1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/sched/mm.h> 12 #include <linux/statfs.h> 13 #include <linux/buffer_head.h> 14 #include <linux/kthread.h> 15 #include <linux/parser.h> 16 #include <linux/mount.h> 17 #include <linux/seq_file.h> 18 #include <linux/proc_fs.h> 19 #include <linux/random.h> 20 #include <linux/exportfs.h> 21 #include <linux/blkdev.h> 22 #include <linux/quotaops.h> 23 #include <linux/f2fs_fs.h> 24 #include <linux/sysfs.h> 25 #include <linux/quota.h> 26 #include <linux/unicode.h> 27 #include <linux/part_stat.h> 28 #include <linux/zstd.h> 29 #include <linux/lz4.h> 30 31 #include "f2fs.h" 32 #include "node.h" 33 #include "segment.h" 34 #include "xattr.h" 35 #include "gc.h" 36 #include "iostat.h" 37 38 #define CREATE_TRACE_POINTS 39 #include <trace/events/f2fs.h> 40 41 static struct kmem_cache *f2fs_inode_cachep; 42 43 #ifdef CONFIG_F2FS_FAULT_INJECTION 44 45 const char *f2fs_fault_name[FAULT_MAX] = { 46 [FAULT_KMALLOC] = "kmalloc", 47 [FAULT_KVMALLOC] = "kvmalloc", 48 [FAULT_PAGE_ALLOC] = "page alloc", 49 [FAULT_PAGE_GET] = "page get", 50 [FAULT_ALLOC_NID] = "alloc nid", 51 [FAULT_ORPHAN] = "orphan", 52 [FAULT_BLOCK] = "no more block", 53 [FAULT_DIR_DEPTH] = "too big dir depth", 54 [FAULT_EVICT_INODE] = "evict_inode fail", 55 [FAULT_TRUNCATE] = "truncate fail", 56 [FAULT_READ_IO] = "read IO error", 57 [FAULT_CHECKPOINT] = "checkpoint error", 58 [FAULT_DISCARD] = "discard error", 59 [FAULT_WRITE_IO] = "write IO error", 60 [FAULT_SLAB_ALLOC] = "slab alloc", 61 [FAULT_DQUOT_INIT] = "dquot initialize", 62 [FAULT_LOCK_OP] = "lock_op", 63 }; 64 65 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 66 unsigned int type) 67 { 68 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 69 70 if (rate) { 71 atomic_set(&ffi->inject_ops, 0); 72 ffi->inject_rate = rate; 73 } 74 75 if (type) 76 ffi->inject_type = type; 77 78 if (!rate && !type) 79 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 80 } 81 #endif 82 83 /* f2fs-wide shrinker description */ 84 static struct shrinker f2fs_shrinker_info = { 85 .scan_objects = f2fs_shrink_scan, 86 .count_objects = f2fs_shrink_count, 87 .seeks = DEFAULT_SEEKS, 88 }; 89 90 enum { 91 Opt_gc_background, 92 Opt_disable_roll_forward, 93 Opt_norecovery, 94 Opt_discard, 95 Opt_nodiscard, 96 Opt_noheap, 97 Opt_heap, 98 Opt_user_xattr, 99 Opt_nouser_xattr, 100 Opt_acl, 101 Opt_noacl, 102 Opt_active_logs, 103 Opt_disable_ext_identify, 104 Opt_inline_xattr, 105 Opt_noinline_xattr, 106 Opt_inline_xattr_size, 107 Opt_inline_data, 108 Opt_inline_dentry, 109 Opt_noinline_dentry, 110 Opt_flush_merge, 111 Opt_noflush_merge, 112 Opt_nobarrier, 113 Opt_fastboot, 114 Opt_extent_cache, 115 Opt_noextent_cache, 116 Opt_noinline_data, 117 Opt_data_flush, 118 Opt_reserve_root, 119 Opt_resgid, 120 Opt_resuid, 121 Opt_mode, 122 Opt_io_size_bits, 123 Opt_fault_injection, 124 Opt_fault_type, 125 Opt_lazytime, 126 Opt_nolazytime, 127 Opt_quota, 128 Opt_noquota, 129 Opt_usrquota, 130 Opt_grpquota, 131 Opt_prjquota, 132 Opt_usrjquota, 133 Opt_grpjquota, 134 Opt_prjjquota, 135 Opt_offusrjquota, 136 Opt_offgrpjquota, 137 Opt_offprjjquota, 138 Opt_jqfmt_vfsold, 139 Opt_jqfmt_vfsv0, 140 Opt_jqfmt_vfsv1, 141 Opt_whint, 142 Opt_alloc, 143 Opt_fsync, 144 Opt_test_dummy_encryption, 145 Opt_inlinecrypt, 146 Opt_checkpoint_disable, 147 Opt_checkpoint_disable_cap, 148 Opt_checkpoint_disable_cap_perc, 149 Opt_checkpoint_enable, 150 Opt_checkpoint_merge, 151 Opt_nocheckpoint_merge, 152 Opt_compress_algorithm, 153 Opt_compress_log_size, 154 Opt_compress_extension, 155 Opt_nocompress_extension, 156 Opt_compress_chksum, 157 Opt_compress_mode, 158 Opt_compress_cache, 159 Opt_atgc, 160 Opt_gc_merge, 161 Opt_nogc_merge, 162 Opt_discard_unit, 163 Opt_err, 164 }; 165 166 static match_table_t f2fs_tokens = { 167 {Opt_gc_background, "background_gc=%s"}, 168 {Opt_disable_roll_forward, "disable_roll_forward"}, 169 {Opt_norecovery, "norecovery"}, 170 {Opt_discard, "discard"}, 171 {Opt_nodiscard, "nodiscard"}, 172 {Opt_noheap, "no_heap"}, 173 {Opt_heap, "heap"}, 174 {Opt_user_xattr, "user_xattr"}, 175 {Opt_nouser_xattr, "nouser_xattr"}, 176 {Opt_acl, "acl"}, 177 {Opt_noacl, "noacl"}, 178 {Opt_active_logs, "active_logs=%u"}, 179 {Opt_disable_ext_identify, "disable_ext_identify"}, 180 {Opt_inline_xattr, "inline_xattr"}, 181 {Opt_noinline_xattr, "noinline_xattr"}, 182 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 183 {Opt_inline_data, "inline_data"}, 184 {Opt_inline_dentry, "inline_dentry"}, 185 {Opt_noinline_dentry, "noinline_dentry"}, 186 {Opt_flush_merge, "flush_merge"}, 187 {Opt_noflush_merge, "noflush_merge"}, 188 {Opt_nobarrier, "nobarrier"}, 189 {Opt_fastboot, "fastboot"}, 190 {Opt_extent_cache, "extent_cache"}, 191 {Opt_noextent_cache, "noextent_cache"}, 192 {Opt_noinline_data, "noinline_data"}, 193 {Opt_data_flush, "data_flush"}, 194 {Opt_reserve_root, "reserve_root=%u"}, 195 {Opt_resgid, "resgid=%u"}, 196 {Opt_resuid, "resuid=%u"}, 197 {Opt_mode, "mode=%s"}, 198 {Opt_io_size_bits, "io_bits=%u"}, 199 {Opt_fault_injection, "fault_injection=%u"}, 200 {Opt_fault_type, "fault_type=%u"}, 201 {Opt_lazytime, "lazytime"}, 202 {Opt_nolazytime, "nolazytime"}, 203 {Opt_quota, "quota"}, 204 {Opt_noquota, "noquota"}, 205 {Opt_usrquota, "usrquota"}, 206 {Opt_grpquota, "grpquota"}, 207 {Opt_prjquota, "prjquota"}, 208 {Opt_usrjquota, "usrjquota=%s"}, 209 {Opt_grpjquota, "grpjquota=%s"}, 210 {Opt_prjjquota, "prjjquota=%s"}, 211 {Opt_offusrjquota, "usrjquota="}, 212 {Opt_offgrpjquota, "grpjquota="}, 213 {Opt_offprjjquota, "prjjquota="}, 214 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 215 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 216 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 217 {Opt_whint, "whint_mode=%s"}, 218 {Opt_alloc, "alloc_mode=%s"}, 219 {Opt_fsync, "fsync_mode=%s"}, 220 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 221 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 222 {Opt_inlinecrypt, "inlinecrypt"}, 223 {Opt_checkpoint_disable, "checkpoint=disable"}, 224 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"}, 225 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"}, 226 {Opt_checkpoint_enable, "checkpoint=enable"}, 227 {Opt_checkpoint_merge, "checkpoint_merge"}, 228 {Opt_nocheckpoint_merge, "nocheckpoint_merge"}, 229 {Opt_compress_algorithm, "compress_algorithm=%s"}, 230 {Opt_compress_log_size, "compress_log_size=%u"}, 231 {Opt_compress_extension, "compress_extension=%s"}, 232 {Opt_nocompress_extension, "nocompress_extension=%s"}, 233 {Opt_compress_chksum, "compress_chksum"}, 234 {Opt_compress_mode, "compress_mode=%s"}, 235 {Opt_compress_cache, "compress_cache"}, 236 {Opt_atgc, "atgc"}, 237 {Opt_gc_merge, "gc_merge"}, 238 {Opt_nogc_merge, "nogc_merge"}, 239 {Opt_discard_unit, "discard_unit=%s"}, 240 {Opt_err, NULL}, 241 }; 242 243 void f2fs_printk(struct f2fs_sb_info *sbi, const char *fmt, ...) 244 { 245 struct va_format vaf; 246 va_list args; 247 int level; 248 249 va_start(args, fmt); 250 251 level = printk_get_level(fmt); 252 vaf.fmt = printk_skip_level(fmt); 253 vaf.va = &args; 254 printk("%c%cF2FS-fs (%s): %pV\n", 255 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 256 257 va_end(args); 258 } 259 260 #if IS_ENABLED(CONFIG_UNICODE) 261 static const struct f2fs_sb_encodings { 262 __u16 magic; 263 char *name; 264 unsigned int version; 265 } f2fs_sb_encoding_map[] = { 266 {F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 267 }; 268 269 static const struct f2fs_sb_encodings * 270 f2fs_sb_read_encoding(const struct f2fs_super_block *sb) 271 { 272 __u16 magic = le16_to_cpu(sb->s_encoding); 273 int i; 274 275 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++) 276 if (magic == f2fs_sb_encoding_map[i].magic) 277 return &f2fs_sb_encoding_map[i]; 278 279 return NULL; 280 } 281 282 struct kmem_cache *f2fs_cf_name_slab; 283 static int __init f2fs_create_casefold_cache(void) 284 { 285 f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name", 286 F2FS_NAME_LEN); 287 if (!f2fs_cf_name_slab) 288 return -ENOMEM; 289 return 0; 290 } 291 292 static void f2fs_destroy_casefold_cache(void) 293 { 294 kmem_cache_destroy(f2fs_cf_name_slab); 295 } 296 #else 297 static int __init f2fs_create_casefold_cache(void) { return 0; } 298 static void f2fs_destroy_casefold_cache(void) { } 299 #endif 300 301 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 302 { 303 block_t limit = min((sbi->user_block_count << 1) / 1000, 304 sbi->user_block_count - sbi->reserved_blocks); 305 306 /* limit is 0.2% */ 307 if (test_opt(sbi, RESERVE_ROOT) && 308 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 309 F2FS_OPTION(sbi).root_reserved_blocks = limit; 310 f2fs_info(sbi, "Reduce reserved blocks for root = %u", 311 F2FS_OPTION(sbi).root_reserved_blocks); 312 } 313 if (!test_opt(sbi, RESERVE_ROOT) && 314 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 315 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 316 !gid_eq(F2FS_OPTION(sbi).s_resgid, 317 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 318 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 319 from_kuid_munged(&init_user_ns, 320 F2FS_OPTION(sbi).s_resuid), 321 from_kgid_munged(&init_user_ns, 322 F2FS_OPTION(sbi).s_resgid)); 323 } 324 325 static inline int adjust_reserved_segment(struct f2fs_sb_info *sbi) 326 { 327 unsigned int sec_blks = sbi->blocks_per_seg * sbi->segs_per_sec; 328 unsigned int avg_vblocks; 329 unsigned int wanted_reserved_segments; 330 block_t avail_user_block_count; 331 332 if (!F2FS_IO_ALIGNED(sbi)) 333 return 0; 334 335 /* average valid block count in section in worst case */ 336 avg_vblocks = sec_blks / F2FS_IO_SIZE(sbi); 337 338 /* 339 * we need enough free space when migrating one section in worst case 340 */ 341 wanted_reserved_segments = (F2FS_IO_SIZE(sbi) / avg_vblocks) * 342 reserved_segments(sbi); 343 wanted_reserved_segments -= reserved_segments(sbi); 344 345 avail_user_block_count = sbi->user_block_count - 346 sbi->current_reserved_blocks - 347 F2FS_OPTION(sbi).root_reserved_blocks; 348 349 if (wanted_reserved_segments * sbi->blocks_per_seg > 350 avail_user_block_count) { 351 f2fs_err(sbi, "IO align feature can't grab additional reserved segment: %u, available segments: %u", 352 wanted_reserved_segments, 353 avail_user_block_count >> sbi->log_blocks_per_seg); 354 return -ENOSPC; 355 } 356 357 SM_I(sbi)->additional_reserved_segments = wanted_reserved_segments; 358 359 f2fs_info(sbi, "IO align feature needs additional reserved segment: %u", 360 wanted_reserved_segments); 361 362 return 0; 363 } 364 365 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi) 366 { 367 if (!F2FS_OPTION(sbi).unusable_cap_perc) 368 return; 369 370 if (F2FS_OPTION(sbi).unusable_cap_perc == 100) 371 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count; 372 else 373 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) * 374 F2FS_OPTION(sbi).unusable_cap_perc; 375 376 f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%", 377 F2FS_OPTION(sbi).unusable_cap, 378 F2FS_OPTION(sbi).unusable_cap_perc); 379 } 380 381 static void init_once(void *foo) 382 { 383 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 384 385 inode_init_once(&fi->vfs_inode); 386 } 387 388 #ifdef CONFIG_QUOTA 389 static const char * const quotatypes[] = INITQFNAMES; 390 #define QTYPE2NAME(t) (quotatypes[t]) 391 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 392 substring_t *args) 393 { 394 struct f2fs_sb_info *sbi = F2FS_SB(sb); 395 char *qname; 396 int ret = -EINVAL; 397 398 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 399 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 400 return -EINVAL; 401 } 402 if (f2fs_sb_has_quota_ino(sbi)) { 403 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name"); 404 return 0; 405 } 406 407 qname = match_strdup(args); 408 if (!qname) { 409 f2fs_err(sbi, "Not enough memory for storing quotafile name"); 410 return -ENOMEM; 411 } 412 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 413 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 414 ret = 0; 415 else 416 f2fs_err(sbi, "%s quota file already specified", 417 QTYPE2NAME(qtype)); 418 goto errout; 419 } 420 if (strchr(qname, '/')) { 421 f2fs_err(sbi, "quotafile must be on filesystem root"); 422 goto errout; 423 } 424 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 425 set_opt(sbi, QUOTA); 426 return 0; 427 errout: 428 kfree(qname); 429 return ret; 430 } 431 432 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 433 { 434 struct f2fs_sb_info *sbi = F2FS_SB(sb); 435 436 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 437 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 438 return -EINVAL; 439 } 440 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 441 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 442 return 0; 443 } 444 445 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 446 { 447 /* 448 * We do the test below only for project quotas. 'usrquota' and 449 * 'grpquota' mount options are allowed even without quota feature 450 * to support legacy quotas in quota files. 451 */ 452 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 453 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement."); 454 return -1; 455 } 456 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 457 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 458 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 459 if (test_opt(sbi, USRQUOTA) && 460 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 461 clear_opt(sbi, USRQUOTA); 462 463 if (test_opt(sbi, GRPQUOTA) && 464 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 465 clear_opt(sbi, GRPQUOTA); 466 467 if (test_opt(sbi, PRJQUOTA) && 468 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 469 clear_opt(sbi, PRJQUOTA); 470 471 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 472 test_opt(sbi, PRJQUOTA)) { 473 f2fs_err(sbi, "old and new quota format mixing"); 474 return -1; 475 } 476 477 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 478 f2fs_err(sbi, "journaled quota format not specified"); 479 return -1; 480 } 481 } 482 483 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 484 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt"); 485 F2FS_OPTION(sbi).s_jquota_fmt = 0; 486 } 487 return 0; 488 } 489 #endif 490 491 static int f2fs_set_test_dummy_encryption(struct super_block *sb, 492 const char *opt, 493 const substring_t *arg, 494 bool is_remount) 495 { 496 struct f2fs_sb_info *sbi = F2FS_SB(sb); 497 #ifdef CONFIG_FS_ENCRYPTION 498 int err; 499 500 if (!f2fs_sb_has_encrypt(sbi)) { 501 f2fs_err(sbi, "Encrypt feature is off"); 502 return -EINVAL; 503 } 504 505 /* 506 * This mount option is just for testing, and it's not worthwhile to 507 * implement the extra complexity (e.g. RCU protection) that would be 508 * needed to allow it to be set or changed during remount. We do allow 509 * it to be specified during remount, but only if there is no change. 510 */ 511 if (is_remount && !F2FS_OPTION(sbi).dummy_enc_policy.policy) { 512 f2fs_warn(sbi, "Can't set test_dummy_encryption on remount"); 513 return -EINVAL; 514 } 515 err = fscrypt_set_test_dummy_encryption( 516 sb, arg->from, &F2FS_OPTION(sbi).dummy_enc_policy); 517 if (err) { 518 if (err == -EEXIST) 519 f2fs_warn(sbi, 520 "Can't change test_dummy_encryption on remount"); 521 else if (err == -EINVAL) 522 f2fs_warn(sbi, "Value of option \"%s\" is unrecognized", 523 opt); 524 else 525 f2fs_warn(sbi, "Error processing option \"%s\" [%d]", 526 opt, err); 527 return -EINVAL; 528 } 529 f2fs_warn(sbi, "Test dummy encryption mode enabled"); 530 #else 531 f2fs_warn(sbi, "Test dummy encryption mount option ignored"); 532 #endif 533 return 0; 534 } 535 536 #ifdef CONFIG_F2FS_FS_COMPRESSION 537 /* 538 * 1. The same extension name cannot not appear in both compress and non-compress extension 539 * at the same time. 540 * 2. If the compress extension specifies all files, the types specified by the non-compress 541 * extension will be treated as special cases and will not be compressed. 542 * 3. Don't allow the non-compress extension specifies all files. 