xref: /openbmc/linux/fs/f2fs/super.c (revision 31eeb6b0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/sched/mm.h>
12 #include <linux/statfs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 #include <linux/unicode.h>
27 #include <linux/part_stat.h>
28 #include <linux/zstd.h>
29 #include <linux/lz4.h>
30 
31 #include "f2fs.h"
32 #include "node.h"
33 #include "segment.h"
34 #include "xattr.h"
35 #include "gc.h"
36 #include "iostat.h"
37 
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/f2fs.h>
40 
41 static struct kmem_cache *f2fs_inode_cachep;
42 
43 #ifdef CONFIG_F2FS_FAULT_INJECTION
44 
45 const char *f2fs_fault_name[FAULT_MAX] = {
46 	[FAULT_KMALLOC]		= "kmalloc",
47 	[FAULT_KVMALLOC]	= "kvmalloc",
48 	[FAULT_PAGE_ALLOC]	= "page alloc",
49 	[FAULT_PAGE_GET]	= "page get",
50 	[FAULT_ALLOC_NID]	= "alloc nid",
51 	[FAULT_ORPHAN]		= "orphan",
52 	[FAULT_BLOCK]		= "no more block",
53 	[FAULT_DIR_DEPTH]	= "too big dir depth",
54 	[FAULT_EVICT_INODE]	= "evict_inode fail",
55 	[FAULT_TRUNCATE]	= "truncate fail",
56 	[FAULT_READ_IO]		= "read IO error",
57 	[FAULT_CHECKPOINT]	= "checkpoint error",
58 	[FAULT_DISCARD]		= "discard error",
59 	[FAULT_WRITE_IO]	= "write IO error",
60 	[FAULT_SLAB_ALLOC]	= "slab alloc",
61 	[FAULT_DQUOT_INIT]	= "dquot initialize",
62 	[FAULT_LOCK_OP]		= "lock_op",
63 };
64 
65 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
66 							unsigned int type)
67 {
68 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
69 
70 	if (rate) {
71 		atomic_set(&ffi->inject_ops, 0);
72 		ffi->inject_rate = rate;
73 	}
74 
75 	if (type)
76 		ffi->inject_type = type;
77 
78 	if (!rate && !type)
79 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
80 }
81 #endif
82 
83 /* f2fs-wide shrinker description */
84 static struct shrinker f2fs_shrinker_info = {
85 	.scan_objects = f2fs_shrink_scan,
86 	.count_objects = f2fs_shrink_count,
87 	.seeks = DEFAULT_SEEKS,
88 };
89 
90 enum {
91 	Opt_gc_background,
92 	Opt_disable_roll_forward,
93 	Opt_norecovery,
94 	Opt_discard,
95 	Opt_nodiscard,
96 	Opt_noheap,
97 	Opt_heap,
98 	Opt_user_xattr,
99 	Opt_nouser_xattr,
100 	Opt_acl,
101 	Opt_noacl,
102 	Opt_active_logs,
103 	Opt_disable_ext_identify,
104 	Opt_inline_xattr,
105 	Opt_noinline_xattr,
106 	Opt_inline_xattr_size,
107 	Opt_inline_data,
108 	Opt_inline_dentry,
109 	Opt_noinline_dentry,
110 	Opt_flush_merge,
111 	Opt_noflush_merge,
112 	Opt_nobarrier,
113 	Opt_fastboot,
114 	Opt_extent_cache,
115 	Opt_noextent_cache,
116 	Opt_noinline_data,
117 	Opt_data_flush,
118 	Opt_reserve_root,
119 	Opt_resgid,
120 	Opt_resuid,
121 	Opt_mode,
122 	Opt_io_size_bits,
123 	Opt_fault_injection,
124 	Opt_fault_type,
125 	Opt_lazytime,
126 	Opt_nolazytime,
127 	Opt_quota,
128 	Opt_noquota,
129 	Opt_usrquota,
130 	Opt_grpquota,
131 	Opt_prjquota,
132 	Opt_usrjquota,
133 	Opt_grpjquota,
134 	Opt_prjjquota,
135 	Opt_offusrjquota,
136 	Opt_offgrpjquota,
137 	Opt_offprjjquota,
138 	Opt_jqfmt_vfsold,
139 	Opt_jqfmt_vfsv0,
140 	Opt_jqfmt_vfsv1,
141 	Opt_whint,
142 	Opt_alloc,
143 	Opt_fsync,
144 	Opt_test_dummy_encryption,
145 	Opt_inlinecrypt,
146 	Opt_checkpoint_disable,
147 	Opt_checkpoint_disable_cap,
148 	Opt_checkpoint_disable_cap_perc,
149 	Opt_checkpoint_enable,
150 	Opt_checkpoint_merge,
151 	Opt_nocheckpoint_merge,
152 	Opt_compress_algorithm,
153 	Opt_compress_log_size,
154 	Opt_compress_extension,
155 	Opt_nocompress_extension,
156 	Opt_compress_chksum,
157 	Opt_compress_mode,
158 	Opt_compress_cache,
159 	Opt_atgc,
160 	Opt_gc_merge,
161 	Opt_nogc_merge,
162 	Opt_discard_unit,
163 	Opt_err,
164 };
165 
166 static match_table_t f2fs_tokens = {
167 	{Opt_gc_background, "background_gc=%s"},
168 	{Opt_disable_roll_forward, "disable_roll_forward"},
169 	{Opt_norecovery, "norecovery"},
170 	{Opt_discard, "discard"},
171 	{Opt_nodiscard, "nodiscard"},
172 	{Opt_noheap, "no_heap"},
173 	{Opt_heap, "heap"},
174 	{Opt_user_xattr, "user_xattr"},
175 	{Opt_nouser_xattr, "nouser_xattr"},
176 	{Opt_acl, "acl"},
177 	{Opt_noacl, "noacl"},
178 	{Opt_active_logs, "active_logs=%u"},
179 	{Opt_disable_ext_identify, "disable_ext_identify"},
180 	{Opt_inline_xattr, "inline_xattr"},
181 	{Opt_noinline_xattr, "noinline_xattr"},
182 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
183 	{Opt_inline_data, "inline_data"},
184 	{Opt_inline_dentry, "inline_dentry"},
185 	{Opt_noinline_dentry, "noinline_dentry"},
186 	{Opt_flush_merge, "flush_merge"},
187 	{Opt_noflush_merge, "noflush_merge"},
188 	{Opt_nobarrier, "nobarrier"},
189 	{Opt_fastboot, "fastboot"},
190 	{Opt_extent_cache, "extent_cache"},
191 	{Opt_noextent_cache, "noextent_cache"},
192 	{Opt_noinline_data, "noinline_data"},
193 	{Opt_data_flush, "data_flush"},
194 	{Opt_reserve_root, "reserve_root=%u"},
195 	{Opt_resgid, "resgid=%u"},
196 	{Opt_resuid, "resuid=%u"},
197 	{Opt_mode, "mode=%s"},
198 	{Opt_io_size_bits, "io_bits=%u"},
199 	{Opt_fault_injection, "fault_injection=%u"},
200 	{Opt_fault_type, "fault_type=%u"},
201 	{Opt_lazytime, "lazytime"},
202 	{Opt_nolazytime, "nolazytime"},
203 	{Opt_quota, "quota"},
204 	{Opt_noquota, "noquota"},
205 	{Opt_usrquota, "usrquota"},
206 	{Opt_grpquota, "grpquota"},
207 	{Opt_prjquota, "prjquota"},
208 	{Opt_usrjquota, "usrjquota=%s"},
209 	{Opt_grpjquota, "grpjquota=%s"},
210 	{Opt_prjjquota, "prjjquota=%s"},
211 	{Opt_offusrjquota, "usrjquota="},
212 	{Opt_offgrpjquota, "grpjquota="},
213 	{Opt_offprjjquota, "prjjquota="},
214 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
215 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
216 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
217 	{Opt_whint, "whint_mode=%s"},
218 	{Opt_alloc, "alloc_mode=%s"},
219 	{Opt_fsync, "fsync_mode=%s"},
220 	{Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
221 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
222 	{Opt_inlinecrypt, "inlinecrypt"},
223 	{Opt_checkpoint_disable, "checkpoint=disable"},
224 	{Opt_checkpoint_disable_cap, "checkpoint=disable:%u"},
225 	{Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"},
226 	{Opt_checkpoint_enable, "checkpoint=enable"},
227 	{Opt_checkpoint_merge, "checkpoint_merge"},
228 	{Opt_nocheckpoint_merge, "nocheckpoint_merge"},
229 	{Opt_compress_algorithm, "compress_algorithm=%s"},
230 	{Opt_compress_log_size, "compress_log_size=%u"},
231 	{Opt_compress_extension, "compress_extension=%s"},
232 	{Opt_nocompress_extension, "nocompress_extension=%s"},
233 	{Opt_compress_chksum, "compress_chksum"},
234 	{Opt_compress_mode, "compress_mode=%s"},
235 	{Opt_compress_cache, "compress_cache"},
236 	{Opt_atgc, "atgc"},
237 	{Opt_gc_merge, "gc_merge"},
238 	{Opt_nogc_merge, "nogc_merge"},
239 	{Opt_discard_unit, "discard_unit=%s"},
240 	{Opt_err, NULL},
241 };
242 
243 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...)
244 {
245 	struct va_format vaf;
246 	va_list args;
247 	int level;
248 
249 	va_start(args, fmt);
250 
251 	level = printk_get_level(fmt);
252 	vaf.fmt = printk_skip_level(fmt);
253 	vaf.va = &args;
254 	printk("%c%cF2FS-fs (%s): %pV\n",
255 	       KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf);
256 
257 	va_end(args);
258 }
259 
260 #ifdef CONFIG_UNICODE
261 static const struct f2fs_sb_encodings {
262 	__u16 magic;
263 	char *name;
264 	unsigned int version;
265 } f2fs_sb_encoding_map[] = {
266 	{F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
267 };
268 
269 static const struct f2fs_sb_encodings *
270 f2fs_sb_read_encoding(const struct f2fs_super_block *sb)
271 {
272 	__u16 magic = le16_to_cpu(sb->s_encoding);
273 	int i;
274 
275 	for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++)
276 		if (magic == f2fs_sb_encoding_map[i].magic)
277 			return &f2fs_sb_encoding_map[i];
278 
279 	return NULL;
280 }
281 
282 struct kmem_cache *f2fs_cf_name_slab;
283 static int __init f2fs_create_casefold_cache(void)
284 {
285 	f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name",
286 							F2FS_NAME_LEN);
287 	if (!f2fs_cf_name_slab)
288 		return -ENOMEM;
289 	return 0;
290 }
291 
292 static void f2fs_destroy_casefold_cache(void)
293 {
294 	kmem_cache_destroy(f2fs_cf_name_slab);
295 }
296 #else
297 static int __init f2fs_create_casefold_cache(void) { return 0; }
298 static void f2fs_destroy_casefold_cache(void) { }
299 #endif
300 
301 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
302 {
303 	block_t limit = min((sbi->user_block_count << 1) / 1000,
304 			sbi->user_block_count - sbi->reserved_blocks);
305 
306 	/* limit is 0.2% */
307 	if (test_opt(sbi, RESERVE_ROOT) &&
308 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
309 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
310 		f2fs_info(sbi, "Reduce reserved blocks for root = %u",
311 			  F2FS_OPTION(sbi).root_reserved_blocks);
312 	}
313 	if (!test_opt(sbi, RESERVE_ROOT) &&
314 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
315 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
316 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
317 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
318 		f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
319 			  from_kuid_munged(&init_user_ns,
320 					   F2FS_OPTION(sbi).s_resuid),
321 			  from_kgid_munged(&init_user_ns,
322 					   F2FS_OPTION(sbi).s_resgid));
323 }
324 
325 static inline int adjust_reserved_segment(struct f2fs_sb_info *sbi)
326 {
327 	unsigned int sec_blks = sbi->blocks_per_seg * sbi->segs_per_sec;
328 	unsigned int avg_vblocks;
329 	unsigned int wanted_reserved_segments;
330 	block_t avail_user_block_count;
331 
332 	if (!F2FS_IO_ALIGNED(sbi))
333 		return 0;
334 
335 	/* average valid block count in section in worst case */
336 	avg_vblocks = sec_blks / F2FS_IO_SIZE(sbi);
337 
338 	/*
339 	 * we need enough free space when migrating one section in worst case
340 	 */
341 	wanted_reserved_segments = (F2FS_IO_SIZE(sbi) / avg_vblocks) *
342 						reserved_segments(sbi);
343 	wanted_reserved_segments -= reserved_segments(sbi);
344 
345 	avail_user_block_count = sbi->user_block_count -
346 				sbi->current_reserved_blocks -
347 				F2FS_OPTION(sbi).root_reserved_blocks;
348 
349 	if (wanted_reserved_segments * sbi->blocks_per_seg >
350 					avail_user_block_count) {
351 		f2fs_err(sbi, "IO align feature can't grab additional reserved segment: %u, available segments: %u",
352 			wanted_reserved_segments,
353 			avail_user_block_count >> sbi->log_blocks_per_seg);
354 		return -ENOSPC;
355 	}
356 
357 	SM_I(sbi)->additional_reserved_segments = wanted_reserved_segments;
358 
359 	f2fs_info(sbi, "IO align feature needs additional reserved segment: %u",
360 			 wanted_reserved_segments);
361 
362 	return 0;
363 }
364 
365 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi)
366 {
367 	if (!F2FS_OPTION(sbi).unusable_cap_perc)
368 		return;
369 
370 	if (F2FS_OPTION(sbi).unusable_cap_perc == 100)
371 		F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count;
372 	else
373 		F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) *
374 					F2FS_OPTION(sbi).unusable_cap_perc;
375 
376 	f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%",
377 			F2FS_OPTION(sbi).unusable_cap,
378 			F2FS_OPTION(sbi).unusable_cap_perc);
379 }
380 
381 static void init_once(void *foo)
382 {
383 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
384 
385 	inode_init_once(&fi->vfs_inode);
386 }
387 
388 #ifdef CONFIG_QUOTA
389 static const char * const quotatypes[] = INITQFNAMES;
390 #define QTYPE2NAME(t) (quotatypes[t])
391 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
392 							substring_t *args)
393 {
394 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
395 	char *qname;
396 	int ret = -EINVAL;
397 
398 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
399 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
400 		return -EINVAL;
401 	}
402 	if (f2fs_sb_has_quota_ino(sbi)) {
403 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name");
404 		return 0;
405 	}
406 
407 	qname = match_strdup(args);
408 	if (!qname) {
409 		f2fs_err(sbi, "Not enough memory for storing quotafile name");
410 		return -ENOMEM;
411 	}
412 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
413 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
414 			ret = 0;
415 		else
416 			f2fs_err(sbi, "%s quota file already specified",
417 				 QTYPE2NAME(qtype));
418 		goto errout;
419 	}
420 	if (strchr(qname, '/')) {
421 		f2fs_err(sbi, "quotafile must be on filesystem root");
422 		goto errout;
423 	}
424 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
425 	set_opt(sbi, QUOTA);
426 	return 0;
427 errout:
428 	kfree(qname);
429 	return ret;
430 }
431 
432 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
433 {
434 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
435 
436 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
437 		f2fs_err(sbi, "Cannot change journaled quota options when quota turned on");
438 		return -EINVAL;
439 	}
440 	kfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
441 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
442 	return 0;
443 }
444 
445 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
446 {
447 	/*
448 	 * We do the test below only for project quotas. 'usrquota' and
449 	 * 'grpquota' mount options are allowed even without quota feature
450 	 * to support legacy quotas in quota files.
451 	 */
452 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
453 		f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement.");
454 		return -1;
455 	}
456 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
457 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
458 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
459 		if (test_opt(sbi, USRQUOTA) &&
460 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
461 			clear_opt(sbi, USRQUOTA);
462 
463 		if (test_opt(sbi, GRPQUOTA) &&
464 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
465 			clear_opt(sbi, GRPQUOTA);
466 
467 		if (test_opt(sbi, PRJQUOTA) &&
468 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
469 			clear_opt(sbi, PRJQUOTA);
470 
471 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
472 				test_opt(sbi, PRJQUOTA)) {
473 			f2fs_err(sbi, "old and new quota format mixing");
474 			return -1;
475 		}
476 
477 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
478 			f2fs_err(sbi, "journaled quota format not specified");
479 			return -1;
480 		}
481 	}
482 
483 	if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
484 		f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt");
485 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
486 	}
487 	return 0;
488 }
489 #endif
490 
491 static int f2fs_set_test_dummy_encryption(struct super_block *sb,
492 					  const char *opt,
493 					  const substring_t *arg,
494 					  bool is_remount)
495 {
496 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
497 #ifdef CONFIG_FS_ENCRYPTION
498 	int err;
499 
500 	if (!f2fs_sb_has_encrypt(sbi)) {
501 		f2fs_err(sbi, "Encrypt feature is off");
502 		return -EINVAL;
503 	}
504 
505 	/*
506 	 * This mount option is just for testing, and it's not worthwhile to
507 	 * implement the extra complexity (e.g. RCU protection) that would be
508 	 * needed to allow it to be set or changed during remount.  We do allow
509 	 * it to be specified during remount, but only if there is no change.
510 	 */
511 	if (is_remount && !F2FS_OPTION(sbi).dummy_enc_policy.policy) {
512 		f2fs_warn(sbi, "Can't set test_dummy_encryption on remount");
513 		return -EINVAL;
514 	}
515 	err = fscrypt_set_test_dummy_encryption(
516 		sb, arg->from, &F2FS_OPTION(sbi).dummy_enc_policy);
517 	if (err) {
518 		if (err == -EEXIST)
519 			f2fs_warn(sbi,
520 				  "Can't change test_dummy_encryption on remount");
521 		else if (err == -EINVAL)
522 			f2fs_warn(sbi, "Value of option \"%s\" is unrecognized",
523 				  opt);
524 		else
525 			f2fs_warn(sbi, "Error processing option \"%s\" [%d]",
526 				  opt, err);
527 		return -EINVAL;
528 	}
529 	f2fs_warn(sbi, "Test dummy encryption mode enabled");
530 #else
531 	f2fs_warn(sbi, "Test dummy encryption mount option ignored");
532 #endif
533 	return 0;
534 }
535 
536 #ifdef CONFIG_F2FS_FS_COMPRESSION
537 /*
538  * 1. The same extension name cannot not appear in both compress and non-compress extension
539  * at the same time.
540  * 2. If the compress extension specifies all files, the types specified by the non-compress
541  * extension will be treated as special cases and will not be compressed.
542  * 3. Don't allow the non-compress extension specifies all files.
