1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/super.c 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/module.h> 9 #include <linux/init.h> 10 #include <linux/fs.h> 11 #include <linux/fs_context.h> 12 #include <linux/sched/mm.h> 13 #include <linux/statfs.h> 14 #include <linux/buffer_head.h> 15 #include <linux/kthread.h> 16 #include <linux/parser.h> 17 #include <linux/mount.h> 18 #include <linux/seq_file.h> 19 #include <linux/proc_fs.h> 20 #include <linux/random.h> 21 #include <linux/exportfs.h> 22 #include <linux/blkdev.h> 23 #include <linux/quotaops.h> 24 #include <linux/f2fs_fs.h> 25 #include <linux/sysfs.h> 26 #include <linux/quota.h> 27 #include <linux/unicode.h> 28 #include <linux/part_stat.h> 29 #include <linux/zstd.h> 30 #include <linux/lz4.h> 31 32 #include "f2fs.h" 33 #include "node.h" 34 #include "segment.h" 35 #include "xattr.h" 36 #include "gc.h" 37 #include "iostat.h" 38 39 #define CREATE_TRACE_POINTS 40 #include <trace/events/f2fs.h> 41 42 static struct kmem_cache *f2fs_inode_cachep; 43 44 #ifdef CONFIG_F2FS_FAULT_INJECTION 45 46 const char *f2fs_fault_name[FAULT_MAX] = { 47 [FAULT_KMALLOC] = "kmalloc", 48 [FAULT_KVMALLOC] = "kvmalloc", 49 [FAULT_PAGE_ALLOC] = "page alloc", 50 [FAULT_PAGE_GET] = "page get", 51 [FAULT_ALLOC_NID] = "alloc nid", 52 [FAULT_ORPHAN] = "orphan", 53 [FAULT_BLOCK] = "no more block", 54 [FAULT_DIR_DEPTH] = "too big dir depth", 55 [FAULT_EVICT_INODE] = "evict_inode fail", 56 [FAULT_TRUNCATE] = "truncate fail", 57 [FAULT_READ_IO] = "read IO error", 58 [FAULT_CHECKPOINT] = "checkpoint error", 59 [FAULT_DISCARD] = "discard error", 60 [FAULT_WRITE_IO] = "write IO error", 61 [FAULT_SLAB_ALLOC] = "slab alloc", 62 [FAULT_DQUOT_INIT] = "dquot initialize", 63 [FAULT_LOCK_OP] = "lock_op", 64 [FAULT_BLKADDR] = "invalid blkaddr", 65 }; 66 67 int f2fs_build_fault_attr(struct f2fs_sb_info *sbi, unsigned long rate, 68 unsigned long type) 69 { 70 struct f2fs_fault_info *ffi = &F2FS_OPTION(sbi).fault_info; 71 72 if (rate) { 73 if (rate > INT_MAX) 74 return -EINVAL; 75 atomic_set(&ffi->inject_ops, 0); 76 ffi->inject_rate = (int)rate; 77 } 78 79 if (type) { 80 if (type >= BIT(FAULT_MAX)) 81 return -EINVAL; 82 ffi->inject_type = (unsigned int)type; 83 } 84 85 if (!rate && !type) 86 memset(ffi, 0, sizeof(struct f2fs_fault_info)); 87 else 88 f2fs_info(sbi, 89 "build fault injection attr: rate: %lu, type: 0x%lx", 90 rate, type); 91 return 0; 92 } 93 #endif 94 95 /* f2fs-wide shrinker description */ 96 static struct shrinker f2fs_shrinker_info = { 97 .scan_objects = f2fs_shrink_scan, 98 .count_objects = f2fs_shrink_count, 99 .seeks = DEFAULT_SEEKS, 100 }; 101 102 enum { 103 Opt_gc_background, 104 Opt_disable_roll_forward, 105 Opt_norecovery, 106 Opt_discard, 107 Opt_nodiscard, 108 Opt_noheap, 109 Opt_heap, 110 Opt_user_xattr, 111 Opt_nouser_xattr, 112 Opt_acl, 113 Opt_noacl, 114 Opt_active_logs, 115 Opt_disable_ext_identify, 116 Opt_inline_xattr, 117 Opt_noinline_xattr, 118 Opt_inline_xattr_size, 119 Opt_inline_data, 120 Opt_inline_dentry, 121 Opt_noinline_dentry, 122 Opt_flush_merge, 123 Opt_noflush_merge, 124 Opt_barrier, 125 Opt_nobarrier, 126 Opt_fastboot, 127 Opt_extent_cache, 128 Opt_noextent_cache, 129 Opt_noinline_data, 130 Opt_data_flush, 131 Opt_reserve_root, 132 Opt_resgid, 133 Opt_resuid, 134 Opt_mode, 135 Opt_fault_injection, 136 Opt_fault_type, 137 Opt_lazytime, 138 Opt_nolazytime, 139 Opt_quota, 140 Opt_noquota, 141 Opt_usrquota, 142 Opt_grpquota, 143 Opt_prjquota, 144 Opt_usrjquota, 145 Opt_grpjquota, 146 Opt_prjjquota, 147 Opt_offusrjquota, 148 Opt_offgrpjquota, 149 Opt_offprjjquota, 150 Opt_jqfmt_vfsold, 151 Opt_jqfmt_vfsv0, 152 Opt_jqfmt_vfsv1, 153 Opt_alloc, 154 Opt_fsync, 155 Opt_test_dummy_encryption, 156 Opt_inlinecrypt, 157 Opt_checkpoint_disable, 158 Opt_checkpoint_disable_cap, 159 Opt_checkpoint_disable_cap_perc, 160 Opt_checkpoint_enable, 161 Opt_checkpoint_merge, 162 Opt_nocheckpoint_merge, 163 Opt_compress_algorithm, 164 Opt_compress_log_size, 165 Opt_compress_extension, 166 Opt_nocompress_extension, 167 Opt_compress_chksum, 168 Opt_compress_mode, 169 Opt_compress_cache, 170 Opt_atgc, 171 Opt_gc_merge, 172 Opt_nogc_merge, 173 Opt_discard_unit, 174 Opt_memory_mode, 175 Opt_age_extent_cache, 176 Opt_errors, 177 Opt_err, 178 }; 179 180 static match_table_t f2fs_tokens = { 181 {Opt_gc_background, "background_gc=%s"}, 182 {Opt_disable_roll_forward, "disable_roll_forward"}, 183 {Opt_norecovery, "norecovery"}, 184 {Opt_discard, "discard"}, 185 {Opt_nodiscard, "nodiscard"}, 186 {Opt_noheap, "no_heap"}, 187 {Opt_heap, "heap"}, 188 {Opt_user_xattr, "user_xattr"}, 189 {Opt_nouser_xattr, "nouser_xattr"}, 190 {Opt_acl, "acl"}, 191 {Opt_noacl, "noacl"}, 192 {Opt_active_logs, "active_logs=%u"}, 193 {Opt_disable_ext_identify, "disable_ext_identify"}, 194 {Opt_inline_xattr, "inline_xattr"}, 195 {Opt_noinline_xattr, "noinline_xattr"}, 196 {Opt_inline_xattr_size, "inline_xattr_size=%u"}, 197 {Opt_inline_data, "inline_data"}, 198 {Opt_inline_dentry, "inline_dentry"}, 199 {Opt_noinline_dentry, "noinline_dentry"}, 200 {Opt_flush_merge, "flush_merge"}, 201 {Opt_noflush_merge, "noflush_merge"}, 202 {Opt_barrier, "barrier"}, 203 {Opt_nobarrier, "nobarrier"}, 204 {Opt_fastboot, "fastboot"}, 205 {Opt_extent_cache, "extent_cache"}, 206 {Opt_noextent_cache, "noextent_cache"}, 207 {Opt_noinline_data, "noinline_data"}, 208 {Opt_data_flush, "data_flush"}, 209 {Opt_reserve_root, "reserve_root=%u"}, 210 {Opt_resgid, "resgid=%u"}, 211 {Opt_resuid, "resuid=%u"}, 212 {Opt_mode, "mode=%s"}, 213 {Opt_fault_injection, "fault_injection=%u"}, 214 {Opt_fault_type, "fault_type=%u"}, 215 {Opt_lazytime, "lazytime"}, 216 {Opt_nolazytime, "nolazytime"}, 217 {Opt_quota, "quota"}, 218 {Opt_noquota, "noquota"}, 219 {Opt_usrquota, "usrquota"}, 220 {Opt_grpquota, "grpquota"}, 221 {Opt_prjquota, "prjquota"}, 222 {Opt_usrjquota, "usrjquota=%s"}, 223 {Opt_grpjquota, "grpjquota=%s"}, 224 {Opt_prjjquota, "prjjquota=%s"}, 225 {Opt_offusrjquota, "usrjquota="}, 226 {Opt_offgrpjquota, "grpjquota="}, 227 {Opt_offprjjquota, "prjjquota="}, 228 {Opt_jqfmt_vfsold, "jqfmt=vfsold"}, 229 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"}, 230 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"}, 231 {Opt_alloc, "alloc_mode=%s"}, 232 {Opt_fsync, "fsync_mode=%s"}, 233 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"}, 234 {Opt_test_dummy_encryption, "test_dummy_encryption"}, 235 {Opt_inlinecrypt, "inlinecrypt"}, 236 {Opt_checkpoint_disable, "checkpoint=disable"}, 237 {Opt_checkpoint_disable_cap, "checkpoint=disable:%u"}, 238 {Opt_checkpoint_disable_cap_perc, "checkpoint=disable:%u%%"}, 239 {Opt_checkpoint_enable, "checkpoint=enable"}, 240 {Opt_checkpoint_merge, "checkpoint_merge"}, 241 {Opt_nocheckpoint_merge, "nocheckpoint_merge"}, 242 {Opt_compress_algorithm, "compress_algorithm=%s"}, 243 {Opt_compress_log_size, "compress_log_size=%u"}, 244 {Opt_compress_extension, "compress_extension=%s"}, 245 {Opt_nocompress_extension, "nocompress_extension=%s"}, 246 {Opt_compress_chksum, "compress_chksum"}, 247 {Opt_compress_mode, "compress_mode=%s"}, 248 {Opt_compress_cache, "compress_cache"}, 249 {Opt_atgc, "atgc"}, 250 {Opt_gc_merge, "gc_merge"}, 251 {Opt_nogc_merge, "nogc_merge"}, 252 {Opt_discard_unit, "discard_unit=%s"}, 253 {Opt_memory_mode, "memory=%s"}, 254 {Opt_age_extent_cache, "age_extent_cache"}, 255 {Opt_errors, "errors=%s"}, 256 {Opt_err, NULL}, 257 }; 258 259 void f2fs_printk(struct f2fs_sb_info *sbi, bool limit_rate, 260 const char *fmt, ...) 261 { 262 struct va_format vaf; 263 va_list args; 264 int level; 265 266 va_start(args, fmt); 267 268 level = printk_get_level(fmt); 269 vaf.fmt = printk_skip_level(fmt); 270 vaf.va = &args; 271 if (limit_rate) 272 printk_ratelimited("%c%cF2FS-fs (%s): %pV\n", 273 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 274 else 275 printk("%c%cF2FS-fs (%s): %pV\n", 276 KERN_SOH_ASCII, level, sbi->sb->s_id, &vaf); 277 278 va_end(args); 279 } 280 281 #if IS_ENABLED(CONFIG_UNICODE) 282 static const struct f2fs_sb_encodings { 283 __u16 magic; 284 char *name; 285 unsigned int version; 286 } f2fs_sb_encoding_map[] = { 287 {F2FS_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)}, 288 }; 289 290 static const struct f2fs_sb_encodings * 291 f2fs_sb_read_encoding(const struct f2fs_super_block *sb) 292 { 293 __u16 magic = le16_to_cpu(sb->s_encoding); 294 int i; 295 296 for (i = 0; i < ARRAY_SIZE(f2fs_sb_encoding_map); i++) 297 if (magic == f2fs_sb_encoding_map[i].magic) 298 return &f2fs_sb_encoding_map[i]; 299 300 return NULL; 301 } 302 303 struct kmem_cache *f2fs_cf_name_slab; 304 static int __init f2fs_create_casefold_cache(void) 305 { 306 f2fs_cf_name_slab = f2fs_kmem_cache_create("f2fs_casefolded_name", 307 F2FS_NAME_LEN); 308 return f2fs_cf_name_slab ? 