543 */ 544 static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi) 545 { 546 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 547 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 548 int ext_cnt, noext_cnt, index = 0, no_index = 0; 549 550 ext = F2FS_OPTION(sbi).extensions; 551 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 552 noext = F2FS_OPTION(sbi).noextensions; 553 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 554 555 if (!noext_cnt) 556 return 0; 557 558 for (no_index = 0; no_index < noext_cnt; no_index++) { 559 if (!strcasecmp("*", noext[no_index])) { 560 f2fs_info(sbi, "Don't allow the nocompress extension specifies all files"); 561 return -EINVAL; 562 } 563 for (index = 0; index < ext_cnt; index++) { 564 if (!strcasecmp(ext[index], noext[no_index])) { 565 f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension", 566 ext[index]); 567 return -EINVAL; 568 } 569 } 570 } 571 return 0; 572 } 573 574 #ifdef CONFIG_F2FS_FS_LZ4 575 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str) 576 { 577 #ifdef CONFIG_F2FS_FS_LZ4HC 578 unsigned int level; 579 #endif 580 581 if (strlen(str) == 3) { 582 F2FS_OPTION(sbi).compress_level = 0; 583 return 0; 584 } 585 586 #ifdef CONFIG_F2FS_FS_LZ4HC 587 str += 3; 588 589 if (str[0] != ':') { 590 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 591 return -EINVAL; 592 } 593 if (kstrtouint(str + 1, 10, &level)) 594 return -EINVAL; 595 596 if (level < LZ4HC_MIN_CLEVEL || level > LZ4HC_MAX_CLEVEL) { 597 f2fs_info(sbi, "invalid lz4hc compress level: %d", level); 598 return -EINVAL; 599 } 600 601 F2FS_OPTION(sbi).compress_level = level; 602 return 0; 603 #else 604 f2fs_info(sbi, "kernel doesn't support lz4hc compression"); 605 return -EINVAL; 606 #endif 607 } 608 #endif 609 610 #ifdef CONFIG_F2FS_FS_ZSTD 611 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str) 612 { 613 unsigned int level; 614 int len = 4; 615 616 if (strlen(str) == len) { 617 F2FS_OPTION(sbi).compress_level = 0; 618 return 0; 619 } 620 621 str += len; 622 623 if (str[0] != ':') { 624 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 625 return -EINVAL; 626 } 627 if (kstrtouint(str + 1, 10, &level)) 628 return -EINVAL; 629 630 if (!level || level > zstd_max_clevel()) { 631 f2fs_info(sbi, "invalid zstd compress level: %d", level); 632 return -EINVAL; 633 } 634 635 F2FS_OPTION(sbi).compress_level = level; 636 return 0; 637 } 638 #endif 639 #endif 640 641 static int parse_options(struct super_block *sb, char *options, bool is_remount) 642 { 643 struct f2fs_sb_info *sbi = F2FS_SB(sb); 644 substring_t args[MAX_OPT_ARGS]; 645 #ifdef CONFIG_F2FS_FS_COMPRESSION 646 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 647 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 648 int ext_cnt, noext_cnt; 649 #endif 650 char *p, *name; 651 int arg = 0; 652 kuid_t uid; 653 kgid_t gid; 654 int ret; 655 656 if (!options) 657 goto default_check; 658 659 while ((p = strsep(&options, ",")) != NULL) { 660 int token; 661 662 if (!*p) 663 continue; 664 /* 665 * Initialize args struct so we know whether arg was 666 * found; some options take optional arguments. 667 */ 668 args[0].to = args[0].from = NULL; 669 token = match_token(p, f2fs_tokens, args); 670 671 switch (token) { 672 case Opt_gc_background: 673 name = match_strdup(&args[0]); 674 675 if (!name) 676 return -ENOMEM; 677 if (!strcmp(name, "on")) { 678 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 679 } else if (!strcmp(name, "off")) { 680 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF; 681 } else if (!strcmp(name, "sync")) { 682 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC; 683 } else { 684 kfree(name); 685 return -EINVAL; 686 } 687 kfree(name); 688 break; 689 case Opt_disable_roll_forward: 690 set_opt(sbi, DISABLE_ROLL_FORWARD); 691 break; 692 case Opt_norecovery: 693 /* this option mounts f2fs with ro */ 694 set_opt(sbi, NORECOVERY); 695 if (!f2fs_readonly(sb)) 696 return -EINVAL; 697 break; 698 case Opt_discard: 699 if (!f2fs_hw_support_discard(sbi)) { 700 f2fs_warn(sbi, "device does not support discard"); 701 break; 702 } 703 set_opt(sbi, DISCARD); 704 break; 705 case Opt_nodiscard: 706 if (f2fs_hw_should_discard(sbi)) { 707 f2fs_warn(sbi, "discard is required for zoned block devices"); 708 return -EINVAL; 709 } 710 clear_opt(sbi, DISCARD); 711 break; 712 case Opt_noheap: 713 set_opt(sbi, NOHEAP); 714 break; 715 case Opt_heap: 716 clear_opt(sbi, NOHEAP); 717 break; 718 #ifdef CONFIG_F2FS_FS_XATTR 719 case Opt_user_xattr: 720 set_opt(sbi, XATTR_USER); 721 break; 722 case Opt_nouser_xattr: 723 clear_opt(sbi, XATTR_USER); 724 break; 725 case Opt_inline_xattr: 726 set_opt(sbi, INLINE_XATTR); 727 break; 728 case Opt_noinline_xattr: 729 clear_opt(sbi, INLINE_XATTR); 730 break; 731 case Opt_inline_xattr_size: 732 if (args->from && match_int(args, &arg)) 733 return -EINVAL; 734 set_opt(sbi, INLINE_XATTR_SIZE); 735 F2FS_OPTION(sbi).inline_xattr_size = arg; 736 break; 737 #else 738 case Opt_user_xattr: 739 f2fs_info(sbi, "user_xattr options not supported"); 740 break; 741 case Opt_nouser_xattr: 742 f2fs_info(sbi, "nouser_xattr options not supported"); 743 break; 744 case Opt_inline_xattr: 745 f2fs_info(sbi, "inline_xattr options not supported"); 746 break; 747 case Opt_noinline_xattr: 748 f2fs_info(sbi, "noinline_xattr options not supported"); 749 break; 750 #endif 751 #ifdef CONFIG_F2FS_FS_POSIX_ACL 752 case Opt_acl: 753 set_opt(sbi, POSIX_ACL); 754 break; 755 case Opt_noacl: 756 clear_opt(sbi, POSIX_ACL); 757 break; 758 #else 759 case Opt_acl: 760 f2fs_info(sbi, "acl options not supported"); 761 break; 762 case Opt_noacl: 763 f2fs_info(sbi, "noacl options not supported"); 764 break; 765 #endif 766 case Opt_active_logs: 767 if (args->from && match_int(args, &arg)) 768 return -EINVAL; 769 if (arg != 2 && arg != 4 && 770 arg != NR_CURSEG_PERSIST_TYPE) 771 return -EINVAL; 772 F2FS_OPTION(sbi).active_logs = arg; 773 break; 774 case Opt_disable_ext_identify: 775 set_opt(sbi, DISABLE_EXT_IDENTIFY); 776 break; 777 case Opt_inline_data: 778 set_opt(sbi, INLINE_DATA); 779 break; 780 case Opt_inline_dentry: 781 set_opt(sbi, INLINE_DENTRY); 782 break; 783 case Opt_noinline_dentry: 784 clear_opt(sbi, INLINE_DENTRY); 785 break; 786 case Opt_flush_merge: 787 set_opt(sbi, FLUSH_MERGE); 788 break; 789 case Opt_noflush_merge: 790 clear_opt(sbi, FLUSH_MERGE); 791 break; 792 case Opt_nobarrier: 793 set_opt(sbi, NOBARRIER); 794 break; 795 case Opt_fastboot: 796 set_opt(sbi, FASTBOOT); 797 break; 798 case Opt_extent_cache: 799 set_opt(sbi, EXTENT_CACHE); 800 break; 801 case Opt_noextent_cache: 802 clear_opt(sbi, EXTENT_CACHE); 803 break; 804 case Opt_noinline_data: 805 clear_opt(sbi, INLINE_DATA); 806 break; 807 case Opt_data_flush: 808 set_opt(sbi, DATA_FLUSH); 809 break; 810 case Opt_reserve_root: 811 if (args->from && match_int(args, &arg)) 812 return -EINVAL; 813 if (test_opt(sbi, RESERVE_ROOT)) { 814 f2fs_info(sbi, "Preserve previous reserve_root=%u", 815 F2FS_OPTION(sbi).root_reserved_blocks); 816 } else { 817 F2FS_OPTION(sbi).root_reserved_blocks = arg; 818 set_opt(sbi, RESERVE_ROOT); 819 } 820 break; 821 case Opt_resuid: 822 if (args->from && match_int(args, &arg)) 823 return -EINVAL; 824 uid = make_kuid(current_user_ns(), arg); 825 if (!uid_valid(uid)) { 826 f2fs_err(sbi, "Invalid uid value %d", arg); 827 return -EINVAL; 828 } 829 F2FS_OPTION(sbi).s_resuid = uid; 830 break; 831 case Opt_resgid: 832 if (args->from && match_int(args, &arg)) 833 return -EINVAL; 834 gid = make_kgid(current_user_ns(), arg); 835 if (!gid_valid(gid)) { 836 f2fs_err(sbi, "Invalid gid value %d", arg); 837 return -EINVAL; 838 } 839 F2FS_OPTION(sbi).s_resgid = gid; 840 break; 841 case Opt_mode: 842 name = match_strdup(&args[0]); 843 844 if (!name) 845 return -ENOMEM; 846 if (!strcmp(name, "adaptive")) { 847 if (f2fs_sb_has_blkzoned(sbi)) { 848 f2fs_warn(sbi, "adaptive mode is not allowed with zoned block device feature"); 849 kfree(name); 850 return -EINVAL; 851 } 852 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 853 } else if (!strcmp(name, "lfs")) { 854 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 855 } else if (!strcmp(name, "fragment:segment")) { 856 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_SEG; 857 } else if (!strcmp(name, "fragment:block")) { 858 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_BLK; 859 } else { 860 kfree(name); 861 return -EINVAL; 862 } 863 kfree(name); 864 break; 865 case Opt_io_size_bits: 866 if (args->from && match_int(args, &arg)) 867 return -EINVAL; 868 if (arg <= 0 || arg > __ilog2_u32(BIO_MAX_VECS)) { 869 f2fs_warn(sbi, "Not support %d, larger than %d", 870 1 << arg, BIO_MAX_VECS); 871 return -EINVAL; 872 } 873 F2FS_OPTION(sbi).write_io_size_bits = arg; 874 break; 875 #ifdef CONFIG_F2FS_FAULT_INJECTION 876 case Opt_fault_injection: 877 if (args->from && match_int(args, &arg)) 878 return -EINVAL; 879 f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE); 880 set_opt(sbi, FAULT_INJECTION); 881 break; 882 883 case Opt_fault_type: 884 if (args->from && match_int(args, &arg)) 885 return -EINVAL; 886 f2fs_build_fault_attr(sbi, 0, arg); 887 set_opt(sbi, FAULT_INJECTION); 888 break; 889 #else 890 case Opt_fault_injection: 891 f2fs_info(sbi, "fault_injection options not supported"); 892 break; 893 894 case Opt_fault_type: 895 f2fs_info(sbi, "fault_type options not supported"); 896 break; 897 #endif 898 case Opt_lazytime: 899 sb->s_flags |= SB_LAZYTIME; 900 break; 901 case Opt_nolazytime: 902 sb->s_flags &= ~SB_LAZYTIME; 903 break; 904 #ifdef CONFIG_QUOTA 905 case Opt_quota: 906 case Opt_usrquota: 907 set_opt(sbi, USRQUOTA); 908 break; 909 case Opt_grpquota: 910 set_opt(sbi, GRPQUOTA); 911 break; 912 case Opt_prjquota: 913 set_opt(sbi, PRJQUOTA); 914 break; 915 case Opt_usrjquota: 916 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 917 if (ret) 918 return ret; 919 break; 920 case Opt_grpjquota: 921 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 922 if (ret) 923 return ret; 924 break; 925 case Opt_prjjquota: 926 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 927 if (ret) 928 return ret; 929 break; 930 case Opt_offusrjquota: 931 ret = f2fs_clear_qf_name(sb, USRQUOTA); 932 if (ret) 933 return ret; 934 break; 935 case Opt_offgrpjquota: 936 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 937 if (ret) 938 return ret; 939 break; 940 case Opt_offprjjquota: 941 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 942 if (ret) 943 return ret; 944 break; 945 case Opt_jqfmt_vfsold: 946 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 947 break; 948 case Opt_jqfmt_vfsv0: 949 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 950 break; 951 case Opt_jqfmt_vfsv1: 952 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 953 break; 954 case Opt_noquota: 955 clear_opt(sbi, QUOTA); 956 clear_opt(sbi, USRQUOTA); 957 clear_opt(sbi, GRPQUOTA); 958 clear_opt(sbi, PRJQUOTA); 959 break; 960 #else 961 case Opt_quota: 962 case Opt_usrquota: 963 case Opt_grpquota: 964 case Opt_prjquota: 965 case Opt_usrjquota: 966 case Opt_grpjquota: 967 case Opt_prjjquota: 968 case Opt_offusrjquota: 969 case Opt_offgrpjquota: 970 case Opt_offprjjquota: 971 case Opt_jqfmt_vfsold: 972 case Opt_jqfmt_vfsv0: 973 case Opt_jqfmt_vfsv1: 974 case Opt_noquota: 975 f2fs_info(sbi, "quota operations not supported"); 976 break; 977 #endif 978 case Opt_whint: 979 name = match_strdup(&args[0]); 980 if (!name) 981 return -ENOMEM; 982 if (!strcmp(name, "user-based")) { 983 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER; 984 } else if (!strcmp(name, "off")) { 985 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 986 } else if (!strcmp(name, "fs-based")) { 987 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS; 988 } else { 989 kfree(name); 990 return -EINVAL; 991 } 992 kfree(name); 993 break; 994 case Opt_alloc: 995 name = match_strdup(&args[0]); 996 if (!name) 997 return -ENOMEM; 998 999 if (!strcmp(name, "default")) { 1000 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 1001 } else if (!strcmp(name, "reuse")) { 1002 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 1003 } else { 1004 kfree(name); 1005 return -EINVAL; 1006 } 1007 kfree(name); 1008 break; 1009 case Opt_fsync: 1010 name = match_strdup(&args[0]); 1011 if (!name) 1012 return -ENOMEM; 1013 if (!strcmp(name, "posix")) { 1014 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1015 } else if (!strcmp(name, "strict")) { 1016 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 1017 } else if (!strcmp(name, "nobarrier")) { 1018 F2FS_OPTION(sbi).fsync_mode = 1019 FSYNC_MODE_NOBARRIER; 1020 } else { 1021 kfree(name); 1022 return -EINVAL; 1023 } 1024 kfree(name); 1025 break; 1026 case Opt_test_dummy_encryption: 1027 ret = f2fs_set_test_dummy_encryption(sb, p, &args[0], 1028 is_remount); 1029 if (ret) 1030 return ret; 1031 break; 1032 case Opt_inlinecrypt: 1033 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 1034 sb->s_flags |= SB_INLINECRYPT; 1035 #else 1036 f2fs_info(sbi, "inline encryption not supported"); 1037 #endif 1038 break; 1039 case Opt_checkpoint_disable_cap_perc: 1040 if (args->from && match_int(args, &arg)) 1041 return -EINVAL; 1042 if (arg < 0 || arg > 100) 1043 return -EINVAL; 1044 F2FS_OPTION(sbi).unusable_cap_perc = arg; 1045 set_opt(sbi, DISABLE_CHECKPOINT); 1046 break; 1047 case Opt_checkpoint_disable_cap: 1048 if (args->from && match_int(args, &arg)) 1049 return -EINVAL; 1050 F2FS_OPTION(sbi).unusable_cap = arg; 1051 set_opt(sbi, DISABLE_CHECKPOINT); 1052 break; 1053 case Opt_checkpoint_disable: 1054 set_opt(sbi, DISABLE_CHECKPOINT); 1055 break; 1056 case Opt_checkpoint_enable: 1057 clear_opt(sbi, DISABLE_CHECKPOINT); 1058 break; 1059 case Opt_checkpoint_merge: 1060 set_opt(sbi, MERGE_CHECKPOINT); 1061 break; 1062 case Opt_nocheckpoint_merge: 1063 clear_opt(sbi, MERGE_CHECKPOINT); 1064 break; 1065 #ifdef CONFIG_F2FS_FS_COMPRESSION 1066 case Opt_compress_algorithm: 1067 if (!f2fs_sb_has_compression(sbi)) { 1068 f2fs_info(sbi, "Image doesn't support compression"); 1069 break; 1070 } 1071 name = match_strdup(&args[0]); 1072 if (!name) 1073 return -ENOMEM; 1074 if (!strcmp(name, "lzo")) { 1075 #ifdef CONFIG_F2FS_FS_LZO 1076 F2FS_OPTION(sbi).compress_level = 0; 1077 F2FS_OPTION(sbi).compress_algorithm = 1078 COMPRESS_LZO; 1079 #else 1080 f2fs_info(sbi, "kernel doesn't support lzo compression"); 1081 #endif 1082 } else if (!strncmp(name, "lz4", 3)) { 1083 #ifdef CONFIG_F2FS_FS_LZ4 1084 ret = f2fs_set_lz4hc_level(sbi, name); 1085 if (ret) { 1086 kfree(name); 1087 return -EINVAL; 1088 } 1089 F2FS_OPTION(sbi).compress_algorithm = 1090 COMPRESS_LZ4; 1091 #else 1092 f2fs_info(sbi, "kernel doesn't support lz4 compression"); 1093 #endif 1094 } else if (!strncmp(name, "zstd", 4)) { 1095 #ifdef CONFIG_F2FS_FS_ZSTD 1096 ret = f2fs_set_zstd_level(sbi, name); 1097 if (ret) { 1098 kfree(name); 1099 return -EINVAL; 1100 } 1101 F2FS_OPTION(sbi).compress_algorithm = 1102 COMPRESS_ZSTD; 1103 #else 1104 f2fs_info(sbi, "kernel doesn't support zstd compression"); 1105 #endif 1106 } else if (!strcmp(name, "lzo-rle")) { 1107 #ifdef CONFIG_F2FS_FS_LZORLE 1108 F2FS_OPTION(sbi).compress_level = 0; 1109 F2FS_OPTION(sbi).compress_algorithm = 1110 COMPRESS_LZORLE; 1111 #else 1112 f2fs_info(sbi, "kernel doesn't support lzorle compression"); 1113 #endif 1114 } else { 1115 kfree(name); 1116 return -EINVAL; 1117 } 1118 kfree(name); 1119 break; 1120 case Opt_compress_log_size: 1121 if (!f2fs_sb_has_compression(sbi)) { 1122 f2fs_info(sbi, "Image doesn't support compression"); 1123 break; 1124 } 1125 if (args->from && match_int(args, &arg)) 1126 return -EINVAL; 1127 if (arg < MIN_COMPRESS_LOG_SIZE || 1128 arg > MAX_COMPRESS_LOG_SIZE) { 1129 f2fs_err(sbi, 1130 "Compress cluster log size is out of range"); 1131 return -EINVAL; 1132 } 1133 F2FS_OPTION(sbi).compress_log_size = arg; 1134 break; 1135 case Opt_compress_extension: 1136 if (!f2fs_sb_has_compression(sbi)) { 1137 f2fs_info(sbi, "Image doesn't support compression"); 1138 break; 1139 } 1140 name = match_strdup(&args[0]); 1141 if (!name) 1142 return -ENOMEM; 1143 1144 ext = F2FS_OPTION(sbi).extensions; 1145 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 1146 1147 if (strlen(name) >= F2FS_EXTENSION_LEN || 1148 ext_cnt >= COMPRESS_EXT_NUM) { 1149 f2fs_err(sbi, 1150 "invalid extension length/number"); 1151 kfree(name); 1152 return -EINVAL; 1153 } 1154 1155 strcpy(ext[ext_cnt], name); 1156 F2FS_OPTION(sbi).compress_ext_cnt++; 1157 kfree(name); 1158 break; 1159 case Opt_nocompress_extension: 1160 if (!f2fs_sb_has_compression(sbi)) { 1161 f2fs_info(sbi, "Image doesn't support compression"); 1162 break; 1163 } 1164 name = match_strdup(&args[0]); 1165 if (!name) 1166 return -ENOMEM; 1167 1168 noext = F2FS_OPTION(sbi).noextensions; 1169 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 1170 1171 if (strlen(name) >= F2FS_EXTENSION_LEN || 1172 noext_cnt >= COMPRESS_EXT_NUM) { 1173 f2fs_err(sbi, 1174 "invalid extension length/number"); 1175 kfree(name); 1176 return -EINVAL; 1177 } 1178 1179 strcpy(noext[noext_cnt], name); 1180 F2FS_OPTION(sbi).nocompress_ext_cnt++; 1181 kfree(name); 1182 break; 1183 case Opt_compress_chksum: 1184 F2FS_OPTION(sbi).compress_chksum = true; 1185 break; 1186 case Opt_compress_mode: 1187 name = match_strdup(&args[0]); 1188 if (!name) 1189 return -ENOMEM; 1190 if (!strcmp(name, "fs")) { 1191 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 1192 } else if (!strcmp(name, "user")) { 1193 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER; 1194 } else { 1195 kfree(name); 1196 return -EINVAL; 1197 } 1198 kfree(name); 1199 break; 1200 case Opt_compress_cache: 1201 set_opt(sbi, COMPRESS_CACHE); 1202 break; 1203 #else 1204 case Opt_compress_algorithm: 1205 case Opt_compress_log_size: 1206 case Opt_compress_extension: 1207 case Opt_nocompress_extension: 1208 case Opt_compress_chksum: 1209 case Opt_compress_mode: 1210 case Opt_compress_cache: 1211 f2fs_info(sbi, "compression options not supported"); 1212 break; 1213 #endif 1214 case Opt_atgc: 1215 set_opt(sbi, ATGC); 1216 break; 1217 case Opt_gc_merge: 1218 set_opt(sbi, GC_MERGE); 1219 break; 1220 case Opt_nogc_merge: 1221 clear_opt(sbi, GC_MERGE); 1222 break; 1223 case Opt_discard_unit: 1224 name = match_strdup(&args[0]); 1225 if (!name) 1226 return -ENOMEM; 1227 if (!strcmp(name, "block")) { 1228 F2FS_OPTION(sbi).discard_unit = 1229 DISCARD_UNIT_BLOCK; 1230 } else if (!strcmp(name, "segment")) { 1231 F2FS_OPTION(sbi).discard_unit = 1232 DISCARD_UNIT_SEGMENT; 1233 } else if (!strcmp(name, "section")) { 1234 F2FS_OPTION(sbi).discard_unit = 1235 DISCARD_UNIT_SECTION; 1236 } else { 1237 kfree(name); 1238 return -EINVAL; 1239 } 1240 kfree(name); 1241 break; 1242 default: 1243 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value", 1244 p); 1245 return -EINVAL; 1246 } 1247 } 1248 default_check: 1249 #ifdef CONFIG_QUOTA 1250 if (f2fs_check_quota_options(sbi)) 1251 return -EINVAL; 1252 #else 1253 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 1254 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1255 return -EINVAL; 1256 } 1257 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 1258 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1259 return -EINVAL; 1260 } 1261 #endif 1262 #if !IS_ENABLED(CONFIG_UNICODE) 1263 if (f2fs_sb_has_casefold(sbi)) { 1264 f2fs_err(sbi, 1265 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 1266 return -EINVAL; 1267 } 1268 #endif 1269 /* 1270 * The BLKZONED feature indicates that the drive was formatted with 1271 * zone alignment optimization. This is optional for host-aware 1272 * devices, but mandatory for host-managed zoned block devices. 