xref: /openbmc/linux/fs/f2fs/super.c (revision 1cac4f26)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/super.c
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/fs.h>
11 #include <linux/statfs.h>
12 #include <linux/buffer_head.h>
13 #include <linux/backing-dev.h>
14 #include <linux/kthread.h>
15 #include <linux/parser.h>
16 #include <linux/mount.h>
17 #include <linux/seq_file.h>
18 #include <linux/proc_fs.h>
19 #include <linux/random.h>
20 #include <linux/exportfs.h>
21 #include <linux/blkdev.h>
22 #include <linux/quotaops.h>
23 #include <linux/f2fs_fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/quota.h>
26 
27 #include "f2fs.h"
28 #include "node.h"
29 #include "segment.h"
30 #include "xattr.h"
31 #include "gc.h"
32 #include "trace.h"
33 
34 #define CREATE_TRACE_POINTS
35 #include <trace/events/f2fs.h>
36 
37 static struct kmem_cache *f2fs_inode_cachep;
38 
39 #ifdef CONFIG_F2FS_FAULT_INJECTION
40 
41 const char *f2fs_fault_name[FAULT_MAX] = {
42 	[FAULT_KMALLOC]		= "kmalloc",
43 	[FAULT_KVMALLOC]	= "kvmalloc",
44 	[FAULT_PAGE_ALLOC]	= "page alloc",
45 	[FAULT_PAGE_GET]	= "page get",
46 	[FAULT_ALLOC_BIO]	= "alloc bio",
47 	[FAULT_ALLOC_NID]	= "alloc nid",
48 	[FAULT_ORPHAN]		= "orphan",
49 	[FAULT_BLOCK]		= "no more block",
50 	[FAULT_DIR_DEPTH]	= "too big dir depth",
51 	[FAULT_EVICT_INODE]	= "evict_inode fail",
52 	[FAULT_TRUNCATE]	= "truncate fail",
53 	[FAULT_READ_IO]		= "read IO error",
54 	[FAULT_CHECKPOINT]	= "checkpoint error",
55 	[FAULT_DISCARD]		= "discard error",
56 	[FAULT_WRITE_IO]	= "write IO error",
57 };
58 
59 void f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned int rate,
60 							unsigned int type)
61 {
62 	struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info;
63 
64 	if (rate) {
65 		atomic_set(&ffi->inject_ops, 0);
66 		ffi->inject_rate = rate;
67 	}
68 
69 	if (type)
70 		ffi->inject_type = type;
71 
72 	if (!rate && !type)
73 		memset(ffi, 0, sizeof(struct f2fs_fault_info));
74 }
75 #endif
76 
77 /* f2fs-wide shrinker description */
78 static struct shrinker f2fs_shrinker_info = {
79 	.scan_objects = f2fs_shrink_scan,
80 	.count_objects = f2fs_shrink_count,
81 	.seeks = DEFAULT_SEEKS,
82 };
83 
84 enum {
85 	Opt_gc_background,
86 	Opt_disable_roll_forward,
87 	Opt_norecovery,
88 	Opt_discard,
89 	Opt_nodiscard,
90 	Opt_noheap,
91 	Opt_heap,
92 	Opt_user_xattr,
93 	Opt_nouser_xattr,
94 	Opt_acl,
95 	Opt_noacl,
96 	Opt_active_logs,
97 	Opt_disable_ext_identify,
98 	Opt_inline_xattr,
99 	Opt_noinline_xattr,
100 	Opt_inline_xattr_size,
101 	Opt_inline_data,
102 	Opt_inline_dentry,
103 	Opt_noinline_dentry,
104 	Opt_flush_merge,
105 	Opt_noflush_merge,
106 	Opt_nobarrier,
107 	Opt_fastboot,
108 	Opt_extent_cache,
109 	Opt_noextent_cache,
110 	Opt_noinline_data,
111 	Opt_data_flush,
112 	Opt_reserve_root,
113 	Opt_resgid,
114 	Opt_resuid,
115 	Opt_mode,
116 	Opt_io_size_bits,
117 	Opt_fault_injection,
118 	Opt_fault_type,
119 	Opt_lazytime,
120 	Opt_nolazytime,
121 	Opt_quota,
122 	Opt_noquota,
123 	Opt_usrquota,
124 	Opt_grpquota,
125 	Opt_prjquota,
126 	Opt_usrjquota,
127 	Opt_grpjquota,
128 	Opt_prjjquota,
129 	Opt_offusrjquota,
130 	Opt_offgrpjquota,
131 	Opt_offprjjquota,
132 	Opt_jqfmt_vfsold,
133 	Opt_jqfmt_vfsv0,
134 	Opt_jqfmt_vfsv1,
135 	Opt_whint,
136 	Opt_alloc,
137 	Opt_fsync,
138 	Opt_test_dummy_encryption,
139 	Opt_checkpoint,
140 	Opt_err,
141 };
142 
143 static match_table_t f2fs_tokens = {
144 	{Opt_gc_background, "background_gc=%s"},
145 	{Opt_disable_roll_forward, "disable_roll_forward"},
146 	{Opt_norecovery, "norecovery"},
147 	{Opt_discard, "discard"},
148 	{Opt_nodiscard, "nodiscard"},
149 	{Opt_noheap, "no_heap"},
150 	{Opt_heap, "heap"},
151 	{Opt_user_xattr, "user_xattr"},
152 	{Opt_nouser_xattr, "nouser_xattr"},
153 	{Opt_acl, "acl"},
154 	{Opt_noacl, "noacl"},
155 	{Opt_active_logs, "active_logs=%u"},
156 	{Opt_disable_ext_identify, "disable_ext_identify"},
157 	{Opt_inline_xattr, "inline_xattr"},
158 	{Opt_noinline_xattr, "noinline_xattr"},
159 	{Opt_inline_xattr_size, "inline_xattr_size=%u"},
160 	{Opt_inline_data, "inline_data"},
161 	{Opt_inline_dentry, "inline_dentry"},
162 	{Opt_noinline_dentry, "noinline_dentry"},
163 	{Opt_flush_merge, "flush_merge"},
164 	{Opt_noflush_merge, "noflush_merge"},
165 	{Opt_nobarrier, "nobarrier"},
166 	{Opt_fastboot, "fastboot"},
167 	{Opt_extent_cache, "extent_cache"},
168 	{Opt_noextent_cache, "noextent_cache"},
169 	{Opt_noinline_data, "noinline_data"},
170 	{Opt_data_flush, "data_flush"},
171 	{Opt_reserve_root, "reserve_root=%u"},
172 	{Opt_resgid, "resgid=%u"},
173 	{Opt_resuid, "resuid=%u"},
174 	{Opt_mode, "mode=%s"},
175 	{Opt_io_size_bits, "io_bits=%u"},
176 	{Opt_fault_injection, "fault_injection=%u"},
177 	{Opt_fault_type, "fault_type=%u"},
178 	{Opt_lazytime, "lazytime"},
179 	{Opt_nolazytime, "nolazytime"},
180 	{Opt_quota, "quota"},
181 	{Opt_noquota, "noquota"},
182 	{Opt_usrquota, "usrquota"},
183 	{Opt_grpquota, "grpquota"},
184 	{Opt_prjquota, "prjquota"},
185 	{Opt_usrjquota, "usrjquota=%s"},
186 	{Opt_grpjquota, "grpjquota=%s"},
187 	{Opt_prjjquota, "prjjquota=%s"},
188 	{Opt_offusrjquota, "usrjquota="},
189 	{Opt_offgrpjquota, "grpjquota="},
190 	{Opt_offprjjquota, "prjjquota="},
191 	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
192 	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
193 	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
194 	{Opt_whint, "whint_mode=%s"},
195 	{Opt_alloc, "alloc_mode=%s"},
196 	{Opt_fsync, "fsync_mode=%s"},
197 	{Opt_test_dummy_encryption, "test_dummy_encryption"},
198 	{Opt_checkpoint, "checkpoint=%s"},
199 	{Opt_err, NULL},
200 };
201 
202 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
203 {
204 	struct va_format vaf;
205 	va_list args;
206 
207 	va_start(args, fmt);
208 	vaf.fmt = fmt;
209 	vaf.va = &args;
210 	printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
211 	va_end(args);
212 }
213 
214 static inline void limit_reserve_root(struct f2fs_sb_info *sbi)
215 {
216 	block_t limit = (sbi->user_block_count << 1) / 1000;
217 
218 	/* limit is 0.2% */
219 	if (test_opt(sbi, RESERVE_ROOT) &&
220 			F2FS_OPTION(sbi).root_reserved_blocks > limit) {
221 		F2FS_OPTION(sbi).root_reserved_blocks = limit;
222 		f2fs_msg(sbi->sb, KERN_INFO,
223 			"Reduce reserved blocks for root = %u",
224 			F2FS_OPTION(sbi).root_reserved_blocks);
225 	}
226 	if (!test_opt(sbi, RESERVE_ROOT) &&
227 		(!uid_eq(F2FS_OPTION(sbi).s_resuid,
228 				make_kuid(&init_user_ns, F2FS_DEF_RESUID)) ||
229 		!gid_eq(F2FS_OPTION(sbi).s_resgid,
230 				make_kgid(&init_user_ns, F2FS_DEF_RESGID))))
231 		f2fs_msg(sbi->sb, KERN_INFO,
232 			"Ignore s_resuid=%u, s_resgid=%u w/o reserve_root",
233 				from_kuid_munged(&init_user_ns,
234 					F2FS_OPTION(sbi).s_resuid),
235 				from_kgid_munged(&init_user_ns,
236 					F2FS_OPTION(sbi).s_resgid));
237 }
238 
239 static void init_once(void *foo)
240 {
241 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
242 
243 	inode_init_once(&fi->vfs_inode);
244 }
245 
246 #ifdef CONFIG_QUOTA
247 static const char * const quotatypes[] = INITQFNAMES;
248 #define QTYPE2NAME(t) (quotatypes[t])
249 static int f2fs_set_qf_name(struct super_block *sb, int qtype,
250 							substring_t *args)
251 {
252 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
253 	char *qname;
254 	int ret = -EINVAL;
255 
256 	if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) {
257 		f2fs_msg(sb, KERN_ERR,
258 			"Cannot change journaled "
259 			"quota options when quota turned on");
260 		return -EINVAL;
261 	}
262 	if (f2fs_sb_has_quota_ino(sbi)) {
263 		f2fs_msg(sb, KERN_INFO,
264 			"QUOTA feature is enabled, so ignore qf_name");
265 		return 0;
266 	}
267 
268 	qname = match_strdup(args);
269 	if (!qname) {
270 		f2fs_msg(sb, KERN_ERR,
271 			"Not enough memory for storing quotafile name");
272 		return -EINVAL;
273 	}
274 	if (F2FS_OPTION(sbi).s_qf_names[qtype]) {
275 		if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0)
276 			ret = 0;
277 		else
278 			f2fs_msg(sb, KERN_ERR,
279 				 "%s quota file already specified",
280 				 QTYPE2NAME(qtype));
281 		goto errout;
282 	}
283 	if (strchr(qname, '/')) {
284 		f2fs_msg(sb, KERN_ERR,
285 			"quotafile must be on filesystem root");
286 		goto errout;
287 	}
288 	F2FS_OPTION(sbi).s_qf_names[qtype] = qname;
289 	set_opt(sbi, QUOTA);
290 	return 0;
291 errout:
292 	kvfree(qname);
293 	return ret;
294 }
295 
296 static int f2fs_clear_qf_name(struct super_block *sb, int qtype)
297 {
298 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
299 
300 	if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) {
301 		f2fs_msg(sb, KERN_ERR, "Cannot change journaled quota options"
302 			" when quota turned on");
303 		return -EINVAL;
304 	}
305 	kvfree(F2FS_OPTION(sbi).s_qf_names[qtype]);
306 	F2FS_OPTION(sbi).s_qf_names[qtype] = NULL;
307 	return 0;
308 }
309 
310 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi)
311 {
312 	/*
313 	 * We do the test below only for project quotas. 'usrquota' and
314 	 * 'grpquota' mount options are allowed even without quota feature
315 	 * to support legacy quotas in quota files.
316 	 */
317 	if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) {
318 		f2fs_msg(sbi->sb, KERN_ERR, "Project quota feature not enabled. "
319 			 "Cannot enable project quota enforcement.");
320 		return -1;
321 	}
322 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] ||
323 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] ||
324 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) {
325 		if (test_opt(sbi, USRQUOTA) &&
326 				F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
327 			clear_opt(sbi, USRQUOTA);
328 
329 		if (test_opt(sbi, GRPQUOTA) &&
330 				F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
331 			clear_opt(sbi, GRPQUOTA);
332 
333 		if (test_opt(sbi, PRJQUOTA) &&
334 				F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
335 			clear_opt(sbi, PRJQUOTA);
336 
337 		if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) ||
338 				test_opt(sbi, PRJQUOTA)) {
339 			f2fs_msg(sbi->sb, KERN_ERR, "old and new quota "
340 					"format mixing");
341 			return -1;
342 		}
343 
344 		if (!F2FS_OPTION(sbi).s_jquota_fmt) {
345 			f2fs_msg(sbi->sb, KERN_ERR, "journaled quota format "
346 					"not specified");
347 			return -1;
348 		}
349 	}
350 
351 	if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) {
352 		f2fs_msg(sbi->sb, KERN_INFO,
353 			"QUOTA feature is enabled, so ignore jquota_fmt");
354 		F2FS_OPTION(sbi).s_jquota_fmt = 0;
355 	}
356 	return 0;
357 }
358 #endif
359 
360 static int parse_options(struct super_block *sb, char *options)
361 {
362 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
363 	substring_t args[MAX_OPT_ARGS];
364 	char *p, *name;
365 	int arg = 0;
366 	kuid_t uid;
367 	kgid_t gid;
368 #ifdef CONFIG_QUOTA
369 	int ret;
370 #endif
371 
372 	if (!options)
373 		return 0;
374 
375 	while ((p = strsep(&options, ",")) != NULL) {
376 		int token;
377 		if (!*p)
378 			continue;
379 		/*
380 		 * Initialize args struct so we know whether arg was
381 		 * found; some options take optional arguments.