0 : -ENOMEM; 309 } 310 311 static void f2fs_destroy_casefold_cache(void) 312 { 313 kmem_cache_destroy(f2fs_cf_name_slab); 314 } 315 #else 316 static int __init f2fs_create_casefold_cache(void) { return 0; } 317 static void f2fs_destroy_casefold_cache(void) { } 318 #endif 319 320 static inline void limit_reserve_root(struct f2fs_sb_info *sbi) 321 { 322 block_t limit = min((sbi->user_block_count >> 3), 323 sbi->user_block_count - sbi->reserved_blocks); 324 325 /* limit is 12.5% */ 326 if (test_opt(sbi, RESERVE_ROOT) && 327 F2FS_OPTION(sbi).root_reserved_blocks > limit) { 328 F2FS_OPTION(sbi).root_reserved_blocks = limit; 329 f2fs_info(sbi, "Reduce reserved blocks for root = %u", 330 F2FS_OPTION(sbi).root_reserved_blocks); 331 } 332 if (!test_opt(sbi, RESERVE_ROOT) && 333 (!uid_eq(F2FS_OPTION(sbi).s_resuid, 334 make_kuid(&init_user_ns, F2FS_DEF_RESUID)) || 335 !gid_eq(F2FS_OPTION(sbi).s_resgid, 336 make_kgid(&init_user_ns, F2FS_DEF_RESGID)))) 337 f2fs_info(sbi, "Ignore s_resuid=%u, s_resgid=%u w/o reserve_root", 338 from_kuid_munged(&init_user_ns, 339 F2FS_OPTION(sbi).s_resuid), 340 from_kgid_munged(&init_user_ns, 341 F2FS_OPTION(sbi).s_resgid)); 342 } 343 344 static inline void adjust_unusable_cap_perc(struct f2fs_sb_info *sbi) 345 { 346 if (!F2FS_OPTION(sbi).unusable_cap_perc) 347 return; 348 349 if (F2FS_OPTION(sbi).unusable_cap_perc == 100) 350 F2FS_OPTION(sbi).unusable_cap = sbi->user_block_count; 351 else 352 F2FS_OPTION(sbi).unusable_cap = (sbi->user_block_count / 100) * 353 F2FS_OPTION(sbi).unusable_cap_perc; 354 355 f2fs_info(sbi, "Adjust unusable cap for checkpoint=disable = %u / %u%%", 356 F2FS_OPTION(sbi).unusable_cap, 357 F2FS_OPTION(sbi).unusable_cap_perc); 358 } 359 360 static void init_once(void *foo) 361 { 362 struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo; 363 364 inode_init_once(&fi->vfs_inode); 365 } 366 367 #ifdef CONFIG_QUOTA 368 static const char * const quotatypes[] = INITQFNAMES; 369 #define QTYPE2NAME(t) (quotatypes[t]) 370 static int f2fs_set_qf_name(struct super_block *sb, int qtype, 371 substring_t *args) 372 { 373 struct f2fs_sb_info *sbi = F2FS_SB(sb); 374 char *qname; 375 int ret = -EINVAL; 376 377 if (sb_any_quota_loaded(sb) && !F2FS_OPTION(sbi).s_qf_names[qtype]) { 378 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 379 return -EINVAL; 380 } 381 if (f2fs_sb_has_quota_ino(sbi)) { 382 f2fs_info(sbi, "QUOTA feature is enabled, so ignore qf_name"); 383 return 0; 384 } 385 386 qname = match_strdup(args); 387 if (!qname) { 388 f2fs_err(sbi, "Not enough memory for storing quotafile name"); 389 return -ENOMEM; 390 } 391 if (F2FS_OPTION(sbi).s_qf_names[qtype]) { 392 if (strcmp(F2FS_OPTION(sbi).s_qf_names[qtype], qname) == 0) 393 ret = 0; 394 else 395 f2fs_err(sbi, "%s quota file already specified", 396 QTYPE2NAME(qtype)); 397 goto errout; 398 } 399 if (strchr(qname, '/')) { 400 f2fs_err(sbi, "quotafile must be on filesystem root"); 401 goto errout; 402 } 403 F2FS_OPTION(sbi).s_qf_names[qtype] = qname; 404 set_opt(sbi, QUOTA); 405 return 0; 406 errout: 407 kfree(qname); 408 return ret; 409 } 410 411 static int f2fs_clear_qf_name(struct super_block *sb, int qtype) 412 { 413 struct f2fs_sb_info *sbi = F2FS_SB(sb); 414 415 if (sb_any_quota_loaded(sb) && F2FS_OPTION(sbi).s_qf_names[qtype]) { 416 f2fs_err(sbi, "Cannot change journaled quota options when quota turned on"); 417 return -EINVAL; 418 } 419 kfree(F2FS_OPTION(sbi).s_qf_names[qtype]); 420 F2FS_OPTION(sbi).s_qf_names[qtype] = NULL; 421 return 0; 422 } 423 424 static int f2fs_check_quota_options(struct f2fs_sb_info *sbi) 425 { 426 /* 427 * We do the test below only for project quotas. 'usrquota' and 428 * 'grpquota' mount options are allowed even without quota feature 429 * to support legacy quotas in quota files. 430 */ 431 if (test_opt(sbi, PRJQUOTA) && !f2fs_sb_has_project_quota(sbi)) { 432 f2fs_err(sbi, "Project quota feature not enabled. Cannot enable project quota enforcement."); 433 return -1; 434 } 435 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA] || 436 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA] || 437 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) { 438 if (test_opt(sbi, USRQUOTA) && 439 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 440 clear_opt(sbi, USRQUOTA); 441 442 if (test_opt(sbi, GRPQUOTA) && 443 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 444 clear_opt(sbi, GRPQUOTA); 445 446 if (test_opt(sbi, PRJQUOTA) && 447 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 448 clear_opt(sbi, PRJQUOTA); 449 450 if (test_opt(sbi, GRPQUOTA) || test_opt(sbi, USRQUOTA) || 451 test_opt(sbi, PRJQUOTA)) { 452 f2fs_err(sbi, "old and new quota format mixing"); 453 return -1; 454 } 455 456 if (!F2FS_OPTION(sbi).s_jquota_fmt) { 457 f2fs_err(sbi, "journaled quota format not specified"); 458 return -1; 459 } 460 } 461 462 if (f2fs_sb_has_quota_ino(sbi) && F2FS_OPTION(sbi).s_jquota_fmt) { 463 f2fs_info(sbi, "QUOTA feature is enabled, so ignore jquota_fmt"); 464 F2FS_OPTION(sbi).s_jquota_fmt = 0; 465 } 466 return 0; 467 } 468 #endif 469 470 static int f2fs_set_test_dummy_encryption(struct super_block *sb, 471 const char *opt, 472 const substring_t *arg, 473 bool is_remount) 474 { 475 struct f2fs_sb_info *sbi = F2FS_SB(sb); 476 struct fs_parameter param = { 477 .type = fs_value_is_string, 478 .string = arg->from ? arg->from : "", 479 }; 480 struct fscrypt_dummy_policy *policy = 481 &F2FS_OPTION(sbi).dummy_enc_policy; 482 int err; 483 484 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) { 485 f2fs_warn(sbi, "test_dummy_encryption option not supported"); 486 return -EINVAL; 487 } 488 489 if (!f2fs_sb_has_encrypt(sbi)) { 490 f2fs_err(sbi, "Encrypt feature is off"); 491 return -EINVAL; 492 } 493 494 /* 495 * This mount option is just for testing, and it's not worthwhile to 496 * implement the extra complexity (e.g. RCU protection) that would be 497 * needed to allow it to be set or changed during remount. We do allow 498 * it to be specified during remount, but only if there is no change. 499 */ 500 if (is_remount && !fscrypt_is_dummy_policy_set(policy)) { 501 f2fs_warn(sbi, "Can't set test_dummy_encryption on remount"); 502 return -EINVAL; 503 } 504 505 err = fscrypt_parse_test_dummy_encryption(¶m, policy); 506 if (err) { 507 if (err == -EEXIST) 508 f2fs_warn(sbi, 509 "Can't change test_dummy_encryption on remount"); 510 else if (err == -EINVAL) 511 f2fs_warn(sbi, "Value of option \"%s\" is unrecognized", 512 opt); 513 else 514 f2fs_warn(sbi, "Error processing option \"%s\" [%d]", 515 opt, err); 516 return -EINVAL; 517 } 518 f2fs_warn(sbi, "Test dummy encryption mode enabled"); 519 return 0; 520 } 521 522 #ifdef CONFIG_F2FS_FS_COMPRESSION 523 static bool is_compress_extension_exist(struct f2fs_sb_info *sbi, 524 const char *new_ext, bool is_ext) 525 { 526 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 527 int ext_cnt; 528 int i; 529 530 if (is_ext) { 531 ext = F2FS_OPTION(sbi).extensions; 532 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 533 } else { 534 ext = F2FS_OPTION(sbi).noextensions; 535 ext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 536 } 537 538 for (i = 0; i < ext_cnt; i++) { 539 if (!strcasecmp(new_ext, ext[i])) 540 return true; 541 } 542 543 return false; 544 } 545 546 /* 547 * 1. The same extension name cannot not appear in both compress and non-compress extension 548 * at the same time. 549 * 2. If the compress extension specifies all files, the types specified by the non-compress 550 * extension will be treated as special cases and will not be compressed. 551 * 3. Don't allow the non-compress extension specifies all files. 552 */ 553 static int f2fs_test_compress_extension(struct f2fs_sb_info *sbi) 554 { 555 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 556 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 557 int ext_cnt, noext_cnt, index = 0, no_index = 0; 558 559 ext = F2FS_OPTION(sbi).extensions; 560 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 561 noext = F2FS_OPTION(sbi).noextensions; 562 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 563 564 if (!noext_cnt) 565 return 0; 566 567 for (no_index = 0; no_index < noext_cnt; no_index++) { 568 if (!strcasecmp("*", noext[no_index])) { 569 f2fs_info(sbi, "Don't allow the nocompress extension specifies all files"); 570 return -EINVAL; 571 } 572 for (index = 0; index < ext_cnt; index++) { 573 if (!strcasecmp(ext[index], noext[no_index])) { 574 f2fs_info(sbi, "Don't allow the same extension %s appear in both compress and nocompress extension", 575 ext[index]); 576 return -EINVAL; 577 } 578 } 579 } 580 return 0; 581 } 582 583 #ifdef CONFIG_F2FS_FS_LZ4 584 static int f2fs_set_lz4hc_level(struct f2fs_sb_info *sbi, const char *str) 585 { 586 #ifdef CONFIG_F2FS_FS_LZ4HC 587 unsigned int level; 588 589 if (strlen(str) == 3) { 590 F2FS_OPTION(sbi).compress_level = 0; 591 return 0; 592 } 593 594 str += 3; 595 596 if (str[0] != ':') { 597 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 598 return -EINVAL; 599 } 600 if (kstrtouint(str + 1, 10, &level)) 601 return -EINVAL; 602 603 if (!f2fs_is_compress_level_valid(COMPRESS_LZ4, level)) { 604 f2fs_info(sbi, "invalid lz4hc compress level: %d", level); 605 return -EINVAL; 606 } 607 608 F2FS_OPTION(sbi).compress_level = level; 609 return 0; 610 #else 611 if (strlen(str) == 3) { 612 F2FS_OPTION(sbi).compress_level = 0; 613 return 0; 614 } 615 f2fs_info(sbi, "kernel doesn't support lz4hc compression"); 616 return -EINVAL; 617 #endif 618 } 619 #endif 620 621 #ifdef CONFIG_F2FS_FS_ZSTD 622 static int f2fs_set_zstd_level(struct f2fs_sb_info *sbi, const char *str) 623 { 624 int level; 625 int len = 4; 626 627 if (strlen(str) == len) { 628 F2FS_OPTION(sbi).compress_level = F2FS_ZSTD_DEFAULT_CLEVEL; 629 return 0; 630 } 631 632 str += len; 633 634 if (str[0] != ':') { 635 f2fs_info(sbi, "wrong format, e.g. <alg_name>:<compr_level>"); 636 return -EINVAL; 637 } 638 if (kstrtoint(str + 1, 10, &level)) 639 return -EINVAL; 640 641 /* f2fs does not support negative compress level now */ 642 if (level < 0) { 643 f2fs_info(sbi, "do not support negative compress level: %d", level); 644 return -ERANGE; 645 } 646 647 if (!f2fs_is_compress_level_valid(COMPRESS_ZSTD, level)) { 648 f2fs_info(sbi, "invalid zstd compress level: %d", level); 649 return -EINVAL; 650 } 651 652 F2FS_OPTION(sbi).compress_level = level; 653 return 0; 654 } 655 #endif 656 #endif 657 658 static int parse_options(struct super_block *sb, char *options, bool is_remount) 659 { 660 struct f2fs_sb_info *sbi = F2FS_SB(sb); 661 substring_t args[MAX_OPT_ARGS]; 662 #ifdef CONFIG_F2FS_FS_COMPRESSION 663 unsigned char (*ext)[F2FS_EXTENSION_LEN]; 664 unsigned char (*noext)[F2FS_EXTENSION_LEN]; 665 int ext_cnt, noext_cnt; 666 #endif 667 char *p, *name; 668 int arg = 0; 669 kuid_t uid; 670 kgid_t gid; 671 int ret; 672 673 if (!options) 674 goto default_check; 675 676 while ((p = strsep(&options, ",")) != NULL) { 677 int token; 678 679 if (!