543  */
544 static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi)
545 {
546 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
547 	unsigned char (*noext)[F2FS_EXTENSION_LEN];
548 	int ext_cnt, noext_cnt, index = 0, no_index = 0;
549 
550 	ext = F2FS_OPTION(sbi).extensions;
551 	ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
552 	noext = F2FS_OPTION(sbi).noextensions;
553 	noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
554 
555 	if (!noext_cnt)
556 		return 0;
557 
558 	for (no_index = 0; no_index < noext_cnt; no_index++) {
559 		if (!strcasecmp("*", noext[no_index])) {
560 			f2fs_info(sbi, "Don't allow the nocompress extension specifies all files");
561 			return -EINVAL;
562 		}
563 		for (index = 0; index < ext_cnt; index++) {
564 			if (!strcasecmp(ext[index], noext[no_index])) {
565 				f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension",
566 						ext[index]);
567 				return -EINVAL;
568 			}
569 		}
570 	}
571 	return 0;
572 }
573 
574 #ifdef CONFIG_F2FS_FS_LZ4
575 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str)
576 {
577 #ifdef CONFIG_F2FS_FS_LZ4HC
578 	unsigned int level;
579 #endif
580 
581 	if (strlen(str) == 3) {
582 		F2FS_OPTION(sbi).compress_level = 0;
583 		return 0;
584 	}
585 
586 #ifdef CONFIG_F2FS_FS_LZ4HC
587 	str += 3;
588 
589 	if (str[0] != ':') {
590 		f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
591 		return -EINVAL;
592 	}
593 	if (kstrtouint(str + 1, 10, &level))
594 		return -EINVAL;
595 
596 	if (level < LZ4HC_MIN_CLEVEL || level > LZ4HC_MAX_CLEVEL) {
597 		f2fs_info(sbi, "invalid lz4hc compress level: %d", level);
598 		return -EINVAL;
599 	}
600 
601 	F2FS_OPTION(sbi).compress_level = level;
602 	return 0;
603 #else
604 	f2fs_info(sbi, "kernel doesn't support lz4hc compression");
605 	return -EINVAL;
606 #endif
607 }
608 #endif
609 
610 #ifdef CONFIG_F2FS_FS_ZSTD
611 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str)
612 {
613 	unsigned int level;
614 	int len = 4;
615 
616 	if (strlen(str) == len) {
617 		F2FS_OPTION(sbi).compress_level = 0;
618 		return 0;
619 	}
620 
621 	str += len;
622 
623 	if (str[0] != ':') {
624 		f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>");
625 		return -EINVAL;
626 	}
627 	if (kstrtouint(str + 1, 10, &level))
628 		return -EINVAL;
629 
630 	if (!level || level > zstd_max_clevel()) {
631 		f2fs_info(sbi, "invalid zstd compress level: %d", level);
632 		return -EINVAL;
633 	}
634 
635 	F2FS_OPTION(sbi).compress_level = level;
636 	return 0;
637 }
638 #endif
639 #endif
640 
641 static int parse_options(struct super_block *sb, char *options, bool is_remount)
642 {
643 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
644 	substring_t args[MAX_OPT_ARGS];
645 #ifdef CONFIG_F2FS_FS_COMPRESSION
646 	unsigned char (*ext)[F2FS_EXTENSION_LEN];
647 	unsigned char (*noext)[F2FS_EXTENSION_LEN];
648 	int ext_cnt, noext_cnt;
649 #endif
650 	char *p, *name;
651 	int arg = 0;
652 	kuid_t uid;
653 	kgid_t gid;
654 	int ret;
655 
656 	if (!options)
657 		goto default_check;
658 
659 	while ((p = strsep(&options, ",")) != NULL) {
660 		int token;
661 
662 		if (!*p)
663 			continue;
664 		/*
665 		 * Initialize args struct so we know whether arg was
666 		 * found; some options take optional arguments.
667 		 */
668 		args[0].to = args[0].from = NULL;
669 		token = match_token(p, f2fs_tokens, args);
670 
671 		switch (token) {
672 		case Opt_gc_background:
673 			name = match_strdup(&args[0]);
674 
675 			if (!name)
676 				return -ENOMEM;
677 			if (!strcmp(name, "on")) {
678 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
679 			} else if (!strcmp(name, "off")) {
680 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF;
681 			} else if (!strcmp(name, "sync")) {
682 				F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC;
683 			} else {
684 				kfree(name);
685 				return -EINVAL;
686 			}
687 			kfree(name);
688 			break;
689 		case Opt_disable_roll_forward:
690 			set_opt(sbi, DISABLE_ROLL_FORWARD);
691 			break;
692 		case Opt_norecovery:
693 			/* this option mounts f2fs with ro */
694 			set_opt(sbi, NORECOVERY);
695 			if (!f2fs_readonly(sb))
696 				return -EINVAL;
697 			break;
698 		case Opt_discard:
699 			if (!f2fs_hw_support_discard(sbi)) {
700 				f2fs_warn(sbi, "device does not support discard");
701 				break;
702 			}
703 			set_opt(sbi, DISCARD);
704 			break;
705 		case Opt_nodiscard:
706 			if (f2fs_hw_should_discard(sbi)) {
707 				f2fs_warn(sbi, "discard is required for zoned block devices");
708 				return -EINVAL;
709 			}
710 			clear_opt(sbi, DISCARD);
711 			break;
712 		case Opt_noheap:
713 			set_opt(sbi, NOHEAP);
714 			break;
715 		case Opt_heap:
716 			clear_opt(sbi, NOHEAP);
717 			break;
718 #ifdef CONFIG_F2FS_FS_XATTR
719 		case Opt_user_xattr:
720 			set_opt(sbi, XATTR_USER);
721 			break;
722 		case Opt_nouser_xattr:
723 			clear_opt(sbi, XATTR_USER);
724 			break;
725 		case Opt_inline_xattr:
726 			set_opt(sbi, INLINE_XATTR);
727 			break;
728 		case Opt_noinline_xattr:
729 			clear_opt(sbi, INLINE_XATTR);
730 			break;
731 		case Opt_inline_xattr_size:
732 			if (args->from && match_int(args, &arg))
733 				return -EINVAL;
734 			set_opt(sbi, INLINE_XATTR_SIZE);
735 			F2FS_OPTION(sbi).inline_xattr_size = arg;
736 			break;
737 #else
738 		case Opt_user_xattr:
739 			f2fs_info(sbi, "user_xattr options not supported");
740 			break;
741 		case Opt_nouser_xattr:
742 			f2fs_info(sbi, "nouser_xattr options not supported");
743 			break;
744 		case Opt_inline_xattr:
745 			f2fs_info(sbi, "inline_xattr options not supported");
746 			break;
747 		case Opt_noinline_xattr:
748 			f2fs_info(sbi, "noinline_xattr options not supported");
749 			break;
750 #endif
751 #ifdef CONFIG_F2FS_FS_POSIX_ACL
752 		case Opt_acl:
753 			set_opt(sbi, POSIX_ACL);
754 			break;
755 		case Opt_noacl:
756 			clear_opt(sbi, POSIX_ACL);
757 			break;
758 #else
759 		case Opt_acl:
760 			f2fs_info(sbi, "acl options not supported");
761 			break;
762 		case Opt_noacl:
763 			f2fs_info(sbi, "noacl options not supported");
764 			break;
765 #endif
766 		case Opt_active_logs:
767 			if (args->from && match_int(args, &arg))
768 				return -EINVAL;
769 			if (arg != 2 && arg != 4 &&
770 				arg != NR_CURSEG_PERSIST_TYPE)
771 				return -EINVAL;
772 			F2FS_OPTION(sbi).active_logs = arg;
773 			break;
774 		case Opt_disable_ext_identify:
775 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
776 			break;
777 		case Opt_inline_data:
778 			set_opt(sbi, INLINE_DATA);
779 			break;
780 		case Opt_inline_dentry:
781 			set_opt(sbi, INLINE_DENTRY);
782 			break;
783 		case Opt_noinline_dentry:
784 			clear_opt(sbi, INLINE_DENTRY);
785 			break;
786 		case Opt_flush_merge:
787 			set_opt(sbi, FLUSH_MERGE);
788 			break;
789 		case Opt_noflush_merge:
790 			clear_opt(sbi, FLUSH_MERGE);
791 			break;
792 		case Opt_nobarrier:
793 			set_opt(sbi, NOBARRIER);
794 			break;
795 		case Opt_fastboot:
796 			set_opt(sbi, FASTBOOT);
797 			break;
798 		case Opt_extent_cache:
799 			set_opt(sbi, EXTENT_CACHE);
800 			break;
801 		case Opt_noextent_cache:
802 			clear_opt(sbi, EXTENT_CACHE);
803 			break;
804 		case Opt_noinline_data:
805 			clear_opt(sbi, INLINE_DATA);
806 			break;
807 		case Opt_data_flush:
808 			set_opt(sbi, DATA_FLUSH);
809 			break;
810 		case Opt_reserve_root:
811 			if (args->from && match_int(args, &arg))
812 				return -EINVAL;
813 			if (test_opt(sbi, RESERVE_ROOT)) {
814 				f2fs_info(sbi, "Preserve previous reserve_root=%u",
815 					  F2FS_OPTION(sbi).root_reserved_blocks);
816 			} else {
817 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
818 				set_opt(sbi, RESERVE_ROOT);
819 			}
820 			break;
821 		case Opt_resuid:
822 			if (args->from && match_int(args, &arg))
823 				return -EINVAL;
824 			uid = make_kuid(current_user_ns(), arg);
825 			if (!uid_valid(uid)) {
826 				f2fs_err(sbi, "Invalid uid value %d", arg);
827 				return -EINVAL;
828 			}
829 			F2FS_OPTION(sbi).s_resuid = uid;
830 			break;
831 		case Opt_resgid:
832 			if (args->from && match_int(args, &arg))
833 				return -EINVAL;
834 			gid = make_kgid(current_user_ns(), arg);
835 			if (!gid_valid(gid)) {
836 				f2fs_err(sbi, "Invalid gid value %d", arg);
837 				return -EINVAL;
838 			}
839 			F2FS_OPTION(sbi).s_resgid = gid;
840 			break;
841 		case Opt_mode:
842 			name = match_strdup(&args[0]);
843 
844 			if (!name)
845 				return -ENOMEM;
846 			if (!strcmp(name, "adaptive")) {
847 				if (f2fs_sb_has_blkzoned(sbi)) {
848 					f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature");
849 					kfree(name);
850 					return -EINVAL;
851 				}
852 				F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
853 			} else if (!strcmp(name, "lfs")) {
854 				F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
855 			} else if (!strcmp(name, "fragment:segment")) {
856 				F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_SEG;
857 			} else if (!strcmp(name, "fragment:block")) {
858 				F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_BLK;
859 			} else {
860 				kfree(name);
861 				return -EINVAL;
862 			}
863 			kfree(name);
864 			break;
865 		case Opt_io_size_bits:
866 			if (args->from && match_int(args, &arg))
867 				return -EINVAL;
868 			if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_VECS)) {
869 				f2fs_warn(sbi, "Not support %d, larger than %d",
870 					  1 << arg, BIO_MAX_VECS);
871 				return -EINVAL;
872 			}
873 			F2FS_OPTION(sbi).write_io_size_bits = arg;
874 			break;
875 #ifdef CONFIG_F2FS_FAULT_INJECTION
876 		case Opt_fault_injection:
877 			if (args->from && match_int(args, &arg))
878 				return -EINVAL;
879 			f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
880 			set_opt(sbi, FAULT_INJECTION);
881 			break;
882 
883 		case Opt_fault_type:
884 			if (args->from && match_int(args, &arg))
885 				return -EINVAL;
886 			f2fs_build_fault_attr(sbi, 0, arg);
887 			set_opt(sbi, FAULT_INJECTION);
888 			break;
889 #else
890 		case Opt_fault_injection:
891 			f2fs_info(sbi, "fault_injection options not supported");
892 			break;
893 
894 		case Opt_fault_type:
895 			f2fs_info(sbi, "fault_type options not supported");
896 			break;
897 #endif
898 		case Opt_lazytime:
899 			sb->s_flags |= SB_LAZYTIME;
900 			break;
901 		case Opt_nolazytime:
902 			sb->s_flags &= ~SB_LAZYTIME;
903 			break;
904 #ifdef CONFIG_QUOTA
905 		case Opt_quota:
906 		case Opt_usrquota:
907 			set_opt(sbi, USRQUOTA);
908 			break;
909 		case Opt_grpquota:
910 			set_opt(sbi, GRPQUOTA);
911 			break;
912 		case Opt_prjquota:
913 			set_opt(sbi, PRJQUOTA);
914 			break;
915 		case Opt_usrjquota:
916 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
917 			if (ret)
918 				return ret;
919 			break;
920 		case Opt_grpjquota:
921 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
922 			if (ret)
923 				return ret;
924 			break;
925 		case Opt_prjjquota:
926 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
927 			if (ret)
928 				return ret;
929 			break;
930 		case Opt_offusrjquota:
931 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
932 			if (ret)
933 				return ret;
934 			break;
935 		case Opt_offgrpjquota:
936 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
937 			if (ret)
938 				return ret;
939 			break;
940 		case Opt_offprjjquota:
941 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
942 			if (ret)
943 				return ret;
944 			break;
945 		case Opt_jqfmt_vfsold:
946 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
947 			break;
948 		case Opt_jqfmt_vfsv0:
949 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
950 			break;
951 		case Opt_jqfmt_vfsv1:
952 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
953 			break;
954 		case Opt_noquota:
955 			clear_opt(sbi, QUOTA);
956 			clear_opt(sbi, USRQUOTA);
957 			clear_opt(sbi, GRPQUOTA);
958 			clear_opt(sbi, PRJQUOTA);
959 			break;
960 #else
961 		case Opt_quota:
962 		case Opt_usrquota:
963 		case Opt_grpquota:
964 		case Opt_prjquota:
965 		case Opt_usrjquota:
966 		case Opt_grpjquota:
967 		case Opt_prjjquota:
968 		case Opt_offusrjquota:
969 		case Opt_offgrpjquota:
970 		case Opt_offprjjquota:
971 		case Opt_jqfmt_vfsold:
972 		case Opt_jqfmt_vfsv0:
973 		case Opt_jqfmt_vfsv1:
974 		case Opt_noquota:
975 			f2fs_info(sbi, "quota operations not supported");
976 			break;
977 #endif
978 		case Opt_whint:
979 			name = match_strdup(&args[0]);
980 			if (!name)
981 				return -ENOMEM;
982 			if (!strcmp(name, "user-based")) {
983 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
984 			} else if (!strcmp(name, "off")) {
985 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
986 			} else if (!strcmp(name, "fs-based")) {
987 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
988 			} else {
989 				kfree(name);
990 				return -EINVAL;
991 			}
992 			kfree(name);
993 			break;
994 		case Opt_alloc:
995 			name = match_strdup(&args[0]);
996 			if (!name)
997 				return -ENOMEM;
998 
999 			if (!strcmp(name, "default")) {
1000 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1001 			} else if (!strcmp(name, "reuse")) {
1002 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
1003 			} else {
1004 				kfree(name);
1005 				return -EINVAL;
1006 			}
1007 			kfree(name);
1008 			break;
1009 		case Opt_fsync:
1010 			name = match_strdup(&args[0]);
1011 			if (!name)
1012 				return -ENOMEM;
1013 			if (!strcmp(name, "posix")) {
1014 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1015 			} else if (!strcmp(name, "strict")) {
1016 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
1017 			} else if (!strcmp(name, "nobarrier")) {
1018 				F2FS_OPTION(sbi).fsync_mode =
1019 							FSYNC_MODE_NOBARRIER;
1020 			} else {
1021 				kfree(name);
1022 				return -EINVAL;
1023 			}
1024 			kfree(name);
1025 			break;
1026 		case Opt_test_dummy_encryption:
1027 			ret = f2fs_set_test_dummy_encryption(sb, p, &args[0],
1028 							     is_remount);
1029 			if (ret)
1030 				return ret;
1031 			break;
1032 		case Opt_inlinecrypt:
1033 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
1034 			sb->s_flags |= SB_INLINECRYPT;
1035 #else
1036 			f2fs_info(sbi, "inline encryption not supported");
1037 #endif
1038 			break;
1039 		case Opt_checkpoint_disable_cap_perc:
1040 			if (args->from && match_int(args, &arg))
1041 				return -EINVAL;
1042 			if (arg < 0 || arg > 100)
1043 				return -EINVAL;
1044 			F2FS_OPTION(sbi).unusable_cap_perc = arg;
1045 			set_opt(sbi, DISABLE_CHECKPOINT);
1046 			break;
1047 		case Opt_checkpoint_disable_cap:
1048 			if (args->from && match_int(args, &arg))
1049 				return -EINVAL;
1050 			F2FS_OPTION(sbi).unusable_cap = arg;
1051 			set_opt(sbi, DISABLE_CHECKPOINT);
1052 			break;
1053 		case Opt_checkpoint_disable:
1054 			set_opt(sbi, DISABLE_CHECKPOINT);
1055 			break;
1056 		case Opt_checkpoint_enable:
1057 			clear_opt(sbi, DISABLE_CHECKPOINT);
1058 			break;
1059 		case Opt_checkpoint_merge:
1060 			set_opt(sbi, MERGE_CHECKPOINT);
1061 			break;
1062 		case Opt_nocheckpoint_merge:
1063 			clear_opt(sbi, MERGE_CHECKPOINT);
1064 			break;
1065 #ifdef CONFIG_F2FS_FS_COMPRESSION
1066 		case Opt_compress_algorithm:
1067 			if (!f2fs_sb_has_compression(sbi)) {
1068 				f2fs_info(sbi, "Image doesn't support compression");
1069 				break;
1070 			}
1071 			name = match_strdup(&args[0]);
1072 			if (!name)
1073 				return -ENOMEM;
1074 			if (!strcmp(name, "lzo")) {
1075 #ifdef CONFIG_F2FS_FS_LZO
1076 				F2FS_OPTION(sbi).compress_level = 0;
1077 				F2FS_OPTION(sbi).compress_algorithm =
1078 								COMPRESS_LZO;
1079 #else
1080 				f2fs_info(sbi, "kernel doesn't support lzo compression");
1081 #endif
1082 			} else if (!strncmp(name, "lz4", 3)) {
1083 #ifdef CONFIG_F2FS_FS_LZ4
1084 				ret = f2fs_set_lz4hc_level(sbi, name);
1085 				if (ret) {
1086 					kfree(name);
1087 					return -EINVAL;
1088 				}
1089 				F2FS_OPTION(sbi).compress_algorithm =
1090 								COMPRESS_LZ4;
1091 #else
1092 				f2fs_info(sbi, "kernel doesn't support lz4 compression");
1093 #endif
1094 			} else if (!strncmp(name, "zstd", 4)) {
1095 #ifdef CONFIG_F2FS_FS_ZSTD
1096 				ret = f2fs_set_zstd_level(sbi, name);
1097 				if (ret) {
1098 					kfree(name);
1099 					return -EINVAL;
1100 				}
1101 				F2FS_OPTION(sbi).compress_algorithm =
1102 								COMPRESS_ZSTD;
1103 #else
1104 				f2fs_info(sbi, "kernel doesn't support zstd compression");
1105 #endif
1106 			} else if (!strcmp(name, "lzo-rle")) {
1107 #ifdef CONFIG_F2FS_FS_LZORLE
1108 				F2FS_OPTION(sbi).compress_level = 0;
1109 				F2FS_OPTION(sbi).compress_algorithm =
1110 								COMPRESS_LZORLE;
1111 #else
1112 				f2fs_info(sbi, "kernel doesn't support lzorle compression");
1113 #endif
1114 			} else {
1115 				kfree(name);
1116 				return -EINVAL;
1117 			}
1118 			kfree(name);
1119 			break;
1120 		case Opt_compress_log_size:
1121 			if (!f2fs_sb_has_compression(sbi)) {
1122 				f2fs_info(sbi, "Image doesn't support compression");
1123 				break;
1124 			}
1125 			if (args->from && match_int(args, &arg))
1126 				return -EINVAL;
1127 			if (arg < MIN_COMPRESS_LOG_SIZE ||
1128 				arg > MAX_COMPRESS_LOG_SIZE) {
1129 				f2fs_err(sbi,
1130 					"Compress cluster log size is out of range");
1131 				return -EINVAL;
1132 			}
1133 			F2FS_OPTION(sbi).compress_log_size = arg;
1134 			break;
1135 		case Opt_compress_extension:
1136 			if (!f2fs_sb_has_compression(sbi)) {
1137 				f2fs_info(sbi, "Image doesn't support compression");
1138 				break;
1139 			}
1140 			name = match_strdup(&args[0]);
1141 			if (!name)
1142 				return -ENOMEM;
1143 
1144 			ext = F2FS_OPTION(sbi).extensions;
1145 			ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt;
1146 
1147 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
1148 				ext_cnt >= COMPRESS_EXT_NUM) {
1149 				f2fs_err(sbi,
1150 					"invalid extension length/number");
1151 				kfree(name);
1152 				return -EINVAL;
1153 			}
1154 
1155 			strcpy(ext[ext_cnt], name);
1156 			F2FS_OPTION(sbi).compress_ext_cnt++;
1157 			kfree(name);
1158 			break;
1159 		case Opt_nocompress_extension:
1160 			if (!f2fs_sb_has_compression(sbi)) {
1161 				f2fs_info(sbi, "Image doesn't support compression");
1162 				break;
1163 			}
1164 			name = match_strdup(&args[0]);
1165 			if (!name)
1166 				return -ENOMEM;
1167 
1168 			noext = F2FS_OPTION(sbi).noextensions;
1169 			noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt;
1170 
1171 			if (strlen(name) >= F2FS_EXTENSION_LEN ||
1172 				noext_cnt >= COMPRESS_EXT_NUM) {
1173 				f2fs_err(sbi,
1174 					"invalid extension length/number");
1175 				kfree(name);
1176 				return -EINVAL;
1177 			}
1178 
1179 			strcpy(noext[noext_cnt], name);
1180 			F2FS_OPTION(sbi).nocompress_ext_cnt++;
1181 			kfree(name);
1182 			break;
1183 		case Opt_compress_chksum:
1184 			F2FS_OPTION(sbi).compress_chksum = true;
1185 			break;
1186 		case Opt_compress_mode:
1187 			name = match_strdup(&args[0]);
1188 			if (!name)
1189 				return -ENOMEM;
1190 			if (!strcmp(name, "fs")) {
1191 				F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
1192 			} else if (!strcmp(name, "user")) {
1193 				F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER;
1194 			} else {
1195 				kfree(name);
1196 				return -EINVAL;
1197 			}
1198 			kfree(name);
1199 			break;
1200 		case Opt_compress_cache:
1201 			set_opt(sbi, COMPRESS_CACHE);
1202 			break;
1203 #else
1204 		case Opt_compress_algorithm:
1205 		case Opt_compress_log_size:
1206 		case Opt_compress_extension:
1207 		case Opt_nocompress_extension:
1208 		case Opt_compress_chksum:
1209 		case Opt_compress_mode:
1210 		case Opt_compress_cache:
1211 			f2fs_info(sbi, "compression options not supported");
1212 			break;
1213 #endif
1214 		case Opt_atgc:
1215 			set_opt(sbi, ATGC);
1216 			break;
1217 		case Opt_gc_merge:
1218 			set_opt(sbi, GC_MERGE);
1219 			break;
1220 		case Opt_nogc_merge:
1221 			clear_opt(sbi, GC_MERGE);
1222 			break;
1223 		case Opt_discard_unit:
1224 			name = match_strdup(&args[0]);
1225 			if (!name)
1226 				return -ENOMEM;
1227 			if (!strcmp(name, "block")) {
1228 				F2FS_OPTION(sbi).discard_unit =
1229 						DISCARD_UNIT_BLOCK;
1230 			} else if (!strcmp(name, "segment")) {
1231 				F2FS_OPTION(sbi).discard_unit =
1232 						DISCARD_UNIT_SEGMENT;
1233 			} else if (!strcmp(name, "section")) {
1234 				F2FS_OPTION(sbi).discard_unit =
1235 						DISCARD_UNIT_SECTION;
1236 			} else {
1237 				kfree(name);
1238 				return -EINVAL;
1239 			}
1240 			kfree(name);
1241 			break;
1242 		default:
1243 			f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value",
1244 				 p);
1245 			return -EINVAL;
1246 		}
1247 	}
1248 default_check:
1249 #ifdef CONFIG_QUOTA
1250 	if (f2fs_check_quota_options(sbi))
1251 		return -EINVAL;
1252 #else
1253 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
1254 		f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1255 		return -EINVAL;
1256 	}
1257 	if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
1258 		f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA");
1259 		return -EINVAL;
1260 	}
1261 #endif
1262 #ifndef CONFIG_UNICODE
1263 	if (f2fs_sb_has_casefold(sbi)) {
1264 		f2fs_err(sbi,
1265 			"Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
1266 		return -EINVAL;
1267 	}
1268 #endif
1269 	/*
1270 	 * The BLKZONED feature indicates that the drive was formatted with
1271 	 * zone alignment optimization. This is optional for host-aware
1272 	 * devices, but mandatory for host-managed zoned block devices.