382 		 */
383 		args[0].to = args[0].from = NULL;
384 		token = match_token(p, f2fs_tokens, args);
385 
386 		switch (token) {
387 		case Opt_gc_background:
388 			name = match_strdup(&args[0]);
389 
390 			if (!name)
391 				return -ENOMEM;
392 			if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
393 				set_opt(sbi, BG_GC);
394 				clear_opt(sbi, FORCE_FG_GC);
395 			} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
396 				clear_opt(sbi, BG_GC);
397 				clear_opt(sbi, FORCE_FG_GC);
398 			} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
399 				set_opt(sbi, BG_GC);
400 				set_opt(sbi, FORCE_FG_GC);
401 			} else {
402 				kvfree(name);
403 				return -EINVAL;
404 			}
405 			kvfree(name);
406 			break;
407 		case Opt_disable_roll_forward:
408 			set_opt(sbi, DISABLE_ROLL_FORWARD);
409 			break;
410 		case Opt_norecovery:
411 			/* this option mounts f2fs with ro */
412 			set_opt(sbi, DISABLE_ROLL_FORWARD);
413 			if (!f2fs_readonly(sb))
414 				return -EINVAL;
415 			break;
416 		case Opt_discard:
417 			set_opt(sbi, DISCARD);
418 			break;
419 		case Opt_nodiscard:
420 			if (f2fs_sb_has_blkzoned(sbi)) {
421 				f2fs_msg(sb, KERN_WARNING,
422 					"discard is required for zoned block devices");
423 				return -EINVAL;
424 			}
425 			clear_opt(sbi, DISCARD);
426 			break;
427 		case Opt_noheap:
428 			set_opt(sbi, NOHEAP);
429 			break;
430 		case Opt_heap:
431 			clear_opt(sbi, NOHEAP);
432 			break;
433 #ifdef CONFIG_F2FS_FS_XATTR
434 		case Opt_user_xattr:
435 			set_opt(sbi, XATTR_USER);
436 			break;
437 		case Opt_nouser_xattr:
438 			clear_opt(sbi, XATTR_USER);
439 			break;
440 		case Opt_inline_xattr:
441 			set_opt(sbi, INLINE_XATTR);
442 			break;
443 		case Opt_noinline_xattr:
444 			clear_opt(sbi, INLINE_XATTR);
445 			break;
446 		case Opt_inline_xattr_size:
447 			if (args->from && match_int(args, &arg))
448 				return -EINVAL;
449 			set_opt(sbi, INLINE_XATTR_SIZE);
450 			F2FS_OPTION(sbi).inline_xattr_size = arg;
451 			break;
452 #else
453 		case Opt_user_xattr:
454 			f2fs_msg(sb, KERN_INFO,
455 				"user_xattr options not supported");
456 			break;
457 		case Opt_nouser_xattr:
458 			f2fs_msg(sb, KERN_INFO,
459 				"nouser_xattr options not supported");
460 			break;
461 		case Opt_inline_xattr:
462 			f2fs_msg(sb, KERN_INFO,
463 				"inline_xattr options not supported");
464 			break;
465 		case Opt_noinline_xattr:
466 			f2fs_msg(sb, KERN_INFO,
467 				"noinline_xattr options not supported");
468 			break;
469 #endif
470 #ifdef CONFIG_F2FS_FS_POSIX_ACL
471 		case Opt_acl:
472 			set_opt(sbi, POSIX_ACL);
473 			break;
474 		case Opt_noacl:
475 			clear_opt(sbi, POSIX_ACL);
476 			break;
477 #else
478 		case Opt_acl:
479 			f2fs_msg(sb, KERN_INFO, "acl options not supported");
480 			break;
481 		case Opt_noacl:
482 			f2fs_msg(sb, KERN_INFO, "noacl options not supported");
483 			break;
484 #endif
485 		case Opt_active_logs:
486 			if (args->from && match_int(args, &arg))
487 				return -EINVAL;
488 			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
489 				return -EINVAL;
490 			F2FS_OPTION(sbi).active_logs = arg;
491 			break;
492 		case Opt_disable_ext_identify:
493 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
494 			break;
495 		case Opt_inline_data:
496 			set_opt(sbi, INLINE_DATA);
497 			break;
498 		case Opt_inline_dentry:
499 			set_opt(sbi, INLINE_DENTRY);
500 			break;
501 		case Opt_noinline_dentry:
502 			clear_opt(sbi, INLINE_DENTRY);
503 			break;
504 		case Opt_flush_merge:
505 			set_opt(sbi, FLUSH_MERGE);
506 			break;
507 		case Opt_noflush_merge:
508 			clear_opt(sbi, FLUSH_MERGE);
509 			break;
510 		case Opt_nobarrier:
511 			set_opt(sbi, NOBARRIER);
512 			break;
513 		case Opt_fastboot:
514 			set_opt(sbi, FASTBOOT);
515 			break;
516 		case Opt_extent_cache:
517 			set_opt(sbi, EXTENT_CACHE);
518 			break;
519 		case Opt_noextent_cache:
520 			clear_opt(sbi, EXTENT_CACHE);
521 			break;
522 		case Opt_noinline_data:
523 			clear_opt(sbi, INLINE_DATA);
524 			break;
525 		case Opt_data_flush:
526 			set_opt(sbi, DATA_FLUSH);
527 			break;
528 		case Opt_reserve_root:
529 			if (args->from && match_int(args, &arg))
530 				return -EINVAL;
531 			if (test_opt(sbi, RESERVE_ROOT)) {
532 				f2fs_msg(sb, KERN_INFO,
533 					"Preserve previous reserve_root=%u",
534 					F2FS_OPTION(sbi).root_reserved_blocks);
535 			} else {
536 				F2FS_OPTION(sbi).root_reserved_blocks = arg;
537 				set_opt(sbi, RESERVE_ROOT);
538 			}
539 			break;
540 		case Opt_resuid:
541 			if (args->from && match_int(args, &arg))
542 				return -EINVAL;
543 			uid = make_kuid(current_user_ns(), arg);
544 			if (!uid_valid(uid)) {
545 				f2fs_msg(sb, KERN_ERR,
546 					"Invalid uid value %d", arg);
547 				return -EINVAL;
548 			}
549 			F2FS_OPTION(sbi).s_resuid = uid;
550 			break;
551 		case Opt_resgid:
552 			if (args->from && match_int(args, &arg))
553 				return -EINVAL;
554 			gid = make_kgid(current_user_ns(), arg);
555 			if (!gid_valid(gid)) {
556 				f2fs_msg(sb, KERN_ERR,
557 					"Invalid gid value %d", arg);
558 				return -EINVAL;
559 			}
560 			F2FS_OPTION(sbi).s_resgid = gid;
561 			break;
562 		case Opt_mode:
563 			name = match_strdup(&args[0]);
564 
565 			if (!name)
566 				return -ENOMEM;
567 			if (strlen(name) == 8 &&
568 					!strncmp(name, "adaptive", 8)) {
569 				if (f2fs_sb_has_blkzoned(sbi)) {
570 					f2fs_msg(sb, KERN_WARNING,
571 						 "adaptive mode is not allowed with "
572 						 "zoned block device feature");
573 					kvfree(name);
574 					return -EINVAL;
575 				}
576 				set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
577 			} else if (strlen(name) == 3 &&
578 					!strncmp(name, "lfs", 3)) {
579 				set_opt_mode(sbi, F2FS_MOUNT_LFS);
580 			} else {
581 				kvfree(name);
582 				return -EINVAL;
583 			}
584 			kvfree(name);
585 			break;
586 		case Opt_io_size_bits:
587 			if (args->from && match_int(args, &arg))
588 				return -EINVAL;
589 			if (arg > __ilog2_u32(BIO_MAX_PAGES)) {
590 				f2fs_msg(sb, KERN_WARNING,
591 					"Not support %d, larger than %d",
592 					1 << arg, BIO_MAX_PAGES);
593 				return -EINVAL;
594 			}
595 			F2FS_OPTION(sbi).write_io_size_bits = arg;
596 			break;
597 #ifdef CONFIG_F2FS_FAULT_INJECTION
598 		case Opt_fault_injection:
599 			if (args->from && match_int(args, &arg))
600 				return -EINVAL;
601 			f2fs_build_fault_attr(sbi, arg, F2FS_ALL_FAULT_TYPE);
602 			set_opt(sbi, FAULT_INJECTION);
603 			break;
604 
605 		case Opt_fault_type:
606 			if (args->from && match_int(args, &arg))
607 				return -EINVAL;
608 			f2fs_build_fault_attr(sbi, 0, arg);
609 			set_opt(sbi, FAULT_INJECTION);
610 			break;
611 #else
612 		case Opt_fault_injection:
613 			f2fs_msg(sb, KERN_INFO,
614 				"fault_injection options not supported");
615 			break;
616 
617 		case Opt_fault_type:
618 			f2fs_msg(sb, KERN_INFO,
619 				"fault_type options not supported");
620 			break;
621 #endif
622 		case Opt_lazytime:
623 			sb->s_flags |= SB_LAZYTIME;
624 			break;
625 		case Opt_nolazytime:
626 			sb->s_flags &= ~SB_LAZYTIME;
627 			break;
628 #ifdef CONFIG_QUOTA
629 		case Opt_quota:
630 		case Opt_usrquota:
631 			set_opt(sbi, USRQUOTA);
632 			break;
633 		case Opt_grpquota:
634 			set_opt(sbi, GRPQUOTA);
635 			break;
636 		case Opt_prjquota:
637 			set_opt(sbi, PRJQUOTA);
638 			break;
639 		case Opt_usrjquota:
640 			ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]);
641 			if (ret)
642 				return ret;
643 			break;
644 		case Opt_grpjquota:
645 			ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]);
646 			if (ret)
647 				return ret;
648 			break;
649 		case Opt_prjjquota:
650 			ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]);
651 			if (ret)
652 				return ret;
653 			break;
654 		case Opt_offusrjquota:
655 			ret = f2fs_clear_qf_name(sb, USRQUOTA);
656 			if (ret)
657 				return ret;
658 			break;
659 		case Opt_offgrpjquota:
660 			ret = f2fs_clear_qf_name(sb, GRPQUOTA);
661 			if (ret)
662 				return ret;
663 			break;
664 		case Opt_offprjjquota:
665 			ret = f2fs_clear_qf_name(sb, PRJQUOTA);
666 			if (ret)
667 				return ret;
668 			break;
669 		case Opt_jqfmt_vfsold:
670 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD;
671 			break;
672 		case Opt_jqfmt_vfsv0:
673 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0;
674 			break;
675 		case Opt_jqfmt_vfsv1:
676 			F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1;
677 			break;
678 		case Opt_noquota:
679 			clear_opt(sbi, QUOTA);
680 			clear_opt(sbi, USRQUOTA);
681 			clear_opt(sbi, GRPQUOTA);
682 			clear_opt(sbi, PRJQUOTA);
683 			break;
684 #else
685 		case Opt_quota:
686 		case Opt_usrquota:
687 		case Opt_grpquota:
688 		case Opt_prjquota:
689 		case Opt_usrjquota:
690 		case Opt_grpjquota:
691 		case Opt_prjjquota:
692 		case Opt_offusrjquota:
693 		case Opt_offgrpjquota:
694 		case Opt_offprjjquota:
695 		case Opt_jqfmt_vfsold:
696 		case Opt_jqfmt_vfsv0:
697 		case Opt_jqfmt_vfsv1:
698 		case Opt_noquota:
699 			f2fs_msg(sb, KERN_INFO,
700 					"quota operations not supported");
701 			break;
702 #endif
703 		case Opt_whint:
704 			name = match_strdup(&args[0]);
705 			if (!name)
706 				return -ENOMEM;
707 			if (strlen(name) == 10 &&
708 					!strncmp(name, "user-based", 10)) {
709 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_USER;
710 			} else if (strlen(name) == 3 &&
711 					!strncmp(name, "off", 3)) {
712 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
713 			} else if (strlen(name) == 8 &&
714 					!strncmp(name, "fs-based", 8)) {
715 				F2FS_OPTION(sbi).whint_mode = WHINT_MODE_FS;
716 			} else {
717 				kvfree(name);
718 				return -EINVAL;
719 			}
720 			kvfree(name);
721 			break;
722 		case Opt_alloc:
723 			name = match_strdup(&args[0]);
724 			if (!name)
725 				return -ENOMEM;
726 
727 			if (strlen(name) == 7 &&
728 					!strncmp(name, "default", 7)) {
729 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
730 			} else if (strlen(name) == 5 &&
731 					!strncmp(name, "reuse", 5)) {
732 				F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
733 			} else {
734 				kvfree(name);
735 				return -EINVAL;
736 			}
737 			kvfree(name);
738 			break;
739 		case Opt_fsync:
740 			name = match_strdup(&args[0]);
741 			if (!name)
742 				return -ENOMEM;
743 			if (strlen(name) == 5 &&
744 					!strncmp(name, "posix", 5)) {
745 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
746 			} else if (strlen(name) == 6 &&
747 					!strncmp(name, "strict", 6)) {
748 				F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT;
749 			} else if (strlen(name) == 9 &&
750 					!strncmp(name, "nobarrier", 9)) {
751 				F2FS_OPTION(sbi).fsync_mode =
752 							FSYNC_MODE_NOBARRIER;
753 			} else {
754 				kvfree(name);
755 				return -EINVAL;
756 			}
757 			kvfree(name);
758 			break;
759 		case Opt_test_dummy_encryption:
760 #ifdef CONFIG_F2FS_FS_ENCRYPTION
761 			if (!f2fs_sb_has_encrypt(sbi)) {
762 				f2fs_msg(sb, KERN_ERR, "Encrypt feature is off");
763 				return -EINVAL;
764 			}
765 
766 			F2FS_OPTION(sbi).test_dummy_encryption = true;
767 			f2fs_msg(sb, KERN_INFO,
768 					"Test dummy encryption mode enabled");
769 #else
770 			f2fs_msg(sb, KERN_INFO,
771 					"Test dummy encryption mount option ignored");
772 #endif
773 			break;
774 		case Opt_checkpoint:
775 			name = match_strdup(&args[0]);
776 			if (!name)
777 				return -ENOMEM;
778 
779 			if (strlen(name) == 6 &&
780 					!strncmp(name, "enable", 6)) {
781 				clear_opt(sbi, DISABLE_CHECKPOINT);
782 			} else if (strlen(name) == 7 &&
783 					!strncmp(name, "disable", 7)) {
784 				set_opt(sbi, DISABLE_CHECKPOINT);
785 			} else {
786 				kvfree(name);
787 				return -EINVAL;
788 			}
789 			kvfree(name);
790 			break;
791 		default:
792 			f2fs_msg(sb, KERN_ERR,
793 				"Unrecognized mount option \"%s\" or missing value",
794 				p);
795 			return -EINVAL;
796 		}
797 	}
798 #ifdef CONFIG_QUOTA
799 	if (f2fs_check_quota_options(sbi))
800 		return -EINVAL;
801 #else
802 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) {
803 		f2fs_msg(sbi->sb, KERN_INFO,
804 			 "Filesystem with quota feature cannot be mounted RDWR "
805 			 "without CONFIG_QUOTA");
806 		return -EINVAL;
807 	}
808 	if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) {
809 		f2fs_msg(sb, KERN_ERR,
810 			"Filesystem with project quota feature cannot be "
811 			"mounted RDWR without CONFIG_QUOTA");
812 		return -EINVAL;
813 	}
814 #endif
815 
816 	if (F2FS_IO_SIZE_BITS(sbi) && !test_opt(sbi, LFS)) {
817 		f2fs_msg(sb, KERN_ERR,
818 				"Should set mode=lfs with %uKB-sized IO",
819 				F2FS_IO_SIZE_KB(sbi));
820 		return -EINVAL;
821 	}
822 
823 	if (test_opt(sbi, INLINE_XATTR_SIZE)) {
824 		if (!f2fs_sb_has_extra_attr(sbi) ||
825 			!f2fs_sb_has_flexible_inline_xattr(sbi)) {
826 			f2fs_msg(sb, KERN_ERR,
827 					"extra_attr or flexible_inline_xattr "
828 					"feature is off");
829 			return -EINVAL;
830 		}
831 		if (!test_opt(sbi, INLINE_XATTR)) {
832 			f2fs_msg(sb, KERN_ERR,
833 					"inline_xattr_size option should be "
834 					"set with inline_xattr option");
835 			return -EINVAL;
836 		}
837 		if (!F2FS_OPTION(sbi).inline_xattr_size ||
838 			F2FS_OPTION(sbi).inline_xattr_size >=
839 					DEF_ADDRS_PER_INODE -
840 					F2FS_TOTAL_EXTRA_ATTR_SIZE -
841 					DEF_INLINE_RESERVED_SIZE -
842 					DEF_MIN_INLINE_SIZE) {
843 			f2fs_msg(sb, KERN_ERR,
844 					"inline xattr size is out of range");
845 			return -EINVAL;
846 		}
847 	}
848 
849 	if (test_opt(sbi, DISABLE_CHECKPOINT) && test_opt(sbi, LFS)) {
850 		f2fs_msg(sb, KERN_ERR,
851 				"LFS not compatible with checkpoint=disable\n");
852 		return -EINVAL;
853 	}
854 
855 	/* Not pass down write hints if the number of active logs is lesser
856 	 * than NR_CURSEG_TYPE.
857 	 */
858 	if (F2FS_OPTION(sbi).active_logs != NR_CURSEG_TYPE)
859 		F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
860 	return 0;
861 }
862 
863 static struct inode *f2fs_alloc_inode(struct super_block *sb)
864 {
865 	struct f2fs_inode_info *fi;
866 
867 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
868 	if (!fi)
869 		return NULL;
870 
871 	init_once((void *) fi);
872 
873 	/* Initialize f2fs-specific inode info */
874 	atomic_set(&fi->dirty_pages, 0);
875 	init_rwsem(&fi->i_sem);
876 	INIT_LIST_HEAD(&fi->dirty_list);
877 	INIT_LIST_HEAD(&fi->gdirty_list);
878 	INIT_LIST_HEAD(&fi->inmem_ilist);
879 	INIT_LIST_HEAD(&fi->inmem_pages);
880 	mutex_init(&fi->inmem_lock);
881 	init_rwsem(&fi->i_gc_rwsem[READ]);
882 	init_rwsem(&fi->i_gc_rwsem[WRITE]);
883 	init_rwsem(&fi->i_mmap_sem);
884 	init_rwsem(&fi->i_xattr_sem);
885 
886 	/* Will be used by directory only */
887 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
888 
889 	return &fi->vfs_inode;
890 }
891 
892 static int f2fs_drop_inode(struct inode *inode)
893 {
894 	int ret;
895 	/*
896 	 * This is to avoid a deadlock condition like below.