*p) 680 continue; 681 /* 682 * Initialize args struct so we know whether arg was 683 * found; some options take optional arguments. 684 */ 685 args[0].to = args[0].from = NULL; 686 token = match_token(p, f2fs_tokens, args); 687 688 switch (token) { 689 case Opt_gc_background: 690 name = match_strdup(&args[0]); 691 692 if (!name) 693 return -ENOMEM; 694 if (!strcmp(name, "on")) { 695 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 696 } else if (!strcmp(name, "off")) { 697 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_OFF; 698 } else if (!strcmp(name, "sync")) { 699 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_SYNC; 700 } else { 701 kfree(name); 702 return -EINVAL; 703 } 704 kfree(name); 705 break; 706 case Opt_disable_roll_forward: 707 set_opt(sbi, DISABLE_ROLL_FORWARD); 708 break; 709 case Opt_norecovery: 710 /* this option mounts f2fs with ro */ 711 set_opt(sbi, NORECOVERY); 712 if (!f2fs_readonly(sb)) 713 return -EINVAL; 714 break; 715 case Opt_discard: 716 if (!f2fs_hw_support_discard(sbi)) { 717 f2fs_warn(sbi, "device does not support discard"); 718 break; 719 } 720 set_opt(sbi, DISCARD); 721 break; 722 case Opt_nodiscard: 723 if (f2fs_hw_should_discard(sbi)) { 724 f2fs_warn(sbi, "discard is required for zoned block devices"); 725 return -EINVAL; 726 } 727 clear_opt(sbi, DISCARD); 728 break; 729 case Opt_noheap: 730 case Opt_heap: 731 f2fs_warn(sbi, "heap/no_heap options were deprecated"); 732 break; 733 #ifdef CONFIG_F2FS_FS_XATTR 734 case Opt_user_xattr: 735 set_opt(sbi, XATTR_USER); 736 break; 737 case Opt_nouser_xattr: 738 clear_opt(sbi, XATTR_USER); 739 break; 740 case Opt_inline_xattr: 741 set_opt(sbi, INLINE_XATTR); 742 break; 743 case Opt_noinline_xattr: 744 clear_opt(sbi, INLINE_XATTR); 745 break; 746 case Opt_inline_xattr_size: 747 if (args->from && match_int(args, &arg)) 748 return -EINVAL; 749 set_opt(sbi, INLINE_XATTR_SIZE); 750 F2FS_OPTION(sbi).inline_xattr_size = arg; 751 break; 752 #else 753 case Opt_user_xattr: 754 f2fs_info(sbi, "user_xattr options not supported"); 755 break; 756 case Opt_nouser_xattr: 757 f2fs_info(sbi, "nouser_xattr options not supported"); 758 break; 759 case Opt_inline_xattr: 760 f2fs_info(sbi, "inline_xattr options not supported"); 761 break; 762 case Opt_noinline_xattr: 763 f2fs_info(sbi, "noinline_xattr options not supported"); 764 break; 765 #endif 766 #ifdef CONFIG_F2FS_FS_POSIX_ACL 767 case Opt_acl: 768 set_opt(sbi, POSIX_ACL); 769 break; 770 case Opt_noacl: 771 clear_opt(sbi, POSIX_ACL); 772 break; 773 #else 774 case Opt_acl: 775 f2fs_info(sbi, "acl options not supported"); 776 break; 777 case Opt_noacl: 778 f2fs_info(sbi, "noacl options not supported"); 779 break; 780 #endif 781 case Opt_active_logs: 782 if (args->from && match_int(args, &arg)) 783 return -EINVAL; 784 if (arg != 2 && arg != 4 && 785 arg != NR_CURSEG_PERSIST_TYPE) 786 return -EINVAL; 787 F2FS_OPTION(sbi).active_logs = arg; 788 break; 789 case Opt_disable_ext_identify: 790 set_opt(sbi, DISABLE_EXT_IDENTIFY); 791 break; 792 case Opt_inline_data: 793 set_opt(sbi, INLINE_DATA); 794 break; 795 case Opt_inline_dentry: 796 set_opt(sbi, INLINE_DENTRY); 797 break; 798 case Opt_noinline_dentry: 799 clear_opt(sbi, INLINE_DENTRY); 800 break; 801 case Opt_flush_merge: 802 set_opt(sbi, FLUSH_MERGE); 803 break; 804 case Opt_noflush_merge: 805 clear_opt(sbi, FLUSH_MERGE); 806 break; 807 case Opt_nobarrier: 808 set_opt(sbi, NOBARRIER); 809 break; 810 case Opt_barrier: 811 clear_opt(sbi, NOBARRIER); 812 break; 813 case Opt_fastboot: 814 set_opt(sbi, FASTBOOT); 815 break; 816 case Opt_extent_cache: 817 set_opt(sbi, READ_EXTENT_CACHE); 818 break; 819 case Opt_noextent_cache: 820 clear_opt(sbi, READ_EXTENT_CACHE); 821 break; 822 case Opt_noinline_data: 823 clear_opt(sbi, INLINE_DATA); 824 break; 825 case Opt_data_flush: 826 set_opt(sbi, DATA_FLUSH); 827 break; 828 case Opt_reserve_root: 829 if (args->from && match_int(args, &arg)) 830 return -EINVAL; 831 if (test_opt(sbi, RESERVE_ROOT)) { 832 f2fs_info(sbi, "Preserve previous reserve_root=%u", 833 F2FS_OPTION(sbi).root_reserved_blocks); 834 } else { 835 F2FS_OPTION(sbi).root_reserved_blocks = arg; 836 set_opt(sbi, RESERVE_ROOT); 837 } 838 break; 839 case Opt_resuid: 840 if (args->from && match_int(args, &arg)) 841 return -EINVAL; 842 uid = make_kuid(current_user_ns(), arg); 843 if (!uid_valid(uid)) { 844 f2fs_err(sbi, "Invalid uid value %d", arg); 845 return -EINVAL; 846 } 847 F2FS_OPTION(sbi).s_resuid = uid; 848 break; 849 case Opt_resgid: 850 if (args->from && match_int(args, &arg)) 851 return -EINVAL; 852 gid = make_kgid(current_user_ns(), arg); 853 if (!gid_valid(gid)) { 854 f2fs_err(sbi, "Invalid gid value %d", arg); 855 return -EINVAL; 856 } 857 F2FS_OPTION(sbi).s_resgid = gid; 858 break; 859 case Opt_mode: 860 name = match_strdup(&args[0]); 861 862 if (!name) 863 return -ENOMEM; 864 if (!strcmp(name, "adaptive")) { 865 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 866 } else if (!strcmp(name, "lfs")) { 867 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 868 } else if (!strcmp(name, "fragment:segment")) { 869 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_SEG; 870 } else if (!strcmp(name, "fragment:block")) { 871 F2FS_OPTION(sbi).fs_mode = FS_MODE_FRAGMENT_BLK; 872 } else { 873 kfree(name); 874 return -EINVAL; 875 } 876 kfree(name); 877 break; 878 #ifdef CONFIG_F2FS_FAULT_INJECTION 879 case Opt_fault_injection: 880 if (args->from && match_int(args, &arg)) 881 return -EINVAL; 882 if (f2fs_build_fault_attr(sbi, arg, 883 F2FS_ALL_FAULT_TYPE)) 884 return -EINVAL; 885 set_opt(sbi, FAULT_INJECTION); 886 break; 887 888 case Opt_fault_type: 889 if (args->from && match_int(args, &arg)) 890 return -EINVAL; 891 if (f2fs_build_fault_attr(sbi, 0, arg)) 892 return -EINVAL; 893 set_opt(sbi, FAULT_INJECTION); 894 break; 895 #else 896 case Opt_fault_injection: 897 f2fs_info(sbi, "fault_injection options not supported"); 898 break; 899 900 case Opt_fault_type: 901 f2fs_info(sbi, "fault_type options not supported"); 902 break; 903 #endif 904 case Opt_lazytime: 905 sb->s_flags |= SB_LAZYTIME; 906 break; 907 case Opt_nolazytime: 908 sb->s_flags &= ~SB_LAZYTIME; 909 break; 910 #ifdef CONFIG_QUOTA 911 case Opt_quota: 912 case Opt_usrquota: 913 set_opt(sbi, USRQUOTA); 914 break; 915 case Opt_grpquota: 916 set_opt(sbi, GRPQUOTA); 917 break; 918 case Opt_prjquota: 919 set_opt(sbi, PRJQUOTA); 920 break; 921 case Opt_usrjquota: 922 ret = f2fs_set_qf_name(sb, USRQUOTA, &args[0]); 923 if (ret) 924 return ret; 925 break; 926 case Opt_grpjquota: 927 ret = f2fs_set_qf_name(sb, GRPQUOTA, &args[0]); 928 if (ret) 929 return ret; 930 break; 931 case Opt_prjjquota: 932 ret = f2fs_set_qf_name(sb, PRJQUOTA, &args[0]); 933 if (ret) 934 return ret; 935 break; 936 case Opt_offusrjquota: 937 ret = f2fs_clear_qf_name(sb, USRQUOTA); 938 if (ret) 939 return ret; 940 break; 941 case Opt_offgrpjquota: 942 ret = f2fs_clear_qf_name(sb, GRPQUOTA); 943 if (ret) 944 return ret; 945 break; 946 case Opt_offprjjquota: 947 ret = f2fs_clear_qf_name(sb, PRJQUOTA); 948 if (ret) 949 return ret; 950 break; 951 case Opt_jqfmt_vfsold: 952 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_OLD; 953 break; 954 case Opt_jqfmt_vfsv0: 955 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V0; 956 break; 957 case Opt_jqfmt_vfsv1: 958 F2FS_OPTION(sbi).s_jquota_fmt = QFMT_VFS_V1; 959 break; 960 case Opt_noquota: 961 clear_opt(sbi, QUOTA); 962 clear_opt(sbi, USRQUOTA); 963 clear_opt(sbi, GRPQUOTA); 964 clear_opt(sbi, PRJQUOTA); 965 break; 966 #else 967 case Opt_quota: 968 case Opt_usrquota: 969 case Opt_grpquota: 970 case Opt_prjquota: 971 case Opt_usrjquota: 972 case Opt_grpjquota: 973 case Opt_prjjquota: 974 case Opt_offusrjquota: 975 case Opt_offgrpjquota: 976 case Opt_offprjjquota: 977 case Opt_jqfmt_vfsold: 978 case Opt_jqfmt_vfsv0: 979 case