1 /* 2 * fs/f2fs/super.c 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/init.h> 13 #include <linux/fs.h> 14 #include <linux/statfs.h> 15 #include <linux/buffer_head.h> 16 #include <linux/backing-dev.h> 17 #include <linux/kthread.h> 18 #include <linux/parser.h> 19 #include <linux/mount.h> 20 #include <linux/seq_file.h> 21 #include <linux/proc_fs.h> 22 #include <linux/random.h> 23 #include <linux/exportfs.h> 24 #include <linux/blkdev.h> 25 #include <linux/f2fs_fs.h> 26 #include <linux/sysfs.h> 27 28 #include "f2fs.h" 29 #include "node.h" 30 #include "segment.h" 31 #include "xattr.h" 32 #include "gc.h" 33 #include "trace.h" 34 35 #define CREATE_TRACE_POINTS 36 #include <trace/events/f2fs.h> 37 38 static struct proc_dir_entry *f2fs_proc_root; 39 static struct kmem_cache *f2fs_inode_cachep; 40 static struct kset *f2fs_kset; 41 42 /* f2fs-wide shrinker description */ 43 static struct shrinker f2fs_shrinker_info = { 44 .scan_objects = f2fs_shrink_scan, 45 .count_objects = f2fs_shrink_count, 46 .seeks = DEFAULT_SEEKS, 47 }; 48 49 enum { 50 Opt_gc_background, 51 Opt_disable_roll_forward, 52 Opt_norecovery, 53 Opt_discard, 54 Opt_noheap, 55 Opt_user_xattr, 56 Opt_nouser_xattr, 57 Opt_acl, 58 Opt_noacl, 59 Opt_active_logs, 60 Opt_disable_ext_identify, 61 Opt_inline_xattr, 62 Opt_inline_data, 63 Opt_inline_dentry, 64 Opt_flush_merge, 65 Opt_nobarrier, 66 Opt_fastboot, 67 Opt_extent_cache, 68 Opt_noextent_cache, 69 Opt_noinline_data, 70 Opt_err, 71 }; 72 73 static match_table_t f2fs_tokens = { 74 {Opt_gc_background, "background_gc=%s"}, 75 {Opt_disable_roll_forward, "disable_roll_forward"}, 76 {Opt_norecovery, "norecovery"}, 77 {Opt_discard, "discard"}, 78 {Opt_noheap, "no_heap"}, 79 {Opt_user_xattr, "user_xattr"}, 80 {Opt_nouser_xattr, "nouser_xattr"}, 81 {Opt_acl, "acl"}, 82 {Opt_noacl, "noacl"}, 83 {Opt_active_logs, "active_logs=%u"}, 84 {Opt_disable_ext_identify, "disable_ext_identify"}, 85 {Opt_inline_xattr, "inline_xattr"}, 86 {Opt_inline_data, "inline_data"}, 87 {Opt_inline_dentry, "inline_dentry"}, 88 {Opt_flush_merge, "flush_merge"}, 89 {Opt_nobarrier, "nobarrier"}, 90 {Opt_fastboot, "fastboot"}, 91 {Opt_extent_cache, "extent_cache"}, 92 {Opt_noextent_cache, "noextent_cache"}, 93 {Opt_noinline_data, "noinline_data"}, 94 {Opt_err, NULL}, 95 }; 96 97 /* Sysfs support for f2fs */ 98 enum { 99 GC_THREAD, /* struct f2fs_gc_thread */ 100 SM_INFO, /* struct f2fs_sm_info */ 101 NM_INFO, /* struct f2fs_nm_info */ 102 F2FS_SBI, /* struct f2fs_sb_info */ 103 }; 104 105 struct f2fs_attr { 106 struct attribute attr; 107 ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *); 108 ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *, 109 const char *, size_t); 110 int struct_type; 111 int offset; 112 }; 113 114 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type) 115 { 116 if (struct_type == GC_THREAD) 117 return (unsigned char *)sbi->gc_thread; 118 else if (struct_type == SM_INFO) 119 return (unsigned char *)SM_I(sbi); 120 else if (struct_type == NM_INFO) 121 return (unsigned char *)NM_I(sbi); 122 else if (struct_type == F2FS_SBI) 123 return (unsigned char *)sbi; 124 return NULL; 125 } 126 127 static ssize_t f2fs_sbi_show(struct f2fs_attr *a, 128 struct f2fs_sb_info *sbi, char *buf) 129 { 130 unsigned char *ptr = NULL; 131 unsigned int *ui; 132 133 ptr = __struct_ptr(sbi, a->struct_type); 134 if (!ptr) 135 return -EINVAL; 136 137 ui = (unsigned int *)(ptr + a->offset); 138 139 return snprintf(buf, PAGE_SIZE, "%u\n", *ui); 140 } 141 142 static ssize_t f2fs_sbi_store(struct f2fs_attr *a, 143 struct f2fs_sb_info *sbi, 144 const char *buf, size_t count) 145 { 146 unsigned char *ptr; 147 unsigned long t; 148 unsigned int *ui; 149 ssize_t ret; 150 151 ptr = __struct_ptr(sbi, a->struct_type); 152 if (!ptr) 153 return -EINVAL; 154 155 ui = (unsigned int *)(ptr + a->offset); 156 157 ret = kstrtoul(skip_spaces(buf), 0, &t); 158 if (ret < 0) 159 return ret; 160 *ui = t; 161 return count; 162 } 163 164 static ssize_t f2fs_attr_show(struct kobject *kobj, 165 struct attribute *attr, char *buf) 166 { 167 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 168 s_kobj); 169 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 170 171 return a->show ? a->show(a, sbi, buf) : 0; 172 } 173 174 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr, 175 const char *buf, size_t len) 176 { 177 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 178 s_kobj); 179 struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr); 180 181 return a->store ? a->store(a, sbi, buf, len) : 0; 182 } 183 184 static void f2fs_sb_release(struct kobject *kobj) 185 { 186 struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info, 187 s_kobj); 188 complete(&sbi->s_kobj_unregister); 189 } 190 191 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \ 192 static struct f2fs_attr f2fs_attr_##_name = { \ 193 .attr = {.name = __stringify(_name), .mode = _mode }, \ 194 .show = _show, \ 195 .store = _store, \ 196 .struct_type = _struct_type, \ 197 .offset = _offset \ 198 } 199 200 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname) \ 201 F2FS_ATTR_OFFSET(struct_type, name, 0644, \ 202 f2fs_sbi_show, f2fs_sbi_store, \ 203 offsetof(struct struct_name, elname)) 204 205 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time); 