897 	 * writeback_single_inode(inode)
898 	 *  - f2fs_write_data_page
899 	 *    - f2fs_gc -> iput -> evict
900 	 *       - inode_wait_for_writeback(inode)
901 	 */
902 	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
903 		if (!inode->i_nlink && !is_bad_inode(inode)) {
904 			/* to avoid evict_inode call simultaneously */
905 			atomic_inc(&inode->i_count);
906 			spin_unlock(&inode->i_lock);
907 
908 			/* some remained atomic pages should discarded */
909 			if (f2fs_is_atomic_file(inode))
910 				f2fs_drop_inmem_pages(inode);
911 
912 			/* should remain fi->extent_tree for writepage */
913 			f2fs_destroy_extent_node(inode);
914 
915 			sb_start_intwrite(inode->i_sb);
916 			f2fs_i_size_write(inode, 0);
917 
918 			if (F2FS_HAS_BLOCKS(inode))
919 				f2fs_truncate(inode);
920 
921 			sb_end_intwrite(inode->i_sb);
922 
923 			spin_lock(&inode->i_lock);
924 			atomic_dec(&inode->i_count);
925 		}
926 		trace_f2fs_drop_inode(inode, 0);
927 		return 0;
928 	}
929 	ret = generic_drop_inode(inode);
930 	trace_f2fs_drop_inode(inode, ret);
931 	return ret;
932 }
933 
934 int f2fs_inode_dirtied(struct inode *inode, bool sync)
935 {
936 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
937 	int ret = 0;
938 
939 	spin_lock(&sbi->inode_lock[DIRTY_META]);
940 	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
941 		ret = 1;
942 	} else {
943 		set_inode_flag(inode, FI_DIRTY_INODE);
944 		stat_inc_dirty_inode(sbi, DIRTY_META);
945 	}
946 	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
947 		list_add_tail(&F2FS_I(inode)->gdirty_list,
948 				&sbi->inode_list[DIRTY_META]);
949 		inc_page_count(sbi, F2FS_DIRTY_IMETA);
950 	}
951 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
952 	return ret;
953 }
954 
955 void f2fs_inode_synced(struct inode *inode)
956 {
957 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
958 
959 	spin_lock(&sbi->inode_lock[DIRTY_META]);
960 	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
961 		spin_unlock(&sbi->inode_lock[DIRTY_META]);
962 		return;
963 	}
964 	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
965 		list_del_init(&F2FS_I(inode)->gdirty_list);
966 		dec_page_count(sbi, F2FS_DIRTY_IMETA);
967 	}
968 	clear_inode_flag(inode, FI_DIRTY_INODE);
969 	clear_inode_flag(inode, FI_AUTO_RECOVER);
970 	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
971 	spin_unlock(&sbi->inode_lock[DIRTY_META]);
972 }
973 
974 /*
975  * f2fs_dirty_inode() is called from __mark_inode_dirty()
976  *
977  * We should call set_dirty_inode to write the dirty inode through write_inode.
978  */
979 static void f2fs_dirty_inode(struct inode *inode, int flags)
980 {
981 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
982 
983 	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
984 			inode->i_ino == F2FS_META_INO(sbi))
985 		return;
986 
987 	if (flags == I_DIRTY_TIME)
988 		return;
989 
990 	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
991 		clear_inode_flag(inode, FI_AUTO_RECOVER);
992 
993 	f2fs_inode_dirtied(inode, false);
994 }
995 
996 static void f2fs_i_callback(struct rcu_head *head)
997 {
998 	struct inode *inode = container_of(head, struct inode, i_rcu);
999 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
1000 }
1001 
1002 static void f2fs_destroy_inode(struct inode *inode)
1003 {
1004 	call_rcu(&inode->i_rcu, f2fs_i_callback);
1005 }
1006 
1007 static void destroy_percpu_info(struct f2fs_sb_info *sbi)
1008 {
1009 	percpu_counter_destroy(&sbi->alloc_valid_block_count);
1010 	percpu_counter_destroy(&sbi->total_valid_inode_count);
1011 }
1012 
1013 static void destroy_device_list(struct f2fs_sb_info *sbi)
1014 {
1015 	int i;
1016 
1017 	for (i = 0; i < sbi->s_ndevs; i++) {
1018 		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
1019 #ifdef CONFIG_BLK_DEV_ZONED
1020 		kvfree(FDEV(i).blkz_type);
1021 #endif
1022 	}
1023 	kvfree(sbi->devs);
1024 }
1025 
1026 static void f2fs_put_super(struct super_block *sb)
1027 {
1028 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1029 	int i;
1030 	bool dropped;
1031 
1032 	f2fs_quota_off_umount(sb);
1033 
1034 	/* prevent remaining shrinker jobs */
1035 	mutex_lock(&sbi->umount_mutex);
1036 
1037 	/*
1038 	 * We don't need to do checkpoint when superblock is clean.
1039 	 * But, the previous checkpoint was not done by umount, it needs to do
1040 	 * clean checkpoint again.
1041 	 */
1042 	if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
1043 			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) {
1044 		struct cp_control cpc = {
1045 			.reason = CP_UMOUNT,
1046 		};
1047 		f2fs_write_checkpoint(sbi, &cpc);
1048 	}
1049 
1050 	/* be sure to wait for any on-going discard commands */
1051 	dropped = f2fs_wait_discard_bios(sbi);
1052 
1053 	if ((f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) &&
1054 					!sbi->discard_blks && !dropped) {
1055 		struct cp_control cpc = {
1056 			.reason = CP_UMOUNT | CP_TRIMMED,
1057 		};
1058 		f2fs_write_checkpoint(sbi, &cpc);
1059 	}
1060 
1061 	/*
1062 	 * normally superblock is clean, so we need to release this.
1063 	 * In addition, EIO will skip do checkpoint, we need this as well.
1064 	 */
1065 	f2fs_release_ino_entry(sbi, true);
1066 
1067 	f2fs_leave_shrinker(sbi);
1068 	mutex_unlock(&sbi->umount_mutex);
1069 
1070 	/* our cp_error case, we can wait for any writeback page */
1071 	f2fs_flush_merged_writes(sbi);
1072 
1073 	f2fs_wait_on_all_pages_writeback(sbi);
1074 
1075 	f2fs_bug_on(sbi, sbi->fsync_node_num);
1076 
1077 	iput(sbi->node_inode);
1078 	iput(sbi->meta_inode);
1079 
1080 	/*
1081 	 * iput() can update stat information, if f2fs_write_checkpoint()
1082 	 * above failed with error.
1083 	 */
1084 	f2fs_destroy_stats(sbi);
1085 
1086 	/* destroy f2fs internal modules */
1087 	f2fs_destroy_node_manager(sbi);
1088 	f2fs_destroy_segment_manager(sbi);
1089 
1090 	kvfree(sbi->ckpt);
1091 
1092 	f2fs_unregister_sysfs(sbi);
1093 
1094 	sb->s_fs_info = NULL;
1095 	if (sbi->s_chksum_driver)
1096 		crypto_free_shash(sbi->s_chksum_driver);
1097 	kvfree(sbi->raw_super);
1098 
1099 	destroy_device_list(sbi);
1100 	mempool_destroy(sbi->write_io_dummy);
1101 #ifdef CONFIG_QUOTA
1102 	for (i = 0; i < MAXQUOTAS; i++)
1103 		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1104 #endif
1105 	destroy_percpu_info(sbi);
1106 	for (i = 0; i < NR_PAGE_TYPE; i++)
1107 		kvfree(sbi->write_io[i]);
1108 	kvfree(sbi);
1109 }
1110 
1111 int f2fs_sync_fs(struct super_block *sb, int sync)
1112 {
1113 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1114 	int err = 0;
1115 
1116 	if (unlikely(f2fs_cp_error(sbi)))
1117 		return 0;
1118 	if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
1119 		return 0;
1120 
1121 	trace_f2fs_sync_fs(sb, sync);
1122 
1123 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
1124 		return -EAGAIN;
1125 
1126 	if (sync) {
1127 		struct cp_control cpc;
1128 
1129 		cpc.reason = __get_cp_reason(sbi);
1130 
1131 		mutex_lock(&sbi->gc_mutex);
1132 		err = f2fs_write_checkpoint(sbi, &cpc);
1133 		mutex_unlock(&sbi->gc_mutex);
1134 	}
1135 	f2fs_trace_ios(NULL, 1);
1136 
1137 	return err;
1138 }
1139 
1140 static int f2fs_freeze(struct super_block *sb)
1141 {
1142 	if (f2fs_readonly(sb))
1143 		return 0;
1144 
1145 	/* IO error happened before */
1146 	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
1147 		return -EIO;
1148 
1149 	/* must be clean, since sync_filesystem() was already called */
1150 	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
1151 		return -EINVAL;
1152 	return 0;
1153 }
1154 
1155 static int f2fs_unfreeze(struct super_block *sb)
1156 {
1157 	return 0;
1158 }
1159 
1160 #ifdef CONFIG_QUOTA
1161 static int f2fs_statfs_project(struct super_block *sb,
1162 				kprojid_t projid, struct kstatfs *buf)
1163 {
1164 	struct kqid qid;
1165 	struct dquot *dquot;
1166 	u64 limit;
1167 	u64 curblock;
1168 
1169 	qid = make_kqid_projid(projid);
1170 	dquot = dqget(sb, qid);
1171 	if (IS_ERR(dquot))
1172 		return PTR_ERR(dquot);
1173 	spin_lock(&dquot->dq_dqb_lock);
1174 
1175 	limit = (dquot->dq_dqb.dqb_bsoftlimit ?
1176 		 dquot->dq_dqb.dqb_bsoftlimit :
1177 		 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
1178 	if (limit && buf->f_blocks > limit) {
1179 		curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
1180 		buf->f_blocks = limit;
1181 		buf->f_bfree = buf->f_bavail =
1182 			(buf->f_blocks > curblock) ?
1183 			 (buf->f_blocks - curblock) : 0;
1184 	}
1185 
1186 	limit = dquot->dq_dqb.dqb_isoftlimit ?
1187 		dquot->dq_dqb.dqb_isoftlimit :
1188 		dquot->dq_dqb.dqb_ihardlimit;
1189 	if (limit && buf->f_files > limit) {
1190 		buf->f_files = limit;
1191 		buf->f_ffree =
1192 			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
1193 			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
1194 	}
1195 
1196 	spin_unlock(&dquot->dq_dqb_lock);
1197 	dqput(dquot);
1198 	return 0;
1199 }
1200 #endif
1201 
1202 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
1203 {
1204 	struct super_block *sb = dentry->d_sb;
1205 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1206 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
1207 	block_t total_count, user_block_count, start_count;
1208 	u64 avail_node_count;
1209 
1210 	total_count = le64_to_cpu(sbi->raw_super->block_count);
1211 	user_block_count = sbi->user_block_count;
1212 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
1213 	buf->f_type = F2FS_SUPER_MAGIC;
1214 	buf->f_bsize = sbi->blocksize;
1215 
1216 	buf->f_blocks = total_count - start_count;
1217 	buf->f_bfree = user_block_count - valid_user_blocks(sbi) -
1218 						sbi->current_reserved_blocks;
1219 	if (unlikely(buf->f_bfree <= sbi->unusable_block_count))
1220 		buf->f_bfree = 0;
1221 	else
1222 		buf->f_bfree -= sbi->unusable_block_count;
1223 
1224 	if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks)
1225 		buf->f_bavail = buf->f_bfree -
1226 				F2FS_OPTION(sbi).root_reserved_blocks;
1227 	else
1228 		buf->f_bavail = 0;
1229 
1230 	avail_node_count = sbi->total_node_count - sbi->nquota_files -
1231 						F2FS_RESERVED_NODE_NUM;
1232 
1233 	if (avail_node_count > user_block_count) {
1234 		buf->f_files = user_block_count;
1235 		buf->f_ffree = buf->f_bavail;
1236 	} else {
1237 		buf->f_files = avail_node_count;
1238 		buf->f_ffree = min(avail_node_count - valid_node_count(sbi),
1239 					buf->f_bavail);
1240 	}
1241 
1242 	buf->f_namelen = F2FS_NAME_LEN;
1243 	buf->f_fsid.val[0] = (u32)id;
1244 	buf->f_fsid.val[1] = (u32)(id >> 32);
1245 
1246 #ifdef CONFIG_QUOTA
1247 	if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) &&
1248 			sb_has_quota_limits_enabled(sb, PRJQUOTA)) {
1249 		f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf);
1250 	}
1251 #endif
1252 	return 0;
1253 }
1254 
1255 static inline void f2fs_show_quota_options(struct seq_file *seq,
1256 					   struct super_block *sb)
1257 {
1258 #ifdef CONFIG_QUOTA
1259 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1260 
1261 	if (F2FS_OPTION(sbi).s_jquota_fmt) {
1262 		char *fmtname = "";
1263 
1264 		switch (F2FS_OPTION(sbi).s_jquota_fmt) {
1265 		case QFMT_VFS_OLD:
1266 			fmtname = "vfsold";
1267 			break;
1268 		case QFMT_VFS_V0:
1269 			fmtname = "vfsv0";
1270 			break;
1271 		case QFMT_VFS_V1:
1272 			fmtname = "vfsv1";
1273 			break;
1274 		}
1275 		seq_printf(seq, ",jqfmt=%s", fmtname);
1276 	}
1277 
1278 	if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA])
1279 		seq_show_option(seq, "usrjquota",
1280 			F2FS_OPTION(sbi).s_qf_names[USRQUOTA]);
1281 
1282 	if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA])
1283 		seq_show_option(seq, "grpjquota",