Opt_jqfmt_vfsv1: 980 case Opt_noquota: 981 f2fs_info(sbi, "quota operations not supported"); 982 break; 983 #endif 984 case Opt_alloc: 985 name = match_strdup(&args[0]); 986 if (!name) 987 return -ENOMEM; 988 989 if (!strcmp(name, "default")) { 990 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 991 } else if (!strcmp(name, "reuse")) { 992 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 993 } else { 994 kfree(name); 995 return -EINVAL; 996 } 997 kfree(name); 998 break; 999 case Opt_fsync: 1000 name = match_strdup(&args[0]); 1001 if (!name) 1002 return -ENOMEM; 1003 if (!strcmp(name, "posix")) { 1004 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 1005 } else if (!strcmp(name, "strict")) { 1006 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_STRICT; 1007 } else if (!strcmp(name, "nobarrier")) { 1008 F2FS_OPTION(sbi).fsync_mode = 1009 FSYNC_MODE_NOBARRIER; 1010 } else { 1011 kfree(name); 1012 return -EINVAL; 1013 } 1014 kfree(name); 1015 break; 1016 case Opt_test_dummy_encryption: 1017 ret = f2fs_set_test_dummy_encryption(sb, p, &args[0], 1018 is_remount); 1019 if (ret) 1020 return ret; 1021 break; 1022 case Opt_inlinecrypt: 1023 #ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT 1024 sb->s_flags |= SB_INLINECRYPT; 1025 #else 1026 f2fs_info(sbi, "inline encryption not supported"); 1027 #endif 1028 break; 1029 case Opt_checkpoint_disable_cap_perc: 1030 if (args->from && match_int(args, &arg)) 1031 return -EINVAL; 1032 if (arg < 0 || arg > 100) 1033 return -EINVAL; 1034 F2FS_OPTION(sbi).unusable_cap_perc = arg; 1035 set_opt(sbi, DISABLE_CHECKPOINT); 1036 break; 1037 case Opt_checkpoint_disable_cap: 1038 if (args->from && match_int(args, &arg)) 1039 return -EINVAL; 1040 F2FS_OPTION(sbi).unusable_cap = arg; 1041 set_opt(sbi, DISABLE_CHECKPOINT); 1042 break; 1043 case Opt_checkpoint_disable: 1044 set_opt(sbi, DISABLE_CHECKPOINT); 1045 break; 1046 case Opt_checkpoint_enable: 1047 clear_opt(sbi, DISABLE_CHECKPOINT); 1048 break; 1049 case Opt_checkpoint_merge: 1050 set_opt(sbi, MERGE_CHECKPOINT); 1051 break; 1052 case Opt_nocheckpoint_merge: 1053 clear_opt(sbi, MERGE_CHECKPOINT); 1054 break; 1055 #ifdef CONFIG_F2FS_FS_COMPRESSION 1056 case Opt_compress_algorithm: 1057 if (!f2fs_sb_has_compression(sbi)) { 1058 f2fs_info(sbi, "Image doesn't support compression"); 1059 break; 1060 } 1061 name = match_strdup(&args[0]); 1062 if (!name) 1063 return -ENOMEM; 1064 if (!strcmp(name, "lzo")) { 1065 #ifdef CONFIG_F2FS_FS_LZO 1066 F2FS_OPTION(sbi).compress_level = 0; 1067 F2FS_OPTION(sbi).compress_algorithm = 1068 COMPRESS_LZO; 1069 #else 1070 f2fs_info(sbi, "kernel doesn't support lzo compression"); 1071 #endif 1072 } else if (!strncmp(name, "lz4", 3)) { 1073 #ifdef CONFIG_F2FS_FS_LZ4 1074 ret = f2fs_set_lz4hc_level(sbi, name); 1075 if (ret) { 1076 kfree(name); 1077 return -EINVAL; 1078 } 1079 F2FS_OPTION(sbi).compress_algorithm = 1080 COMPRESS_LZ4; 1081 #else 1082 f2fs_info(sbi, "kernel doesn't support lz4 compression"); 1083 #endif 1084 } else if (!strncmp(name, "zstd", 4)) { 1085 #ifdef CONFIG_F2FS_FS_ZSTD 1086 ret = f2fs_set_zstd_level(sbi, name); 1087 if (ret) { 1088 kfree(name); 1089 return -EINVAL; 1090 } 1091 F2FS_OPTION(sbi).compress_algorithm = 1092 COMPRESS_ZSTD; 1093 #else 1094 f2fs_info(sbi, "kernel doesn't support zstd compression"); 1095 #endif 1096 } else if (!strcmp(name, "lzo-rle")) { 1097 #ifdef CONFIG_F2FS_FS_LZORLE 1098 F2FS_OPTION(sbi).compress_level = 0; 1099 F2FS_OPTION(sbi).compress_algorithm = 1100 COMPRESS_LZORLE; 1101 #else 1102 f2fs_info(sbi, "kernel doesn't support lzorle compression"); 1103 #endif 1104 } else { 1105 kfree(name); 1106 return -EINVAL; 1107 } 1108 kfree(name); 1109 break; 1110 case Opt_compress_log_size: 1111 if (!f2fs_sb_has_compression(sbi)) { 1112 f2fs_info(sbi, "Image doesn't support compression"); 1113 break; 1114 } 1115 if (args->from && match_int(args, &arg)) 1116 return -EINVAL; 1117 if (arg < MIN_COMPRESS_LOG_SIZE || 1118 arg > MAX_COMPRESS_LOG_SIZE) { 1119 f2fs_err(sbi, 1120 "Compress cluster log size is out of range"); 1121 return -EINVAL; 1122 } 1123 F2FS_OPTION(sbi).compress_log_size = arg; 1124 break; 1125 case Opt_compress_extension: 1126 if (!f2fs_sb_has_compression(sbi)) { 1127 f2fs_info(sbi, "Image doesn't support compression"); 1128 break; 1129 } 1130 name = match_strdup(&args[0]); 1131 if (!name) 1132 return -ENOMEM; 1133 1134 ext = F2FS_OPTION(sbi).extensions; 1135 ext_cnt = F2FS_OPTION(sbi).compress_ext_cnt; 1136 1137 if (strlen(name) >= F2FS_EXTENSION_LEN || 1138 ext_cnt >= COMPRESS_EXT_NUM) { 1139 f2fs_err(sbi, 1140 "invalid extension length/number"); 1141 kfree(name); 1142 return -EINVAL; 1143 } 1144 1145 if (is_compress_extension_exist(sbi, name, true)) { 1146 kfree(name); 1147 break; 1148 } 1149 1150 strcpy(ext[ext_cnt], name); 1151 F2FS_OPTION(sbi).compress_ext_cnt++; 1152 kfree(name); 1153 break; 1154 case Opt_nocompress_extension: 1155 if (!f2fs_sb_has_compression(sbi)) { 1156 f2fs_info(sbi, "Image doesn't support compression"); 1157 break; 1158 } 1159 name = match_strdup(&args[0]); 1160 if (!name) 1161 return -ENOMEM; 1162 1163 noext = F2FS_OPTION(sbi).noextensions; 1164 noext_cnt = F2FS_OPTION(sbi).nocompress_ext_cnt; 1165 1166 if (strlen(name) >= F2FS_EXTENSION_LEN || 1167 noext_cnt >= COMPRESS_EXT_NUM) { 1168 f2fs_err(sbi, 1169 "invalid extension length/number"); 1170 kfree(name); 1171 return -EINVAL; 1172 } 1173 1174 if (is_compress_extension_exist(sbi, name, false)) { 1175 kfree(name); 1176 break; 1177 } 1178 1179 strcpy(noext[noext_cnt], name); 1180 F2FS_OPTION(sbi).nocompress_ext_cnt++; 1181 kfree(name); 1182 break; 1183 case Opt_compress_chksum: 1184 if (!f2fs_sb_has_compression(sbi)) { 1185 f2fs_info(sbi, "Image doesn't support compression"); 1186 break; 1187 } 1188 F2FS_OPTION(sbi).compress_chksum = true; 1189 break; 1190 case Opt_compress_mode: 1191 if (!f2fs_sb_has_compression(sbi)) { 1192 f2fs_info(sbi, "Image doesn't support compression"); 1193 break; 1194 } 1195 name = match_strdup(&args[0]); 1196 if (!name) 1197 return -ENOMEM; 1198 if (!strcmp(name, "fs")) { 1199 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 1200 } else if (!strcmp(name, "user")) { 1201 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_USER; 1202 } else { 1203 kfree(name); 1204 return -EINVAL; 1205 } 1206 kfree(name); 1207 break; 1208 case Opt_compress_cache: 1209 if (!f2fs_sb_has_compression(sbi)) { 1210 f2fs_info(sbi, "Image doesn't support compression"); 1211 break; 1212 } 1213 set_opt(sbi, COMPRESS_CACHE); 1214 break; 1215 #else 1216 case Opt_compress_algorithm: 1217 case Opt_compress_log_size: 1218 case Opt_compress_extension: 1219 case Opt_nocompress_extension: 1220 case Opt_compress_chksum: 1221 case Opt_compress_mode: 1222 case Opt_compress_cache: 1223 f2fs_info(sbi, "compression options not supported"); 1224 break; 1225 #endif 1226 case Opt_atgc: 1227 set_opt(sbi, ATGC); 1228 break; 1229 case Opt_gc_merge: 1230 set_opt(sbi, GC_MERGE); 1231 break; 1232 case Opt_nogc_merge: 1233 clear_opt(sbi, GC_MERGE); 1234 break; 1235 case Opt_discard_unit: 1236 name = match_strdup(&args[0]); 1237 if (!name) 1238 return -ENOMEM; 1239 if (!strcmp(name, "block")) { 1240 F2FS_OPTION(sbi).discard_unit = 1241 DISCARD_UNIT_BLOCK; 1242 } else if (!strcmp(name, "segment")) { 1243 F2FS_OPTION(sbi).discard_unit = 1244 DISCARD_UNIT_SEGMENT; 1245 } else if (!strcmp(name, "section")) { 1246 F2FS_OPTION(sbi).discard_unit = 1247 DISCARD_UNIT_SECTION; 1248 } else { 1249 kfree(name); 1250 return -EINVAL; 1251 } 1252 kfree(name); 1253 break; 1254 case Opt_memory_mode: 1255 name = match_strdup(&args[0]); 1256 if (!name) 1257 return -ENOMEM; 1258 if (!strcmp(name, "normal")) { 1259 F2FS_OPTION(sbi).memory_mode = 1260 MEMORY_MODE_NORMAL; 1261 } else if (!strcmp(name, "low")) { 1262 F2FS_OPTION(sbi).memory_mode = 1263 MEMORY_MODE_LOW; 1264 } else { 1265 kfree(name); 1266 return -EINVAL; 1267 } 1268 kfree(name); 1269 break; 1270 case Opt_age_extent_cache: 1271 set_opt(sbi, AGE_EXTENT_CACHE); 1272 break; 1273 case Opt_errors: 1274 name = match_strdup(&args[0]); 1275 if (!name) 1276 return -ENOMEM; 1277 if (!strcmp(name, "remount-ro")) { 1278 F2FS_OPTION(sbi).errors = 1279 MOUNT_ERRORS_READONLY; 1280 } else if (!strcmp(name, "continue")) { 1281 F2FS_OPTION(sbi).errors = 1282 MOUNT_ERRORS_CONTINUE; 1283 } else if (!strcmp(name, "panic")) { 1284 F2FS_OPTION(sbi).errors = 1285 MOUNT_ERRORS_PANIC; 1286 } else { 1287 kfree(name); 1288 return -EINVAL; 1289 } 1290 kfree(name); 1291 break; 1292 default: 1293 f2fs_err(sbi, "Unrecognized mount option \"%s\" or missing value", 1294 p); 1295 return -EINVAL; 1296 } 1297 } 1298 default_check: 1299 #ifdef CONFIG_QUOTA 1300 if (f2fs_check_quota_options(sbi)) 1301 return -EINVAL; 1302 #else 1303 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sbi->sb)) { 1304 f2fs_info(sbi, "Filesystem with quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1305 return -EINVAL; 1306 } 1307 if (f2fs_sb_has_project_quota(sbi) && !f2fs_readonly(sbi->sb)) { 1308 f2fs_err(sbi, "Filesystem with project quota feature cannot be mounted RDWR without CONFIG_QUOTA"); 1309 return -EINVAL; 1310 } 1311 #endif 1312 #if !IS_ENABLED(CONFIG_UNICODE) 1313 if (f2fs_sb_has_casefold(sbi)) { 1314 f2fs_err(sbi, 1315 "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 1316 return -EINVAL; 1317 } 1318 #endif 1319 /* 1320 * The BLKZONED feature indicates that the drive was formatted with 1321 * zone alignment optimization. This is optional for host-aware 1322 * devices, but mandatory for host-managed zoned block devices. 