1 /* 2 * fs/f2fs/super.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/fs.h> 14 #include <linux/statfs.h> 15 #include <linux/buffer_head.h> 16 #include <linux/backing-dev.h> 17 #include <linux/kthread.h> 18 #include <linux/parser.h> 19 #include <linux/mount.h> 20 #include <linux/seq_file.h> 21 #include <linux/proc_fs.h> 22 #include <linux/random.h> 23 #include <linux/exportfs.h> 24 #include <linux/blkdev.h> 25 #include <linux/f2fs_fs.h> 26 #include <linux/sysfs.h> 27 28 #include "f2fs.h" 29 #include "node.h" 30 #include "segment.h" 31 #include "xattr.h" 32 #include "gc.h" 33 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/f2fs.h> 36 37 static struct proc_dir_entry *f2fs_proc_root; 38 static struct kmem_cache *f2fs_inode_cachep; 39 static struct kset *f2fs_kset; 40 41 enum { 42 Opt_gc_background, 43 Opt_disable_roll_forward, 44 Opt_discard, 45 Opt_noheap, 46 Opt_user_xattr, 47 Opt_nouser_xattr, 48 Opt_acl, 49 Opt_noacl, 50 Opt_active_logs, 51 Opt_disable_ext_identify, 52 Opt_inline_xattr, 53 Opt_inline_data, 54 Opt_flush_merge, 55 Opt_nobarrier, 56 Opt_err, 57 }; 58 59 static match_table_t f2fs_tokens = { 60 {Opt_gc_background, "background_gc=%s"}, 61 {Opt_disable_roll_forward, "disable_roll_forward"}, 62 {Opt_discard, "discard"}, 63 {Opt_noheap, "no_heap"}, 64 {Opt_user_xattr, "user_xattr"}, 65 {Opt_nouser_xattr, "nouser_xattr"}, 66 {Opt_acl, "acl"}, 67 {Opt_noacl, "noacl"}, 68 {Opt_active_logs, "active_logs=%u"}, 69 {Opt_disable_ext_identify, "disable_ext_identify"}, 70 {Opt_inline_xattr, "inline_xattr"}, 71 {Opt_inline_data, "inline_data"}, 72 {Opt_flush_merge, "flush_merge"}, 73 {Opt_nobarrier, "nobarrier"}, 74 {Opt_err, NULL}, 75 }; 76 77 /* Sysfs support for f2fs */ 78 enum { 79 GC_THREAD, /* struct f2fs_gc_thread */ 80 SM_INFO, /* struct f2fs_sm_info */ 81 NM_INFO, /* struct f2fs_nm_info */ 82 F2FS_SBI, /* struct f2fs_sb_info */ 83 }; 84 85 struct f2fs_attr { 86 struct attribute attr; 87 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *); 88 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *, 89 const char *, size_t); 90 int struct_type; 91 int offset; 92 }; 93 94 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type) 95 { 96 if (struct_type == GC_THREAD) 97 return (unsigned char *)sbi->gc_thread; 98 else if (struct_type == SM_INFO) 99 return (unsigned char *)SM_I(sbi); 100 else if (struct_type == NM_INFO) 101 return (unsigned char *)NM_I(sbi); 102 else if (struct_type == F2FS_SBI) 103 return (unsigned char *)sbi; 104 return NULL; 105 } 106 107 static ssize_t f2fs_sbi_show(struct f2fs_attr *a, 108 struct f2fs_sb_info *sbi, char *buf) 109 { 110 unsigned char *ptr = NULL; 111 unsigned int *ui; 112 113 ptr = __struct_ptr(sbi, a->struct_type); 114 if (!ptr) 115 return -EINVAL; 116 117 ui = (unsigned int *)(ptr + a->offset); 118 119 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 120 } 121 122 static ssize_t f2fs_sbi_store(struct f2fs_attr *a, 123 struct f2fs_sb_info *sbi, 124 const char *buf, size_t count) 125 { 126 unsigned char *ptr; 127 unsigned long t; 128 unsigned int *ui; 129 ssize_t ret; 130 131 ptr = __struct_ptr(sbi, a->struct_type); 132 if (!ptr) 133 return -EINVAL; 134 135 ui = (unsigned int *)(ptr + a->offset); 136 137 ret = kstrtoul(skip_spaces(buf), 0, &t); 138 if (ret < 0) 139 return ret; 140 *ui = t; 141 return count; 142 } 143 144 static ssize_t f2fs_attr_show(struct kobject *kobj, 145 struct attribute *attr, char *buf) 146 { 147 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 148 s_kobj); 149 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 150 151 return a->show ? a->show(a, sbi, buf) : 0; 152 } 153 154 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr, 155 const char *buf, size_t len) 156 { 157 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 158 s_kobj); 159 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 160 161 return a->store ? a->store(a, sbi, buf, len) : 0; 162 } 163 164 static void f2fs_sb_release(struct kobject *kobj) 165 { 166 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 167 s_kobj); 168 complete(&sbi->s_kobj_unregister); 169 } 170 171 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \ 172 static struct f2fs_attr f2fs_attr_##_name = { \ 