1273 */ 1274 #ifndef CONFIG_BLK_DEV_ZONED 1275 if (f2fs_sb_has_blkzoned(sbi)) { 1276 f2fs_err(sbi, "Zoned block device support is not enabled"); 1277 return -EINVAL; 1278 } 1279 #endif 1280 if (f2fs_sb_has_blkzoned(sbi)) { 1281 if (F2FS_OPTION(sbi).discard_unit != 1282 DISCARD_UNIT_SECTION) { 1283 f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default"); 1284 F2FS_OPTION(sbi).discard_unit = 1285 DISCARD_UNIT_SECTION; 1286 } 1287 } 1288 1289 #ifdef CONFIG_F2FS_FS_COMPRESSION 1290 if (f2fs_test_compress_extension(sbi)) { 1291 f2fs_err(sbi, "invalid compress or nocompress extension"); 1292 return -EINVAL; 1293 } 1294 #endif 1295 1296 if (F2FS_IO_SIZE_BITS(sbi) && !f2fs_lfs_mode(sbi)) { 1297 f2fs_err(sbi, "Should set mode=lfs with %uKB-sized IO", 1298 F2FS_IO_SIZE_KB(sbi)); 1299 return -EINVAL; 1300 } 1301 1302 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 1303 int min_size, max_size; 1304 1305 if (!f2fs_sb_has_extra_attr(sbi) || 1306 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 1307 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off"); 1308 return -EINVAL; 1309 } 1310 if (!test_opt(sbi, INLINE_XATTR)) { 1311 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option"); 1312 return -EINVAL; 1313 } 1314 1315 min_size = sizeof(struct f2fs_xattr_header) / sizeof(__le32); 1316 max_size = MAX_INLINE_XATTR_SIZE; 1317 1318 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 1319 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 1320 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d", 1321 min_size, max_size); 1322 return -EINVAL; 1323 } 1324 } 1325 1326 if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) { 1327 f2fs_err(sbi, "LFS not compatible with checkpoint=disable"); 1328 return -EINVAL; 1329 } 1330 1331 /* Not pass down write hints if the number of active logs is lesser 1332 * than NR_CURSEG_PERSIST_TYPE. 1333 */ 1334 if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_PERSIST_TYPE) 1335 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 1336 1337 if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) { 1338 f2fs_err(sbi, "Allow to mount readonly mode only"); 1339 return -EROFS; 1340 } 1341 return 0; 1342 } 1343 1344 static struct inode *f2fs_alloc_inode(struct super_block *sb) 1345 { 1346 struct f2fs_inode_info *fi; 1347 1348 if (time_to_inject(F2FS_SB(sb), FAULT_SLAB_ALLOC)) { 1349 f2fs_show_injection_info(F2FS_SB(sb), FAULT_SLAB_ALLOC); 1350 return NULL; 1351 } 1352 1353 fi = alloc_inode_sb(sb, f2fs_inode_cachep, GFP_F2FS_ZERO); 1354 if (!fi) 1355 return NULL; 1356 1357 init_once((void *) fi); 1358 1359 /* Initialize f2fs-specific inode info */ 1360 atomic_set(&fi->dirty_pages, 0); 1361 atomic_set(&fi->i_compr_blocks, 0); 1362 init_f2fs_rwsem(&fi->i_sem); 1363 spin_lock_init(&fi->i_size_lock); 1364 INIT_LIST_HEAD(&fi->dirty_list); 1365 INIT_LIST_HEAD(&fi->gdirty_list); 1366 INIT_LIST_HEAD(&fi->inmem_ilist); 1367 INIT_LIST_HEAD(&fi->inmem_pages); 1368 mutex_init(&fi->inmem_lock); 1369 init_f2fs_rwsem(&fi->i_gc_rwsem[READ]); 1370 init_f2fs_rwsem(&fi->i_gc_rwsem[WRITE]); 1371 init_f2fs_rwsem(&fi->i_xattr_sem); 1372 1373 /* Will be used by directory only */ 1374 fi->i_dir_level = F2FS_SB(sb)->dir_level; 1375 1376 return &fi->vfs_inode; 1377 } 1378 1379 static int f2fs_drop_inode(struct inode *inode) 1380 { 1381 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1382 int ret; 1383 1384 /* 1385 * during filesystem shutdown, if checkpoint is disabled, 1386 * drop useless meta/node dirty pages. 1387 */ 1388 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1389 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1390 inode->i_ino == F2FS_META_INO(sbi)) { 1391 trace_f2fs_drop_inode(inode, 1); 1392 return 1; 1393 } 1394 } 1395 1396 /* 1397 * This is to avoid a deadlock condition like below. 1398 * writeback_single_inode(inode) 1399 * - f2fs_write_data_page 1400 * - f2fs_gc -> iput -> evict 1401 * - inode_wait_for_writeback(inode) 1402 */ 1403 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 1404 if (!inode->i_nlink && !is_bad_inode(inode)) { 1405 /* to avoid evict_inode call simultaneously */ 1406 atomic_inc(&inode->i_count); 1407 spin_unlock(&inode->i_lock); 1408 1409 /* some remained atomic pages should discarded */ 1410 if (f2fs_is_atomic_file(inode)) 1411 f2fs_drop_inmem_pages(inode); 1412 1413 /* should remain fi->extent_tree for writepage */ 1414 f2fs_destroy_extent_node(inode); 1415 1416 sb_start_intwrite(inode->i_sb); 1417 f2fs_i_size_write(inode, 0); 1418 1419 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 1420 inode, NULL, 0, DATA); 1421 truncate_inode_pages_final(inode->i_mapping); 1422 1423 if (F2FS_HAS_BLOCKS(inode)) 1424 f2fs_truncate(inode); 1425 1426 sb_end_intwrite(inode->i_sb); 1427 1428 spin_lock(&inode->i_lock); 1429 atomic_dec(&inode->i_count); 1430 } 1431 trace_f2fs_drop_inode(inode, 0); 1432 return 0; 1433 } 1434 ret = generic_drop_inode(inode); 1435 if (!ret) 1436 ret = fscrypt_drop_inode(inode); 1437 trace_f2fs_drop_inode(inode, ret); 1438 return ret; 1439 } 1440 1441 int f2fs_inode_dirtied(struct inode *inode, bool sync) 1442 { 1443 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1444 int ret = 0; 1445 1446 spin_lock(&sbi->inode_lock[DIRTY_META]); 1447 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1448 ret = 1; 1449 } else { 1450 set_inode_flag(inode, FI_DIRTY_INODE); 1451 stat_inc_dirty_inode(sbi, DIRTY_META); 1452 } 1453 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 1454 list_add_tail(&F2FS_I(inode)->gdirty_list, 1455 &sbi->inode_list[DIRTY_META]); 1456 inc_page_count(sbi, F2FS_DIRTY_IMETA); 1457 } 1458 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1459 return ret; 1460 } 1461 1462 void f2fs_inode_synced(struct inode *inode) 1463 { 1464 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1465 1466 spin_lock(&sbi->inode_lock[DIRTY_META]); 1467 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1468 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1469 return; 1470 } 1471 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 1472 list_del_init(&F2FS_I(inode)->gdirty_list); 1473 dec_page_count(sbi, F2FS_DIRTY_IMETA); 1474 } 1475 clear_inode_flag(inode, FI_DIRTY_INODE); 1476 clear_inode_flag(inode, FI_AUTO_RECOVER); 1477 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 1478 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1479 } 1480 1481 /* 1482 * f2fs_dirty_inode() is called from __mark_inode_dirty() 1483 * 1484 * We should call set_dirty_inode to write the dirty inode through write_inode. 1485 */ 1486 static void f2fs_dirty_inode(struct inode *inode, int flags) 1487 { 1488 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1489 1490 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1491 inode->i_ino == F2FS_META_INO(sbi)) 1492 return; 1493 1494 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1495 clear_inode_flag(inode, FI_AUTO_RECOVER); 1496 1497 f2fs_inode_dirtied(inode, false); 1498 } 1499 1500 static void f2fs_free_inode(struct inode *inode) 1501 { 1502 fscrypt_free_inode(inode); 1503 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1504 } 1505 1506 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1507 { 1508 percpu_counter_destroy(&sbi->total_valid_inode_count); 1509 percpu_counter_destroy(&sbi->rf_node_block_count); 1510 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1511 } 1512 1513 static void destroy_device_list(struct f2fs_sb_info *sbi) 1514 { 1515 int i; 1516 1517 for (i = 0; i < sbi->s_ndevs; i++) { 1518 blkdev_put(FDEV(i).bdev, FMODE_EXCL); 1519 #ifdef CONFIG_BLK_DEV_ZONED 1520 kvfree(FDEV(i).blkz_seq); 1521 kfree(FDEV(i).zone_capacity_blocks); 1522 #endif 1523 } 1524 kvfree(sbi->devs); 1525 } 1526 1527 static void f2fs_put_super(struct super_block *sb) 1528 { 1529 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1530 int i; 1531 bool dropped; 1532 1533 /* unregister procfs/sysfs entries in advance to avoid race case */ 1534 f2fs_unregister_sysfs(sbi); 1535 1536 f2fs_quota_off_umount(sb); 1537 1538 /* prevent remaining shrinker jobs */ 1539 mutex_lock(&sbi->umount_mutex); 1540 1541 /* 1542 * flush all issued checkpoints and stop checkpoint issue thread. 1543 * after then, all checkpoints should be done by each process context. 1544 */ 1545 f2fs_stop_ckpt_thread(sbi); 1546 1547 /* 1548 * We don't need to do checkpoint when superblock is clean. 1549 * But, the previous checkpoint was not done by umount, it needs to do 1550 * clean checkpoint again. 1551 */ 1552 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1553 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1554 struct cp_control cpc = { 1555 .reason = CP_UMOUNT, 1556 }; 1557 f2fs_write_checkpoint(sbi, &cpc); 1558 } 1559 1560 /* be sure to wait for any on-going discard commands */ 1561 dropped = f2fs_issue_discard_timeout(sbi); 1562 1563 if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) && 1564 !sbi->discard_blks && !dropped) { 1565 struct cp_control cpc = { 1566 .reason = CP_UMOUNT | CP_TRIMMED, 1567 }; 1568 f2fs_write_checkpoint(sbi, &cpc); 1569 } 1570 1571 /* 1572 * normally superblock is clean, so we need to release this. 1573 * In addition, EIO will skip do checkpoint, we need this as well. 1574 */ 1575 f2fs_release_ino_entry(sbi, true); 1576 1577 f2fs_leave_shrinker(sbi); 1578 mutex_unlock(&sbi->umount_mutex); 1579 1580 /* our cp_error case, we can wait for any writeback page */ 1581 f2fs_flush_merged_writes(sbi); 1582 1583 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1584 1585 f2fs_bug_on(sbi, sbi->fsync_node_num); 1586 1587 f2fs_destroy_compress_inode(sbi); 1588 1589 iput(sbi->node_inode); 1590 sbi->node_inode = NULL; 1591 1592 iput(sbi->meta_inode); 1593 sbi->meta_inode = NULL; 1594 1595 /* 1596 * iput() can update stat information, if f2fs_write_checkpoint() 1597 * above failed with error. 1598 */ 1599 f2fs_destroy_stats(sbi); 1600 1601 /* destroy f2fs internal modules */ 1602 f2fs_destroy_node_manager(sbi); 1603 f2fs_destroy_segment_manager(sbi); 1604 1605 f2fs_destroy_post_read_wq(sbi); 1606 1607 kvfree(sbi->ckpt); 1608 1609 sb->s_fs_info = NULL; 1610 if (sbi->s_chksum_driver) 1611 crypto_free_shash(sbi->s_chksum_driver); 1612 kfree(sbi->raw_super); 1613 1614 destroy_device_list(sbi); 1615 f2fs_destroy_page_array_cache(sbi); 1616 f2fs_destroy_xattr_caches(sbi); 1617 mempool_destroy(sbi->write_io_dummy); 1618 #ifdef CONFIG_QUOTA 1619 for (i = 0; i < MAXQUOTAS; i++) 1620 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 1621 #endif 1622 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 1623 destroy_percpu_info(sbi); 1624 f2fs_destroy_iostat(sbi); 1625 for (i = 0; i < NR_PAGE_TYPE; i++) 1626 kvfree(sbi->write_io[i]); 1627 #if IS_ENABLED(CONFIG_UNICODE) 1628 utf8_unload(sb->s_encoding); 1629 #endif 1630 kfree(sbi); 1631 } 1632 1633 int f2fs_sync_fs(struct super_block *sb, int sync) 1634 { 1635 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1636 int err = 0; 1637 1638 if (unlikely(f2fs_cp_error(sbi))) 1639 return 0; 1640 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1641 return 0; 1642 1643 trace_f2fs_sync_fs(sb, sync); 1644 1645 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1646 return -EAGAIN; 1647 1648 if (sync) 1649 err = f2fs_issue_checkpoint(sbi); 1650 1651 return err; 1652 } 1653 1654 static int f2fs_freeze(struct super_block *sb) 1655 { 1656 if (f2fs_readonly(sb)) 1657 return 0; 1658 1659 /* IO error happened before */ 1660 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1661 return -EIO; 1662 1663 /* must be clean, since sync_filesystem() was already called */ 1664 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1665 return -EINVAL; 1666 1667 /* ensure no checkpoint required */ 1668 if (!llist_empty(&F2FS_SB(sb)->cprc_info.issue_list)) 1669 return -EINVAL; 1670 1671 /* to avoid deadlock on f2fs_evict_inode->SB_FREEZE_FS */ 1672 set_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 1673 return 0; 1674 } 1675 1676 static int f2fs_unfreeze(struct super_block *sb) 1677 { 1678 clear_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 1679 return 0; 1680 } 1681 1682 #ifdef CONFIG_QUOTA 1683 static int f2fs_statfs_project(struct super_block *sb, 1684 kprojid_t projid, struct kstatfs *buf) 1685 { 1686 struct kqid qid; 1687 struct dquot *dquot; 1688 u64 limit; 1689 u64 curblock; 1690 1691 qid = make_kqid_projid(projid); 1692 dquot = dqget(sb, qid); 1693 if (IS_ERR(dquot)) 1694 return PTR_ERR(dquot); 1695 spin_lock(&dquot->dq_dqb_lock); 1696 1697 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 1698 dquot->dq_dqb.dqb_bhardlimit); 1699 if (limit) 1700 limit >>= sb->s_blocksize_bits; 1701 1702 if (limit && buf->f_blocks > limit) { 1703 curblock = (dquot->dq_dqb.dqb_curspace + 1704 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 1705 buf->f_blocks = limit; 1706 buf->f_bfree = buf->f_bavail = 1707 (buf->f_blocks > curblock) ? 1708 (buf->f_blocks - curblock) : 0; 1709 } 1710 1711 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 1712 dquot->dq_dqb.dqb_ihardlimit); 1713 1714 if (limit && buf->f_files > limit) { 1715 buf->f_files = limit; 1716 buf->f_ffree = 1717 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1718 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1719 } 1720 1721 spin_unlock(&dquot->dq_dqb_lock); 1722 dqput(dquot); 1723 return 0; 1724 } 1725 #endif 1726 1727 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1728 { 1729 struct super_block *sb = dentry->d_sb; 1730 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1731 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1732 block_t total_count, user_block_count, start_count; 1733 u64 avail_node_count; 1734 1735 total_count = le64_to_cpu(sbi->raw_super->block_count); 1736 user_block_count = sbi->user_block_count; 1737 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1738 buf->f_type = F2FS_SUPER_MAGIC; 1739 buf->f_bsize = sbi->blocksize; 1740 1741 buf->f_blocks = total_count - start_count; 1742 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1743 sbi->current_reserved_blocks; 1744 1745 spin_lock(&sbi->stat_lock); 1746 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1747 buf->f_bfree = 0; 1748 else 1749 buf->f_bfree -= sbi->unusable_block_count; 1750 spin_unlock(&sbi->stat_lock); 1751 1752 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1753 buf->f_bavail = buf->f_bfree - 1754 F2FS_OPTION(sbi).root_reserved_blocks; 1755 else 1756 buf->f_bavail = 0; 1757 1758 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 1759 1760 if (avail_node_count > user_block_count) { 1761 buf->f_files = user_block_count; 1762 buf->f_ffree = buf->f_bavail; 1763 } else { 1764 buf->f_files = avail_node_count; 1765 buf->f_ffree = min(avail_node_count - valid_node_count(sbi), 1766 buf->f_bavail); 1767 } 1768 1769 buf->f_namelen = F2FS_NAME_LEN; 1770 buf->f_fsid = u64_to_fsid(id); 1771 1772 #ifdef CONFIG_QUOTA 1773 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1774 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1775 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1776 } 1777 #endif 1778 return 0; 1779 } 1780 1781 static inline void f2fs_show_quota_options(struct seq_file *seq, 1782 struct super_block *sb) 1783 { 1784 #ifdef CONFIG_QUOTA 1785 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1786 1787 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1788 char *fmtname = ""; 1789 1790 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1791 case QFMT_VFS_OLD: 1792 fmtname = "vfsold"; 1793 break; 1794 case QFMT_VFS_V0: 1795 fmtname = "vfsv0"; 1796 break; 1797 case QFMT_VFS_V1: 1798 fmtname = "vfsv1"; 1799 break; 1800 } 1801 seq_printf(seq, ",jqfmt=%s", fmtname); 1802 } 1803 1804 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1805 seq_show_option(seq, "usrjquota", 1806 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1807 1808 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1809 seq_show_option(seq, "grpjquota", 1810 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1811 1812 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1813 seq_show_option(seq, "prjjquota", 1814 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1815 #endif 1816 } 1817 1818 #ifdef CONFIG_F2FS_FS_COMPRESSION 1819 static inline void f2fs_show_compress_options(struct seq_file *seq, 1820 struct super_block *sb) 1821 { 1822 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1823 char *algtype = ""; 1824 int i; 1825 1826 if (!f2fs_sb_has_compression(sbi)) 1827 return; 1828 1829 switch (F2FS_OPTION(sbi).compress_algorithm) { 1830 case COMPRESS_LZO: 1831 algtype = "lzo"; 1832 break; 1833 case COMPRESS_LZ4: 