1284 			F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]);
1285 
1286 	if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA])
1287 		seq_show_option(seq, "prjjquota",
1288 			F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]);
1289 #endif
1290 }
1291 
1292 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
1293 {
1294 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
1295 
1296 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
1297 		if (test_opt(sbi, FORCE_FG_GC))
1298 			seq_printf(seq, ",background_gc=%s", "sync");
1299 		else
1300 			seq_printf(seq, ",background_gc=%s", "on");
1301 	} else {
1302 		seq_printf(seq, ",background_gc=%s", "off");
1303 	}
1304 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
1305 		seq_puts(seq, ",disable_roll_forward");
1306 	if (test_opt(sbi, DISCARD))
1307 		seq_puts(seq, ",discard");
1308 	if (test_opt(sbi, NOHEAP))
1309 		seq_puts(seq, ",no_heap");
1310 	else
1311 		seq_puts(seq, ",heap");
1312 #ifdef CONFIG_F2FS_FS_XATTR
1313 	if (test_opt(sbi, XATTR_USER))
1314 		seq_puts(seq, ",user_xattr");
1315 	else
1316 		seq_puts(seq, ",nouser_xattr");
1317 	if (test_opt(sbi, INLINE_XATTR))
1318 		seq_puts(seq, ",inline_xattr");
1319 	else
1320 		seq_puts(seq, ",noinline_xattr");
1321 	if (test_opt(sbi, INLINE_XATTR_SIZE))
1322 		seq_printf(seq, ",inline_xattr_size=%u",
1323 					F2FS_OPTION(sbi).inline_xattr_size);
1324 #endif
1325 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1326 	if (test_opt(sbi, POSIX_ACL))
1327 		seq_puts(seq, ",acl");
1328 	else
1329 		seq_puts(seq, ",noacl");
1330 #endif
1331 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
1332 		seq_puts(seq, ",disable_ext_identify");
1333 	if (test_opt(sbi, INLINE_DATA))
1334 		seq_puts(seq, ",inline_data");
1335 	else
1336 		seq_puts(seq, ",noinline_data");
1337 	if (test_opt(sbi, INLINE_DENTRY))
1338 		seq_puts(seq, ",inline_dentry");
1339 	else
1340 		seq_puts(seq, ",noinline_dentry");
1341 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
1342 		seq_puts(seq, ",flush_merge");
1343 	if (test_opt(sbi, NOBARRIER))
1344 		seq_puts(seq, ",nobarrier");
1345 	if (test_opt(sbi, FASTBOOT))
1346 		seq_puts(seq, ",fastboot");
1347 	if (test_opt(sbi, EXTENT_CACHE))
1348 		seq_puts(seq, ",extent_cache");
1349 	else
1350 		seq_puts(seq, ",noextent_cache");
1351 	if (test_opt(sbi, DATA_FLUSH))
1352 		seq_puts(seq, ",data_flush");
1353 
1354 	seq_puts(seq, ",mode=");
1355 	if (test_opt(sbi, ADAPTIVE))
1356 		seq_puts(seq, "adaptive");
1357 	else if (test_opt(sbi, LFS))
1358 		seq_puts(seq, "lfs");
1359 	seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs);
1360 	if (test_opt(sbi, RESERVE_ROOT))
1361 		seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u",
1362 				F2FS_OPTION(sbi).root_reserved_blocks,
1363 				from_kuid_munged(&init_user_ns,
1364 					F2FS_OPTION(sbi).s_resuid),
1365 				from_kgid_munged(&init_user_ns,
1366 					F2FS_OPTION(sbi).s_resgid));
1367 	if (F2FS_IO_SIZE_BITS(sbi))
1368 		seq_printf(seq, ",io_bits=%u",
1369 				F2FS_OPTION(sbi).write_io_size_bits);
1370 #ifdef CONFIG_F2FS_FAULT_INJECTION
1371 	if (test_opt(sbi, FAULT_INJECTION)) {
1372 		seq_printf(seq, ",fault_injection=%u",
1373 				F2FS_OPTION(sbi).fault_info.inject_rate);
1374 		seq_printf(seq, ",fault_type=%u",
1375 				F2FS_OPTION(sbi).fault_info.inject_type);
1376 	}
1377 #endif
1378 #ifdef CONFIG_QUOTA
1379 	if (test_opt(sbi, QUOTA))
1380 		seq_puts(seq, ",quota");
1381 	if (test_opt(sbi, USRQUOTA))
1382 		seq_puts(seq, ",usrquota");
1383 	if (test_opt(sbi, GRPQUOTA))
1384 		seq_puts(seq, ",grpquota");
1385 	if (test_opt(sbi, PRJQUOTA))
1386 		seq_puts(seq, ",prjquota");
1387 #endif
1388 	f2fs_show_quota_options(seq, sbi->sb);
1389 	if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_USER)
1390 		seq_printf(seq, ",whint_mode=%s", "user-based");
1391 	else if (F2FS_OPTION(sbi).whint_mode == WHINT_MODE_FS)
1392 		seq_printf(seq, ",whint_mode=%s", "fs-based");
1393 #ifdef CONFIG_F2FS_FS_ENCRYPTION
1394 	if (F2FS_OPTION(sbi).test_dummy_encryption)
1395 		seq_puts(seq, ",test_dummy_encryption");
1396 #endif
1397 
1398 	if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT)
1399 		seq_printf(seq, ",alloc_mode=%s", "default");
1400 	else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE)
1401 		seq_printf(seq, ",alloc_mode=%s", "reuse");
1402 
1403 	if (test_opt(sbi, DISABLE_CHECKPOINT))
1404 		seq_puts(seq, ",checkpoint=disable");
1405 
1406 	if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX)
1407 		seq_printf(seq, ",fsync_mode=%s", "posix");
1408 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT)
1409 		seq_printf(seq, ",fsync_mode=%s", "strict");
1410 	else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER)
1411 		seq_printf(seq, ",fsync_mode=%s", "nobarrier");
1412 	return 0;
1413 }
1414 
1415 static void default_options(struct f2fs_sb_info *sbi)
1416 {
1417 	/* init some FS parameters */
1418 	F2FS_OPTION(sbi).active_logs = NR_CURSEG_TYPE;
1419 	F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS;
1420 	F2FS_OPTION(sbi).whint_mode = WHINT_MODE_OFF;
1421 	F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT;
1422 	F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX;
1423 	F2FS_OPTION(sbi).test_dummy_encryption = false;
1424 	F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID);
1425 	F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID);
1426 
1427 	set_opt(sbi, BG_GC);
1428 	set_opt(sbi, INLINE_XATTR);
1429 	set_opt(sbi, INLINE_DATA);
1430 	set_opt(sbi, INLINE_DENTRY);
1431 	set_opt(sbi, EXTENT_CACHE);
1432 	set_opt(sbi, NOHEAP);
1433 	clear_opt(sbi, DISABLE_CHECKPOINT);
1434 	sbi->sb->s_flags |= SB_LAZYTIME;
1435 	set_opt(sbi, FLUSH_MERGE);
1436 	set_opt(sbi, DISCARD);
1437 	if (f2fs_sb_has_blkzoned(sbi))
1438 		set_opt_mode(sbi, F2FS_MOUNT_LFS);
1439 	else
1440 		set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1441 
1442 #ifdef CONFIG_F2FS_FS_XATTR
1443 	set_opt(sbi, XATTR_USER);
1444 #endif
1445 #ifdef CONFIG_F2FS_FS_POSIX_ACL
1446 	set_opt(sbi, POSIX_ACL);
1447 #endif
1448 
1449 	f2fs_build_fault_attr(sbi, 0, 0);
1450 }
1451 
1452 #ifdef CONFIG_QUOTA
1453 static int f2fs_enable_quotas(struct super_block *sb);
1454 #endif
1455 
1456 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi)
1457 {
1458 	struct cp_control cpc;
1459 	int err;
1460 
1461 	sbi->sb->s_flags |= SB_ACTIVE;
1462 
1463 	f2fs_update_time(sbi, DISABLE_TIME);
1464 
1465 	while (!f2fs_time_over(sbi, DISABLE_TIME)) {
1466 		mutex_lock(&sbi->gc_mutex);
1467 		err = f2fs_gc(sbi, true, false, NULL_SEGNO);
1468 		if (err == -ENODATA)
1469 			break;
1470 		if (err && err != -EAGAIN)
1471 			return err;
1472 	}
1473 
1474 	err = sync_filesystem(sbi->sb);
1475 	if (err)
1476 		return err;
1477 
1478 	if (f2fs_disable_cp_again(sbi))
1479 		return -EAGAIN;
1480 
1481 	mutex_lock(&sbi->gc_mutex);
1482 	cpc.reason = CP_PAUSE;
1483 	set_sbi_flag(sbi, SBI_CP_DISABLED);
1484 	f2fs_write_checkpoint(sbi, &cpc);
1485 
1486 	sbi->unusable_block_count = 0;
1487 	mutex_unlock(&sbi->gc_mutex);
1488 	return 0;
1489 }
1490 
1491 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi)
1492 {
1493 	mutex_lock(&sbi->gc_mutex);
1494 	f2fs_dirty_to_prefree(sbi);
1495 
1496 	clear_sbi_flag(sbi, SBI_CP_DISABLED);
1497 	set_sbi_flag(sbi, SBI_IS_DIRTY);
1498 	mutex_unlock(&sbi->gc_mutex);
1499 
1500 	f2fs_sync_fs(sbi->sb, 1);
1501 }
1502 
1503 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1504 {
1505 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1506 	struct f2fs_mount_info org_mount_opt;
1507 	unsigned long old_sb_flags;
1508 	int err;
1509 	bool need_restart_gc = false;
1510 	bool need_stop_gc = false;
1511 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1512 	bool disable_checkpoint = test_opt(sbi, DISABLE_CHECKPOINT);
1513 	bool checkpoint_changed;
1514 #ifdef CONFIG_QUOTA
1515 	int i, j;
1516 #endif
1517 
1518 	/*
1519 	 * Save the old mount options in case we
1520 	 * need to restore them.
1521 	 */
1522 	org_mount_opt = sbi->mount_opt;
1523 	old_sb_flags = sb->s_flags;
1524 
1525 #ifdef CONFIG_QUOTA
1526 	org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt;
1527 	for (i = 0; i < MAXQUOTAS; i++) {
1528 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1529 			org_mount_opt.s_qf_names[i] =
1530 				kstrdup(F2FS_OPTION(sbi).s_qf_names[i],
1531 				GFP_KERNEL);
1532 			if (!org_mount_opt.s_qf_names[i]) {
1533 				for (j = 0; j < i; j++)
1534 					kvfree(org_mount_opt.s_qf_names[j]);
1535 				return -ENOMEM;
1536 			}
1537 		} else {
1538 			org_mount_opt.s_qf_names[i] = NULL;
1539 		}
1540 	}
1541 #endif
1542 
1543 	/* recover superblocks we couldn't write due to previous RO mount */
1544 	if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1545 		err = f2fs_commit_super(sbi, false);
1546 		f2fs_msg(sb, KERN_INFO,
1547 			"Try to recover all the superblocks, ret: %d", err);
1548 		if (!err)
1549 			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1550 	}
1551 
1552 	default_options(sbi);
1553 
1554 	/* parse mount options */
1555 	err = parse_options(sb, data);
1556 	if (err)
1557 		goto restore_opts;
1558 	checkpoint_changed =
1559 			disable_checkpoint != test_opt(sbi, DISABLE_CHECKPOINT);
1560 
1561 	/*
1562 	 * Previous and new state of filesystem is RO,
1563 	 * so skip checking GC and FLUSH_MERGE conditions.
1564 	 */
1565 	if (f2fs_readonly(sb) && (*flags & SB_RDONLY))
1566 		goto skip;
1567 
1568 #ifdef CONFIG_QUOTA
1569 	if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) {
1570 		err = dquot_suspend(sb, -1);
1571 		if (err < 0)
1572 			goto restore_opts;
1573 	} else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) {
1574 		/* dquot_resume needs RW */
1575 		sb->s_flags &= ~SB_RDONLY;
1576 		if (sb_any_quota_suspended(sb)) {
1577 			dquot_resume(sb, -1);
1578 		} else if (f2fs_sb_has_quota_ino(sbi)) {
1579 			err = f2fs_enable_quotas(sb);
1580 			if (err)
1581 				goto restore_opts;
1582 		}
1583 	}
1584 #endif
1585 	/* disallow enable/disable extent_cache dynamically */
1586 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1587 		err = -EINVAL;
1588 		f2fs_msg(sbi->sb, KERN_WARNING,
1589 				"switch extent_cache option is not allowed");
1590 		goto restore_opts;
1591 	}
1592 
1593 	if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) {
1594 		err = -EINVAL;
1595 		f2fs_msg(sbi->sb, KERN_WARNING,
1596 			"disabling checkpoint not compatible with read-only");
1597 		goto restore_opts;
1598 	}
1599 
1600 	/*
1601 	 * We stop the GC thread if FS is mounted as RO
1602 	 * or if background_gc = off is passed in mount
1603 	 * option. Also sync the filesystem.
1604 	 */
1605 	if ((*flags & SB_RDONLY) || !test_opt(sbi, BG_GC)) {
1606 		if (sbi->gc_thread) {
1607 			f2fs_stop_gc_thread(sbi);
1608 			need_restart_gc = true;
1609 		}
1610 	} else if (!sbi->gc_thread) {
1611 		err = f2fs_start_gc_thread(sbi);
1612 		if (err)
1613 			goto restore_opts;
1614 		need_stop_gc = true;
1615 	}
1616 
1617 	if (*flags & SB_RDONLY ||
1618 		F2FS_OPTION(sbi).whint_mode != org_mount_opt.whint_mode) {
1619 		writeback_inodes_sb(sb, WB_REASON_SYNC);
1620 		sync_inodes_sb(sb);
1621 
1622 		set_sbi_flag(sbi, SBI_IS_DIRTY);
1623 		set_sbi_flag(sbi, SBI_IS_CLOSE);
1624 		f2fs_sync_fs(sb, 1);
1625 		clear_sbi_flag(sbi, SBI_IS_CLOSE);
1626 	}
1627 
1628 	if (checkpoint_changed) {
1629 		if (test_opt(sbi, DISABLE_CHECKPOINT)) {
1630 			err = f2fs_disable_checkpoint(sbi);
1631 			if (err)
1632 				goto restore_gc;
1633 		} else {
1634 			f2fs_enable_checkpoint(sbi);
1635 		}
1636 	}
1637 
1638 	/*
1639 	 * We stop issue flush thread if FS is mounted as RO
1640 	 * or if flush_merge is not passed in mount option.