1323 */ 1324 if (f2fs_sb_has_blkzoned(sbi)) { 1325 #ifdef CONFIG_BLK_DEV_ZONED 1326 if (F2FS_OPTION(sbi).discard_unit != 1327 DISCARD_UNIT_SECTION) { 1328 f2fs_info(sbi, "Zoned block device doesn't need small discard, set discard_unit=section by default"); 1329 F2FS_OPTION(sbi).discard_unit = 1330 DISCARD_UNIT_SECTION; 1331 } 1332 1333 if (F2FS_OPTION(sbi).fs_mode != FS_MODE_LFS) { 1334 f2fs_info(sbi, "Only lfs mode is allowed with zoned block device feature"); 1335 return -EINVAL; 1336 } 1337 #else 1338 f2fs_err(sbi, "Zoned block device support is not enabled"); 1339 return -EINVAL; 1340 #endif 1341 } 1342 1343 #ifdef CONFIG_F2FS_FS_COMPRESSION 1344 if (f2fs_test_compress_extension(sbi)) { 1345 f2fs_err(sbi, "invalid compress or nocompress extension"); 1346 return -EINVAL; 1347 } 1348 #endif 1349 1350 if (test_opt(sbi, INLINE_XATTR_SIZE)) { 1351 int min_size, max_size; 1352 1353 if (!f2fs_sb_has_extra_attr(sbi) || 1354 !f2fs_sb_has_flexible_inline_xattr(sbi)) { 1355 f2fs_err(sbi, "extra_attr or flexible_inline_xattr feature is off"); 1356 return -EINVAL; 1357 } 1358 if (!test_opt(sbi, INLINE_XATTR)) { 1359 f2fs_err(sbi, "inline_xattr_size option should be set with inline_xattr option"); 1360 return -EINVAL; 1361 } 1362 1363 min_size = MIN_INLINE_XATTR_SIZE; 1364 max_size = MAX_INLINE_XATTR_SIZE; 1365 1366 if (F2FS_OPTION(sbi).inline_xattr_size < min_size || 1367 F2FS_OPTION(sbi).inline_xattr_size > max_size) { 1368 f2fs_err(sbi, "inline xattr size is out of range: %d ~ %d", 1369 min_size, max_size); 1370 return -EINVAL; 1371 } 1372 } 1373 1374 if (test_opt(sbi, DISABLE_CHECKPOINT) && f2fs_lfs_mode(sbi)) { 1375 f2fs_err(sbi, "LFS is not compatible with checkpoint=disable"); 1376 return -EINVAL; 1377 } 1378 1379 if (test_opt(sbi, ATGC) && f2fs_lfs_mode(sbi)) { 1380 f2fs_err(sbi, "LFS is not compatible with ATGC"); 1381 return -EINVAL; 1382 } 1383 1384 if (f2fs_is_readonly(sbi) && test_opt(sbi, FLUSH_MERGE)) { 1385 f2fs_err(sbi, "FLUSH_MERGE not compatible with readonly mode"); 1386 return -EINVAL; 1387 } 1388 1389 if (f2fs_sb_has_readonly(sbi) && !f2fs_readonly(sbi->sb)) { 1390 f2fs_err(sbi, "Allow to mount readonly mode only"); 1391 return -EROFS; 1392 } 1393 return 0; 1394 } 1395 1396 static struct inode *f2fs_alloc_inode(struct super_block *sb) 1397 { 1398 struct f2fs_inode_info *fi; 1399 1400 if (time_to_inject(F2FS_SB(sb), FAULT_SLAB_ALLOC)) 1401 return NULL; 1402 1403 fi = alloc_inode_sb(sb, f2fs_inode_cachep, GFP_F2FS_ZERO); 1404 if (!fi) 1405 return NULL; 1406 1407 init_once((void *) fi); 1408 1409 /* Initialize f2fs-specific inode info */ 1410 atomic_set(&fi->dirty_pages, 0); 1411 atomic_set(&fi->i_compr_blocks, 0); 1412 init_f2fs_rwsem(&fi->i_sem); 1413 spin_lock_init(&fi->i_size_lock); 1414 INIT_LIST_HEAD(&fi->dirty_list); 1415 INIT_LIST_HEAD(&fi->gdirty_list); 1416 init_f2fs_rwsem(&fi->i_gc_rwsem[READ]); 1417 init_f2fs_rwsem(&fi->i_gc_rwsem[WRITE]); 1418 init_f2fs_rwsem(&fi->i_xattr_sem); 1419 1420 /* Will be used by directory only */ 1421 fi->i_dir_level = F2FS_SB(sb)->dir_level; 1422 1423 return &fi->vfs_inode; 1424 } 1425 1426 static int f2fs_drop_inode(struct inode *inode) 1427 { 1428 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1429 int ret; 1430 1431 /* 1432 * during filesystem shutdown, if checkpoint is disabled, 1433 * drop useless meta/node dirty pages. 1434 */ 1435 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) { 1436 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1437 inode->i_ino == F2FS_META_INO(sbi)) { 1438 trace_f2fs_drop_inode(inode, 1); 1439 return 1; 1440 } 1441 } 1442 1443 /* 1444 * This is to avoid a deadlock condition like below. 1445 * writeback_single_inode(inode) 1446 * - f2fs_write_data_page 1447 * - f2fs_gc -> iput -> evict 1448 * - inode_wait_for_writeback(inode) 1449 */ 1450 if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) { 1451 if (!inode->i_nlink && !is_bad_inode(inode)) { 1452 /* to avoid evict_inode call simultaneously */ 1453 atomic_inc(&inode->i_count); 1454 spin_unlock(&inode->i_lock); 1455 1456 /* should remain fi->extent_tree for writepage */ 1457 f2fs_destroy_extent_node(inode); 1458 1459 sb_start_intwrite(inode->i_sb); 1460 f2fs_i_size_write(inode, 0); 1461 1462 f2fs_submit_merged_write_cond(F2FS_I_SB(inode), 1463 inode, NULL, 0, DATA); 1464 truncate_inode_pages_final(inode->i_mapping); 1465 1466 if (F2FS_HAS_BLOCKS(inode)) 1467 f2fs_truncate(inode); 1468 1469 sb_end_intwrite(inode->i_sb); 1470 1471 spin_lock(&inode->i_lock); 1472 atomic_dec(&inode->i_count); 1473 } 1474 trace_f2fs_drop_inode(inode, 0); 1475 return 0; 1476 } 1477 ret = generic_drop_inode(inode); 1478 if (!ret) 1479 ret = fscrypt_drop_inode(inode); 1480 trace_f2fs_drop_inode(inode, ret); 1481 return ret; 1482 } 1483 1484 int f2fs_inode_dirtied(struct inode *inode, bool sync) 1485 { 1486 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1487 int ret = 0; 1488 1489 spin_lock(&sbi->inode_lock[DIRTY_META]); 1490 if (is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1491 ret = 1; 1492 } else { 1493 set_inode_flag(inode, FI_DIRTY_INODE); 1494 stat_inc_dirty_inode(sbi, DIRTY_META); 1495 } 1496 if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) { 1497 list_add_tail(&F2FS_I(inode)->gdirty_list, 1498 &sbi->inode_list[DIRTY_META]); 1499 inc_page_count(sbi, F2FS_DIRTY_IMETA); 1500 } 1501 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1502 return ret; 1503 } 1504 1505 void f2fs_inode_synced(struct inode *inode) 1506 { 1507 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1508 1509 spin_lock(&sbi->inode_lock[DIRTY_META]); 1510 if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) { 1511 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1512 return; 1513 } 1514 if (!list_empty(&F2FS_I(inode)->gdirty_list)) { 1515 list_del_init(&F2FS_I(inode)->gdirty_list); 1516 dec_page_count(sbi, F2FS_DIRTY_IMETA); 1517 } 1518 clear_inode_flag(inode, FI_DIRTY_INODE); 1519 clear_inode_flag(inode, FI_AUTO_RECOVER); 1520 stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META); 1521 spin_unlock(&sbi->inode_lock[DIRTY_META]); 1522 } 1523 1524 /* 1525 * f2fs_dirty_inode() is called from __mark_inode_dirty() 1526 * 1527 * We should call set_dirty_inode to write the dirty inode through write_inode. 1528 */ 1529 static void f2fs_dirty_inode(struct inode *inode, int flags) 1530 { 1531 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 1532 1533 if (inode->i_ino == F2FS_NODE_INO(sbi) || 1534 inode->i_ino == F2FS_META_INO(sbi)) 1535 return; 1536 1537 if (is_inode_flag_set(inode, FI_AUTO_RECOVER)) 1538 clear_inode_flag(inode, FI_AUTO_RECOVER); 1539 1540 f2fs_inode_dirtied(inode, false); 1541 } 1542 1543 static void f2fs_free_inode(struct inode *inode) 1544 { 1545 fscrypt_free_inode(inode); 1546 kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode)); 1547 } 1548 1549 static void destroy_percpu_info(struct f2fs_sb_info *sbi) 1550 { 1551 percpu_counter_destroy(&sbi->total_valid_inode_count); 1552 percpu_counter_destroy(&sbi->rf_node_block_count); 1553 percpu_counter_destroy(&sbi->alloc_valid_block_count); 1554 } 1555 1556 static void destroy_device_list(struct f2fs_sb_info *sbi) 1557 { 1558 int i; 1559 1560 for (i = 0; i < sbi->s_ndevs; i++) { 1561 if (i > 0) 1562 blkdev_put(FDEV(i).bdev, sbi->sb); 1563 #ifdef CONFIG_BLK_DEV_ZONED 1564 kvfree(FDEV(i).blkz_seq); 1565 #endif 1566 } 1567 kvfree(sbi->devs); 1568 } 1569 1570 static void f2fs_put_super(struct super_block *sb) 1571 { 1572 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1573 int i; 1574 int err = 0; 1575 bool done; 1576 1577 /* unregister procfs/sysfs entries in advance to avoid race case */ 1578 f2fs_unregister_sysfs(sbi); 1579 1580 f2fs_quota_off_umount(sb); 1581 1582 /* prevent remaining shrinker jobs */ 1583 mutex_lock(&sbi->umount_mutex); 1584 1585 /* 1586 * flush all issued checkpoints and stop checkpoint issue thread. 1587 * after then, all checkpoints should be done by each process context. 1588 */ 1589 f2fs_stop_ckpt_thread(sbi); 1590 1591 /* 1592 * We don't need to do checkpoint when superblock is clean. 1593 * But, the previous checkpoint was not done by umount, it needs to do 1594 * clean checkpoint again. 