173 .attr = {.name = __stringify(_name), .mode = _mode }, \ 174 .show = _show, \ 175 .store = _store, \ 176 .struct_type = _struct_type, \ 177 .offset = _offset \ 178 } 179 180 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \ 181 F2FS_ATTR_OFFSET(struct_type, name, 0644, \ 182 f2fs_sbi_show, f2fs_sbi_store, \ 183 offsetof(struct struct_name, elname)) 184 185 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time); 186 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time); 187 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time); 188 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle); 189 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments); 190 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards); 191 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy); 192 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util); 193 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh); 194 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search); 195 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level); 196 197 #define ATTR_LIST(name) (&f2fs_attr_##name.attr) 198 static struct attribute *f2fs_attrs[] = { 199 ATTR_LIST(gc_min_sleep_time), 200 ATTR_LIST(gc_max_sleep_time), 201 ATTR_LIST(gc_no_gc_sleep_time), 202 ATTR_LIST(gc_idle), 203 ATTR_LIST(reclaim_segments), 204 ATTR_LIST(max_small_discards), 205 ATTR_LIST(ipu_policy), 206 ATTR_LIST(min_ipu_util), 207 ATTR_LIST(max_victim_search), 208 ATTR_LIST(dir_level), 209 ATTR_LIST(ram_thresh), 210 NULL, 211 }; 212 213 static const struct sysfs_ops f2fs_attr_ops = { 214 .show = f2fs_attr_show, 215 .store = f2fs_attr_store, 216 }; 217 218 static struct kobj_type f2fs_ktype = { 219 .default_attrs = f2fs_attrs, 220 .sysfs_ops = &f2fs_attr_ops, 221 .release = f2fs_sb_release, 222 }; 223 224 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) 225 { 226 struct va_format vaf; 227 va_list args; 228 229 va_start(args, fmt); 230 vaf.fmt = fmt; 231 vaf.va = &args; 232 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); 233 va_end(args); 234 } 235 236 static void init_once(void *foo) 237 { 238 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 239 240 inode_init_once(&fi->vfs_inode); 241 } 242 243 static int parse_options(struct super_block *sb, char *options) 244 { 245 struct f2fs_sb_info *sbi = F2FS_SB(sb); 246 substring_t args[MAX_OPT_ARGS]; 247 char *p, *name; 248 int arg = 0; 249 250 if (!options) 251 return 0; 252 253 while ((p = strsep(&options, ",")) != NULL) { 254 int token; 255 if (!*p) 256 continue; 257 /* 258 * Initialize args struct so we know whether arg was 259 * found; some options take optional arguments. 260 */ 261 args[0].to = args[0].from = NULL; 262 token = match_token(p, f2fs_tokens, args); 263 264 switch (token) { 265 case Opt_gc_background: 266 name = match_strdup(&args[0]); 267 268 if (!name) 269 return -ENOMEM; 270 if (strlen(name) == 2 && !strncmp(name, "on", 2)) 271 set_opt(sbi, BG_GC); 272 else if (strlen(name) == 3 && !strncmp(name, "off", 3)) 273 clear_opt(sbi, BG_GC); 274 else { 275 kfree(name); 276 return -EINVAL; 277 } 278 kfree(name); 279 break; 280 case Opt_disable_roll_forward: 281 set_opt(sbi, DISABLE_ROLL_FORWARD); 282 break; 283 case Opt_discard: 284 set_opt(sbi, DISCARD); 285 break; 286 case Opt_noheap: 287 set_opt(sbi, NOHEAP); 288 break; 289 #ifdef CONFIG_F2FS_FS_XATTR 290 case Opt_user_xattr: 291 set_opt(sbi, XATTR_USER); 292 break; 293 case Opt_nouser_xattr: 294 clear_opt(sbi, XATTR_USER); 295 break; 296 case Opt_inline_xattr: 297 set_opt(sbi, INLINE_XATTR); 298 break; 299 #else 300 case Opt_user_xattr: 301 f2fs_msg(sb, KERN_INFO, 302 "user_xattr options not supported"); 303 break; 304 case Opt_nouser_xattr: 305 f2fs_msg(sb, KERN_INFO, 306 "nouser_xattr options not supported"); 307 break; 308 case Opt_inline_xattr: 309 f2fs_msg(sb, KERN_INFO, 310 "inline_xattr options not supported"); 311 break; 312 #endif 313 #ifdef CONFIG_F2FS_FS_POSIX_ACL 314 case Opt_acl: 315 set_opt(sbi, POSIX_ACL); 316 break; 317 case Opt_noacl: 318 clear_opt(sbi, POSIX_ACL); 319 break; 320 #else 321 case Opt_acl: 322 f2fs_msg(sb, KERN_INFO, "acl options not supported"); 323 break; 324 case Opt_noacl: 325 f2fs_msg(sb, KERN_INFO, "noacl