1641 	 */
1642 	if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1643 		clear_opt(sbi, FLUSH_MERGE);
1644 		f2fs_destroy_flush_cmd_control(sbi, false);
1645 	} else {
1646 		err = f2fs_create_flush_cmd_control(sbi);
1647 		if (err)
1648 			goto restore_gc;
1649 	}
1650 skip:
1651 #ifdef CONFIG_QUOTA
1652 	/* Release old quota file names */
1653 	for (i = 0; i < MAXQUOTAS; i++)
1654 		kvfree(org_mount_opt.s_qf_names[i]);
1655 #endif
1656 	/* Update the POSIXACL Flag */
1657 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
1658 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
1659 
1660 	limit_reserve_root(sbi);
1661 	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
1662 	return 0;
1663 restore_gc:
1664 	if (need_restart_gc) {
1665 		if (f2fs_start_gc_thread(sbi))
1666 			f2fs_msg(sbi->sb, KERN_WARNING,
1667 				"background gc thread has stopped");
1668 	} else if (need_stop_gc) {
1669 		f2fs_stop_gc_thread(sbi);
1670 	}
1671 restore_opts:
1672 #ifdef CONFIG_QUOTA
1673 	F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt;
1674 	for (i = 0; i < MAXQUOTAS; i++) {
1675 		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
1676 		F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i];
1677 	}
1678 #endif
1679 	sbi->mount_opt = org_mount_opt;
1680 	sb->s_flags = old_sb_flags;
1681 	return err;
1682 }
1683 
1684 #ifdef CONFIG_QUOTA
1685 /* Read data from quotafile */
1686 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data,
1687 			       size_t len, loff_t off)
1688 {
1689 	struct inode *inode = sb_dqopt(sb)->files[type];
1690 	struct address_space *mapping = inode->i_mapping;
1691 	block_t blkidx = F2FS_BYTES_TO_BLK(off);
1692 	int offset = off & (sb->s_blocksize - 1);
1693 	int tocopy;
1694 	size_t toread;
1695 	loff_t i_size = i_size_read(inode);
1696 	struct page *page;
1697 	char *kaddr;
1698 
1699 	if (off > i_size)
1700 		return 0;
1701 
1702 	if (off + len > i_size)
1703 		len = i_size - off;
1704 	toread = len;
1705 	while (toread > 0) {
1706 		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
1707 repeat:
1708 		page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS);
1709 		if (IS_ERR(page)) {
1710 			if (PTR_ERR(page) == -ENOMEM) {
1711 				congestion_wait(BLK_RW_ASYNC, HZ/50);
1712 				goto repeat;
1713 			}
1714 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1715 			return PTR_ERR(page);
1716 		}
1717 
1718 		lock_page(page);
1719 
1720 		if (unlikely(page->mapping != mapping)) {
1721 			f2fs_put_page(page, 1);
1722 			goto repeat;
1723 		}
1724 		if (unlikely(!PageUptodate(page))) {
1725 			f2fs_put_page(page, 1);
1726 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1727 			return -EIO;
1728 		}
1729 
1730 		kaddr = kmap_atomic(page);
1731 		memcpy(data, kaddr + offset, tocopy);
1732 		kunmap_atomic(kaddr);
1733 		f2fs_put_page(page, 1);
1734 
1735 		offset = 0;
1736 		toread -= tocopy;
1737 		data += tocopy;
1738 		blkidx++;
1739 	}
1740 	return len;
1741 }
1742 
1743 /* Write to quotafile */
1744 static ssize_t f2fs_quota_write(struct super_block *sb, int type,
1745 				const char *data, size_t len, loff_t off)
1746 {
1747 	struct inode *inode = sb_dqopt(sb)->files[type];
1748 	struct address_space *mapping = inode->i_mapping;
1749 	const struct address_space_operations *a_ops = mapping->a_ops;
1750 	int offset = off & (sb->s_blocksize - 1);
1751 	size_t towrite = len;
1752 	struct page *page;
1753 	char *kaddr;
1754 	int err = 0;
1755 	int tocopy;
1756 
1757 	while (towrite > 0) {
1758 		tocopy = min_t(unsigned long, sb->s_blocksize - offset,
1759 								towrite);
1760 retry:
1761 		err = a_ops->write_begin(NULL, mapping, off, tocopy, 0,
1762 							&page, NULL);
1763 		if (unlikely(err)) {
1764 			if (err == -ENOMEM) {
1765 				congestion_wait(BLK_RW_ASYNC, HZ/50);
1766 				goto retry;
1767 			}
1768 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1769 			break;
1770 		}
1771 
1772 		kaddr = kmap_atomic(page);
1773 		memcpy(kaddr + offset, data, tocopy);
1774 		kunmap_atomic(kaddr);
1775 		flush_dcache_page(page);
1776 
1777 		a_ops->write_end(NULL, mapping, off, tocopy, tocopy,
1778 						page, NULL);
1779 		offset = 0;
1780 		towrite -= tocopy;
1781 		off += tocopy;
1782 		data += tocopy;
1783 		cond_resched();
1784 	}
1785 
1786 	if (len == towrite)
1787 		return err;
1788 	inode->i_mtime = inode->i_ctime = current_time(inode);
1789 	f2fs_mark_inode_dirty_sync(inode, false);
1790 	return len - towrite;
1791 }
1792 
1793 static struct dquot **f2fs_get_dquots(struct inode *inode)
1794 {
1795 	return F2FS_I(inode)->i_dquot;
1796 }
1797 
1798 static qsize_t *f2fs_get_reserved_space(struct inode *inode)
1799 {
1800 	return &F2FS_I(inode)->i_reserved_quota;
1801 }
1802 
1803 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type)
1804 {
1805 	if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) {
1806 		f2fs_msg(sbi->sb, KERN_ERR,
1807 			"quota sysfile may be corrupted, skip loading it");
1808 		return 0;
1809 	}
1810 
1811 	return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type],
1812 					F2FS_OPTION(sbi).s_jquota_fmt, type);
1813 }
1814 
1815 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly)
1816 {
1817 	int enabled = 0;
1818 	int i, err;
1819 
1820 	if (f2fs_sb_has_quota_ino(sbi) && rdonly) {
1821 		err = f2fs_enable_quotas(sbi->sb);
1822 		if (err) {
1823 			f2fs_msg(sbi->sb, KERN_ERR,
1824 					"Cannot turn on quota_ino: %d", err);
1825 			return 0;
1826 		}
1827 		return 1;
1828 	}
1829 
1830 	for (i = 0; i < MAXQUOTAS; i++) {
1831 		if (F2FS_OPTION(sbi).s_qf_names[i]) {
1832 			err = f2fs_quota_on_mount(sbi, i);
1833 			if (!err) {
1834 				enabled = 1;
1835 				continue;
1836 			}
1837 			f2fs_msg(sbi->sb, KERN_ERR,
1838 				"Cannot turn on quotas: %d on %d", err, i);
1839 		}
1840 	}
1841 	return enabled;
1842 }
1843 
1844 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id,
1845 			     unsigned int flags)
1846 {
1847 	struct inode *qf_inode;
1848 	unsigned long qf_inum;
1849 	int err;
1850 
1851 	BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb)));
1852 
1853 	qf_inum = f2fs_qf_ino(sb, type);
1854 	if (!qf_inum)
1855 		return -EPERM;
1856 
1857 	qf_inode = f2fs_iget(sb, qf_inum);
1858 	if (IS_ERR(qf_inode)) {
1859 		f2fs_msg(sb, KERN_ERR,
1860 			"Bad quota inode %u:%lu", type, qf_inum);
1861 		return PTR_ERR(qf_inode);
1862 	}
1863 
1864 	/* Don't account quota for quota files to avoid recursion */
1865 	qf_inode->i_flags |= S_NOQUOTA;
1866 	err = dquot_enable(qf_inode, type, format_id, flags);
1867 	iput(qf_inode);
1868 	return err;
1869 }
1870 
1871 static int f2fs_enable_quotas(struct super_block *sb)
1872 {
1873 	int type, err = 0;
1874 	unsigned long qf_inum;
1875 	bool quota_mopt[MAXQUOTAS] = {
1876 		test_opt(F2FS_SB(sb), USRQUOTA),
1877 		test_opt(F2FS_SB(sb), GRPQUOTA),
1878 		test_opt(F2FS_SB(sb), PRJQUOTA),
1879 	};
1880 
1881 	if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) {
1882 		f2fs_msg(sb, KERN_ERR,
1883 			"quota file may be corrupted, skip loading it");
1884 		return 0;
1885 	}
1886 
1887 	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
1888 
1889 	for (type = 0; type < MAXQUOTAS; type++) {
1890 		qf_inum = f2fs_qf_ino(sb, type);
1891 		if (qf_inum) {
1892 			err = f2fs_quota_enable(sb, type, QFMT_VFS_V1,
1893 				DQUOT_USAGE_ENABLED |
1894 				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
1895 			if (err) {
1896 				f2fs_msg(sb, KERN_ERR,
1897 					"Failed to enable quota tracking "
1898 					"(type=%d, err=%d). Please run "
1899 					"fsck to fix.", type, err);
1900 				for (type--; type >= 0; type--)
1901 					dquot_quota_off(sb, type);
1902 				set_sbi_flag(F2FS_SB(sb),
1903 						SBI_QUOTA_NEED_REPAIR);
1904 				return err;
1905 			}
1906 		}
1907 	}
1908 	return 0;
1909 }
1910 
1911 int f2fs_quota_sync(struct super_block *sb, int type)
1912 {
1913 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1914 	struct quota_info *dqopt = sb_dqopt(sb);
1915 	int cnt;
1916 	int ret;
1917 
1918 	ret = dquot_writeback_dquots(sb, type);
1919 	if (ret)
1920 		goto out;
1921 
1922 	/*
1923 	 * Now when everything is written we can discard the pagecache so
1924 	 * that userspace sees the changes.
1925 	 */
1926 	for (cnt = 0; cnt < MAXQUOTAS; cnt++) {
1927 		struct address_space *mapping;
1928 
1929 		if (type != -1 && cnt != type)
1930 			continue;
1931 		if (!sb_has_quota_active(sb, cnt))
1932 			continue;
1933 
1934 		mapping = dqopt->files[cnt]->i_mapping;
1935 
1936 		ret = filemap_fdatawrite(mapping);
1937 		if (ret)
1938 			goto out;
1939 
1940 		/* if we are using journalled quota */
1941 		if (is_journalled_quota(sbi))
1942 			continue;
1943 
1944 		ret = filemap_fdatawait(mapping);
1945 		if (ret)
1946 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1947 
1948 		inode_lock(dqopt->files[cnt]);
1949 		truncate_inode_pages(&dqopt->files[cnt]->i_data, 0);
1950 		inode_unlock(dqopt->files[cnt]);
1951 	}
1952 out:
1953 	if (ret)
1954 		set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
1955 	return ret;
1956 }
1957 
1958 static int f2fs_quota_on(struct super_block *sb, int type, int format_id,
1959 							const struct path *path)
1960 {
1961 	struct inode *inode;
1962 	int err;
1963 
1964 	err = f2fs_quota_sync(sb, type);
1965 	if (err)
1966 		return err;
1967 
1968 	err = dquot_quota_on(sb, type, format_id, path);
1969 	if (err)
1970 		return err;
1971 
1972 	inode = d_inode(path->dentry);
1973 
1974 	inode_lock(inode);
1975 	F2FS_I(inode)->i_flags |= F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL;
1976 	f2fs_set_inode_flags(inode);
1977 	inode_unlock(inode);
1978 	f2fs_mark_inode_dirty_sync(inode, false);
1979 
1980 	return 0;
1981 }
1982 
1983 static int f2fs_quota_off(struct super_block *sb, int type)
1984 {
1985 	struct inode *inode = sb_dqopt(sb)->files[type];
1986 	int err;
1987 
1988 	if (!inode || !igrab(inode))
1989 		return dquot_quota_off(sb, type);
1990 
1991 	err = f2fs_quota_sync(sb, type);
1992 	if (err)
1993 		goto out_put;
1994 
1995 	err = dquot_quota_off(sb, type);
1996 	if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb)))
1997 		goto out_put;
1998 
1999 	inode_lock(inode);
2000 	F2FS_I(inode)->i_flags &= ~(F2FS_NOATIME_FL | F2FS_IMMUTABLE_FL);
2001 	f2fs_set_inode_flags(inode);
2002 	inode_unlock(inode);
2003 	f2fs_mark_inode_dirty_sync(inode, false);
2004 out_put:
2005 	iput(inode);
2006 	return err;
2007 }
2008 
2009 void f2fs_quota_off_umount(struct super_block *sb)
2010 {
2011 	int type;
2012 	int err;
2013 
2014 	for (type = 0; type < MAXQUOTAS; type++) {
2015 		err = f2fs_quota_off(sb, type);
2016 		if (err) {
2017 			int ret = dquot_quota_off(sb, type);
2018 
2019 			f2fs_msg(sb, KERN_ERR,
2020 				"Fail to turn off disk quota "
2021 				"(type: %d, err: %d, ret:%d), Please "
2022 				"run fsck to fix it.", type, err, ret);
2023 			set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2024 		}
2025 	}
2026 }
2027 
2028 static void f2fs_truncate_quota_inode_pages(struct super_block *sb)
2029 {
2030 	struct quota_info *dqopt = sb_dqopt(sb);
2031 	int type;
2032 
2033 	for (type = 0; type < MAXQUOTAS; type++) {
2034 		if (!dqopt->files[type])
2035 			continue;
2036 		f2fs_inode_synced(dqopt->files[type]);
2037 	}
2038 }
2039 
2040 static int f2fs_dquot_commit(struct dquot *dquot)
2041 {
2042 	int ret;
2043 
2044 	ret = dquot_commit(dquot);
2045 	if (ret < 0)
2046 		set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR);
2047 	return ret;
2048 }
2049 
2050 static int f2fs_dquot_acquire(struct dquot *dquot)
2051 {
2052 	int ret;
2053 
2054 	ret = dquot_acquire(dquot);
2055 	if (ret < 0)
2056 		set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR);
2057 
2058 	return ret;
2059 }
2060 
2061 static int f2fs_dquot_release(struct dquot *dquot)
2062 {
2063 	int ret;
2064 
2065 	ret = dquot_release(dquot);
2066 	if (ret < 0)
2067 		set_sbi_flag(F2FS_SB(dquot->dq_sb), SBI_QUOTA_NEED_REPAIR);
2068 	return ret;
2069 }
2070 
2071 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot)
2072 {
2073 	struct super_block *sb = dquot->dq_sb;
2074 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2075 	int ret;
2076 
2077 	ret = dquot_mark_dquot_dirty(dquot);
2078 
2079 	/* if we are using journalled quota */
2080 	if (is_journalled_quota(sbi))
2081 		set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH);
2082 
2083 	return ret;
2084 }
2085 
2086 static int f2fs_dquot_commit_info(struct super_block *sb, int type)
2087 {
2088 	int ret;
2089 
2090 	ret = dquot_commit_info(sb, type);
2091 	if (ret < 0)
2092 		set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR);
2093 	return ret;
2094 }
2095 
2096 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid)
2097 {
2098 	*projid = F2FS_I(inode)->i_projid;
2099 	return 0;
2100 }
2101 
2102 static const struct dquot_operations f2fs_quota_operations = {
2103 	.get_reserved_space = f2fs_get_reserved_space,
2104 	.write_dquot	= f2fs_dquot_commit,
2105 	.acquire_dquot	= f2fs_dquot_acquire,
2106 	.release_dquot	= f2fs_dquot_release,
2107 	.mark_dirty	= f2fs_dquot_mark_dquot_dirty,
2108 	.write_info	= f2fs_dquot_commit_info,
2109 	.alloc_dquot	= dquot_alloc,
2110 	.destroy_dquot	= dquot_destroy,
2111 	.get_projid	= f2fs_get_projid,
2112 	.get_next_id	= dquot_get_next_id,
2113 };
2114 
2115 static const struct quotactl_ops f2fs_quotactl_ops = {
2116 	.quota_on	= f2fs_quota_on,
2117 	.quota_off	= f2fs_quota_off,
2118 	.quota_sync	= f2fs_quota_sync,
2119 	.get_state	= dquot_get_state,
2120 	.set_info	= dquot_set_dqinfo,
2121 	.get_dqblk	= dquot_get_dqblk,
2122 	.set_dqblk	= dquot_set_dqblk,
2123 	.get_nextdqblk	= dquot_get_next_dqblk,
2124 };
2125 #else
2126 int f2fs_quota_sync(struct super_block *sb, int type)
2127 {
2128 	return 0;
2129 }
2130 
2131 void f2fs_quota_off_umount(struct super_block *sb)
2132 {
2133 }
2134 #endif
2135 
2136 static const struct super_operations f2fs_sops = {
2137 	.alloc_inode	= f2fs_alloc_inode,
2138 	.drop_inode	= f2fs_drop_inode,
2139 	.destroy_inode	= f2fs_destroy_inode,
2140 	.write_inode	= f2fs_write_inode,
2141 	.dirty_inode	= f2fs_dirty_inode,
2142 	.show_options	= f2fs_show_options,
2143 #ifdef CONFIG_QUOTA
2144 	.quota_read	= f2fs_quota_read,
2145 	.quota_write	= f2fs_quota_write,
2146 	.get_dquots	= f2fs_get_dquots,
2147 #endif
2148 	.evict_inode	= f2fs_evict_inode,
2149 	.put_super	= f2fs_put_super,
2150 	.sync_fs	= f2fs_sync_fs,
2151 	.freeze_fs	= f2fs_freeze,
2152 	.unfreeze_fs	= f2fs_unfreeze,
2153 	.statfs		= f2fs_statfs,
2154 	.remount_fs	= f2fs_remount,
2155 };
2156 
2157 #ifdef CONFIG_F2FS_FS_ENCRYPTION
2158 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
2159 {
2160 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2161 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2162 				ctx, len, NULL);
2163 }
2164 
2165 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
2166 							void *fs_data)
2167 {
2168 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
2169 
2170 	/*
2171 	 * Encrypting the root directory is not allowed because fsck
2172 	 * expects lost+found directory to exist and remain unencrypted
2173 	 * if LOST_FOUND feature is enabled.
2174 	 *
2175 	 */
2176 	if (f2fs_sb_has_lost_found(sbi) &&
2177 			inode->i_ino == F2FS_ROOT_INO(sbi))
2178 		return -EPERM;
2179 
2180 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
2181 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
2182 				ctx, len, fs_data, XATTR_CREATE);
2183 }
2184 
2185 static bool f2fs_dummy_context(struct inode *inode)
2186 {
2187 	return DUMMY_ENCRYPTION_ENABLED(F2FS_I_SB(inode));
2188 }
2189 
2190 static const struct fscrypt_operations f2fs_cryptops = {
2191 	.key_prefix	= "f2fs:",
2192 	.get_context	= f2fs_get_context,
2193 	.set_context	= f2fs_set_context,
2194 	.dummy_context	= f2fs_dummy_context,
2195 	.empty_dir	= f2fs_empty_dir,
2196 	.max_namelen	= F2FS_NAME_LEN,
2197 };
2198 #endif
2199 
2200 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
2201 		u64 ino, u32 generation)
2202 {
2203 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
2204 	struct inode *inode;
2205 
2206 	if (f2fs_check_nid_range(sbi, ino))
2207 		return ERR_PTR(-ESTALE);
2208 
2209 	/*
2210 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
2211 	 * However f2fs_iget currently does appropriate checks to handle stale
2212 	 * inodes so everything is OK.
2213 	 */
2214 	inode = f2fs_iget(sb, ino);
2215 	if (IS_ERR(inode))
2216 		return ERR_CAST(inode);
2217 	if (unlikely(generation && inode->i_generation != generation)) {
2218 		/* we didn't find the right inode.. */
2219 		iput(inode);
2220 		return ERR_PTR(-ESTALE);
2221 	}
2222 	return inode;
2223 }
2224 
2225 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
2226 		int fh_len, int fh_type)
2227 {
2228 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
2229 				    f2fs_nfs_get_inode);
2230 }
2231 
2232 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
2233 		int fh_len, int fh_type)
2234 {
2235 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
2236 				    f2fs_nfs_get_inode);
2237 }
2238 
2239 static const struct export_operations f2fs_export_ops = {
2240 	.fh_to_dentry = f2fs_fh_to_dentry,
2241 	.fh_to_parent = f2fs_fh_to_parent,
2242 	.get_parent = f2fs_get_parent,
2243 };
2244 
2245 static loff_t max_file_blocks(void)
2246 {
2247 	loff_t result = 0;
2248 	loff_t leaf_count = ADDRS_PER_BLOCK;
2249 
2250 	/*
2251 	 * note: previously, result is equal to (DEF_ADDRS_PER_INODE -
2252 	 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more
2253 	 * space in inode.i_addr, it will be more safe to reassign
2254 	 * result as zero.