1273 	 */
1274 #ifndef CONFIG_BLK_DEV_ZONED
1275 	if (f2fs_sb_has_blkzoned(sbi)) {
1276 		f2fs_err(sbi, "Zoned block device support is not enabled");
1277 		return -EINVAL;
1278 	}
1279 #endif
1280 	if (f2fs_sb_has_blkzoned(sbi)) {
1281 		if (F2FS_OPTION(sbi).discard_unit !=
1282 						DISCARD_UNIT_SECTION) {
1283 			f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default");
1284 			F2FS_OPTION(sbi).discard_unit =
1285 					DISCARD_UNIT_SECTION;
1286 		}
1287 	}
1288 
1289 #ifdef CONFIG_F2FS_FS_COMPRESSION
1290 	if (f2fs_test_compress_extension(sbi)) {
1291 		f2fs_err(sbi, "invalid compress or nocompress extension");
1292 		return -EINVAL;
1293 	}
1294 #endif
1295 
1296 	if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) {
1297 		f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO",
1298 			 F2FS_IO_SIZE_KB(sbi));
1299 		return -EINVAL;
1300 	}
1301 
1302 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
1303 		int min_size, max_size;
1304 
1305 		if (!f2fs_sb_has_extra_attr(sbi) ||
1306 			!f2fs_sb_has_flexible_inline_xattr(sbi)) {
1307 			f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off");
1308 			return -EINVAL;
1309 		}
1310 		if (!test_opt(sbi, INLINE_XATTR)) {
1311 			f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option");
1312 			return -EINVAL;
1313 		}
1314 
1315 		min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32);
1316 		max_size = MAX_INLINE_XATTR_SIZE;
1317 
1318 		if (F2FS_OPTION(sbi).inline_xattr_size < min_size ||
1319 				F2FS_OPTION(sbi).inline_xattr_size > max_size) {
1320 			f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d",
1321 				 min_size, max_size);
1322 			return -EINVAL;
1323 		}
1324 	}
1325 
1326 	if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) {
1327 		f2fs_err(sbi, "LFS not compatible with checkpoint=disable");
1328 		return -EINVAL;
1329 	}
1330 
1331 	/* Not pass down write hints if the number of active logs is lesser
1332 	 * than NR_CURSEG_PERSIST_TYPE.
1333 	 */
1334 	if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_PERSIST_TYPE)
1335 		F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1336 
1337 	if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) {
1338 		f2fs_err(sbi, "Allow to mount readonly mode only");
1339 		return -EROFS;
1340 	}
1341 	return 0;
1342 }
1343 
1344 static struct inode *f2fs_alloc_inode(struct super_block *sb)
1345 {
1346 	struct f2fs_inode_info *fi;
1347 
1348 	fi = f2fs_kmem_cache_alloc(f2fs_inode_cachep,
1349 				GFP_F2FS_ZERO, false, F2FS_SB(sb));
1350 	if (!fi)
1351 		return NULL;
1352 
1353 	init_once((void *) fi);
1354 
1355 	/* Initialize f2fs-specific inode info */
1356 	atomic_set(&fi->dirty_pages, 0);
1357 	atomic_set(&fi->i_compr_blocks, 0);
1358 	init_rwsem(&fi->i_sem);
1359 	spin_lock_init(&fi->i_size_lock);
1360 	INIT_LIST_HEAD(&fi->dirty_list);
1361 	INIT_LIST_HEAD(&fi->gdirty_list);
1362 	INIT_LIST_HEAD(&fi->inmem_ilist);
1363 	INIT_LIST_HEAD(&fi->inmem_pages);
1364 	mutex_init(&fi->inmem_lock);
1365 	init_rwsem(&fi->i_gc_rwsem[READ]);
1366 	init_rwsem(&fi->i_gc_rwsem[WRITE]);
1367 	init_rwsem(&fi->i_xattr_sem);
1368 
1369 	/* Will be used by directory only */
1370 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
1371 
1372 	return &fi->vfs_inode;
1373 }
1374 
1375 static int f2fs_drop_inode(struct inode *inode)
1376 {
1377 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1378 	int ret;
1379 
1380 	/*
1381 	 * during filesystem shutdown, if checkpoint is disabled,
1382 	 * drop useless meta/node dirty pages.
1383 	 */
1384 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) {
1385 		if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1386 			inode->i_ino == F2FS_META_INO(sbi)) {
1387 			trace_f2fs_drop_inode(inode, 1);
1388 			return 1;
1389 		}
1390 	}
1391 
1392 	/*
1393 	 * This is to avoid a deadlock condition like below.
1394 	 * writeback_single_inode(inode)
1395 	 *  - f2fs_write_data_page
1396 	 *    - f2fs_gc -> iput -> evict
1397 	 *       - inode_wait_for_writeback(inode)
1398 	 */
1399 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
1400 		if (!inode->i_nlink && !is_bad_inode(inode)) {
1401 			/* to avoid evict_inode call simultaneously */
1402 			atomic_inc(&inode->i_count);
1403 			spin_unlock(&inode->i_lock);
1404 
1405 			/* some remained atomic pages should discarded */
1406 			if (f2fs_is_atomic_file(inode))
1407 				f2fs_drop_inmem_pages(inode);
1408 
1409 			/* should remain fi->extent_tree for writepage */
1410 			f2fs_destroy_extent_node(inode);
1411 
1412 			sb_start_intwrite(inode->i_sb);
1413 			f2fs_i_size_write(inode, 0);
1414 
1415 			f2fs_submit_merged_write_cond(F2FS_I_SB(inode),
1416 					inode, NULL, 0, DATA);
1417 			truncate_inode_pages_final(inode->i_mapping);
1418 
1419 			if (F2FS_HAS_BLOCKS(inode))
1420 				f2fs_truncate(inode);
1421 
1422 			sb_end_intwrite(inode->i_sb);
1423 
1424 			spin_lock(&inode->i_lock);
1425 			atomic_dec(&inode->i_count);
1426 		}
1427 		trace_f2fs_drop_inode(inode, 0);
1428 		return 0;
1429 	}
1430 	ret = generic_drop_inode(inode);
1431 	if (!ret)
1432 		ret = fscrypt_drop_inode(inode);
1433 	trace_f2fs_drop_inode(inode, ret);
1434 	return ret;
1435 }
1436 
1437 int f2fs_inode_dirtied(struct inode *inode, bool sync)
1438 {
1439 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1440 	int ret = 0;
1441 
1442 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1443 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1444 		ret = 1;
1445 	} else {
1446 		set_inode_flag(inode, FI_DIRTY_INODE);
1447 		stat_inc_dirty_inode(sbi, DIRTY_META);
1448 	}
1449 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
1450 		list_add_tail(&F2FS_I(inode)->gdirty_list,
1451 				&sbi->inode_list[DIRTY_META]);
1452 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
1453 	}
1454 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1455 	return ret;
1456 }
1457 
1458 void f2fs_inode_synced(struct inode *inode)
1459 {
1460 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1461 
1462 	spin_lock(&sbi->inode_lock[DIRTY_META]);
1463 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
1464 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
1465 		return;
1466 	}
1467 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
1468 		list_del_init(&F2FS_I(inode)->gdirty_list);
1469 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
1470 	}
1471 	clear_inode_flag(inode, FI_DIRTY_INODE);
1472 	clear_inode_flag(inode, FI_AUTO_RECOVER);
1473 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
1474 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
1475 }
1476 
1477 /*
1478  * f2fs_dirty_inode() is called from __mark_inode_dirty()
1479  *
1480  * We should call set_dirty_inode to write the dirty inode through write_inode.
1481  */
1482 static void f2fs_dirty_inode(struct inode *inode, int flags)
1483 {
1484 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
1485 
1486 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
1487 			inode->i_ino == F2FS_META_INO(sbi))
1488 		return;
1489 
1490 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
1491 		clear_inode_flag(inode, FI_AUTO_RECOVER);
1492 
1493 	f2fs_inode_dirtied(inode, false);
1494 }
1495 
1496 static void f2fs_free_inode(struct inode *inode)
1497 {
1498 	fscrypt_free_inode(inode);
1499 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1500 }
1501 
1502 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1503 {
1504 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
1505 	percpu_counter_destroy(&sbi->total_valid_inode_count);
1506 }
1507 
1508 static void destroy_device_list(struct f2fs_sb_info *sbi)
1509 {
1510 	int i;
1511 
1512 	for (i = 0; i < sbi->s_ndevs; i++) {
1513 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1514 #ifdef CONFIG_BLK_DEV_ZONED
1515 		kvfree(FDEV(i).blkz_seq);
1516 		kfree(FDEV(i).zone_capacity_blocks);
1517 #endif
1518 	}
1519 	kvfree(sbi->devs);
1520 }
1521 
1522 static void f2fs_put_super(struct super_block *sb)
1523 {
1524 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1525 	int i;
1526 	bool dropped;
1527 
1528 	/* unregister procfs/sysfs entries in advance to avoid race case */
1529 	f2fs_unregister_sysfs(sbi);
1530 
1531 	f2fs_quota_off_umount(sb);
1532 
1533 	/* prevent remaining shrinker jobs */
1534 	mutex_lock(&sbi->umount_mutex);
1535 
1536 	/*
1537 	 * flush all issued checkpoints and stop checkpoint issue thread.
1538 	 * after then, all checkpoints should be done by each process context.
1539 	 */
1540 	f2fs_stop_ckpt_thread(sbi);
1541 
1542 	/*
1543 	 * We don't need to do checkpoint when superblock is clean.
1544 	 * But, the previous checkpoint was not done by umount, it needs to do
1545 	 * clean checkpoint again.
1546 	 */
1547 	if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1548 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1549 		struct cp_control cpc = {
1550 			.reason = CP_UMOUNT,
1551 		};
1552 		f2fs_write_checkpoint(sbi, &cpc);
1553 	}
1554 
1555 	/* be sure to wait for any on-going discard commands */
1556 	dropped = f2fs_issue_discard_timeout(sbi);
1557 
1558 	if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1559 					!sbi->discard_blks && !dropped) {
1560 		struct cp_control cpc = {
1561 			.reason = CP_UMOUNT | CP_TRIMMED,
1562 		};
1563 		f2fs_write_checkpoint(sbi, &cpc);
1564 	}
1565 
1566 	/*
1567 	 * normally superblock is clean, so we need to release this.
1568 	 * In addition, EIO will skip do checkpoint, we need this as well.
1569 	 */
1570 	f2fs_release_ino_entry(sbi, true);
1571 
1572 	f2fs_leave_shrinker(sbi);
1573 	mutex_unlock(&sbi->umount_mutex);
1574 
1575 	/* our cp_error case, we can wait for any writeback page */
1576 	f2fs_flush_merged_writes(sbi);
1577 
1578 	f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA);
1579 
1580 	f2fs_bug_on(sbi, sbi->fsync_node_num);
1581 
1582 	f2fs_destroy_compress_inode(sbi);
1583 
1584 	iput(sbi->node_inode);
1585 	sbi->node_inode = NULL;
1586 
1587 	iput(sbi->meta_inode);
1588 	sbi->meta_inode = NULL;
1589 
1590 	/*
1591 	 * iput() can update stat information, if f2fs_write_checkpoint()
1592 	 * above failed with error.
1593 	 */
1594 	f2fs_destroy_stats(sbi);
1595 
1596 	/* destroy f2fs internal modules */
1597 	f2fs_destroy_node_manager(sbi);
1598 	f2fs_destroy_segment_manager(sbi);
1599 
1600 	f2fs_destroy_post_read_wq(sbi);
1601 
1602 	kvfree(sbi->ckpt);
1603 
1604 	sb->s_fs_info = NULL;
1605 	if (sbi->s_chksum_driver)
1606 		crypto_free_shash(sbi->s_chksum_driver);
1607 	kfree(sbi->raw_super);
1608 
1609 	destroy_device_list(sbi);
1610 	f2fs_destroy_page_array_cache(sbi);
1611 	f2fs_destroy_xattr_caches(sbi);
1612 	mempool_destroy(sbi->write_io_dummy);
1613 #ifdef CONFIG_QUOTA
1614 	for (i = 0; i < MAXQUOTAS; i++)
1615 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
1616 #endif
1617 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
1618 	destroy_percpu_info(sbi);
1619 	f2fs_destroy_iostat(sbi);
1620 	for (i = 0; i < NR_PAGE_TYPE; i++)
1621 		kvfree(sbi->write_io[i]);
1622 #ifdef CONFIG_UNICODE
1623 	utf8_unload(sb->s_encoding);
1624 #endif
1625 	kfree(sbi);
1626 }
1627 
1628 int f2fs_sync_fs(struct super_block *sb, int sync)
1629 {
1630 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1631 	int err = 0;
1632 
1633 	if (unlikely(f2fs_cp_error(sbi)))
1634 		return 0;
1635 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1636 		return 0;
1637 
1638 	trace_f2fs_sync_fs(sb, sync);
1639 
1640 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1641 		return -EAGAIN;
1642 
1643 	if (sync)
1644 		err = f2fs_issue_checkpoint(sbi);
1645 
1646 	return err;
1647 }
1648 
1649 static int f2fs_freeze(struct super_block *sb)
1650 {
1651 	if (f2fs_readonly(sb))
1652 		return 0;
1653 
1654 	/* IO error happened before */
1655 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1656 		return -EIO;
1657 
1658 	/* must be clean, since sync_filesystem() was already called */
1659 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1660 		return -EINVAL;
1661 
1662 	/* ensure no checkpoint required */
1663 	if (!llist_empty(&F2FS_SB(sb)->cprc_info.issue_list))
1664 		return -EINVAL;
1665 	return 0;
1666 }
1667 
1668 static int f2fs_unfreeze(struct super_block *sb)
1669 {
1670 	return 0;
1671 }
1672 
1673 #ifdef CONFIG_QUOTA
1674 static int f2fs_statfs_project(struct super_block *sb,
1675 				kprojid_t projid, struct kstatfs *buf)
1676 {
1677 	struct kqid qid;
1678 	struct dquot *dquot;
1679 	u64 limit;
1680 	u64 curblock;
1681 
1682 	qid = make_kqid_projid(projid);
1683 	dquot = dqget(sb, qid);
1684 	if (IS_ERR(dquot))
1685 		return PTR_ERR(dquot);
1686 	spin_lock(&dquot->dq_dqb_lock);
1687 
1688 	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
1689 					dquot->dq_dqb.dqb_bhardlimit);
1690 	if (limit)
1691 		limit >>= sb->s_blocksize_bits;
1692 
1693 	if (limit && buf->f_blocks > limit) {
1694 		curblock = (dquot->dq_dqb.dqb_curspace +
1695 			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
1696 		buf->f_blocks = limit;
1697 		buf->f_bfree = buf->f_bavail =
1698 			(buf->f_blocks > curblock) ?