1834 algtype = "lz4"; 1835 break; 1836 case COMPRESS_ZSTD: 1837 algtype = "zstd"; 1838 break; 1839 case COMPRESS_LZORLE: 1840 algtype = "lzo-rle"; 1841 break; 1842 } 1843 seq_printf(seq, ",compress_algorithm=%s", algtype); 1844 1845 if (F2FS_OPTION(sbi).compress_level) 1846 seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level); 1847 1848 seq_printf(seq, ",compress_log_size=%u", 1849 F2FS_OPTION(sbi).compress_log_size); 1850 1851 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) { 1852 seq_printf(seq, ",compress_extension=%s", 1853 F2FS_OPTION(sbi).extensions[i]); 1854 } 1855 1856 for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) { 1857 seq_printf(seq, ",nocompress_extension=%s", 1858 F2FS_OPTION(sbi).noextensions[i]); 1859 } 1860 1861 if (F2FS_OPTION(sbi).compress_chksum) 1862 seq_puts(seq, ",compress_chksum"); 1863 1864 if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS) 1865 seq_printf(seq, ",compress_mode=%s", "fs"); 1866 else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER) 1867 seq_printf(seq, ",compress_mode=%s", "user"); 1868 1869 if (test_opt(sbi, COMPRESS_CACHE)) 1870 seq_puts(seq, ",compress_cache"); 1871 } 1872 #endif 1873 1874 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1875 { 1876 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1877 1878 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC) 1879 seq_printf(seq, ",background_gc=%s", "sync"); 1880 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON) 1881 seq_printf(seq, ",background_gc=%s", "on"); 1882 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) 1883 seq_printf(seq, ",background_gc=%s", "off"); 1884 1885 if (test_opt(sbi, GC_MERGE)) 1886 seq_puts(seq, ",gc_merge"); 1887 1888 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1889 seq_puts(seq, ",disable_roll_forward"); 1890 if (test_opt(sbi, NORECOVERY)) 1891 seq_puts(seq, ",norecovery"); 1892 if (test_opt(sbi, DISCARD)) 1893 seq_puts(seq, ",discard"); 1894 else 1895 seq_puts(seq, ",nodiscard"); 1896 if (test_opt(sbi, NOHEAP)) 1897 seq_puts(seq, ",no_heap"); 1898 else 1899 seq_puts(seq, ",heap"); 1900 #ifdef CONFIG_F2FS_FS_XATTR 1901 if (test_opt(sbi, XATTR_USER)) 1902 seq_puts(seq, ",user_xattr"); 1903 else 1904 seq_puts(seq, ",nouser_xattr"); 1905 if (test_opt(sbi, INLINE_XATTR)) 1906 seq_puts(seq, ",inline_xattr"); 1907 else 1908 seq_puts(seq, ",noinline_xattr"); 1909 if (test_opt(sbi, INLINE_XATTR_SIZE)) 1910 seq_printf(seq, ",inline_xattr_size=%u", 1911 F2FS_OPTION(sbi).inline_xattr_size); 1912 #endif 1913 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1914 if (test_opt(sbi, POSIX_ACL)) 1915 seq_puts(seq, ",acl"); 1916 else 1917 seq_puts(seq, ",noacl"); 1918 #endif 1919 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 1920 seq_puts(seq, ",disable_ext_identify"); 1921 if (test_opt(sbi, INLINE_DATA)) 1922 seq_puts(seq, ",inline_data"); 1923 else 1924 seq_puts(seq, ",noinline_data"); 1925 if (test_opt(sbi, INLINE_DENTRY)) 1926 seq_puts(seq, ",inline_dentry"); 1927 else 1928 seq_puts(seq, ",noinline_dentry"); 1929 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 1930 seq_puts(seq, ",flush_merge"); 1931 if (test_opt(sbi, NOBARRIER)) 1932 seq_puts(seq, ",nobarrier"); 1933 if (test_opt(sbi, FASTBOOT)) 1934 seq_puts(seq, ",fastboot"); 1935 if (test_opt(sbi, EXTENT_CACHE)) 1936 seq_puts(seq, ",extent_cache"); 1937 else 1938 seq_puts(seq, ",noextent_cache"); 1939 if (test_opt(sbi, DATA_FLUSH)) 1940 seq_puts(seq, ",data_flush"); 1941 1942 seq_puts(seq, ",mode="); 1943 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE) 1944 seq_puts(seq, "adaptive"); 1945 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS) 1946 seq_puts(seq, "lfs"); 1947 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG) 1948 seq_puts(seq, "fragment:segment"); 1949 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 1950 seq_puts(seq, "fragment:block"); 1951 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 1952 if (test_opt(sbi, RESERVE_ROOT)) 1953 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 1954 F2FS_OPTION(sbi).root_reserved_blocks, 1955 from_kuid_munged(&init_user_ns, 1956 F2FS_OPTION(sbi).s_resuid), 1957 from_kgid_munged(&init_user_ns, 1958 F2FS_OPTION(sbi).s_resgid)); 1959 if (F2FS_IO_SIZE_BITS(sbi)) 1960 seq_printf(seq, ",io_bits=%u", 1961 F2FS_OPTION(sbi).write_io_size_bits); 1962 #ifdef CONFIG_F2FS_FAULT_INJECTION 1963 if (test_opt(sbi, FAULT_INJECTION)) { 1964 seq_printf(seq, ",fault_injection=%u", 1965 F2FS_OPTION(sbi).fault_info.inject_rate); 1966 seq_printf(seq, ",fault_type=%u", 1967 F2FS_OPTION(sbi).fault_info.inject_type); 1968 } 1969 #endif 1970 #ifdef CONFIG_QUOTA 1971 if (test_opt(sbi, QUOTA)) 1972 seq_puts(seq, ",quota"); 1973 if (test_opt(sbi, USRQUOTA)) 1974 seq_puts(seq, ",usrquota"); 1975 if (test_opt(sbi, GRPQUOTA)) 1976 seq_puts(seq, ",grpquota"); 1977 if (test_opt(sbi, PRJQUOTA)) 1978 seq_puts(seq, ",prjquota"); 1979 #endif 1980 f2fs_show_quota_options(seq, sbi->sb); 1981 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) 1982 seq_printf(seq, ",whint_mode=%s", "user-based"); 1983 else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) 1984 seq_printf(seq, ",whint_mode=%s", "fs-based"); 1985 1986 fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb); 1987 1988 if (sbi->sb->s_flags & SB_INLINECRYPT) 1989 seq_puts(seq, ",inlinecrypt"); 1990 1991 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 1992 seq_printf(seq, ",alloc_mode=%s", "default"); 1993 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 1994 seq_printf(seq, ",alloc_mode=%s", "reuse"); 1995 1996 if (test_opt(sbi, DISABLE_CHECKPOINT)) 1997 seq_printf(seq, ",checkpoint=disable:%u", 1998 F2FS_OPTION(sbi).unusable_cap); 1999 if (test_opt(sbi, MERGE_CHECKPOINT)) 2000 seq_puts(seq, ",checkpoint_merge"); 2001 else 2002 seq_puts(seq, ",nocheckpoint_merge"); 2003 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 2004 seq_printf(seq, ",fsync_mode=%s", "posix"); 2005 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 2006 seq_printf(seq, ",fsync_mode=%s", "strict"); 2007 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 2008 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 2009 2010 #ifdef CONFIG_F2FS_FS_COMPRESSION 2011 f2fs_show_compress_options(seq, sbi->sb); 2012 #endif 2013 2014 if (test_opt(sbi, ATGC)) 2015 seq_puts(seq, ",atgc"); 2016 2017 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK) 2018 seq_printf(seq, ",discard_unit=%s", "block"); 2019 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 2020 seq_printf(seq, ",discard_unit=%s", "segment"); 2021 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 2022 seq_printf(seq, ",discard_unit=%s", "section"); 2023 2024 return 0; 2025 } 2026 2027 static void default_options(struct f2fs_sb_info *sbi) 2028 { 2029 /* init some FS parameters */ 2030 if (f2fs_sb_has_readonly(sbi)) 2031 F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE; 2032 else 2033 F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE; 2034 2035 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 2036 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 2037 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 2038 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 2039 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 2040 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 2041 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4; 2042 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE; 2043 F2FS_OPTION(sbi).compress_ext_cnt = 0; 2044 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 2045 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 2046 2047 sbi->sb->s_flags &= ~SB_INLINECRYPT; 2048 2049 set_opt(sbi, INLINE_XATTR); 2050 set_opt(sbi, INLINE_DATA); 2051 set_opt(sbi, INLINE_DENTRY); 2052 set_opt(sbi, EXTENT_CACHE); 2053 set_opt(sbi, NOHEAP); 2054 clear_opt(sbi, DISABLE_CHECKPOINT); 2055 set_opt(sbi, MERGE_CHECKPOINT); 2056 F2FS_OPTION(sbi).unusable_cap = 0; 2057 sbi->sb->s_flags |= SB_LAZYTIME; 2058 set_opt(sbi, FLUSH_MERGE); 2059 if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) 2060 set_opt(sbi, DISCARD); 2061 if (f2fs_sb_has_blkzoned(sbi)) { 2062 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 2063 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION; 2064 } else { 2065 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 2066 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK; 2067 } 2068 2069 #ifdef CONFIG_F2FS_FS_XATTR 2070 set_opt(sbi, XATTR_USER); 2071 #endif 2072 #ifdef CONFIG_F2FS_FS_POSIX_ACL 2073 set_opt(sbi, POSIX_ACL); 2074 #endif 2075 2076 f2fs_build_fault_attr(sbi, 0, 0); 2077 } 2078 2079 #ifdef CONFIG_QUOTA 2080 static int f2fs_enable_quotas(struct super_block *sb); 2081 #endif 2082 2083 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 2084 { 2085 unsigned int s_flags = sbi->sb->s_flags; 2086 struct cp_control cpc; 2087 unsigned int gc_mode; 2088 int err = 0; 2089 int ret; 2090 block_t unusable; 2091 2092 if (s_flags & SB_RDONLY) { 2093 f2fs_err(sbi, "checkpoint=disable on readonly fs"); 2094 return -EINVAL; 2095 } 2096 sbi->sb->s_flags |= SB_ACTIVE; 2097 2098 f2fs_update_time(sbi, DISABLE_TIME); 2099 2100 gc_mode = sbi->gc_mode; 2101 sbi->gc_mode = GC_URGENT_HIGH; 2102 2103 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 2104 f2fs_down_write(&sbi->gc_lock); 2105 err = f2fs_gc(sbi, true, false, false, NULL_SEGNO); 2106 if (err == -ENODATA) { 2107 err = 0; 2108 break; 2109 } 2110 if (err && err != -EAGAIN) 2111 break; 2112 } 2113 2114 ret = sync_filesystem(sbi->sb); 2115 if (ret || err) { 2116 err = ret ? ret : err; 2117 goto restore_flag; 2118 } 2119 2120 unusable = f2fs_get_unusable_blocks(sbi); 2121 if (f2fs_disable_cp_again(sbi, unusable)) { 2122 err = -EAGAIN; 2123 goto restore_flag; 2124 } 2125 2126 f2fs_down_write(&sbi->gc_lock); 2127 cpc.reason = CP_PAUSE; 2128 set_sbi_flag(sbi, SBI_CP_DISABLED); 2129 err = f2fs_write_checkpoint(sbi, &cpc); 2130 if (err) 2131 goto out_unlock; 2132 2133 spin_lock(&sbi->stat_lock); 2134 sbi->unusable_block_count = unusable; 2135 spin_unlock(&sbi->stat_lock); 2136 2137 out_unlock: 2138 f2fs_up_write(&sbi->gc_lock); 2139 restore_flag: 2140 sbi->gc_mode = gc_mode; 2141 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2142 return err; 2143 } 2144 2145 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 2146 { 2147 int retry = DEFAULT_RETRY_IO_COUNT; 2148 2149 /* we should flush all the data to keep data consistency */ 2150 do { 2151 sync_inodes_sb(sbi->sb); 2152 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2153 } while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--); 2154 2155 if (unlikely(retry < 0)) 2156 f2fs_warn(sbi, "checkpoint=enable has some unwritten data."); 2157 2158 f2fs_down_write(&sbi->gc_lock); 2159 f2fs_dirty_to_prefree(sbi); 2160 2161 clear_sbi_flag(sbi, SBI_CP_DISABLED); 2162 set_sbi_flag(sbi, SBI_IS_DIRTY); 2163 f2fs_up_write(&sbi->gc_lock); 2164 2165 f2fs_sync_fs(sbi->sb, 1); 2166 } 2167 2168 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 2169 { 2170 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2171 struct f2fs_mount_info org_mount_opt; 2172 unsigned long old_sb_flags; 2173 int err; 2174 bool need_restart_gc = false, need_stop_gc = false; 2175 bool need_restart_ckpt = false, need_stop_ckpt = false; 2176 bool need_restart_flush = false, need_stop_flush = false; 2177 bool need_restart_discard = false, need_stop_discard = false; 2178 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 2179 bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT); 2180 bool no_io_align = !F2FS_IO_ALIGNED(sbi); 2181 bool no_atgc = !test_opt(sbi, ATGC); 2182 bool no_discard = !test_opt(sbi, DISCARD); 2183 bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE); 2184 bool block_unit_discard = f2fs_block_unit_discard(sbi); 2185 struct discard_cmd_control *dcc; 2186 #ifdef CONFIG_QUOTA 2187 int i, j; 2188 #endif 2189 2190 /* 2191 * Save the old mount options in case we 2192 * need to restore them. 2193 */ 2194 org_mount_opt = sbi->mount_opt; 2195 old_sb_flags = sb->s_flags; 2196 2197 #ifdef CONFIG_QUOTA 2198 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 2199 for (i = 0; i < MAXQUOTAS; i++) { 2200 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2201 org_mount_opt.s_qf_names[i] = 2202 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 2203 GFP_KERNEL); 2204 if (!org_mount_opt.s_qf_names[i]) { 2205 for (j = 0; j < i; j++) 2206 kfree(org_mount_opt.s_qf_names[j]); 2207 return -ENOMEM; 2208 } 2209 } else { 2210 org_mount_opt.s_qf_names[i] = NULL; 2211 } 2212 } 2213 #endif 2214 2215 /* recover superblocks we couldn't write due to previous RO mount */ 2216 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 2217 err = f2fs_commit_super(sbi, false); 2218 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d", 2219 err); 2220 if (!err) 2221 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2222 } 2223 2224 default_options(sbi); 2225 2226 /* parse mount options */ 2227 err = parse_options(sb, data, true); 2228 if (err) 2229 goto restore_opts; 2230 2231 /* 2232 * Previous and new state of filesystem is RO, 2233 * so skip checking GC and FLUSH_MERGE conditions. 2234 */ 2235 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 2236 goto skip; 2237 2238 if (f2fs_sb_has_readonly(sbi) && !(*flags & SB_RDONLY)) { 2239 err = -EROFS; 2240 goto restore_opts; 2241 } 2242 2243 #ifdef CONFIG_QUOTA 2244 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 2245 err = dquot_suspend(sb, -1); 2246 if (err < 0) 2247 goto restore_opts; 2248 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 2249 /* dquot_resume needs RW */ 2250 sb->s_flags &= ~SB_RDONLY; 2251 if (sb_any_quota_suspended(sb)) { 2252 dquot_resume(sb, -1); 2253 } else if (f2fs_sb_has_quota_ino(sbi)) { 2254 err = f2fs_enable_quotas(sb); 2255 if (err) 2256 goto restore_opts; 2257 } 2258 } 2259 #endif 2260 /* disallow enable atgc dynamically */ 2261 if (no_atgc == !!test_opt(sbi, ATGC)) { 2262 err = -EINVAL; 2263 f2fs_warn(sbi, "switch atgc option is not allowed"); 2264 goto restore_opts; 2265 } 2266 2267 /* disallow enable/disable extent_cache dynamically */ 2268 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 2269 err = -EINVAL; 2270 f2fs_warn(sbi, "switch extent_cache option is not allowed"); 2271 goto restore_opts; 2272 } 2273 2274 if (no_io_align == !!F2FS_IO_ALIGNED(sbi)) { 2275 err = -EINVAL; 2276 f2fs_warn(sbi, "switch io_bits option is not allowed"); 2277 goto restore_opts; 2278 } 2279 2280 if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) { 2281 err = -EINVAL; 2282 f2fs_warn(sbi, "switch compress_cache option is not allowed"); 2283 goto restore_opts; 2284 } 2285 2286 if (block_unit_discard != f2fs_block_unit_discard(sbi)) { 2287 err = -EINVAL; 2288 f2fs_warn(sbi, "switch discard_unit option is not allowed"); 2289 goto restore_opts; 2290 } 2291 2292 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 2293 err = -EINVAL; 2294 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only"); 2295 goto restore_opts; 2296 } 2297 2298 /* 2299 * We stop the GC thread if FS is mounted as RO 2300 * or if background_gc = off is passed in mount 2301 * option. Also sync the filesystem. 2302 */ 2303 if ((*flags & SB_RDONLY) || 2304 (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF && 2305 !test_opt(sbi, GC_MERGE))) { 2306 if (sbi->gc_thread) { 2307 f2fs_stop_gc_thread(sbi); 2308 need_restart_gc = true; 2309 } 2310 } else if (!sbi->gc_thread) { 2311 err = f2fs_start_gc_thread(sbi); 2312 if (err) 2313 goto restore_opts; 2314 need_stop_gc = true; 2315 } 2316 2317 if (*flags & SB_RDONLY || 2318 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) { 2319 sync_inodes_sb(sb); 2320 2321 set_sbi_flag(sbi, SBI_IS_DIRTY); 2322 set_sbi_flag(sbi, SBI_IS_CLOSE); 2323 f2fs_sync_fs(sb, 1); 2324 clear_sbi_flag(sbi, SBI_IS_CLOSE); 2325 } 2326 2327 if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) || 2328 !test_opt(sbi, MERGE_CHECKPOINT)) { 2329 f2fs_stop_ckpt_thread(sbi); 2330 need_restart_ckpt = true; 2331 } else { 2332 err = f2fs_start_ckpt_thread(sbi); 2333 if (err) { 2334 f2fs_err(sbi, 2335 "Failed to start F2FS issue_checkpoint_thread (%d)", 2336 err); 2337 goto restore_gc; 2338 } 2339 need_stop_ckpt = true; 2340 } 2341 2342 /* 2343 * We stop issue flush thread if FS is mounted as RO 2344 * or if flush_merge is not passed in mount option. 