1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/statfs.h> 12 #include <linux/buffer_head.h> 13 #include <linux/backing-dev.h> 14 #include <linux/kthread.h> 15 #include <linux/parser.h> 16 #include <linux/mount.h> 17 #include <linux/seq_file.h> 18 #include <linux/proc_fs.h> 19 #include <linux/random.h> 20 #include <linux/exportfs.h> 21 #include <linux/blkdev.h> 22 #include <linux/quotaops.h> 23 #include <linux/f2fs_fs.h> 24 #include <linux/sysfs.h> 25 #include <linux/quota.h> 26 27 #include "f2fs.h" 28 #include "node.h" 29 #include "segment.h" 30 #include "xattr.h" 31 #include "gc.h" 32 #include "trace.h" 33 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/f2fs.h> 36 37 static struct kmem_cache *f2fs_inode_cachep; 38 39 #ifdef CONFIG_F2FS_FAULT_INJECTION 40 41 const char *f2fs_fault_name[FAULT_MAX] = { 42 [FAULT_KMALLOC] = "kmalloc", 43 [FAULT_KVMALLOC] = "kvmalloc", 44 [FAULT_PAGE_ALLOC] = "page alloc", 45 [FAULT_PAGE_GET] = "page get", 46 [FAULT_ALLOC_BIO] = "alloc bio", 47 [FAULT_ALLOC_NID] = "alloc nid", 48 [FAULT_ORPHAN] = "orphan", 49 [FAULT_BLOCK] = "no more block", 50 [FAULT_DIR_DEPTH] = "too big dir depth", 51 [FAULT_EVICT_INODE] = "evict_inode fail", 52 [FAULT_TRUNCATE] = "truncate fail", 53 [FAULT_READ_IO] = "read IO error", 54 [FAULT_CHECKPOINT] = "checkpoint error", 55 [FAULT_DISCARD] = "discard error", 56 [FAULT_WRITE_IO] = "write IO error", 57 }; 58 59 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate, 60 unsigned int type) 61 { 62 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 63 64 if (rate) { 65 atomic_set(&ffi->inject_ops, 0); 66 ffi->inject_rate = rate; 67 } 68 69 if (type) 70 ffi->inject_type = type; 71 72 if (!rate && !type) 73 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 74 } 75 #endif 76 77 /* f2fs-wide shrinker description */ 78 static struct shrinker f2fs_shrinker_info = { 79 .scan_objects = f2fs_shrink_scan, 80 .count_objects = f2fs_shrink_count, 81 .seeks = DEFAULT_SEEKS, 82 }; 83 84 enum { 85 Opt_gc_background, 86 Opt_disable_roll_forward, 87 Opt_norecovery, 88 Opt_discard, 89 Opt_nodiscard, 90 Opt_noheap, 91 Opt_heap, 92 Opt_user_xattr, 93 Opt_nouser_xattr, 94 Opt_acl, 95 Opt_noacl, 96 Opt_active_logs, 97 Opt_disable_ext_identify, 98 Opt_inline_xattr, 99 Opt_noinline_xattr, 100 Opt_inline_xattr_size, 101 Opt_inline_data, 102 Opt_inline_dentry, 103 Opt_noinline_dentry, 104 Opt_flush_merge, 105 Opt_noflush_merge, 106 Opt_nobarrier, 107 Opt_fastboot, 108 Opt_extent_cache, 109 Opt_noextent_cache, 110 Opt_noinline_data, 111 Opt_data_flush, 112 Opt_reserve_root, 113 Opt_resgid, 114 Opt_resuid, 115 Opt_mode, 116 Opt_io_size_bits, 117 Opt_fault_injection, 118 Opt_fault_type, 119 Opt_lazytime, 120 Opt_nolazytime, 121 Opt_quota, 122 Opt_noquota, 123 Opt_usrquota, 124 Opt_grpquota, 125 Opt_prjquota, 126 Opt_usrjquota, 127 Opt_grpjquota, 128 Opt_prjjquota, 129 Opt_offusrjquota, 130 Opt_offgrpjquota, 131 Opt_offprjjquota, 132 Opt_jqfmt_vfsold, 133 Opt_jqfmt_vfsv0, 134 Opt_jqfmt_vfsv1, 135 Opt_whint, 136 Opt_alloc, 137 Opt_fsync, 138 Opt_test_dummy_encryption, 139 Opt_checkpoint, 140 Opt_err, 141 }; 142 143 static match_table_t f2fs_tokens = { 144 {Opt_gc_background, "background_gc=%s"}, 145 {Opt_disable_roll_forward, "disable_roll_forward"}, 146 {Opt_norecovery, "norecovery"}, 147 {Opt_discard, "discard"}, 148 {Opt_nodiscard, "nodiscard"}, 149 {Opt_noheap, "no_heap"}, 150 {Opt_heap, "heap"}, 151 {Opt_user_xattr, "user_xattr"}, 152 {Opt_nouser_xattr, "nouser_xattr"}, 153 {Opt_acl, "acl"}, 154 {Opt_noacl, "noacl"}, 155 {Opt_active_logs, "active_logs=%u"}, 156 {Opt_disable_ext_identify, "disable_ext_identify"}, 157 {Opt_inline_xattr, "inline_xattr"}, 158 {Opt_noinline_xattr, "noinline_xattr"}, 159 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 160 {Opt_inline_data, "inline_data"}, 161 {Opt_inline_dentry, "inline_dentry"}, 162 {Opt_noinline_dentry, "noinline_dentry"}, 163 {Opt_flush_merge, "flush_merge"}, 164 {Opt_noflush_merge, "noflush_merge"}, 165 {Opt_nobarrier, "nobarrier"}, 166 {Opt_fastboot, "fastboot"}, 167 {Opt_extent_cache, "extent_cache"}, 168 {Opt_noextent_cache, "noextent_cache"}, 169 {Opt_noinline_data, "noinline_data"}, 170 {Opt_data_flush, "data_flush"}, 171 {Opt_reserve_root, "reserve_root=%u"}, 172 {Opt_resgid, "resgid=%u"}, 173 {Opt_resuid, "resuid=%u"}, 174 {Opt_mode, "mode=%s"}, 175 {Opt_io_size_bits, "io_bits=%u"}, 176 {Opt_fault_injection, "fault_injection=%u"}, 177 {Opt_fault_type, "fault_type=%u"}, 178 {Opt_lazytime, "lazytime"}, 179 {Opt_nolazytime, "nolazytime"}, 180 {Opt_quota, "quota"}, 181 {Opt_noquota, "noquota"}, 182 {Opt_usrquota, "usrquota"}, 183 {Opt_grpquota, "grpquota"}, 184 {Opt_prjquota, "prjquota"}, 185 {Opt_usrjquota, "usrjquota=%s"}, 186 {Opt_grpjquota, "grpjquota=%s"}, 187 {Opt_prjjquota, "prjjquota=%s"}, 188 {Opt_offusrjquota, "usrjquota="}, 189 {Opt_offgrpjquota, "grpjquota="}, 190 {Opt_offprjjquota, "prjjquota="}, 191 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 192 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 193 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 194 {Opt_whint, "whint_mode=%s"}, 195 {Opt_alloc, "alloc_mode=%s"}, 196 {Opt_fsync, "fsync_mode=%s"}, 197 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 198 {Opt_checkpoint, "checkpoint=%s"}, 199 {Opt_err, NULL}, 200 }; 201 202 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...) 203 { 204 struct va_format vaf; 205 va_list args; 206 207 va_start(args, fmt); 208 vaf.fmt = fmt; 209 vaf.va = &args; 210 printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf); 211 va_end(args); 212 } 213 214 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 215 { 216 block_t limit = (sbi->user_block_count << 1) / 1000; 217 218 /* limit is 0.2% */ 219 if (test_opt(sbi, RESERVE_ROOT) && 220 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 221 F2FS_OPTION(sbi).root_reserved_blocks = limit; 222 f2fs_msg(sbi->sb, KERN_INFO, 223 "Reduce reserved blocks for root = %u", 224 F2FS_OPTION(sbi).root_reserved_blocks); 225 } 226 if (!test_opt(sbi, RESERVE_ROOT) && 227 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 228 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 229 !gid_eq(F2FS_OPTION(sbi).s_resgid, 230 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 231 f2fs_msg(sbi->sb, KERN_INFO, 232 "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 233 from_kuid_munged(&init_user_ns, 234 F2FS_OPTION(sbi).s_resuid), 235 from_kgid_munged(&init_user_ns, 236 F2FS_OPTION(sbi).s_resgid)); 237 } 238 239 static void init_once(void *foo) 240 { 241 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 242 243 inode_init_once(&fi->vfs_inode); 244 } 245 246 #ifdef CONFIG_QUOTA 247 static const char * const quotatypes[] = INITQFNAMES; 248 #define QTYPE2NAME(t) (quotatypes[t]) 249 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 250 substring_t *args) 251 { 252 struct f2fs_sb_info *sbi = F2FS_SB(sb); 253 char *qname; 254 int ret = -EINVAL; 255 256 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 257 f2fs_msg(sb, KERN_ERR, 258 "Cannot change journaled " 259 "quota options when quota turned on"); 260 return -EINVAL; 261 } 262 if (f2fs_sb_has_quota_ino(sbi)) { 263 f2fs_msg(sb, KERN_INFO, 264 "QUOTA feature is enabled, so ignore qf_name"); 265 return 0; 266 } 267 268 qname = match_strdup(args); 269 if (!qname) { 270 f2fs_msg(sb, KERN_ERR, 271 "Not enough memory for storing quotafile name"); 272 return -EINVAL; 273 } 274 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 275 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 276 ret = 0; 277 else 278 f2fs_msg(sb, KERN_ERR, 279 "%s quota file already specified", 280 QTYPE2NAME(qtype)); 281 goto errout; 282 } 283 if (strchr(qname, '/')) { 284 f2fs_msg(sb, KERN_ERR, 285 "quotafile must be on filesystem root"); 286 goto errout; 287 } 288 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 289 set_opt(sbi, QUOTA); 290 return 0; 291 errout: 292 kvfree(qname); 293 return ret; 294 } 295 296 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 297 { 298 struct f2fs_sb_info *sbi = F2FS_SB(sb); 299 300 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 301 f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options" 302 " when quota turned on"); 303 return -EINVAL; 304 } 305 kvfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 306 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 307 return 0; 308 } 309 310 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 311 { 312 /* 313 * We do the test below only for project quotas. 'usrquota' and 314 * 'grpquota' mount options are allowed even without quota feature 315 * to support legacy quotas in quota files. 316 */ 317 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 318 f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. " 319 "Cannot enable project quota enforcement."); 320 return -1; 321 } 322 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 323 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 324 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 325 if (test_opt(sbi, USRQUOTA) && 326 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 327 clear_opt(sbi, USRQUOTA); 328 329 if (test_opt(sbi, GRPQUOTA) && 330 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 331 clear_opt(sbi, GRPQUOTA); 332 333 if (test_opt(sbi, PRJQUOTA) && 334 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 335 clear_opt(sbi, PRJQUOTA); 336 337 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 338 test_opt(sbi, PRJQUOTA)) { 339 f2fs_msg(sbi->sb, KERN_ERR, "old and new quota " 340 "format mixing"); 341 return -1; 342 } 343 344 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 345 f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format " 346 "not specified"); 347 return -1; 348 } 349 } 350 351 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 352 f2fs_msg(sbi->sb, KERN_INFO, 353 "QUOTA feature is enabled, so ignore jquota_fmt"); 354 F2FS_OPTION(sbi).s_jquota_fmt = 0; 355 } 356 return 0; 357 } 358 #endif 359 360 static int parse_options(struct super_block *sb, char *options) 361 { 362 struct f2fs_sb_info *sbi = F2FS_SB(sb); 363 substring_t args[MAX_OPT_ARGS]; 364 char *p, *name; 365 int arg = 0; 366 kuid_t uid; 367 kgid_t gid; 368 #ifdef CONFIG_QUOTA 369 int ret; 370 #endif 371 372 if (!options) 373 return 0; 374 375 while ((p = strsep(&options, ",")) != NULL) { 376 int token; 377 if (!*p) 378 continue; 379 /* 380 * Initialize args struct so we know whether arg was 381 * found; some options take optional arguments. 382 */ 383 args[0].to = args[0].from = NULL; 384 token = match_token(p, f2fs_tokens, args); 385 386 switch (token) { 387 case Opt_gc_background: 388 name = match_strdup(&args[0]); 389 390 if (!name) 391 return -ENOMEM; 392 if (strlen(name) == 2 && !strncmp(name, "on", 2)) { 393 set_opt(sbi, BG_GC); 394 clear_opt(sbi, FORCE_FG_GC); 395 } else if (strlen(name) == 3 && !strncmp(name, "off", 3)) { 396 clear_opt(sbi, BG_GC); 397 clear_opt(sbi, FORCE_FG_GC); 398 } else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) { 399 set_opt(sbi, BG_GC); 400 set_opt(sbi, FORCE_FG_GC); 401 } else { 402 kvfree(name); 403 return -EINVAL; 404 } 405 kvfree(name); 406 break; 407 case Opt_disable_roll_forward: 408 set_opt(sbi, DISABLE_ROLL_FORWARD); 409 break; 410 case Opt_norecovery: 411 /* this option mounts f2fs with ro */ 412 set_opt(sbi, DISABLE_ROLL_FORWARD); 413 if (!f2fs_readonly(sb)) 414 return -EINVAL; 415 break; 416 case Opt_discard: 417 set_opt(sbi, DISCARD); 418 break; 419 case Opt_nodiscard: 420 if (f2fs_sb_has_blkzoned(sbi)) { 421 f2fs_msg(sb, KERN_WARNING, 422 "discard is required for zoned block devices"); 423 return -EINVAL; 424 } 425 clear_opt(sbi, DISCARD); 426 break; 427 case Opt_noheap: 428 set_opt(sbi, NOHEAP); 429 break; 430 case Opt_heap: 431 clear_opt(sbi, NOHEAP); 432 break; 433 #ifdef CONFIG_F2FS_FS_XATTR 434 case Opt_user_xattr: 435 set_opt(sbi, XATTR_USER); 436 break; 437 case Opt_nouser_xattr: 438 clear_opt(sbi, XATTR_USER); 439 break; 440 case Opt_inline_xattr: 441 set_opt(sbi, INLINE_XATTR); 442 break; 443 case Opt_noinline_xattr: 444 clear_opt(sbi, INLINE_XATTR); 445 break; 446 case Opt_inline_xattr_size: 447 if (args->from && match_int(args, &arg)) 448 return -EINVAL; 449 set_opt(sbi, INLINE_XATTR_SIZE); 450 F2FS_OPTION(sbi).inline_xattr_size = arg; 451 break; 452 #else 453 case Opt_user_xattr: 454 f2fs_msg(sb, KERN_INFO, 455 "user_xattr options not supported"); 456 break; 457 case Opt_nouser_xattr: 458 f2fs_msg(sb, KERN_INFO, 459 "nouser_xattr options not supported"); 460 break; 461 case Opt_inline_xattr: 462 f2fs_msg(sb, KERN_INFO, 463 "inline_xattr options not supported"); 464 break; 465 case Opt_noinline_xattr: 466 f2fs_msg(sb, KERN_INFO, 467 "noinline_xattr options not supported"); 468 break; 469 #endif 470 #ifdef CONFIG_F2FS_FS_POSIX_ACL 471 case Opt_acl: 472 set_opt(sbi, POSIX_ACL); 473 break; 474 case Opt_noacl: 475 clear_opt(sbi, POSIX_ACL); 476 break; 477 #else 