2255 	 */
2256 
2257 	/* two direct node blocks */
2258 	result += (leaf_count * 2);
2259 
2260 	/* two indirect node blocks */
2261 	leaf_count *= NIDS_PER_BLOCK;
2262 	result += (leaf_count * 2);
2263 
2264 	/* one double indirect node block */
2265 	leaf_count *= NIDS_PER_BLOCK;
2266 	result += leaf_count;
2267 
2268 	return result;
2269 }
2270 
2271 static int __f2fs_commit_super(struct buffer_head *bh,
2272 			struct f2fs_super_block *super)
2273 {
2274 	lock_buffer(bh);
2275 	if (super)
2276 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
2277 	set_buffer_dirty(bh);
2278 	unlock_buffer(bh);
2279 
2280 	/* it's rare case, we can do fua all the time */
2281 	return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
2282 }
2283 
2284 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
2285 					struct buffer_head *bh)
2286 {
2287 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2288 					(bh->b_data + F2FS_SUPER_OFFSET);
2289 	struct super_block *sb = sbi->sb;
2290 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
2291 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
2292 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
2293 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
2294 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
2295 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
2296 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
2297 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
2298 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
2299 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
2300 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2301 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
2302 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2303 	u64 main_end_blkaddr = main_blkaddr +
2304 				(segment_count_main << log_blocks_per_seg);
2305 	u64 seg_end_blkaddr = segment0_blkaddr +
2306 				(segment_count << log_blocks_per_seg);
2307 
2308 	if (segment0_blkaddr != cp_blkaddr) {
2309 		f2fs_msg(sb, KERN_INFO,
2310 			"Mismatch start address, segment0(%u) cp_blkaddr(%u)",
2311 			segment0_blkaddr, cp_blkaddr);
2312 		return true;
2313 	}
2314 
2315 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
2316 							sit_blkaddr) {
2317 		f2fs_msg(sb, KERN_INFO,
2318 			"Wrong CP boundary, start(%u) end(%u) blocks(%u)",
2319 			cp_blkaddr, sit_blkaddr,
2320 			segment_count_ckpt << log_blocks_per_seg);
2321 		return true;
2322 	}
2323 
2324 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
2325 							nat_blkaddr) {
2326 		f2fs_msg(sb, KERN_INFO,
2327 			"Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
2328 			sit_blkaddr, nat_blkaddr,
2329 			segment_count_sit << log_blocks_per_seg);
2330 		return true;
2331 	}
2332 
2333 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
2334 							ssa_blkaddr) {
2335 		f2fs_msg(sb, KERN_INFO,
2336 			"Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
2337 			nat_blkaddr, ssa_blkaddr,
2338 			segment_count_nat << log_blocks_per_seg);
2339 		return true;
2340 	}
2341 
2342 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
2343 							main_blkaddr) {
2344 		f2fs_msg(sb, KERN_INFO,
2345 			"Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
2346 			ssa_blkaddr, main_blkaddr,
2347 			segment_count_ssa << log_blocks_per_seg);
2348 		return true;
2349 	}
2350 
2351 	if (main_end_blkaddr > seg_end_blkaddr) {
2352 		f2fs_msg(sb, KERN_INFO,
2353 			"Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
2354 			main_blkaddr,
2355 			segment0_blkaddr +
2356 				(segment_count << log_blocks_per_seg),
2357 			segment_count_main << log_blocks_per_seg);
2358 		return true;
2359 	} else if (main_end_blkaddr < seg_end_blkaddr) {
2360 		int err = 0;
2361 		char *res;
2362 
2363 		/* fix in-memory information all the time */
2364 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
2365 				segment0_blkaddr) >> log_blocks_per_seg);
2366 
2367 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
2368 			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2369 			res = "internally";
2370 		} else {
2371 			err = __f2fs_commit_super(bh, NULL);
2372 			res = err ? "failed" : "done";
2373 		}
2374 		f2fs_msg(sb, KERN_INFO,
2375 			"Fix alignment : %s, start(%u) end(%u) block(%u)",
2376 			res, main_blkaddr,
2377 			segment0_blkaddr +
2378 				(segment_count << log_blocks_per_seg),
2379 			segment_count_main << log_blocks_per_seg);
2380 		if (err)
2381 			return true;
2382 	}
2383 	return false;
2384 }
2385 
2386 static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
2387 				struct buffer_head *bh)
2388 {
2389 	block_t segment_count, segs_per_sec, secs_per_zone;
2390 	block_t total_sections, blocks_per_seg;
2391 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
2392 					(bh->b_data + F2FS_SUPER_OFFSET);
2393 	struct super_block *sb = sbi->sb;
2394 	unsigned int blocksize;
2395 	size_t crc_offset = 0;
2396 	__u32 crc = 0;
2397 
2398 	/* Check checksum_offset and crc in superblock */
2399 	if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) {
2400 		crc_offset = le32_to_cpu(raw_super->checksum_offset);
2401 		if (crc_offset !=
2402 			offsetof(struct f2fs_super_block, crc)) {
2403 			f2fs_msg(sb, KERN_INFO,
2404 				"Invalid SB checksum offset: %zu",
2405 				crc_offset);
2406 			return 1;
2407 		}
2408 		crc = le32_to_cpu(raw_super->crc);
2409 		if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) {
2410 			f2fs_msg(sb, KERN_INFO,
2411 				"Invalid SB checksum value: %u", crc);
2412 			return 1;
2413 		}
2414 	}
2415 
2416 	if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
2417 		f2fs_msg(sb, KERN_INFO,
2418 			"Magic Mismatch, valid(0x%x) - read(0x%x)",
2419 			F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
2420 		return 1;
2421 	}
2422 
2423 	/* Currently, support only 4KB page cache size */
2424 	if (F2FS_BLKSIZE != PAGE_SIZE) {
2425 		f2fs_msg(sb, KERN_INFO,
2426 			"Invalid page_cache_size (%lu), supports only 4KB\n",
2427 			PAGE_SIZE);
2428 		return 1;
2429 	}
2430 
2431 	/* Currently, support only 4KB block size */
2432 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
2433 	if (blocksize != F2FS_BLKSIZE) {
2434 		f2fs_msg(sb, KERN_INFO,
2435 			"Invalid blocksize (%u), supports only 4KB\n",
2436 			blocksize);
2437 		return 1;
2438 	}
2439 
2440 	/* check log blocks per segment */
2441 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
2442 		f2fs_msg(sb, KERN_INFO,
2443 			"Invalid log blocks per segment (%u)\n",
2444 			le32_to_cpu(raw_super->log_blocks_per_seg));
2445 		return 1;
2446 	}
2447 
2448 	/* Currently, support 512/1024/2048/4096 bytes sector size */
2449 	if (le32_to_cpu(raw_super->log_sectorsize) >
2450 				F2FS_MAX_LOG_SECTOR_SIZE ||
2451 		le32_to_cpu(raw_super->log_sectorsize) <
2452 				F2FS_MIN_LOG_SECTOR_SIZE) {
2453 		f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
2454 			le32_to_cpu(raw_super->log_sectorsize));
2455 		return 1;
2456 	}
2457 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
2458 		le32_to_cpu(raw_super->log_sectorsize) !=
2459 			F2FS_MAX_LOG_SECTOR_SIZE) {
2460 		f2fs_msg(sb, KERN_INFO,
2461 			"Invalid log sectors per block(%u) log sectorsize(%u)",
2462 			le32_to_cpu(raw_super->log_sectors_per_block),
2463 			le32_to_cpu(raw_super->log_sectorsize));
2464 		return 1;
2465 	}
2466 
2467 	segment_count = le32_to_cpu(raw_super->segment_count);
2468 	segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2469 	secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2470 	total_sections = le32_to_cpu(raw_super->section_count);
2471 
2472 	/* blocks_per_seg should be 512, given the above check */
2473 	blocks_per_seg = 1 << le32_to_cpu(raw_super->log_blocks_per_seg);
2474 
2475 	if (segment_count > F2FS_MAX_SEGMENT ||
2476 				segment_count < F2FS_MIN_SEGMENTS) {
2477 		f2fs_msg(sb, KERN_INFO,
2478 			"Invalid segment count (%u)",
2479 			segment_count);
2480 		return 1;
2481 	}
2482 
2483 	if (total_sections > segment_count ||
2484 			total_sections < F2FS_MIN_SEGMENTS ||
2485 			segs_per_sec > segment_count || !segs_per_sec) {
2486 		f2fs_msg(sb, KERN_INFO,
2487 			"Invalid segment/section count (%u, %u x %u)",
2488 			segment_count, total_sections, segs_per_sec);
2489 		return 1;
2490 	}
2491 
2492 	if ((segment_count / segs_per_sec) < total_sections) {
2493 		f2fs_msg(sb, KERN_INFO,
2494 			"Small segment_count (%u < %u * %u)",
2495 			segment_count, segs_per_sec, total_sections);
2496 		return 1;
2497 	}
2498 
2499 	if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) {
2500 		f2fs_msg(sb, KERN_INFO,
2501 			"Wrong segment_count / block_count (%u > %llu)",
2502 			segment_count, le64_to_cpu(raw_super->block_count));
2503 		return 1;
2504 	}
2505 
2506 	if (secs_per_zone > total_sections || !secs_per_zone) {
2507 		f2fs_msg(sb, KERN_INFO,
2508 			"Wrong secs_per_zone / total_sections (%u, %u)",
2509 			secs_per_zone, total_sections);
2510 		return 1;
2511 	}
2512 	if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION ||
2513 			raw_super->hot_ext_count > F2FS_MAX_EXTENSION ||
2514 			(le32_to_cpu(raw_super->extension_count) +
2515 			raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) {
2516 		f2fs_msg(sb, KERN_INFO,
2517 			"Corrupted extension count (%u + %u > %u)",
2518 			le32_to_cpu(raw_super->extension_count),
2519 			raw_super->hot_ext_count,
2520 			F2FS_MAX_EXTENSION);
2521 		return 1;
2522 	}
2523 
2524 	if (le32_to_cpu(raw_super->cp_payload) >
2525 				(blocks_per_seg - F2FS_CP_PACKS)) {
2526 		f2fs_msg(sb, KERN_INFO,
2527 			"Insane cp_payload (%u > %u)",
2528 			le32_to_cpu(raw_super->cp_payload),
2529 			blocks_per_seg - F2FS_CP_PACKS);
2530 		return 1;
2531 	}
2532 
2533 	/* check reserved ino info */
2534 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
2535 		le32_to_cpu(raw_super->meta_ino) != 2 ||
2536 		le32_to_cpu(raw_super->root_ino) != 3) {
2537 		f2fs_msg(sb, KERN_INFO,
2538 			"Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
2539 			le32_to_cpu(raw_super->node_ino),
2540 			le32_to_cpu(raw_super->meta_ino),
2541 			le32_to_cpu(raw_super->root_ino));
2542 		return 1;
2543 	}
2544 
2545 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
2546 	if (sanity_check_area_boundary(sbi, bh))
2547 		return 1;
2548 
2549 	return 0;
2550 }
2551 
2552 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi)
2553 {
2554 	unsigned int total, fsmeta;
2555 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2556 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
2557 	unsigned int ovp_segments, reserved_segments;
2558 	unsigned int main_segs, blocks_per_seg;
2559 	unsigned int sit_segs, nat_segs;
2560 	unsigned int sit_bitmap_size, nat_bitmap_size;
2561 	unsigned int log_blocks_per_seg;
2562 	unsigned int segment_count_main;
2563 	unsigned int cp_pack_start_sum, cp_payload;
2564 	block_t user_block_count;
2565 	int i, j;
2566 
2567 	total = le32_to_cpu(raw_super->segment_count);
2568 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
2569 	sit_segs = le32_to_cpu(raw_super->segment_count_sit);
2570 	fsmeta += sit_segs;
2571 	nat_segs = le32_to_cpu(raw_super->segment_count_nat);
2572 	fsmeta += nat_segs;
2573 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
2574 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
2575 
2576 	if (unlikely(fsmeta >= total))
2577 		return 1;
2578 
2579 	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
2580 	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
2581 
2582 	if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
2583 			ovp_segments == 0 || reserved_segments == 0)) {
2584 		f2fs_msg(sbi->sb, KERN_ERR,
2585 			"Wrong layout: check mkfs.f2fs version");
2586 		return 1;
2587 	}
2588 
2589 	user_block_count = le64_to_cpu(ckpt->user_block_count);
2590 	segment_count_main = le32_to_cpu(raw_super->segment_count_main);
2591 	log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2592 	if (!user_block_count || user_block_count >=
2593 			segment_count_main << log_blocks_per_seg) {
2594 		f2fs_msg(sbi->sb, KERN_ERR,
2595 			"Wrong user_block_count: %u", user_block_count);
2596 		return 1;
2597 	}
2598 
2599 	main_segs = le32_to_cpu(raw_super->segment_count_main);
2600 	blocks_per_seg = sbi->blocks_per_seg;
2601 
2602 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2603 		if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs ||
2604 			le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg)
2605 			return 1;
2606 		for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) {
2607 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2608 				le32_to_cpu(ckpt->cur_node_segno[j])) {
2609 				f2fs_msg(sbi->sb, KERN_ERR,
2610 					"Node segment (%u, %u) has the same "
2611 					"segno: %u", i, j,
2612 					le32_to_cpu(ckpt->cur_node_segno[i]));
2613 				return 1;
2614 			}
2615 		}
2616 	}
2617 	for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) {
2618 		if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs ||
2619 			le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg)
2620 			return 1;
2621 		for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) {
2622 			if (le32_to_cpu(ckpt->cur_data_segno[i]) ==
2623 				le32_to_cpu(ckpt->cur_data_segno[j])) {
2624 				f2fs_msg(sbi->sb, KERN_ERR,
2625 					"Data segment (%u, %u) has the same "
2626 					"segno: %u", i, j,
2627 					le32_to_cpu(ckpt->cur_data_segno[i]));
2628 				return 1;
2629 			}
2630 		}
2631 	}
2632 	for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) {
2633 		for (j = i; j < NR_CURSEG_DATA_TYPE; j++) {
2634 			if (le32_to_cpu(ckpt->cur_node_segno[i]) ==
2635 				le32_to_cpu(ckpt->cur_data_segno[j])) {
2636 				f2fs_msg(sbi->sb, KERN_ERR,
2637 					"Data segment (%u) and Data segment (%u)"
2638 					" has the same segno: %u", i, j,
2639 					le32_to_cpu(ckpt->cur_node_segno[i]));
2640 				return 1;
2641 			}
2642 		}
2643 	}
2644 
2645 	sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize);
2646 	nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize);
2647 
2648 	if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 ||
2649 		nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) {
2650 		f2fs_msg(sbi->sb, KERN_ERR,
2651 			"Wrong bitmap size: sit: %u, nat:%u",
2652 			sit_bitmap_size, nat_bitmap_size);
2653 		return 1;
2654 	}
2655 
2656 	cp_pack_start_sum = __start_sum_addr(sbi);
2657 	cp_payload = __cp_payload(sbi);
2658 	if (cp_pack_start_sum < cp_payload + 1 ||
2659 		cp_pack_start_sum > blocks_per_seg - 1 -
2660 			NR_CURSEG_TYPE) {
2661 		f2fs_msg(sbi->sb, KERN_ERR,
2662 			"Wrong cp_pack_start_sum: %u",
2663 			cp_pack_start_sum);
2664 		return 1;
2665 	}
2666 
2667 	if (unlikely(f2fs_cp_error(sbi))) {
2668 		f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
2669 		return 1;
2670 	}
2671 	return 0;
2672 }
2673 
2674 static void init_sb_info(struct f2fs_sb_info *sbi)
2675 {
2676 	struct f2fs_super_block *raw_super = sbi->raw_super;
2677 	int i;
2678 
2679 	sbi->log_sectors_per_block =
2680 		le32_to_cpu(raw_super->log_sectors_per_block);
2681 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
2682 	sbi->blocksize = 1 << sbi->log_blocksize;
2683 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
2684 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
2685 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
2686 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
2687 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
2688 	sbi->total_node_count =
2689 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
2690 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
2691 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
2692 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
2693 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
2694 	sbi->cur_victim_sec = NULL_SECNO;
2695 	sbi->next_victim_seg[BG_GC] = NULL_SEGNO;
2696 	sbi->next_victim_seg[FG_GC] = NULL_SEGNO;
2697 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
2698 	sbi->migration_granularity = sbi->segs_per_sec;
2699 
2700 	sbi->dir_level = DEF_DIR_LEVEL;
2701 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
2702 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
2703 	sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL;
2704 	sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL;
2705 	sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL;
2706 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
2707 
2708 	for (i = 0; i < NR_COUNT_TYPE; i++)
2709 		atomic_set(&sbi->nr_pages[i], 0);
2710 
2711 	for (i = 0; i < META; i++)
2712 		atomic_set(&sbi->wb_sync_req[i], 0);
2713 
2714 	INIT_LIST_HEAD(&sbi->s_list);
2715 	mutex_init(&sbi->umount_mutex);
2716 	init_rwsem(&sbi->io_order_lock);
2717 	spin_lock_init(&sbi->cp_lock);
2718 
2719 	sbi->dirty_device = 0;
2720 	spin_lock_init(&sbi->dev_lock);
2721 
2722 	init_rwsem(&sbi->sb_lock);
2723 }
2724 
2725 static int init_percpu_info(struct f2fs_sb_info *sbi)
2726 {
2727 	int err;
2728 
2729 	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
2730 	if (err)
2731 		return err;
2732 
2733 	err = percpu_counter_init(&sbi->total_valid_inode_count, 0,
2734 								GFP_KERNEL);
2735 	if (err)
2736 		percpu_counter_destroy(&sbi->alloc_valid_block_count);
2737 
2738 	return err;
2739 }
2740 
2741 #ifdef CONFIG_BLK_DEV_ZONED
2742 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
2743 {
2744 	struct block_device *bdev = FDEV(devi).bdev;
2745 	sector_t nr_sectors = bdev->bd_part->nr_sects;
2746 	sector_t sector = 0;
2747 	struct blk_zone *zones;
2748 	unsigned int i, nr_zones;
2749 	unsigned int n = 0;
2750 	int err = -EIO;
2751 
2752 	if (!f2fs_sb_has_blkzoned(sbi))
2753 		return 0;
2754 
2755 	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
2756 				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
2757 		return -EINVAL;
2758 	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
2759 	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
2760 				__ilog2_u32(sbi->blocks_per_blkz))
2761 		return -EINVAL;
2762 	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
2763 	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
2764 					sbi->log_blocks_per_blkz;
2765 	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
2766 		FDEV(devi).nr_blkz++;
2767 
2768 	FDEV(devi).blkz_type = f2fs_kmalloc(sbi, FDEV(devi).nr_blkz,
2769 								GFP_KERNEL);
2770 	if (!FDEV(devi).blkz_type)
2771 		return -ENOMEM;
2772 
2773 #define F2FS_REPORT_NR_ZONES   4096
2774 
2775 	zones = f2fs_kzalloc(sbi,
2776 			     array_size(F2FS_REPORT_NR_ZONES,
2777 					sizeof(struct blk_zone)),
2778 			     GFP_KERNEL);
2779 	if (!zones)
2780 		return -ENOMEM;
2781 
2782 	/* Get block zones type */
2783 	while (zones && sector < nr_sectors) {
2784 
2785 		nr_zones = F2FS_REPORT_NR_ZONES;
2786 		err = blkdev_report_zones(bdev, sector,
2787 					  zones, &nr_zones,
2788 					  GFP_KERNEL);
2789 		if (err)
2790 			break;
2791 		if (!nr_zones) {
2792 			err = -EIO;
2793 			break;
2794 		}
2795 
2796 		for (i = 0; i < nr_zones; i++) {
2797 			FDEV(devi).blkz_type[n] = zones[i].type;
2798 			sector += zones[i].len;
2799 			n++;
2800 		}
2801 	}
2802 
2803 	kvfree(zones);
2804 
2805 	return err;
2806 }
2807 #endif
2808 
2809 /*
2810  * Read f2fs raw super block.