206 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time); 207 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time); 208 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle); 209 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments); 210 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards); 211 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections); 212 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy); 213 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util); 214 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks); 215 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh); 216 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages); 217 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search); 218 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level); 219 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, cp_interval); 220 221 #define ATTR_LIST(name) (&f2fs_attr_##name.attr) 222 static struct attribute *f2fs_attrs[] = { 223 ATTR_LIST(gc_min_sleep_time), 224 ATTR_LIST(gc_max_sleep_time), 225 ATTR_LIST(gc_no_gc_sleep_time), 226 ATTR_LIST(gc_idle), 227 ATTR_LIST(reclaim_segments), 228 ATTR_LIST(max_small_discards), 229 ATTR_LIST(batched_trim_sections), 230 ATTR_LIST(ipu_policy), 231 ATTR_LIST(min_ipu_util), 232 ATTR_LIST(min_fsync_blocks), 233 ATTR_LIST(max_victim_search), 234 ATTR_LIST(dir_level), 235 ATTR_LIST(ram_thresh), 236 ATTR_LIST(ra_nid_pages), 237 ATTR_LIST(cp_interval), 238 NULL, 239 }; 240 241 static const struct sysfs_ops f2fs_attr_ops = { 242 .show = f2fs_attr_show, 243 .store = f2fs_attr_store, 244 }; 245 246 static struct kobj_type f2fs_ktype = { 247 .default_attrs = f2fs_attrs, 248 .sysfs_ops = &f2fs_attr_ops, 249 .release = f2fs_sb_release, 250 }; 251 252 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) 253 { 254 struct va_format vaf; 255 va_list args; 256 257 va_start(args, fmt); 258 vaf.fmt = fmt; 259 vaf.va = &args; 260 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); 261 va_end(args); 262 } 263 264 static void init_once(void *foo) 265 { 266 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 267 268 inode_init_once(&fi->vfs_inode); 269 } 270 271 static int parse_options(struct super_block *sb, char *options) 272 { 273 struct f2fs_sb_info *sbi = F2FS_SB(sb); 274 struct request_queue *q; 275 substring_t args[MAX_OPT_ARGS]; 276 char *p, *name; 277 int arg = 0; 278 279 if (!options) 280 return 0; 281 282 while ((p = strsep(&options, ",")) != NULL) { 283 int token; 284 if (!*p) 285 continue; 286 /* 287 * Initialize args struct so we know whether arg was 288 * found; some options take optional arguments. 289 */ 290 args[0].to = args[0].from = NULL; 291 token = match_token(p, f2fs_tokens, args); 292 293 switch (token) { 294 case Opt_gc_background: 295 name = match_strdup(&args[0]); 296 297 if (!name) 298 return -ENOMEM; 299 if (strlen(name) == 2 && !strncmp(name, "on", 2)) { 300 set_opt(sbi, BG_GC); 301 clear_opt(sbi, FORCE_FG_GC); 302 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) { 303 clear_opt(sbi, BG_GC); 304 clear_opt(sbi, FORCE_FG_GC); 305 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) { 306 set_opt(sbi, BG_GC); 307 set_opt(sbi, FORCE_FG_GC); 308 } else { 309 kfree(name); 310 return -EINVAL; 311 } 312 kfree(name); 313 break; 314 case Opt_disable_roll_forward: 315 set_opt(sbi, DISABLE_ROLL_FORWARD); 316 break; 317 case Opt_norecovery: 318 /* this option mounts f2fs with ro */ 319 set_opt(sbi, DISABLE_ROLL_FORWARD); 320 if (!f2fs_readonly(sb)) 321 return -EINVAL; 322 break; 323 case Opt_discard: 324 q = bdev_get_queue(sb->s_bdev); 325 if (blk_queue_discard(q)) { 326 set_opt(sbi, DISCARD); 327 } else { 328 f2fs_msg(sb, KERN_WARNING, 329 "mounting with \"discard\" option, but " 330 "the device does not support discard"); 331 } 332 break; 333 case Opt_noheap: 334 set_opt(sbi, NOHEAP); 335 break; 336 #ifdef CONFIG_F2FS_FS_XATTR 337 case Opt_user_xattr: 338 set_opt(sbi, XATTR_USER); 339 break; 340 case Opt_nouser_xattr: 341 clear_opt(sbi, XATTR_USER); 342 break; 343 case Opt_inline_xattr: 344 set_opt(sbi, INLINE_XATTR); 345 break; 346 #else 347 case Opt_user_xattr: 348 f2fs_msg(sb, KERN_INFO, 349 "user_xattr options not supported"); 350 break; 351 case Opt_nouser_xattr: 352 f2fs_msg(sb, KERN_INFO, 353 "nouser_xattr options not supported"); 354 break; 355 case Opt_inline_xattr: 356 f2fs_msg(sb, KERN_INFO, 357 "inline_xattr options not supported"); 358 break; 359 #endif 360 #ifdef CONFIG_F2FS_FS_POSIX_ACL 361 case Opt_acl: 362 set_opt(sbi, POSIX_ACL); 363 break; 364 case Opt_noacl: 365 clear_opt(sbi, POSIX_ACL); 366 break; 367 #else 368 case Opt_acl: 369 f2fs_msg(sb, KERN_INFO, "acl options not supported"); 370 break; 371 case Opt_noacl: 372 f2fs_msg(sb, KERN_INFO, "noacl options not supported"); 373 break; 374 #endif 375 case Opt_active_logs: 376 if (args->from && match_int(args, &arg)) 377 return -EINVAL; 378 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 379 return -EINVAL; 380 sbi->active_logs = arg; 381 break; 382 case Opt_disable_ext_identify: 383 set_opt(sbi, DISABLE_EXT_IDENTIFY); 384 break; 385 case Opt_inline_data: 386 set_opt(sbi, INLINE_DATA); 387 break; 388 case Opt_inline_dentry: 389 set_opt(sbi, INLINE_DENTRY); 