478 case Opt_acl: 479 f2fs_msg(sb, KERN_INFO, "acl options not supported"); 480 break; 481 case Opt_noacl: 482 f2fs_msg(sb, KERN_INFO, "noacl options not supported"); 483 break; 484 #endif 485 case Opt_active_logs: 486 if (args->from && match_int(args, &arg)) 487 return -EINVAL; 488 if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE) 489 return -EINVAL; 490 F2FS_OPTION(sbi).active_logs = arg; 491 break; 492 case Opt_disable_ext_identify: 493 set_opt(sbi, DISABLE_EXT_IDENTIFY); 494 break; 495 case Opt_inline_data: 496 set_opt(sbi, INLINE_DATA); 497 break; 498 case Opt_inline_dentry: 499 set_opt(sbi, INLINE_DENTRY); 500 break; 501 case Opt_noinline_dentry: 502 clear_opt(sbi, INLINE_DENTRY); 503 break; 504 case Opt_flush_merge: 505 set_opt(sbi, FLUSH_MERGE); 506 break; 507 case Opt_noflush_merge: 508 clear_opt(sbi, FLUSH_MERGE); 509 break; 510 case Opt_nobarrier: 511 set_opt(sbi, NOBARRIER); 512 break; 513 case Opt_fastboot: 514 set_opt(sbi, FASTBOOT); 515 break; 516 case Opt_extent_cache: 517 set_opt(sbi, EXTENT_CACHE); 518 break; 519 case Opt_noextent_cache: 520 clear_opt(sbi, EXTENT_CACHE); 521 break; 522 case Opt_noinline_data: 523 clear_opt(sbi, INLINE_DATA); 524 break; 525 case Opt_data_flush: 526 set_opt(sbi, DATA_FLUSH); 527 break; 528 case Opt_reserve_root: 529 if (args->from && match_int(args, &arg)) 530 return -EINVAL; 531 if (test_opt(sbi, RESERVE_ROOT)) { 532 f2fs_msg(sb, KERN_INFO, 533 "Preserve previous reserve_root=%u", 534 F2FS_OPTION(sbi).root_reserved_blocks); 535 } else { 536 F2FS_OPTION(sbi).root_reserved_blocks = arg; 537 set_opt(sbi, RESERVE_ROOT); 538 } 539 break; 540 case Opt_resuid: 541 if (args->from && match_int(args, &arg)) 542 return -EINVAL; 543 uid = make_kuid(current_user_ns(), arg); 544 if (!uid_valid(uid)) { 545 f2fs_msg(sb, KERN_ERR, 546 "Invalid uid value %d", arg); 547 return -EINVAL; 548 } 549 F2FS_OPTION(sbi).s_resuid = uid; 550 break; 551 case Opt_resgid: 552 if (args->from && match_int(args, &arg)) 553 return -EINVAL; 554 gid = make_kgid(current_user_ns(), arg); 555 if (!gid_valid(gid)) { 556 f2fs_msg(sb, KERN_ERR, 557 "Invalid gid value %d", arg); 558 return -EINVAL; 559 } 560 F2FS_OPTION(sbi).s_resgid = gid; 561 break; 562 case Opt_mode: 563 name = match_strdup(&args[0]); 564 565 if (!name) 566 return -ENOMEM; 567 if (strlen(name) == 8 && 568 !strncmp(name, "adaptive", 8)) { 569 if (f2fs_sb_has_blkzoned(sbi)) { 570 f2fs_msg(sb, KERN_WARNING, 571 "adaptive mode is not allowed with " 572 "zoned block device feature"); 573 kvfree(name); 574 return -EINVAL; 575 } 576 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 577 } else if (strlen(name) == 3 && 578 !strncmp(name, "lfs", 3)) { 579 set_opt_mode(sbi, F2FS_MOUNT_LFS); 580 } else { 581 kvfree(name); 582 return -EINVAL; 583 } 584 kvfree(name); 585 break; 586 case Opt_io_size_bits: 587 if (args->from && match_int(args, &arg)) 588 return -EINVAL; 589 if (arg > __ilog2_u32(BIO_MAX_PAGES)) { 590 f2fs_msg(sb, KERN_WARNING, 591 "Not support %d, larger than %d", 592 1 << arg, BIO_MAX_PAGES); 593 return -EINVAL; 594 } 595 F2FS_OPTION(sbi).write_io_size_bits = arg; 596 break; 597 #ifdef CONFIG_F2FS_FAULT_INJECTION 598 case Opt_fault_injection: 599 if (args->from && match_int(args, &arg)) 600 return -EINVAL; 601 f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE); 602 set_opt(sbi, FAULT_INJECTION); 603 break; 604 605 case Opt_fault_type: 606 if (args->from && match_int(args, &arg)) 607 return -EINVAL; 608 f2fs_build_fault_attr(sbi, 0, arg); 609 set_opt(sbi, FAULT_INJECTION); 610 break; 611 #else 612 case Opt_fault_injection: 613 f2fs_msg(sb, KERN_INFO, 614 "fault_injection options not supported"); 615 break; 616 617 case Opt_fault_type: 618 f2fs_msg(sb, KERN_INFO, 619 "fault_type options not supported"); 620 break; 621 #endif 622 case Opt_lazytime: 623 sb->s_flags |= SB_LAZYTIME; 624 break; 625 case Opt_nolazytime: 626 sb->s_flags &= ~SB_LAZYTIME; 627 break; 628 #ifdef CONFIG_QUOTA 629 case Opt_quota: 630 case Opt_usrquota: 631 set_opt(sbi, USRQUOTA); 632 break; 633 case Opt_grpquota: 634 set_opt(sbi, GRPQUOTA); 635 break; 636 case Opt_prjquota: 637 set_opt(sbi, PRJQUOTA); 638 break; 639 case Opt_usrjquota: 640 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 641 if (ret) 642 return ret; 643 break; 644 case Opt_grpjquota: 645 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 646 if (ret) 647 return ret; 648 break; 649 case Opt_prjjquota: 650 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 651 if (ret) 652 return ret; 653 break; 654 case Opt_offusrjquota: 655 ret = f2fs_clear_qf_name(sb, USRQUOTA); 656 if (ret) 657 return ret; 658 break; 659 case Opt_offgrpjquota: 660 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 661 if (ret) 662 return ret; 663 break; 664 case Opt_offprjjquota: 665 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 666 if (ret) 667 return ret; 668 break; 669 case Opt_jqfmt_vfsold: 670 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 671 break; 672 case Opt_jqfmt_vfsv0: 673 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 674 break; 675 case Opt_jqfmt_vfsv1: 676 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 677 break; 678 case Opt_noquota: 679 clear_opt(sbi, QUOTA); 680 clear_opt(sbi, USRQUOTA); 681 clear_opt(sbi, GRPQUOTA); 682 clear_opt(sbi, PRJQUOTA); 683 break; 684 #else 685 case Opt_quota: 686 case Opt_usrquota: 687 case Opt_grpquota: 688 case Opt_prjquota: 689 case Opt_usrjquota: 690 case Opt_grpjquota: 691 case Opt_prjjquota: 692 case Opt_offusrjquota: 693 case Opt_offgrpjquota: 694 case Opt_offprjjquota: 695 case Opt_jqfmt_vfsold: 696 case Opt_jqfmt_vfsv0: 697 case Opt_jqfmt_vfsv1: 698 case Opt_noquota: 699 f2fs_msg(sb, KERN_INFO, 700 "quota operations not supported"); 701 break; 702 #endif 703 case Opt_whint: 704 name = match_strdup(&args[0]); 705 if (!name) 706 return -ENOMEM; 707 if (strlen(name) == 10 && 708 !strncmp(name, "user-based", 10)) { 709 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER; 710 } else if (strlen(name) == 3 && 711 !strncmp(name, "off", 3)) { 712 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 713 } else if (strlen(name) == 8 && 714 !strncmp(name, "fs-based", 8)) { 715 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS; 716 } else { 717 kvfree(name); 718 return -EINVAL; 719 } 720 kvfree(name); 721 break; 722 case Opt_alloc: 723 name = match_strdup(&args[0]); 724 if (!name) 725 return -ENOMEM; 726 727 if (strlen(name) == 7 && 728 !strncmp(name, "default", 7)) { 729 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 730 } else if (strlen(name) == 5 && 731 !strncmp(name, "reuse", 5)) { 732 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 733 } else { 734 kvfree(name); 735 return -EINVAL; 736 } 737 kvfree(name); 738 break; 739 case Opt_fsync: 740 name = match_strdup(&args[0]); 741 if (!name) 742 return -ENOMEM; 743 if (strlen(name) == 5 && 744 !strncmp(name, "posix", 5)) { 745 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 746 } else if (strlen(name) == 6 && 747 !strncmp(name, "strict", 6)) { 748 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 749 } else if (strlen(name) == 9 && 750 !strncmp(name, "nobarrier", 9)) { 751 F2FS_OPTION(sbi).fsync_mode = 752 FSYNC_MODE_NOBARRIER; 753 } else { 754 kvfree(name); 755 return -EINVAL; 756 } 757 kvfree(name); 758 break; 759 case Opt_test_dummy_encryption: 760 #ifdef CONFIG_F2FS_FS_ENCRYPTION 761 if (!f2fs_sb_has_encrypt(sbi)) { 762 f2fs_msg(sb, KERN_ERR, "Encrypt feature is off"); 763 return -EINVAL; 764 } 765 766 F2FS_OPTION(sbi).test_dummy_encryption = true; 767 f2fs_msg(sb, KERN_INFO, 768 "Test dummy encryption mode enabled"); 769 #else 770 f2fs_msg(sb, KERN_INFO, 771 "Test dummy encryption mount option ignored"); 772 #endif 773 break; 774 case Opt_checkpoint: 775 name = match_strdup(&args[0]); 776 if (!name) 777 return -ENOMEM; 778 779 if (strlen(name) == 6 && 780 !strncmp(name, "enable", 6)) { 781 clear_opt(sbi, DISABLE_CHECKPOINT); 782 } else if (strlen(name) == 7 && 783 !strncmp(name, "disable", 7)) { 784 set_opt(sbi, DISABLE_CHECKPOINT); 785 } else { 786 kvfree(name); 787 return -EINVAL; 788 } 789 kvfree(name); 790 break; 791 default: 792 f2fs_msg(sb, KERN_ERR, 793 "Unrecognized mount option \"%s\" or missing value", 794 p); 795 return -EINVAL; 796 } 797 } 798 #ifdef CONFIG_QUOTA 799 if (f2fs_check_quota_options(sbi)) 800 return -EINVAL; 801 #else 802 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 803 f2fs_msg(sbi->sb, KERN_INFO, 804 "Filesystem with quota feature cannot be mounted RDWR " 805 "without CONFIG_QUOTA"); 806 return -EINVAL; 807 } 808 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 809 f2fs_msg(sb, KERN_ERR, 810 "Filesystem with project quota feature cannot be " 811 "mounted RDWR without CONFIG_QUOTA"); 812 return -EINVAL; 813 } 814 #endif 815 816 if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) { 817 f2fs_msg(sb, KERN_ERR, 818 "Should set mode=lfs with %uKB-sized IO", 819 F2FS_IO_SIZE_KB(sbi)); 820 return -EINVAL; 821 } 822 823 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 824 if (!f2fs_sb_has_extra_attr(sbi) || 825 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 826 f2fs_msg(sb, KERN_ERR, 827 "extra_attr or flexible_inline_xattr " 828 "feature is off"); 829 return -EINVAL; 830 } 831 if (!test_opt(sbi, INLINE_XATTR)) { 832 f2fs_msg(sb, KERN_ERR, 833 "inline_xattr_size option should be " 834 "set with inline_xattr option"); 835 return -EINVAL; 836 } 837 if (!F2FS_OPTION(sbi).inline_xattr_size || 838 F2FS_OPTION(sbi).inline_xattr_size >= 839 DEF_ADDRS_PER_INODE - 840 F2FS_TOTAL_EXTRA_ATTR_SIZE - 841 DEF_INLINE_RESERVED_SIZE - 842 DEF_MIN_INLINE_SIZE) { 843 f2fs_msg(sb, KERN_ERR, 844 "inline xattr size is out of range"); 845 return -EINVAL; 846 } 847 } 848 849 if (test_opt(sbi, DISABLE_CHECKPOINT) && test_opt(sbi, LFS)) { 850 f2fs_msg(sb, KERN_ERR, 851 "LFS not compatible with checkpoint=disable\n"); 852 return -EINVAL; 853 } 854 855 /* Not pass down write hints if the number of active logs is lesser 856 * than NR_CURSEG_TYPE. 857 */ 858 if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE) 859 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 860 return 0; 861 } 862 863 static struct inode *f2fs_alloc_inode(struct super_block *sb) 864 { 865 struct f2fs_inode_info *fi; 866 867 fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO); 868 if (!fi) 869 return NULL; 870 871 init_once((void *) fi); 872 873 /* Initialize f2fs-specific inode info */ 874 atomic_set(&fi->dirty_pages, 0); 875 init_rwsem(&fi->i_sem); 876 INIT_LIST_HEAD(&fi->dirty_list); 877 INIT_LIST_HEAD(&fi->gdirty_list); 878 INIT_LIST_HEAD(&fi->inmem_ilist); 879 INIT_LIST_HEAD(&fi->inmem_pages); 880 mutex_init(&fi->inmem_lock); 881 init_rwsem(&fi->i_gc_rwsem[READ]); 882 init_rwsem(&fi->i_gc_rwsem[WRITE]); 883 init_rwsem(&fi->i_mmap_sem); 884 init_rwsem(&fi->i_xattr_sem); 885 886 /* Will be used by directory only */ 887 fi->i_dir_level = F2FS_SB(sb)->dir_level; 888 889 return &fi->vfs_inode; 890 } 891 892 static int f2fs_drop_inode(struct inode *inode) 893 { 894 int ret; 895 /* 896 * This is to avoid a deadlock condition like below. 897 * writeback_single_inode(inode) 898 * - f2fs_write_data_page 899 * - f2fs_gc -> iput -> evict 900 * - inode_wait_for_writeback(inode) 901 */ 902 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 903 if (!inode->i_nlink && !is_bad_inode(inode)) { 904 /* to avoid evict_inode call simultaneously */ 905 atomic_inc(&inode->i_count); 906 spin_unlock(&inode->i_lock); 907 908 /* some remained atomic pages should discarded */ 909 if (f2fs_is_atomic_file(inode)) 910 f2fs_drop_inmem_pages(inode); 911 912 /* should remain fi->extent_tree for writepage */ 913 f2fs_destroy_extent_node(inode); 914 915 sb_start_intwrite(inode->i_sb); 916 f2fs_i_size_write(inode, 0); 917 918 if (F2FS_HAS_BLOCKS(inode)) 919 f2fs_truncate(inode); 920 921 sb_end_intwrite(inode->i_sb); 922 923 spin_lock(&inode->i_lock); 924 atomic_dec(&inode->i_count); 925 } 926 trace_f2fs_drop_inode(inode, 0); 927 return 0; 928 } 929 ret = generic_drop_inode(inode); 930 trace_f2fs_drop_inode(inode, ret); 931 return ret; 932 } 933 934 int f2fs_inode_dirtied(struct inode *inode, bool sync) 935 { 936 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 937 int ret = 0; 938 939 spin_lock(&sbi->inode_lock[DIRTY_META]); 940 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 941 ret = 1; 942 } else { 943 set_inode_flag(inode, FI_DIRTY_INODE); 944 stat_inc_dirty_inode(sbi, DIRTY_META); 945 } 946 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 947 list_add_tail(&F2FS_I(inode)->gdirty_list, 948 &sbi->inode_list[DIRTY_META]); 949 inc_page_count(sbi, F2FS_DIRTY_IMETA); 950 } 951 spin_unlock(&sbi->inode_lock[DIRTY_META]); 952 return ret; 953 } 954 955 void f2fs_inode_synced(struct inode *inode) 956 { 957 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 958 959 spin_lock(&sbi->inode_lock[DIRTY_META]); 960 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 961 spin_unlock(&sbi->inode_lock[DIRTY_META]); 962 return; 963 } 964 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 965 list_del_init(&F2FS_I(inode)->gdirty_list); 966 dec_page_count(sbi, F2FS_DIRTY_IMETA); 967 } 968 clear_inode_flag(inode, FI_DIRTY_INODE); 969 clear_inode_flag(inode, FI_AUTO_RECOVER); 970 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 971 spin_unlock(&sbi->inode_lock[DIRTY_META]); 972 } 973 974 /* 975 * f2fs_dirty_inode() is called from __mark_inode_dirty() 976 * 977 * We should call set_dirty_inode to write the dirty inode through write_inode. 