1699 			 (buf->f_blocks - curblock) : 0;
1700 	}
1701 
1702 	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
1703 					dquot->dq_dqb.dqb_ihardlimit);
1704 
1705 	if (limit && buf->f_files > limit) {
1706 		buf->f_files = limit;
1707 		buf->f_ffree =
1708 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1709 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1710 	}
1711 
1712 	spin_unlock(&dquot->dq_dqb_lock);
1713 	dqput(dquot);
1714 	return 0;
1715 }
1716 #endif
1717 
1718 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1719 {
1720 	struct super_block *sb = dentry->d_sb;
1721 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1722 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1723 	block_t total_count, user_block_count, start_count;
1724 	u64 avail_node_count;
1725 
1726 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1727 	user_block_count = sbi->user_block_count;
1728 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1729 	buf->f_type = F2FS_SUPER_MAGIC;
1730 	buf->f_bsize = sbi->blocksize;
1731 
1732 	buf->f_blocks = total_count - start_count;
1733 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1734 						sbi->current_reserved_blocks;
1735 
1736 	spin_lock(&sbi->stat_lock);
1737 	if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1738 		buf->f_bfree = 0;
1739 	else
1740 		buf->f_bfree -= sbi->unusable_block_count;
1741 	spin_unlock(&sbi->stat_lock);
1742 
1743 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1744 		buf->f_bavail = buf->f_bfree -
1745 				F2FS_OPTION(sbi).root_reserved_blocks;
1746 	else
1747 		buf->f_bavail = 0;
1748 
1749 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
1750 
1751 	if (avail_node_count > user_block_count) {
1752 		buf->f_files = user_block_count;
1753 		buf->f_ffree = buf->f_bavail;
1754 	} else {
1755 		buf->f_files = avail_node_count;
1756 		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1757 					buf->f_bavail);
1758 	}
1759 
1760 	buf->f_namelen = F2FS_NAME_LEN;
1761 	buf->f_fsid    = u64_to_fsid(id);
1762 
1763 #ifdef CONFIG_QUOTA
1764 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1765 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1766 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1767 	}
1768 #endif
1769 	return 0;
1770 }
1771 
1772 static inline void f2fs_show_quota_options(struct seq_file *seq,
1773 					   struct super_block *sb)
1774 {
1775 #ifdef CONFIG_QUOTA
1776 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1777 
1778 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1779 		char *fmtname = "";
1780 
1781 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1782 		case QFMT_VFS_OLD:
1783 			fmtname = "vfsold";
1784 			break;
1785 		case QFMT_VFS_V0:
1786 			fmtname = "vfsv0";
1787 			break;
1788 		case QFMT_VFS_V1:
1789 			fmtname = "vfsv1";
1790 			break;
1791 		}
1792 		seq_printf(seq, ",jqfmt=%s", fmtname);
1793 	}
1794 
1795 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1796 		seq_show_option(seq, "usrjquota",
1797 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1798 
1799 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1800 		seq_show_option(seq, "grpjquota",
1801 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1802 
1803 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1804 		seq_show_option(seq, "prjjquota",
1805 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1806 #endif
1807 }
1808 
1809 #ifdef CONFIG_F2FS_FS_COMPRESSION
1810 static inline void f2fs_show_compress_options(struct seq_file *seq,
1811 							struct super_block *sb)
1812 {
1813 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1814 	char *algtype = "";
1815 	int i;
1816 
1817 	if (!f2fs_sb_has_compression(sbi))
1818 		return;
1819 
1820 	switch (F2FS_OPTION(sbi).compress_algorithm) {
1821 	case COMPRESS_LZO:
1822 		algtype = "lzo";
1823 		break;
1824 	case COMPRESS_LZ4:
1825 		algtype = "lz4";
1826 		break;
1827 	case COMPRESS_ZSTD:
1828 		algtype = "zstd";
1829 		break;
1830 	case COMPRESS_LZORLE:
1831 		algtype = "lzo-rle";
1832 		break;
1833 	}
1834 	seq_printf(seq, ",compress_algorithm=%s", algtype);
1835 
1836 	if (F2FS_OPTION(sbi).compress_level)
1837 		seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level);
1838 
1839 	seq_printf(seq, ",compress_log_size=%u",
1840 			F2FS_OPTION(sbi).compress_log_size);
1841 
1842 	for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) {
1843 		seq_printf(seq, ",compress_extension=%s",
1844 			F2FS_OPTION(sbi).extensions[i]);
1845 	}
1846 
1847 	for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) {
1848 		seq_printf(seq, ",nocompress_extension=%s",
1849 			F2FS_OPTION(sbi).noextensions[i]);
1850 	}
1851 
1852 	if (F2FS_OPTION(sbi).compress_chksum)
1853 		seq_puts(seq, ",compress_chksum");
1854 
1855 	if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS)
1856 		seq_printf(seq, ",compress_mode=%s", "fs");
1857 	else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER)
1858 		seq_printf(seq, ",compress_mode=%s", "user");
1859 
1860 	if (test_opt(sbi, COMPRESS_CACHE))
1861 		seq_puts(seq, ",compress_cache");
1862 }
1863 #endif
1864 
1865 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1866 {
1867 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1868 
1869 	if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC)
1870 		seq_printf(seq, ",background_gc=%s", "sync");
1871 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON)
1872 		seq_printf(seq, ",background_gc=%s", "on");
1873 	else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF)
1874 		seq_printf(seq, ",background_gc=%s", "off");
1875 
1876 	if (test_opt(sbi, GC_MERGE))
1877 		seq_puts(seq, ",gc_merge");
1878 
1879 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1880 		seq_puts(seq, ",disable_roll_forward");
1881 	if (test_opt(sbi, NORECOVERY))
1882 		seq_puts(seq, ",norecovery");
1883 	if (test_opt(sbi, DISCARD))
1884 		seq_puts(seq, ",discard");
1885 	else
1886 		seq_puts(seq, ",nodiscard");
1887 	if (test_opt(sbi, NOHEAP))
1888 		seq_puts(seq, ",no_heap");
1889 	else
1890 		seq_puts(seq, ",heap");
1891 #ifdef CONFIG_F2FS_FS_XATTR
1892 	if (test_opt(sbi, XATTR_USER))
1893 		seq_puts(seq, ",user_xattr");
1894 	else
1895 		seq_puts(seq, ",nouser_xattr");
1896 	if (test_opt(sbi, INLINE_XATTR))
1897 		seq_puts(seq, ",inline_xattr");
1898 	else
1899 		seq_puts(seq, ",noinline_xattr");
1900 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1901 		seq_printf(seq, ",inline_xattr_size=%u",
1902 					F2FS_OPTION(sbi).inline_xattr_size);
1903 #endif
1904 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1905 	if (test_opt(sbi, POSIX_ACL))
1906 		seq_puts(seq, ",acl");
1907 	else
1908 		seq_puts(seq, ",noacl");
1909 #endif
1910 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1911 		seq_puts(seq, ",disable_ext_identify");
1912 	if (test_opt(sbi, INLINE_DATA))
1913 		seq_puts(seq, ",inline_data");
1914 	else
1915 		seq_puts(seq, ",noinline_data");
1916 	if (test_opt(sbi, INLINE_DENTRY))
1917 		seq_puts(seq, ",inline_dentry");
1918 	else
1919 		seq_puts(seq, ",noinline_dentry");
1920 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1921 		seq_puts(seq, ",flush_merge");
1922 	if (test_opt(sbi, NOBARRIER))
1923 		seq_puts(seq, ",nobarrier");
1924 	if (test_opt(sbi, FASTBOOT))
1925 		seq_puts(seq, ",fastboot");
1926 	if (test_opt(sbi, EXTENT_CACHE))
1927 		seq_puts(seq, ",extent_cache");
1928 	else
1929 		seq_puts(seq, ",noextent_cache");
1930 	if (test_opt(sbi, DATA_FLUSH))
1931 		seq_puts(seq, ",data_flush");
1932 
1933 	seq_puts(seq, ",mode=");
1934 	if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE)
1935 		seq_puts(seq, "adaptive");
1936 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS)
1937 		seq_puts(seq, "lfs");
1938 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG)
1939 		seq_puts(seq, "fragment:segment");
1940 	else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK)
1941 		seq_puts(seq, "fragment:block");
1942 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1943 	if (test_opt(sbi, RESERVE_ROOT))
1944 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1945 				F2FS_OPTION(sbi).root_reserved_blocks,
1946 				from_kuid_munged(&init_user_ns,
1947 					F2FS_OPTION(sbi).s_resuid),
1948 				from_kgid_munged(&init_user_ns,
1949 					F2FS_OPTION(sbi).s_resgid));
1950 	if (F2FS_IO_SIZE_BITS(sbi))
1951 		seq_printf(seq, ",io_bits=%u",
1952 				F2FS_OPTION(sbi).write_io_size_bits);
1953 #ifdef CONFIG_F2FS_FAULT_INJECTION
1954 	if (test_opt(sbi, FAULT_INJECTION)) {
1955 		seq_printf(seq, ",fault_injection=%u",
1956 				F2FS_OPTION(sbi).fault_info.inject_rate);
1957 		seq_printf(seq, ",fault_type=%u",
1958 				F2FS_OPTION(sbi).fault_info.inject_type);
1959 	}
1960 #endif
1961 #ifdef CONFIG_QUOTA
1962 	if (test_opt(sbi, QUOTA))
1963 		seq_puts(seq, ",quota");
1964 	if (test_opt(sbi, USRQUOTA))
1965 		seq_puts(seq, ",usrquota");
1966 	if (test_opt(sbi, GRPQUOTA))
1967 		seq_puts(seq, ",grpquota");
1968 	if (test_opt(sbi, PRJQUOTA))
1969 		seq_puts(seq, ",prjquota");
1970 #endif
1971 	f2fs_show_quota_options(seq, sbi->sb);
1972 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1973 		seq_printf(seq, ",whint_mode=%s", "user-based");
1974 	else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1975 		seq_printf(seq, ",whint_mode=%s", "fs-based");
1976 
1977 	fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb);
1978 
1979 	if (sbi->sb->s_flags & SB_INLINECRYPT)
1980 		seq_puts(seq, ",inlinecrypt");
1981 
1982 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1983 		seq_printf(seq, ",alloc_mode=%s", "default");
1984 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1985 		seq_printf(seq, ",alloc_mode=%s", "reuse");
1986 
1987 	if (test_opt(sbi, DISABLE_CHECKPOINT))
1988 		seq_printf(seq, ",checkpoint=disable:%u",
1989 				F2FS_OPTION(sbi).unusable_cap);
1990 	if (test_opt(sbi, MERGE_CHECKPOINT))
1991 		seq_puts(seq, ",checkpoint_merge");
1992 	else
1993 		seq_puts(seq, ",nocheckpoint_merge");
1994 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1995 		seq_printf(seq, ",fsync_mode=%s", "posix");
1996 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1997 		seq_printf(seq, ",fsync_mode=%s", "strict");
1998 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1999 		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
2000 
2001 #ifdef CONFIG_F2FS_FS_COMPRESSION
2002 	f2fs_show_compress_options(seq, sbi->sb);
2003 #endif
2004 
2005 	if (test_opt(sbi, ATGC))
2006 		seq_puts(seq, ",atgc");
2007 
2008 	if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK)
2009 		seq_printf(seq, ",discard_unit=%s", "block");
2010 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT)
2011 		seq_printf(seq, ",discard_unit=%s", "segment");
2012 	else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION)
2013 		seq_printf(seq, ",discard_unit=%s", "section");
2014 
2015 	return 0;
2016 }
2017 
2018 static void default_options(struct f2fs_sb_info *sbi)
2019 {
2020 	/* init some FS parameters */
2021 	if (f2fs_sb_has_readonly(sbi))
2022 		F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE;
2023 	else
2024 		F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE;
2025 
2026 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
2027 	F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
2028 	F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
2029 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
2030 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
2031 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
2032 	F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4;
2033 	F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE;
2034 	F2FS_OPTION(sbi).compress_ext_cnt = 0;
2035 	F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS;
2036 	F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON;
2037 
2038 	sbi->sb->s_flags &= ~SB_INLINECRYPT;
2039 
2040 	set_opt(sbi, INLINE_XATTR);
2041 	set_opt(sbi, INLINE_DATA);
2042 	set_opt(sbi, INLINE_DENTRY);
2043 	set_opt(sbi, EXTENT_CACHE);
2044 	set_opt(sbi, NOHEAP);
2045 	clear_opt(sbi, DISABLE_CHECKPOINT);
2046 	set_opt(sbi, MERGE_CHECKPOINT);
2047 	F2FS_OPTION(sbi).unusable_cap = 0;
2048 	sbi->sb->s_flags |= SB_LAZYTIME;
2049 	set_opt(sbi, FLUSH_MERGE);
2050 	if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi))
2051 		set_opt(sbi, DISCARD);
2052 	if (f2fs_sb_has_blkzoned(sbi)) {
2053 		F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS;
2054 		F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION;
2055 	} else {
2056 		F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE;
2057 		F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK;
2058 	}
2059 
2060 #ifdef CONFIG_F2FS_FS_XATTR
2061 	set_opt(sbi, XATTR_USER);
2062 #endif
2063 #ifdef CONFIG_F2FS_FS_POSIX_ACL
2064 	set_opt(sbi, POSIX_ACL);
2065 #endif
2066 
2067 	f2fs_build_fault_attr(sbi, 0, 0);
2068 }
2069 
2070 #ifdef CONFIG_QUOTA
2071 static int f2fs_enable_quotas(struct super_block *sb);
2072 #endif
2073 
2074 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
2075 {
2076 	unsigned int s_flags = sbi->sb->s_flags;
2077 	struct cp_control cpc;
2078 	int err = 0;
2079 	int ret;
2080 	block_t unusable;
2081 
2082 	if (s_flags & SB_RDONLY) {
2083 		f2fs_err(sbi, "checkpoint=disable on readonly fs");
2084 		return -EINVAL;
2085 	}
2086 	sbi->sb->s_flags |= SB_ACTIVE;
2087 
2088 	f2fs_update_time(sbi, DISABLE_TIME);
2089 
2090 	while (!f2fs_time_over(sbi, DISABLE_TIME)) {
2091 		down_write(&sbi->gc_lock);
2092 		err = f2fs_gc(sbi, true, false, false, NULL_SEGNO);
2093 		if (err == -ENODATA) {
2094 			err = 0;
2095 			break;
2096 		}
2097 		if (err && err != -EAGAIN)
2098 			break;
2099 	}
2100 
2101 	ret = sync_filesystem(sbi->sb);
2102 	if (ret || err) {
2103 		err = ret ? ret : err;
2104 		goto restore_flag;
2105 	}
2106 
2107 	unusable = f2fs_get_unusable_blocks(sbi);
2108 	if (f2fs_disable_cp_again(sbi, unusable)) {
2109 		err = -EAGAIN;
2110 		goto restore_flag;
2111 	}
2112 
2113 	down_write(&sbi->gc_lock);
2114 	cpc.reason = CP_PAUSE;
2115 	set_sbi_flag(sbi, SBI_CP_DISABLED);
2116 	err = f2fs_write_checkpoint(sbi, &cpc);
2117 	if (err)
2118 		goto out_unlock;
2119 
2120 	spin_lock(&sbi->stat_lock);
2121 	sbi->unusable_block_count = unusable;
2122 	spin_unlock(&sbi->stat_lock);
2123 
2124 out_unlock:
2125 	up_write(&sbi->gc_lock);
2126 restore_flag:
2127 	sbi->sb->s_flags = s_flags;	/* Restore SB_RDONLY status */
2128 	return err;
2129 }
2130 
2131 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
2132 {
2133 	int retry = DEFAULT_RETRY_IO_COUNT;
2134 
2135 	/* we should flush all the data to keep data consistency */
2136 	do {
2137 		sync_inodes_sb(sbi->sb);
2138 		cond_resched();
2139 		congestion_wait(BLK_RW_ASYNC, DEFAULT_IO_TIMEOUT);
2140 	} while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--);
2141 
2142 	if (unlikely(retry < 0))
2143 		f2fs_warn(sbi, "checkpoint=enable has some unwritten data.");
2144 
2145 	down_write(&sbi->gc_lock);
2146 	f2fs_dirty_to_prefree(sbi);
2147 
2148 	clear_sbi_flag(sbi, SBI_CP_DISABLED);
2149 	set_sbi_flag(sbi, SBI_IS_DIRTY);
2150 	up_write(&sbi->gc_lock);
2151 
2152 	f2fs_sync_fs(sbi->sb, 1);
2153 }
2154 
2155 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
2156 {
2157 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2158 	struct f2fs_mount_info org_mount_opt;
2159 	unsigned long old_sb_flags;
2160 	int err;
2161 	bool need_restart_gc = false, need_stop_gc = false;
2162 	bool need_restart_ckpt = false, need_stop_ckpt = false;
2163 	bool need_restart_flush = false, need_stop_flush = false;
2164 	bool need_restart_discard = false, need_stop_discard = false;
2165 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
2166 	bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT);
2167 	bool no_io_align = !F2FS_IO_ALIGNED(sbi);
2168 	bool no_atgc = !test_opt(sbi, ATGC);
2169 	bool no_discard = !test_opt(sbi, DISCARD);
2170 	bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE);
2171 	bool block_unit_discard = f2fs_block_unit_discard(sbi);
2172 	struct discard_cmd_control *dcc;
2173 #ifdef CONFIG_QUOTA
2174 	int i, j;
2175 #endif
2176 
2177 	/*
2178 	 * Save the old mount options in case we
2179 	 * need to restore them.
2180 	 */
2181 	org_mount_opt = sbi->mount_opt;
2182 	old_sb_flags = sb->s_flags;
2183 
2184 #ifdef CONFIG_QUOTA
2185 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
2186 	for (i = 0; i < MAXQUOTAS; i++) {
2187 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2188 			org_mount_opt.s_qf_names[i] =
2189 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
2190 				GFP_KERNEL);
2191 			if (!org_mount_opt.s_qf_names[i]) {
2192 				for (j = 0; j < i; j++)
2193 					kfree(org_mount_opt.s_qf_names[j]);
2194 				return -ENOMEM;
2195 			}
2196 		} else {
2197 			org_mount_opt.s_qf_names[i] = NULL;
2198 		}
2199 	}
2200 #endif
2201 
2202 	/* recover superblocks we couldn't write due to previous RO mount */
2203 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
2204 		err = f2fs_commit_super(sbi, false);
2205 		f2fs_info(sbi, "Try to recover all the superblocks, ret: %d",
2206 			  err);
2207 		if (!err)
2208 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2209 	}
2210 
2211 	default_options(sbi);
2212 
2213 	/* parse mount options */
2214 	err = parse_options(sb, data, true);
2215 	if (err)
2216 		goto restore_opts;
2217 
2218 	/*
2219 	 * Previous and new state of filesystem is RO,
2220 	 * so skip checking GC and FLUSH_MERGE conditions.
2221 	 */
2222 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
2223 		goto skip;
2224 
2225 	if (f2fs_sb_has_readonly(sbi) && !(*flags & SB_RDONLY)) {
2226 		err = -EROFS;
2227 		goto restore_opts;
2228 	}
2229 
2230 #ifdef CONFIG_QUOTA
2231 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
2232 		err = dquot_suspend(sb, -1);
2233 		if (err < 0)
2234 			goto restore_opts;
2235 	} else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
2236 		/* dquot_resume needs RW */
2237 		sb->s_flags &= ~SB_RDONLY;
2238 		if (sb_any_quota_suspended(sb)) {
2239 			dquot_resume(sb, -1);
2240 		} else if (f2fs_sb_has_quota_ino(sbi)) {
2241 			err = f2fs_enable_quotas(sb);
2242 			if (err)
2243 				goto restore_opts;
2244 		}
2245 	}
2246 #endif
2247 	/* disallow enable atgc dynamically */
2248 	if (no_atgc == !!test_opt(sbi, ATGC)) {
2249 		err = -EINVAL;
2250 		f2fs_warn(sbi, "switch atgc option is not allowed");
2251 		goto restore_opts;
2252 	}
2253 
2254 	/* disallow enable/disable extent_cache dynamically */
2255 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
2256 		err = -EINVAL;
2257 		f2fs_warn(sbi, "switch extent_cache option is not allowed");
2258 		goto restore_opts;
2259 	}
2260 
2261 	if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) {
2262 		err = -EINVAL;
2263 		f2fs_warn(sbi, "switch io_bits option is not allowed");
2264 		goto restore_opts;
2265 	}
2266 
2267 	if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) {
2268 		err = -EINVAL;
2269 		f2fs_warn(sbi, "switch compress_cache option is not allowed");
2270 		goto restore_opts;
2271 	}
2272 
2273 	if (block_unit_discard != f2fs_block_unit_discard(sbi)) {
2274 		err = -EINVAL;
2275 		f2fs_warn(sbi, "switch discard_unit option is not allowed");
2276 		goto restore_opts;
2277 	}
2278 
2279 	if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
2280 		err = -EINVAL;
2281 		f2fs_warn(sbi, "disabling checkpoint not compatible with read-only");
2282 		goto restore_opts;
2283 	}
2284 
2285 	/*
2286 	 * We stop the GC thread if FS is mounted as RO
2287 	 * or if background_gc = off is passed in mount
2288 	 * option. Also sync the filesystem.