390 break; 391 case Opt_flush_merge: 392 set_opt(sbi, FLUSH_MERGE); 393 break; 394 case Opt_nobarrier: 395 set_opt(sbi, NOBARRIER); 396 break; 397 case Opt_fastboot: 398 set_opt(sbi, FASTBOOT); 399 break; 400 case Opt_extent_cache: 401 set_opt(sbi, EXTENT_CACHE); 402 break; 403 case Opt_noextent_cache: 404 clear_opt(sbi, EXTENT_CACHE); 405 break; 406 case Opt_noinline_data: 407 clear_opt(sbi, INLINE_DATA); 408 break; 409 default: 410 f2fs_msg(sb, KERN_ERR, 411 "Unrecognized mount option \"%s\" or missing value", 412 p); 413 return -EINVAL; 414 } 415 } 416 return 0; 417 } 418 419 static struct inode *f2fs_alloc_inode(struct super_block *sb) 420 { 421 struct f2fs_inode_info *fi; 422 423 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 424 if (!fi) 425 return NULL; 426 427 init_once((void *) fi); 428 429 /* Initialize f2fs-specific inode info */ 430 fi->vfs_inode.i_version = 1; 431 atomic_set(&fi->dirty_pages, 0); 432 fi->i_current_depth = 1; 433 fi->i_advise = 0; 434 init_rwsem(&fi->i_sem); 435 INIT_LIST_HEAD(&fi->inmem_pages); 436 mutex_init(&fi->inmem_lock); 437 438 set_inode_flag(fi, FI_NEW_INODE); 439 440 if (test_opt(F2FS_SB(sb), INLINE_XATTR)) 441 set_inode_flag(fi, FI_INLINE_XATTR); 442 443 /* Will be used by directory only */ 444 fi->i_dir_level = F2FS_SB(sb)->dir_level; 445 446 #ifdef CONFIG_F2FS_FS_ENCRYPTION 447 fi->i_crypt_info = NULL; 448 #endif 449 return &fi->vfs_inode; 450 } 451 452 static int f2fs_drop_inode(struct inode *inode) 453 { 454 /* 455 * This is to avoid a deadlock condition like below. 456 * writeback_single_inode(inode) 457 * - f2fs_write_data_page 458 * - f2fs_gc -> iput -> evict 459 * - inode_wait_for_writeback(inode) 460 */ 461 if (!inode_unhashed(inode) && inode->i_state & I_SYNC) { 462 if (!inode->i_nlink && !is_bad_inode(inode)) { 463 /* to avoid evict_inode call simultaneously */ 464 atomic_inc(&inode->i_count); 465 spin_unlock(&inode->i_lock); 466 467 /* some remained atomic pages should discarded */ 468 if (f2fs_is_atomic_file(inode)) 469 commit_inmem_pages(inode, true); 470 471 /* should remain fi->extent_tree for writepage */ 472 f2fs_destroy_extent_node(inode); 473 474 sb_start_intwrite(inode->i_sb); 475 i_size_write(inode, 0); 476 477 if (F2FS_HAS_BLOCKS(inode)) 478 f2fs_truncate(inode, true); 479 480 sb_end_intwrite(inode->i_sb); 481 482 #ifdef CONFIG_F2FS_FS_ENCRYPTION 483 if (F2FS_I(inode)->i_crypt_info) 484 f2fs_free_encryption_info(inode, 485 F2FS_I(inode)->i_crypt_info); 486 #endif 487 spin_lock(&inode->i_lock); 488 atomic_dec(&inode->i_count); 489 } 490 return 0; 491 } 492 return generic_drop_inode(inode); 493 } 494 495 /* 496 * f2fs_dirty_inode() is called from __mark_inode_dirty() 497 * 498 * We should call set_dirty_inode to write the dirty inode through write_inode. 499 */ 500 static void f2fs_dirty_inode(struct inode *inode, int flags) 501 { 502 set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE); 503 } 504 505 static void f2fs_i_callback(struct rcu_head *head) 506 { 507 struct inode *inode = container_of(head, struct inode, i_rcu); 508 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 509 } 510 511 static void f2fs_destroy_inode(struct inode *inode) 512 { 513 call_rcu(&inode->i_rcu, f2fs_i_callback); 514 } 515 516 static void f2fs_put_super(struct super_block *sb) 517 { 518 struct f2fs_sb_info *sbi = F2FS_SB(sb); 519 520 if (sbi->s_proc) { 521 remove_proc_entry("segment_info", sbi->s_proc); 522 remove_proc_entry(sb->s_id, f2fs_proc_root); 523 } 524 kobject_del(&sbi->s_kobj); 525 526 stop_gc_thread(sbi); 527 528 /* prevent remaining shrinker jobs */ 529 mutex_lock(&sbi->umount_mutex); 530 531 /* 532 * We don't need to do checkpoint when superblock is clean. 533 * But, the previous checkpoint was not done by umount, it needs to do 534 * clean checkpoint again. 535 */ 536 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 537 !is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) { 538 struct cp_control cpc = { 539 .reason = CP_UMOUNT, 540 }; 541 write_checkpoint(sbi, &cpc); 542 } 543 544 /* write_checkpoint can update stat informaion */ 545 f2fs_destroy_stats(sbi); 546 547 /* 548 * normally superblock is clean, so we need to release this. 549 * In addition, EIO will skip do checkpoint, we need this as well. 550 */ 551 release_dirty_inode(sbi); 552 release_discard_addrs(sbi); 553 554 f2fs_leave_shrinker(sbi); 555 mutex_unlock(&sbi->umount_mutex); 556 557 iput(sbi->node_inode); 558 iput(sbi->meta_inode); 559 560 /* destroy f2fs internal modules */ 561 destroy_node_manager(sbi); 562 destroy_segment_manager(sbi); 563 564 kfree(sbi->ckpt); 565 kobject_put(&sbi->s_kobj); 566 wait_for_completion(&sbi->s_kobj_unregister); 567 568 sb->s_fs_info = NULL; 569 brelse(sbi->raw_super_buf); 570 kfree(sbi); 571 } 572 573 int f2fs_sync_fs(struct super_block *sb, int sync) 574 { 575 struct f2fs_sb_info *sbi = F2FS_SB(sb); 576 577 trace_f2fs_sync_fs(sb, sync); 578 579 if (sync) { 580 struct cp_control cpc; 581 582 cpc.reason = __get_cp_reason(sbi); 583 584 mutex_lock(&sbi->gc_mutex); 585 write_checkpoint(sbi, &cpc); 586 mutex_unlock(&sbi->gc_mutex); 587 } else { 588 f2fs_balance_fs(sbi); 589 } 590 f2fs_trace_ios(NULL, 1); 591 592 return 0; 593 } 594 595 static int f2fs_freeze(struct super_block *sb) 596 { 