/ 4328 err = f2fs_start_gc_thread(sbi); 4329 if (err) 4330 goto sync_free_meta; 4331 } 4332 kvfree(options); 4333 4334 /* recover broken superblock */ 4335 if (recovery) { 4336 err = f2fs_commit_super(sbi, true); 4337 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d", 4338 sbi->valid_super_block ? 1 : 2, err); 4339 } 4340 4341 f2fs_join_shrinker(sbi); 4342 4343 f2fs_tuning_parameters(sbi); 4344 4345 f2fs_notice(sbi, "Mounted with checkpoint version = %llx", 4346 cur_cp_version(F2FS_CKPT(sbi))); 4347 f2fs_update_time(sbi, CP_TIME); 4348 f2fs_update_time(sbi, REQ_TIME); 4349 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4350 return 0; 4351 4352 sync_free_meta: 4353 /* safe to flush all the data */ 4354 sync_filesystem(sbi->sb); 4355 retry_cnt = 0; 4356 4357 free_meta: 4358 #ifdef CONFIG_QUOTA 4359 f2fs_truncate_quota_inode_pages(sb); 4360 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 4361 f2fs_quota_off_umount(sbi->sb); 4362 #endif 4363 /* 4364 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 4365 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 4366 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 4367 * falls into an infinite loop in f2fs_sync_meta_pages(). 4368 */ 4369 truncate_inode_pages_final(META_MAPPING(sbi)); 4370 /* evict some inodes being cached by GC */ 4371 evict_inodes(sb); 4372 f2fs_unregister_sysfs(sbi); 4373 free_compress_inode: 4374 f2fs_destroy_compress_inode(sbi); 4375 free_root_inode: 4376 dput(sb->s_root); 4377 sb->s_root = NULL; 4378 free_node_inode: 4379 f2fs_release_ino_entry(sbi, true); 4380 truncate_inode_pages_final(NODE_MAPPING(sbi)); 4381 iput(sbi->node_inode); 4382 sbi->node_inode = NULL; 4383 free_stats: 4384 f2fs_destroy_stats(sbi); 4385 free_nm: 4386 /* stop discard thread before destroying node manager */ 4387 f2fs_stop_discard_thread(sbi); 4388 f2fs_destroy_node_manager(sbi); 4389 free_sm: 4390 f2fs_destroy_segment_manager(sbi); 4391 f2fs_destroy_post_read_wq(sbi); 4392 stop_ckpt_thread: 4393 f2fs_stop_ckpt_thread(sbi); 4394 free_devices: 4395 destroy_device_list(sbi); 4396 kvfree(sbi->ckpt); 4397 free_meta_inode: 4398 make_bad_inode(sbi->meta_inode); 4399 iput(sbi->meta_inode); 4400 sbi->meta_inode = NULL; 4401 free_page_array_cache: 4402 f2fs_destroy_page_array_cache(sbi); 4403 free_xattr_cache: 4404 f2fs_destroy_xattr_caches(sbi); 4405 free_io_dummy: 4406 mempool_destroy(sbi->write_io_dummy); 4407 free_percpu: 4408 destroy_percpu_info(sbi); 4409 free_iostat: 4410 f2fs_destroy_iostat(sbi); 4411 free_bio_info: 4412 for (i = 0; i < NR_PAGE_TYPE; i++) 4413 kvfree(sbi->write_io[i]); 4414 4415 #ifdef CONFIG_UNICODE 4416 utf8_unload(sb->s_encoding); 4417 sb->s_encoding = NULL; 4418 #endif 4419 free_options: 4420 #ifdef CONFIG_QUOTA 4421 for (i = 0; i < MAXQUOTAS; i++) 4422 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 4423 #endif 4424 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 4425 kvfree(options); 4426 free_sb_buf: 4427 kfree(raw_super); 4428 free_sbi: 4429 if (sbi->s_chksum_driver) 4430 crypto_free_shash(sbi->s_chksum_driver); 4431 kfree(sbi); 4432 4433 /* give only one another chance */ 4434 if (retry_cnt > 0 && skip_recovery) { 4435 retry_cnt--; 4436 shrink_dcache_sb(sb); 4437 goto try_onemore; 4438 } 4439 return err; 4440 } 4441 4442 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 4443 const char *dev_name, void *data) 4444 { 4445 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 4446 } 4447 4448 static void kill_f2fs_super(struct super_block *sb) 4449 { 4450 if (sb->s_root) { 4451 struct f2fs_sb_info *sbi = F2FS_SB(sb); 4452 4453 set_sbi_flag(sbi, SBI_IS_CLOSE); 4454 f2fs_stop_gc_thread(sbi); 4455 f2fs_stop_discard_thread(sbi); 4456 4457 #ifdef CONFIG_F2FS_FS_COMPRESSION 4458 /* 4459 * latter evict_inode() can bypass checking and invalidating 4460 * compress inode cache. 4461 */ 4462 if (test_opt(sbi, COMPRESS_CACHE)) 4463 truncate_inode_pages_final(COMPRESS_MAPPING(sbi)); 4464 #endif 4465 4466 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 4467 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4468 struct cp_control cpc = { 4469 .reason = CP_UMOUNT, 4470 }; 4471 f2fs_write_checkpoint(sbi, &cpc); 4472 } 4473 4474 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 4475 sb->s_flags &= ~SB_RDONLY; 4476 } 4477 kill_block_super(sb); 4478 } 4479 4480 static struct file_system_type f2fs_fs_type = { 4481 .owner = THIS_MODULE, 4482 .name = "f2fs", 4483 .mount = f2fs_mount, 4484 .kill_sb = kill_f2fs_super, 4485 .fs_flags = FS_REQUIRES_DEV, 4486 }; 4487 MODULE_ALIAS_FS("f2fs"); 4488 4489 static int __init init_inodecache(void) 4490 { 4491 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 4492 sizeof(struct f2fs_inode_info), 0, 4493 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 4494 if (!f2fs_inode_cachep) 4495 return -ENOMEM; 4496 return 0; 4497 } 4498 4499 static void destroy_inodecache(void) 4500 { 4501 /* 4502 * Make sure all delayed rcu free inodes are flushed before we 4503 * destroy cache. 