options not supported"); 326 break; 327 #endif 328 case Opt_active_logs: 329 if (args->from && match_int(args, &arg)) 330 return -EINVAL; 331 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 332 return -EINVAL; 333 sbi->active_logs = arg; 334 break; 335 case Opt_disable_ext_identify: 336 set_opt(sbi, DISABLE_EXT_IDENTIFY); 337 break; 338 case Opt_inline_data: 339 set_opt(sbi, INLINE_DATA); 340 break; 341 case Opt_flush_merge: 342 set_opt(sbi, FLUSH_MERGE); 343 break; 344 case Opt_nobarrier: 345 set_opt(sbi, NOBARRIER); 346 break; 347 default: 348 f2fs_msg(sb, KERN_ERR, 349 "Unrecognized mount option \"%s\" or missing value", 350 p); 351 return -EINVAL; 352 } 353 } 354 return 0; 355 } 356 357 static struct inode *f2fs_alloc_inode(struct super_block *sb) 358 { 359 struct f2fs_inode_info *fi; 360 361 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 362 if (!fi) 363 return NULL; 364 365 init_once((void *) fi); 366 367 /* Initialize f2fs-specific inode info */ 368 fi->vfs_inode.i_version = 1; 369 atomic_set(&fi->dirty_dents, 0); 370 fi->i_current_depth = 1; 371 fi->i_advise = 0; 372 rwlock_init(&fi->ext.ext_lock); 373 init_rwsem(&fi->i_sem); 374 375 set_inode_flag(fi, FI_NEW_INODE); 376 377 if (test_opt(F2FS_SB(sb), INLINE_XATTR)) 378 set_inode_flag(fi, FI_INLINE_XATTR); 379 380 /* Will be used by directory only */ 381 fi->i_dir_level = F2FS_SB(sb)->dir_level; 382 383 return &fi->vfs_inode; 384 } 385 386 static int f2fs_drop_inode(struct inode *inode) 387 { 388 /* 389 * This is to avoid a deadlock condition like below. 390 * writeback_single_inode(inode) 391 * - f2fs_write_data_page 392 * - f2fs_gc -> iput -> evict 393 * - inode_wait_for_writeback(inode) 394 */ 395 if (!inode_unhashed(inode) && inode->i_state & I_SYNC) 396 return 0; 397 return generic_drop_inode(inode); 398 } 399 400 /* 401 * f2fs_dirty_inode() is called from __mark_inode_dirty() 402 * 403 * We should call set_dirty_inode to write the dirty inode through write_inode. 404 */ 405 static void f2fs_dirty_inode(struct inode *inode, int flags) 406 { 407 set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE); 408 } 409 410 static void f2fs_i_callback(struct rcu_head *head) 411 { 412 struct inode *inode = container_of(head, struct inode, i_rcu); 413 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 414 } 415 416 static void f2fs_destroy_inode(struct inode *inode) 417 { 418 call_rcu(&inode->i_rcu, f2fs_i_callback); 419 } 420 421 static void f2fs_put_super(struct super_block *sb) 422 { 423 struct f2fs_sb_info *sbi = F2FS_SB(sb); 424 425 if (sbi->s_proc) { 426 remove_proc_entry("segment_info", sbi->s_proc); 427 remove_proc_entry(sb->s_id, f2fs_proc_root); 428 } 429 kobject_del(&sbi->s_kobj); 430 431 f2fs_destroy_stats(sbi); 432 stop_gc_thread(sbi); 433 434 /* We don't need to do checkpoint when it's clean */ 435 if (sbi->s_dirty && get_pages(sbi, F2FS_DIRTY_NODES)) 436 write_checkpoint(sbi, true); 437 438 iput(sbi->node_inode); 439 iput(sbi->meta_inode); 440 441 /* destroy f2fs internal modules */ 442 destroy_node_manager(sbi); 443 destroy_segment_manager(sbi); 444 445 kfree(sbi->ckpt); 446 kobject_put(&sbi->s_kobj); 447 wait_for_completion(&sbi->s_kobj_unregister); 448 449 sb->s_fs_info = NULL; 450 brelse(sbi->raw_super_buf); 451 kfree(sbi); 452 } 453 454 int f2fs_sync_fs(struct super_block *sb, int sync) 455 { 456 struct f2fs_sb_info *sbi = F2FS_SB(sb); 457 458 trace_f2fs_sync_fs(sb, sync); 459 460 if (!sbi->s_dirty && !get_pages(sbi, F2FS_DIRTY_NODES)) 461 return 0; 462 463 if (sync) { 464 mutex_lock(&sbi->gc_mutex); 465 write_checkpoint(sbi, false); 466 mutex_unlock(&sbi->gc_mutex); 467 } else { 468 f2fs_balance_fs(sbi); 469 } 470 471 return 0; 472 } 473 474 static int f2fs_freeze(struct super_block *sb) 475 { 476 int err; 477 478 if (f2fs_readonly(sb)) 479 return 0; 480 481 err = f2fs_sync_fs(sb, 1); 482 return err; 483 } 484 485 static int f2fs_unfreeze(struct super_block *sb) 486 { 487 return 0; 488 } 489 490 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 491 { 492 struct super_block *sb = dentry->d_sb; 493 struct f2fs_sb_info *sbi = F2FS_SB(sb); 494 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 495 block_t total_count, user_block_count, start_count, ovp_count; 