597 int err; 598 599 if (f2fs_readonly(sb)) 600 return 0; 601 602 err = f2fs_sync_fs(sb, 1); 603 return err; 604 } 605 606 static int f2fs_unfreeze(struct super_block *sb) 607 { 608 return 0; 609 } 610 611 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 612 { 613 struct super_block *sb = dentry->d_sb; 614 struct f2fs_sb_info *sbi = F2FS_SB(sb); 615 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 616 block_t total_count, user_block_count, start_count, ovp_count; 617 618 total_count = le64_to_cpu(sbi->raw_super->block_count); 619 user_block_count = sbi->user_block_count; 620 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 621 ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg; 622 buf->f_type = F2FS_SUPER_MAGIC; 623 buf->f_bsize = sbi->blocksize; 624 625 buf->f_blocks = total_count - start_count; 626 buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count; 627 buf->f_bavail = user_block_count - valid_user_blocks(sbi); 628 629 buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 630 buf->f_ffree = buf->f_files - valid_inode_count(sbi); 631 632 buf->f_namelen = F2FS_NAME_LEN; 633 buf->f_fsid.val[0] = (u32)id; 634 buf->f_fsid.val[1] = (u32)(id >> 32); 635 636 return 0; 637 } 638 639 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 640 { 641 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 642 643 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) { 644 if (test_opt(sbi, FORCE_FG_GC)) 645 seq_printf(seq, ",background_gc=%s", "sync"); 646 else 647 seq_printf(seq, ",background_gc=%s", "on"); 648 } else { 649 seq_printf(seq, ",background_gc=%s", "off"); 650 } 651 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 652 seq_puts(seq, ",disable_roll_forward"); 653 if (test_opt(sbi, DISCARD)) 654 seq_puts(seq, ",discard"); 655 if (test_opt(sbi, NOHEAP)) 656 seq_puts(seq, ",no_heap_alloc"); 657 #ifdef CONFIG_F2FS_FS_XATTR 658 if (test_opt(sbi, XATTR_USER)) 659 seq_puts(seq, ",user_xattr"); 660 else 661 seq_puts(seq, ",nouser_xattr"); 662 if (test_opt(sbi, INLINE_XATTR)) 663 seq_puts(seq, ",inline_xattr"); 664 #endif 665 #ifdef CONFIG_F2FS_FS_POSIX_ACL 666 if (test_opt(sbi, POSIX_ACL)) 667 seq_puts(seq, ",acl"); 668 else 669 seq_puts(seq, ",noacl"); 670 #endif 671 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 672 seq_puts(seq, ",disable_ext_identify"); 673 if (test_opt(sbi, INLINE_DATA)) 674 seq_puts(seq, ",inline_data"); 675 else 676 seq_puts(seq, ",noinline_data"); 677 if (test_opt(sbi, INLINE_DENTRY)) 678 seq_puts(seq, ",inline_dentry"); 679 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 680 seq_puts(seq, ",flush_merge"); 681 if (test_opt(sbi, NOBARRIER)) 682 seq_puts(seq, ",nobarrier"); 683 if (test_opt(sbi, FASTBOOT)) 684 seq_puts(seq, ",fastboot"); 685 if (test_opt(sbi, EXTENT_CACHE)) 686 seq_puts(seq, ",extent_cache"); 687 else 688 seq_puts(seq, ",noextent_cache"); 689 seq_printf(seq, ",active_logs=%u", sbi->active_logs); 690 691 return 0; 692 } 693 694 static int segment_info_seq_show(struct seq_file *seq, void *offset) 695 { 696 struct super_block *sb = seq->private; 697 struct f2fs_sb_info *sbi = F2FS_SB(sb); 698 unsigned int total_segs = 699 le32_to_cpu(sbi->raw_super->segment_count_main); 700 int i; 701 702 seq_puts(seq, "format: segment_type|valid_blocks\n" 703 "segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n"); 704 705 for (i = 0; i < total_segs; i++) { 706 struct seg_entry *se = get_seg_entry(sbi, i); 707 708 if ((i % 10) == 0) 709 seq_printf(seq, "%-10d", i); 710 seq_printf(seq, "%d|%-3u", se->type, 711 get_valid_blocks(sbi, i, 1)); 712 if ((i % 10) == 9 || i == (total_segs - 1)) 713 seq_putc(seq, '\n'); 714 else 715 seq_putc(seq, ' '); 716 } 717 718 return 0; 719 } 720 721 static int segment_info_open_fs(struct inode *inode, struct file *file) 722 { 723 return single_open(file, segment_info_seq_show, PDE_DATA(inode)); 724 } 725 726 static const struct file_operations f2fs_seq_segment_info_fops = { 727 .owner = THIS_MODULE, 728 .open = segment_info_open_fs, 729 .read = seq_read, 730 .llseek = seq_lseek, 731 .release = single_release, 732 }; 733 734 static void default_options(struct f2fs_sb_info *sbi) 735 { 736 /* init some FS parameters */ 737 sbi->active_logs = NR_CURSEG_TYPE; 738 739 set_opt(sbi, BG_GC); 740 set_opt(sbi, INLINE_DATA); 741 set_opt(sbi, EXTENT_CACHE); 742 743 #ifdef CONFIG_F2FS_FS_XATTR 744 set_opt(sbi, XATTR_USER); 745 #endif 746 #ifdef CONFIG_F2FS_FS_POSIX_ACL 747 set_opt(sbi, POSIX_ACL); 748 #endif 749 } 750 751 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 752 { 753 struct f2fs_sb_info *sbi = F2FS_SB(sb); 754 struct f2fs_mount_info org_mount_opt; 755 int err, active_logs; 756 bool need_restart_gc = false; 757 bool need_stop_gc = false; 758 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 759 760 sync_filesystem(sb); 761 762 /* 763 * Save the old mount options in case we 764 * need to restore them. 765 */ 766 org_mount_opt = sbi->mount_opt; 767 active_logs = sbi->active_logs; 768 769 sbi->mount_opt.opt = 0; 770 default_options(sbi); 771 772 /* parse mount options */ 773 err = parse_options(sb, data); 774 if (err) 775 goto restore_opts; 776 777 /* 778 * Previous and new state of filesystem is RO, 779 * so skip checking GC and FLUSH_MERGE conditions. 