4504 */ 4505 rcu_barrier(); 4506 kmem_cache_destroy(f2fs_inode_cachep); 4507 } 4508 4509 static int __init init_f2fs_fs(void) 4510 { 4511 int err; 4512 4513 if (PAGE_SIZE != F2FS_BLKSIZE) { 4514 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n", 4515 PAGE_SIZE, F2FS_BLKSIZE); 4516 return -EINVAL; 4517 } 4518 4519 err = init_inodecache(); 4520 if (err) 4521 goto fail; 4522 err = f2fs_create_node_manager_caches(); 4523 if (err) 4524 goto free_inodecache; 4525 err = f2fs_create_segment_manager_caches(); 4526 if (err) 4527 goto free_node_manager_caches; 4528 err = f2fs_create_checkpoint_caches(); 4529 if (err) 4530 goto free_segment_manager_caches; 4531 err = f2fs_create_recovery_cache(); 4532 if (err) 4533 goto free_checkpoint_caches; 4534 err = f2fs_create_extent_cache(); 4535 if (err) 4536 goto free_recovery_cache; 4537 err = f2fs_create_garbage_collection_cache(); 4538 if (err) 4539 goto free_extent_cache; 4540 err = f2fs_init_sysfs(); 4541 if (err) 4542 goto free_garbage_collection_cache; 4543 err = register_shrinker(&f2fs_shrinker_info); 4544 if (err) 4545 goto free_sysfs; 4546 err = register_filesystem(&f2fs_fs_type); 4547 if (err) 4548 goto free_shrinker; 4549 f2fs_create_root_stats(); 4550 err = f2fs_init_post_read_processing(); 4551 if (err) 4552 goto free_root_stats; 4553 err = f2fs_init_iostat_processing(); 4554 if (err) 4555 goto free_post_read; 4556 err = f2fs_init_bio_entry_cache(); 4557 if (err) 4558 goto free_iostat; 4559 err = f2fs_init_bioset(); 4560 if (err) 4561 goto free_bio_enrty_cache; 4562 err = f2fs_init_compress_mempool(); 4563 if (err) 4564 goto free_bioset; 4565 err = f2fs_init_compress_cache(); 4566 if (err) 4567 goto free_compress_mempool; 4568 err = f2fs_create_casefold_cache(); 4569 if (err) 4570 goto free_compress_cache; 4571 return 0; 4572 free_compress_cache: 4573 f2fs_destroy_compress_cache(); 4574 free_compress_mempool: 4575 f2fs_destroy_compress_mempool(); 4576 free_bioset: 4577 f2fs_destroy_bioset(); 4578 free_bio_enrty_cache: 4579 f2fs_destroy_bio_entry_cache(); 4580 free_iostat: 4581 f2fs_destroy_iostat_processing(); 4582 free_post_read: 4583 f2fs_destroy_post_read_processing(); 4584 free_root_stats: 4585 f2fs_destroy_root_stats(); 4586 unregister_filesystem(&f2fs_fs_type); 4587 free_shrinker: 4588 unregister_shrinker(&f2fs_shrinker_info); 4589 free_sysfs: 4590 f2fs_exit_sysfs(); 4591 free_garbage_collection_cache: 4592 f2fs_destroy_garbage_collection_cache(); 4593 free_extent_cache: 4594 f2fs_destroy_extent_cache(); 4595 free_recovery_cache: 4596 f2fs_destroy_recovery_cache(); 4597 free_checkpoint_caches: 4598 f2fs_destroy_checkpoint_caches(); 4599 free_segment_manager_caches: 4600 f2fs_destroy_segment_manager_caches(); 4601 free_node_manager_caches: 4602 f2fs_destroy_node_manager_caches(); 4603 free_inodecache: 4604 destroy_inodecache(); 4605 fail: 4606 return err; 4607 } 4608 4609 static void __exit exit_f2fs_fs(void) 4610 { 4611 f2fs_destroy_casefold_cache(); 4612 f2fs_destroy_compress_cache(); 4613 f2fs_destroy_compress_mempool(); 4614 f2fs_destroy_bioset(); 4615 f2fs_destroy_bio_entry_cache(); 4616 f2fs_destroy_iostat_processing(); 4617 f2fs_destroy_post_read_processing(); 4618 f2fs_destroy_root_stats(); 4619 unregister_filesystem(&f2fs_fs_type); 4620 unregister_shrinker(&f2fs_shrinker_info); 4621 f2fs_exit_sysfs(); 4622 f2fs_destroy_garbage_collection_cache(); 4623 f2fs_destroy_extent_cache(); 4624 f2fs_destroy_recovery_cache(); 4625 f2fs_destroy_checkpoint_caches(); 4626 f2fs_destroy_segment_manager_caches(); 4627 f2fs_destroy_node_manager_caches(); 4628 destroy_inodecache(); 4629 } 4630 4631 module_init(init_f2fs_fs) 4632 module_exit(exit_f2fs_fs) 4633 4634 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 4635 MODULE_DESCRIPTION("Flash Friendly File System"); 4636 MODULE_LICENSE("GPL"); 4637 MODULE_SOFTDEP("pre: crc32"); 4638 4639