978 */ 979 static void f2fs_dirty_inode(struct inode *inode, int flags) 980 { 981 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 982 983 if (inode->i_ino == F2FS_NODE_INO(sbi) || 984 inode->i_ino == F2FS_META_INO(sbi)) 985 return; 986 987 if (flags == I_DIRTY_TIME) 988 return; 989 990 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 991 clear_inode_flag(inode, FI_AUTO_RECOVER); 992 993 f2fs_inode_dirtied(inode, false); 994 } 995 996 static void f2fs_i_callback(struct rcu_head *head) 997 { 998 struct inode *inode = container_of(head, struct inode, i_rcu); 999 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1000 } 1001 1002 static void f2fs_destroy_inode(struct inode *inode) 1003 { 1004 call_rcu(&inode->i_rcu, f2fs_i_callback); 1005 } 1006 1007 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1008 { 1009 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1010 percpu_counter_destroy(&sbi->total_valid_inode_count); 1011 } 1012 1013 static void destroy_device_list(struct f2fs_sb_info *sbi) 1014 { 1015 int i; 1016 1017 for (i = 0; i < sbi->s_ndevs; i++) { 1018 blkdev_put(FDEV(i).bdev, FMODE_EXCL); 1019 #ifdef CONFIG_BLK_DEV_ZONED 1020 kvfree(FDEV(i).blkz_type); 1021 #endif 1022 } 1023 kvfree(sbi->devs); 1024 } 1025 1026 static void f2fs_put_super(struct super_block *sb) 1027 { 1028 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1029 int i; 1030 bool dropped; 1031 1032 f2fs_quota_off_umount(sb); 1033 1034 /* prevent remaining shrinker jobs */ 1035 mutex_lock(&sbi->umount_mutex); 1036 1037 /* 1038 * We don't need to do checkpoint when superblock is clean. 1039 * But, the previous checkpoint was not done by umount, it needs to do 1040 * clean checkpoint again. 1041 */ 1042 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1043 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1044 struct cp_control cpc = { 1045 .reason = CP_UMOUNT, 1046 }; 1047 f2fs_write_checkpoint(sbi, &cpc); 1048 } 1049 1050 /* be sure to wait for any on-going discard commands */ 1051 dropped = f2fs_wait_discard_bios(sbi); 1052 1053 if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) && 1054 !sbi->discard_blks && !dropped) { 1055 struct cp_control cpc = { 1056 .reason = CP_UMOUNT | CP_TRIMMED, 1057 }; 1058 f2fs_write_checkpoint(sbi, &cpc); 1059 } 1060 1061 /* 1062 * normally superblock is clean, so we need to release this. 1063 * In addition, EIO will skip do checkpoint, we need this as well. 1064 */ 1065 f2fs_release_ino_entry(sbi, true); 1066 1067 f2fs_leave_shrinker(sbi); 1068 mutex_unlock(&sbi->umount_mutex); 1069 1070 /* our cp_error case, we can wait for any writeback page */ 1071 f2fs_flush_merged_writes(sbi); 1072 1073 f2fs_wait_on_all_pages_writeback(sbi); 1074 1075 f2fs_bug_on(sbi, sbi->fsync_node_num); 1076 1077 iput(sbi->node_inode); 1078 iput(sbi->meta_inode); 1079 1080 /* 1081 * iput() can update stat information, if f2fs_write_checkpoint() 1082 * above failed with error. 1083 */ 1084 f2fs_destroy_stats(sbi); 1085 1086 /* destroy f2fs internal modules */ 1087 f2fs_destroy_node_manager(sbi); 1088 f2fs_destroy_segment_manager(sbi); 1089 1090 kvfree(sbi->ckpt); 1091 1092 f2fs_unregister_sysfs(sbi); 1093 1094 sb->s_fs_info = NULL; 1095 if (sbi->s_chksum_driver) 1096 crypto_free_shash(sbi->s_chksum_driver); 1097 kvfree(sbi->raw_super); 1098 1099 destroy_device_list(sbi); 1100 mempool_destroy(sbi->write_io_dummy); 1101 #ifdef CONFIG_QUOTA 1102 for (i = 0; i < MAXQUOTAS; i++) 1103 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 1104 #endif 1105 destroy_percpu_info(sbi); 1106 for (i = 0; i < NR_PAGE_TYPE; i++) 1107 kvfree(sbi->write_io[i]); 1108 kvfree(sbi); 1109 } 1110 1111 int f2fs_sync_fs(struct super_block *sb, int sync) 1112 { 1113 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1114 int err = 0; 1115 1116 if (unlikely(f2fs_cp_error(sbi))) 1117 return 0; 1118 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1119 return 0; 1120 1121 trace_f2fs_sync_fs(sb, sync); 1122 1123 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1124 return -EAGAIN; 1125 1126 if (sync) { 1127 struct cp_control cpc; 1128 1129 cpc.reason = __get_cp_reason(sbi); 1130 1131 mutex_lock(&sbi->gc_mutex); 1132 err = f2fs_write_checkpoint(sbi, &cpc); 1133 mutex_unlock(&sbi->gc_mutex); 1134 } 1135 f2fs_trace_ios(NULL, 1); 1136 1137 return err; 1138 } 1139 1140 static int f2fs_freeze(struct super_block *sb) 1141 { 1142 if (f2fs_readonly(sb)) 1143 return 0; 1144 1145 /* IO error happened before */ 1146 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1147 return -EIO; 1148 1149 /* must be clean, since sync_filesystem() was already called */ 1150 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1151 return -EINVAL; 1152 return 0; 1153 } 1154 1155 static int f2fs_unfreeze(struct super_block *sb) 1156 { 1157 return 0; 1158 } 1159 1160 #ifdef CONFIG_QUOTA 1161 static int f2fs_statfs_project(struct super_block *sb, 1162 kprojid_t projid, struct kstatfs *buf) 1163 { 1164 struct kqid qid; 1165 struct dquot *dquot; 1166 u64 limit; 1167 u64 curblock; 1168 1169 qid = make_kqid_projid(projid); 1170 dquot = dqget(sb, qid); 1171 if (IS_ERR(dquot)) 1172 return PTR_ERR(dquot); 1173 spin_lock(&dquot->dq_dqb_lock); 1174 1175 limit = (dquot->dq_dqb.dqb_bsoftlimit ? 1176 dquot->dq_dqb.dqb_bsoftlimit : 1177 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits; 1178 if (limit && buf->f_blocks > limit) { 1179 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits; 1180 buf->f_blocks = limit; 1181 buf->f_bfree = buf->f_bavail = 1182 (buf->f_blocks > curblock) ? 1183 (buf->f_blocks - curblock) : 0; 1184 } 1185 1186 limit = dquot->dq_dqb.dqb_isoftlimit ? 1187 dquot->dq_dqb.dqb_isoftlimit : 1188 dquot->dq_dqb.dqb_ihardlimit; 1189 if (limit && buf->f_files > limit) { 1190 buf->f_files = limit; 1191 buf->f_ffree = 1192 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1193 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1194 } 1195 1196 spin_unlock(&dquot->dq_dqb_lock); 1197 dqput(dquot); 1198 return 0; 1199 } 1200 #endif 1201 1202 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1203 { 1204 struct super_block *sb = dentry->d_sb; 1205 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1206 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1207 block_t total_count, user_block_count, start_count; 1208 u64 avail_node_count; 1209 1210 total_count = le64_to_cpu(sbi->raw_super->block_count); 1211 user_block_count = sbi->user_block_count; 1212 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1213 buf->f_type = F2FS_SUPER_MAGIC; 1214 buf->f_bsize = sbi->blocksize; 1215 1216 buf->f_blocks = total_count - start_count; 1217 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1218 sbi->current_reserved_blocks; 1219 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1220 buf->f_bfree = 0; 1221 else 1222 buf->f_bfree -= sbi->unusable_block_count; 1223 1224 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1225 buf->f_bavail = buf->f_bfree - 1226 F2FS_OPTION(sbi).root_reserved_blocks; 1227 else 1228 buf->f_bavail = 0; 1229 1230 avail_node_count = sbi->total_node_count - sbi->nquota_files - 1231 F2FS_RESERVED_NODE_NUM; 1232 1233 if (avail_node_count > user_block_count) { 1234 buf->f_files = user_block_count; 1235 buf->f_ffree = buf->f_bavail; 1236 } else { 1237 buf->f_files = avail_node_count; 1238 buf->f_ffree = min(avail_node_count - valid_node_count(sbi), 1239 buf->f_bavail); 1240 } 1241 1242 buf->f_namelen = F2FS_NAME_LEN; 1243 buf->f_fsid.val[0] = (u32)id; 1244 buf->f_fsid.val[1] = (u32)(id >> 32); 1245 1246 #ifdef CONFIG_QUOTA 1247 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1248 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1249 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1250 } 1251 #endif 1252 return 0; 1253 } 1254 1255 static inline void f2fs_show_quota_options(struct seq_file *seq, 1256 struct super_block *sb) 1257 { 1258 #ifdef CONFIG_QUOTA 1259 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1260 1261 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1262 char *fmtname = ""; 1263 1264 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1265 case QFMT_VFS_OLD: 1266 fmtname = "vfsold"; 1267 break; 1268 case QFMT_VFS_V0: 1269 fmtname = "vfsv0"; 1270 break; 1271 case QFMT_VFS_V1: 1272 fmtname = "vfsv1"; 1273 break; 1274 } 1275 seq_printf(seq, ",jqfmt=%s", fmtname); 1276 } 1277 1278 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1279 seq_show_option(seq, "usrjquota", 1280 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1281 1282 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1283 seq_show_option(seq, "grpjquota", 1284 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1285 1286 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1287 seq_show_option(seq, "prjjquota", 1288 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1289 #endif 1290 } 1291 1292 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1293 { 1294 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1295 1296 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) { 1297 if (test_opt(sbi, FORCE_FG_GC)) 1298 seq_printf(seq, ",background_gc=%s", "sync"); 1299 else 1300 seq_printf(seq, ",background_gc=%s", "on"); 1301 } else { 1302 seq_printf(seq, ",background_gc=%s", "off"); 1303 } 1304 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1305 seq_puts(seq, ",disable_roll_forward"); 1306 if (test_opt(sbi, DISCARD)) 1307 seq_puts(seq, ",discard"); 1308 if (test_opt(sbi, NOHEAP)) 1309 seq_puts(seq, ",no_heap"); 1310 else 1311 seq_puts(seq, ",heap"); 1312 #ifdef CONFIG_F2FS_FS_XATTR 1313 if (test_opt(sbi, XATTR_USER)) 1314 seq_puts(seq, ",user_xattr"); 1315 else 1316 seq_puts(seq, ",nouser_xattr"); 1317 if (test_opt(sbi, INLINE_XATTR)) 1318 seq_puts(seq, ",inline_xattr"); 1319 else 1320 seq_puts(seq, ",noinline_xattr"); 1321 if (test_opt(sbi, INLINE_XATTR_SIZE)) 1322 seq_printf(seq, ",inline_xattr_size=%u", 1323 F2FS_OPTION(sbi).inline_xattr_size); 1324 #endif 1325 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1326 if (test_opt(sbi, POSIX_ACL)) 1327 seq_puts(seq, ",acl"); 1328 else 1329 seq_puts(seq, ",noacl"); 1330 #endif 1331 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 1332 seq_puts(seq, ",disable_ext_identify"); 1333 if (test_opt(sbi, INLINE_DATA)) 1334 seq_puts(seq, ",inline_data"); 1335 else 1336 seq_puts(seq, ",noinline_data"); 1337 if (test_opt(sbi, INLINE_DENTRY)) 1338 seq_puts(seq, ",inline_dentry"); 1339 else 1340 seq_puts(seq, ",noinline_dentry"); 1341 if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE)) 1342 seq_puts(seq, ",flush_merge"); 1343 if (test_opt(sbi, NOBARRIER)) 1344 seq_puts(seq, ",nobarrier"); 1345 if (test_opt(sbi, FASTBOOT)) 1346 seq_puts(seq, ",fastboot"); 1347 if (test_opt(sbi, EXTENT_CACHE)) 1348 seq_puts(seq, ",extent_cache"); 1349 else 1350 seq_puts(seq, ",noextent_cache"); 1351 if (test_opt(sbi, DATA_FLUSH)) 1352 seq_puts(seq, ",data_flush"); 1353 1354 seq_puts(seq, ",mode="); 1355 if (test_opt(sbi, ADAPTIVE)) 1356 seq_puts(seq, "adaptive"); 1357 else if (test_opt(sbi, LFS)) 1358 seq_puts(seq, "lfs"); 1359 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 1360 if (test_opt(sbi, RESERVE_ROOT)) 1361 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 1362 F2FS_OPTION(sbi).root_reserved_blocks, 1363 from_kuid_munged(&init_user_ns, 1364 F2FS_OPTION(sbi).s_resuid), 1365 from_kgid_munged(&init_user_ns, 1366 F2FS_OPTION(sbi).s_resgid)); 1367 if (F2FS_IO_SIZE_BITS(sbi)) 1368 seq_printf(seq, ",io_bits=%u", 1369 F2FS_OPTION(sbi).write_io_size_bits); 1370 #ifdef CONFIG_F2FS_FAULT_INJECTION 1371 if (test_opt(sbi, FAULT_INJECTION)) { 1372 seq_printf(seq, ",fault_injection=%u", 1373 F2FS_OPTION(sbi).fault_info.inject_rate); 1374 seq_printf(seq, ",fault_type=%u", 1375 F2FS_OPTION(sbi).fault_info.inject_type); 1376 } 1377 #endif 1378 #ifdef CONFIG_QUOTA 1379 if (test_opt(sbi, QUOTA)) 1380 seq_puts(seq, ",quota"); 1381 if (test_opt(sbi, USRQUOTA)) 1382 seq_puts(seq, ",usrquota"); 1383 if (test_opt(sbi, GRPQUOTA)) 1384 seq_puts(seq, ",grpquota"); 1385 if (test_opt(sbi, PRJQUOTA)) 1386 seq_puts(seq, ",prjquota"); 1387 #endif 1388 f2fs_show_quota_options(seq, sbi->sb); 1389 if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER) 1390 seq_printf(seq, ",whint_mode=%s", "user-based"); 1391 else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS) 