2289 	 */
2290 	if ((*flags & SB_RDONLY) ||
2291 			(F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF &&
2292 			!test_opt(sbi, GC_MERGE))) {
2293 		if (sbi->gc_thread) {
2294 			f2fs_stop_gc_thread(sbi);
2295 			need_restart_gc = true;
2296 		}
2297 	} else if (!sbi->gc_thread) {
2298 		err = f2fs_start_gc_thread(sbi);
2299 		if (err)
2300 			goto restore_opts;
2301 		need_stop_gc = true;
2302 	}
2303 
2304 	if (*flags & SB_RDONLY ||
2305 		F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
2306 		sync_inodes_sb(sb);
2307 
2308 		set_sbi_flag(sbi, SBI_IS_DIRTY);
2309 		set_sbi_flag(sbi, SBI_IS_CLOSE);
2310 		f2fs_sync_fs(sb, 1);
2311 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
2312 	}
2313 
2314 	if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) ||
2315 			!test_opt(sbi, MERGE_CHECKPOINT)) {
2316 		f2fs_stop_ckpt_thread(sbi);
2317 		need_restart_ckpt = true;
2318 	} else {
2319 		err = f2fs_start_ckpt_thread(sbi);
2320 		if (err) {
2321 			f2fs_err(sbi,
2322 			    "Failed to start F2FS issue_checkpoint_thread (%d)",
2323 			    err);
2324 			goto restore_gc;
2325 		}
2326 		need_stop_ckpt = true;
2327 	}
2328 
2329 	/*
2330 	 * We stop issue flush thread if FS is mounted as RO
2331 	 * or if flush_merge is not passed in mount option.
2332 	 */
2333 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
2334 		clear_opt(sbi, FLUSH_MERGE);
2335 		f2fs_destroy_flush_cmd_control(sbi, false);
2336 		need_restart_flush = true;
2337 	} else {
2338 		err = f2fs_create_flush_cmd_control(sbi);
2339 		if (err)
2340 			goto restore_ckpt;
2341 		need_stop_flush = true;
2342 	}
2343 
2344 	if (no_discard == !!test_opt(sbi, DISCARD)) {
2345 		if (test_opt(sbi, DISCARD)) {
2346 			err = f2fs_start_discard_thread(sbi);
2347 			if (err)
2348 				goto restore_flush;
2349 			need_stop_discard = true;
2350 		} else {
2351 			dcc = SM_I(sbi)->dcc_info;
2352 			f2fs_stop_discard_thread(sbi);
2353 			if (atomic_read(&dcc->discard_cmd_cnt))
2354 				f2fs_issue_discard_timeout(sbi);
2355 			need_restart_discard = true;
2356 		}
2357 	}
2358 
2359 	if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) {
2360 		if (test_opt(sbi, DISABLE_CHECKPOINT)) {
2361 			err = f2fs_disable_checkpoint(sbi);
2362 			if (err)
2363 				goto restore_discard;
2364 		} else {
2365 			f2fs_enable_checkpoint(sbi);
2366 		}
2367 	}
2368 
2369 skip:
2370 #ifdef CONFIG_QUOTA
2371 	/* Release old quota file names */
2372 	for (i = 0; i < MAXQUOTAS; i++)
2373 		kfree(org_mount_opt.s_qf_names[i]);
2374 #endif
2375 	/* Update the POSIXACL Flag */
2376 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
2377 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
2378 
2379 	limit_reserve_root(sbi);
2380 	adjust_unusable_cap_perc(sbi);
2381 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
2382 	return 0;
2383 restore_discard:
2384 	if (need_restart_discard) {
2385 		if (f2fs_start_discard_thread(sbi))
2386 			f2fs_warn(sbi, "discard has been stopped");
2387 	} else if (need_stop_discard) {
2388 		f2fs_stop_discard_thread(sbi);
2389 	}
2390 restore_flush:
2391 	if (need_restart_flush) {
2392 		if (f2fs_create_flush_cmd_control(sbi))
2393 			f2fs_warn(sbi, "background flush thread has stopped");
2394 	} else if (need_stop_flush) {
2395 		clear_opt(sbi, FLUSH_MERGE);
2396 		f2fs_destroy_flush_cmd_control(sbi, false);
2397 	}
2398 restore_ckpt:
2399 	if (need_restart_ckpt) {
2400 		if (f2fs_start_ckpt_thread(sbi))
2401 			f2fs_warn(sbi, "background ckpt thread has stopped");
2402 	} else if (need_stop_ckpt) {
2403 		f2fs_stop_ckpt_thread(sbi);
2404 	}
2405 restore_gc:
2406 	if (need_restart_gc) {
2407 		if (f2fs_start_gc_thread(sbi))
2408 			f2fs_warn(sbi, "background gc thread has stopped");
2409 	} else if (need_stop_gc) {
2410 		f2fs_stop_gc_thread(sbi);
2411 	}
2412 restore_opts:
2413 #ifdef CONFIG_QUOTA
2414 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
2415 	for (i = 0; i < MAXQUOTAS; i++) {
2416 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
2417 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
2418 	}
2419 #endif
2420 	sbi->mount_opt = org_mount_opt;
2421 	sb->s_flags = old_sb_flags;
2422 	return err;
2423 }
2424 
2425 #ifdef CONFIG_QUOTA
2426 /* Read data from quotafile */
2427 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
2428 			       size_t len, loff_t off)
2429 {
2430 	struct inode *inode = sb_dqopt(sb)->files[type];
2431 	struct address_space *mapping = inode->i_mapping;
2432 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
2433 	int offset = off & (sb->s_blocksize - 1);
2434 	int tocopy;
2435 	size_t toread;
2436 	loff_t i_size = i_size_read(inode);
2437 	struct page *page;
2438 	char *kaddr;
2439 
2440 	if (off > i_size)
2441 		return 0;
2442 
2443 	if (off + len > i_size)
2444 		len = i_size - off;
2445 	toread = len;
2446 	while (toread > 0) {
2447 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
2448 repeat:
2449 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
2450 		if (IS_ERR(page)) {
2451 			if (PTR_ERR(page) == -ENOMEM) {
2452 				memalloc_retry_wait(GFP_NOFS);
2453 				goto repeat;
2454 			}
2455 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2456 			return PTR_ERR(page);
2457 		}
2458 
2459 		lock_page(page);
2460 
2461 		if (unlikely(page->mapping != mapping)) {
2462 			f2fs_put_page(page, 1);
2463 			goto repeat;
2464 		}
2465 		if (unlikely(!PageUptodate(page))) {
2466 			f2fs_put_page(page, 1);
2467 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2468 			return -EIO;
2469 		}
2470 
2471 		kaddr = kmap_atomic(page);
2472 		memcpy(data, kaddr + offset, tocopy);
2473 		kunmap_atomic(kaddr);
2474 		f2fs_put_page(page, 1);
2475 
2476 		offset = 0;
2477 		toread -= tocopy;
2478 		data += tocopy;
2479 		blkidx++;
2480 	}
2481 	return len;
2482 }
2483 
2484 /* Write to quotafile */
2485 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
2486 				const char *data, size_t len, loff_t off)
2487 {
2488 	struct inode *inode = sb_dqopt(sb)->files[type];
2489 	struct address_space *mapping = inode->i_mapping;
2490 	const struct address_space_operations *a_ops = mapping->a_ops;
2491 	int offset = off & (sb->s_blocksize - 1);
2492 	size_t towrite = len;
2493 	struct page *page;
2494 	void *fsdata = NULL;
2495 	char *kaddr;
2496 	int err = 0;
2497 	int tocopy;
2498 
2499 	while (towrite > 0) {
2500 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
2501 								towrite);
2502 retry:
2503 		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
2504 							&page, &fsdata);
2505 		if (unlikely(err)) {
2506 			if (err == -ENOMEM) {
2507 				congestion_wait(BLK_RW_ASYNC,
2508 						DEFAULT_IO_TIMEOUT);
2509 				goto retry;
2510 			}
2511 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2512 			break;
2513 		}
2514 
2515 		kaddr = kmap_atomic(page);
2516 		memcpy(kaddr + offset, data, tocopy);
2517 		kunmap_atomic(kaddr);
2518 		flush_dcache_page(page);
2519 
2520 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
2521 						page, fsdata);
2522 		offset = 0;
2523 		towrite -= tocopy;
2524 		off += tocopy;
2525 		data += tocopy;
2526 		cond_resched();
2527 	}
2528 
2529 	if (len == towrite)
2530 		return err;
2531 	inode->i_mtime = inode->i_ctime = current_time(inode);
2532 	f2fs_mark_inode_dirty_sync(inode, false);
2533 	return len - towrite;
2534 }
2535 
2536 int f2fs_dquot_initialize(struct inode *inode)
2537 {
2538 	if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT)) {
2539 		f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_DQUOT_INIT);
2540 		return -ESRCH;
2541 	}
2542 
2543 	return dquot_initialize(inode);
2544 }
2545 
2546 static struct dquot **f2fs_get_dquots(struct inode *inode)
2547 {
2548 	return F2FS_I(inode)->i_dquot;
2549 }
2550 
2551 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
2552 {
2553 	return &F2FS_I(inode)->i_reserved_quota;
2554 }
2555 
2556 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
2557 {
2558 	if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
2559 		f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it");
2560 		return 0;
2561 	}
2562 
2563 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
2564 					F2FS_OPTION(sbi).s_jquota_fmt, type);
2565 }
2566 
2567 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
2568 {
2569 	int enabled = 0;
2570 	int i, err;
2571 
2572 	if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
2573 		err = f2fs_enable_quotas(sbi->sb);
2574 		if (err) {
2575 			f2fs_err(sbi, "Cannot turn on quota_ino: %d", err);
2576 			return 0;
2577 		}
2578 		return 1;
2579 	}
2580 
2581 	for (i = 0; i < MAXQUOTAS; i++) {
2582 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
2583 			err = f2fs_quota_on_mount(sbi, i);
2584 			if (!err) {
2585 				enabled = 1;
2586 				continue;
2587 			}
2588 			f2fs_err(sbi, "Cannot turn on quotas: %d on %d",
2589 				 err, i);
2590 		}
2591 	}
2592 	return enabled;
2593 }
2594 
2595 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
2596 			     unsigned int flags)
2597 {
2598 	struct inode *qf_inode;
2599 	unsigned long qf_inum;
2600 	int err;
2601 
2602 	BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
2603 
2604 	qf_inum = f2fs_qf_ino(sb, type);
2605 	if (!qf_inum)
2606 		return -EPERM;
2607 
2608 	qf_inode = f2fs_iget(sb, qf_inum);
2609 	if (IS_ERR(qf_inode)) {
2610 		f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum);
2611 		return PTR_ERR(qf_inode);
2612 	}
2613 
2614 	/* Don't account quota for quota files to avoid recursion */
2615 	qf_inode->i_flags |= S_NOQUOTA;
2616 	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
2617 	iput(qf_inode);
2618 	return err;
2619 }
2620 
2621 static int f2fs_enable_quotas(struct super_block *sb)
2622 {
2623 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2624 	int type, err = 0;
2625 	unsigned long qf_inum;
2626 	bool quota_mopt[MAXQUOTAS] = {
2627 		test_opt(sbi, USRQUOTA),
2628 		test_opt(sbi, GRPQUOTA),
2629 		test_opt(sbi, PRJQUOTA),
2630 	};
2631 
2632 	if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
2633 		f2fs_err(sbi, "quota file may be corrupted, skip loading it");
2634 		return 0;
2635 	}
2636 
2637 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
2638 
2639 	for (type = 0; type < MAXQUOTAS; type++) {
2640 		qf_inum = f2fs_qf_ino(sb, type);
2641 		if (qf_inum) {
2642 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
2643 				DQUOT_USAGE_ENABLED |
2644 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
2645 			if (err) {
2646 				f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.",
2647 					 type, err);
2648 				for (type--; type >= 0; type--)
2649 					dquot_quota_off(sb, type);
2650 				set_sbi_flag(F2FS_SB(sb),
2651 						SBI_QUOTA_NEED_REPAIR);
2652 				return err;
2653 			}
2654 		}
2655 	}
2656 	return 0;
2657 }
2658 
2659 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type)
2660 {
2661 	struct quota_info *dqopt = sb_dqopt(sbi->sb);
2662 	struct address_space *mapping = dqopt->files[type]->i_mapping;
2663 	int ret = 0;
2664 
2665 	ret = dquot_writeback_dquots(sbi->sb, type);
2666 	if (ret)
2667 		goto out;
2668 
2669 	ret = filemap_fdatawrite(mapping);
2670 	if (ret)
2671 		goto out;
2672 
2673 	/* if we are using journalled quota */
2674 	if (is_journalled_quota(sbi))
2675 		goto out;
2676 
2677 	ret = filemap_fdatawait(mapping);
2678 
2679 	truncate_inode_pages(&dqopt->files[type]->i_data, 0);
2680 out:
2681 	if (ret)
2682 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2683 	return ret;
2684 }
2685 
2686 int f2fs_quota_sync(struct super_block *sb, int type)
2687 {
2688 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2689 	struct quota_info *dqopt = sb_dqopt(sb);
2690 	int cnt;
2691 	int ret;
2692 
2693 	/*
2694 	 * Now when everything is written we can discard the pagecache so
2695 	 * that userspace sees the changes.
2696 	 */
2697 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
2698 
2699 		if (type != -1 && cnt != type)
2700 			continue;
2701 
2702 		if (!sb_has_quota_active(sb, type))
2703 			return 0;
2704 
2705 		inode_lock(dqopt->files[cnt]);
2706 
2707 		/*
2708 		 * do_quotactl
2709 		 *  f2fs_quota_sync
2710 		 *  down_read(quota_sem)
2711 		 *  dquot_writeback_dquots()
2712 		 *  f2fs_dquot_commit
2713 		 *			      block_operation
2714 		 *			      down_read(quota_sem)
2715 		 */
2716 		f2fs_lock_op(sbi);
2717 		down_read(&sbi->quota_sem);
2718 
2719 		ret = f2fs_quota_sync_file(sbi, cnt);
2720 
2721 		up_read(&sbi->quota_sem);
2722 		f2fs_unlock_op(sbi);
2723 
2724 		inode_unlock(dqopt->files[cnt]);
2725 
2726 		if (ret)
2727 			break;
2728 	}
2729 	return ret;
2730 }
2731 
2732 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
2733 							const struct path *path)
2734 {
2735 	struct inode *inode;
2736 	int err;
2737 
2738 	/* if quota sysfile exists, deny enabling quota with specific file */
2739 	if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) {
2740 		f2fs_err(F2FS_SB(sb), "quota sysfile already exists");
2741 		return -EBUSY;
2742 	}
2743 
2744 	err = f2fs_quota_sync(sb, type);
2745 	if (err)
2746 		return err;
2747 
2748 	err = dquot_quota_on(sb, type, format_id, path);
2749 	if (err)
2750 		return err;
2751 
2752 	inode = d_inode(path->dentry);
2753 
2754 	inode_lock(inode);
2755 	F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
2756 	f2fs_set_inode_flags(inode);
2757 	inode_unlock(inode);
2758 	f2fs_mark_inode_dirty_sync(inode, false);
2759 
2760 	return 0;
2761 }
2762 
2763 static int __f2fs_quota_off(struct super_block *sb, int type)
2764 {
2765 	struct inode *inode = sb_dqopt(sb)->files[type];
2766 	int err;
2767 
2768 	if (!inode || !igrab(inode))
2769 		return dquot_quota_off(sb, type);
2770 
2771 	err = f2fs_quota_sync(sb, type);
2772 	if (err)
2773 		goto out_put;
2774 
2775 	err = dquot_quota_off(sb, type);
2776 	if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
2777 		goto out_put;
2778 
2779 	inode_lock(inode);
2780 	F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2781 	f2fs_set_inode_flags(inode);
2782 	inode_unlock(inode);
2783 	f2fs_mark_inode_dirty_sync(inode, false);
2784 out_put:
2785 	iput(inode);
2786 	return err;
2787 }
2788 
2789 static int f2fs_quota_off(struct super_block *sb, int type)
2790 {
2791 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2792 	int err;
2793 
2794 	err = __f2fs_quota_off(sb, type);
2795 
2796 	/*
2797 	 * quotactl can shutdown journalled quota, result in inconsistence
2798 	 * between quota record and fs data by following updates, tag the
2799 	 * flag to let fsck be aware of it.
2800 	 */
2801 	if (is_journalled_quota(sbi))
2802 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2803 	return err;
2804 }
2805 
2806 void f2fs_quota_off_umount(struct super_block *sb)
2807 {
2808 	int type;
2809 	int err;
2810 
2811 	for (type = 0; type < MAXQUOTAS; type++) {
2812 		err = __f2fs_quota_off(sb, type);
2813 		if (err) {
2814 			int ret = dquot_quota_off(sb, type);
2815 
2816 			f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.",
2817 				 type, err, ret);
2818 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2819 		}
2820 	}
2821 	/*
2822 	 * In case of checkpoint=disable, we must flush quota blocks.
2823 	 * This can cause NULL exception for node_inode in end_io, since
2824 	 * put_super already dropped it.
2825 	 */
2826 	sync_filesystem(sb);
2827 }
2828 
2829 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2830 {
2831 	struct quota_info *dqopt = sb_dqopt(sb);
2832 	int type;
2833 
2834 	for (type = 0; type < MAXQUOTAS; type++) {
2835 		if (!dqopt->files[type])
2836 			continue;
2837 		f2fs_inode_synced(dqopt->files[type]);
2838 	}
2839 }
2840 
2841 static int f2fs_dquot_commit(struct dquot *dquot)
2842 {
2843 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2844 	int ret;
2845 
2846 	down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING);
2847 	ret = dquot_commit(dquot);
2848 	if (ret < 0)
2849 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2850 	up_read(&sbi->quota_sem);
2851 	return ret;
2852 }
2853 
2854 static int f2fs_dquot_acquire(struct dquot *dquot)
2855 {
2856 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2857 	int ret;
2858 
2859 	down_read(&sbi->quota_sem);
2860 	ret = dquot_acquire(dquot);
2861 	if (ret < 0)
2862 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2863 	up_read(&sbi->quota_sem);
2864 	return ret;
2865 }
2866 
2867 static int f2fs_dquot_release(struct dquot *dquot)
2868 {
2869 	struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb);
2870 	int ret = dquot_release(dquot);
2871 
2872 	if (ret < 0)
2873 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2874 	return ret;
2875 }
2876 
2877 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2878 {
2879 	struct super_block *sb = dquot->dq_sb;
2880 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2881 	int ret = dquot_mark_dquot_dirty(dquot);
2882 
2883 	/* if we are using journalled quota */
2884 	if (is_journalled_quota(sbi))
2885 		set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2886 
2887 	return ret;
2888 }
2889 
2890 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2891 {
2892 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2893 	int ret = dquot_commit_info(sb, type);
2894 
2895 	if (ret < 0)
2896 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
2897 	return ret;
2898 }
2899 
2900 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2901 {
2902 	*projid = F2FS_I(inode)->i_projid;
2903 	return 0;
2904 }
2905 
2906 static const struct dquot_operations f2fs_quota_operations = {
2907 	.get_reserved_space = f2fs_get_reserved_space,
2908 	.write_dquot	= f2fs_dquot_commit,
2909 	.acquire_dquot	= f2fs_dquot_acquire,
2910 	.release_dquot	= f2fs_dquot_release,
2911 	.mark_dirty	= f2fs_dquot_mark_dquot_dirty,
2912 	.write_info	= f2fs_dquot_commit_info,
2913 	.alloc_dquot	= dquot_alloc,
2914 	.destroy_dquot	= dquot_destroy,
2915 	.get_projid	= f2fs_get_projid,
2916 	.get_next_id	= dquot_get_next_id,
2917 };
2918 
2919 static const struct quotactl_ops f2fs_quotactl_ops = {
2920 	.quota_on	= f2fs_quota_on,
2921 	.quota_off	= f2fs_quota_off,
2922 	.quota_sync	= f2fs_quota_sync,
2923 	.get_state	= dquot_get_state,
2924 	.set_info	= dquot_set_dqinfo,
2925 	.get_dqblk	= dquot_get_dqblk,
2926 	.set_dqblk	= dquot_set_dqblk,
2927 	.get_nextdqblk	= dquot_get_next_dqblk,
2928 };
2929 #else
2930 int f2fs_dquot_initialize(struct inode *inode)
2931 {
2932 	return 0;
2933 }
2934 
2935 int f2fs_quota_sync(struct super_block *sb, int type)
2936 {
2937 	return 0;
2938 }
2939 
2940 void f2fs_quota_off_umount(struct super_block *sb)
2941 {
2942 }
2943 #endif
2944 
2945 static const struct super_operations f2fs_sops = {
2946 	.alloc_inode	= f2fs_alloc_inode,
2947 	.free_inode	= f2fs_free_inode,
2948 	.drop_inode	= f2fs_drop_inode,
2949 	.write_inode	= f2fs_write_inode,
2950 	.dirty_inode	= f2fs_dirty_inode,
2951 	.show_options	= f2fs_show_options,
2952 #ifdef CONFIG_QUOTA
2953 	.quota_read	= f2fs_quota_read,
2954 	.quota_write	= f2fs_quota_write,
2955 	.get_dquots	= f2fs_get_dquots,
2956 #endif
2957 	.evict_inode	= f2fs_evict_inode,
2958 	.put_super	= f2fs_put_super,
2959 	.sync_fs	= f2fs_sync_fs,
2960 	.freeze_fs	= f2fs_freeze,
2961 	.unfreeze_fs	= f2fs_unfreeze,
2962 	.statfs		= f2fs_statfs,
2963 	.remount_fs	= f2fs_remount,
2964 };
2965 
2966 #ifdef CONFIG_FS_ENCRYPTION
2967 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2968 {
2969 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2970 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2971 				ctx, len, NULL);
2972 }
2973 
2974 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2975 							void *fs_data)
2976 {
2977 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2978 
2979 	/*
2980 	 * Encrypting the root directory is not allowed because fsck
2981 	 * expects lost+found directory to exist and remain unencrypted
2982 	 * if LOST_FOUND feature is enabled.