2345 */ 2346 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 2347 clear_opt(sbi, FLUSH_MERGE); 2348 f2fs_destroy_flush_cmd_control(sbi, false); 2349 need_restart_flush = true; 2350 } else { 2351 err = f2fs_create_flush_cmd_control(sbi); 2352 if (err) 2353 goto restore_ckpt; 2354 need_stop_flush = true; 2355 } 2356 2357 if (no_discard == !!test_opt(sbi, DISCARD)) { 2358 if (test_opt(sbi, DISCARD)) { 2359 err = f2fs_start_discard_thread(sbi); 2360 if (err) 2361 goto restore_flush; 2362 need_stop_discard = true; 2363 } else { 2364 dcc = SM_I(sbi)->dcc_info; 2365 f2fs_stop_discard_thread(sbi); 2366 if (atomic_read(&dcc->discard_cmd_cnt)) 2367 f2fs_issue_discard_timeout(sbi); 2368 need_restart_discard = true; 2369 } 2370 } 2371 2372 if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) { 2373 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2374 err = f2fs_disable_checkpoint(sbi); 2375 if (err) 2376 goto restore_discard; 2377 } else { 2378 f2fs_enable_checkpoint(sbi); 2379 } 2380 } 2381 2382 skip: 2383 #ifdef CONFIG_QUOTA 2384 /* Release old quota file names */ 2385 for (i = 0; i < MAXQUOTAS; i++) 2386 kfree(org_mount_opt.s_qf_names[i]); 2387 #endif 2388 /* Update the POSIXACL Flag */ 2389 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 2390 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 2391 2392 limit_reserve_root(sbi); 2393 adjust_unusable_cap_perc(sbi); 2394 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 2395 return 0; 2396 restore_discard: 2397 if (need_restart_discard) { 2398 if (f2fs_start_discard_thread(sbi)) 2399 f2fs_warn(sbi, "discard has been stopped"); 2400 } else if (need_stop_discard) { 2401 f2fs_stop_discard_thread(sbi); 2402 } 2403 restore_flush: 2404 if (need_restart_flush) { 2405 if (f2fs_create_flush_cmd_control(sbi)) 2406 f2fs_warn(sbi, "background flush thread has stopped"); 2407 } else if (need_stop_flush) { 2408 clear_opt(sbi, FLUSH_MERGE); 2409 f2fs_destroy_flush_cmd_control(sbi, false); 2410 } 2411 restore_ckpt: 2412 if (need_restart_ckpt) { 2413 if (f2fs_start_ckpt_thread(sbi)) 2414 f2fs_warn(sbi, "background ckpt thread has stopped"); 2415 } else if (need_stop_ckpt) { 2416 f2fs_stop_ckpt_thread(sbi); 2417 } 2418 restore_gc: 2419 if (need_restart_gc) { 2420 if (f2fs_start_gc_thread(sbi)) 2421 f2fs_warn(sbi, "background gc thread has stopped"); 2422 } else if (need_stop_gc) { 2423 f2fs_stop_gc_thread(sbi); 2424 } 2425 restore_opts: 2426 #ifdef CONFIG_QUOTA 2427 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 2428 for (i = 0; i < MAXQUOTAS; i++) { 2429 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 2430 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 2431 } 2432 #endif 2433 sbi->mount_opt = org_mount_opt; 2434 sb->s_flags = old_sb_flags; 2435 return err; 2436 } 2437 2438 #ifdef CONFIG_QUOTA 2439 /* Read data from quotafile */ 2440 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 2441 size_t len, loff_t off) 2442 { 2443 struct inode *inode = sb_dqopt(sb)->files[type]; 2444 struct address_space *mapping = inode->i_mapping; 2445 block_t blkidx = F2FS_BYTES_TO_BLK(off); 2446 int offset = off & (sb->s_blocksize - 1); 2447 int tocopy; 2448 size_t toread; 2449 loff_t i_size = i_size_read(inode); 2450 struct page *page; 2451 char *kaddr; 2452 2453 if (off > i_size) 2454 return 0; 2455 2456 if (off + len > i_size) 2457 len = i_size - off; 2458 toread = len; 2459 while (toread > 0) { 2460 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 2461 repeat: 2462 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 2463 if (IS_ERR(page)) { 2464 if (PTR_ERR(page) == -ENOMEM) { 2465 memalloc_retry_wait(GFP_NOFS); 2466 goto repeat; 2467 } 2468 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2469 return PTR_ERR(page); 2470 } 2471 2472 lock_page(page); 2473 2474 if (unlikely(page->mapping != mapping)) { 2475 f2fs_put_page(page, 1); 2476 goto repeat; 2477 } 2478 if (unlikely(!PageUptodate(page))) { 2479 f2fs_put_page(page, 1); 2480 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2481 return -EIO; 2482 } 2483 2484 kaddr = kmap_atomic(page); 2485 memcpy(data, kaddr + offset, tocopy); 2486 kunmap_atomic(kaddr); 2487 f2fs_put_page(page, 1); 2488 2489 offset = 0; 2490 toread -= tocopy; 2491 data += tocopy; 2492 blkidx++; 2493 } 2494 return len; 2495 } 2496 2497 /* Write to quotafile */ 2498 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 2499 const char *data, size_t len, loff_t off) 2500 { 2501 struct inode *inode = sb_dqopt(sb)->files[type]; 2502 struct address_space *mapping = inode->i_mapping; 2503 const struct address_space_operations *a_ops = mapping->a_ops; 2504 int offset = off & (sb->s_blocksize - 1); 2505 size_t towrite = len; 2506 struct page *page; 2507 void *fsdata = NULL; 2508 char *kaddr; 2509 int err = 0; 2510 int tocopy; 2511 2512 while (towrite > 0) { 2513 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 2514 towrite); 2515 retry: 2516 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0, 2517 &page, &fsdata); 2518 if (unlikely(err)) { 2519 if (err == -ENOMEM) { 2520 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2521 goto retry; 2522 } 2523 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2524 break; 2525 } 2526 2527 kaddr = kmap_atomic(page); 2528 memcpy(kaddr + offset, data, tocopy); 2529 kunmap_atomic(kaddr); 2530 flush_dcache_page(page); 2531 2532 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 2533 page, fsdata); 2534 offset = 0; 2535 towrite -= tocopy; 2536 off += tocopy; 2537 data += tocopy; 2538 cond_resched(); 2539 } 2540 2541 if (len == towrite) 2542 return err; 2543 inode->i_mtime = inode->i_ctime = current_time(inode); 2544 f2fs_mark_inode_dirty_sync(inode, false); 2545 return len - towrite; 2546 } 2547 2548 int f2fs_dquot_initialize(struct inode *inode) 2549 { 2550 if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT)) { 2551 f2fs_show_injection_info(F2FS_I_SB(inode), FAULT_DQUOT_INIT); 2552 return -ESRCH; 2553 } 2554 2555 return dquot_initialize(inode); 2556 } 2557 2558 static struct dquot **f2fs_get_dquots(struct inode *inode) 2559 { 2560 return F2FS_I(inode)->i_dquot; 2561 } 2562 2563 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 2564 { 2565 return &F2FS_I(inode)->i_reserved_quota; 2566 } 2567 2568 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 2569 { 2570 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 2571 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it"); 2572 return 0; 2573 } 2574 2575 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 2576 F2FS_OPTION(sbi).s_jquota_fmt, type); 2577 } 2578 2579 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 2580 { 2581 int enabled = 0; 2582 int i, err; 2583 2584 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 2585 err = f2fs_enable_quotas(sbi->sb); 2586 if (err) { 2587 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err); 2588 return 0; 2589 } 2590 return 1; 2591 } 2592 2593 for (i = 0; i < MAXQUOTAS; i++) { 2594 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2595 err = f2fs_quota_on_mount(sbi, i); 2596 if (!err) { 2597 enabled = 1; 2598 continue; 2599 } 2600 f2fs_err(sbi, "Cannot turn on quotas: %d on %d", 2601 err, i); 2602 } 2603 } 2604 return enabled; 2605 } 2606 2607 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 2608 unsigned int flags) 2609 { 2610 struct inode *qf_inode; 2611 unsigned long qf_inum; 2612 int err; 2613 2614 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 2615 2616 qf_inum = f2fs_qf_ino(sb, type); 2617 if (!qf_inum) 2618 return -EPERM; 2619 2620 qf_inode = f2fs_iget(sb, qf_inum); 2621 if (IS_ERR(qf_inode)) { 2622 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum); 2623 return PTR_ERR(qf_inode); 2624 } 2625 2626 /* Don't account quota for quota files to avoid recursion */ 2627 qf_inode->i_flags |= S_NOQUOTA; 2628 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 2629 iput(qf_inode); 2630 return err; 2631 } 2632 2633 static int f2fs_enable_quotas(struct super_block *sb) 2634 { 2635 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2636 int type, err = 0; 2637 unsigned long qf_inum; 2638 bool quota_mopt[MAXQUOTAS] = { 2639 test_opt(sbi, USRQUOTA), 2640 test_opt(sbi, GRPQUOTA), 2641 test_opt(sbi, PRJQUOTA), 2642 }; 2643 2644 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 2645 f2fs_err(sbi, "quota file may be corrupted, skip loading it"); 2646 return 0; 2647 } 2648 2649 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 2650 2651 for (type = 0; type < MAXQUOTAS; type++) { 2652 qf_inum = f2fs_qf_ino(sb, type); 2653 if (qf_inum) { 2654 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 2655 DQUOT_USAGE_ENABLED | 2656 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 2657 if (err) { 2658 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.", 2659 type, err); 2660 for (type--; type >= 0; type--) 2661 dquot_quota_off(sb, type); 2662 set_sbi_flag(F2FS_SB(sb), 2663 SBI_QUOTA_NEED_REPAIR); 2664 return err; 2665 } 2666 } 2667 } 2668 return 0; 2669 } 2670 2671 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type) 2672 { 2673 struct quota_info *dqopt = sb_dqopt(sbi->sb); 2674 struct address_space *mapping = dqopt->files[type]->i_mapping; 2675 int ret = 0; 2676 2677 ret = dquot_writeback_dquots(sbi->sb, type); 2678 if (ret) 2679 goto out; 2680 2681 ret = filemap_fdatawrite(mapping); 2682 if (ret) 2683 goto out; 2684 2685 /* if we are using journalled quota */ 2686 if (is_journalled_quota(sbi)) 2687 goto out; 2688 2689 ret = filemap_fdatawait(mapping); 2690 2691 truncate_inode_pages(&dqopt->files[type]->i_data, 0); 2692 out: 2693 if (ret) 2694 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2695 return ret; 2696 } 2697 2698 int f2fs_quota_sync(struct super_block *sb, int type) 2699 { 2700 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2701 struct quota_info *dqopt = sb_dqopt(sb); 2702 int cnt; 2703 int ret = 0; 2704 2705 /* 2706 * Now when everything is written we can discard the pagecache so 2707 * that userspace sees the changes. 2708 */ 2709 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 2710 2711 if (type != -1 && cnt != type) 2712 continue; 2713 2714 if (!sb_has_quota_active(sb, cnt)) 2715 continue; 2716 2717 inode_lock(dqopt->files[cnt]); 2718 2719 /* 2720 * do_quotactl 2721 * f2fs_quota_sync 2722 * f2fs_down_read(quota_sem) 2723 * dquot_writeback_dquots() 2724 * f2fs_dquot_commit 2725 * block_operation 2726 * f2fs_down_read(quota_sem) 2727 */ 2728 f2fs_lock_op(sbi); 2729 f2fs_down_read(&sbi->quota_sem); 2730 2731 ret = f2fs_quota_sync_file(sbi, cnt); 2732 2733 f2fs_up_read(&sbi->quota_sem); 2734 f2fs_unlock_op(sbi); 2735 2736 inode_unlock(dqopt->files[cnt]); 2737 2738 if (ret) 2739 break; 2740 } 2741 return ret; 2742 } 2743 2744 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 2745 const struct path *path) 2746 { 2747 struct inode *inode; 2748 int err; 2749 2750 /* if quota sysfile exists, deny enabling quota with specific file */ 2751 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) { 2752 f2fs_err(F2FS_SB(sb), "quota sysfile already exists"); 2753 return -EBUSY; 2754 } 2755 2756 err = f2fs_quota_sync(sb, type); 2757 if (err) 2758 return err; 2759 2760 err = dquot_quota_on(sb, type, format_id, path); 2761 if (err) 2762 return err; 2763 2764 inode = d_inode(path->dentry); 2765 2766 inode_lock(inode); 2767 F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL; 2768 f2fs_set_inode_flags(inode); 2769 inode_unlock(inode); 2770 f2fs_mark_inode_dirty_sync(inode, false); 2771 2772 return 0; 2773 } 2774 2775 static int __f2fs_quota_off(struct super_block *sb, int type) 2776 { 2777 struct inode *inode = sb_dqopt(sb)->files[type]; 2778 int err; 2779 2780 if (!inode || !igrab(inode)) 2781 return dquot_quota_off(sb, type); 2782 2783 err = f2fs_quota_sync(sb, type); 2784 if (err) 2785 goto out_put; 2786 2787 err = dquot_quota_off(sb, type); 2788 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 2789 goto out_put; 2790 2791 inode_lock(inode); 2792 F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL); 2793 f2fs_set_inode_flags(inode); 2794 inode_unlock(inode); 2795 f2fs_mark_inode_dirty_sync(inode, false); 2796 out_put: 2797 iput(inode); 2798 return err; 2799 } 2800 2801 static int f2fs_quota_off(struct super_block *sb, int type) 2802 { 2803 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2804 int err; 2805 2806 err = __f2fs_quota_off(sb, type); 2807 2808 /* 2809 * quotactl can shutdown journalled quota, result in inconsistence 2810 * between quota record and fs data by following updates, tag the 2811 * flag to let fsck be aware of it. 2812 */ 2813 if (is_journalled_quota(sbi)) 2814 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2815 return err; 2816 } 2817 2818 void f2fs_quota_off_umount(struct super_block *sb) 2819 { 2820 int type; 2821 int err; 2822 2823 for (type = 0; type < MAXQUOTAS; type++) { 2824 err = __f2fs_quota_off(sb, type); 2825 if (err) { 2826 int ret = dquot_quota_off(sb, type); 2827 2828 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.", 2829 type, err, ret); 2830 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2831 } 2832 } 2833 /* 2834 * In case of checkpoint=disable, we must flush quota blocks. 2835 * This can cause NULL exception for node_inode in end_io, since 2836 * put_super already dropped it. 2837 */ 2838 sync_filesystem(sb); 2839 } 2840 2841 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 2842 { 2843 struct quota_info *dqopt = sb_dqopt(sb); 2844 int type; 2845 2846 for (type = 0; type < MAXQUOTAS; type++) { 2847 if (!dqopt->files[type]) 2848 continue; 2849 f2fs_inode_synced(dqopt->files[type]); 2850 } 2851 } 2852 2853 static int f2fs_dquot_commit(struct dquot *dquot) 2854 { 2855 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2856 int ret; 2857 2858 f2fs_down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING); 2859 ret = dquot_commit(dquot); 2860 if (ret < 0) 2861 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2862 f2fs_up_read(&sbi->quota_sem); 2863 return ret; 2864 } 2865 2866 static int f2fs_dquot_acquire(struct dquot *dquot) 2867 { 2868 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2869 int ret; 2870 2871 f2fs_down_read(&sbi->quota_sem); 2872 ret = dquot_acquire(dquot); 2873 if (ret < 0) 2874 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2875 f2fs_up_read(&sbi->quota_sem); 2876 return ret; 2877 } 2878 2879 static int f2fs_dquot_release(struct dquot *dquot) 2880 { 2881 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 2882 int ret = dquot_release(dquot); 2883 2884 if (ret < 0) 2885 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2886 return ret; 2887 } 2888 2889 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 2890 { 2891 struct super_block *sb = dquot->dq_sb; 2892 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2893 int ret = dquot_mark_dquot_dirty(dquot); 2894 2895 /* if we are using journalled quota */ 2896 if (is_journalled_quota(sbi)) 2897 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 2898 2899 return ret; 2900 } 2901 2902 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 2903 { 2904 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2905 int ret = dquot_commit_info(sb, type); 2906 2907 if (ret < 0) 2908 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2909 return ret; 2910 } 2911 2912 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 2913 { 2914 *projid = F2FS_I(inode)->i_projid; 2915 return 0; 2916 } 2917 2918 static const struct dquot_operations f2fs_quota_operations = { 2919 .get_reserved_space = f2fs_get_reserved_space, 2920 .write_dquot = f2fs_dquot_commit, 2921 .acquire_dquot = f2fs_dquot_acquire, 2922 .release_dquot = f2fs_dquot_release, 2923 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 2924 .write_info = f2fs_dquot_commit_info, 2925 .alloc_dquot = dquot_alloc, 2926 .destroy_dquot = dquot_destroy, 2927 .get_projid = f2fs_get_projid, 2928 .get_next_id = dquot_get_next_id, 2929 }; 2930 2931 static const struct quotactl_ops f2fs_quotactl_ops = { 2932 .quota_on = f2fs_quota_on, 2933 .quota_off = f2fs_quota_off, 2934 .quota_sync = f2fs_quota_sync, 2935 .get_state = dquot_get_state, 2936 .set_info = dquot_set_dqinfo, 2937 .get_dqblk = dquot_get_dqblk, 2938 .set_dqblk = dquot_set_dqblk, 2939 .get_nextdqblk = dquot_get_next_dqblk, 2940 }; 2941 #else 2942 int f2fs_dquot_initialize(struct inode *inode) 2943 { 2944 return 0; 2945 } 2946 2947 int f2fs_quota_sync(struct super_block *sb, int type) 2948 { 2949 return 0; 2950 } 2951 2952 void f2fs_quota_off_umount(struct super_block *sb) 2953 { 2954 } 2955 #endif 2956 2957 static const struct super_operations f2fs_sops = { 2958 .alloc_inode = f2fs_alloc_inode, 2959 .free_inode = f2fs_free_inode, 2960 .drop_inode = f2fs_drop_inode, 2961 .write_inode = f2fs_write_inode, 2962 .dirty_inode = f2fs_dirty_inode, 2963 .show_options = f2fs_show_options, 2964 #ifdef CONFIG_QUOTA 2965 .quota_read = f2fs_quota_read, 2966 .quota_write = f2fs_quota_write, 2967 .get_dquots = f2fs_get_dquots, 2968 #endif 2969 .evict_inode = f2fs_evict_inode, 2970 .put_super = f2fs_put_super, 2971 .sync_fs = f2fs_sync_fs, 2972 .freeze_fs = f2fs_freeze, 2973 .unfreeze_fs = f2fs_unfreeze, 2974 .statfs = f2fs_statfs, 2975 .remount_fs = f2fs_remount, 2976 }; 2977 2978 #ifdef CONFIG_FS_ENCRYPTION 2979 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 2980 { 2981 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2982 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2983 ctx, len, NULL); 2984 } 2985 2986 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 2987 void *fs_data) 2988 { 2989 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2990 2991 /* 2992 * Encrypting the root directory is not allowed because fsck 2993 * expects lost+found directory to exist and remain unencrypted 2994 * if LOST_FOUND feature is enabled. 