780 */ 781 if (f2fs_readonly(sb) && (*flags & MS_RDONLY)) 782 goto skip; 783 784 /* disallow enable/disable extent_cache dynamically */ 785 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 786 err = -EINVAL; 787 f2fs_msg(sbi->sb, KERN_WARNING, 788 "switch extent_cache option is not allowed"); 789 goto restore_opts; 790 } 791 792 /* 793 * We stop the GC thread if FS is mounted as RO 794 * or if background_gc = off is passed in mount 795 * option. Also sync the filesystem. 796 */ 797 if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) { 798 if (sbi->gc_thread) { 799 stop_gc_thread(sbi); 800 f2fs_sync_fs(sb, 1); 801 need_restart_gc = true; 802 } 803 } else if (!sbi->gc_thread) { 804 err = start_gc_thread(sbi); 805 if (err) 806 goto restore_opts; 807 need_stop_gc = true; 808 } 809 810 /* 811 * We stop issue flush thread if FS is mounted as RO 812 * or if flush_merge is not passed in mount option. 813 */ 814 if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 815 destroy_flush_cmd_control(sbi); 816 } else if (!SM_I(sbi)->cmd_control_info) { 817 err = create_flush_cmd_control(sbi); 818 if (err) 819 goto restore_gc; 820 } 821 skip: 822 /* Update the POSIXACL Flag */ 823 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 824 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 825 return 0; 826 restore_gc: 827 if (need_restart_gc) { 828 if (start_gc_thread(sbi)) 829 f2fs_msg(sbi->sb, KERN_WARNING, 830 "background gc thread has stopped"); 831 } else if (need_stop_gc) { 832 stop_gc_thread(sbi); 833 } 834 restore_opts: 835 sbi->mount_opt = org_mount_opt; 836 sbi->active_logs = active_logs; 837 return err; 838 } 839 840 static struct super_operations f2fs_sops = { 841 .alloc_inode = f2fs_alloc_inode, 842 .drop_inode = f2fs_drop_inode, 843 .destroy_inode = f2fs_destroy_inode, 844 .write_inode = f2fs_write_inode, 845 .dirty_inode = f2fs_dirty_inode, 846 .show_options = f2fs_show_options, 847 .evict_inode = f2fs_evict_inode, 848 .put_super = f2fs_put_super, 849 .sync_fs = f2fs_sync_fs, 850 .freeze_fs = f2fs_freeze, 851 .unfreeze_fs = f2fs_unfreeze, 852 .statfs = f2fs_statfs, 853 .remount_fs = f2fs_remount, 854 }; 855 856 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 857 u64 ino, u32 generation) 858 { 859 struct f2fs_sb_info *sbi = F2FS_SB(sb); 860 struct inode *inode; 861 862 if (check_nid_range(sbi, ino)) 863 return ERR_PTR(-ESTALE); 864 865 /* 866 * f2fs_iget isn't quite right if the inode is currently unallocated! 867 * However f2fs_iget currently does appropriate checks to handle stale 868 * inodes so everything is OK. 869 */ 870 inode = f2fs_iget(sb, ino); 871 if (IS_ERR(inode)) 872 return ERR_CAST(inode); 873 if (unlikely(generation && inode->i_generation != generation)) { 874 /* we didn't find the right inode.. */ 875 iput(inode); 876 return ERR_PTR(-ESTALE); 877 } 878 return inode; 879 } 880 881 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 882 int fh_len, int fh_type) 883 { 884 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 885 f2fs_nfs_get_inode); 886 } 887 888 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 889 int fh_len, int fh_type) 890 { 891 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 892 f2fs_nfs_get_inode); 893 } 894 895 static const struct export_operations f2fs_export_ops = { 896 .fh_to_dentry = f2fs_fh_to_dentry, 897 .fh_to_parent = f2fs_fh_to_parent, 898 .get_parent = f2fs_get_parent, 899 }; 900 901 static loff_t max_file_size(unsigned bits) 902 { 903 loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS); 904 loff_t leaf_count = ADDRS_PER_BLOCK; 905 906 /* two direct node blocks */ 907 result += (leaf_count * 2); 908 909 /* two indirect node blocks */ 910 leaf_count *= NIDS_PER_BLOCK; 911 result += (leaf_count * 2); 912 913 /* one double indirect node block */ 914 leaf_count *= NIDS_PER_BLOCK; 915 result += leaf_count; 916 917 result <<= bits; 918 return result; 919 } 920 921 static int sanity_check_raw_super(struct super_block *sb, 922 struct f2fs_super_block *raw_super) 923 { 924 unsigned int blocksize; 925 926 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { 927 f2fs_msg(sb, KERN_INFO, 928 "Magic Mismatch, valid(0x%x) - read(0x%x)", 929 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 930 return 1; 931 } 932 933 /* Currently, support only 4KB page cache size */ 934 if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) { 935 f2fs_msg(sb, KERN_INFO, 936 "Invalid page_cache_size (%lu), supports only 4KB\n", 937 PAGE_CACHE_SIZE); 938 return 1; 939 } 940 941 /* Currently, support only 4KB block size */ 942 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 943 if (blocksize != F2FS_BLKSIZE) { 944 f2fs_msg(sb, KERN_INFO, 945 "Invalid blocksize (%u), supports only 4KB\n", 946 blocksize); 947 return 1; 948 } 949 950 /* Currently, support 512/1024/2048/4096 bytes sector size */ 951 if (le32_to_cpu(raw_super->log_sectorsize) > 952 F2FS_MAX_LOG_SECTOR_SIZE || 953 le32_to_cpu(raw_super->log_sectorsize) < 954 F2FS_MIN_LOG_SECTOR_SIZE) { 955 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)", 956 le32_to_cpu(raw_super->log_sectorsize)); 957 return 1; 958 } 959 if (le32_to_cpu(raw_super->log_sectors_per_block) + 960 le32_to_cpu(raw_super->log_sectorsize) != 961 F2FS_MAX_LOG_SECTOR_SIZE) { 962 