1392 seq_printf(seq, ",whint_mode=%s", "fs-based"); 1393 #ifdef CONFIG_F2FS_FS_ENCRYPTION 1394 if (F2FS_OPTION(sbi).test_dummy_encryption) 1395 seq_puts(seq, ",test_dummy_encryption"); 1396 #endif 1397 1398 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 1399 seq_printf(seq, ",alloc_mode=%s", "default"); 1400 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 1401 seq_printf(seq, ",alloc_mode=%s", "reuse"); 1402 1403 if (test_opt(sbi, DISABLE_CHECKPOINT)) 1404 seq_puts(seq, ",checkpoint=disable"); 1405 1406 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 1407 seq_printf(seq, ",fsync_mode=%s", "posix"); 1408 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 1409 seq_printf(seq, ",fsync_mode=%s", "strict"); 1410 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 1411 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 1412 return 0; 1413 } 1414 1415 static void default_options(struct f2fs_sb_info *sbi) 1416 { 1417 /* init some FS parameters */ 1418 F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE; 1419 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 1420 F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF; 1421 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 1422 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1423 F2FS_OPTION(sbi).test_dummy_encryption = false; 1424 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 1425 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 1426 1427 set_opt(sbi, BG_GC); 1428 set_opt(sbi, INLINE_XATTR); 1429 set_opt(sbi, INLINE_DATA); 1430 set_opt(sbi, INLINE_DENTRY); 1431 set_opt(sbi, EXTENT_CACHE); 1432 set_opt(sbi, NOHEAP); 1433 clear_opt(sbi, DISABLE_CHECKPOINT); 1434 sbi->sb->s_flags |= SB_LAZYTIME; 1435 set_opt(sbi, FLUSH_MERGE); 1436 set_opt(sbi, DISCARD); 1437 if (f2fs_sb_has_blkzoned(sbi)) 1438 set_opt_mode(sbi, F2FS_MOUNT_LFS); 1439 else 1440 set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE); 1441 1442 #ifdef CONFIG_F2FS_FS_XATTR 1443 set_opt(sbi, XATTR_USER); 1444 #endif 1445 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1446 set_opt(sbi, POSIX_ACL); 1447 #endif 1448 1449 f2fs_build_fault_attr(sbi, 0, 0); 1450 } 1451 1452 #ifdef CONFIG_QUOTA 1453 static int f2fs_enable_quotas(struct super_block *sb); 1454 #endif 1455 1456 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 1457 { 1458 struct cp_control cpc; 1459 int err; 1460 1461 sbi->sb->s_flags |= SB_ACTIVE; 1462 1463 f2fs_update_time(sbi, DISABLE_TIME); 1464 1465 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 1466 mutex_lock(&sbi->gc_mutex); 1467 err = f2fs_gc(sbi, true, false, NULL_SEGNO); 1468 if (err == -ENODATA) 1469 break; 1470 if (err && err != -EAGAIN) 1471 return err; 1472 } 1473 1474 err = sync_filesystem(sbi->sb); 1475 if (err) 1476 return err; 1477 1478 if (f2fs_disable_cp_again(sbi)) 1479 return -EAGAIN; 1480 1481 mutex_lock(&sbi->gc_mutex); 1482 cpc.reason = CP_PAUSE; 1483 set_sbi_flag(sbi, SBI_CP_DISABLED); 1484 f2fs_write_checkpoint(sbi, &cpc); 1485 1486 sbi->unusable_block_count = 0; 1487 mutex_unlock(&sbi->gc_mutex); 1488 return 0; 1489 } 1490 1491 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 1492 { 1493 mutex_lock(&sbi->gc_mutex); 1494 f2fs_dirty_to_prefree(sbi); 1495 1496 clear_sbi_flag(sbi, SBI_CP_DISABLED); 1497 set_sbi_flag(sbi, SBI_IS_DIRTY); 1498 mutex_unlock(&sbi->gc_mutex); 1499 1500 f2fs_sync_fs(sbi->sb, 1); 1501 } 1502 1503 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 1504 { 1505 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1506 struct f2fs_mount_info org_mount_opt; 1507 unsigned long old_sb_flags; 1508 int err; 1509 bool need_restart_gc = false; 1510 bool need_stop_gc = false; 1511 bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE); 1512 bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT); 1513 bool checkpoint_changed; 1514 #ifdef CONFIG_QUOTA 1515 int i, j; 1516 #endif 1517 1518 /* 1519 * Save the old mount options in case we 1520 * need to restore them. 1521 */ 1522 org_mount_opt = sbi->mount_opt; 1523 old_sb_flags = sb->s_flags; 1524 1525 #ifdef CONFIG_QUOTA 1526 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 1527 for (i = 0; i < MAXQUOTAS; i++) { 1528 if (F2FS_OPTION(sbi).s_qf_names[i]) { 1529 org_mount_opt.s_qf_names[i] = 1530 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 1531 GFP_KERNEL); 1532 if (!org_mount_opt.s_qf_names[i]) { 1533 for (j = 0; j < i; j++) 1534 kvfree(org_mount_opt.s_qf_names[j]); 1535 return -ENOMEM; 1536 } 1537 } else { 1538 org_mount_opt.s_qf_names[i] = NULL; 1539 } 1540 } 1541 #endif 1542 1543 /* recover superblocks we couldn't write due to previous RO mount */ 1544 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 1545 err = f2fs_commit_super(sbi, false); 1546 f2fs_msg(sb, KERN_INFO, 1547 "Try to recover all the superblocks, ret: %d", err); 1548 if (!err) 1549 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 1550 } 1551 1552 default_options(sbi); 1553 1554 /* parse mount options */ 1555 err = parse_options(sb, data); 1556 if (err) 1557 goto restore_opts; 1558 checkpoint_changed = 1559 disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT); 1560 1561 /* 1562 * Previous and new state of filesystem is RO, 1563 * so skip checking GC and FLUSH_MERGE conditions. 1564 */ 1565 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 1566 goto skip; 1567 1568 #ifdef CONFIG_QUOTA 1569 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 1570 err = dquot_suspend(sb, -1); 1571 if (err < 0) 1572 goto restore_opts; 1573 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 1574 /* dquot_resume needs RW */ 1575 sb->s_flags &= ~SB_RDONLY; 1576 if (sb_any_quota_suspended(sb)) { 1577 dquot_resume(sb, -1); 1578 } else if (f2fs_sb_has_quota_ino(sbi)) { 1579 err = f2fs_enable_quotas(sb); 1580 if (err) 1581 goto restore_opts; 1582 } 1583 } 1584 #endif 1585 /* disallow enable/disable extent_cache dynamically */ 1586 if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) { 1587 err = -EINVAL; 1588 f2fs_msg(sbi->sb, KERN_WARNING, 1589 "switch extent_cache option is not allowed"); 1590 goto restore_opts; 1591 } 1592 1593 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 1594 err = -EINVAL; 1595 f2fs_msg(sbi->sb, KERN_WARNING, 1596 "disabling checkpoint not compatible with read-only"); 1597 goto restore_opts; 1598 } 1599 1600 /* 1601 * We stop the GC thread if FS is mounted as RO 1602 * or if background_gc = off is passed in mount 1603 * option. Also sync the filesystem. 1604 */ 1605 if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) { 1606 if (sbi->gc_thread) { 1607 f2fs_stop_gc_thread(sbi); 1608 need_restart_gc = true; 1609 } 1610 } else if (!sbi->gc_thread) { 1611 err = f2fs_start_gc_thread(sbi); 1612 if (err) 1613 goto restore_opts; 1614 need_stop_gc = true; 1615 } 1616 1617 if (*flags & SB_RDONLY || 1618 F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) { 1619 writeback_inodes_sb(sb, WB_REASON_SYNC); 1620 sync_inodes_sb(sb); 1621 1622 set_sbi_flag(sbi, SBI_IS_DIRTY); 1623 set_sbi_flag(sbi, SBI_IS_CLOSE); 1624 f2fs_sync_fs(sb, 1); 1625 clear_sbi_flag(sbi, SBI_IS_CLOSE); 1626 } 1627 1628 if (checkpoint_changed) { 1629 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 1630 err = f2fs_disable_checkpoint(sbi); 1631 if (err) 1632 goto restore_gc; 1633 } else { 1634 f2fs_enable_checkpoint(sbi); 1635 } 1636 } 1637 1638 /* 1639 * We stop issue flush thread if FS is mounted as RO 1640 * or if flush_merge is not passed in mount option. 1641 */ 1642 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 1643 clear_opt(sbi, FLUSH_MERGE); 1644 f2fs_destroy_flush_cmd_control(sbi, false); 1645 } else { 1646 err = f2fs_create_flush_cmd_control(sbi); 1647 if (err) 1648 goto restore_gc; 1649 } 1650 skip: 1651 #ifdef CONFIG_QUOTA 1652 /* Release old quota file names */ 1653 for (i = 0; i < MAXQUOTAS; i++) 1654 kvfree(org_mount_opt.s_qf_names[i]); 1655 #endif 1656 /* Update the POSIXACL Flag */ 1657 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 1658 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 1659 1660 limit_reserve_root(sbi); 1661 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 1662 return 0; 1663 restore_gc: 1664 if (need_restart_gc) { 1665 if (f2fs_start_gc_thread(sbi)) 1666 f2fs_msg(sbi->sb, KERN_WARNING, 1667 "background gc thread has stopped"); 1668 } else if (need_stop_gc) { 1669 f2fs_stop_gc_thread(sbi); 1670 } 1671 restore_opts: 1672 #ifdef CONFIG_QUOTA 1673 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 1674 for (i = 0; i < MAXQUOTAS; i++) { 1675 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 1676 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 1677 } 1678 #endif 1679 sbi->mount_opt = org_mount_opt; 1680 sb->s_flags = old_sb_flags; 1681 return err; 1682 } 1683 1684 #ifdef CONFIG_QUOTA 1685 /* Read data from quotafile */ 1686 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 1687 size_t len, loff_t off) 1688 { 1689 struct inode *inode = sb_dqopt(sb)->files[type]; 1690 struct address_space *mapping = inode->i_mapping; 1691 block_t blkidx = F2FS_BYTES_TO_BLK(off); 1692 int offset = off & (sb->s_blocksize - 1); 1693 int tocopy; 1694 size_t toread; 1695 loff_t i_size = i_size_read(inode); 1696 struct page *page; 1697 char *kaddr; 1698 1699 if (off > i_size) 1700 return 0; 1701 1702 if (off + len > i_size) 1703 len = i_size - off; 1704 toread = len; 1705 while (toread > 0) { 1706 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 1707 repeat: 1708 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 1709 if (IS_ERR(page)) { 1710 if (PTR_ERR(page) == -ENOMEM) { 1711 congestion_wait(BLK_RW_ASYNC, HZ/50); 1712 goto repeat; 1713 } 1714 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1715 return PTR_ERR(page); 1716 } 1717 1718 lock_page(page); 1719 1720 if (unlikely(page->mapping != mapping)) { 1721 f2fs_put_page(page, 1); 1722 goto repeat; 1723 } 1724 if (unlikely(!PageUptodate(page))) { 1725 f2fs_put_page(page, 1); 1726 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1727 return -EIO; 1728 } 1729 1730 kaddr = kmap_atomic(page); 1731 memcpy(data, kaddr + offset, tocopy); 1732 kunmap_atomic(kaddr); 1733 f2fs_put_page(page, 1); 1734 1735 offset = 0; 1736 toread -= tocopy; 1737 data += tocopy; 1738 blkidx++; 1739 } 1740 return len; 1741 } 1742 1743 /* Write to quotafile */ 1744 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 1745 const char *data, size_t len, loff_t off) 1746 { 1747 struct inode *inode = sb_dqopt(sb)->files[type]; 1748 struct address_space *mapping = inode->i_mapping; 1749 const struct address_space_operations *a_ops = mapping->a_ops; 1750 int offset = off & (sb->s_blocksize - 1); 1751 size_t towrite = len; 1752 struct page *page; 1753 char *kaddr; 1754 int err = 0; 1755 int tocopy; 1756 1757 while (towrite > 0) { 1758 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 1759 towrite); 1760 retry: 1761 err = a_ops->write_begin(NULL, mapping, off, tocopy, 0, 1762 &page, NULL); 1763 if (unlikely(err)) { 1764 if (err == -ENOMEM) { 1765 congestion_wait(BLK_RW_ASYNC, HZ/50); 1766 goto retry; 1767 } 1768 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1769 break; 1770 } 1771 1772 kaddr = kmap_atomic(page); 1773 memcpy(kaddr + offset, data, tocopy); 1774 kunmap_atomic(kaddr); 1775 flush_dcache_page(page); 1776 1777 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 1778 page, NULL); 1779 offset = 0; 1780 towrite -= tocopy; 1781 off += tocopy; 1782 data += tocopy; 1783 cond_resched(); 1784 } 1785 1786 if (len == towrite) 1787 return err; 1788 inode->i_mtime = inode->i_ctime = current_time(inode); 1789 f2fs_mark_inode_dirty_sync(inode, false); 1790 return len - towrite; 1791 } 1792 1793 static struct dquot **f2fs_get_dquots(struct inode *inode) 1794 { 1795 return F2FS_I(inode)->i_dquot; 1796 } 1797 1798 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 1799 { 1800 return &F2FS_I(inode)->i_reserved_quota; 1801 } 1802 1803 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 1804 { 1805 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 1806 f2fs_msg(sbi->sb, KERN_ERR, 1807 "quota sysfile may be corrupted, skip loading it"); 1808 return 0; 1809 } 1810 1811 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 1812 F2FS_OPTION(sbi).s_jquota_fmt, type); 1813 } 1814 1815 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 1816 { 1817 int enabled = 0; 1818 int i, err; 1819 1820 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 1821 err = f2fs_enable_quotas(sbi->sb); 1822 if (err) { 1823 f2fs_msg(sbi->sb, KERN_ERR, 1824 "Cannot turn on quota_ino: %d", err); 1825 return 0; 1826 } 1827 return 1; 1828 } 1829 1830 for (i = 0; i < MAXQUOTAS; i++) { 1831 if (F2FS_OPTION(sbi).s_qf_names[i]) { 1832 err = f2fs_quota_on_mount(sbi, i); 1833 if (!err) { 1834 enabled = 1; 1835 continue; 1836 } 1837 f2fs_msg(sbi->sb, KERN_ERR, 1838 "Cannot turn on quotas: %d on %d", err, i); 1839 } 1840 } 1841 return enabled; 1842 } 1843 1844 