496 497 total_count = le64_to_cpu(sbi->raw_super->block_count); 498 user_block_count = sbi->user_block_count; 499 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 500 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg; 501 buf->f_type = F2FS_SUPER_MAGIC; 502 buf->f_bsize = sbi->blocksize; 503 504 buf->f_blocks = total_count - start_count; 505 buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count; 506 buf->f_bavail = user_block_count - valid_user_blocks(sbi); 507 508 buf->f_files = sbi->total_node_count; 509 buf->f_ffree = sbi->total_node_count - valid_inode_count(sbi); 510 511 buf->f_namelen = F2FS_NAME_LEN; 512 buf->f_fsid.val[0] = (u32)id; 513 buf->f_fsid.val[1] = (u32)(id >> 32); 514 515 return 0; 516 } 517 518 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 519 { 520 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 521 522 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) 523 seq_printf(seq, ",background_gc=%s", "on"); 524 else 525 seq_printf(seq, ",background_gc=%s", "off"); 526 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 527 seq_puts(seq, ",disable_roll_forward"); 528 if (test_opt(sbi, DISCARD)) 529 seq_puts(seq, ",discard"); 530 if (test_opt(sbi, NOHEAP)) 531 seq_puts(seq, ",no_heap_alloc"); 532 #ifdef CONFIG_F2FS_FS_XATTR 533 if (test_opt(sbi, XATTR_USER)) 534 seq_puts(seq, ",user_xattr"); 535 else 536 seq_puts(seq, ",nouser_xattr"); 537 if (test_opt(sbi, INLINE_XATTR)) 538 seq_puts(seq, ",inline_xattr"); 539 #endif 540 #ifdef CONFIG_F2FS_FS_POSIX_ACL 541 if (test_opt(sbi, POSIX_ACL)) 542 seq_puts(seq, ",acl"); 543 else 544 seq_puts(seq, ",noacl"); 545 #endif 546 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 547 seq_puts(seq, ",disable_ext_identify"); 548 if (test_opt(sbi, INLINE_DATA)) 549 seq_puts(seq, ",inline_data"); 550 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 551 seq_puts(seq, ",flush_merge"); 552 if (test_opt(sbi, NOBARRIER)) 553 seq_puts(seq, ",nobarrier"); 554 seq_printf(seq, ",active_logs=%u", sbi->active_logs); 555 556 return 0; 557 } 558 559 static int segment_info_seq_show(struct seq_file *seq, void *offset) 560 { 561 struct super_block *sb = seq->private; 562 struct f2fs_sb_info *sbi = F2FS_SB(sb); 563 unsigned int total_segs = 564 le32_to_cpu(sbi->raw_super->segment_count_main); 565 int i; 566 567 seq_puts(seq, "format: segment_type|valid_blocks\n" 568 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n"); 569 570 for (i = 0; i < total_segs; i++) { 571 struct seg_entry *se = get_seg_entry(sbi, i); 572 573 if ((i % 10) == 0) 574 seq_printf(seq, "%-5d", i); 575 seq_printf(seq, "%d|%-3u", se->type, 576 get_valid_blocks(sbi, i, 1)); 577 if ((i % 10) == 9 || i == (total_segs - 1)) 578 seq_putc(seq, '\n'); 579 else 580 seq_putc(seq, ' '); 581 } 582 583 return 0; 584 } 585 586 static int segment_info_open_fs(struct inode *inode, struct file *file) 587 { 588 return single_open(file, segment_info_seq_show, PDE_DATA(inode)); 589 } 590 591 static const struct file_operations f2fs_seq_segment_info_fops = { 592 .owner = THIS_MODULE, 593 .open = segment_info_open_fs, 594 .read = seq_read, 595 .llseek = seq_lseek, 596 .release = single_release, 597 }; 598 599 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 600 { 601 struct f2fs_sb_info *sbi = F2FS_SB(sb); 602 struct f2fs_mount_info org_mount_opt; 603 int err, active_logs; 604 bool need_restart_gc = false; 605 bool need_stop_gc = false; 606 607 sync_filesystem(sb); 608 609 /* 610 * Save the old mount options in case we 611 * need to restore them. 612 */ 613 org_mount_opt = sbi->mount_opt; 614 active_logs = sbi->active_logs; 615 616 /* parse mount options */ 617 err = parse_options(sb, data); 618 if (err) 619 goto restore_opts; 620 621 /* 622 * Previous and new state of filesystem is RO, 623 * so skip checking GC and FLUSH_MERGE conditions. 624 */ 625 if (f2fs_readonly(sb) && (*flags & MS_RDONLY)) 626 goto skip; 627 628 /* 629 * We stop the GC thread if FS is mounted as RO 630 * or if background_gc = off is passed in mount 631 * option. Also sync the filesystem. 