f2fs_msg(sb, KERN_INFO, 963 "Invalid log sectors per block(%u) log sectorsize(%u)", 964 le32_to_cpu(raw_super->log_sectors_per_block), 965 le32_to_cpu(raw_super->log_sectorsize)); 966 return 1; 967 } 968 return 0; 969 } 970 971 static int sanity_check_ckpt(struct f2fs_sb_info *sbi) 972 { 973 unsigned int total, fsmeta; 974 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 975 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 976 977 total = le32_to_cpu(raw_super->segment_count); 978 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 979 fsmeta += le32_to_cpu(raw_super->segment_count_sit); 980 fsmeta += le32_to_cpu(raw_super->segment_count_nat); 981 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 982 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 983 984 if (unlikely(fsmeta >= total)) 985 return 1; 986 987 if (unlikely(f2fs_cp_error(sbi))) { 988 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); 989 return 1; 990 } 991 return 0; 992 } 993 994 static void init_sb_info(struct f2fs_sb_info *sbi) 995 { 996 struct f2fs_super_block *raw_super = sbi->raw_super; 997 int i; 998 999 sbi->log_sectors_per_block = 1000 le32_to_cpu(raw_super->log_sectors_per_block); 1001 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 1002 sbi->blocksize = 1 << sbi->log_blocksize; 1003 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 1004 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 1005 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 1006 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 1007 sbi->total_sections = le32_to_cpu(raw_super->section_count); 1008 sbi->total_node_count = 1009 (le32_to_cpu(raw_super->segment_count_nat) / 2) 1010 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 1011 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 1012 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 1013 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 1014 sbi->cur_victim_sec = NULL_SECNO; 1015 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 1016 1017 for (i = 0; i < NR_COUNT_TYPE; i++) 1018 atomic_set(&sbi->nr_pages[i], 0); 1019 1020 sbi->dir_level = DEF_DIR_LEVEL; 1021 sbi->cp_interval = DEF_CP_INTERVAL; 1022 clear_sbi_flag(sbi, SBI_NEED_FSCK); 1023 1024 INIT_LIST_HEAD(&sbi->s_list); 1025 mutex_init(&sbi->umount_mutex); 1026 } 1027 1028 /* 1029 * Read f2fs raw super block. 1030 * Because we have two copies of super block, so read the first one at first, 1031 * if the first one is invalid, move to read the second one. 1032 */ 1033 static int read_raw_super_block(struct super_block *sb, 1034 struct f2fs_super_block **raw_super, 1035 struct buffer_head **raw_super_buf, 1036 int *recovery) 1037 { 1038 int block = 0; 1039 struct buffer_head *buffer; 1040 struct f2fs_super_block *super; 1041 int err = 0; 1042 1043 retry: 1044 buffer = sb_bread(sb, block); 1045 if (!buffer) { 1046 *recovery = 1; 1047 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock", 1048 block + 1); 1049 if (block == 0) { 1050 block++; 1051 goto retry; 1052 } else { 1053 err = -EIO; 1054 goto out; 1055 } 1056 } 1057 1058 super = (struct f2fs_super_block *) 1059 ((char *)(buffer)->b_data + F2FS_SUPER_OFFSET); 1060 1061 /* sanity checking of raw super */ 1062 if (sanity_check_raw_super(sb, super)) { 1063 brelse(buffer); 1064 *recovery = 1; 1065 f2fs_msg(sb, KERN_ERR, 1066 "Can't find valid F2FS filesystem in %dth superblock", 1067 block + 1); 1068 if (block == 0) { 1069 block++; 1070 goto retry; 1071 } else { 1072 err = -EINVAL; 1073 goto out; 1074 } 1075 } 1076 1077 if (!*raw_super) { 1078 *raw_super_buf = buffer; 1079 *raw_super = super; 1080 } else { 1081 /* already have a valid superblock */ 1082 brelse(buffer); 1083 } 1084 1085 /* check the validity of the second superblock */ 1086 if (block == 0) { 1087 block++; 1088 goto retry; 1089 } 1090 1091 out: 1092 /* No valid superblock */ 1093 if (!*raw_super) 1094 return err; 1095 1096 return 0; 1097 } 1098 1099 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 1100 { 1101 struct buffer_head *sbh = sbi->raw_super_buf; 1102 sector_t block = sbh->b_blocknr; 1103 int err; 1104 1105 /* write back-up superblock first */ 1106 sbh->b_blocknr = block ? 0 : 1; 1107 mark_buffer_dirty(sbh); 1108 err = sync_dirty_buffer(sbh); 1109 1110 sbh->b_blocknr = block; 1111 1112 /* if we are in recovery path, skip writing valid superblock */ 1113 if (recover || err) 1114 goto out; 1115 1116 /* write current valid superblock */ 1117 mark_buffer_dirty(sbh); 1118 err = sync_dirty_buffer(sbh); 1119 out: 1120 clear_buffer_write_io_error(sbh); 1121 set_buffer_uptodate(sbh); 1122 return err; 1123 } 1124 1125 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 1126 { 1127 struct f2fs_sb_info *sbi; 1128 struct f2fs_super_block *raw_super; 1129 struct buffer_head *raw_super_buf; 1130 struct inode *root; 1131 long err; 1132 bool retry = true, need_fsck = false; 1133 char *options = NULL; 1134 int recovery, i; 1135 1136 try_onemore: 1137 err = -EINVAL; 1138 raw_super = NULL; 1139 raw_super_buf = NULL; 1140 recovery = 0; 1141 1142 /* allocate memory for f2fs-specific super block info */ 1143 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 1144 if (!sbi) 1145 return -ENOMEM; 1146 1147 /* set a block size */ 1148 