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 1845 unsigned int flags) 1846 { 1847 struct inode *qf_inode; 1848 unsigned long qf_inum; 1849 int err; 1850 1851 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 1852 1853 qf_inum = f2fs_qf_ino(sb, type); 1854 if (!qf_inum) 1855 return -EPERM; 1856 1857 qf_inode = f2fs_iget(sb, qf_inum); 1858 if (IS_ERR(qf_inode)) { 1859 f2fs_msg(sb, KERN_ERR, 1860 "Bad quota inode %u:%lu", type, qf_inum); 1861 return PTR_ERR(qf_inode); 1862 } 1863 1864 /* Don't account quota for quota files to avoid recursion */ 1865 qf_inode->i_flags |= S_NOQUOTA; 1866 err = dquot_enable(qf_inode, type, format_id, flags); 1867 iput(qf_inode); 1868 return err; 1869 } 1870 1871 static int f2fs_enable_quotas(struct super_block *sb) 1872 { 1873 int type, err = 0; 1874 unsigned long qf_inum; 1875 bool quota_mopt[MAXQUOTAS] = { 1876 test_opt(F2FS_SB(sb), USRQUOTA), 1877 test_opt(F2FS_SB(sb), GRPQUOTA), 1878 test_opt(F2FS_SB(sb), PRJQUOTA), 1879 }; 1880 1881 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 1882 f2fs_msg(sb, KERN_ERR, 1883 "quota file may be corrupted, skip loading it"); 1884 return 0; 1885 } 1886 1887 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 1888 1889 for (type = 0; type < MAXQUOTAS; type++) { 1890 qf_inum = f2fs_qf_ino(sb, type); 1891 if (qf_inum) { 1892 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 1893 DQUOT_USAGE_ENABLED | 1894 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 1895 if (err) { 1896 f2fs_msg(sb, KERN_ERR, 1897 "Failed to enable quota tracking " 1898 "(type=%d, err=%d). Please run " 1899 "fsck to fix.", type, err); 1900 for (type--; type >= 0; type--) 1901 dquot_quota_off(sb, type); 1902 set_sbi_flag(F2FS_SB(sb), 1903 SBI_QUOTA_NEED_REPAIR); 1904 return err; 1905 } 1906 } 1907 } 1908 return 0; 1909 } 1910 1911 int f2fs_quota_sync(struct super_block *sb, int type) 1912 { 1913 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1914 struct quota_info *dqopt = sb_dqopt(sb); 1915 int cnt; 1916 int ret; 1917 1918 ret = dquot_writeback_dquots(sb, type); 1919 if (ret) 1920 goto out; 1921 1922 /* 1923 * Now when everything is written we can discard the pagecache so 1924 * that userspace sees the changes. 1925 */ 1926 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 1927 struct address_space *mapping; 1928 1929 if (type != -1 && cnt != type) 1930 continue; 1931 if (!sb_has_quota_active(sb, cnt)) 1932 continue; 1933 1934 mapping = dqopt->files[cnt]->i_mapping; 1935 1936 ret = filemap_fdatawrite(mapping); 1937 if (ret) 1938 goto out; 1939 1940 /* if we are using journalled quota */ 1941 if (is_journalled_quota(sbi)) 1942 continue; 1943 1944 ret = filemap_fdatawait(mapping); 1945 if (ret) 1946 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1947 1948 inode_lock(dqopt->files[cnt]); 1949 truncate_inode_pages(&dqopt->files[cnt]->i_data, 0); 1950 inode_unlock(dqopt->files[cnt]); 1951 } 1952 out: 1953 if (ret) 1954 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 1955 return ret; 1956 } 1957 1958 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 1959 const struct path *path) 1960 { 1961 struct inode *inode; 1962 int err; 1963 1964 err = f2fs_quota_sync(sb, type); 1965 if (err) 1966 return err; 1967 1968 err = dquot_quota_on(sb, type, format_id, path); 1969 if (err) 1970 return err; 1971 1972 inode = d_inode(path->dentry); 1973 1974 inode_lock(inode); 1975 F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL; 1976 f2fs_set_inode_flags(inode); 1977 inode_unlock(inode); 1978 f2fs_mark_inode_dirty_sync(inode, false); 1979 1980 return 0; 1981 } 1982 1983 static int f2fs_quota_off(struct super_block *sb, int type) 1984 { 1985 struct inode *inode = sb_dqopt(sb)->files[type]; 1986 int err; 1987 1988 if (!inode || !igrab(inode)) 1989 return dquot_quota_off(sb, type); 1990 1991 err = f2fs_quota_sync(sb, type); 1992 if (err) 1993 goto out_put; 1994 1995 err = dquot_quota_off(sb, type); 1996 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 1997 goto out_put; 1998 1999 inode_lock(inode); 2000 F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL); 2001 f2fs_set_inode_flags(inode); 2002 inode_unlock(inode); 2003 f2fs_mark_inode_dirty_sync(inode, false); 2004 out_put: 2005 iput(inode); 2006 return err; 2007 } 2008 2009 void f2fs_quota_off_umount(struct super_block *sb) 2010 { 2011 int type; 2012 int err; 2013 2014 for (type = 0; type < MAXQUOTAS; type++) { 2015 err = f2fs_quota_off(sb, type); 2016 if (err) { 2017 int ret = dquot_quota_off(sb, type); 2018 2019 f2fs_msg(sb, KERN_ERR, 2020 "Fail to turn off disk quota " 2021 "(type: %d, err: %d, ret:%d), Please " 2022 "run fsck to fix it.", type, err, ret); 2023 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2024 } 2025 } 2026 } 2027 2028 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 2029 { 2030 struct quota_info *dqopt = sb_dqopt(sb); 2031 int type; 2032 2033 for (type = 0; type < MAXQUOTAS; type++) { 2034 if (!dqopt->files[type]) 2035 continue; 2036 f2fs_inode_synced(dqopt->files[type]); 2037 } 2038 } 2039 2040 static int f2fs_dquot_commit(struct dquot *dquot) 2041 { 2042 int ret; 2043 2044 ret = dquot_commit(dquot); 2045 if (ret < 0) 2046 set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR); 2047 return ret; 2048 } 2049 2050 static int f2fs_dquot_acquire(struct dquot *dquot) 2051 { 2052 int ret; 2053 2054 ret = dquot_acquire(dquot); 2055 if (ret < 0) 2056 set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR); 2057 2058 return ret; 2059 } 2060 2061 static int f2fs_dquot_release(struct dquot *dquot) 2062 { 2063 int ret; 2064 2065 ret = dquot_release(dquot); 2066 if (ret < 0) 2067 set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR); 2068 return ret; 2069 } 2070 2071 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 2072 { 2073 struct super_block *sb = dquot->dq_sb; 2074 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2075 int ret; 2076 2077 ret = dquot_mark_dquot_dirty(dquot); 2078 2079 /* if we are using journalled quota */ 2080 if (is_journalled_quota(sbi)) 2081 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 2082 2083 return ret; 2084 } 2085 2086 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 2087 { 2088 int ret; 2089 2090 ret = dquot_commit_info(sb, type); 2091 if (ret < 0) 2092 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2093 return ret; 2094 } 2095 2096 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 2097 { 2098 *projid = F2FS_I(inode)->i_projid; 2099 return 0; 2100 } 2101 2102 static const struct dquot_operations f2fs_quota_operations = { 2103 .get_reserved_space = f2fs_get_reserved_space, 2104 .write_dquot = f2fs_dquot_commit, 2105 .acquire_dquot = f2fs_dquot_acquire, 2106 .release_dquot = f2fs_dquot_release, 2107 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 2108 .write_info = f2fs_dquot_commit_info, 2109 .alloc_dquot = dquot_alloc, 2110 .destroy_dquot = dquot_destroy, 2111 .get_projid = f2fs_get_projid, 2112 .get_next_id = dquot_get_next_id, 2113 }; 2114 2115 static const struct quotactl_ops f2fs_quotactl_ops = { 2116 .quota_on = f2fs_quota_on, 2117 .quota_off = f2fs_quota_off, 2118 .quota_sync = f2fs_quota_sync, 2119 .get_state = dquot_get_state, 2120 .set_info = dquot_set_dqinfo, 2121 .get_dqblk = dquot_get_dqblk, 2122 .set_dqblk = dquot_set_dqblk, 2123 .get_nextdqblk = dquot_get_next_dqblk, 2124 }; 2125 #else 2126 int f2fs_quota_sync(struct super_block *sb, int type) 2127 { 2128 return 0; 2129 } 2130 2131 void f2fs_quota_off_umount(struct super_block *sb) 2132 { 2133 } 2134 #endif 2135 2136 static const struct super_operations f2fs_sops = { 2137 .alloc_inode = f2fs_alloc_inode, 2138 .drop_inode = f2fs_drop_inode, 2139 .destroy_inode = f2fs_destroy_inode, 2140 .write_inode = f2fs_write_inode, 2141 .dirty_inode = f2fs_dirty_inode, 2142 .show_options = f2fs_show_options, 2143 #ifdef CONFIG_QUOTA 2144 .quota_read = f2fs_quota_read, 2145 .quota_write = f2fs_quota_write, 2146 .get_dquots = f2fs_get_dquots, 2147 #endif 2148 .evict_inode = f2fs_evict_inode, 2149 .put_super = f2fs_put_super, 2150 .sync_fs = f2fs_sync_fs, 2151 .freeze_fs = f2fs_freeze, 2152 .unfreeze_fs = f2fs_unfreeze, 2153 .statfs = f2fs_statfs, 2154 .remount_fs = f2fs_remount, 2155 }; 2156 2157 #ifdef CONFIG_F2FS_FS_ENCRYPTION 2158 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 2159 { 2160 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2161 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2162 ctx, len, NULL); 2163 } 2164 2165 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 2166 void *fs_data) 2167 { 2168 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 2169 2170 /* 2171 * Encrypting the root directory is not allowed because fsck 2172 * expects lost+found directory to exist and remain unencrypted 2173 * if LOST_FOUND feature is enabled. 2174 * 2175 */ 2176 if (f2fs_sb_has_lost_found(sbi) && 2177 inode->i_ino == F2FS_ROOT_INO(sbi)) 2178 return -EPERM; 2179 2180 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 2181 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 2182 ctx, len, fs_data, XATTR_CREATE); 2183 } 2184 2185 static bool f2fs_dummy_context(struct inode *inode) 2186 { 2187 return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode)); 2188 } 2189 2190 static const struct fscrypt_operations f2fs_cryptops = { 2191 .key_prefix = "f2fs:", 2192 .get_context = f2fs_get_context, 2193 .set_context = f2fs_set_context, 2194 .dummy_context = f2fs_dummy_context, 2195 .empty_dir = f2fs_empty_dir, 2196 .max_namelen = F2FS_NAME_LEN, 2197 }; 2198 #endif 2199 2200 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 2201 u64 ino, u32 generation) 2202 { 2203 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2204 struct inode *inode; 2205 2206 if (f2fs_check_nid_range(sbi, ino)) 2207 return ERR_PTR(-ESTALE); 2208 2209 /* 2210 * f2fs_iget isn't quite right if the inode is currently unallocated! 2211 * However f2fs_iget currently does appropriate checks to handle stale 2212 * inodes so everything is OK. 2213 */ 2214 inode = f2fs_iget(sb, ino); 2215 if (IS_ERR(inode)) 2216 return ERR_CAST(inode); 2217 if (unlikely(generation && inode->i_generation != generation)) { 2218 /* we didn't find the right inode.. */ 2219 iput(inode); 2220 return ERR_PTR(-ESTALE); 2221 } 2222 return inode; 2223 } 2224 2225 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 2226 int fh_len, int fh_type) 2227 { 2228 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 2229 f2fs_nfs_get_inode); 2230 } 2231 2232 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 2233 int fh_len, int fh_type) 2234 { 2235 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 2236 f2fs_nfs_get_inode); 2237 } 2238 2239 static const struct export_operations f2fs_export_ops = { 2240 .fh_to_dentry = f2fs_fh_to_dentry, 2241 .fh_to_parent = f2fs_fh_to_parent, 2242 .get_parent = f2fs_get_parent, 2243 }; 2244 2245 static loff_t max_file_blocks(void) 2246 { 2247 loff_t result = 0; 2248 loff_t leaf_count = ADDRS_PER_BLOCK; 2249 2250 /* 2251 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 2252 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 2253 * space in inode.i_addr, it will be more safe to reassign 2254 * result as zero. 2255 */ 2256 2257 /* two direct node blocks */ 2258 result += (leaf_count * 2); 2259 2260 /* two indirect node blocks */ 2261 leaf_count *= NIDS_PER_BLOCK; 2262 result += (leaf_count * 2); 2263 2264 /* one double indirect node block */ 2265 leaf_count *= NIDS_PER_BLOCK; 2266 result += leaf_count; 2267 2268 return result; 2269 } 2270 2271 static int __f2fs_commit_super(struct buffer_head *bh, 2272 struct f2fs_super_block *super) 2273 { 2274 lock_buffer(bh); 2275 if (super) 2276 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 2277 set_buffer_dirty(bh); 2278 unlock_buffer(bh); 2279 2280 /* it's rare case, we can do fua all the time */ 2281 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 2282 } 2283 2284 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 2285 struct buffer_head *bh) 2286 { 2287 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2288 (bh->b_data + F2FS_SUPER_OFFSET); 2289 struct super_block *sb = sbi->sb; 2290 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 2291 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 2292 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 2293 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 2294 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 2295 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 2296 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 2297 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 2298 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 2299 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 2300 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2301 u32 segment_count = le32_to_cpu(raw_super->segment_count); 2302 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2303 u64 main_end_blkaddr = main_blkaddr + 2304 (segment_count_main << log_blocks_per_seg); 2305 u64 seg_end_blkaddr = segment0_blkaddr + 2306 (segment_count << log_blocks_per_seg); 2307 2308 if (segment0_blkaddr != cp_blkaddr) { 2309 f2fs_msg(sb, KERN_INFO, 2310 "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 2311 segment0_blkaddr, cp_blkaddr); 2312 return true; 2313 } 2314 2315 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 2316 sit_blkaddr) { 2317 f2fs_msg(sb, KERN_INFO, 2318 "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 2319 cp_blkaddr, sit_blkaddr, 2320 segment_count_ckpt << log_blocks_per_seg); 2321 return true; 2322 } 2323 2324 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 2325 nat_blkaddr) { 2326 f2fs_msg(sb, KERN_INFO, 2327 "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 2328 sit_blkaddr, nat_blkaddr, 2329 segment_count_sit << log_blocks_per_seg); 2330 return true; 2331 } 2332 2333 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 2334 ssa_blkaddr) { 2335 f2fs_msg(sb, KERN_INFO, 2336 "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 2337 nat_blkaddr, ssa_blkaddr, 2338 segment_count_nat << log_blocks_per_seg); 2339 return true; 2340 } 2341 2342 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 2343 main_blkaddr) { 2344 f2fs_msg(sb, KERN_INFO, 2345 "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 2346 ssa_blkaddr, main_blkaddr, 2347 segment_count_ssa << log_blocks_per_seg); 2348 return true; 2349 } 2350 2351 if (main_end_blkaddr > seg_end_blkaddr) { 2352 f2fs_msg(sb, KERN_INFO, 2353 "Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)", 2354 main_blkaddr, 2355 segment0_blkaddr + 2356 (segment_count << log_blocks_per_seg), 2357 segment_count_main << log_blocks_per_seg); 2358 return true; 2359 } else if (main_end_blkaddr < seg_end_blkaddr) { 2360 int err = 0; 2361 char *res; 2362 2363 /* fix in-memory information all the time */ 2364 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 2365 segment0_blkaddr) >> log_blocks_per_seg); 2366 2367 if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) { 2368 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2369 res = "internally"; 2370 } else { 2371 err = __f2fs_commit_super(bh, NULL); 2372 res = err ? "failed" : "done"; 2373 } 2374 f2fs_msg(sb, KERN_INFO, 2375 "Fix alignment : %s, start(%u) end(%u) block(%u)", 2376 res, main_blkaddr, 2377 segment0_blkaddr + 2378 (segment_count << log_blocks_per_seg), 2379 segment_count_main << log_blocks_per_seg); 2380 if (err) 2381 return true; 2382 } 2383 return false; 2384 } 2385 2386 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 2387 struct buffer_head *bh) 2388 { 2389 block_t segment_count, segs_per_sec, secs_per_zone; 2390 block_t total_sections, blocks_per_seg; 2391 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 2392 (bh->b_data + F2FS_SUPER_OFFSET); 2393 struct super_block *sb = sbi->sb; 2394 unsigned int blocksize; 2395 size_t crc_offset = 0; 2396 __u32 crc = 0; 2397 2398 /* Check checksum_offset and crc in superblock */ 2399 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 2400 crc_offset = le32_to_cpu(raw_super->checksum_offset); 2401 if (crc_offset != 2402 offsetof(struct f2fs_super_block, crc)) { 2403 f2fs_msg(sb, KERN_INFO, 2404 "Invalid SB checksum offset: %zu", 2405 crc_offset); 2406 return 1; 2407 } 2408 crc = le32_to_cpu(raw_super->crc); 2409 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 2410 f2fs_msg(sb, KERN_INFO, 2411 "Invalid SB checksum value: %u", crc); 2412 return 1; 2413 } 2414 } 2415 2416 if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) { 2417 f2fs_msg(sb, KERN_INFO, 2418 "Magic Mismatch, valid(0x%x) - read(0x%x)", 2419 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 2420 return 1; 2421 } 2422 2423 /* Currently, support only 4KB page cache size */ 2424 if (F2FS_BLKSIZE != PAGE_SIZE) { 2425 f2fs_msg(sb, KERN_INFO, 2426 "Invalid page_cache_size (%lu), supports only 4KB\n", 2427 PAGE_SIZE); 2428 return 1; 2429 } 2430 2431 /* Currently, support only 4KB block size */ 2432 blocksize = 1 << le32_to_cpu(raw_super->log_blocksize); 2433 if (blocksize != F2FS_BLKSIZE) { 2434 f2fs_msg(sb, KERN_INFO, 2435 "Invalid blocksize (%u), supports only 4KB\n", 2436 blocksize); 2437 return 1; 2438 } 2439 2440 /* check log blocks per segment */ 2441 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 2442 f2fs_msg(sb, KERN_INFO, 2443 "Invalid log blocks per segment (%u)\n", 2444 le32_to_cpu(raw_super->log_blocks_per_seg)); 2445 return 1; 2446 } 2447 2448 /* Currently, support 512/1024/2048/4096 bytes sector size */ 2449 if (le32_to_cpu(raw_super->log_sectorsize) > 2450 F2FS_MAX_LOG_SECTOR_SIZE || 2451 le32_to_cpu(raw_super->log_sectorsize) < 2452 F2FS_MIN_LOG_SECTOR_SIZE) { 2453 f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)", 2454 le32_to_cpu(raw_super->log_sectorsize)); 2455 return 1; 2456 } 2457 if (le32_to_cpu(raw_super->log_sectors_per_block) + 2458 le32_to_cpu(raw_super->log_sectorsize) != 2459 F2FS_MAX_LOG_SECTOR_SIZE) { 2460 f2fs_msg(sb, KERN_INFO, 2461 "Invalid log sectors per block(%u) log sectorsize(%u)", 2462 le32_to_cpu(raw_super->log_sectors_per_block), 2463 le32_to_cpu(raw_super->log_sectorsize)); 2464 return 1; 2465 } 2466 2467 segment_count = le32_to_cpu(raw_super->segment_count); 2468 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 2469 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 2470 total_sections = le32_to_cpu(raw_super->section_count); 2471 2472 /* blocks_per_seg should be 512, given the above check */ 2473 blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg); 2474 2475 if (segment_count > F2FS_MAX_SEGMENT || 2476 segment_count < F2FS_MIN_SEGMENTS) { 2477 f2fs_msg(sb, KERN_INFO, 2478 "Invalid segment count (%u)", 2479 segment_count); 2480 return 1; 2481 } 2482 2483 if (total_sections > segment_count || 2484 total_sections < F2FS_MIN_SEGMENTS || 2485 segs_per_sec > segment_count || !segs_per_sec) { 2486 f2fs_msg(sb, KERN_INFO, 2487 "Invalid segment/section count (%u, %u x %u)", 2488 segment_count, total_sections, segs_per_sec); 2489 return 1; 2490 } 2491 2492 if ((segment_count / segs_per_sec) < total_sections) { 2493 f2fs_msg(sb, KERN_INFO, 2494 "Small segment_count (%u < %u * %u)", 2495 segment_count, segs_per_sec, total_sections); 2496 return 1; 2497 } 2498 2499 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 2500 f2fs_msg(sb, KERN_INFO, 2501 "Wrong segment_count / block_count (%u > %llu)", 2502 segment_count, le64_to_cpu(raw_super->block_count)); 2503 return 1; 2504 } 2505 2506 if (secs_per_zone > total_sections || !secs_per_zone) { 2507 f2fs_msg(sb, KERN_INFO, 2508 "Wrong secs_per_zone / total_sections (%u, %u)", 2509 secs_per_zone, total_sections); 2510 return 1; 2511 } 2512 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 2513 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 2514 (le32_to_cpu(raw_super->extension_count) + 2515 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 2516 f2fs_msg(sb, KERN_INFO, 2517 "Corrupted extension count (%u + %u > %u)", 2518 le32_to_cpu(raw_super->extension_count), 2519 raw_super->hot_ext_count, 2520 F2FS_MAX_EXTENSION); 2521 return 1; 2522 } 2523 2524 if (le32_to_cpu(raw_super->cp_payload) > 2525 (blocks_per_seg - F2FS_CP_PACKS)) { 2526 f2fs_msg(sb, KERN_INFO, 2527 "Insane cp_payload (%u > %u)", 2528 le32_to_cpu(raw_super->cp_payload), 2529 blocks_per_seg - F2FS_CP_PACKS); 2530 return 1; 2531 } 2532 2533 /* check reserved ino info */ 2534 if (le32_to_cpu(raw_super->node_ino) != 1 || 2535 le32_to_cpu(raw_super->meta_ino) != 2 || 2536 le32_to_cpu(raw_super->root_ino) != 3) { 2537 f2fs_msg(sb, KERN_INFO, 2538 "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 2539 le32_to_cpu(raw_super->node_ino), 2540 le32_to_cpu(raw_super->meta_ino), 2541 le32_to_cpu(raw_super->root_ino)); 2542 return 1; 2543 } 2544 2545 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 2546 if (sanity_check_area_boundary(sbi, bh)) 2547 return 1; 2548 2549 return 0; 2550 } 2551 2552 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 2553 { 2554 unsigned int total, fsmeta; 2555 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2556 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 2557 unsigned int ovp_segments, reserved_segments; 2558 unsigned int main_segs, blocks_per_seg; 2559 unsigned int sit_segs, nat_segs; 2560 unsigned int sit_bitmap_size, nat_bitmap_size; 2561 unsigned int log_blocks_per_seg; 2562 unsigned int segment_count_main; 2563 unsigned int cp_pack_start_sum, cp_payload; 2564 block_t user_block_count; 2565 int i, j; 2566 2567 total = le32_to_cpu(raw_super->segment_count); 2568 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 2569 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 2570 fsmeta += sit_segs; 2571 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 2572 fsmeta += nat_segs; 2573 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 2574 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 2575 2576 if (unlikely(fsmeta >= total)) 2577 return 1; 2578 2579 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 2580 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 2581 2582 if (unlikely(fsmeta < F2FS_MIN_SEGMENTS || 2583 ovp_segments == 0 || reserved_segments == 0)) { 2584 f2fs_msg(sbi->sb, KERN_ERR, 2585 "Wrong layout: check mkfs.f2fs version"); 2586 return 1; 2587 } 2588 2589 user_block_count = le64_to_cpu(ckpt->user_block_count); 2590 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 2591 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2592 if (!user_block_count || user_block_count >= 2593 segment_count_main << log_blocks_per_seg) { 2594 f2fs_msg(sbi->sb, KERN_ERR, 2595 "Wrong user_block_count: %u", user_block_count); 2596 return 1; 2597 } 2598 2599 main_segs = le32_to_cpu(raw_super->segment_count_main); 2600 blocks_per_seg = sbi->blocks_per_seg; 2601 2602 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 2603 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 2604 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 2605 return 1; 2606 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 2607 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 2608 le32_to_cpu(ckpt->cur_node_segno[j])) { 2609 f2fs_msg(sbi->sb, KERN_ERR, 2610 "Node segment (%u, %u) has the same " 2611 "segno: %u", i, j, 2612 le32_to_cpu(ckpt->cur_node_segno[i])); 2613 return 1; 2614 } 2615 } 2616 } 2617 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 2618 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 2619 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 2620 return 1; 2621 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 2622 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 2623 le32_to_cpu(ckpt->cur_data_segno[j])) { 2624 f2fs_msg(sbi->sb, KERN_ERR, 2625 "Data segment (%u, %u) has the same " 2626 "segno: %u", i, j, 2627 le32_to_cpu(ckpt->cur_data_segno[i])); 2628 return 1; 2629 } 2630 } 2631 } 2632 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 2633 for (j = i; j < NR_CURSEG_DATA_TYPE; j++) { 2634 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 2635 le32_to_cpu(ckpt->cur_data_segno[j])) { 2636 f2fs_msg(sbi->sb, KERN_ERR, 2637 "Data segment (%u) and Data segment (%u)" 2638 " has the same segno: %u", i, j, 2639 le32_to_cpu(ckpt->cur_node_segno[i])); 2640 return 1; 2641 } 2642 } 2643 } 2644 2645 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 2646 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 2647 2648 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 2649 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 2650 f2fs_msg(sbi->sb, KERN_ERR, 2651 "Wrong bitmap size: sit: %u, nat:%u", 2652 sit_bitmap_size, nat_bitmap_size); 2653 return 1; 2654 } 2655 2656 cp_pack_start_sum = __start_sum_addr(sbi); 2657 cp_payload = __cp_payload(sbi); 2658 if (cp_pack_start_sum < cp_payload + 1 || 2659 cp_pack_start_sum > blocks_per_seg - 1 - 2660 NR_CURSEG_TYPE) { 2661 f2fs_msg(sbi->sb, KERN_ERR, 2662 "Wrong cp_pack_start_sum: %u", 2663 cp_pack_start_sum); 2664 return 1; 2665 } 2666 2667 if (unlikely(f2fs_cp_error(sbi))) { 2668 f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck"); 2669 return 1; 2670 } 2671 return 0; 2672 } 2673 2674 static void init_sb_info(struct f2fs_sb_info *sbi) 2675 { 2676 struct f2fs_super_block *raw_super = sbi->raw_super; 2677 int i; 2678 2679 sbi->log_sectors_per_block = 2680 le32_to_cpu(raw_super->log_sectors_per_block); 2681 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 2682 sbi->blocksize = 1 << sbi->log_blocksize; 2683 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 2684 sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg; 2685 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 2686 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 2687 sbi->total_sections = le32_to_cpu(raw_super->section_count); 2688 sbi->total_node_count = 2689 (le32_to_cpu(raw_super->segment_count_nat) / 2) 2690 * sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK; 