2995 * 2996 */ 2997 if (f2fs_sb_has_lost_found(sbi) && 2998 inode->i_ino == F2FS_ROOT_INO(sbi)) 2999 return -EPERM; 3000 3001 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 3002 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 3003 ctx, len, fs_data, XATTR_CREATE); 3004 } 3005 3006 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb) 3007 { 3008 return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy; 3009 } 3010 3011 static bool f2fs_has_stable_inodes(struct super_block *sb) 3012 { 3013 return true; 3014 } 3015 3016 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb, 3017 int *ino_bits_ret, int *lblk_bits_ret) 3018 { 3019 *ino_bits_ret = 8 * sizeof(nid_t); 3020 *lblk_bits_ret = 8 * sizeof(block_t); 3021 } 3022 3023 static int f2fs_get_num_devices(struct super_block *sb) 3024 { 3025 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3026 3027 if (f2fs_is_multi_device(sbi)) 3028 return sbi->s_ndevs; 3029 return 1; 3030 } 3031 3032 static void f2fs_get_devices(struct super_block *sb, 3033 struct request_queue **devs) 3034 { 3035 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3036 int i; 3037 3038 for (i = 0; i < sbi->s_ndevs; i++) 3039 devs[i] = bdev_get_queue(FDEV(i).bdev); 3040 } 3041 3042 static const struct fscrypt_operations f2fs_cryptops = { 3043 .key_prefix = "f2fs:", 3044 .get_context = f2fs_get_context, 3045 .set_context = f2fs_set_context, 3046 .get_dummy_policy = f2fs_get_dummy_policy, 3047 .empty_dir = f2fs_empty_dir, 3048 .has_stable_inodes = f2fs_has_stable_inodes, 3049 .get_ino_and_lblk_bits = f2fs_get_ino_and_lblk_bits, 3050 .get_num_devices = f2fs_get_num_devices, 3051 .get_devices = f2fs_get_devices, 3052 }; 3053 #endif 3054 3055 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 3056 u64 ino, u32 generation) 3057 { 3058 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3059 struct inode *inode; 3060 3061 if (f2fs_check_nid_range(sbi, ino)) 3062 return ERR_PTR(-ESTALE); 3063 3064 /* 3065 * f2fs_iget isn't quite right if the inode is currently unallocated! 3066 * However f2fs_iget currently does appropriate checks to handle stale 3067 * inodes so everything is OK. 3068 */ 3069 inode = f2fs_iget(sb, ino); 3070 if (IS_ERR(inode)) 3071 return ERR_CAST(inode); 3072 if (unlikely(generation && inode->i_generation != generation)) { 3073 /* we didn't find the right inode.. */ 3074 iput(inode); 3075 return ERR_PTR(-ESTALE); 3076 } 3077 return inode; 3078 } 3079 3080 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 3081 int fh_len, int fh_type) 3082 { 3083 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 3084 f2fs_nfs_get_inode); 3085 } 3086 3087 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 3088 int fh_len, int fh_type) 3089 { 3090 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 3091 f2fs_nfs_get_inode); 3092 } 3093 3094 static const struct export_operations f2fs_export_ops = { 3095 .fh_to_dentry = f2fs_fh_to_dentry, 3096 .fh_to_parent = f2fs_fh_to_parent, 3097 .get_parent = f2fs_get_parent, 3098 }; 3099 3100 loff_t max_file_blocks(struct inode *inode) 3101 { 3102 loff_t result = 0; 3103 loff_t leaf_count; 3104 3105 /* 3106 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 3107 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 3108 * space in inode.i_addr, it will be more safe to reassign 3109 * result as zero. 3110 */ 3111 3112 if (inode && f2fs_compressed_file(inode)) 3113 leaf_count = ADDRS_PER_BLOCK(inode); 3114 else 3115 leaf_count = DEF_ADDRS_PER_BLOCK; 3116 3117 /* two direct node blocks */ 3118 result += (leaf_count * 2); 3119 3120 /* two indirect node blocks */ 3121 leaf_count *= NIDS_PER_BLOCK; 3122 result += (leaf_count * 2); 3123 3124 /* one double indirect node block */ 3125 leaf_count *= NIDS_PER_BLOCK; 3126 result += leaf_count; 3127 3128 return result; 3129 } 3130 3131 static int __f2fs_commit_super(struct buffer_head *bh, 3132 struct f2fs_super_block *super) 3133 { 3134 lock_buffer(bh); 3135 if (super) 3136 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 3137 set_buffer_dirty(bh); 3138 unlock_buffer(bh); 3139 3140 /* it's rare case, we can do fua all the time */ 3141 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 3142 } 3143 3144 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 3145 struct buffer_head *bh) 3146 { 3147 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 3148 (bh->b_data + F2FS_SUPER_OFFSET); 3149 struct super_block *sb = sbi->sb; 3150 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 3151 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 3152 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 3153 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 3154 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 3155 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 3156 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 3157 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 3158 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 3159 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 3160 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3161 u32 segment_count = le32_to_cpu(raw_super->segment_count); 3162 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3163 u64 main_end_blkaddr = main_blkaddr + 3164 (segment_count_main << log_blocks_per_seg); 3165 u64 seg_end_blkaddr = segment0_blkaddr + 3166 (segment_count << log_blocks_per_seg); 3167 3168 if (segment0_blkaddr != cp_blkaddr) { 3169 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 3170 segment0_blkaddr, cp_blkaddr); 3171 return true; 3172 } 3173 3174 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 3175 sit_blkaddr) { 3176 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 3177 cp_blkaddr, sit_blkaddr, 3178 segment_count_ckpt << log_blocks_per_seg); 3179 return true; 3180 } 3181 3182 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 3183 nat_blkaddr) { 3184 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 3185 sit_blkaddr, nat_blkaddr, 3186 segment_count_sit << log_blocks_per_seg); 3187 return true; 3188 } 3189 3190 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 3191 ssa_blkaddr) { 3192 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 3193 nat_blkaddr, ssa_blkaddr, 3194 segment_count_nat << log_blocks_per_seg); 3195 return true; 3196 } 3197 3198 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 3199 main_blkaddr) { 3200 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 3201 ssa_blkaddr, main_blkaddr, 3202 segment_count_ssa << log_blocks_per_seg); 3203 return true; 3204 } 3205 3206 if (main_end_blkaddr > seg_end_blkaddr) { 3207 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)", 3208 main_blkaddr, seg_end_blkaddr, 3209 segment_count_main << log_blocks_per_seg); 3210 return true; 3211 } else if (main_end_blkaddr < seg_end_blkaddr) { 3212 int err = 0; 3213 char *res; 3214 3215 /* fix in-memory information all the time */ 3216 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 3217 segment0_blkaddr) >> log_blocks_per_seg); 3218 3219 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 3220 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3221 res = "internally"; 3222 } else { 3223 err = __f2fs_commit_super(bh, NULL); 3224 res = err ? "failed" : "done"; 3225 } 3226 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)", 3227 res, main_blkaddr, seg_end_blkaddr, 3228 segment_count_main << log_blocks_per_seg); 3229 if (err) 3230 return true; 3231 } 3232 return false; 3233 } 3234 3235 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 3236 struct buffer_head *bh) 3237 { 3238 block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main; 3239 block_t total_sections, blocks_per_seg; 3240 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 3241 (bh->b_data + F2FS_SUPER_OFFSET); 3242 size_t crc_offset = 0; 3243 __u32 crc = 0; 3244 3245 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { 3246 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)", 3247 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 3248 return -EINVAL; 3249 } 3250 3251 /* Check checksum_offset and crc in superblock */ 3252 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 3253 crc_offset = le32_to_cpu(raw_super->checksum_offset); 3254 if (crc_offset != 3255 offsetof(struct f2fs_super_block, crc)) { 3256 f2fs_info(sbi, "Invalid SB checksum offset: %zu", 3257 crc_offset); 3258 return -EFSCORRUPTED; 3259 } 3260 crc = le32_to_cpu(raw_super->crc); 3261 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 3262 f2fs_info(sbi, "Invalid SB checksum value: %u", crc); 3263 return -EFSCORRUPTED; 3264 } 3265 } 3266 3267 /* Currently, support only 4KB block size */ 3268 if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) { 3269 f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u", 3270 le32_to_cpu(raw_super->log_blocksize), 3271 F2FS_BLKSIZE_BITS); 3272 return -EFSCORRUPTED; 3273 } 3274 3275 /* check log blocks per segment */ 3276 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 3277 f2fs_info(sbi, "Invalid log blocks per segment (%u)", 3278 le32_to_cpu(raw_super->log_blocks_per_seg)); 3279 return -EFSCORRUPTED; 3280 } 3281 3282 /* Currently, support 512/1024/2048/4096 bytes sector size */ 3283 if (le32_to_cpu(raw_super->log_sectorsize) > 3284 F2FS_MAX_LOG_SECTOR_SIZE || 3285 le32_to_cpu(raw_super->log_sectorsize) < 3286 F2FS_MIN_LOG_SECTOR_SIZE) { 3287 f2fs_info(sbi, "Invalid log sectorsize (%u)", 3288 le32_to_cpu(raw_super->log_sectorsize)); 3289 return -EFSCORRUPTED; 3290 } 3291 if (le32_to_cpu(raw_super->log_sectors_per_block) + 3292 le32_to_cpu(raw_super->log_sectorsize) != 3293 F2FS_MAX_LOG_SECTOR_SIZE) { 3294 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)", 3295 le32_to_cpu(raw_super->log_sectors_per_block), 3296 le32_to_cpu(raw_super->log_sectorsize)); 3297 return -EFSCORRUPTED; 3298 } 3299 3300 segment_count = le32_to_cpu(raw_super->segment_count); 3301 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3302 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3303 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3304 total_sections = le32_to_cpu(raw_super->section_count); 3305 3306 /* blocks_per_seg should be 512, given the above check */ 3307 blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg); 3308 3309 if (segment_count > F2FS_MAX_SEGMENT || 3310 segment_count < F2FS_MIN_SEGMENTS) { 3311 f2fs_info(sbi, "Invalid segment count (%u)", segment_count); 3312 return -EFSCORRUPTED; 3313 } 3314 3315 if (total_sections > segment_count_main || total_sections < 1 || 3316 segs_per_sec > segment_count || !segs_per_sec) { 3317 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)", 3318 segment_count, total_sections, segs_per_sec); 3319 return -EFSCORRUPTED; 3320 } 3321 3322 if (segment_count_main != total_sections * segs_per_sec) { 3323 f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)", 3324 segment_count_main, total_sections, segs_per_sec); 3325 return -EFSCORRUPTED; 3326 } 3327 3328 if ((segment_count / segs_per_sec) < total_sections) { 3329 f2fs_info(sbi, "Small segment_count (%u < %u * %u)", 3330 segment_count, segs_per_sec, total_sections); 3331 return -EFSCORRUPTED; 3332 } 3333 3334 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 3335 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)", 3336 segment_count, le64_to_cpu(raw_super->block_count)); 3337 return -EFSCORRUPTED; 3338 } 3339 3340 if (RDEV(0).path[0]) { 3341 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments); 3342 int i = 1; 3343 3344 while (i < MAX_DEVICES && RDEV(i).path[0]) { 3345 dev_seg_count += le32_to_cpu(RDEV(i).total_segments); 3346 i++; 3347 } 3348 if (segment_count != dev_seg_count) { 3349 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)", 3350 segment_count, dev_seg_count); 3351 return -EFSCORRUPTED; 3352 } 3353 } else { 3354 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) && 3355 !bdev_is_zoned(sbi->sb->s_bdev)) { 3356 f2fs_info(sbi, "Zoned block device path is missing"); 3357 return -EFSCORRUPTED; 3358 } 3359 } 3360 3361 if (secs_per_zone > total_sections || !secs_per_zone) { 3362 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)", 3363 secs_per_zone, total_sections); 3364 return -EFSCORRUPTED; 3365 } 3366 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 3367 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 3368 (le32_to_cpu(raw_super->extension_count) + 3369 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 3370 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)", 3371 le32_to_cpu(raw_super->extension_count), 3372 raw_super->hot_ext_count, 3373 F2FS_MAX_EXTENSION); 3374 return -EFSCORRUPTED; 3375 } 3376 3377 if (le32_to_cpu(raw_super->cp_payload) >= 3378 (blocks_per_seg - F2FS_CP_PACKS - 3379 NR_CURSEG_PERSIST_TYPE)) { 3380 f2fs_info(sbi, "Insane cp_payload (%u >= %u)", 3381 le32_to_cpu(raw_super->cp_payload), 3382 blocks_per_seg - F2FS_CP_PACKS - 3383 NR_CURSEG_PERSIST_TYPE); 3384 return -EFSCORRUPTED; 3385 } 3386 3387 /* check reserved ino info */ 3388 if (le32_to_cpu(raw_super->node_ino) != 1 || 3389 le32_to_cpu(raw_super->meta_ino) != 2 || 3390 le32_to_cpu(raw_super->root_ino) != 3) { 3391 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 3392 le32_to_cpu(raw_super->node_ino), 3393 le32_to_cpu(raw_super->meta_ino), 3394 le32_to_cpu(raw_super->root_ino)); 3395 return -EFSCORRUPTED; 3396 } 3397 3398 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 3399 if (sanity_check_area_boundary(sbi, bh)) 3400 return -EFSCORRUPTED; 3401 3402 return 0; 3403 } 3404 3405 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 3406 { 3407 unsigned int total, fsmeta; 3408 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3409 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3410 unsigned int ovp_segments, reserved_segments; 3411 unsigned int main_segs, blocks_per_seg; 3412 unsigned int sit_segs, nat_segs; 3413 unsigned int sit_bitmap_size, nat_bitmap_size; 3414 unsigned int log_blocks_per_seg; 3415 unsigned int segment_count_main; 3416 unsigned int cp_pack_start_sum, cp_payload; 3417 block_t user_block_count, valid_user_blocks; 3418 block_t avail_node_count, valid_node_count; 3419 unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks; 3420 int i, j; 3421 3422 total = le32_to_cpu(raw_super->segment_count); 3423 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 3424 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 3425 fsmeta += sit_segs; 3426 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 3427 fsmeta += nat_segs; 3428 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 3429 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 3430 3431 if (unlikely(fsmeta >= total)) 3432 return 1; 3433 3434 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 3435 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 3436 3437 if (!f2fs_sb_has_readonly(sbi) && 3438 unlikely(fsmeta < F2FS_MIN_META_SEGMENTS || 3439 ovp_segments == 0 || reserved_segments == 0)) { 3440 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version"); 3441 return 1; 3442 } 3443 user_block_count = le64_to_cpu(ckpt->user_block_count); 3444 segment_count_main = le32_to_cpu(raw_super->segment_count_main) + 3445 (f2fs_sb_has_readonly(sbi) ? 1 : 0); 3446 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3447 if (!user_block_count || user_block_count >= 3448 segment_count_main << log_blocks_per_seg) { 3449 f2fs_err(sbi, "Wrong user_block_count: %u", 3450 user_block_count); 3451 return 1; 3452 } 3453 3454 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 3455 if (valid_user_blocks > user_block_count) { 3456 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u", 3457 valid_user_blocks, user_block_count); 3458 return 1; 3459 } 3460 3461 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 3462 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 3463 if (valid_node_count > avail_node_count) { 3464 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u", 3465 valid_node_count, avail_node_count); 3466 return 1; 3467 } 3468 3469 main_segs = le32_to_cpu(raw_super->segment_count_main); 3470 blocks_per_seg = sbi->blocks_per_seg; 3471 3472 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3473 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 3474 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 3475 return 1; 3476 3477 if (f2fs_sb_has_readonly(sbi)) 3478 goto check_data; 3479 3480 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 3481 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3482 le32_to_cpu(ckpt->cur_node_segno[j])) { 3483 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u", 3484 i, j, 3485 le32_to_cpu(ckpt->cur_node_segno[i])); 3486 return 1; 3487 } 3488 } 3489 } 3490 check_data: 3491 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 3492 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 3493 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 3494 return 1; 3495 3496 if (f2fs_sb_has_readonly(sbi)) 3497 goto skip_cross; 3498 3499 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 3500 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 3501 le32_to_cpu(ckpt->cur_data_segno[j])) { 3502 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u", 3503 i, j, 3504 le32_to_cpu(ckpt->cur_data_segno[i])); 3505 return 1; 3506 } 3507 } 3508 } 3509 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3510 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) { 3511 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3512 le32_to_cpu(ckpt->cur_data_segno[j])) { 3513 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u", 3514 i, j, 3515 le32_to_cpu(ckpt->cur_node_segno[i])); 3516 return 1; 3517 } 3518 } 3519 } 3520 skip_cross: 3521 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 3522 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 3523 3524 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 3525 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 3526 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u", 3527 sit_bitmap_size, nat_bitmap_size); 3528 return 1; 3529 } 3530 3531 cp_pack_start_sum = __start_sum_addr(sbi); 3532 cp_payload = __cp_payload(sbi); 3533 if (cp_pack_start_sum < cp_payload + 1 || 3534 cp_pack_start_sum > blocks_per_seg - 1 - 3535 NR_CURSEG_PERSIST_TYPE) { 3536 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u", 3537 cp_pack_start_sum); 3538 return 1; 3539 } 3540 3541 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && 3542 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { 3543 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, " 3544 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, " 3545 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"", 3546 le32_to_cpu(ckpt->checksum_offset)); 3547 return 1; 3548 } 3549 3550 nat_blocks = nat_segs << log_blocks_per_seg; 3551 nat_bits_bytes = nat_blocks / BITS_PER_BYTE; 3552 nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3553 if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) && 3554 (cp_payload + F2FS_CP_PACKS + 3555 NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) { 3556 f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)", 3557 cp_payload, nat_bits_blocks); 3558 return 1; 3559 } 3560 3561 if (unlikely(f2fs_cp_error(sbi))) { 3562 f2fs_err(sbi, "A bug case: need to run fsck"); 3563 return 1; 3564 } 3565 return 0; 3566 } 3567 3568 static void init_sb_info(struct f2fs_sb_info *sbi) 3569 { 3570 struct f2fs_super_block *raw_super = sbi->raw_super; 3571 int i; 3572 3573 sbi->log_sectors_per_block = 3574 le32_to_cpu(raw_super->log_sectors_per_block); 3575 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 3576 sbi->blocksize = 1 << sbi->log_blocksize; 3577 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3578 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 3579 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3580 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3581 sbi->total_sections = le32_to_cpu(raw_super->section_count); 3582 sbi->total_node_count = 3583 (le32_to_cpu(raw_super->segment_count_nat) / 2) 3584 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 3585 F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino); 3586 F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino); 3587 F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino); 3588 sbi->cur_victim_sec = NULL_SECNO; 3589 sbi->gc_mode = GC_NORMAL; 3590 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 3591 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 3592 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 3593 sbi->migration_granularity = sbi->segs_per_sec; 3594 sbi->seq_file_ra_mul = MIN_RA_MUL; 3595 sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE; 3596 sbi->max_fragment_hole = DEF_FRAGMENT_SIZE; 3597 spin_lock_init(&sbi->gc_urgent_high_lock); 3598 3599 sbi->dir_level = DEF_DIR_LEVEL; 3600 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 3601 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 3602 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 3603 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 3604 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 3605 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 3606 DEF_UMOUNT_DISCARD_TIMEOUT; 3607 clear_sbi_flag(sbi, SBI_NEED_FSCK); 3608 3609 for (i = 0; i < NR_COUNT_TYPE; i++) 3610 atomic_set(&sbi->nr_pages[i], 0); 3611 3612 for (i = 0; i < META; i++) 3613 atomic_set(&sbi->wb_sync_req[i], 0); 3614 3615 INIT_LIST_HEAD(&sbi->s_list); 3616 mutex_init(&sbi->umount_mutex); 3617 init_f2fs_rwsem(&sbi->io_order_lock); 3618 spin_lock_init(&sbi->cp_lock); 3619 3620 sbi->dirty_device = 0; 3621 spin_lock_init(&sbi->dev_lock); 3622 3623 init_f2fs_rwsem(&sbi->sb_lock); 3624 init_f2fs_rwsem(&sbi->pin_sem); 3625 } 3626 3627 static int init_percpu_info(struct f2fs_sb_info *sbi) 3628 { 3629 int err; 3630 3631 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 3632 if (err) 3633 return err; 3634 3635 err = percpu_counter_init(&sbi->rf_node_block_count, 0, GFP_KERNEL); 3636 if (err) 3637 goto err_valid_block; 3638 3639 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 3640 GFP_KERNEL); 3641 if (err) 3642 goto err_node_block; 3643 return 0; 3644 3645 err_node_block: 3646 percpu_counter_destroy(&sbi->rf_node_block_count); 3647 err_valid_block: 3648 percpu_counter_destroy(&sbi->alloc_valid_block_count); 3649 return err; 3650 } 3651 3652 #ifdef CONFIG_BLK_DEV_ZONED 3653 3654 struct f2fs_report_zones_args { 3655 struct f2fs_dev_info *dev; 3656 bool zone_cap_mismatch; 3657 }; 3658 3659 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx, 3660 void *data) 3661 { 3662 struct f2fs_report_zones_args *rz_args = data; 3663 3664 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 3665 return 0; 3666 3667 set_bit(idx, rz_args->dev->blkz_seq); 3668 rz_args->dev->zone_capacity_blocks[idx] = zone->capacity >> 3669 F2FS_LOG_SECTORS_PER_BLOCK; 3670 if (zone->len != zone->capacity && !rz_args->zone_cap_mismatch) 3671 rz_args->zone_cap_mismatch = true; 3672 3673 return 0; 3674 } 3675 3676 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 3677 { 3678 struct block_device *bdev = FDEV(devi).bdev; 3679 sector_t nr_sectors = bdev_nr_sectors(bdev); 3680 struct f2fs_report_zones_args rep_zone_arg; 3681 int ret; 3682 3683 if (!f2fs_sb_has_blkzoned(sbi)) 3684 return 0; 3685 3686 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 3687 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev))) 3688 return -EINVAL; 3689 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)); 3690 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz != 3691 __ilog2_u32(sbi->blocks_per_blkz)) 3692 return -EINVAL; 3693 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz); 3694 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >> 3695 sbi->log_blocks_per_blkz; 3696 if (nr_sectors & (bdev_zone_sectors(bdev) - 1)) 3697 FDEV(devi).nr_blkz++; 3698 3699 FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi, 3700 BITS_TO_LONGS(FDEV(devi).nr_blkz) 3701 * sizeof(unsigned long), 3702 GFP_KERNEL); 3703 if (!FDEV(devi).blkz_seq) 3704 return -ENOMEM; 3705 3706 /* Get block zones type and zone-capacity */ 3707 FDEV(devi).zone_capacity_blocks = f2fs_kzalloc(sbi, 3708 FDEV(devi).nr_blkz * sizeof(block_t), 3709 GFP_KERNEL); 3710 if (!FDEV(devi).zone_capacity_blocks) 3711 return -ENOMEM; 3712 3713 rep_zone_arg.dev = &FDEV(devi); 3714 rep_zone_arg.zone_cap_mismatch = false; 3715 3716 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb, 3717 &rep_zone_arg); 3718 if (ret < 0) 3719 return ret; 3720 3721 if (!rep_zone_arg.zone_cap_mismatch) { 3722 kfree(FDEV(devi).zone_capacity_blocks); 3723 FDEV(devi).zone_capacity_blocks = NULL; 3724 } 3725 3726 return 0; 3727 } 3728 #endif 3729 3730 /* 3731 * Read f2fs raw super block. 3732 * Because we have two copies of super block, so read both of them 3733 * to get the first valid one. If any one of them is broken, we pass 3734 * them recovery flag back to the caller. 3735 */ 3736 static int read_raw_super_block(struct f2fs_sb_info *sbi, 3737 struct f2fs_super_block **raw_super, 3738 int *valid_super_block, int *recovery) 3739 { 3740 struct super_block *sb = sbi->sb; 3741 int block; 3742 struct buffer_head *bh; 3743 struct f2fs_super_block *super; 3744 int err = 0; 3745 3746 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 3747 if (!super) 3748 return -ENOMEM; 3749 3750 for (block = 0; block < 2; block++) { 3751 bh = sb_bread(sb, block); 3752 if (!bh) { 3753 f2fs_err(sbi, "Unable to read %dth superblock", 3754 block + 1); 3755 err = -EIO; 3756 *recovery = 1; 3757 continue; 3758 } 3759 3760 /* sanity checking of raw super */ 3761 err = sanity_check_raw_super(sbi, bh); 3762 if (err) { 3763 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock", 3764 block + 1); 3765 brelse(bh); 3766 *recovery = 1; 3767 continue; 3768 } 3769 3770 if (!*raw_super) { 3771 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 3772 sizeof(*super)); 3773 *valid_super_block = block; 3774 *raw_super = super; 3775 } 3776 brelse(bh); 3777 } 3778 3779 /* No valid superblock */ 3780 if (!*raw_super) 3781 kfree(super); 3782 else 3783 err = 0; 3784 3785 return err; 3786 } 3787 3788 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 3789 { 3790 struct buffer_head *bh; 3791 __u32 crc = 0; 3792 int err; 3793 3794 if ((recover && f2fs_readonly(sbi->sb)) || 3795 bdev_read_only(sbi->sb->s_bdev)) { 3796 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3797 return -EROFS; 3798 } 3799 3800 /* we should update superblock crc here */ 3801 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 3802 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 3803 offsetof(struct f2fs_super_block, crc)); 3804 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 3805 } 3806 3807 /* write back-up superblock first */ 3808 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 3809 if (!bh) 3810 return -EIO; 3811 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3812 brelse(bh); 3813 3814 /* if we are in recovery path, skip writing valid superblock */ 3815 if (recover || err) 3816 return err; 3817 3818 /* write current valid superblock */ 3819 bh = sb_bread(sbi->sb, sbi->valid_super_block); 3820 if (!bh) 3821 return -EIO; 3822 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3823 brelse(bh); 3824 return err; 3825 } 3826 3827 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 3828 { 3829 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3830 unsigned int max_devices = MAX_DEVICES; 3831 unsigned int logical_blksize; 3832 int i; 3833 3834 /* Initialize single device information */ 3835 if (!RDEV(0).path[0]) { 3836 if (!bdev_is_zoned(sbi->sb->s_bdev)) 3837 return 0; 3838 max_devices = 1; 3839 } 3840 3841 /* 3842 * Initialize multiple devices information, or single 3843 * zoned block device information. 3844 */ 3845 sbi->devs = f2fs_kzalloc(sbi, 3846 array_size(max_devices, 3847 sizeof(struct f2fs_dev_info)), 3848 GFP_KERNEL); 3849 if (!sbi->devs) 3850 return -ENOMEM; 3851 3852 logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev); 3853 sbi->aligned_blksize = true; 3854 3855 for (i = 0; i < max_devices; i++) { 3856 3857 if (i > 0 && !RDEV(i).path[0]) 3858 break; 3859 3860 if (max_devices == 1) { 3861 /* Single zoned block device mount */ 3862 FDEV(0).bdev = 3863 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev, 3864 sbi->sb->s_mode, sbi->sb->s_type); 3865 } else { 3866 /* Multi-device mount */ 3867 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 3868 FDEV(i).total_segments = 3869 le32_to_cpu(RDEV(i).total_segments); 3870 if (i == 0) { 3871 FDEV(i).start_blk = 0; 3872 FDEV(i).end_blk = FDEV(i).start_blk + 3873 (FDEV(i).total_segments << 3874 sbi->log_blocks_per_seg) - 1 + 3875 le32_to_cpu(raw_super->segment0_blkaddr); 3876 } else { 3877 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 3878 FDEV(i).end_blk = FDEV(i).start_blk + 3879 (FDEV(i).total_segments << 3880 sbi->log_blocks_per_seg) - 1; 3881 } 3882 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 3883 sbi->sb->s_mode, sbi->sb->s_type); 3884 } 3885 if (IS_ERR(FDEV(i).bdev)) 3886 return PTR_ERR(FDEV(i).bdev); 3887 3888 /* to release errored devices */ 3889 sbi->s_ndevs = i + 1; 3890 3891 if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev)) 3892 sbi->aligned_blksize = false; 3893 3894 #ifdef CONFIG_BLK_DEV_ZONED 3895 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 3896 !f2fs_sb_has_blkzoned(sbi)) { 3897 f2fs_err(sbi, "Zoned block device feature not enabled"); 3898 return -EINVAL; 3899 } 3900 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 3901 if (init_blkz_info(sbi, i)) { 3902 f2fs_err(sbi, "Failed to initialize F2FS blkzone information"); 3903 return -EINVAL; 3904 } 3905 if (max_devices == 1) 3906 break; 3907 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 3908 i, FDEV(i).path, 3909 FDEV(i).total_segments, 3910 FDEV(i).start_blk, FDEV(i).end_blk, 3911 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 3912 "Host-aware" : "Host-managed"); 3913 continue; 3914 } 3915 #endif 3916 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x", 3917 i, FDEV(i).path, 3918 FDEV(i).total_segments, 3919 FDEV(i).start_blk, FDEV(i).end_blk); 3920 } 3921 f2fs_info(sbi, 3922 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi)); 3923 return 0; 3924 } 3925 3926 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi) 3927 { 3928 #if IS_ENABLED(CONFIG_UNICODE) 3929 if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) { 3930 const struct f2fs_sb_encodings *encoding_info; 3931 struct unicode_map *encoding; 3932 __u16 encoding_flags; 3933 3934 encoding_info = f2fs_sb_read_encoding(sbi->raw_super); 3935 if (!encoding_info) { 3936 f2fs_err(sbi, 3937 "Encoding requested by superblock is unknown"); 3938 return -EINVAL; 3939 } 3940 3941 encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags); 3942 encoding = utf8_load(encoding_info->version); 3943 if (IS_ERR(encoding)) { 3944 f2fs_err(sbi, 3945 "can't mount with superblock charset: %s-%u.%u.%u " 3946 "not supported by the kernel. flags: 0x%x.", 3947 encoding_info->name, 3948 unicode_major(encoding_info->version), 3949 unicode_minor(encoding_info->version), 3950 unicode_rev(encoding_info->version), 3951 encoding_flags); 3952 return PTR_ERR(encoding); 3953 } 3954 f2fs_info(sbi, "Using encoding defined by superblock: " 3955 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 3956 unicode_major(encoding_info->version), 3957 unicode_minor(encoding_info->version), 3958 unicode_rev(encoding_info->version), 3959 encoding_flags); 3960 3961 sbi->sb->s_encoding = encoding; 3962 sbi->sb->s_encoding_flags = encoding_flags; 3963 } 3964 #else 3965 if (f2fs_sb_has_casefold(sbi)) { 3966 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 3967 return -EINVAL; 3968 } 3969 #endif 3970 return 0; 3971 } 3972 3973 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 3974 { 3975 struct f2fs_sm_info *sm_i = SM_I(sbi); 3976 3977 /* adjust parameters according to the volume size */ 3978 if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) { 3979 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 3980 if (f2fs_block_unit_discard(sbi)) 3981 sm_i->dcc_info->discard_granularity = 1; 3982 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE | 3983 1 << F2FS_IPU_HONOR_OPU_WRITE; 3984 } 3985 3986 sbi->readdir_ra = 1; 3987 } 3988 3989 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 3990 { 3991 struct f2fs_sb_info *sbi; 3992 struct f2fs_super_block *raw_super; 3993 struct inode *root; 3994 int err; 3995 bool skip_recovery = false, need_fsck = false; 3996 char *options = NULL; 3997 int recovery, i, valid_super_block; 3998 struct curseg_info *seg_i; 3999 int retry_cnt = 1; 4000 4001 try_onemore: 4002 err = -EINVAL; 4003 raw_super = NULL; 4004 valid_super_block = -1; 4005 recovery = 0; 4006 4007 /* allocate memory for f2fs-specific super block info */ 4008 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 4009 if (!sbi) 4010 return -ENOMEM; 4011 4012 sbi->sb = sb; 4013 4014 /* Load the checksum driver */ 4015 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 4016 if (IS_ERR(sbi->s_chksum_driver)) { 4017 f2fs_err(sbi, "Cannot load crc32 driver."); 4018 err = PTR_ERR(sbi->s_chksum_driver); 4019 sbi->s_chksum_driver = NULL; 4020 goto free_sbi; 4021 } 4022 4023 /* set a block size */ 4024 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 4025 f2fs_err(sbi, "unable to set blocksize"); 4026 goto free_sbi; 4027 } 4028 4029 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 4030 &recovery); 4031 if (err) 4032 goto free_sbi; 4033 4034 sb->s_fs_info = sbi; 4035 sbi->raw_super = raw_super; 4036 4037 /* precompute checksum seed for metadata */ 4038 if (f2fs_sb_has_inode_chksum(sbi)) 4039 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 4040 sizeof(raw_super->uuid)); 4041 4042 default_options(sbi); 4043 /* parse mount options */ 4044 options = kstrdup((const char *)data, GFP_KERNEL); 4045 if (data && !options) { 4046 err = -ENOMEM; 4047 goto free_sb_buf; 4048 } 4049 4050 err = parse_options(sb, options, false); 4051 if (err) 4052 goto free_options; 4053 4054 sb->s_maxbytes = max_file_blocks(NULL) << 4055 le32_to_cpu(raw_super->log_blocksize); 4056 sb->s_max_links = F2FS_LINK_MAX; 4057 4058 err = f2fs_setup_casefold(sbi); 4059 if (err) 4060 goto free_options; 4061 4062 #ifdef CONFIG_QUOTA 4063 sb->dq_op = &f2fs_quota_operations; 4064 sb->s_qcop = &f2fs_quotactl_ops; 4065 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4066 4067 if (f2fs_sb_has_quota_ino(sbi)) { 4068 for (i = 0; i < MAXQUOTAS; i++) { 4069 if (f2fs_qf_ino(sbi->sb, i)) 4070 sbi->nquota_files++; 4071 } 4072 } 4073 #endif 4074 4075 sb->s_op = &f2fs_sops; 4076 #ifdef CONFIG_FS_ENCRYPTION 4077 sb->s_cop = &f2fs_cryptops; 4078 #endif 4079 #ifdef CONFIG_FS_VERITY 4080 sb->s_vop = &f2fs_verityops; 4081 #endif 4082 sb->s_xattr = f2fs_xattr_handlers; 4083 sb->s_export_op = &f2fs_export_ops; 4084 sb->s_magic = F2FS_SUPER_MAGIC; 4085 sb->s_time_gran = 1; 4086 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4087 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 4088 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 4089 sb->s_iflags |= SB_I_CGROUPWB; 4090 4091 /* init f2fs-specific super block info */ 4092 sbi->valid_super_block = valid_super_block; 4093 init_f2fs_rwsem(&sbi->gc_lock); 4094 mutex_init(&sbi->writepages); 4095 init_f2fs_rwsem(&sbi->cp_global_sem); 4096 init_f2fs_rwsem(&sbi->node_write); 4097 init_f2fs_rwsem(&sbi->node_change); 4098 4099 /* disallow all the data/node/meta page writes */ 4100 set_sbi_flag(sbi, SBI_POR_DOING); 4101 spin_lock_init(&sbi->stat_lock); 4102 4103 for (i = 0; i < NR_PAGE_TYPE; i++) { 4104 int n = (i == META) ? 