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 1149 f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); 1150 goto free_sbi; 1151 } 1152 1153 err = read_raw_super_block(sb, &raw_super, &raw_super_buf, &recovery); 1154 if (err) 1155 goto free_sbi; 1156 1157 sb->s_fs_info = sbi; 1158 default_options(sbi); 1159 /* parse mount options */ 1160 options = kstrdup((const char *)data, GFP_KERNEL); 1161 if (data && !options) { 1162 err = -ENOMEM; 1163 goto free_sb_buf; 1164 } 1165 1166 err = parse_options(sb, options); 1167 if (err) 1168 goto free_options; 1169 1170 sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize)); 1171 sb->s_max_links = F2FS_LINK_MAX; 1172 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 1173 1174 sb->s_op = &f2fs_sops; 1175 sb->s_xattr = f2fs_xattr_handlers; 1176 sb->s_export_op = &f2fs_export_ops; 1177 sb->s_magic = F2FS_SUPER_MAGIC; 1178 sb->s_time_gran = 1; 1179 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) | 1180 (test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0); 1181 memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 1182 1183 /* init f2fs-specific super block info */ 1184 sbi->sb = sb; 1185 sbi->raw_super = raw_super; 1186 sbi->raw_super_buf = raw_super_buf; 1187 mutex_init(&sbi->gc_mutex); 1188 mutex_init(&sbi->writepages); 1189 mutex_init(&sbi->cp_mutex); 1190 init_rwsem(&sbi->node_write); 1191 1192 /* disallow all the data/node/meta page writes */ 1193 set_sbi_flag(sbi, SBI_POR_DOING); 1194 spin_lock_init(&sbi->stat_lock); 1195 1196 init_rwsem(&sbi->read_io.io_rwsem); 1197 sbi->read_io.sbi = sbi; 1198 sbi->read_io.bio = NULL; 1199 for (i = 0; i < NR_PAGE_TYPE; i++) { 1200 init_rwsem(&sbi->write_io[i].io_rwsem); 1201 sbi->write_io[i].sbi = sbi; 1202 sbi->write_io[i].bio = NULL; 1203 } 1204 1205 init_rwsem(&sbi->cp_rwsem); 1206 init_waitqueue_head(&sbi->cp_wait); 1207 init_sb_info(sbi); 1208 1209 /* get an inode for meta space */ 1210 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 1211 if (IS_ERR(sbi->meta_inode)) { 1212 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); 1213 err = PTR_ERR(sbi->meta_inode); 1214 goto free_options; 1215 } 1216 1217 err = get_valid_checkpoint(sbi); 1218 if (err) { 1219 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); 1220 goto free_meta_inode; 1221 } 1222 1223 /* sanity checking of checkpoint */ 1224 err = -EINVAL; 1225 if (sanity_check_ckpt(sbi)) { 1226 f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint"); 1227 goto free_cp; 1228 } 1229 1230 sbi->total_valid_node_count = 1231 le32_to_cpu(sbi->ckpt->valid_node_count); 1232 sbi->total_valid_inode_count = 1233 le32_to_cpu(sbi->ckpt->valid_inode_count); 1234 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 1235 sbi->total_valid_block_count = 1236 le64_to_cpu(sbi->ckpt->valid_block_count); 1237 sbi->last_valid_block_count = sbi->total_valid_block_count; 1238 sbi->alloc_valid_block_count = 0; 1239 INIT_LIST_HEAD(&sbi->dir_inode_list); 1240 spin_lock_init(&sbi->dir_inode_lock); 1241 1242 init_extent_cache_info(sbi); 1243 1244 init_ino_entry_info(sbi); 1245 1246 /* setup f2fs internal modules */ 1247 err = build_segment_manager(sbi); 1248 if (err) { 1249 f2fs_msg(sb, KERN_ERR, 1250 "Failed to initialize F2FS segment manager"); 1251 goto free_sm; 1252 } 1253 err = build_node_manager(sbi); 1254 if (err) { 1255 f2fs_msg(sb, KERN_ERR, 1256 "Failed to initialize F2FS node manager"); 1257 goto free_nm; 1258 } 1259 1260 build_gc_manager(sbi); 1261 1262 /* get an inode for node space */ 1263 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 1264 if (IS_ERR(sbi->node_inode)) { 1265 f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); 1266 err = PTR_ERR(sbi->node_inode); 1267 goto free_nm; 1268 } 1269 1270 f2fs_join_shrinker(sbi); 1271 1272 /* if there are nt orphan nodes free them */ 1273 err = recover_orphan_inodes(sbi); 1274 if (err) 1275 goto free_node_inode; 1276 1277 /* read root inode and dentry */ 1278 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 1279 if (IS_ERR(root)) { 1280 f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); 1281 err = PTR_ERR(root); 1282 goto free_node_inode; 1283 } 1284 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) { 1285 iput(root); 1286 err = -EINVAL; 1287 goto free_node_inode; 1288 } 1289 1290 sb->s_root = d_make_root(root); /* allocate root dentry */ 1291 if (!sb->s_root) { 1292 err = -ENOMEM; 1293 goto free_root_inode; 1294 } 1295 1296 err = f2fs_build_stats(sbi); 1297 if (err) 1298 goto free_root_inode; 1299 1300 if (f2fs_proc_root) 1301 sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root); 1302 1303 if (sbi->s_proc) 1304 proc_create_data("segment_info", S_IRUGO, sbi->s_proc, 1305 &f2fs_seq_segment_info_fops, sb); 1306 1307 sbi->s_kobj.kset = f2fs_kset; 1308 init_completion(&sbi->s_kobj_unregister); 1309 err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL, 1310 "%s", sb->s_id); 1311 if (err) 1312 goto free_proc; 1313 1314 /* recover fsynced data */ 1315 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 1316 /* 1317 * mount should be failed, when device has readonly mode, and 1318 * previous checkpoint was not done by clean system shutdown. 