2691 sbi->root_ino_num = le32_to_cpu(raw_super->root_ino); 2692 sbi->node_ino_num = le32_to_cpu(raw_super->node_ino); 2693 sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino); 2694 sbi->cur_victim_sec = NULL_SECNO; 2695 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 2696 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 2697 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 2698 sbi->migration_granularity = sbi->segs_per_sec; 2699 2700 sbi->dir_level = DEF_DIR_LEVEL; 2701 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 2702 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 2703 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 2704 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 2705 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 2706 clear_sbi_flag(sbi, SBI_NEED_FSCK); 2707 2708 for (i = 0; i < NR_COUNT_TYPE; i++) 2709 atomic_set(&sbi->nr_pages[i], 0); 2710 2711 for (i = 0; i < META; i++) 2712 atomic_set(&sbi->wb_sync_req[i], 0); 2713 2714 INIT_LIST_HEAD(&sbi->s_list); 2715 mutex_init(&sbi->umount_mutex); 2716 init_rwsem(&sbi->io_order_lock); 2717 spin_lock_init(&sbi->cp_lock); 2718 2719 sbi->dirty_device = 0; 2720 spin_lock_init(&sbi->dev_lock); 2721 2722 init_rwsem(&sbi->sb_lock); 2723 } 2724 2725 static int init_percpu_info(struct f2fs_sb_info *sbi) 2726 { 2727 int err; 2728 2729 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 2730 if (err) 2731 return err; 2732 2733 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 2734 GFP_KERNEL); 2735 if (err) 2736 percpu_counter_destroy(&sbi->alloc_valid_block_count); 2737 2738 return err; 2739 } 2740 2741 #ifdef CONFIG_BLK_DEV_ZONED 2742 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 2743 { 2744 struct block_device *bdev = FDEV(devi).bdev; 2745 sector_t nr_sectors = bdev->bd_part->nr_sects; 2746 sector_t sector = 0; 2747 struct blk_zone *zones; 2748 unsigned int i, nr_zones; 2749 unsigned int n = 0; 2750 int err = -EIO; 2751 2752 if (!f2fs_sb_has_blkzoned(sbi)) 2753 return 0; 2754 2755 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 2756 SECTOR_TO_BLOCK(bdev_zone_sectors(bdev))) 2757 return -EINVAL; 2758 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)); 2759 if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz != 2760 __ilog2_u32(sbi->blocks_per_blkz)) 2761 return -EINVAL; 2762 sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz); 2763 FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >> 2764 sbi->log_blocks_per_blkz; 2765 if (nr_sectors & (bdev_zone_sectors(bdev) - 1)) 2766 FDEV(devi).nr_blkz++; 2767 2768 FDEV(devi).blkz_type = f2fs_kmalloc(sbi, FDEV(devi).nr_blkz, 2769 GFP_KERNEL); 2770 if (!FDEV(devi).blkz_type) 2771 return -ENOMEM; 2772 2773 #define F2FS_REPORT_NR_ZONES 4096 2774 2775 zones = f2fs_kzalloc(sbi, 2776 array_size(F2FS_REPORT_NR_ZONES, 2777 sizeof(struct blk_zone)), 2778 GFP_KERNEL); 2779 if (!zones) 2780 return -ENOMEM; 2781 2782 /* Get block zones type */ 2783 while (zones && sector < nr_sectors) { 2784 2785 nr_zones = F2FS_REPORT_NR_ZONES; 2786 err = blkdev_report_zones(bdev, sector, 2787 zones, &nr_zones, 2788 GFP_KERNEL); 2789 if (err) 2790 break; 2791 if (!nr_zones) { 2792 err = -EIO; 2793 break; 2794 } 2795 2796 for (i = 0; i < nr_zones; i++) { 2797 FDEV(devi).blkz_type[n] = zones[i].type; 2798 sector += zones[i].len; 2799 n++; 2800 } 2801 } 2802 2803 kvfree(zones); 2804 2805 return err; 2806 } 2807 #endif 2808 2809 /* 2810 * Read f2fs raw super block. 2811 * Because we have two copies of super block, so read both of them 2812 * to get the first valid one. If any one of them is broken, we pass 2813 * them recovery flag back to the caller. 2814 */ 2815 static int read_raw_super_block(struct f2fs_sb_info *sbi, 2816 struct f2fs_super_block **raw_super, 2817 int *valid_super_block, int *recovery) 2818 { 2819 struct super_block *sb = sbi->sb; 2820 int block; 2821 struct buffer_head *bh; 2822 struct f2fs_super_block *super; 2823 int err = 0; 2824 2825 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 2826 if (!super) 2827 return -ENOMEM; 2828 2829 for (block = 0; block < 2; block++) { 2830 bh = sb_bread(sb, block); 2831 if (!bh) { 2832 f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock", 2833 block + 1); 2834 err = -EIO; 2835 continue; 2836 } 2837 2838 /* sanity checking of raw super */ 2839 if (sanity_check_raw_super(sbi, bh)) { 2840 f2fs_msg(sb, KERN_ERR, 2841 "Can't find valid F2FS filesystem in %dth superblock", 2842 block + 1); 2843 err = -EINVAL; 2844 brelse(bh); 2845 continue; 2846 } 2847 2848 if (!*raw_super) { 2849 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 2850 sizeof(*super)); 2851 *valid_super_block = block; 2852 *raw_super = super; 2853 } 2854 brelse(bh); 2855 } 2856 2857 /* Fail to read any one of the superblocks*/ 2858 if (err < 0) 2859 *recovery = 1; 2860 2861 /* No valid superblock */ 2862 if (!*raw_super) 2863 kvfree(super); 2864 else 2865 err = 0; 2866 2867 return err; 2868 } 2869 2870 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 2871 { 2872 struct buffer_head *bh; 2873 __u32 crc = 0; 2874 int err; 2875 2876 if ((recover && f2fs_readonly(sbi->sb)) || 2877 bdev_read_only(sbi->sb->s_bdev)) { 2878 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2879 return -EROFS; 2880 } 2881 2882 /* we should update superblock crc here */ 2883 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 2884 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 2885 offsetof(struct f2fs_super_block, crc)); 2886 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 2887 } 2888 2889 /* write back-up superblock first */ 2890 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 2891 if (!bh) 2892 return -EIO; 2893 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 2894 brelse(bh); 2895 2896 /* if we are in recovery path, skip writing valid superblock */ 2897 if (recover || err) 2898 return err; 2899 2900 /* write current valid superblock */ 2901 bh = sb_bread(sbi->sb, sbi->valid_super_block); 2902 if (!bh) 2903 return -EIO; 2904 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 2905 brelse(bh); 2906 return err; 2907 } 2908 2909 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 2910 { 2911 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 2912 unsigned int max_devices = MAX_DEVICES; 2913 int i; 2914 2915 /* Initialize single device information */ 2916 if (!RDEV(0).path[0]) { 2917 if (!bdev_is_zoned(sbi->sb->s_bdev)) 2918 return 0; 2919 max_devices = 1; 2920 } 2921 2922 /* 2923 * Initialize multiple devices information, or single 2924 * zoned block device information. 2925 */ 2926 sbi->devs = f2fs_kzalloc(sbi, 2927 array_size(max_devices, 2928 sizeof(struct f2fs_dev_info)), 2929 GFP_KERNEL); 2930 if (!sbi->devs) 2931 return -ENOMEM; 2932 2933 for (i = 0; i < max_devices; i++) { 2934 2935 if (i > 0 && !RDEV(i).path[0]) 2936 break; 2937 2938 if (max_devices == 1) { 2939 /* Single zoned block device mount */ 2940 FDEV(0).bdev = 2941 blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev, 2942 sbi->sb->s_mode, sbi->sb->s_type); 2943 } else { 2944 /* Multi-device mount */ 2945 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 2946 FDEV(i).total_segments = 2947 le32_to_cpu(RDEV(i).total_segments); 2948 if (i == 0) { 2949 FDEV(i).start_blk = 0; 2950 FDEV(i).end_blk = FDEV(i).start_blk + 2951 (FDEV(i).total_segments << 2952 sbi->log_blocks_per_seg) - 1 + 2953 le32_to_cpu(raw_super->segment0_blkaddr); 2954 } else { 2955 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 2956 FDEV(i).end_blk = FDEV(i).start_blk + 2957 (FDEV(i).total_segments << 2958 sbi->log_blocks_per_seg) - 1; 2959 } 2960 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 2961 sbi->sb->s_mode, sbi->sb->s_type); 2962 } 2963 if (IS_ERR(FDEV(i).bdev)) 2964 return PTR_ERR(FDEV(i).bdev); 2965 2966 /* to release errored devices */ 2967 sbi->s_ndevs = i + 1; 2968 2969 #ifdef CONFIG_BLK_DEV_ZONED 2970 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 2971 !f2fs_sb_has_blkzoned(sbi)) { 2972 f2fs_msg(sbi->sb, KERN_ERR, 2973 "Zoned block device feature not enabled\n"); 2974 return -EINVAL; 2975 } 2976 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 2977 if (init_blkz_info(sbi, i)) { 2978 f2fs_msg(sbi->sb, KERN_ERR, 2979 "Failed to initialize F2FS blkzone information"); 2980 return -EINVAL; 2981 } 2982 if (max_devices == 1) 2983 break; 2984 f2fs_msg(sbi->sb, KERN_INFO, 2985 "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 2986 i, FDEV(i).path, 2987 FDEV(i).total_segments, 2988 FDEV(i).start_blk, FDEV(i).end_blk, 2989 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 2990 "Host-aware" : "Host-managed"); 2991 continue; 2992 } 2993 #endif 2994 f2fs_msg(sbi->sb, KERN_INFO, 2995 "Mount Device [%2d]: %20s, %8u, %8x - %8x", 2996 i, FDEV(i).path, 2997 FDEV(i).total_segments, 2998 FDEV(i).start_blk, FDEV(i).end_blk); 2999 } 3000 f2fs_msg(sbi->sb, KERN_INFO, 3001 "IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi)); 3002 return 0; 3003 } 3004 3005 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 3006 { 3007 struct f2fs_sm_info *sm_i = SM_I(sbi); 3008 3009 /* adjust parameters according to the volume size */ 3010 if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) { 3011 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 3012 sm_i->dcc_info->discard_granularity = 1; 3013 sm_i->ipu_policy = 1 << F2FS_IPU_FORCE; 3014 } 3015 3016 sbi->readdir_ra = 1; 3017 } 3018 3019 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 3020 { 3021 struct f2fs_sb_info *sbi; 3022 struct f2fs_super_block *raw_super; 3023 struct inode *root; 3024 int err; 3025 bool retry = true, need_fsck = false; 3026 char *options = NULL; 3027 int recovery, i, valid_super_block; 3028 struct curseg_info *seg_i; 3029 3030 try_onemore: 3031 err = -EINVAL; 3032 raw_super = NULL; 3033 valid_super_block = -1; 3034 recovery = 0; 3035 3036 /* allocate memory for f2fs-specific super block info */ 3037 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 3038 if (!sbi) 3039 return -ENOMEM; 3040 3041 sbi->sb = sb; 3042 3043 /* Load the checksum driver */ 3044 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 3045 if (IS_ERR(sbi->s_chksum_driver)) { 3046 f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver."); 3047 err = PTR_ERR(sbi->s_chksum_driver); 3048 sbi->s_chksum_driver = NULL; 3049 goto free_sbi; 3050 } 3051 3052 /* set a block size */ 3053 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 3054 f2fs_msg(sb, KERN_ERR, "unable to set blocksize"); 3055 goto free_sbi; 3056 } 3057 3058 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 3059 &recovery); 3060 if (err) 3061 goto free_sbi; 3062 3063 sb->s_fs_info = sbi; 3064 sbi->raw_super = raw_super; 3065 3066 /* precompute checksum seed for metadata */ 3067 if (f2fs_sb_has_inode_chksum(sbi)) 3068 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 3069 sizeof(raw_super->uuid)); 3070 3071 /* 3072 * The BLKZONED feature indicates that the drive was formatted with 3073 * zone alignment optimization. This is optional for host-aware 3074 * devices, but mandatory for host-managed zoned block devices. 3075 */ 3076 #ifndef CONFIG_BLK_DEV_ZONED 3077 if (f2fs_sb_has_blkzoned(sbi)) { 3078 f2fs_msg(sb, KERN_ERR, 3079 "Zoned block device support is not enabled\n"); 3080 err = -EOPNOTSUPP; 3081 goto free_sb_buf; 3082 } 3083 #endif 3084 default_options(sbi); 3085 /* parse mount options */ 3086 options = kstrdup((const char *)data, GFP_KERNEL); 3087 if (data && !options) { 3088 err = -ENOMEM; 3089 goto free_sb_buf; 3090 } 3091 3092 err = parse_options(sb, options); 3093 if (err) 3094 goto free_options; 3095 3096 sbi->max_file_blocks = max_file_blocks(); 3097 sb->s_maxbytes = sbi->max_file_blocks << 3098 le32_to_cpu(raw_super->log_blocksize); 3099 sb->s_max_links = F2FS_LINK_MAX; 3100 get_random_bytes(&sbi->s_next_generation, sizeof(u32)); 3101 3102 #ifdef CONFIG_QUOTA 3103 sb->dq_op = &f2fs_quota_operations; 3104 if (f2fs_sb_has_quota_ino(sbi)) 3105 sb->s_qcop = &dquot_quotactl_sysfile_ops; 3106 else 3107 sb->s_qcop = &f2fs_quotactl_ops; 3108 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 3109 3110 if (f2fs_sb_has_quota_ino(sbi)) { 3111 for (i = 0; i < MAXQUOTAS; i++) { 3112 if (f2fs_qf_ino(sbi->sb, i)) 3113 sbi->nquota_files++; 3114 } 3115 } 3116 #endif 3117 3118 sb->s_op = &f2fs_sops; 3119 #ifdef CONFIG_F2FS_FS_ENCRYPTION 3120 sb->s_cop = &f2fs_cryptops; 3121 #endif 3122 sb->s_xattr = f2fs_xattr_handlers; 3123 sb->s_export_op = &f2fs_export_ops; 3124 sb->s_magic = F2FS_SUPER_MAGIC; 3125 sb->s_time_gran = 1; 3126 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 3127 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 3128 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 3129 sb->s_iflags |= SB_I_CGROUPWB; 3130 3131 /* init f2fs-specific super block info */ 3132 sbi->valid_super_block = valid_super_block; 3133 mutex_init(&sbi->gc_mutex); 3134 mutex_init(&sbi->writepages); 3135 mutex_init(&sbi->cp_mutex); 3136 init_rwsem(&sbi->node_write); 3137 init_rwsem(&sbi->node_change); 3138 3139 /* disallow all the data/node/meta page writes */ 3140 set_sbi_flag(sbi, SBI_POR_DOING); 3141 spin_lock_init(&sbi->stat_lock); 3142 3143 /* init iostat info */ 3144 spin_lock_init(&sbi->iostat_lock); 3145 sbi->iostat_enable = false; 3146 3147 for (i = 0; i < NR_PAGE_TYPE; i++) { 3148 int n = (i == META) ? 