2983 	 *
2984 	 */
2985 	if (f2fs_sb_has_lost_found(sbi) &&
2986 			inode->i_ino == F2FS_ROOT_INO(sbi))
2987 		return -EPERM;
2988 
2989 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2990 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2991 				ctx, len, fs_data, XATTR_CREATE);
2992 }
2993 
2994 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb)
2995 {
2996 	return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy;
2997 }
2998 
2999 static bool f2fs_has_stable_inodes(struct super_block *sb)
3000 {
3001 	return true;
3002 }
3003 
3004 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb,
3005 				       int *ino_bits_ret, int *lblk_bits_ret)
3006 {
3007 	*ino_bits_ret = 8 * sizeof(nid_t);
3008 	*lblk_bits_ret = 8 * sizeof(block_t);
3009 }
3010 
3011 static int f2fs_get_num_devices(struct super_block *sb)
3012 {
3013 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
3014 
3015 	if (f2fs_is_multi_device(sbi))
3016 		return sbi->s_ndevs;
3017 	return 1;
3018 }
3019 
3020 static void f2fs_get_devices(struct super_block *sb,
3021 			     struct request_queue **devs)
3022 {
3023 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
3024 	int i;
3025 
3026 	for (i = 0; i < sbi->s_ndevs; i++)
3027 		devs[i] = bdev_get_queue(FDEV(i).bdev);
3028 }
3029 
3030 static const struct fscrypt_operations f2fs_cryptops = {
3031 	.key_prefix		= "f2fs:",
3032 	.get_context		= f2fs_get_context,
3033 	.set_context		= f2fs_set_context,
3034 	.get_dummy_policy	= f2fs_get_dummy_policy,
3035 	.empty_dir		= f2fs_empty_dir,
3036 	.has_stable_inodes	= f2fs_has_stable_inodes,
3037 	.get_ino_and_lblk_bits	= f2fs_get_ino_and_lblk_bits,
3038 	.get_num_devices	= f2fs_get_num_devices,
3039 	.get_devices		= f2fs_get_devices,
3040 };
3041 #endif
3042 
3043 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
3044 		u64 ino, u32 generation)
3045 {
3046 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
3047 	struct inode *inode;
3048 
3049 	if (f2fs_check_nid_range(sbi, ino))
3050 		return ERR_PTR(-ESTALE);
3051 
3052 	/*
3053 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
3054 	 * However f2fs_iget currently does appropriate checks to handle stale
3055 	 * inodes so everything is OK.
3056 	 */
3057 	inode = f2fs_iget(sb, ino);
3058 	if (IS_ERR(inode))
3059 		return ERR_CAST(inode);
3060 	if (unlikely(generation && inode->i_generation != generation)) {
3061 		/* we didn't find the right inode.. */
3062 		iput(inode);
3063 		return ERR_PTR(-ESTALE);
3064 	}
3065 	return inode;
3066 }
3067 
3068 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
3069 		int fh_len, int fh_type)
3070 {
3071 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
3072 				    f2fs_nfs_get_inode);
3073 }
3074 
3075 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
3076 		int fh_len, int fh_type)
3077 {
3078 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
3079 				    f2fs_nfs_get_inode);
3080 }
3081 
3082 static const struct export_operations f2fs_export_ops = {
3083 	.fh_to_dentry = f2fs_fh_to_dentry,
3084 	.fh_to_parent = f2fs_fh_to_parent,
3085 	.get_parent = f2fs_get_parent,
3086 };
3087 
3088 loff_t max_file_blocks(struct inode *inode)
3089 {
3090 	loff_t result = 0;
3091 	loff_t leaf_count;
3092 
3093 	/*
3094 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
3095 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
3096 	 * space in inode.i_addr, it will be more safe to reassign
3097 	 * result as zero.
3098 	 */
3099 
3100 	if (inode && f2fs_compressed_file(inode))
3101 		leaf_count = ADDRS_PER_BLOCK(inode);
3102 	else
3103 		leaf_count = DEF_ADDRS_PER_BLOCK;
3104 
3105 	/* two direct node blocks */
3106 	result += (leaf_count * 2);
3107 
3108 	/* two indirect node blocks */
3109 	leaf_count *= NIDS_PER_BLOCK;
3110 	result += (leaf_count * 2);
3111 
3112 	/* one double indirect node block */
3113 	leaf_count *= NIDS_PER_BLOCK;
3114 	result += leaf_count;
3115 
3116 	return result;
3117 }
3118 
3119 static int __f2fs_commit_super(struct buffer_head *bh,
3120 			struct f2fs_super_block *super)
3121 {
3122 	lock_buffer(bh);
3123 	if (super)
3124 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
3125 	set_buffer_dirty(bh);
3126 	unlock_buffer(bh);
3127 
3128 	/* it's rare case, we can do fua all the time */
3129 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
3130 }
3131 
3132 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
3133 					struct buffer_head *bh)
3134 {
3135 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
3136 					(bh->b_data + F2FS_SUPER_OFFSET);
3137 	struct super_block *sb = sbi->sb;
3138 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
3139 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
3140 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
3141 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
3142 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
3143 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
3144 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
3145 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
3146 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
3147 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
3148 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3149 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
3150 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3151 	u64 main_end_blkaddr = main_blkaddr +
3152 				(segment_count_main << log_blocks_per_seg);
3153 	u64 seg_end_blkaddr = segment0_blkaddr +
3154 				(segment_count << log_blocks_per_seg);
3155 
3156 	if (segment0_blkaddr != cp_blkaddr) {
3157 		f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)",
3158 			  segment0_blkaddr, cp_blkaddr);
3159 		return true;
3160 	}
3161 
3162 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
3163 							sit_blkaddr) {
3164 		f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)",
3165 			  cp_blkaddr, sit_blkaddr,
3166 			  segment_count_ckpt << log_blocks_per_seg);
3167 		return true;
3168 	}
3169 
3170 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
3171 							nat_blkaddr) {
3172 		f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
3173 			  sit_blkaddr, nat_blkaddr,
3174 			  segment_count_sit << log_blocks_per_seg);
3175 		return true;
3176 	}
3177 
3178 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
3179 							ssa_blkaddr) {
3180 		f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
3181 			  nat_blkaddr, ssa_blkaddr,
3182 			  segment_count_nat << log_blocks_per_seg);
3183 		return true;
3184 	}
3185 
3186 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
3187 							main_blkaddr) {
3188 		f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
3189 			  ssa_blkaddr, main_blkaddr,
3190 			  segment_count_ssa << log_blocks_per_seg);
3191 		return true;
3192 	}
3193 
3194 	if (main_end_blkaddr > seg_end_blkaddr) {
3195 		f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)",
3196 			  main_blkaddr, seg_end_blkaddr,
3197 			  segment_count_main << log_blocks_per_seg);
3198 		return true;
3199 	} else if (main_end_blkaddr < seg_end_blkaddr) {
3200 		int err = 0;
3201 		char *res;
3202 
3203 		/* fix in-memory information all the time */
3204 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
3205 				segment0_blkaddr) >> log_blocks_per_seg);
3206 
3207 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
3208 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3209 			res = "internally";
3210 		} else {
3211 			err = __f2fs_commit_super(bh, NULL);
3212 			res = err ? "failed" : "done";
3213 		}
3214 		f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)",
3215 			  res, main_blkaddr, seg_end_blkaddr,
3216 			  segment_count_main << log_blocks_per_seg);
3217 		if (err)
3218 			return true;
3219 	}
3220 	return false;
3221 }
3222 
3223 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
3224 				struct buffer_head *bh)
3225 {
3226 	block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main;
3227 	block_t total_sections, blocks_per_seg;
3228 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
3229 					(bh->b_data + F2FS_SUPER_OFFSET);
3230 	size_t crc_offset = 0;
3231 	__u32 crc = 0;
3232 
3233 	if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) {
3234 		f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)",
3235 			  F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
3236 		return -EINVAL;
3237 	}
3238 
3239 	/* Check checksum_offset and crc in superblock */
3240 	if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
3241 		crc_offset = le32_to_cpu(raw_super->checksum_offset);
3242 		if (crc_offset !=
3243 			offsetof(struct f2fs_super_block, crc)) {
3244 			f2fs_info(sbi, "Invalid SB checksum offset: %zu",
3245 				  crc_offset);
3246 			return -EFSCORRUPTED;
3247 		}
3248 		crc = le32_to_cpu(raw_super->crc);
3249 		if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
3250 			f2fs_info(sbi, "Invalid SB checksum value: %u", crc);
3251 			return -EFSCORRUPTED;
3252 		}
3253 	}
3254 
3255 	/* Currently, support only 4KB block size */
3256 	if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) {
3257 		f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u",
3258 			  le32_to_cpu(raw_super->log_blocksize),
3259 			  F2FS_BLKSIZE_BITS);
3260 		return -EFSCORRUPTED;
3261 	}
3262 
3263 	/* check log blocks per segment */
3264 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
3265 		f2fs_info(sbi, "Invalid log blocks per segment (%u)",
3266 			  le32_to_cpu(raw_super->log_blocks_per_seg));
3267 		return -EFSCORRUPTED;
3268 	}
3269 
3270 	/* Currently, support 512/1024/2048/4096 bytes sector size */
3271 	if (le32_to_cpu(raw_super->log_sectorsize) >
3272 				F2FS_MAX_LOG_SECTOR_SIZE ||
3273 		le32_to_cpu(raw_super->log_sectorsize) <
3274 				F2FS_MIN_LOG_SECTOR_SIZE) {
3275 		f2fs_info(sbi, "Invalid log sectorsize (%u)",
3276 			  le32_to_cpu(raw_super->log_sectorsize));
3277 		return -EFSCORRUPTED;
3278 	}
3279 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
3280 		le32_to_cpu(raw_super->log_sectorsize) !=
3281 			F2FS_MAX_LOG_SECTOR_SIZE) {
3282 		f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)",
3283 			  le32_to_cpu(raw_super->log_sectors_per_block),
3284 			  le32_to_cpu(raw_super->log_sectorsize));
3285 		return -EFSCORRUPTED;
3286 	}
3287 
3288 	segment_count = le32_to_cpu(raw_super->segment_count);
3289 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
3290 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3291 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3292 	total_sections = le32_to_cpu(raw_super->section_count);
3293 
3294 	/* blocks_per_seg should be 512, given the above check */
3295 	blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
3296 
3297 	if (segment_count > F2FS_MAX_SEGMENT ||
3298 				segment_count < F2FS_MIN_SEGMENTS) {
3299 		f2fs_info(sbi, "Invalid segment count (%u)", segment_count);
3300 		return -EFSCORRUPTED;
3301 	}
3302 
3303 	if (total_sections > segment_count_main || total_sections < 1 ||
3304 			segs_per_sec > segment_count || !segs_per_sec) {
3305 		f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)",
3306 			  segment_count, total_sections, segs_per_sec);
3307 		return -EFSCORRUPTED;
3308 	}
3309 
3310 	if (segment_count_main != total_sections * segs_per_sec) {
3311 		f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)",
3312 			  segment_count_main, total_sections, segs_per_sec);
3313 		return -EFSCORRUPTED;
3314 	}
3315 
3316 	if ((segment_count / segs_per_sec) < total_sections) {
3317 		f2fs_info(sbi, "Small segment_count (%u < %u * %u)",
3318 			  segment_count, segs_per_sec, total_sections);
3319 		return -EFSCORRUPTED;
3320 	}
3321 
3322 	if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
3323 		f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)",
3324 			  segment_count, le64_to_cpu(raw_super->block_count));
3325 		return -EFSCORRUPTED;
3326 	}
3327 
3328 	if (RDEV(0).path[0]) {
3329 		block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments);
3330 		int i = 1;
3331 
3332 		while (i < MAX_DEVICES && RDEV(i).path[0]) {
3333 			dev_seg_count += le32_to_cpu(RDEV(i).total_segments);
3334 			i++;
3335 		}
3336 		if (segment_count != dev_seg_count) {
3337 			f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)",
3338 					segment_count, dev_seg_count);
3339 			return -EFSCORRUPTED;
3340 		}
3341 	} else {
3342 		if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) &&
3343 					!bdev_is_zoned(sbi->sb->s_bdev)) {
3344 			f2fs_info(sbi, "Zoned block device path is missing");
3345 			return -EFSCORRUPTED;
3346 		}
3347 	}
3348 
3349 	if (secs_per_zone > total_sections || !secs_per_zone) {
3350 		f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)",
3351 			  secs_per_zone, total_sections);
3352 		return -EFSCORRUPTED;
3353 	}
3354 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
3355 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
3356 			(le32_to_cpu(raw_super->extension_count) +
3357 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
3358 		f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)",
3359 			  le32_to_cpu(raw_super->extension_count),
3360 			  raw_super->hot_ext_count,
3361 			  F2FS_MAX_EXTENSION);
3362 		return -EFSCORRUPTED;
3363 	}
3364 
3365 	if (le32_to_cpu(raw_super->cp_payload) >=
3366 				(blocks_per_seg - F2FS_CP_PACKS -
3367 				NR_CURSEG_PERSIST_TYPE)) {
3368 		f2fs_info(sbi, "Insane cp_payload (%u >= %u)",
3369 			  le32_to_cpu(raw_super->cp_payload),
3370 			  blocks_per_seg - F2FS_CP_PACKS -
3371 			  NR_CURSEG_PERSIST_TYPE);
3372 		return -EFSCORRUPTED;
3373 	}
3374 
3375 	/* check reserved ino info */
3376 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
3377 		le32_to_cpu(raw_super->meta_ino) != 2 ||
3378 		le32_to_cpu(raw_super->root_ino) != 3) {
3379 		f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
3380 			  le32_to_cpu(raw_super->node_ino),
3381 			  le32_to_cpu(raw_super->meta_ino),
3382 			  le32_to_cpu(raw_super->root_ino));
3383 		return -EFSCORRUPTED;
3384 	}
3385 
3386 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
3387 	if (sanity_check_area_boundary(sbi, bh))
3388 		return -EFSCORRUPTED;
3389 
3390 	return 0;
3391 }
3392 
3393 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
3394 {
3395 	unsigned int total, fsmeta;
3396 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3397 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
3398 	unsigned int ovp_segments, reserved_segments;
3399 	unsigned int main_segs, blocks_per_seg;
3400 	unsigned int sit_segs, nat_segs;
3401 	unsigned int sit_bitmap_size, nat_bitmap_size;
3402 	unsigned int log_blocks_per_seg;
3403 	unsigned int segment_count_main;
3404 	unsigned int cp_pack_start_sum, cp_payload;
3405 	block_t user_block_count, valid_user_blocks;
3406 	block_t avail_node_count, valid_node_count;
3407 	unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks;
3408 	int i, j;
3409 
3410 	total = le32_to_cpu(raw_super->segment_count);
3411 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
3412 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
3413 	fsmeta += sit_segs;
3414 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
3415 	fsmeta += nat_segs;
3416 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
3417 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
3418 
3419 	if (unlikely(fsmeta >= total))
3420 		return 1;
3421 
3422 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
3423 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
3424 
3425 	if (!f2fs_sb_has_readonly(sbi) &&
3426 			unlikely(fsmeta < F2FS_MIN_META_SEGMENTS ||
3427 			ovp_segments == 0 || reserved_segments == 0)) {
3428 		f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version");
3429 		return 1;
3430 	}
3431 	user_block_count = le64_to_cpu(ckpt->user_block_count);
3432 	segment_count_main = le32_to_cpu(raw_super->segment_count_main) +
3433 			(f2fs_sb_has_readonly(sbi) ? 1 : 0);
3434 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3435 	if (!user_block_count || user_block_count >=
3436 			segment_count_main << log_blocks_per_seg) {
3437 		f2fs_err(sbi, "Wrong user_block_count: %u",
3438 			 user_block_count);
3439 		return 1;
3440 	}
3441 
3442 	valid_user_blocks = le64_to_cpu(ckpt->valid_block_count);
3443 	if (valid_user_blocks > user_block_count) {
3444 		f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u",
3445 			 valid_user_blocks, user_block_count);
3446 		return 1;
3447 	}
3448 
3449 	valid_node_count = le32_to_cpu(ckpt->valid_node_count);
3450 	avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
3451 	if (valid_node_count > avail_node_count) {
3452 		f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u",
3453 			 valid_node_count, avail_node_count);
3454 		return 1;
3455 	}
3456 
3457 	main_segs = le32_to_cpu(raw_super->segment_count_main);
3458 	blocks_per_seg = sbi->blocks_per_seg;
3459 
3460 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3461 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
3462 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
3463 			return 1;
3464 
3465 		if (f2fs_sb_has_readonly(sbi))
3466 			goto check_data;
3467 
3468 		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
3469 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3470 				le32_to_cpu(ckpt->cur_node_segno[j])) {
3471 				f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u",
3472 					 i, j,
3473 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3474 				return 1;
3475 			}
3476 		}
3477 	}
3478 check_data:
3479 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
3480 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
3481 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
3482 			return 1;
3483 
3484 		if (f2fs_sb_has_readonly(sbi))
3485 			goto skip_cross;
3486 
3487 		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
3488 			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
3489 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3490 				f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u",
3491 					 i, j,
3492 					 le32_to_cpu(ckpt->cur_data_segno[i]));
3493 				return 1;
3494 			}
3495 		}
3496 	}
3497 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
3498 		for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) {
3499 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
3500 				le32_to_cpu(ckpt->cur_data_segno[j])) {
3501 				f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u",
3502 					 i, j,
3503 					 le32_to_cpu(ckpt->cur_node_segno[i]));
3504 				return 1;
3505 			}
3506 		}
3507 	}
3508 skip_cross:
3509 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
3510 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
3511 
3512 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
3513 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
3514 		f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u",
3515 			 sit_bitmap_size, nat_bitmap_size);
3516 		return 1;
3517 	}
3518 
3519 	cp_pack_start_sum = __start_sum_addr(sbi);
3520 	cp_payload = __cp_payload(sbi);
3521 	if (cp_pack_start_sum < cp_payload + 1 ||
3522 		cp_pack_start_sum > blocks_per_seg - 1 -
3523 			NR_CURSEG_PERSIST_TYPE) {
3524 		f2fs_err(sbi, "Wrong cp_pack_start_sum: %u",
3525 			 cp_pack_start_sum);
3526 		return 1;
3527 	}
3528 
3529 	if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) &&
3530 		le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) {
3531 		f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, "
3532 			  "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, "
3533 			  "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"",
3534 			  le32_to_cpu(ckpt->checksum_offset));
3535 		return 1;
3536 	}
3537 
3538 	nat_blocks = nat_segs << log_blocks_per_seg;
3539 	nat_bits_bytes = nat_blocks / BITS_PER_BYTE;
3540 	nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8);
3541 	if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) &&
3542 		(cp_payload + F2FS_CP_PACKS +
3543 		NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) {
3544 		f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)",
3545 			  cp_payload, nat_bits_blocks);
3546 		return 1;
3547 	}
3548 
3549 	if (unlikely(f2fs_cp_error(sbi))) {
3550 		f2fs_err(sbi, "A bug case: need to run fsck");
3551 		return 1;
3552 	}
3553 	return 0;
3554 }
3555 
3556 static void init_sb_info(struct f2fs_sb_info *sbi)
3557 {
3558 	struct f2fs_super_block *raw_super = sbi->raw_super;
3559 	int i;
3560 
3561 	sbi->log_sectors_per_block =
3562 		le32_to_cpu(raw_super->log_sectors_per_block);
3563 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
3564 	sbi->blocksize = 1 << sbi->log_blocksize;
3565 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
3566 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
3567 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
3568 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
3569 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
3570 	sbi->total_node_count =
3571 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
3572 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
3573 	F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino);
3574 	F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino);
3575 	F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino);
3576 	sbi->cur_victim_sec = NULL_SECNO;
3577 	sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
3578 	sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
3579 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
3580 	sbi->migration_granularity = sbi->segs_per_sec;
3581 	sbi->seq_file_ra_mul = MIN_RA_MUL;
3582 	sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE;
3583 	sbi->max_fragment_hole = DEF_FRAGMENT_SIZE;
3584 	spin_lock_init(&sbi->gc_urgent_high_lock);
3585 
3586 	sbi->dir_level = DEF_DIR_LEVEL;
3587 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
3588 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
3589 	sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
3590 	sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
3591 	sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
3592 	sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] =
3593 				DEF_UMOUNT_DISCARD_TIMEOUT;
3594 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
3595 
3596 	for (i = 0; i < NR_COUNT_TYPE; i++)
3597 		atomic_set(&sbi->nr_pages[i], 0);
3598 
3599 	for (i = 0; i < META; i++)
3600 		atomic_set(&sbi->wb_sync_req[i], 0);
3601 
3602 	INIT_LIST_HEAD(&sbi->s_list);
3603 	mutex_init(&sbi->umount_mutex);
3604 	init_rwsem(&sbi->io_order_lock);
3605 	spin_lock_init(&sbi->cp_lock);
3606 
3607 	sbi->dirty_device = 0;
3608 	spin_lock_init(&sbi->dev_lock);
3609 
3610 	init_rwsem(&sbi->sb_lock);
3611 	init_rwsem(&sbi->pin_sem);
3612 }
3613 
3614 static int init_percpu_info(struct f2fs_sb_info *sbi)
3615 {
3616 	int err;
3617 
3618 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
3619 	if (err)
3620 		return err;
3621 
3622 	err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
3623 								GFP_KERNEL);
3624 	if (err)
3625 		percpu_counter_destroy(&sbi->alloc_valid_block_count);
3626 
3627 	return err;
3628 }
3629 
3630 #ifdef CONFIG_BLK_DEV_ZONED
3631 
3632 struct f2fs_report_zones_args {
3633 	struct f2fs_dev_info *dev;
3634 	bool zone_cap_mismatch;
3635 };
3636 
3637 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx,
3638 			      void *data)
3639 {
3640 	struct f2fs_report_zones_args *rz_args = data;
3641 
3642 	if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL)
3643 		return 0;
3644 
3645 	set_bit(idx, rz_args->dev->blkz_seq);
3646 	rz_args->dev->zone_capacity_blocks[idx] = zone->capacity >>
3647 						F2FS_LOG_SECTORS_PER_BLOCK;
3648 	if (zone->len != zone->capacity && !rz_args->zone_cap_mismatch)
3649 		rz_args->zone_cap_mismatch = true;
3650 
3651 	return 0;
3652 }
3653 
3654 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
3655 {
3656 	struct block_device *bdev = FDEV(devi).bdev;
3657 	sector_t nr_sectors = bdev_nr_sectors(bdev);
3658 	struct f2fs_report_zones_args rep_zone_arg;
3659 	int ret;
3660 
3661 	if (!f2fs_sb_has_blkzoned(sbi))
3662 		return 0;
3663 
3664 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
3665 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
3666 		return -EINVAL;
3667 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
3668 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
3669 				__ilog2_u32(sbi->blocks_per_blkz))
3670 		return -EINVAL;
3671 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
3672 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
3673 					sbi->log_blocks_per_blkz;
3674 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
3675 		FDEV(devi).nr_blkz++;
3676 
3677 	FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi,
3678 					BITS_TO_LONGS(FDEV(devi).nr_blkz)
3679 					* sizeof(unsigned long),
3680 					GFP_KERNEL);
3681 	if (!FDEV(devi).blkz_seq)
3682 		return -ENOMEM;
3683 
3684 	/* Get block zones type and zone-capacity */
3685 	FDEV(devi).zone_capacity_blocks = f2fs_kzalloc(sbi,
3686 					FDEV(devi).nr_blkz * sizeof(block_t),
3687 					GFP_KERNEL);
3688 	if (!FDEV(devi).zone_capacity_blocks)
3689 		return -ENOMEM;
3690 
3691 	rep_zone_arg.dev = &FDEV(devi);
3692 	rep_zone_arg.zone_cap_mismatch = false;
3693 
3694 	ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb,
3695 				  &rep_zone_arg);
3696 	if (ret < 0)
3697 		return ret;
3698 
3699 	if (!rep_zone_arg.zone_cap_mismatch) {
3700 		kfree(FDEV(devi).zone_capacity_blocks);
3701 		FDEV(devi).zone_capacity_blocks = NULL;
3702 	}
3703 
3704 	return 0;
3705 }
3706 #endif
3707 
3708 /*
3709  * Read f2fs raw super block.