1595 */ 1596 if ((is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 1597 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG))) { 1598 struct cp_control cpc = { 1599 .reason = CP_UMOUNT, 1600 }; 1601 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1602 err = f2fs_write_checkpoint(sbi, &cpc); 1603 } 1604 1605 /* be sure to wait for any on-going discard commands */ 1606 done = f2fs_issue_discard_timeout(sbi); 1607 if (f2fs_realtime_discard_enable(sbi) && !sbi->discard_blks && done) { 1608 struct cp_control cpc = { 1609 .reason = CP_UMOUNT | CP_TRIMMED, 1610 }; 1611 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1612 err = f2fs_write_checkpoint(sbi, &cpc); 1613 } 1614 1615 /* 1616 * normally superblock is clean, so we need to release this. 1617 * In addition, EIO will skip do checkpoint, we need this as well. 1618 */ 1619 f2fs_release_ino_entry(sbi, true); 1620 1621 f2fs_leave_shrinker(sbi); 1622 mutex_unlock(&sbi->umount_mutex); 1623 1624 /* our cp_error case, we can wait for any writeback page */ 1625 f2fs_flush_merged_writes(sbi); 1626 1627 f2fs_wait_on_all_pages(sbi, F2FS_WB_CP_DATA); 1628 1629 if (err || f2fs_cp_error(sbi)) { 1630 truncate_inode_pages_final(NODE_MAPPING(sbi)); 1631 truncate_inode_pages_final(META_MAPPING(sbi)); 1632 } 1633 1634 for (i = 0; i < NR_COUNT_TYPE; i++) { 1635 if (!get_pages(sbi, i)) 1636 continue; 1637 f2fs_err(sbi, "detect filesystem reference count leak during " 1638 "umount, type: %d, count: %lld", i, get_pages(sbi, i)); 1639 f2fs_bug_on(sbi, 1); 1640 } 1641 1642 f2fs_bug_on(sbi, sbi->fsync_node_num); 1643 1644 f2fs_destroy_compress_inode(sbi); 1645 1646 iput(sbi->node_inode); 1647 sbi->node_inode = NULL; 1648 1649 iput(sbi->meta_inode); 1650 sbi->meta_inode = NULL; 1651 1652 /* 1653 * iput() can update stat information, if f2fs_write_checkpoint() 1654 * above failed with error. 1655 */ 1656 f2fs_destroy_stats(sbi); 1657 1658 /* destroy f2fs internal modules */ 1659 f2fs_destroy_node_manager(sbi); 1660 f2fs_destroy_segment_manager(sbi); 1661 1662 /* flush s_error_work before sbi destroy */ 1663 flush_work(&sbi->s_error_work); 1664 1665 f2fs_destroy_post_read_wq(sbi); 1666 1667 kvfree(sbi->ckpt); 1668 1669 sb->s_fs_info = NULL; 1670 if (sbi->s_chksum_driver) 1671 crypto_free_shash(sbi->s_chksum_driver); 1672 kfree(sbi->raw_super); 1673 1674 destroy_device_list(sbi); 1675 f2fs_destroy_page_array_cache(sbi); 1676 f2fs_destroy_xattr_caches(sbi); 1677 #ifdef CONFIG_QUOTA 1678 for (i = 0; i < MAXQUOTAS; i++) 1679 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 1680 #endif 1681 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 1682 destroy_percpu_info(sbi); 1683 f2fs_destroy_iostat(sbi); 1684 for (i = 0; i < NR_PAGE_TYPE; i++) 1685 kvfree(sbi->write_io[i]); 1686 #if IS_ENABLED(CONFIG_UNICODE) 1687 utf8_unload(sb->s_encoding); 1688 #endif 1689 kfree(sbi); 1690 } 1691 1692 int f2fs_sync_fs(struct super_block *sb, int sync) 1693 { 1694 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1695 int err = 0; 1696 1697 if (unlikely(f2fs_cp_error(sbi))) 1698 return 0; 1699 if (unlikely(is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 1700 return 0; 1701 1702 trace_f2fs_sync_fs(sb, sync); 1703 1704 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 1705 return -EAGAIN; 1706 1707 if (sync) { 1708 stat_inc_cp_call_count(sbi, TOTAL_CALL); 1709 err = f2fs_issue_checkpoint(sbi); 1710 } 1711 1712 return err; 1713 } 1714 1715 static int f2fs_freeze(struct super_block *sb) 1716 { 1717 if (f2fs_readonly(sb)) 1718 return 0; 1719 1720 /* IO error happened before */ 1721 if (unlikely(f2fs_cp_error(F2FS_SB(sb)))) 1722 return -EIO; 1723 1724 /* must be clean, since sync_filesystem() was already called */ 1725 if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY)) 1726 return -EINVAL; 1727 1728 /* Let's flush checkpoints and stop the thread. */ 1729 f2fs_flush_ckpt_thread(F2FS_SB(sb)); 1730 1731 /* to avoid deadlock on f2fs_evict_inode->SB_FREEZE_FS */ 1732 set_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 1733 return 0; 1734 } 1735 1736 static int f2fs_unfreeze(struct super_block *sb) 1737 { 1738 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1739 1740 /* 1741 * It will update discard_max_bytes of mounted lvm device to zero 1742 * after creating snapshot on this lvm device, let's drop all 1743 * remained discards. 1744 * We don't need to disable real-time discard because discard_max_bytes 1745 * will recover after removal of snapshot. 1746 */ 1747 if (test_opt(sbi, DISCARD) && !f2fs_hw_support_discard(sbi)) 1748 f2fs_issue_discard_timeout(sbi); 1749 1750 clear_sbi_flag(F2FS_SB(sb), SBI_IS_FREEZING); 1751 return 0; 1752 } 1753 1754 #ifdef CONFIG_QUOTA 1755 static int f2fs_statfs_project(struct super_block *sb, 1756 kprojid_t projid, struct kstatfs *buf) 1757 { 1758 struct kqid qid; 1759 struct dquot *dquot; 1760 u64 limit; 1761 u64 curblock; 1762 1763 qid = make_kqid_projid(projid); 1764 dquot = dqget(sb, qid); 1765 if (IS_ERR(dquot)) 1766 return PTR_ERR(dquot); 1767 spin_lock(&dquot->dq_dqb_lock); 1768 1769 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit, 1770 dquot->dq_dqb.dqb_bhardlimit); 1771 if (limit) 1772 limit >>= sb->s_blocksize_bits; 1773 1774 if (limit && buf->f_blocks > limit) { 1775 curblock = (dquot->dq_dqb.dqb_curspace + 1776 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits; 1777 buf->f_blocks = limit; 1778 buf->f_bfree = buf->f_bavail = 1779 (buf->f_blocks > curblock) ? 1780 (buf->f_blocks - curblock) : 0; 1781 } 1782 1783 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit, 1784 dquot->dq_dqb.dqb_ihardlimit); 1785 1786 if (limit && buf->f_files > limit) { 1787 buf->f_files = limit; 1788 buf->f_ffree = 1789 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ? 1790 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0; 1791 } 1792 1793 spin_unlock(&dquot->dq_dqb_lock); 1794 dqput(dquot); 1795 return 0; 1796 } 1797 #endif 1798 1799 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf) 1800 { 1801 struct super_block *sb = dentry->d_sb; 1802 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1803 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 1804 block_t total_count, user_block_count, start_count; 1805 u64 avail_node_count; 1806 unsigned int total_valid_node_count; 1807 1808 total_count = le64_to_cpu(sbi->raw_super->block_count); 1809 start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr); 1810 buf->f_type = F2FS_SUPER_MAGIC; 1811 buf->f_bsize = sbi->blocksize; 1812 1813 buf->f_blocks = total_count - start_count; 1814 1815 spin_lock(&sbi->stat_lock); 1816 1817 user_block_count = sbi->user_block_count; 1818 total_valid_node_count = valid_node_count(sbi); 1819 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 1820 buf->f_bfree = user_block_count - valid_user_blocks(sbi) - 1821 sbi->current_reserved_blocks; 1822 1823 if (unlikely(buf->f_bfree <= sbi->unusable_block_count)) 1824 buf->f_bfree = 0; 1825 else 1826 buf->f_bfree -= sbi->unusable_block_count; 1827 spin_unlock(&sbi->stat_lock); 1828 1829 if (buf->f_bfree > F2FS_OPTION(sbi).root_reserved_blocks) 1830 buf->f_bavail = buf->f_bfree - 1831 F2FS_OPTION(sbi).root_reserved_blocks; 1832 else 1833 buf->f_bavail = 0; 1834 1835 if (avail_node_count > user_block_count) { 1836 buf->f_files = user_block_count; 1837 buf->f_ffree = buf->f_bavail; 1838 } else { 1839 buf->f_files = avail_node_count; 1840 buf->f_ffree = min(avail_node_count - total_valid_node_count, 1841 buf->f_bavail); 1842 } 1843 1844 buf->f_namelen = F2FS_NAME_LEN; 1845 buf->f_fsid = u64_to_fsid(id); 1846 1847 #ifdef CONFIG_QUOTA 1848 if (is_inode_flag_set(dentry->d_inode, FI_PROJ_INHERIT) && 1849 sb_has_quota_limits_enabled(sb, PRJQUOTA)) { 1850 f2fs_statfs_project(sb, F2FS_I(dentry->d_inode)->i_projid, buf); 1851 } 1852 #endif 1853 return 0; 1854 } 1855 1856 static inline void f2fs_show_quota_options(struct seq_file *seq, 1857 struct super_block *sb) 1858 { 1859 #ifdef CONFIG_QUOTA 1860 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1861 1862 if (F2FS_OPTION(sbi).s_jquota_fmt) { 1863 char *fmtname = ""; 1864 1865 switch (F2FS_OPTION(sbi).s_jquota_fmt) { 1866 case QFMT_VFS_OLD: 1867 fmtname = "vfsold"; 1868 break; 1869 case QFMT_VFS_V0: 1870 fmtname = "vfsv0"; 1871 break; 1872 case QFMT_VFS_V1: 1873 fmtname = "vfsv1"; 1874 break; 1875 } 1876 seq_printf(seq, ",jqfmt=%s", fmtname); 1877 } 1878 1879 if (F2FS_OPTION(sbi).s_qf_names[USRQUOTA]) 1880 seq_show_option(seq, "usrjquota", 1881 F2FS_OPTION(sbi).s_qf_names[USRQUOTA]); 1882 1883 if (F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]) 1884 seq_show_option(seq, "grpjquota", 1885 F2FS_OPTION(sbi).s_qf_names[GRPQUOTA]); 1886 1887 if (F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]) 1888 seq_show_option(seq, "prjjquota", 1889 F2FS_OPTION(sbi).s_qf_names[PRJQUOTA]); 1890 #endif 1891 } 1892 1893 #ifdef CONFIG_F2FS_FS_COMPRESSION 1894 static inline void f2fs_show_compress_options(struct seq_file *seq, 1895 struct super_block *sb) 1896 { 1897 struct f2fs_sb_info *sbi = F2FS_SB(sb); 1898 char *algtype = ""; 1899 int i; 1900 1901 if (!f2fs_sb_has_compression(sbi)) 1902 return; 1903 1904 switch (F2FS_OPTION(sbi).compress_algorithm) { 1905 case COMPRESS_LZO: 1906 algtype = "lzo"; 1907 break; 1908 case COMPRESS_LZ4: 1909 algtype = "lz4"; 1910 break; 1911 case COMPRESS_ZSTD: 1912 algtype = "zstd"; 1913 break; 1914 case COMPRESS_LZORLE: 1915 algtype = "lzo-rle"; 1916 break; 1917 } 1918 seq_printf(seq, ",compress_algorithm=%s", algtype); 1919 1920 if (F2FS_OPTION(sbi).compress_level) 1921 seq_printf(seq, ":%d", F2FS_OPTION(sbi).compress_level); 1922 1923 seq_printf(seq, ",compress_log_size=%u", 1924 F2FS_OPTION(sbi).compress_log_size); 1925 1926 for (i = 0; i < F2FS_OPTION(sbi).compress_ext_cnt; i++) { 1927 seq_printf(seq, ",compress_extension=%s", 1928 