1: NR_TEMP_TYPE; 3149 int j; 3150 3151 sbi->write_io[i] = 3152 f2fs_kmalloc(sbi, 3153 array_size(n, 3154 sizeof(struct f2fs_bio_info)), 3155 GFP_KERNEL); 3156 if (!sbi->write_io[i]) { 3157 err = -ENOMEM; 3158 goto free_bio_info; 3159 } 3160 3161 for (j = HOT; j < n; j++) { 3162 init_rwsem(&sbi->write_io[i][j].io_rwsem); 3163 sbi->write_io[i][j].sbi = sbi; 3164 sbi->write_io[i][j].bio = NULL; 3165 spin_lock_init(&sbi->write_io[i][j].io_lock); 3166 INIT_LIST_HEAD(&sbi->write_io[i][j].io_list); 3167 } 3168 } 3169 3170 init_rwsem(&sbi->cp_rwsem); 3171 init_waitqueue_head(&sbi->cp_wait); 3172 init_sb_info(sbi); 3173 3174 err = init_percpu_info(sbi); 3175 if (err) 3176 goto free_bio_info; 3177 3178 if (F2FS_IO_SIZE(sbi) > 1) { 3179 sbi->write_io_dummy = 3180 mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0); 3181 if (!sbi->write_io_dummy) { 3182 err = -ENOMEM; 3183 goto free_percpu; 3184 } 3185 } 3186 3187 /* get an inode for meta space */ 3188 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 3189 if (IS_ERR(sbi->meta_inode)) { 3190 f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode"); 3191 err = PTR_ERR(sbi->meta_inode); 3192 goto free_io_dummy; 3193 } 3194 3195 err = f2fs_get_valid_checkpoint(sbi); 3196 if (err) { 3197 f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint"); 3198 goto free_meta_inode; 3199 } 3200 3201 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 3202 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3203 3204 /* Initialize device list */ 3205 err = f2fs_scan_devices(sbi); 3206 if (err) { 3207 f2fs_msg(sb, KERN_ERR, "Failed to find devices"); 3208 goto free_devices; 3209 } 3210 3211 sbi->total_valid_node_count = 3212 le32_to_cpu(sbi->ckpt->valid_node_count); 3213 percpu_counter_set(&sbi->total_valid_inode_count, 3214 le32_to_cpu(sbi->ckpt->valid_inode_count)); 3215 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 3216 sbi->total_valid_block_count = 3217 le64_to_cpu(sbi->ckpt->valid_block_count); 3218 sbi->last_valid_block_count = sbi->total_valid_block_count; 3219 sbi->reserved_blocks = 0; 3220 sbi->current_reserved_blocks = 0; 3221 limit_reserve_root(sbi); 3222 3223 for (i = 0; i < NR_INODE_TYPE; i++) { 3224 INIT_LIST_HEAD(&sbi->inode_list[i]); 3225 spin_lock_init(&sbi->inode_lock[i]); 3226 } 3227 3228 f2fs_init_extent_cache_info(sbi); 3229 3230 f2fs_init_ino_entry_info(sbi); 3231 3232 f2fs_init_fsync_node_info(sbi); 3233 3234 /* setup f2fs internal modules */ 3235 err = f2fs_build_segment_manager(sbi); 3236 if (err) { 3237 f2fs_msg(sb, KERN_ERR, 3238 "Failed to initialize F2FS segment manager"); 3239 goto free_sm; 3240 } 3241 err = f2fs_build_node_manager(sbi); 3242 if (err) { 3243 f2fs_msg(sb, KERN_ERR, 3244 "Failed to initialize F2FS node manager"); 3245 goto free_nm; 3246 } 3247 3248 /* For write statistics */ 3249 if (sb->s_bdev->bd_part) 3250 sbi->sectors_written_start = 3251 (u64)part_stat_read(sb->s_bdev->bd_part, 3252 sectors[STAT_WRITE]); 3253 3254 /* Read accumulated write IO statistics if exists */ 3255 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 3256 if (__exist_node_summaries(sbi)) 3257 sbi->kbytes_written = 3258 le64_to_cpu(seg_i->journal->info.kbytes_written); 3259 3260 f2fs_build_gc_manager(sbi); 3261 3262 err = f2fs_build_stats(sbi); 3263 if (err) 3264 goto free_nm; 3265 3266 /* get an inode for node space */ 3267 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 3268 if (IS_ERR(sbi->node_inode)) { 3269 f2fs_msg(sb, KERN_ERR, "Failed to read node inode"); 3270 err = PTR_ERR(sbi->node_inode); 3271 goto free_stats; 3272 } 3273 3274 /* read root inode and dentry */ 3275 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 3276 if (IS_ERR(root)) { 3277 f2fs_msg(sb, KERN_ERR, "Failed to read root inode"); 3278 err = PTR_ERR(root); 3279 goto free_node_inode; 3280 } 3281 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 3282 !root->i_size || !root->i_nlink) { 3283 iput(root); 3284 err = -EINVAL; 3285 goto free_node_inode; 3286 } 3287 3288 sb->s_root = d_make_root(root); /* allocate root dentry */ 3289 if (!sb->s_root) { 3290 err = -ENOMEM; 3291 goto free_root_inode; 3292 } 3293 3294 err = f2fs_register_sysfs(sbi); 3295 if (err) 3296 goto free_root_inode; 3297 3298 #ifdef CONFIG_QUOTA 3299 /* Enable quota usage during mount */ 3300 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 3301 err = f2fs_enable_quotas(sb); 3302 if (err) 3303 f2fs_msg(sb, KERN_ERR, 3304 "Cannot turn on quotas: error %d", err); 3305 } 3306 #endif 3307 /* if there are nt orphan nodes free them */ 3308 err = f2fs_recover_orphan_inodes(sbi); 3309 if (err) 3310 goto free_meta; 3311 3312 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 3313 goto skip_recovery; 3314 3315 /* recover fsynced data */ 3316 if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) { 3317 /* 3318 * mount should be failed, when device has readonly mode, and 3319 * previous checkpoint was not done by clean system shutdown. 3320 */ 3321 if (bdev_read_only(sb->s_bdev) && 3322 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 3323 err = -EROFS; 3324 goto free_meta; 3325 } 3326 3327 if (need_fsck) 3328 set_sbi_flag(sbi, SBI_NEED_FSCK); 3329 3330 if (!retry) 3331 goto skip_recovery; 3332 3333 err = f2fs_recover_fsync_data(sbi, false); 3334 if (err < 0) { 3335 need_fsck = true; 3336 f2fs_msg(sb, KERN_ERR, 3337 "Cannot recover all fsync data errno=%d", err); 3338 goto free_meta; 3339 } 3340 } else { 3341 err = f2fs_recover_fsync_data(sbi, true); 3342 3343 if (!f2fs_readonly(sb) && err > 0) { 3344 err = -EINVAL; 3345 f2fs_msg(sb, KERN_ERR, 3346 "Need to recover fsync data"); 3347 goto free_meta; 3348 } 3349 } 3350 skip_recovery: 3351 /* f2fs_recover_fsync_data() cleared this already */ 3352 clear_sbi_flag(sbi, SBI_POR_DOING); 3353 3354 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 3355 err = f2fs_disable_checkpoint(sbi); 3356 if (err) 3357 goto free_meta; 3358 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 3359 f2fs_enable_checkpoint(sbi); 3360 } 3361 3362 /* 3363 * If filesystem is not mounted as read-only then 3364 * do start the gc_thread. 3365 */ 3366 if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) { 3367 /* After POR, we can run background GC thread.*/ 3368 err = f2fs_start_gc_thread(sbi); 3369 if (err) 3370 goto free_meta; 3371 } 3372 kvfree(options); 3373 3374 /* recover broken superblock */ 3375 if (recovery) { 3376 err = f2fs_commit_super(sbi, true); 3377 f2fs_msg(sb, KERN_INFO, 3378 "Try to recover %dth superblock, ret: %d", 3379 sbi->valid_super_block ? 1 : 2, err); 3380 } 3381 3382 f2fs_join_shrinker(sbi); 3383 3384 f2fs_tuning_parameters(sbi); 3385 3386 f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx", 3387 cur_cp_version(F2FS_CKPT(sbi))); 3388 f2fs_update_time(sbi, CP_TIME); 3389 f2fs_update_time(sbi, REQ_TIME); 3390 return 0; 3391 3392 free_meta: 3393 #ifdef CONFIG_QUOTA 3394 f2fs_truncate_quota_inode_pages(sb); 3395 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 3396 f2fs_quota_off_umount(sbi->sb); 3397 #endif 3398 /* 3399 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 3400 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 3401 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 3402 * falls into an infinite loop in f2fs_sync_meta_pages(). 3403 */ 3404 truncate_inode_pages_final(META_MAPPING(sbi)); 3405 f2fs_unregister_sysfs(sbi); 3406 free_root_inode: 3407 dput(sb->s_root); 3408 sb->s_root = NULL; 3409 free_node_inode: 3410 f2fs_release_ino_entry(sbi, true); 3411 truncate_inode_pages_final(NODE_MAPPING(sbi)); 3412 iput(sbi->node_inode); 3413 free_stats: 3414 f2fs_destroy_stats(sbi); 3415 free_nm: 3416 f2fs_destroy_node_manager(sbi); 3417 free_sm: 3418 f2fs_destroy_segment_manager(sbi); 3419 free_devices: 3420 destroy_device_list(sbi); 3421 kvfree(sbi->ckpt); 3422 free_meta_inode: 3423 make_bad_inode(sbi->meta_inode); 3424 iput(sbi->meta_inode); 3425 free_io_dummy: 3426 mempool_destroy(sbi->write_io_dummy); 3427 free_percpu: 3428 destroy_percpu_info(sbi); 3429 free_bio_info: 3430 for (i = 0; i < NR_PAGE_TYPE; i++) 3431 kvfree(sbi->write_io[i]); 3432 free_options: 3433 #ifdef CONFIG_QUOTA 3434 for (i = 0; i < MAXQUOTAS; i++) 3435 kvfree(F2FS_OPTION(sbi).s_qf_names[i]); 3436 #endif 3437 kvfree(options); 3438 free_sb_buf: 3439 kvfree(raw_super); 3440 free_sbi: 3441 if (sbi->s_chksum_driver) 3442 crypto_free_shash(sbi->s_chksum_driver); 3443 kvfree(sbi); 3444 3445 /* give only one another chance */ 3446 if (retry) { 3447 retry = false; 3448 shrink_dcache_sb(sb); 3449 goto try_onemore; 3450 } 3451 return err; 3452 } 3453 3454 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 3455 const char *dev_name, void *data) 3456 { 3457 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 3458 } 3459 3460 static void kill_f2fs_super(struct super_block *sb) 3461 { 3462 if (sb->s_root) { 3463 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3464 3465 set_sbi_flag(sbi, SBI_IS_CLOSE); 3466 f2fs_stop_gc_thread(sbi); 3467 f2fs_stop_discard_thread(sbi); 3468 3469 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 3470 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 3471 struct cp_control cpc = { 3472 .reason = CP_UMOUNT, 3473 }; 3474 f2fs_write_checkpoint(sbi, &cpc); 3475 } 3476 3477 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 3478 sb->s_flags &= ~SB_RDONLY; 3479 } 3480 kill_block_super(sb); 3481 } 3482 3483 static struct file_system_type f2fs_fs_type = { 3484 .owner = THIS_MODULE, 3485 .name = "f2fs", 3486 .mount = f2fs_mount, 3487 .kill_sb = kill_f2fs_super, 3488 .fs_flags = FS_REQUIRES_DEV, 3489 }; 3490 MODULE_ALIAS_FS("f2fs"); 3491 3492 static int __init init_inodecache(void) 3493 { 3494 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 3495 sizeof(struct f2fs_inode_info), 0, 3496 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 3497 if (!f2fs_inode_cachep) 3498 return -ENOMEM; 3499 return 0; 3500 } 3501 3502 static void destroy_inodecache(void) 3503 { 3504 /* 3505 * Make sure all delayed rcu free inodes are flushed before we 3506 * destroy cache. 3507 */ 3508 rcu_barrier(); 3509 kmem_cache_destroy(f2fs_inode_cachep); 3510 } 3511 3512 static int __init init_f2fs_fs(void) 3513 { 3514 int err; 3515 3516 if (PAGE_SIZE != F2FS_BLKSIZE) { 3517 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n", 3518 PAGE_SIZE, F2FS_BLKSIZE); 3519 return -EINVAL; 3520 } 3521 3522 f2fs_build_trace_ios(); 3523 3524 err = init_inodecache(); 3525 if (err) 3526 goto fail; 3527 err = f2fs_create_node_manager_caches(); 3528 if (err) 3529 goto free_inodecache; 3530 err = f2fs_create_segment_manager_caches(); 3531 if (err) 3532 goto free_node_manager_caches; 3533 err = f2fs_create_checkpoint_caches(); 3534 if (err) 3535 goto free_segment_manager_caches; 3536 err = f2fs_create_extent_cache(); 3537 if (err) 3538 goto free_checkpoint_caches; 3539 err = f2fs_init_sysfs(); 3540 if (err) 3541 goto free_extent_cache; 3542 err = register_shrinker(&f2fs_shrinker_info); 3543 if (err) 3544 goto free_sysfs; 3545 err = register_filesystem(&f2fs_fs_type); 3546 if (err) 3547 goto free_shrinker; 3548 err = f2fs_create_root_stats(); 3549 if (err) 3550 goto free_filesystem; 3551 err = f2fs_init_post_read_processing(); 3552 if (err) 3553 goto free_root_stats; 3554 return 0; 3555 3556 free_root_stats: 3557 f2fs_destroy_root_stats(); 3558 free_filesystem: 3559 unregister_filesystem(&f2fs_fs_type); 3560 free_shrinker: 3561 unregister_shrinker(&f2fs_shrinker_info); 3562 free_sysfs: 3563 f2fs_exit_sysfs(); 3564 free_extent_cache: 3565 f2fs_destroy_extent_cache(); 3566 free_checkpoint_caches: 3567 f2fs_destroy_checkpoint_caches(); 3568 free_segment_manager_caches: 3569 f2fs_destroy_segment_manager_caches(); 3570 free_node_manager_caches: 3571 f2fs_destroy_node_manager_caches(); 3572 free_inodecache: 3573 destroy_inodecache(); 3574 fail: 3575 return err; 3576 } 3577 3578 static void __exit exit_f2fs_fs(void) 3579 { 3580 f2fs_destroy_post_read_processing(); 3581 f2fs_destroy_root_stats(); 3582 unregister_filesystem(&f2fs_fs_type); 3583 unregister_shrinker(&f2fs_shrinker_info); 3584 f2fs_exit_sysfs(); 3585 f2fs_destroy_extent_cache(); 3586 f2fs_destroy_checkpoint_caches(); 3587 f2fs_destroy_segment_manager_caches(); 3588 f2fs_destroy_node_manager_caches(); 3589 destroy_inodecache(); 3590 f2fs_destroy_trace_ios(); 3591 } 3592 3593 module_init(init_f2fs_fs) 3594 module_exit(exit_f2fs_fs) 3595 3596 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 3597 MODULE_DESCRIPTION("Flash Friendly File System"); 3598 MODULE_LICENSE("GPL"); 3599 3600