3710  * Because we have two copies of super block, so read both of them
3711  * to get the first valid one. If any one of them is broken, we pass
3712  * them recovery flag back to the caller.
3713  */
3714 static int read_raw_super_block(struct f2fs_sb_info *sbi,
3715 			struct f2fs_super_block **raw_super,
3716 			int *valid_super_block, int *recovery)
3717 {
3718 	struct super_block *sb = sbi->sb;
3719 	int block;
3720 	struct buffer_head *bh;
3721 	struct f2fs_super_block *super;
3722 	int err = 0;
3723 
3724 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
3725 	if (!super)
3726 		return -ENOMEM;
3727 
3728 	for (block = 0; block < 2; block++) {
3729 		bh = sb_bread(sb, block);
3730 		if (!bh) {
3731 			f2fs_err(sbi, "Unable to read %dth superblock",
3732 				 block + 1);
3733 			err = -EIO;
3734 			*recovery = 1;
3735 			continue;
3736 		}
3737 
3738 		/* sanity checking of raw super */
3739 		err = sanity_check_raw_super(sbi, bh);
3740 		if (err) {
3741 			f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock",
3742 				 block + 1);
3743 			brelse(bh);
3744 			*recovery = 1;
3745 			continue;
3746 		}
3747 
3748 		if (!*raw_super) {
3749 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
3750 							sizeof(*super));
3751 			*valid_super_block = block;
3752 			*raw_super = super;
3753 		}
3754 		brelse(bh);
3755 	}
3756 
3757 	/* No valid superblock */
3758 	if (!*raw_super)
3759 		kfree(super);
3760 	else
3761 		err = 0;
3762 
3763 	return err;
3764 }
3765 
3766 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
3767 {
3768 	struct buffer_head *bh;
3769 	__u32 crc = 0;
3770 	int err;
3771 
3772 	if ((recover && f2fs_readonly(sbi->sb)) ||
3773 				bdev_read_only(sbi->sb->s_bdev)) {
3774 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
3775 		return -EROFS;
3776 	}
3777 
3778 	/* we should update superblock crc here */
3779 	if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
3780 		crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
3781 				offsetof(struct f2fs_super_block, crc));
3782 		F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
3783 	}
3784 
3785 	/* write back-up superblock first */
3786 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
3787 	if (!bh)
3788 		return -EIO;
3789 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3790 	brelse(bh);
3791 
3792 	/* if we are in recovery path, skip writing valid superblock */
3793 	if (recover || err)
3794 		return err;
3795 
3796 	/* write current valid superblock */
3797 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
3798 	if (!bh)
3799 		return -EIO;
3800 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
3801 	brelse(bh);
3802 	return err;
3803 }
3804 
3805 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
3806 {
3807 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
3808 	unsigned int max_devices = MAX_DEVICES;
3809 	unsigned int logical_blksize;
3810 	int i;
3811 
3812 	/* Initialize single device information */
3813 	if (!RDEV(0).path[0]) {
3814 		if (!bdev_is_zoned(sbi->sb->s_bdev))
3815 			return 0;
3816 		max_devices = 1;
3817 	}
3818 
3819 	/*
3820 	 * Initialize multiple devices information, or single
3821 	 * zoned block device information.
3822 	 */
3823 	sbi->devs = f2fs_kzalloc(sbi,
3824 				 array_size(max_devices,
3825 					    sizeof(struct f2fs_dev_info)),
3826 				 GFP_KERNEL);
3827 	if (!sbi->devs)
3828 		return -ENOMEM;
3829 
3830 	logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev);
3831 	sbi->aligned_blksize = true;
3832 
3833 	for (i = 0; i < max_devices; i++) {
3834 
3835 		if (i > 0 && !RDEV(i).path[0])
3836 			break;
3837 
3838 		if (max_devices == 1) {
3839 			/* Single zoned block device mount */
3840 			FDEV(0).bdev =
3841 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
3842 					sbi->sb->s_mode, sbi->sb->s_type);
3843 		} else {
3844 			/* Multi-device mount */
3845 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
3846 			FDEV(i).total_segments =
3847 				le32_to_cpu(RDEV(i).total_segments);
3848 			if (i == 0) {
3849 				FDEV(i).start_blk = 0;
3850 				FDEV(i).end_blk = FDEV(i).start_blk +
3851 				    (FDEV(i).total_segments <<
3852 				    sbi->log_blocks_per_seg) - 1 +
3853 				    le32_to_cpu(raw_super->segment0_blkaddr);
3854 			} else {
3855 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
3856 				FDEV(i).end_blk = FDEV(i).start_blk +
3857 					(FDEV(i).total_segments <<
3858 					sbi->log_blocks_per_seg) - 1;
3859 			}
3860 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
3861 					sbi->sb->s_mode, sbi->sb->s_type);
3862 		}
3863 		if (IS_ERR(FDEV(i).bdev))
3864 			return PTR_ERR(FDEV(i).bdev);
3865 
3866 		/* to release errored devices */
3867 		sbi->s_ndevs = i + 1;
3868 
3869 		if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev))
3870 			sbi->aligned_blksize = false;
3871 
3872 #ifdef CONFIG_BLK_DEV_ZONED
3873 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
3874 				!f2fs_sb_has_blkzoned(sbi)) {
3875 			f2fs_err(sbi, "Zoned block device feature not enabled");
3876 			return -EINVAL;
3877 		}
3878 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
3879 			if (init_blkz_info(sbi, i)) {
3880 				f2fs_err(sbi, "Failed to initialize F2FS blkzone information");
3881 				return -EINVAL;
3882 			}
3883 			if (max_devices == 1)
3884 				break;
3885 			f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
3886 				  i, FDEV(i).path,
3887 				  FDEV(i).total_segments,
3888 				  FDEV(i).start_blk, FDEV(i).end_blk,
3889 				  bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
3890 				  "Host-aware" : "Host-managed");
3891 			continue;
3892 		}
3893 #endif
3894 		f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x",
3895 			  i, FDEV(i).path,
3896 			  FDEV(i).total_segments,
3897 			  FDEV(i).start_blk, FDEV(i).end_blk);
3898 	}
3899 	f2fs_info(sbi,
3900 		  "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3901 	return 0;
3902 }
3903 
3904 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi)
3905 {
3906 #ifdef CONFIG_UNICODE
3907 	if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) {
3908 		const struct f2fs_sb_encodings *encoding_info;
3909 		struct unicode_map *encoding;
3910 		__u16 encoding_flags;
3911 
3912 		encoding_info = f2fs_sb_read_encoding(sbi->raw_super);
3913 		if (!encoding_info) {
3914 			f2fs_err(sbi,
3915 				 "Encoding requested by superblock is unknown");
3916 			return -EINVAL;
3917 		}
3918 
3919 		encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags);
3920 		encoding = utf8_load(encoding_info->version);
3921 		if (IS_ERR(encoding)) {
3922 			f2fs_err(sbi,
3923 				 "can't mount with superblock charset: %s-%u.%u.%u "
3924 				 "not supported by the kernel. flags: 0x%x.",
3925 				 encoding_info->name,
3926 				 unicode_major(encoding_info->version),
3927 				 unicode_minor(encoding_info->version),
3928 				 unicode_rev(encoding_info->version),
3929 				 encoding_flags);
3930 			return PTR_ERR(encoding);
3931 		}
3932 		f2fs_info(sbi, "Using encoding defined by superblock: "
3933 			 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
3934 			 unicode_major(encoding_info->version),
3935 			 unicode_minor(encoding_info->version),
3936 			 unicode_rev(encoding_info->version),
3937 			 encoding_flags);
3938 
3939 		sbi->sb->s_encoding = encoding;
3940 		sbi->sb->s_encoding_flags = encoding_flags;
3941 	}
3942 #else
3943 	if (f2fs_sb_has_casefold(sbi)) {
3944 		f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE");
3945 		return -EINVAL;
3946 	}
3947 #endif
3948 	return 0;
3949 }
3950 
3951 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3952 {
3953 	struct f2fs_sm_info *sm_i = SM_I(sbi);
3954 
3955 	/* adjust parameters according to the volume size */
3956 	if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3957 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3958 		if (f2fs_block_unit_discard(sbi))
3959 			sm_i->dcc_info->discard_granularity = 1;
3960 		sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3961 	}
3962 
3963 	sbi->readdir_ra = 1;
3964 }
3965 
3966 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3967 {
3968 	struct f2fs_sb_info *sbi;
3969 	struct f2fs_super_block *raw_super;
3970 	struct inode *root;
3971 	int err;
3972 	bool skip_recovery = false, need_fsck = false;
3973 	char *options = NULL;
3974 	int recovery, i, valid_super_block;
3975 	struct curseg_info *seg_i;
3976 	int retry_cnt = 1;
3977 
3978 try_onemore:
3979 	err = -EINVAL;
3980 	raw_super = NULL;
3981 	valid_super_block = -1;
3982 	recovery = 0;
3983 
3984 	/* allocate memory for f2fs-specific super block info */
3985 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3986 	if (!sbi)
3987 		return -ENOMEM;
3988 
3989 	sbi->sb = sb;
3990 
3991 	/* Load the checksum driver */
3992 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3993 	if (IS_ERR(sbi->s_chksum_driver)) {
3994 		f2fs_err(sbi, "Cannot load crc32 driver.");
3995 		err = PTR_ERR(sbi->s_chksum_driver);
3996 		sbi->s_chksum_driver = NULL;
3997 		goto free_sbi;
3998 	}
3999 
4000 	/* set a block size */
4001 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
4002 		f2fs_err(sbi, "unable to set blocksize");
4003 		goto free_sbi;
4004 	}
4005 
4006 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
4007 								&recovery);
4008 	if (err)
4009 		goto free_sbi;
4010 
4011 	sb->s_fs_info = sbi;
4012 	sbi->raw_super = raw_super;
4013 
4014 	/* precompute checksum seed for metadata */
4015 	if (f2fs_sb_has_inode_chksum(sbi))
4016 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
4017 						sizeof(raw_super->uuid));
4018 
4019 	default_options(sbi);
4020 	/* parse mount options */
4021 	options = kstrdup((const char *)data, GFP_KERNEL);
4022 	if (data && !options) {
4023 		err = -ENOMEM;
4024 		goto free_sb_buf;
4025 	}
4026 
4027 	err = parse_options(sb, options, false);
4028 	if (err)
4029 		goto free_options;
4030 
4031 	sb->s_maxbytes = max_file_blocks(NULL) <<
4032 				le32_to_cpu(raw_super->log_blocksize);
4033 	sb->s_max_links = F2FS_LINK_MAX;
4034 
4035 	err = f2fs_setup_casefold(sbi);
4036 	if (err)
4037 		goto free_options;
4038 
4039 #ifdef CONFIG_QUOTA
4040 	sb->dq_op = &f2fs_quota_operations;
4041 	sb->s_qcop = &f2fs_quotactl_ops;
4042 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4043 
4044 	if (f2fs_sb_has_quota_ino(sbi)) {
4045 		for (i = 0; i < MAXQUOTAS; i++) {
4046 			if (f2fs_qf_ino(sbi->sb, i))
4047 				sbi->nquota_files++;
4048 		}
4049 	}
4050 #endif
4051 
4052 	sb->s_op = &f2fs_sops;
4053 #ifdef CONFIG_FS_ENCRYPTION
4054 	sb->s_cop = &f2fs_cryptops;
4055 #endif
4056 #ifdef CONFIG_FS_VERITY
4057 	sb->s_vop = &f2fs_verityops;
4058 #endif
4059 	sb->s_xattr = f2fs_xattr_handlers;
4060 	sb->s_export_op = &f2fs_export_ops;
4061 	sb->s_magic = F2FS_SUPER_MAGIC;
4062 	sb->s_time_gran = 1;
4063 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4064 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
4065 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
4066 	sb->s_iflags |= SB_I_CGROUPWB;
4067 
4068 	/* init f2fs-specific super block info */
4069 	sbi->valid_super_block = valid_super_block;
4070 	init_rwsem(&sbi->gc_lock);
4071 	mutex_init(&sbi->writepages);
4072 	init_rwsem(&sbi->cp_global_sem);
4073 	init_rwsem(&sbi->node_write);
4074 	init_rwsem(&sbi->node_change);
4075 
4076 	/* disallow all the data/node/meta page writes */
4077 	set_sbi_flag(sbi, SBI_POR_DOING);
4078 	spin_lock_init(&sbi->stat_lock);
4079 
4080 	for (i = 0; i < NR_PAGE_TYPE; i++) {
4081 		int n = (i == META) ? 1 : NR_TEMP_TYPE;
4082 		int j;
4083 
4084 		sbi->write_io[i] =
4085 			f2fs_kmalloc(sbi,
4086 				     array_size(n,
4087 						sizeof(struct f2fs_bio_info)),
4088 				     GFP_KERNEL);
4089 		if (!sbi->write_io[i]) {
4090 			err = -ENOMEM;
4091 			goto free_bio_info;
4092 		}
4093 
4094 		for (j = HOT; j < n; j++) {
4095 			init_rwsem(&sbi->write_io[i][j].io_rwsem);
4096 			sbi->write_io[i][j].sbi = sbi;
4097 			sbi->write_io[i][j].bio = NULL;
4098 			spin_lock_init(&sbi->write_io[i][j].io_lock);
4099 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
4100 			INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list);
4101 			init_rwsem(&sbi->write_io[i][j].bio_list_lock);
4102 		}
4103 	}
4104 
4105 	init_rwsem(&sbi->cp_rwsem);
4106 	init_rwsem(&sbi->quota_sem);
4107 	init_waitqueue_head(&sbi->cp_wait);
4108 	init_sb_info(sbi);
4109 
4110 	err = f2fs_init_iostat(sbi);
4111 	if (err)
4112 		goto free_bio_info;
4113 
4114 	err = init_percpu_info(sbi);
4115 	if (err)
4116 		goto free_iostat;
4117 
4118 	if (F2FS_IO_ALIGNED(sbi)) {
4119 		sbi->write_io_dummy =
4120 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
4121 		if (!sbi->write_io_dummy) {
4122 			err = -ENOMEM;
4123 			goto free_percpu;
4124 		}
4125 	}
4126 
4127 	/* init per sbi slab cache */
4128 	err = f2fs_init_xattr_caches(sbi);
4129 	if (err)
4130 		goto free_io_dummy;
4131 	err = f2fs_init_page_array_cache(sbi);
4132 	if (err)
4133 		goto free_xattr_cache;
4134 
4135 	/* get an inode for meta space */
4136 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
4137 	if (IS_ERR(sbi->meta_inode)) {
4138 		f2fs_err(sbi, "Failed to read F2FS meta data inode");
4139 		err = PTR_ERR(sbi->meta_inode);
4140 		goto free_page_array_cache;
4141 	}
4142 
4143 	err = f2fs_get_valid_checkpoint(sbi);
4144 	if (err) {
4145 		f2fs_err(sbi, "Failed to get valid F2FS checkpoint");
4146 		goto free_meta_inode;
4147 	}
4148 
4149 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
4150 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
4151 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) {
4152 		set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
4153 		sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL;
4154 	}
4155 
4156 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG))
4157 		set_sbi_flag(sbi, SBI_NEED_FSCK);
4158 
4159 	/* Initialize device list */
4160 	err = f2fs_scan_devices(sbi);
4161 	if (err) {
4162 		f2fs_err(sbi, "Failed to find devices");
4163 		goto free_devices;
4164 	}
4165 
4166 	err = f2fs_init_post_read_wq(sbi);
4167 	if (err) {
4168 		f2fs_err(sbi, "Failed to initialize post read workqueue");
4169 		goto free_devices;
4170 	}
4171 
4172 	sbi->total_valid_node_count =
4173 				le32_to_cpu(sbi->ckpt->valid_node_count);
4174 	percpu_counter_set(&sbi->total_valid_inode_count,
4175 				le32_to_cpu(sbi->ckpt->valid_inode_count));
4176 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
4177 	sbi->total_valid_block_count =
4178 				le64_to_cpu(sbi->ckpt->valid_block_count);
4179 	sbi->last_valid_block_count = sbi->total_valid_block_count;
4180 	sbi->reserved_blocks = 0;
4181 	sbi->current_reserved_blocks = 0;
4182 	limit_reserve_root(sbi);
4183 	adjust_unusable_cap_perc(sbi);
4184 
4185 	for (i = 0; i < NR_INODE_TYPE; i++) {
4186 		INIT_LIST_HEAD(&sbi->inode_list[i]);
4187 		spin_lock_init(&sbi->inode_lock[i]);
4188 	}
4189 	mutex_init(&sbi->flush_lock);
4190 
4191 	f2fs_init_extent_cache_info(sbi);
4192 
4193 	f2fs_init_ino_entry_info(sbi);
4194 
4195 	f2fs_init_fsync_node_info(sbi);
4196 
4197 	/* setup checkpoint request control and start checkpoint issue thread */
4198 	f2fs_init_ckpt_req_control(sbi);
4199 	if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) &&
4200 			test_opt(sbi, MERGE_CHECKPOINT)) {
4201 		err = f2fs_start_ckpt_thread(sbi);
4202 		if (err) {
4203 			f2fs_err(sbi,
4204 			    "Failed to start F2FS issue_checkpoint_thread (%d)",
4205 			    err);
4206 			goto stop_ckpt_thread;
4207 		}
4208 	}
4209 
4210 	/* setup f2fs internal modules */
4211 	err = f2fs_build_segment_manager(sbi);
4212 	if (err) {
4213 		f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)",
4214 			 err);
4215 		goto free_sm;
4216 	}
4217 	err = f2fs_build_node_manager(sbi);
4218 	if (err) {
4219 		f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)",
4220 			 err);
4221 		goto free_nm;
4222 	}
4223 
4224 	err = adjust_reserved_segment(sbi);
4225 	if (err)
4226 		goto free_nm;
4227 
4228 	/* For write statistics */
4229 	sbi->sectors_written_start = f2fs_get_sectors_written(sbi);
4230 
4231 	/* Read accumulated write IO statistics if exists */
4232 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
4233 	if (__exist_node_summaries(sbi))
4234 		sbi->kbytes_written =
4235 			le64_to_cpu(seg_i->journal->info.kbytes_written);
4236 
4237 	f2fs_build_gc_manager(sbi);
4238 
4239 	err = f2fs_build_stats(sbi);
4240 	if (err)
4241 		goto free_nm;
4242 
4243 	/* get an inode for node space */
4244 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
4245 	if (IS_ERR(sbi->node_inode)) {
4246 		f2fs_err(sbi, "Failed to read node inode");
4247 		err = PTR_ERR(sbi->node_inode);
4248 		goto free_stats;
4249 	}
4250 
4251 	/* read root inode and dentry */
4252 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
4253 	if (IS_ERR(root)) {
4254 		f2fs_err(sbi, "Failed to read root inode");
4255 		err = PTR_ERR(root);
4256 		goto free_node_inode;
4257 	}
4258 	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
4259 			!root->i_size || !root->i_nlink) {
4260 		iput(root);
4261 		err = -EINVAL;
4262 		goto free_node_inode;
4263 	}
4264 
4265 	sb->s_root = d_make_root(root); /* allocate root dentry */
4266 	if (!sb->s_root) {
4267 		err = -ENOMEM;
4268 		goto free_node_inode;
4269 	}
4270 
4271 	err = f2fs_init_compress_inode(sbi);
4272 	if (err)
4273 		goto free_root_inode;
4274 
4275 	err = f2fs_register_sysfs(sbi);
4276 	if (err)
4277 		goto free_compress_inode;
4278 
4279 #ifdef CONFIG_QUOTA
4280 	/* Enable quota usage during mount */
4281 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
4282 		err = f2fs_enable_quotas(sb);
4283 		if (err)
4284 			f2fs_err(sbi, "Cannot turn on quotas: error %d", err);
4285 	}
4286 #endif
4287 	/* if there are any orphan inodes, free them */
4288 	err = f2fs_recover_orphan_inodes(sbi);
4289 	if (err)
4290 		goto free_meta;
4291 
4292 	if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
4293 		goto reset_checkpoint;
4294 
4295 	/* recover fsynced data */
4296 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD) &&
4297 			!test_opt(sbi, NORECOVERY)) {
4298 		/*
4299 		 * mount should be failed, when device has readonly mode, and
4300 		 * previous checkpoint was not done by clean system shutdown.