2811  * Because we have two copies of super block, so read both of them
2812  * to get the first valid one. If any one of them is broken, we pass
2813  * them recovery flag back to the caller.
2814  */
2815 static int read_raw_super_block(struct f2fs_sb_info *sbi,
2816 			struct f2fs_super_block **raw_super,
2817 			int *valid_super_block, int *recovery)
2818 {
2819 	struct super_block *sb = sbi->sb;
2820 	int block;
2821 	struct buffer_head *bh;
2822 	struct f2fs_super_block *super;
2823 	int err = 0;
2824 
2825 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
2826 	if (!super)
2827 		return -ENOMEM;
2828 
2829 	for (block = 0; block < 2; block++) {
2830 		bh = sb_bread(sb, block);
2831 		if (!bh) {
2832 			f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
2833 				block + 1);
2834 			err = -EIO;
2835 			continue;
2836 		}
2837 
2838 		/* sanity checking of raw super */
2839 		if (sanity_check_raw_super(sbi, bh)) {
2840 			f2fs_msg(sb, KERN_ERR,
2841 				"Can't find valid F2FS filesystem in %dth superblock",
2842 				block + 1);
2843 			err = -EINVAL;
2844 			brelse(bh);
2845 			continue;
2846 		}
2847 
2848 		if (!*raw_super) {
2849 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
2850 							sizeof(*super));
2851 			*valid_super_block = block;
2852 			*raw_super = super;
2853 		}
2854 		brelse(bh);
2855 	}
2856 
2857 	/* Fail to read any one of the superblocks*/
2858 	if (err < 0)
2859 		*recovery = 1;
2860 
2861 	/* No valid superblock */
2862 	if (!*raw_super)
2863 		kvfree(super);
2864 	else
2865 		err = 0;
2866 
2867 	return err;
2868 }
2869 
2870 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
2871 {
2872 	struct buffer_head *bh;
2873 	__u32 crc = 0;
2874 	int err;
2875 
2876 	if ((recover && f2fs_readonly(sbi->sb)) ||
2877 				bdev_read_only(sbi->sb->s_bdev)) {
2878 		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
2879 		return -EROFS;
2880 	}
2881 
2882 	/* we should update superblock crc here */
2883 	if (!recover && f2fs_sb_has_sb_chksum(sbi)) {
2884 		crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi),
2885 				offsetof(struct f2fs_super_block, crc));
2886 		F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc);
2887 	}
2888 
2889 	/* write back-up superblock first */
2890 	bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1);
2891 	if (!bh)
2892 		return -EIO;
2893 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2894 	brelse(bh);
2895 
2896 	/* if we are in recovery path, skip writing valid superblock */
2897 	if (recover || err)
2898 		return err;
2899 
2900 	/* write current valid superblock */
2901 	bh = sb_bread(sbi->sb, sbi->valid_super_block);
2902 	if (!bh)
2903 		return -EIO;
2904 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
2905 	brelse(bh);
2906 	return err;
2907 }
2908 
2909 static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
2910 {
2911 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
2912 	unsigned int max_devices = MAX_DEVICES;
2913 	int i;
2914 
2915 	/* Initialize single device information */
2916 	if (!RDEV(0).path[0]) {
2917 		if (!bdev_is_zoned(sbi->sb->s_bdev))
2918 			return 0;
2919 		max_devices = 1;
2920 	}
2921 
2922 	/*
2923 	 * Initialize multiple devices information, or single
2924 	 * zoned block device information.
2925 	 */
2926 	sbi->devs = f2fs_kzalloc(sbi,
2927 				 array_size(max_devices,
2928 					    sizeof(struct f2fs_dev_info)),
2929 				 GFP_KERNEL);
2930 	if (!sbi->devs)
2931 		return -ENOMEM;
2932 
2933 	for (i = 0; i < max_devices; i++) {
2934 
2935 		if (i > 0 && !RDEV(i).path[0])
2936 			break;
2937 
2938 		if (max_devices == 1) {
2939 			/* Single zoned block device mount */
2940 			FDEV(0).bdev =
2941 				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
2942 					sbi->sb->s_mode, sbi->sb->s_type);
2943 		} else {
2944 			/* Multi-device mount */
2945 			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
2946 			FDEV(i).total_segments =
2947 				le32_to_cpu(RDEV(i).total_segments);
2948 			if (i == 0) {
2949 				FDEV(i).start_blk = 0;
2950 				FDEV(i).end_blk = FDEV(i).start_blk +
2951 				    (FDEV(i).total_segments <<
2952 				    sbi->log_blocks_per_seg) - 1 +
2953 				    le32_to_cpu(raw_super->segment0_blkaddr);
2954 			} else {
2955 				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
2956 				FDEV(i).end_blk = FDEV(i).start_blk +
2957 					(FDEV(i).total_segments <<
2958 					sbi->log_blocks_per_seg) - 1;
2959 			}
2960 			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
2961 					sbi->sb->s_mode, sbi->sb->s_type);
2962 		}
2963 		if (IS_ERR(FDEV(i).bdev))
2964 			return PTR_ERR(FDEV(i).bdev);
2965 
2966 		/* to release errored devices */
2967 		sbi->s_ndevs = i + 1;
2968 
2969 #ifdef CONFIG_BLK_DEV_ZONED
2970 		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
2971 				!f2fs_sb_has_blkzoned(sbi)) {
2972 			f2fs_msg(sbi->sb, KERN_ERR,
2973 				"Zoned block device feature not enabled\n");
2974 			return -EINVAL;
2975 		}
2976 		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
2977 			if (init_blkz_info(sbi, i)) {
2978 				f2fs_msg(sbi->sb, KERN_ERR,
2979 					"Failed to initialize F2FS blkzone information");
2980 				return -EINVAL;
2981 			}
2982 			if (max_devices == 1)
2983 				break;
2984 			f2fs_msg(sbi->sb, KERN_INFO,
2985 				"Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
2986 				i, FDEV(i).path,
2987 				FDEV(i).total_segments,
2988 				FDEV(i).start_blk, FDEV(i).end_blk,
2989 				bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
2990 				"Host-aware" : "Host-managed");
2991 			continue;
2992 		}
2993 #endif
2994 		f2fs_msg(sbi->sb, KERN_INFO,
2995 			"Mount Device [%2d]: %20s, %8u, %8x - %8x",
2996 				i, FDEV(i).path,
2997 				FDEV(i).total_segments,
2998 				FDEV(i).start_blk, FDEV(i).end_blk);
2999 	}
3000 	f2fs_msg(sbi->sb, KERN_INFO,
3001 			"IO Block Size: %8d KB", F2FS_IO_SIZE_KB(sbi));
3002 	return 0;
3003 }
3004 
3005 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi)
3006 {
3007 	struct f2fs_sm_info *sm_i = SM_I(sbi);
3008 
3009 	/* adjust parameters according to the volume size */
3010 	if (sm_i->main_segments <= SMALL_VOLUME_SEGMENTS) {
3011 		F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE;
3012 		sm_i->dcc_info->discard_granularity = 1;
3013 		sm_i->ipu_policy = 1 << F2FS_IPU_FORCE;
3014 	}
3015 
3016 	sbi->readdir_ra = 1;
3017 }
3018 
3019 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
3020 {
3021 	struct f2fs_sb_info *sbi;
3022 	struct f2fs_super_block *raw_super;
3023 	struct inode *root;
3024 	int err;
3025 	bool retry = true, need_fsck = false;
3026 	char *options = NULL;
3027 	int recovery, i, valid_super_block;
3028 	struct curseg_info *seg_i;
3029 
3030 try_onemore:
3031 	err = -EINVAL;
3032 	raw_super = NULL;
3033 	valid_super_block = -1;
3034 	recovery = 0;
3035 
3036 	/* allocate memory for f2fs-specific super block info */
3037 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
3038 	if (!sbi)
3039 		return -ENOMEM;
3040 
3041 	sbi->sb = sb;
3042 
3043 	/* Load the checksum driver */
3044 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
3045 	if (IS_ERR(sbi->s_chksum_driver)) {
3046 		f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
3047 		err = PTR_ERR(sbi->s_chksum_driver);
3048 		sbi->s_chksum_driver = NULL;
3049 		goto free_sbi;
3050 	}
3051 
3052 	/* set a block size */
3053 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
3054 		f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
3055 		goto free_sbi;
3056 	}
3057 
3058 	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
3059 								&recovery);
3060 	if (err)
3061 		goto free_sbi;
3062 
3063 	sb->s_fs_info = sbi;
3064 	sbi->raw_super = raw_super;
3065 
3066 	/* precompute checksum seed for metadata */
3067 	if (f2fs_sb_has_inode_chksum(sbi))
3068 		sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid,
3069 						sizeof(raw_super->uuid));
3070 
3071 	/*
3072 	 * The BLKZONED feature indicates that the drive was formatted with
3073 	 * zone alignment optimization. This is optional for host-aware
3074 	 * devices, but mandatory for host-managed zoned block devices.