632 */ 633 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) { 634 if (sbi->gc_thread) { 635 stop_gc_thread(sbi); 636 f2fs_sync_fs(sb, 1); 637 need_restart_gc = true; 638 } 639 } else if (test_opt(sbi, BG_GC) && !sbi->gc_thread) { 640 err = start_gc_thread(sbi); 641 if (err) 642 goto restore_opts; 643 need_stop_gc = true; 644 } 645 646 /* 647 * We stop issue flush thread if FS is mounted as RO 648 * or if flush_merge is not passed in mount option. 649 */ 650 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 651 destroy_flush_cmd_control(sbi); 652 } else if (test_opt(sbi, FLUSH_MERGE) && !SM_I(sbi)->cmd_control_info) { 653 err = create_flush_cmd_control(sbi); 654 if (err) 655 goto restore_gc; 656 } 657 skip: 658 /* Update the POSIXACL Flag */ 659 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 660 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 661 return 0; 662 restore_gc: 663 if (need_restart_gc) { 664 if (start_gc_thread(sbi)) 665 f2fs_msg(sbi->sb, KERN_WARNING, 666 "background gc thread is stop"); 667 } else if (need_stop_gc) { 668 stop_gc_thread(sbi); 669 } 670 restore_opts: 671 sbi->mount_opt = org_mount_opt; 672 sbi->active_logs = active_logs; 673 return err; 674 } 675 676 static struct super_operations f2fs_sops = { 677 .alloc_inode = f2fs_alloc_inode, 678 .drop_inode = f2fs_drop_inode, 679 .destroy_inode = f2fs_destroy_inode, 680 .write_inode = f2fs_write_inode, 681 .dirty_inode = f2fs_dirty_inode, 682 .show_options = f2fs_show_options, 683 .evict_inode = f2fs_evict_inode, 684 .put_super = f2fs_put_super, 685 .sync_fs = f2fs_sync_fs, 686 .freeze_fs = f2fs_freeze, 687 .unfreeze_fs = f2fs_unfreeze, 688 .statfs = f2fs_statfs, 689 .remount_fs = f2fs_remount, 690 }; 691 692 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 693 u64 ino, u32 generation) 694 { 695 struct f2fs_sb_info *sbi = F2FS_SB(sb); 696 struct inode *inode; 697 698 if (check_nid_range(sbi, ino)) 699 return ERR_PTR(-ESTALE); 700 701 /* 702 * f2fs_iget isn't quite right if the inode is currently unallocated! 703 * However f2fs_iget currently does appropriate checks to handle stale 704 * inodes so everything is OK. 705 */ 706 inode = f2fs_iget(sb, ino); 707 if (IS_ERR(inode)) 708 return ERR_CAST(inode); 709 if (unlikely(generation && inode->i_generation != generation)) { 710 /* we didn't find the right inode.. */ 711 iput(inode); 712 return ERR_PTR(-ESTALE); 713 } 714 return inode; 715 } 716 717 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 718 int fh_len, int fh_type) 719 { 720 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 721 f2fs_nfs_get_inode); 722 } 723 724 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 725 int fh_len, int fh_type) 726 { 727 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 728 f2fs_nfs_get_inode); 729 } 730 731 static const struct export_operations f2fs_export_ops = { 732 .fh_to_dentry = f2fs_fh_to_dentry, 733 .fh_to_parent = f2fs_fh_to_parent, 734 .get_parent = f2fs_get_parent, 735 }; 736 737 static loff_t max_file_size(unsigned bits) 738 { 739 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS); 740 loff_t leaf_count = ADDRS_PER_BLOCK; 741 742 /* two direct node blocks */ 743 result += (leaf_count * 2); 744 745 /* two indirect node blocks */ 746 leaf_count *= NIDS_PER_BLOCK; 747 result += (leaf_count * 2); 748 749 /* one double indirect node block */ 750 leaf_count *= NIDS_PER_BLOCK; 751 result += leaf_count; 752 753 result <<= bits; 754 return result; 755 } 756 757 static int sanity_check_raw_super(struct super_block *sb, 758 struct f2fs_super_block *raw_super) 759 { 760 unsigned int blocksize; 761 762 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { 763 f2fs_msg(sb, KERN_INFO, 764 "Magic Mismatch, valid(0x%x) - read(0x%x)", 765 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 766 return 1; 767 } 768 769 /* Currently, support only 4KB page cache size */ 770 if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) { 771 f2fs_msg(sb, KERN_INFO, 772 "Invalid page_cache_size (%lu), supports only 4KB\n", 773 PAGE_CACHE_SIZE); 774 return 1; 775 } 776 777 /* Currently, support only 4KB block size */ 778 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 779 if (blocksize != F2FS_BLKSIZE) { 780 f2fs_msg(sb, KERN_INFO, 781 "Invalid blocksize (%u), supports only 4KB\n", 782 blocksize); 783 return 1; 784 } 785 786 if (le32_to_cpu(raw_super->log_sectorsize) != 787 F2FS_LOG_SECTOR_SIZE) { 788 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize"); 789 return 1; 790 } 791 if (le32_to_cpu(raw_super->log_sectors_per_block) != 792 F2FS_LOG_SECTORS_PER_BLOCK) { 793 f2fs_msg(sb, KERN_INFO, "Invalid log sectors per block"); 794 return 1; 795 } 796 return 0; 797 } 798 799 static int sanity_check_ckpt(struct f2fs_sb_info *sbi) 800 { 801 unsigned int total, fsmeta; 802 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 803 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 804 805 total = le32_to_cpu(raw_super->segment_count); 806 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 807 fsmeta += le32_to_cpu(raw_super->segment_count_sit); 808 fsmeta += le32_to_cpu(raw_super->segment_count_nat); 809 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 810 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 811 812 if (unlikely(fsmeta >= total)) 813 return 1; 814 815 if (unlikely(is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) { 816 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); 817 return 1; 818 } 819 return 0; 820 } 821 822 static void init_sb_info(struct f2fs_sb_info *sbi) 823 { 824 struct f2fs_super_block *raw_super = sbi->raw_super; 825 int i; 826 827 sbi->log_sectors_per_block = 828 le32_to_cpu(raw_super->log_sectors_per_block); 829 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 830 sbi->blocksize = 1 << sbi->log_blocksize; 831 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 832 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 833 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 834 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 835 sbi->total_sections = le32_to_cpu(raw_super->section_count); 836 sbi->total_node_count = 837 (le32_to_cpu(raw_super->segment_count_nat) / 2) 838 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 839 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 840 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 841 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 842 sbi->cur_victim_sec = NULL_SECNO; 843 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 844 845 for (i = 0; i < NR_COUNT_TYPE; i++) 846 atomic_set(&sbi->nr_pages[i], 0); 847 848 sbi->dir_level = DEF_DIR_LEVEL; 849 } 850 851 /* 852 * Read f2fs raw super block. 853 * Because we have two copies of super block, so read the first one at first, 854 * if the first one is invalid, move to read the second one. 855 */ 856 static int read_raw_super_block(struct super_block *sb, 857 struct f2fs_super_block **raw_super, 858 struct buffer_head **raw_super_buf) 859 { 860 int block = 0; 861 862 retry: 863 *raw_super_buf = sb_bread(sb, block); 864 if (!*raw_super_buf) { 865 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock", 866 block + 1); 867 if (block == 0) { 868 block++; 869 goto retry; 870 } else { 871 return -EIO; 872 } 873 } 874 875 *raw_super = (struct f2fs_super_block *) 876 ((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET); 877 878 /* sanity checking of raw super */ 879 if (sanity_check_raw_super(sb, *raw_super)) { 880 brelse(*raw_super_buf); 881 f2fs_msg(sb, KERN_ERR, 882 "Can't find valid F2FS filesystem in %dth superblock", 883 block + 1); 884 if (block == 0) { 885 block++; 886 goto retry; 887 } else { 888 return -EINVAL; 889 } 890 } 891 892 return 0; 893 } 894 895 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 896 { 897 struct f2fs_sb_info *sbi; 898 struct f2fs_super_block *raw_super; 899 struct buffer_head *raw_super_buf; 900 struct inode *root; 901 long err = -EINVAL; 902 int i; 903 904 /* allocate memory for f2fs-specific super block info */ 905 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 906 if (!sbi) 907 return -ENOMEM; 908 909 /* set a block size */ 910 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 911 f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); 912 goto free_sbi; 913 } 914 915 err = read_raw_super_block(sb, &raw_super, &raw_super_buf); 916 if (err) 917 goto free_sbi; 918 919 sb->s_fs_info = sbi; 920 /* init some FS parameters */ 921 sbi->active_logs = NR_CURSEG_TYPE; 922 923 set_opt(sbi, BG_GC); 924 925 #ifdef CONFIG_F2FS_FS_XATTR 926 