1319 */ 1320 if (bdev_read_only(sb->s_bdev) && 1321 !is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) { 1322 err = -EROFS; 1323 goto free_kobj; 1324 } 1325 1326 if (need_fsck) 1327 set_sbi_flag(sbi, SBI_NEED_FSCK); 1328 1329 err = recover_fsync_data(sbi); 1330 if (err) { 1331 need_fsck = true; 1332 f2fs_msg(sb, KERN_ERR, 1333 "Cannot recover all fsync data errno=%ld", err); 1334 goto free_kobj; 1335 } 1336 } 1337 /* recover_fsync_data() cleared this already */ 1338 clear_sbi_flag(sbi, SBI_POR_DOING); 1339 1340 /* 1341 * If filesystem is not mounted as read-only then 1342 * do start the gc_thread. 1343 */ 1344 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) { 1345 /* After POR, we can run background GC thread.*/ 1346 err = start_gc_thread(sbi); 1347 if (err) 1348 goto free_kobj; 1349 } 1350 kfree(options); 1351 1352 /* recover broken superblock */ 1353 if (recovery && !f2fs_readonly(sb) && !bdev_read_only(sb->s_bdev)) { 1354 f2fs_msg(sb, KERN_INFO, "Recover invalid superblock"); 1355 f2fs_commit_super(sbi, true); 1356 } 1357 1358 sbi->cp_expires = round_jiffies_up(jiffies); 1359 1360 return 0; 1361 1362 free_kobj: 1363 kobject_del(&sbi->s_kobj); 1364 free_proc: 1365 if (sbi->s_proc) { 1366 remove_proc_entry("segment_info", sbi->s_proc); 1367 remove_proc_entry(sb->s_id, f2fs_proc_root); 1368 } 1369 f2fs_destroy_stats(sbi); 1370 free_root_inode: 1371 dput(sb->s_root); 1372 sb->s_root = NULL; 1373 free_node_inode: 1374 mutex_lock(&sbi->umount_mutex); 1375 f2fs_leave_shrinker(sbi); 1376 iput(sbi->node_inode); 1377 mutex_unlock(&sbi->umount_mutex); 1378 free_nm: 1379 destroy_node_manager(sbi); 1380 free_sm: 1381 destroy_segment_manager(sbi); 1382 free_cp: 1383 kfree(sbi->ckpt); 1384 free_meta_inode: 1385 make_bad_inode(sbi->meta_inode); 1386 iput(sbi->meta_inode); 1387 free_options: 1388 kfree(options); 1389 free_sb_buf: 1390 brelse(raw_super_buf); 1391 free_sbi: 1392 kfree(sbi); 1393 1394 /* give only one another chance */ 1395 if (retry) { 1396 retry = false; 1397 shrink_dcache_sb(sb); 1398 goto try_onemore; 1399 } 1400 return err; 1401 } 1402 1403 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 1404 const char *dev_name, void *data) 1405 { 1406 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 1407 } 1408 1409 static void kill_f2fs_super(struct super_block *sb) 1410 { 1411 if (sb->s_root) 1412 set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE); 1413 kill_block_super(sb); 1414 } 1415 1416 static struct file_system_type f2fs_fs_type = { 1417 .owner = THIS_MODULE, 1418 .name = "f2fs", 1419 .mount = f2fs_mount, 1420 .kill_sb = kill_f2fs_super, 1421 .fs_flags = FS_REQUIRES_DEV, 1422 }; 1423 MODULE_ALIAS_FS("f2fs"); 1424 1425 static int __init init_inodecache(void) 1426 { 1427 f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache", 1428 sizeof(struct f2fs_inode_info)); 1429 if (!f2fs_inode_cachep) 1430 return -ENOMEM; 1431 return 0; 1432 } 1433 1434 static void destroy_inodecache(void) 1435 { 1436 /* 1437 * Make sure all delayed rcu free inodes are flushed before we 1438 * destroy cache. 1439 */ 1440 rcu_barrier(); 1441 kmem_cache_destroy(f2fs_inode_cachep); 1442 } 1443 1444 static int __init init_f2fs_fs(void) 1445 { 1446 int err; 1447 1448 f2fs_build_trace_ios(); 1449 1450 err = init_inodecache(); 1451 if (err) 1452 goto fail; 1453 err = create_node_manager_caches(); 1454 if (err) 1455 goto free_inodecache; 1456 err = create_segment_manager_caches(); 1457 if (err) 1458 goto free_node_manager_caches; 1459 err = create_checkpoint_caches(); 1460 if (err) 1461 goto free_segment_manager_caches; 1462 err = create_extent_cache(); 1463 if (err) 1464 goto free_checkpoint_caches; 1465 f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj); 1466 if (!f2fs_kset) { 1467 err = -ENOMEM; 1468 goto free_extent_cache; 1469 } 1470 err = f2fs_init_crypto(); 1471 if (err) 1472 goto free_kset; 1473 1474 err = register_shrinker(&f2fs_shrinker_info); 1475 if (err) 1476 goto free_crypto; 1477 1478 err = register_filesystem(&f2fs_fs_type); 1479 if (err) 1480 goto free_shrinker; 1481 f2fs_create_root_stats(); 1482 f2fs_proc_root = proc_mkdir("fs/f2fs", NULL); 1483 return 0; 1484 1485 free_shrinker: 1486 unregister_shrinker(&f2fs_shrinker_info); 1487 free_crypto: 1488 f2fs_exit_crypto(); 1489 free_kset: 1490 kset_unregister(f2fs_kset); 1491 free_extent_cache: 1492 destroy_extent_cache(); 1493 free_checkpoint_caches: 1494 destroy_checkpoint_caches(); 1495 free_segment_manager_caches: 1496 destroy_segment_manager_caches(); 1497 free_node_manager_caches: 1498 destroy_node_manager_caches(); 1499 free_inodecache: 1500 destroy_inodecache(); 1501 fail: 1502 return err; 1503 } 1504 1505 static void __exit exit_f2fs_fs(void) 1506 { 1507 remove_proc_entry("fs/f2fs", NULL); 1508 f2fs_destroy_root_stats(); 1509 unregister_shrinker(&f2fs_shrinker_info); 1510 unregister_filesystem(&f2fs_fs_type); 1511 f2fs_exit_crypto(); 1512 destroy_extent_cache(); 1513 destroy_checkpoint_caches(); 1514 destroy_segment_manager_caches(); 1515 destroy_node_manager_caches(); 1516 destroy_inodecache(); 1517 kset_unregister(f2fs_kset); 1518 f2fs_destroy_trace_ios(); 1519 } 1520 1521 module_init(init_f2fs_fs) 1522 module_exit(exit_f2fs_fs) 1523 1524 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 1525 MODULE_DESCRIPTION("Flash Friendly File System"); 1526 MODULE_LICENSE("GPL"); 1527