3075 	 */
3076 #ifndef CONFIG_BLK_DEV_ZONED
3077 	if (f2fs_sb_has_blkzoned(sbi)) {
3078 		f2fs_msg(sb, KERN_ERR,
3079 			 "Zoned block device support is not enabled\n");
3080 		err = -EOPNOTSUPP;
3081 		goto free_sb_buf;
3082 	}
3083 #endif
3084 	default_options(sbi);
3085 	/* parse mount options */
3086 	options = kstrdup((const char *)data, GFP_KERNEL);
3087 	if (data && !options) {
3088 		err = -ENOMEM;
3089 		goto free_sb_buf;
3090 	}
3091 
3092 	err = parse_options(sb, options);
3093 	if (err)
3094 		goto free_options;
3095 
3096 	sbi->max_file_blocks = max_file_blocks();
3097 	sb->s_maxbytes = sbi->max_file_blocks <<
3098 				le32_to_cpu(raw_super->log_blocksize);
3099 	sb->s_max_links = F2FS_LINK_MAX;
3100 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3101 
3102 #ifdef CONFIG_QUOTA
3103 	sb->dq_op = &f2fs_quota_operations;
3104 	if (f2fs_sb_has_quota_ino(sbi))
3105 		sb->s_qcop = &dquot_quotactl_sysfile_ops;
3106 	else
3107 		sb->s_qcop = &f2fs_quotactl_ops;
3108 	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3109 
3110 	if (f2fs_sb_has_quota_ino(sbi)) {
3111 		for (i = 0; i < MAXQUOTAS; i++) {
3112 			if (f2fs_qf_ino(sbi->sb, i))
3113 				sbi->nquota_files++;
3114 		}
3115 	}
3116 #endif
3117 
3118 	sb->s_op = &f2fs_sops;
3119 #ifdef CONFIG_F2FS_FS_ENCRYPTION
3120 	sb->s_cop = &f2fs_cryptops;
3121 #endif
3122 	sb->s_xattr = f2fs_xattr_handlers;
3123 	sb->s_export_op = &f2fs_export_ops;
3124 	sb->s_magic = F2FS_SUPER_MAGIC;
3125 	sb->s_time_gran = 1;
3126 	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3127 		(test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0);
3128 	memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
3129 	sb->s_iflags |= SB_I_CGROUPWB;
3130 
3131 	/* init f2fs-specific super block info */
3132 	sbi->valid_super_block = valid_super_block;
3133 	mutex_init(&sbi->gc_mutex);
3134 	mutex_init(&sbi->writepages);
3135 	mutex_init(&sbi->cp_mutex);
3136 	init_rwsem(&sbi->node_write);
3137 	init_rwsem(&sbi->node_change);
3138 
3139 	/* disallow all the data/node/meta page writes */
3140 	set_sbi_flag(sbi, SBI_POR_DOING);
3141 	spin_lock_init(&sbi->stat_lock);
3142 
3143 	/* init iostat info */
3144 	spin_lock_init(&sbi->iostat_lock);
3145 	sbi->iostat_enable = false;
3146 
3147 	for (i = 0; i < NR_PAGE_TYPE; i++) {
3148 		int n = (i == META) ? 1: NR_TEMP_TYPE;
3149 		int j;
3150 
3151 		sbi->write_io[i] =
3152 			f2fs_kmalloc(sbi,
3153 				     array_size(n,
3154 						sizeof(struct f2fs_bio_info)),
3155 				     GFP_KERNEL);
3156 		if (!sbi->write_io[i]) {
3157 			err = -ENOMEM;
3158 			goto free_bio_info;
3159 		}
3160 
3161 		for (j = HOT; j < n; j++) {
3162 			init_rwsem(&sbi->write_io[i][j].io_rwsem);
3163 			sbi->write_io[i][j].sbi = sbi;
3164 			sbi->write_io[i][j].bio = NULL;
3165 			spin_lock_init(&sbi->write_io[i][j].io_lock);
3166 			INIT_LIST_HEAD(&sbi->write_io[i][j].io_list);
3167 		}
3168 	}
3169 
3170 	init_rwsem(&sbi->cp_rwsem);
3171 	init_waitqueue_head(&sbi->cp_wait);
3172 	init_sb_info(sbi);
3173 
3174 	err = init_percpu_info(sbi);
3175 	if (err)
3176 		goto free_bio_info;
3177 
3178 	if (F2FS_IO_SIZE(sbi) > 1) {
3179 		sbi->write_io_dummy =
3180 			mempool_create_page_pool(2 * (F2FS_IO_SIZE(sbi) - 1), 0);
3181 		if (!sbi->write_io_dummy) {
3182 			err = -ENOMEM;
3183 			goto free_percpu;
3184 		}
3185 	}
3186 
3187 	/* get an inode for meta space */
3188 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
3189 	if (IS_ERR(sbi->meta_inode)) {
3190 		f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
3191 		err = PTR_ERR(sbi->meta_inode);
3192 		goto free_io_dummy;
3193 	}
3194 
3195 	err = f2fs_get_valid_checkpoint(sbi);
3196 	if (err) {
3197 		f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
3198 		goto free_meta_inode;
3199 	}
3200 
3201 	if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG))
3202 		set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR);
3203 
3204 	/* Initialize device list */
3205 	err = f2fs_scan_devices(sbi);
3206 	if (err) {
3207 		f2fs_msg(sb, KERN_ERR, "Failed to find devices");
3208 		goto free_devices;
3209 	}
3210 
3211 	sbi->total_valid_node_count =
3212 				le32_to_cpu(sbi->ckpt->valid_node_count);
3213 	percpu_counter_set(&sbi->total_valid_inode_count,
3214 				le32_to_cpu(sbi->ckpt->valid_inode_count));
3215 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
3216 	sbi->total_valid_block_count =
3217 				le64_to_cpu(sbi->ckpt->valid_block_count);
3218 	sbi->last_valid_block_count = sbi->total_valid_block_count;
3219 	sbi->reserved_blocks = 0;
3220 	sbi->current_reserved_blocks = 0;
3221 	limit_reserve_root(sbi);
3222 
3223 	for (i = 0; i < NR_INODE_TYPE; i++) {
3224 		INIT_LIST_HEAD(&sbi->inode_list[i]);
3225 		spin_lock_init(&sbi->inode_lock[i]);
3226 	}
3227 
3228 	f2fs_init_extent_cache_info(sbi);
3229 
3230 	f2fs_init_ino_entry_info(sbi);
3231 
3232 	f2fs_init_fsync_node_info(sbi);
3233 
3234 	/* setup f2fs internal modules */
3235 	err = f2fs_build_segment_manager(sbi);
3236 	if (err) {
3237 		f2fs_msg(sb, KERN_ERR,
3238 			"Failed to initialize F2FS segment manager");
3239 		goto free_sm;
3240 	}
3241 	err = f2fs_build_node_manager(sbi);
3242 	if (err) {
3243 		f2fs_msg(sb, KERN_ERR,
3244 			"Failed to initialize F2FS node manager");
3245 		goto free_nm;
3246 	}
3247 
3248 	/* For write statistics */
3249 	if (sb->s_bdev->bd_part)
3250 		sbi->sectors_written_start =
3251 			(u64)part_stat_read(sb->s_bdev->bd_part,
3252 					    sectors[STAT_WRITE]);
3253 
3254 	/* Read accumulated write IO statistics if exists */
3255 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
3256 	if (__exist_node_summaries(sbi))
3257 		sbi->kbytes_written =
3258 			le64_to_cpu(seg_i->journal->info.kbytes_written);
3259 
3260 	f2fs_build_gc_manager(sbi);
3261 
3262 	err = f2fs_build_stats(sbi);
3263 	if (err)
3264 		goto free_nm;
3265 
3266 	/* get an inode for node space */
3267 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
3268 	if (IS_ERR(sbi->node_inode)) {
3269 		f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
3270 		err = PTR_ERR(sbi->node_inode);
3271 		goto free_stats;
3272 	}
3273 
3274 	/* read root inode and dentry */
3275 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
3276 	if (IS_ERR(root)) {
3277 		f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
3278 		err = PTR_ERR(root);
3279 		goto free_node_inode;
3280 	}
3281 	if (!S_ISDIR(root->i_mode) || !root->i_blocks ||
3282 			!root->i_size || !root->i_nlink) {
3283 		iput(root);
3284 		err = -EINVAL;
3285 		goto free_node_inode;
3286 	}
3287 
3288 	sb->s_root = d_make_root(root); /* allocate root dentry */
3289 	if (!sb->s_root) {
3290 		err = -ENOMEM;
3291 		goto free_root_inode;
3292 	}
3293 
3294 	err = f2fs_register_sysfs(sbi);
3295 	if (err)
3296 		goto free_root_inode;
3297 
3298 #ifdef CONFIG_QUOTA
3299 	/* Enable quota usage during mount */
3300 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) {
3301 		err = f2fs_enable_quotas(sb);
3302 		if (err)
3303 			f2fs_msg(sb, KERN_ERR,
3304 				"Cannot turn on quotas: error %d", err);
3305 	}
3306 #endif
3307 	/* if there are nt orphan nodes free them */
3308 	err = f2fs_recover_orphan_inodes(sbi);
3309 	if (err)
3310 		goto free_meta;
3311 
3312 	if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)))
3313 		goto skip_recovery;
3314 
3315 	/* recover fsynced data */
3316 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
3317 		/*
3318 		 * mount should be failed, when device has readonly mode, and
3319 		 * previous checkpoint was not done by clean system shutdown.
3320 		 */
3321 		if (bdev_read_only(sb->s_bdev) &&
3322 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3323 			err = -EROFS;
3324 			goto free_meta;
3325 		}
3326 
3327 		if (need_fsck)
3328 			set_sbi_flag(sbi, SBI_NEED_FSCK);
3329 
3330 		if (!retry)
3331 			goto skip_recovery;
3332 
3333 		err = f2fs_recover_fsync_data(sbi, false);
3334 		if (err < 0) {
3335 			need_fsck = true;
3336 			f2fs_msg(sb, KERN_ERR,
3337 				"Cannot recover all fsync data errno=%d", err);
3338 			goto free_meta;
3339 		}
3340 	} else {
3341 		err = f2fs_recover_fsync_data(sbi, true);
3342 
3343 		if (!f2fs_readonly(sb) && err > 0) {
3344 			err = -EINVAL;
3345 			f2fs_msg(sb, KERN_ERR,
3346 				"Need to recover fsync data");
3347 			goto free_meta;
3348 		}
3349 	}
3350 skip_recovery:
3351 	/* f2fs_recover_fsync_data() cleared this already */
3352 	clear_sbi_flag(sbi, SBI_POR_DOING);
3353 
3354 	if (test_opt(sbi, DISABLE_CHECKPOINT)) {
3355 		err = f2fs_disable_checkpoint(sbi);
3356 		if (err)
3357 			goto free_meta;
3358 	} else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) {
3359 		f2fs_enable_checkpoint(sbi);
3360 	}
3361 
3362 	/*
3363 	 * If filesystem is not mounted as read-only then
3364 	 * do start the gc_thread.
3365 	 */
3366 	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
3367 		/* After POR, we can run background GC thread.*/
3368 		err = f2fs_start_gc_thread(sbi);
3369 		if (err)
3370 			goto free_meta;
3371 	}
3372 	kvfree(options);
3373 
3374 	/* recover broken superblock */
3375 	if (recovery) {
3376 		err = f2fs_commit_super(sbi, true);
3377 		f2fs_msg(sb, KERN_INFO,
3378 			"Try to recover %dth superblock, ret: %d",
3379 			sbi->valid_super_block ? 1 : 2, err);
3380 	}
3381 
3382 	f2fs_join_shrinker(sbi);
3383 
3384 	f2fs_tuning_parameters(sbi);
3385 
3386 	f2fs_msg(sbi->sb, KERN_NOTICE, "Mounted with checkpoint version = %llx",
3387 				cur_cp_version(F2FS_CKPT(sbi)));
3388 	f2fs_update_time(sbi, CP_TIME);
3389 	f2fs_update_time(sbi, REQ_TIME);
3390 	return 0;
3391 
3392 free_meta:
3393 #ifdef CONFIG_QUOTA
3394 	f2fs_truncate_quota_inode_pages(sb);
3395 	if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb))
3396 		f2fs_quota_off_umount(sbi->sb);
3397 #endif
3398 	/*
3399 	 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes()
3400 	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
3401 	 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which
3402 	 * falls into an infinite loop in f2fs_sync_meta_pages().
3403 	 */
3404 	truncate_inode_pages_final(META_MAPPING(sbi));
3405 	f2fs_unregister_sysfs(sbi);
3406 free_root_inode:
3407 	dput(sb->s_root);
3408 	sb->s_root = NULL;
3409 free_node_inode:
3410 	f2fs_release_ino_entry(sbi, true);
3411 	truncate_inode_pages_final(NODE_MAPPING(sbi));
3412 	iput(sbi->node_inode);
3413 free_stats:
3414 	f2fs_destroy_stats(sbi);
3415 free_nm:
3416 	f2fs_destroy_node_manager(sbi);
3417 free_sm:
3418 	f2fs_destroy_segment_manager(sbi);
3419 free_devices:
3420 	destroy_device_list(sbi);
3421 	kvfree(sbi->ckpt);
3422 free_meta_inode:
3423 	make_bad_inode(sbi->meta_inode);
3424 	iput(sbi->meta_inode);
3425 free_io_dummy:
3426 	mempool_destroy(sbi->write_io_dummy);
3427 free_percpu:
3428 	destroy_percpu_info(sbi);
3429 free_bio_info:
3430 	for (i = 0; i < NR_PAGE_TYPE; i++)
3431 		kvfree(sbi->write_io[i]);
3432 free_options:
3433 #ifdef CONFIG_QUOTA
3434 	for (i = 0; i < MAXQUOTAS; i++)
3435 		kvfree(F2FS_OPTION(sbi).s_qf_names[i]);
3436 #endif
3437 	kvfree(options);
3438 free_sb_buf:
3439 	kvfree(raw_super);
3440 free_sbi:
3441 	if (sbi->s_chksum_driver)
3442 		crypto_free_shash(sbi->s_chksum_driver);
3443 	kvfree(sbi);
3444 
3445 	/* give only one another chance */
3446 	if (retry) {
3447 		retry = false;
3448 		shrink_dcache_sb(sb);
3449 		goto try_onemore;
3450 	}
3451 	return err;
3452 }
3453 
3454 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
3455 			const char *dev_name, void *data)
3456 {
3457 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
3458 }
3459 
3460 static void kill_f2fs_super(struct super_block *sb)
3461 {
3462 	if (sb->s_root) {
3463 		struct f2fs_sb_info *sbi = F2FS_SB(sb);
3464 
3465 		set_sbi_flag(sbi, SBI_IS_CLOSE);
3466 		f2fs_stop_gc_thread(sbi);
3467 		f2fs_stop_discard_thread(sbi);
3468 
3469 		if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
3470 				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
3471 			struct cp_control cpc = {
3472 				.reason = CP_UMOUNT,
3473 			};
3474 			f2fs_write_checkpoint(sbi, &cpc);
3475 		}
3476 
3477 		if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb))
3478 			sb->s_flags &= ~SB_RDONLY;
3479 	}
3480 	kill_block_super(sb);
3481 }
3482 
3483 static struct file_system_type f2fs_fs_type = {
3484 	.owner		= THIS_MODULE,
3485 	.name		= "f2fs",
3486 	.mount		= f2fs_mount,
3487 	.kill_sb	= kill_f2fs_super,
3488 	.fs_flags	= FS_REQUIRES_DEV,
3489 };
3490 MODULE_ALIAS_FS("f2fs");
3491 
3492 static int __init init_inodecache(void)
3493 {
3494 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
3495 			sizeof(struct f2fs_inode_info), 0,
3496 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
3497 	if (!f2fs_inode_cachep)
3498 		return -ENOMEM;
3499 	return 0;
3500 }
3501 
3502 static void destroy_inodecache(void)
3503 {
3504 	/*
3505 	 * Make sure all delayed rcu free inodes are flushed before we
3506 	 * destroy cache.
3507 	 */
3508 	rcu_barrier();
3509 	kmem_cache_destroy(f2fs_inode_cachep);
3510 }
3511 
3512 static int __init init_f2fs_fs(void)
3513 {
3514 	int err;
3515 
3516 	if (PAGE_SIZE != F2FS_BLKSIZE) {
3517 		printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n",
3518 				PAGE_SIZE, F2FS_BLKSIZE);
3519 		return -EINVAL;
3520 	}
3521 
3522 	f2fs_build_trace_ios();
3523 
3524 	err = init_inodecache();
3525 	if (err)
3526 		goto fail;
3527 	err = f2fs_create_node_manager_caches();
3528 	if (err)
3529 		goto free_inodecache;
3530 	err = f2fs_create_segment_manager_caches();
3531 	if (err)
3532 		goto free_node_manager_caches;
3533 	err = f2fs_create_checkpoint_caches();
3534 	if (err)
3535 		goto free_segment_manager_caches;
3536 	err = f2fs_create_extent_cache();
3537 	if (err)
3538 		goto free_checkpoint_caches;
3539 	err = f2fs_init_sysfs();
3540 	if (err)
3541 		goto free_extent_cache;
3542 	err = register_shrinker(&f2fs_shrinker_info);
3543 	if (err)
3544 		goto free_sysfs;
3545 	err = register_filesystem(&f2fs_fs_type);
3546 	if (err)
3547 		goto free_shrinker;
3548 	err = f2fs_create_root_stats();
3549 	if (err)
3550 		goto free_filesystem;
3551 	err = f2fs_init_post_read_processing();
3552 	if (err)
3553 		goto free_root_stats;
3554 	return 0;
3555 
3556 free_root_stats:
3557 	f2fs_destroy_root_stats();
3558 free_filesystem:
3559 	unregister_filesystem(&f2fs_fs_type);
3560 free_shrinker:
3561 	unregister_shrinker(&f2fs_shrinker_info);
3562 free_sysfs:
3563 	f2fs_exit_sysfs();
3564 free_extent_cache:
3565 	f2fs_destroy_extent_cache();
3566 free_checkpoint_caches:
3567 	f2fs_destroy_checkpoint_caches();
3568 free_segment_manager_caches:
3569 	f2fs_destroy_segment_manager_caches();
3570 free_node_manager_caches:
3571 	f2fs_destroy_node_manager_caches();
3572 free_inodecache:
3573 	destroy_inodecache();
3574 fail:
3575 	return err;
3576 }
3577 
3578 static void __exit exit_f2fs_fs(void)
3579 {
3580 	f2fs_destroy_post_read_processing();
3581 	f2fs_destroy_root_stats();
3582 	unregister_filesystem(&f2fs_fs_type);
3583 	unregister_shrinker(&f2fs_shrinker_info);
3584 	f2fs_exit_sysfs();
3585 	f2fs_destroy_extent_cache();
3586 	f2fs_destroy_checkpoint_caches();
3587 	f2fs_destroy_segment_manager_caches();
3588 	f2fs_destroy_node_manager_caches();
3589 	destroy_inodecache();
3590 	f2fs_destroy_trace_ios();
3591 }
3592 
3593 module_init(init_f2fs_fs)
3594 module_exit(exit_f2fs_fs)
3595 
3596 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
3597 MODULE_DESCRIPTION("Flash Friendly File System");
3598 MODULE_LICENSE("GPL");
3599 
3600