F2FS_OPTION(sbi).extensions[i]); 1929 } 1930 1931 for (i = 0; i < F2FS_OPTION(sbi).nocompress_ext_cnt; i++) { 1932 seq_printf(seq, ",nocompress_extension=%s", 1933 F2FS_OPTION(sbi).noextensions[i]); 1934 } 1935 1936 if (F2FS_OPTION(sbi).compress_chksum) 1937 seq_puts(seq, ",compress_chksum"); 1938 1939 if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_FS) 1940 seq_printf(seq, ",compress_mode=%s", "fs"); 1941 else if (F2FS_OPTION(sbi).compress_mode == COMPR_MODE_USER) 1942 seq_printf(seq, ",compress_mode=%s", "user"); 1943 1944 if (test_opt(sbi, COMPRESS_CACHE)) 1945 seq_puts(seq, ",compress_cache"); 1946 } 1947 #endif 1948 1949 static int f2fs_show_options(struct seq_file *seq, struct dentry *root) 1950 { 1951 struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb); 1952 1953 if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_SYNC) 1954 seq_printf(seq, ",background_gc=%s", "sync"); 1955 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_ON) 1956 seq_printf(seq, ",background_gc=%s", "on"); 1957 else if (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF) 1958 seq_printf(seq, ",background_gc=%s", "off"); 1959 1960 if (test_opt(sbi, GC_MERGE)) 1961 seq_puts(seq, ",gc_merge"); 1962 else 1963 seq_puts(seq, ",nogc_merge"); 1964 1965 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 1966 seq_puts(seq, ",disable_roll_forward"); 1967 if (test_opt(sbi, NORECOVERY)) 1968 seq_puts(seq, ",norecovery"); 1969 if (test_opt(sbi, DISCARD)) { 1970 seq_puts(seq, ",discard"); 1971 if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_BLOCK) 1972 seq_printf(seq, ",discard_unit=%s", "block"); 1973 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SEGMENT) 1974 seq_printf(seq, ",discard_unit=%s", "segment"); 1975 else if (F2FS_OPTION(sbi).discard_unit == DISCARD_UNIT_SECTION) 1976 seq_printf(seq, ",discard_unit=%s", "section"); 1977 } else { 1978 seq_puts(seq, ",nodiscard"); 1979 } 1980 #ifdef CONFIG_F2FS_FS_XATTR 1981 if (test_opt(sbi, XATTR_USER)) 1982 seq_puts(seq, ",user_xattr"); 1983 else 1984 seq_puts(seq, ",nouser_xattr"); 1985 if (test_opt(sbi, INLINE_XATTR)) 1986 seq_puts(seq, ",inline_xattr"); 1987 else 1988 seq_puts(seq, ",noinline_xattr"); 1989 if (test_opt(sbi, INLINE_XATTR_SIZE)) 1990 seq_printf(seq, ",inline_xattr_size=%u", 1991 F2FS_OPTION(sbi).inline_xattr_size); 1992 #endif 1993 #ifdef CONFIG_F2FS_FS_POSIX_ACL 1994 if (test_opt(sbi, POSIX_ACL)) 1995 seq_puts(seq, ",acl"); 1996 else 1997 seq_puts(seq, ",noacl"); 1998 #endif 1999 if (test_opt(sbi, DISABLE_EXT_IDENTIFY)) 2000 seq_puts(seq, ",disable_ext_identify"); 2001 if (test_opt(sbi, INLINE_DATA)) 2002 seq_puts(seq, ",inline_data"); 2003 else 2004 seq_puts(seq, ",noinline_data"); 2005 if (test_opt(sbi, INLINE_DENTRY)) 2006 seq_puts(seq, ",inline_dentry"); 2007 else 2008 seq_puts(seq, ",noinline_dentry"); 2009 if (test_opt(sbi, FLUSH_MERGE)) 2010 seq_puts(seq, ",flush_merge"); 2011 else 2012 seq_puts(seq, ",noflush_merge"); 2013 if (test_opt(sbi, NOBARRIER)) 2014 seq_puts(seq, ",nobarrier"); 2015 else 2016 seq_puts(seq, ",barrier"); 2017 if (test_opt(sbi, FASTBOOT)) 2018 seq_puts(seq, ",fastboot"); 2019 if (test_opt(sbi, READ_EXTENT_CACHE)) 2020 seq_puts(seq, ",extent_cache"); 2021 else 2022 seq_puts(seq, ",noextent_cache"); 2023 if (test_opt(sbi, AGE_EXTENT_CACHE)) 2024 seq_puts(seq, ",age_extent_cache"); 2025 if (test_opt(sbi, DATA_FLUSH)) 2026 seq_puts(seq, ",data_flush"); 2027 2028 seq_puts(seq, ",mode="); 2029 if (F2FS_OPTION(sbi).fs_mode == FS_MODE_ADAPTIVE) 2030 seq_puts(seq, "adaptive"); 2031 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_LFS) 2032 seq_puts(seq, "lfs"); 2033 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_SEG) 2034 seq_puts(seq, "fragment:segment"); 2035 else if (F2FS_OPTION(sbi).fs_mode == FS_MODE_FRAGMENT_BLK) 2036 seq_puts(seq, "fragment:block"); 2037 seq_printf(seq, ",active_logs=%u", F2FS_OPTION(sbi).active_logs); 2038 if (test_opt(sbi, RESERVE_ROOT)) 2039 seq_printf(seq, ",reserve_root=%u,resuid=%u,resgid=%u", 2040 F2FS_OPTION(sbi).root_reserved_blocks, 2041 from_kuid_munged(&init_user_ns, 2042 F2FS_OPTION(sbi).s_resuid), 2043 from_kgid_munged(&init_user_ns, 2044 F2FS_OPTION(sbi).s_resgid)); 2045 #ifdef CONFIG_F2FS_FAULT_INJECTION 2046 if (test_opt(sbi, FAULT_INJECTION)) { 2047 seq_printf(seq, ",fault_injection=%u", 2048 F2FS_OPTION(sbi).fault_info.inject_rate); 2049 seq_printf(seq, ",fault_type=%u", 2050 F2FS_OPTION(sbi).fault_info.inject_type); 2051 } 2052 #endif 2053 #ifdef CONFIG_QUOTA 2054 if (test_opt(sbi, QUOTA)) 2055 seq_puts(seq, ",quota"); 2056 if (test_opt(sbi, USRQUOTA)) 2057 seq_puts(seq, ",usrquota"); 2058 if (test_opt(sbi, GRPQUOTA)) 2059 seq_puts(seq, ",grpquota"); 2060 if (test_opt(sbi, PRJQUOTA)) 2061 seq_puts(seq, ",prjquota"); 2062 #endif 2063 f2fs_show_quota_options(seq, sbi->sb); 2064 2065 fscrypt_show_test_dummy_encryption(seq, ',', sbi->sb); 2066 2067 if (sbi->sb->s_flags & SB_INLINECRYPT) 2068 seq_puts(seq, ",inlinecrypt"); 2069 2070 if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_DEFAULT) 2071 seq_printf(seq, ",alloc_mode=%s", "default"); 2072 else if (F2FS_OPTION(sbi).alloc_mode == ALLOC_MODE_REUSE) 2073 seq_printf(seq, ",alloc_mode=%s", "reuse"); 2074 2075 if (test_opt(sbi, DISABLE_CHECKPOINT)) 2076 seq_printf(seq, ",checkpoint=disable:%u", 2077 F2FS_OPTION(sbi).unusable_cap); 2078 if (test_opt(sbi, MERGE_CHECKPOINT)) 2079 seq_puts(seq, ",checkpoint_merge"); 2080 else 2081 seq_puts(seq, ",nocheckpoint_merge"); 2082 if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_POSIX) 2083 seq_printf(seq, ",fsync_mode=%s", "posix"); 2084 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_STRICT) 2085 seq_printf(seq, ",fsync_mode=%s", "strict"); 2086 else if (F2FS_OPTION(sbi).fsync_mode == FSYNC_MODE_NOBARRIER) 2087 seq_printf(seq, ",fsync_mode=%s", "nobarrier"); 2088 2089 #ifdef CONFIG_F2FS_FS_COMPRESSION 2090 f2fs_show_compress_options(seq, sbi->sb); 2091 #endif 2092 2093 if (test_opt(sbi, ATGC)) 2094 seq_puts(seq, ",atgc"); 2095 2096 if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_NORMAL) 2097 seq_printf(seq, ",memory=%s", "normal"); 2098 else if (F2FS_OPTION(sbi).memory_mode == MEMORY_MODE_LOW) 2099 seq_printf(seq, ",memory=%s", "low"); 2100 2101 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_READONLY) 2102 seq_printf(seq, ",errors=%s", "remount-ro"); 2103 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE) 2104 seq_printf(seq, ",errors=%s", "continue"); 2105 else if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC) 2106 seq_printf(seq, ",errors=%s", "panic"); 2107 2108 return 0; 2109 } 2110 2111 static void default_options(struct f2fs_sb_info *sbi, bool remount) 2112 { 2113 /* init some FS parameters */ 2114 if (!remount) { 2115 set_opt(sbi, READ_EXTENT_CACHE); 2116 clear_opt(sbi, DISABLE_CHECKPOINT); 2117 2118 if (f2fs_hw_support_discard(sbi) || f2fs_hw_should_discard(sbi)) 2119 set_opt(sbi, DISCARD); 2120 2121 if (f2fs_sb_has_blkzoned(sbi)) 2122 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_SECTION; 2123 else 2124 F2FS_OPTION(sbi).discard_unit = DISCARD_UNIT_BLOCK; 2125 } 2126 2127 if (f2fs_sb_has_readonly(sbi)) 2128 F2FS_OPTION(sbi).active_logs = NR_CURSEG_RO_TYPE; 2129 else 2130 F2FS_OPTION(sbi).active_logs = NR_CURSEG_PERSIST_TYPE; 2131 2132 F2FS_OPTION(sbi).inline_xattr_size = DEFAULT_INLINE_XATTR_ADDRS; 2133 if (le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count_main) <= 2134 SMALL_VOLUME_SEGMENTS) 2135 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_REUSE; 2136 else 2137 F2FS_OPTION(sbi).alloc_mode = ALLOC_MODE_DEFAULT; 2138 F2FS_OPTION(sbi).fsync_mode = FSYNC_MODE_POSIX; 2139 F2FS_OPTION(sbi).s_resuid = make_kuid(&init_user_ns, F2FS_DEF_RESUID); 2140 F2FS_OPTION(sbi).s_resgid = make_kgid(&init_user_ns, F2FS_DEF_RESGID); 2141 if (f2fs_sb_has_compression(sbi)) { 2142 F2FS_OPTION(sbi).compress_algorithm = COMPRESS_LZ4; 2143 F2FS_OPTION(sbi).compress_log_size = MIN_COMPRESS_LOG_SIZE; 2144 F2FS_OPTION(sbi).compress_ext_cnt = 0; 2145 F2FS_OPTION(sbi).compress_mode = COMPR_MODE_FS; 2146 } 2147 F2FS_OPTION(sbi).bggc_mode = BGGC_MODE_ON; 2148 F2FS_OPTION(sbi).memory_mode = MEMORY_MODE_NORMAL; 2149 F2FS_OPTION(sbi).errors = MOUNT_ERRORS_CONTINUE; 2150 2151 set_opt(sbi, INLINE_XATTR); 2152 set_opt(sbi, INLINE_DATA); 2153 set_opt(sbi, INLINE_DENTRY); 2154 set_opt(sbi, MERGE_CHECKPOINT); 2155 F2FS_OPTION(sbi).unusable_cap = 0; 2156 sbi->sb->s_flags |= SB_LAZYTIME; 2157 if (!f2fs_is_readonly(sbi)) 2158 set_opt(sbi, FLUSH_MERGE); 2159 if (f2fs_sb_has_blkzoned(sbi)) 2160 F2FS_OPTION(sbi).fs_mode = FS_MODE_LFS; 2161 else 2162 F2FS_OPTION(sbi).fs_mode = FS_MODE_ADAPTIVE; 2163 2164 #ifdef CONFIG_F2FS_FS_XATTR 2165 set_opt(sbi, XATTR_USER); 2166 #endif 2167 #ifdef CONFIG_F2FS_FS_POSIX_ACL 2168 set_opt(sbi, POSIX_ACL); 2169 #endif 2170 2171 f2fs_build_fault_attr(sbi, 0, 0); 2172 } 2173 2174 #ifdef CONFIG_QUOTA 2175 static int f2fs_enable_quotas(struct super_block *sb); 2176 #endif 2177 2178 static int f2fs_disable_checkpoint(struct f2fs_sb_info *sbi) 2179 { 2180 unsigned int s_flags = sbi->sb->s_flags; 2181 struct cp_control cpc; 2182 unsigned int gc_mode = sbi->gc_mode; 2183 int err = 0; 2184 int ret; 2185 block_t unusable; 2186 