set_opt(sbi, XATTR_USER); 927 #endif 928 #ifdef CONFIG_F2FS_FS_POSIX_ACL 929 set_opt(sbi, POSIX_ACL); 930 #endif 931 /* parse mount options */ 932 err = parse_options(sb, (char *)data); 933 if (err) 934 goto free_sb_buf; 935 936 sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize)); 937 sb->s_max_links = F2FS_LINK_MAX; 938 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 939 940 sb->s_op = &f2fs_sops; 941 sb->s_xattr = f2fs_xattr_handlers; 942 sb->s_export_op = &f2fs_export_ops; 943 sb->s_magic = F2FS_SUPER_MAGIC; 944 sb->s_time_gran = 1; 945 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 946 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 947 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 948 949 /* init f2fs-specific super block info */ 950 sbi->sb = sb; 951 sbi->raw_super = raw_super; 952 sbi->raw_super_buf = raw_super_buf; 953 mutex_init(&sbi->gc_mutex); 954 mutex_init(&sbi->writepages); 955 mutex_init(&sbi->cp_mutex); 956 init_rwsem(&sbi->node_write); 957 sbi->por_doing = false; 958 spin_lock_init(&sbi->stat_lock); 959 960 init_rwsem(&sbi->read_io.io_rwsem); 961 sbi->read_io.sbi = sbi; 962 sbi->read_io.bio = NULL; 963 for (i = 0; i < NR_PAGE_TYPE; i++) { 964 init_rwsem(&sbi->write_io[i].io_rwsem); 965 sbi->write_io[i].sbi = sbi; 966 sbi->write_io[i].bio = NULL; 967 } 968 969 init_rwsem(&sbi->cp_rwsem); 970 init_waitqueue_head(&sbi->cp_wait); 971 init_sb_info(sbi); 972 973 /* get an inode for meta space */ 974 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 975 if (IS_ERR(sbi->meta_inode)) { 976 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); 977 err = PTR_ERR(sbi->meta_inode); 978 goto free_sb_buf; 979 } 980 981 err = get_valid_checkpoint(sbi); 982 if (err) { 983 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); 984 goto free_meta_inode; 985 } 986 987 /* sanity checking of checkpoint */ 988 err = -EINVAL; 989 if (sanity_check_ckpt(sbi)) { 990 f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint"); 991 goto free_cp; 992 } 993 994 sbi->total_valid_node_count = 995 le32_to_cpu(sbi->ckpt->valid_node_count); 996 sbi->total_valid_inode_count = 997 le32_to_cpu(sbi->ckpt->valid_inode_count); 998 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 999 sbi->total_valid_block_count = 1000 le64_to_cpu(sbi->ckpt->valid_block_count); 1001 sbi->last_valid_block_count = sbi->total_valid_block_count; 1002 sbi->alloc_valid_block_count = 0; 1003 INIT_LIST_HEAD(&sbi->dir_inode_list); 1004 spin_lock_init(&sbi->dir_inode_lock); 1005 1006 init_ino_entry_info(sbi); 1007 1008 /* setup f2fs internal modules */ 1009 err = build_segment_manager(sbi); 1010 if (err) { 1011 f2fs_msg(sb, KERN_ERR, 1012 "Failed to initialize F2FS segment manager"); 1013 goto free_sm; 1014 } 1015 err = build_node_manager(sbi); 1016 if (err) { 1017 f2fs_msg(sb, KERN_ERR, 1018 "Failed to initialize F2FS node manager"); 1019 goto free_nm; 1020 } 1021 1022 build_gc_manager(sbi); 1023 1024 /* get an inode for node space */ 1025 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 1026 if (IS_ERR(sbi->node_inode)) { 1027 f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); 1028 err = PTR_ERR(sbi->node_inode); 1029 goto free_nm; 1030 } 1031 1032 /* if there are nt orphan nodes free them */ 1033 recover_orphan_inodes(sbi); 1034 1035 /* read root inode and dentry */ 1036 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 1037 if (IS_ERR(root)) { 1038 f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); 1039 err = PTR_ERR(root); 1040 goto free_node_inode; 1041 } 1042 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 1043 iput(root); 1044 err = -EINVAL; 1045 goto free_node_inode; 1046 } 1047 1048 sb->s_root = d_make_root(root); /* allocate root dentry */ 1049 if (!sb->s_root) { 1050 err = -ENOMEM; 1051 goto free_root_inode; 1052 } 1053 1054 err = f2fs_build_stats(sbi); 1055 if (err) 1056 goto free_root_inode; 1057 1058 if (f2fs_proc_root) 1059 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root); 1060 1061 if (sbi->s_proc) 1062 proc_create_data("segment_info", S_IRUGO, sbi->s_proc, 1063 &f2fs_seq_segment_info_fops, sb); 1064 1065 if (test_opt(sbi, DISCARD)) { 1066 struct request_queue *q = bdev_get_queue(sb->s_bdev); 1067 