4301 		 */
4302 		if (f2fs_hw_is_readonly(sbi)) {
4303 			if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4304 				err = f2fs_recover_fsync_data(sbi, true);
4305 				if (err > 0) {
4306 					err = -EROFS;
4307 					f2fs_err(sbi, "Need to recover fsync data, but "
4308 						"write access unavailable, please try "
4309 						"mount w/ disable_roll_forward or norecovery");
4310 				}
4311 				if (err < 0)
4312 					goto free_meta;
4313 			}
4314 			f2fs_info(sbi, "write access unavailable, skipping recovery");
4315 			goto reset_checkpoint;
4316 		}
4317 
4318 		if (need_fsck)
4319 			set_sbi_flag(sbi, SBI_NEED_FSCK);
4320 
4321 		if (skip_recovery)
4322 			goto reset_checkpoint;
4323 
4324 		err = f2fs_recover_fsync_data(sbi, false);
4325 		if (err < 0) {
4326 			if (err != -ENOMEM)
4327 				skip_recovery = true;
4328 			need_fsck = true;
4329 			f2fs_err(sbi, "Cannot recover all fsync data errno=%d",
4330 				 err);
4331 			goto free_meta;
4332 		}
4333 	} else {
4334 		err = f2fs_recover_fsync_data(sbi, true);
4335 
4336 		if (!f2fs_readonly(sb) && err > 0) {
4337 			err = -EINVAL;
4338 			f2fs_err(sbi, "Need to recover fsync data");
4339 			goto free_meta;
4340 		}
4341 	}
4342 
4343 	/*
4344 	 * If the f2fs is not readonly and fsync data recovery succeeds,
4345 	 * check zoned block devices' write pointer consistency.
4346 	 */
4347 	if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) {
4348 		err = f2fs_check_write_pointer(sbi);
4349 		if (err)
4350 			goto free_meta;
4351 	}
4352 
4353 reset_checkpoint:
4354 	f2fs_init_inmem_curseg(sbi);
4355 
4356 	/* f2fs_recover_fsync_data() cleared this already */
4357 	clear_sbi_flag(sbi, SBI_POR_DOING);
4358 
4359 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
4360 		err = f2fs_disable_checkpoint(sbi);
4361 		if (err)
4362 			goto sync_free_meta;
4363 	} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
4364 		f2fs_enable_checkpoint(sbi);
4365 	}
4366 
4367 	/*
4368 	 * If filesystem is not mounted as read-only then
4369 	 * do start the gc_thread.
4370 	 */
4371 	if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF ||
4372 		test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) {
4373 		/* After POR, we can run background GC thread.*/
4374 		err = f2fs_start_gc_thread(sbi);
4375 		if (err)
4376 			goto sync_free_meta;
4377 	}
4378 	kvfree(options);
4379 
4380 	/* recover broken superblock */
4381 	if (recovery) {
4382 		err = f2fs_commit_super(sbi, true);
4383 		f2fs_info(sbi, "Try to recover %dth superblock, ret: %d",
4384 			  sbi->valid_super_block ? 1 : 2, err);
4385 	}
4386 
4387 	f2fs_join_shrinker(sbi);
4388 
4389 	f2fs_tuning_parameters(sbi);
4390 
4391 	f2fs_notice(sbi, "Mounted with checkpoint version = %llx",
4392 		    cur_cp_version(F2FS_CKPT(sbi)));
4393 	f2fs_update_time(sbi, CP_TIME);
4394 	f2fs_update_time(sbi, REQ_TIME);
4395 	clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK);
4396 	return 0;
4397 
4398 sync_free_meta:
4399 	/* safe to flush all the data */
4400 	sync_filesystem(sbi->sb);
4401 	retry_cnt = 0;
4402 
4403 free_meta:
4404 #ifdef CONFIG_QUOTA
4405 	f2fs_truncate_quota_inode_pages(sb);
4406 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
4407 		f2fs_quota_off_umount(sbi->sb);
4408 #endif
4409 	/*
4410 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
4411 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
4412 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
4413 	 * falls into an infinite loop in f2fs_sync_meta_pages().
4414 	 */
4415 	truncate_inode_pages_final(META_MAPPING(sbi));
4416 	/* evict some inodes being cached by GC */
4417 	evict_inodes(sb);
4418 	f2fs_unregister_sysfs(sbi);
4419 free_compress_inode:
4420 	f2fs_destroy_compress_inode(sbi);
4421 free_root_inode:
4422 	dput(sb->s_root);
4423 	sb->s_root = NULL;
4424 free_node_inode:
4425 	f2fs_release_ino_entry(sbi, true);
4426 	truncate_inode_pages_final(NODE_MAPPING(sbi));
4427 	iput(sbi->node_inode);
4428 	sbi->node_inode = NULL;
4429 free_stats:
4430 	f2fs_destroy_stats(sbi);
4431 free_nm:
4432 	/* stop discard thread before destroying node manager */
4433 	f2fs_stop_discard_thread(sbi);
4434 	f2fs_destroy_node_manager(sbi);
4435 free_sm:
4436 	f2fs_destroy_segment_manager(sbi);
4437 	f2fs_destroy_post_read_wq(sbi);
4438 stop_ckpt_thread:
4439 	f2fs_stop_ckpt_thread(sbi);
4440 free_devices:
4441 	destroy_device_list(sbi);
4442 	kvfree(sbi->ckpt);
4443 free_meta_inode:
4444 	make_bad_inode(sbi->meta_inode);
4445 	iput(sbi->meta_inode);
4446 	sbi->meta_inode = NULL;
4447 free_page_array_cache:
4448 	f2fs_destroy_page_array_cache(sbi);
4449 free_xattr_cache:
4450 	f2fs_destroy_xattr_caches(sbi);
4451 free_io_dummy:
4452 	mempool_destroy(sbi->write_io_dummy);
4453 free_percpu:
4454 	destroy_percpu_info(sbi);
4455 free_iostat:
4456 	f2fs_destroy_iostat(sbi);
4457 free_bio_info:
4458 	for (i = 0; i < NR_PAGE_TYPE; i++)
4459 		kvfree(sbi->write_io[i]);
4460 
4461 #ifdef CONFIG_UNICODE
4462 	utf8_unload(sb->s_encoding);
4463 	sb->s_encoding = NULL;
4464 #endif
4465 free_options:
4466 #ifdef CONFIG_QUOTA
4467 	for (i = 0; i < MAXQUOTAS; i++)
4468 		kfree(F2FS_OPTION(sbi).s_qf_names[i]);
4469 #endif
4470 	fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy);
4471 	kvfree(options);
4472 free_sb_buf:
4473 	kfree(raw_super);
4474 free_sbi:
4475 	if (sbi->s_chksum_driver)
4476 		crypto_free_shash(sbi->s_chksum_driver);
4477 	kfree(sbi);
4478 
4479 	/* give only one another chance */
4480 	if (retry_cnt > 0 && skip_recovery) {
4481 		retry_cnt--;
4482 		shrink_dcache_sb(sb);
4483 		goto try_onemore;
4484 	}
4485 	return err;
4486 }
4487 
4488 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
4489 			const char *dev_name, void *data)
4490 {
4491 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
4492 }
4493 
4494 static void kill_f2fs_super(struct super_block *sb)
4495 {
4496 	if (sb->s_root) {
4497 		struct f2fs_sb_info *sbi = F2FS_SB(sb);
4498 
4499 		set_sbi_flag(sbi, SBI_IS_CLOSE);
4500 		f2fs_stop_gc_thread(sbi);
4501 		f2fs_stop_discard_thread(sbi);
4502 
4503 #ifdef CONFIG_F2FS_FS_COMPRESSION
4504 		/*
4505 		 * latter evict_inode() can bypass checking and invalidating
4506 		 * compress inode cache.
4507 		 */
4508 		if (test_opt(sbi, COMPRESS_CACHE))
4509 			truncate_inode_pages_final(COMPRESS_MAPPING(sbi));
4510 #endif
4511 
4512 		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
4513 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
4514 			struct cp_control cpc = {
4515 				.reason = CP_UMOUNT,
4516 			};
4517 			f2fs_write_checkpoint(sbi, &cpc);
4518 		}
4519 
4520 		if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
4521 			sb->s_flags &= ~SB_RDONLY;
4522 	}
4523 	kill_block_super(sb);
4524 }
4525 
4526 static struct file_system_type f2fs_fs_type = {
4527 	.owner		= THIS_MODULE,
4528 	.name		= "f2fs",
4529 	.mount		= f2fs_mount,
4530 	.kill_sb	= kill_f2fs_super,
4531 	.fs_flags	= FS_REQUIRES_DEV,
4532 };
4533 MODULE_ALIAS_FS("f2fs");
4534 
4535 static int __init init_inodecache(void)
4536 {
4537 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
4538 			sizeof(struct f2fs_inode_info), 0,
4539 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
4540 	if (!f2fs_inode_cachep)
4541 		return -ENOMEM;
4542 	return 0;
4543 }
4544 
4545 static void destroy_inodecache(void)
4546 {
4547 	/*
4548 	 * Make sure all delayed rcu free inodes are flushed before we
4549 	 * destroy cache.
4550 	 */
4551 	rcu_barrier();
4552 	kmem_cache_destroy(f2fs_inode_cachep);
4553 }
4554 
4555 static int __init init_f2fs_fs(void)
4556 {
4557 	int err;
4558 
4559 	if (PAGE_SIZE != F2FS_BLKSIZE) {
4560 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
4561 				PAGE_SIZE, F2FS_BLKSIZE);
4562 		return -EINVAL;
4563 	}
4564 
4565 	err = init_inodecache();
4566 	if (err)
4567 		goto fail;
4568 	err = f2fs_create_node_manager_caches();
4569 	if (err)
4570 		goto free_inodecache;
4571 	err = f2fs_create_segment_manager_caches();
4572 	if (err)
4573 		goto free_node_manager_caches;
4574 	err = f2fs_create_checkpoint_caches();
4575 	if (err)
4576 		goto free_segment_manager_caches;
4577 	err = f2fs_create_recovery_cache();
4578 	if (err)
4579 		goto free_checkpoint_caches;
4580 	err = f2fs_create_extent_cache();
4581 	if (err)
4582 		goto free_recovery_cache;
4583 	err = f2fs_create_garbage_collection_cache();
4584 	if (err)
4585 		goto free_extent_cache;
4586 	err = f2fs_init_sysfs();
4587 	if (err)
4588 		goto free_garbage_collection_cache;
4589 	err = register_shrinker(&f2fs_shrinker_info);
4590 	if (err)
4591 		goto free_sysfs;
4592 	err = register_filesystem(&f2fs_fs_type);
4593 	if (err)
4594 		goto free_shrinker;
4595 	f2fs_create_root_stats();
4596 	err = f2fs_init_post_read_processing();
4597 	if (err)
4598 		goto free_root_stats;
4599 	err = f2fs_init_iostat_processing();
4600 	if (err)
4601 		goto free_post_read;
4602 	err = f2fs_init_bio_entry_cache();
4603 	if (err)
4604 		goto free_iostat;
4605 	err = f2fs_init_bioset();
4606 	if (err)
4607 		goto free_bio_enrty_cache;
4608 	err = f2fs_init_compress_mempool();
4609 	if (err)
4610 		goto free_bioset;
4611 	err = f2fs_init_compress_cache();
4612 	if (err)
4613 		goto free_compress_mempool;
4614 	err = f2fs_create_casefold_cache();
4615 	if (err)
4616 		goto free_compress_cache;
4617 	return 0;
4618 free_compress_cache:
4619 	f2fs_destroy_compress_cache();
4620 free_compress_mempool:
4621 	f2fs_destroy_compress_mempool();
4622 free_bioset:
4623 	f2fs_destroy_bioset();
4624 free_bio_enrty_cache:
4625 	f2fs_destroy_bio_entry_cache();
4626 free_iostat:
4627 	f2fs_destroy_iostat_processing();
4628 free_post_read:
4629 	f2fs_destroy_post_read_processing();
4630 free_root_stats:
4631 	f2fs_destroy_root_stats();
4632 	unregister_filesystem(&f2fs_fs_type);
4633 free_shrinker:
4634 	unregister_shrinker(&f2fs_shrinker_info);
4635 free_sysfs:
4636 	f2fs_exit_sysfs();
4637 free_garbage_collection_cache:
4638 	f2fs_destroy_garbage_collection_cache();
4639 free_extent_cache:
4640 	f2fs_destroy_extent_cache();
4641 free_recovery_cache:
4642 	f2fs_destroy_recovery_cache();
4643 free_checkpoint_caches:
4644 	f2fs_destroy_checkpoint_caches();
4645 free_segment_manager_caches:
4646 	f2fs_destroy_segment_manager_caches();
4647 free_node_manager_caches:
4648 	f2fs_destroy_node_manager_caches();
4649 free_inodecache:
4650 	destroy_inodecache();
4651 fail:
4652 	return err;
4653 }
4654 
4655 static void __exit exit_f2fs_fs(void)
4656 {
4657 	f2fs_destroy_casefold_cache();
4658 	f2fs_destroy_compress_cache();
4659 	f2fs_destroy_compress_mempool();
4660 	f2fs_destroy_bioset();
4661 	f2fs_destroy_bio_entry_cache();
4662 	f2fs_destroy_iostat_processing();
4663 	f2fs_destroy_post_read_processing();
4664 	f2fs_destroy_root_stats();
4665 	unregister_filesystem(&f2fs_fs_type);
4666 	unregister_shrinker(&f2fs_shrinker_info);
4667 	f2fs_exit_sysfs();
4668 	f2fs_destroy_garbage_collection_cache();
4669 	f2fs_destroy_extent_cache();
4670 	f2fs_destroy_recovery_cache();
4671 	f2fs_destroy_checkpoint_caches();
4672 	f2fs_destroy_segment_manager_caches();
4673 	f2fs_destroy_node_manager_caches();
4674 	destroy_inodecache();
4675 }
4676 
4677 module_init(init_f2fs_fs)
4678 module_exit(exit_f2fs_fs)
4679 
4680 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
4681 MODULE_DESCRIPTION("Flash Friendly File System");
4682 MODULE_LICENSE("GPL");
4683 MODULE_SOFTDEP("pre: crc32");
4684 
4685