1 : NR_TEMP_TYPE; 4105 int j; 4106 4107 sbi->write_io[i] = 4108 f2fs_kmalloc(sbi, 4109 array_size(n, 4110 sizeof(struct f2fs_bio_info)), 4111 GFP_KERNEL); 4112 if (!sbi->write_io[i]) { 4113 err = -ENOMEM; 4114 goto free_bio_info; 4115 } 4116 4117 for (j = HOT; j < n; j++) { 4118 init_f2fs_rwsem(&sbi->write_io[i][j].io_rwsem); 4119 sbi->write_io[i][j].sbi = sbi; 4120 sbi->write_io[i][j].bio = NULL; 4121 spin_lock_init(&sbi->write_io[i][j].io_lock); 4122 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 4123 INIT_LIST_HEAD(&sbi->write_io[i][j].bio_list); 4124 init_f2fs_rwsem(&sbi->write_io[i][j].bio_list_lock); 4125 } 4126 } 4127 4128 init_f2fs_rwsem(&sbi->cp_rwsem); 4129 init_f2fs_rwsem(&sbi->quota_sem); 4130 init_waitqueue_head(&sbi->cp_wait); 4131 init_sb_info(sbi); 4132 4133 err = f2fs_init_iostat(sbi); 4134 if (err) 4135 goto free_bio_info; 4136 4137 err = init_percpu_info(sbi); 4138 if (err) 4139 goto free_iostat; 4140 4141 if (F2FS_IO_ALIGNED(sbi)) { 4142 sbi->write_io_dummy = 4143 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); 4144 if (!sbi->write_io_dummy) { 4145 err = -ENOMEM; 4146 goto free_percpu; 4147 } 4148 } 4149 4150 /* init per sbi slab cache */ 4151 err = f2fs_init_xattr_caches(sbi); 4152 if (err) 4153 goto free_io_dummy; 4154 err = f2fs_init_page_array_cache(sbi); 4155 if (err) 4156 goto free_xattr_cache; 4157 4158 /* get an inode for meta space */ 4159 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 4160 if (IS_ERR(sbi->meta_inode)) { 4161 f2fs_err(sbi, "Failed to read F2FS meta data inode"); 4162 err = PTR_ERR(sbi->meta_inode); 4163 goto free_page_array_cache; 4164 } 4165 4166 err = f2fs_get_valid_checkpoint(sbi); 4167 if (err) { 4168 f2fs_err(sbi, "Failed to get valid F2FS checkpoint"); 4169 goto free_meta_inode; 4170 } 4171 4172 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 4173 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 4174 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 4175 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4176 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 4177 } 4178 4179 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG)) 4180 set_sbi_flag(sbi, SBI_NEED_FSCK); 4181 4182 /* Initialize device list */ 4183 err = f2fs_scan_devices(sbi); 4184 if (err) { 4185 f2fs_err(sbi, "Failed to find devices"); 4186 goto free_devices; 4187 } 4188 4189 err = f2fs_init_post_read_wq(sbi); 4190 if (err) { 4191 f2fs_err(sbi, "Failed to initialize post read workqueue"); 4192 goto free_devices; 4193 } 4194 4195 sbi->total_valid_node_count = 4196 le32_to_cpu(sbi->ckpt->valid_node_count); 4197 percpu_counter_set(&sbi->total_valid_inode_count, 4198 le32_to_cpu(sbi->ckpt->valid_inode_count)); 4199 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 4200 sbi->total_valid_block_count = 4201 le64_to_cpu(sbi->ckpt->valid_block_count); 4202 sbi->last_valid_block_count = sbi->total_valid_block_count; 4203 sbi->reserved_blocks = 0; 4204 sbi->current_reserved_blocks = 0; 4205 limit_reserve_root(sbi); 4206 adjust_unusable_cap_perc(sbi); 4207 4208 for (i = 0; i < NR_INODE_TYPE; i++) { 4209 INIT_LIST_HEAD(&sbi->inode_list[i]); 4210 spin_lock_init(&sbi->inode_lock[i]); 4211 } 4212 mutex_init(&sbi->flush_lock); 4213 4214 f2fs_init_extent_cache_info(sbi); 4215 4216 f2fs_init_ino_entry_info(sbi); 4217 4218 f2fs_init_fsync_node_info(sbi); 4219 4220 /* setup checkpoint request control and start checkpoint issue thread */ 4221 f2fs_init_ckpt_req_control(sbi); 4222 if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) && 4223 test_opt(sbi, MERGE_CHECKPOINT)) { 4224 err = f2fs_start_ckpt_thread(sbi); 4225 if (err) { 4226 f2fs_err(sbi, 4227 "Failed to start F2FS issue_checkpoint_thread (%d)", 4228 err); 4229 goto stop_ckpt_thread; 4230 } 4231 } 4232 4233 /* setup f2fs internal modules */ 4234 err = f2fs_build_segment_manager(sbi); 4235 if (err) { 4236 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)", 4237 err); 4238 goto free_sm; 4239 } 4240 err = f2fs_build_node_manager(sbi); 4241 if (err) { 4242 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)", 4243 err); 4244 goto free_nm; 4245 } 4246 4247 err = adjust_reserved_segment(sbi); 4248 if (err) 4249 goto free_nm; 4250 4251 /* For write statistics */ 4252 sbi->sectors_written_start = f2fs_get_sectors_written(sbi); 4253 4254 /* Read accumulated write IO statistics if exists */ 4255 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 4256 if (__exist_node_summaries(sbi)) 4257 sbi->kbytes_written = 4258 le64_to_cpu(seg_i->journal->info.kbytes_written); 4259 4260 f2fs_build_gc_manager(sbi); 4261 4262 err = f2fs_build_stats(sbi); 4263 if (err) 4264 goto free_nm; 4265 4266 /* get an inode for node space */ 4267 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 4268 if (IS_ERR(sbi->node_inode)) { 4269 f2fs_err(sbi, "Failed to read node inode"); 4270 err = PTR_ERR(sbi->node_inode); 4271 goto free_stats; 4272 } 4273 4274 /* read root inode and dentry */ 4275 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 4276 if (IS_ERR(root)) { 4277 f2fs_err(sbi, "Failed to read root inode"); 4278 err = PTR_ERR(root); 4279 goto free_node_inode; 4280 } 4281 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 4282 !root->i_size || !root->i_nlink) { 4283 iput(root); 4284 err = -EINVAL; 4285 goto free_node_inode; 4286 } 4287 4288 sb->s_root = d_make_root(root); /* allocate root dentry */ 4289 if (!sb->s_root) { 4290 err = -ENOMEM; 4291 goto free_node_inode; 4292 } 4293 4294 err = f2fs_init_compress_inode(sbi); 4295 if (err) 4296 goto free_root_inode; 4297 4298 err = f2fs_register_sysfs(sbi); 4299 if (err) 4300 goto free_compress_inode; 4301 4302 #ifdef CONFIG_QUOTA 4303 /* Enable quota usage during mount */ 4304 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 4305 err = f2fs_enable_quotas(sb); 4306 if (err) 4307 f2fs_err(sbi, "Cannot turn on quotas: error %d", err); 4308 } 4309 #endif 4310 /* if there are any orphan inodes, free them */ 4311 err = f2fs_recover_orphan_inodes(sbi); 4312 if (err) 4313 goto free_meta; 4314 4315 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 4316 goto reset_checkpoint; 4317 4318 /* recover fsynced data */ 4319 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) && 4320 !test_opt(sbi, NORECOVERY)) { 4321 /* 4322 * mount should be failed, when device has readonly mode, and 4323 * previous checkpoint was not done by clean system shutdown. 4324 */ 4325 if (f2fs_hw_is_readonly(sbi)) { 4326 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4327 err = f2fs_recover_fsync_data(sbi, true); 4328 if (err > 0) { 4329 err = -EROFS; 4330 f2fs_err(sbi, "Need to recover fsync data, but " 4331 "write access unavailable, please try " 4332 "mount w/ disable_roll_forward or norecovery"); 4333 } 4334 if (err < 0) 4335 goto free_meta; 4336 } 4337 f2fs_info(sbi, "write access unavailable, skipping recovery"); 4338 goto reset_checkpoint; 4339 } 4340 4341 if (need_fsck) 4342 set_sbi_flag(sbi, SBI_NEED_FSCK); 4343 4344 if (skip_recovery) 4345 goto reset_checkpoint; 4346 4347 err = f2fs_recover_fsync_data(sbi, false); 4348 if (err < 0) { 4349 if (err != -ENOMEM) 4350 skip_recovery = true; 4351 need_fsck = true; 4352 f2fs_err(sbi, "Cannot recover all fsync data errno=%d", 4353 err); 4354 goto free_meta; 4355 } 4356 } else { 4357 err = f2fs_recover_fsync_data(sbi, true); 4358 4359 if (!f2fs_readonly(sb) && err > 0) { 4360 err = -EINVAL; 4361 f2fs_err(sbi, "Need to recover fsync data"); 4362 goto free_meta; 4363 } 4364 } 4365 4366 /* 4367 * If the f2fs is not readonly and fsync data recovery succeeds, 4368 * check zoned block devices' write pointer consistency. 4369 */ 4370 if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) { 4371 err = f2fs_check_write_pointer(sbi); 4372 if (err) 4373 goto free_meta; 4374 } 4375 4376 reset_checkpoint: 4377 f2fs_init_inmem_curseg(sbi); 4378 4379 /* f2fs_recover_fsync_data() cleared this already */ 4380 clear_sbi_flag(sbi, SBI_POR_DOING); 4381 4382 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 4383 err = f2fs_disable_checkpoint(sbi); 4384 if (err) 4385 goto sync_free_meta; 4386 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 4387 f2fs_enable_checkpoint(sbi); 4388 } 4389 4390 /* 4391 * If filesystem is not mounted as read-only then 4392 * do start the gc_thread. 4393 */ 4394 if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF || 4395 test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) { 4396 /* After POR, we can run background GC thread.*/ 4397 err = f2fs_start_gc_thread(sbi); 4398 if (err) 4399 goto sync_free_meta; 4400 } 4401 kvfree(options); 4402 4403 /* recover broken superblock */ 4404 if (recovery) { 4405 err = f2fs_commit_super(sbi, true); 4406 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d", 4407 sbi->valid_super_block ? 1 : 2, err); 4408 } 4409 4410 f2fs_join_shrinker(sbi); 4411 4412 f2fs_tuning_parameters(sbi); 4413 4414 f2fs_notice(sbi, "Mounted with checkpoint version = %llx", 4415 cur_cp_version(F2FS_CKPT(sbi))); 4416 f2fs_update_time(sbi, CP_TIME); 4417 f2fs_update_time(sbi, REQ_TIME); 4418 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4419 return 0; 4420 4421 sync_free_meta: 4422 /* safe to flush all the data */ 4423 sync_filesystem(sbi->sb); 4424 retry_cnt = 0; 4425 4426 free_meta: 4427 #ifdef CONFIG_QUOTA 4428 f2fs_truncate_quota_inode_pages(sb); 4429 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 4430 f2fs_quota_off_umount(sbi->sb); 4431 #endif 4432 /* 4433 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 4434 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 4435 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 4436 * falls into an infinite loop in f2fs_sync_meta_pages(). 4437 */ 4438 truncate_inode_pages_final(META_MAPPING(sbi)); 4439 /* evict some inodes being cached by GC */ 4440 evict_inodes(sb); 4441 f2fs_unregister_sysfs(sbi); 4442 free_compress_inode: 4443 f2fs_destroy_compress_inode(sbi); 4444 free_root_inode: 4445 dput(sb->s_root); 4446 sb->s_root = NULL; 4447 free_node_inode: 4448 f2fs_release_ino_entry(sbi, true); 4449 truncate_inode_pages_final(NODE_MAPPING(sbi)); 4450 iput(sbi->node_inode); 4451 sbi->node_inode = NULL; 4452 free_stats: 4453 f2fs_destroy_stats(sbi); 4454 free_nm: 4455 /* stop discard thread before destroying node manager */ 4456 f2fs_stop_discard_thread(sbi); 4457 f2fs_destroy_node_manager(sbi); 4458 free_sm: 4459 f2fs_destroy_segment_manager(sbi); 4460 f2fs_destroy_post_read_wq(sbi); 4461 stop_ckpt_thread: 4462 f2fs_stop_ckpt_thread(sbi); 4463 free_devices: 4464 destroy_device_list(sbi); 4465 kvfree(sbi->ckpt); 4466 free_meta_inode: 4467 make_bad_inode(sbi->meta_inode); 4468 iput(sbi->meta_inode); 4469 sbi->meta_inode = NULL; 4470 free_page_array_cache: 4471 f2fs_destroy_page_array_cache(sbi); 4472 free_xattr_cache: 4473 f2fs_destroy_xattr_caches(sbi); 4474 free_io_dummy: 4475 mempool_destroy(sbi->write_io_dummy); 4476 free_percpu: 4477 destroy_percpu_info(sbi); 4478 free_iostat: 4479 f2fs_destroy_iostat(sbi); 4480 free_bio_info: 4481 for (i = 0; i < NR_PAGE_TYPE; i++) 4482 kvfree(sbi->write_io[i]); 4483 4484 #if IS_ENABLED(CONFIG_UNICODE) 4485 utf8_unload(sb->s_encoding); 4486 sb->s_encoding = NULL; 4487 #endif 4488 free_options: 4489 #ifdef CONFIG_QUOTA 4490 for (i = 0; i < MAXQUOTAS; i++) 4491 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 4492 #endif 4493 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 4494 kvfree(options); 4495 free_sb_buf: 4496 kfree(raw_super); 4497 free_sbi: 4498 if (sbi->s_chksum_driver) 4499 crypto_free_shash(sbi->s_chksum_driver); 4500 kfree(sbi); 4501 4502 /* give only one another chance */ 4503 if (retry_cnt > 0 && skip_recovery) { 4504 retry_cnt--; 4505 shrink_dcache_sb(sb); 4506 goto try_onemore; 4507 } 4508 return err; 4509 } 4510 4511 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 4512 const char *dev_name, void *data) 4513 { 4514 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 4515 } 4516 4517 static void kill_f2fs_super(struct super_block *sb) 4518 { 4519 if (sb->s_root) { 4520 struct f2fs_sb_info *sbi = F2FS_SB(sb); 4521 4522 set_sbi_flag(sbi, SBI_IS_CLOSE); 4523 f2fs_stop_gc_thread(sbi); 4524 f2fs_stop_discard_thread(sbi); 4525 4526 #ifdef CONFIG_F2FS_FS_COMPRESSION 4527 /* 4528 * latter evict_inode() can bypass checking and invalidating 4529 * compress inode cache. 4530 */ 4531 if (test_opt(sbi, COMPRESS_CACHE)) 4532 truncate_inode_pages_final(COMPRESS_MAPPING(sbi)); 4533 #endif 4534 4535 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 4536 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4537 struct cp_control cpc = { 4538 .reason = CP_UMOUNT, 4539 }; 4540 f2fs_write_checkpoint(sbi, &cpc); 4541 } 4542 4543 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 4544 sb->s_flags &= ~SB_RDONLY; 4545 } 4546 kill_block_super(sb); 4547 } 4548 4549 static struct file_system_type f2fs_fs_type = { 4550 .owner = THIS_MODULE, 4551 .name = "f2fs", 4552 .mount = f2fs_mount, 4553 .kill_sb = kill_f2fs_super, 4554 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 4555 }; 4556 MODULE_ALIAS_FS("f2fs"); 4557 4558 static int __init init_inodecache(void) 4559 { 4560 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 4561 sizeof(struct f2fs_inode_info), 0, 4562 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 4563 if (!f2fs_inode_cachep) 4564 return -ENOMEM; 4565 return 0; 4566 } 4567 4568 static void destroy_inodecache(void) 4569 { 4570 /* 4571 * Make sure all delayed rcu free inodes are flushed before we 4572 * destroy cache. 4573 */ 4574 rcu_barrier(); 4575 kmem_cache_destroy(f2fs_inode_cachep); 4576 } 4577 4578 static int __init init_f2fs_fs(void) 4579 { 4580 int err; 4581 4582 if (PAGE_SIZE != F2FS_BLKSIZE) { 4583 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n", 4584 PAGE_SIZE, F2FS_BLKSIZE); 4585 return -EINVAL; 4586 } 4587 4588 err = init_inodecache(); 4589 if (err) 4590 goto fail; 4591 err = f2fs_create_node_manager_caches(); 4592 if (err) 4593 goto free_inodecache; 4594 err = f2fs_create_segment_manager_caches(); 4595 if (err) 4596 goto free_node_manager_caches; 4597 err = f2fs_create_checkpoint_caches(); 4598 if (err) 4599 goto free_segment_manager_caches; 4600 err = f2fs_create_recovery_cache(); 4601 if (err) 4602 goto free_checkpoint_caches; 4603 err = f2fs_create_extent_cache(); 4604 if (err) 4605 goto free_recovery_cache; 4606 err = f2fs_create_garbage_collection_cache(); 4607 if (err) 4608 goto free_extent_cache; 4609 err = f2fs_init_sysfs(); 4610 if (err) 4611 goto free_garbage_collection_cache; 4612 err = register_shrinker(&f2fs_shrinker_info); 4613 if (err) 4614 goto free_sysfs; 4615 err = register_filesystem(&f2fs_fs_type); 4616 if (err) 4617 goto free_shrinker; 4618 f2fs_create_root_stats(); 4619 err = f2fs_init_post_read_processing(); 4620 if (err) 4621 goto free_root_stats; 4622 err = f2fs_init_iostat_processing(); 4623 if (err) 4624 goto free_post_read; 4625 err = f2fs_init_bio_entry_cache(); 4626 if (err) 4627 goto free_iostat; 4628 err = f2fs_init_bioset(); 4629 if (err) 4630 goto free_bio_enrty_cache; 4631 err = f2fs_init_compress_mempool(); 4632 if (err) 4633 goto free_bioset; 4634 err = f2fs_init_compress_cache(); 4635 if (err) 4636 goto free_compress_mempool; 4637 err = f2fs_create_casefold_cache(); 4638 if (err) 4639 goto free_compress_cache; 4640 return 0; 4641 free_compress_cache: 4642 f2fs_destroy_compress_cache(); 4643 free_compress_mempool: 4644 f2fs_destroy_compress_mempool(); 4645 free_bioset: 4646 f2fs_destroy_bioset(); 4647 free_bio_enrty_cache: 4648 f2fs_destroy_bio_entry_cache(); 4649 free_iostat: 4650 f2fs_destroy_iostat_processing(); 4651 free_post_read: 4652 f2fs_destroy_post_read_processing(); 4653 free_root_stats: 4654 f2fs_destroy_root_stats(); 4655 unregister_filesystem(&f2fs_fs_type); 4656 free_shrinker: 4657 unregister_shrinker(&f2fs_shrinker_info); 4658 free_sysfs: 4659 f2fs_exit_sysfs(); 4660 free_garbage_collection_cache: 4661 f2fs_destroy_garbage_collection_cache(); 4662 free_extent_cache: 4663 f2fs_destroy_extent_cache(); 4664 free_recovery_cache: 4665 f2fs_destroy_recovery_cache(); 4666 free_checkpoint_caches: 4667 f2fs_destroy_checkpoint_caches(); 4668 free_segment_manager_caches: 4669 f2fs_destroy_segment_manager_caches(); 4670 free_node_manager_caches: 4671 f2fs_destroy_node_manager_caches(); 4672 free_inodecache: 4673 destroy_inodecache(); 4674 fail: 4675 return err; 4676 } 4677 4678 static void __exit exit_f2fs_fs(void) 4679 { 4680 f2fs_destroy_casefold_cache(); 4681 f2fs_destroy_compress_cache(); 4682 f2fs_destroy_compress_mempool(); 4683 f2fs_destroy_bioset(); 4684 f2fs_destroy_bio_entry_cache(); 4685 f2fs_destroy_iostat_processing(); 4686 f2fs_destroy_post_read_processing(); 4687 f2fs_destroy_root_stats(); 4688 unregister_filesystem(&f2fs_fs_type); 4689 unregister_shrinker(&f2fs_shrinker_info); 4690 f2fs_exit_sysfs(); 4691 f2fs_destroy_garbage_collection_cache(); 4692 f2fs_destroy_extent_cache(); 4693 f2fs_destroy_recovery_cache(); 4694 f2fs_destroy_checkpoint_caches(); 4695 f2fs_destroy_segment_manager_caches(); 4696 f2fs_destroy_node_manager_caches(); 4697 destroy_inodecache(); 4698 } 4699 4700 module_init(init_f2fs_fs) 4701 module_exit(exit_f2fs_fs) 4702 4703 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 4704 MODULE_DESCRIPTION("Flash Friendly File System"); 4705 MODULE_LICENSE("GPL"); 4706 MODULE_SOFTDEP("pre: crc32"); 4707 4708