if (!blk_queue_discard(q)) 1068 f2fs_msg(sb, KERN_WARNING, 1069 "mounting with \"discard\" option, but " 1070 "the device does not support discard"); 1071 } 1072 1073 sbi->s_kobj.kset = f2fs_kset; 1074 init_completion(&sbi->s_kobj_unregister); 1075 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL, 1076 "%s", sb->s_id); 1077 if (err) 1078 goto free_proc; 1079 1080 /* recover fsynced data */ 1081 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 1082 err = recover_fsync_data(sbi); 1083 if (err) 1084 f2fs_msg(sb, KERN_ERR, 1085 "Cannot recover all fsync data errno=%ld", err); 1086 } 1087 1088 /* 1089 * If filesystem is not mounted as read-only then 1090 * do start the gc_thread. 1091 */ 1092 if (!f2fs_readonly(sb)) { 1093 /* After POR, we can run background GC thread.*/ 1094 err = start_gc_thread(sbi); 1095 if (err) 1096 goto free_kobj; 1097 } 1098 return 0; 1099 1100 free_kobj: 1101 kobject_del(&sbi->s_kobj); 1102 free_proc: 1103 if (sbi->s_proc) { 1104 remove_proc_entry("segment_info", sbi->s_proc); 1105 remove_proc_entry(sb->s_id, f2fs_proc_root); 1106 } 1107 f2fs_destroy_stats(sbi); 1108 free_root_inode: 1109 dput(sb->s_root); 1110 sb->s_root = NULL; 1111 free_node_inode: 1112 iput(sbi->node_inode); 1113 free_nm: 1114 destroy_node_manager(sbi); 1115 free_sm: 1116 destroy_segment_manager(sbi); 1117 free_cp: 1118 kfree(sbi->ckpt); 1119 free_meta_inode: 1120 make_bad_inode(sbi->meta_inode); 1121 iput(sbi->meta_inode); 1122 free_sb_buf: 1123 brelse(raw_super_buf); 1124 free_sbi: 1125 kfree(sbi); 1126 return err; 1127 } 1128 1129 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 1130 const char *dev_name, void *data) 1131 { 1132 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 1133 } 1134 1135 static struct file_system_type f2fs_fs_type = { 1136 .owner = THIS_MODULE, 1137 .name = "f2fs", 1138 .mount = f2fs_mount, 1139 .kill_sb = kill_block_super, 1140 .fs_flags = FS_REQUIRES_DEV, 1141 }; 1142 MODULE_ALIAS_FS("f2fs"); 1143 1144 static int __init init_inodecache(void) 1145 { 1146 f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache", 1147 sizeof(struct f2fs_inode_info)); 1148 if (!f2fs_inode_cachep) 1149 return -ENOMEM; 1150 return 0; 1151 } 1152 1153 static void destroy_inodecache(void) 1154 { 1155 /* 1156 * Make sure all delayed rcu free inodes are flushed before we 1157 * destroy cache. 1158 */ 1159 rcu_barrier(); 1160 kmem_cache_destroy(f2fs_inode_cachep); 1161 } 1162 1163 static int __init init_f2fs_fs(void) 1164 { 1165 int err; 1166 1167 err = init_inodecache(); 1168 if (err) 1169 goto fail; 1170 err = create_node_manager_caches(); 1171 if (err) 1172 goto free_inodecache; 1173 err = create_segment_manager_caches(); 1174 if (err) 1175 goto free_node_manager_caches; 1176 err = create_gc_caches(); 1177 if (err) 1178 goto free_segment_manager_caches; 1179 err = create_checkpoint_caches(); 1180 if (err) 1181 goto free_gc_caches; 1182 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj); 1183 if (!f2fs_kset) { 1184 err = -ENOMEM; 1185 goto free_checkpoint_caches; 1186 } 1187 err = register_filesystem(&f2fs_fs_type); 1188 if (err) 1189 goto free_kset; 1190 f2fs_create_root_stats(); 1191 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL); 1192 return 0; 1193 1194 free_kset: 1195 kset_unregister(f2fs_kset); 1196 free_checkpoint_caches: 1197 destroy_checkpoint_caches(); 1198 free_gc_caches: 1199 destroy_gc_caches(); 1200 free_segment_manager_caches: 1201 destroy_segment_manager_caches(); 1202 free_node_manager_caches: 1203 destroy_node_manager_caches(); 1204 free_inodecache: 1205 destroy_inodecache(); 1206 fail: 1207 return err; 1208 } 1209 1210 static void __exit exit_f2fs_fs(void) 1211 { 1212 remove_proc_entry("fs/f2fs", NULL); 1213 f2fs_destroy_root_stats(); 1214 unregister_filesystem(&f2fs_fs_type); 1215 destroy_checkpoint_caches(); 1216 destroy_gc_caches(); 1217 destroy_segment_manager_caches(); 1218 destroy_node_manager_caches(); 1219 destroy_inodecache(); 1220 kset_unregister(f2fs_kset); 1221 } 1222 1223 module_init(init_f2fs_fs) 1224 module_exit(exit_f2fs_fs) 1225 1226 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 1227 MODULE_DESCRIPTION("Flash Friendly File System"); 1228 MODULE_LICENSE("GPL"); 1229