2187 if (s_flags & SB_RDONLY) { 2188 f2fs_err(sbi, "checkpoint=disable on readonly fs"); 2189 return -EINVAL; 2190 } 2191 sbi->sb->s_flags |= SB_ACTIVE; 2192 2193 /* check if we need more GC first */ 2194 unusable = f2fs_get_unusable_blocks(sbi); 2195 if (!f2fs_disable_cp_again(sbi, unusable)) 2196 goto skip_gc; 2197 2198 f2fs_update_time(sbi, DISABLE_TIME); 2199 2200 sbi->gc_mode = GC_URGENT_HIGH; 2201 2202 while (!f2fs_time_over(sbi, DISABLE_TIME)) { 2203 struct f2fs_gc_control gc_control = { 2204 .victim_segno = NULL_SEGNO, 2205 .init_gc_type = FG_GC, 2206 .should_migrate_blocks = false, 2207 .err_gc_skipped = true, 2208 .nr_free_secs = 1 }; 2209 2210 f2fs_down_write(&sbi->gc_lock); 2211 stat_inc_gc_call_count(sbi, FOREGROUND); 2212 err = f2fs_gc(sbi, &gc_control); 2213 if (err == -ENODATA) { 2214 err = 0; 2215 break; 2216 } 2217 if (err && err != -EAGAIN) 2218 break; 2219 } 2220 2221 ret = sync_filesystem(sbi->sb); 2222 if (ret || err) { 2223 err = ret ? ret : err; 2224 goto restore_flag; 2225 } 2226 2227 unusable = f2fs_get_unusable_blocks(sbi); 2228 if (f2fs_disable_cp_again(sbi, unusable)) { 2229 err = -EAGAIN; 2230 goto restore_flag; 2231 } 2232 2233 skip_gc: 2234 f2fs_down_write(&sbi->gc_lock); 2235 cpc.reason = CP_PAUSE; 2236 set_sbi_flag(sbi, SBI_CP_DISABLED); 2237 stat_inc_cp_call_count(sbi, TOTAL_CALL); 2238 err = f2fs_write_checkpoint(sbi, &cpc); 2239 if (err) 2240 goto out_unlock; 2241 2242 spin_lock(&sbi->stat_lock); 2243 sbi->unusable_block_count = unusable; 2244 spin_unlock(&sbi->stat_lock); 2245 2246 out_unlock: 2247 f2fs_up_write(&sbi->gc_lock); 2248 restore_flag: 2249 sbi->gc_mode = gc_mode; 2250 sbi->sb->s_flags = s_flags; /* Restore SB_RDONLY status */ 2251 return err; 2252 } 2253 2254 static void f2fs_enable_checkpoint(struct f2fs_sb_info *sbi) 2255 { 2256 int retry = DEFAULT_RETRY_IO_COUNT; 2257 2258 /* we should flush all the data to keep data consistency */ 2259 do { 2260 sync_inodes_sb(sbi->sb); 2261 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2262 } while (get_pages(sbi, F2FS_DIRTY_DATA) && retry--); 2263 2264 if (unlikely(retry < 0)) 2265 f2fs_warn(sbi, "checkpoint=enable has some unwritten data."); 2266 2267 f2fs_down_write(&sbi->gc_lock); 2268 f2fs_dirty_to_prefree(sbi); 2269 2270 clear_sbi_flag(sbi, SBI_CP_DISABLED); 2271 set_sbi_flag(sbi, SBI_IS_DIRTY); 2272 f2fs_up_write(&sbi->gc_lock); 2273 2274 f2fs_sync_fs(sbi->sb, 1); 2275 2276 /* Let's ensure there's no pending checkpoint anymore */ 2277 f2fs_flush_ckpt_thread(sbi); 2278 } 2279 2280 static int f2fs_remount(struct super_block *sb, int *flags, char *data) 2281 { 2282 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2283 struct f2fs_mount_info org_mount_opt; 2284 unsigned long old_sb_flags; 2285 int err; 2286 bool need_restart_gc = false, need_stop_gc = false; 2287 bool need_restart_ckpt = false, need_stop_ckpt = false; 2288 bool need_restart_flush = false, need_stop_flush = false; 2289 bool need_restart_discard = false, need_stop_discard = false; 2290 bool no_read_extent_cache = !test_opt(sbi, READ_EXTENT_CACHE); 2291 bool no_age_extent_cache = !test_opt(sbi, AGE_EXTENT_CACHE); 2292 bool enable_checkpoint = !test_opt(sbi, DISABLE_CHECKPOINT); 2293 bool no_atgc = !test_opt(sbi, ATGC); 2294 bool no_discard = !test_opt(sbi, DISCARD); 2295 bool no_compress_cache = !test_opt(sbi, COMPRESS_CACHE); 2296 bool block_unit_discard = f2fs_block_unit_discard(sbi); 2297 #ifdef CONFIG_QUOTA 2298 int i, j; 2299 #endif 2300 2301 /* 2302 * Save the old mount options in case we 2303 * need to restore them. 2304 */ 2305 org_mount_opt = sbi->mount_opt; 2306 old_sb_flags = sb->s_flags; 2307 2308 #ifdef CONFIG_QUOTA 2309 org_mount_opt.s_jquota_fmt = F2FS_OPTION(sbi).s_jquota_fmt; 2310 for (i = 0; i < MAXQUOTAS; i++) { 2311 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2312 org_mount_opt.s_qf_names[i] = 2313 kstrdup(F2FS_OPTION(sbi).s_qf_names[i], 2314 GFP_KERNEL); 2315 if (!org_mount_opt.s_qf_names[i]) { 2316 for (j = 0; j < i; j++) 2317 kfree(org_mount_opt.s_qf_names[j]); 2318 return -ENOMEM; 2319 } 2320 } else { 2321 org_mount_opt.s_qf_names[i] = NULL; 2322 } 2323 } 2324 #endif 2325 2326 /* recover superblocks we couldn't write due to previous RO mount */ 2327 if (!(*flags & SB_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) { 2328 err = f2fs_commit_super(sbi, false); 2329 f2fs_info(sbi, "Try to recover all the superblocks, ret: %d", 2330 err); 2331 if (!err) 2332 clear_sbi_flag(sbi, SBI_NEED_SB_WRITE); 2333 } 2334 2335 default_options(sbi, true); 2336 2337 /* parse mount options */ 2338 err = parse_options(sb, data, true); 2339 if (err) 2340 goto restore_opts; 2341 2342 /* flush outstanding errors before changing fs state */ 2343 flush_work(&sbi->s_error_work); 2344 2345 /* 2346 * Previous and new state of filesystem is RO, 2347 * so skip checking GC and FLUSH_MERGE conditions. 2348 */ 2349 if (f2fs_readonly(sb) && (*flags & SB_RDONLY)) 2350 goto skip; 2351 2352 if (f2fs_dev_is_readonly(sbi) && !(*flags & SB_RDONLY)) { 2353 err = -EROFS; 2354 goto restore_opts; 2355 } 2356 2357 #ifdef CONFIG_QUOTA 2358 if (!f2fs_readonly(sb) && (*flags & SB_RDONLY)) { 2359 err = dquot_suspend(sb, -1); 2360 if (err < 0) 2361 goto restore_opts; 2362 } else if (f2fs_readonly(sb) && !(*flags & SB_RDONLY)) { 2363 /* dquot_resume needs RW */ 2364 sb->s_flags &= ~SB_RDONLY; 2365 if (sb_any_quota_suspended(sb)) { 2366 dquot_resume(sb, -1); 2367 } else if (f2fs_sb_has_quota_ino(sbi)) { 2368 err = f2fs_enable_quotas(sb); 2369 if (err) 2370 goto restore_opts; 2371 } 2372 } 2373 #endif 2374 if (f2fs_lfs_mode(sbi) && !IS_F2FS_IPU_DISABLE(sbi)) { 2375 err = -EINVAL; 2376 f2fs_warn(sbi, "LFS is not compatible with IPU"); 2377 goto restore_opts; 2378 } 2379 2380 /* disallow enable atgc dynamically */ 2381 if (no_atgc == !!test_opt(sbi, ATGC)) { 2382 err = -EINVAL; 2383 f2fs_warn(sbi, "switch atgc option is not allowed"); 2384 goto restore_opts; 2385 } 2386 2387 /* disallow enable/disable extent_cache dynamically */ 2388 if (no_read_extent_cache == !!test_opt(sbi, READ_EXTENT_CACHE)) { 2389 err = -EINVAL; 2390 f2fs_warn(sbi, "switch extent_cache option is not allowed"); 2391 goto restore_opts; 2392 } 2393 /* disallow enable/disable age extent_cache dynamically */ 2394 if (no_age_extent_cache == !!test_opt(sbi, AGE_EXTENT_CACHE)) { 2395 err = -EINVAL; 2396 f2fs_warn(sbi, "switch age_extent_cache option is not allowed"); 2397 goto restore_opts; 2398 } 2399 2400 if (no_compress_cache == !!test_opt(sbi, COMPRESS_CACHE)) { 2401 err = -EINVAL; 2402 f2fs_warn(sbi, "switch compress_cache option is not allowed"); 2403 goto restore_opts; 2404 } 2405 2406 if (block_unit_discard != f2fs_block_unit_discard(sbi)) { 2407 err = -EINVAL; 2408 f2fs_warn(sbi, "switch discard_unit option is not allowed"); 2409 goto restore_opts; 2410 } 2411 2412 if ((*flags & SB_RDONLY) && test_opt(sbi, DISABLE_CHECKPOINT)) { 2413 err = -EINVAL; 2414 f2fs_warn(sbi, "disabling checkpoint not compatible with read-only"); 2415 goto restore_opts; 2416 } 2417 2418 /* 2419 * We stop the GC thread if FS is mounted as RO 2420 * or if background_gc = off is passed in mount 2421 * option. Also sync the filesystem. 2422 */ 2423 if ((*flags & SB_RDONLY) || 2424 (F2FS_OPTION(sbi).bggc_mode == BGGC_MODE_OFF && 2425 !test_opt(sbi, GC_MERGE))) { 2426 if (sbi->gc_thread) { 2427 f2fs_stop_gc_thread(sbi); 2428 need_restart_gc = true; 2429 } 2430 } else if (!sbi->gc_thread) { 2431 err = f2fs_start_gc_thread(sbi); 2432 if (err) 2433 goto restore_opts; 2434 need_stop_gc = true; 2435 } 2436 2437 if (*flags & SB_RDONLY) { 2438 sync_inodes_sb(sb); 2439 2440 set_sbi_flag(sbi, SBI_IS_DIRTY); 2441 set_sbi_flag(sbi, SBI_IS_CLOSE); 2442 f2fs_sync_fs(sb, 1); 2443 clear_sbi_flag(sbi, SBI_IS_CLOSE); 2444 } 2445 2446 if ((*flags & SB_RDONLY) || test_opt(sbi, DISABLE_CHECKPOINT) || 2447 !test_opt(sbi, MERGE_CHECKPOINT)) { 2448 f2fs_stop_ckpt_thread(sbi); 2449 need_restart_ckpt = true; 2450 } else { 2451 /* Flush if the prevous checkpoint, if exists. */ 2452 f2fs_flush_ckpt_thread(sbi); 2453 2454 err = f2fs_start_ckpt_thread(sbi); 2455 if (err) { 2456 f2fs_err(sbi, 2457 "Failed to start F2FS issue_checkpoint_thread (%d)", 2458 err); 2459 goto restore_gc; 2460 } 2461 need_stop_ckpt = true; 2462 } 2463 2464 /* 2465 * We stop issue flush thread if FS is mounted as RO 2466 * or if flush_merge is not passed in mount option. 2467 */ 2468 if ((*flags & SB_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) { 2469 clear_opt(sbi, FLUSH_MERGE); 2470 f2fs_destroy_flush_cmd_control(sbi, false); 2471 need_restart_flush = true; 2472 } else { 2473 err = f2fs_create_flush_cmd_control(sbi); 2474 if (err) 2475 goto restore_ckpt; 2476 need_stop_flush = true; 2477 } 2478 2479 if (no_discard == !!test_opt(sbi, DISCARD)) { 2480 if (test_opt(sbi, DISCARD)) { 2481 err = f2fs_start_discard_thread(sbi); 2482 if (err) 2483 goto restore_flush; 2484 need_stop_discard = true; 2485 } else { 2486 f2fs_stop_discard_thread(sbi); 2487 f2fs_issue_discard_timeout(sbi); 2488 need_restart_discard = true; 2489 } 2490 } 2491 2492 if (enable_checkpoint == !!test_opt(sbi, DISABLE_CHECKPOINT)) { 2493 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 2494 err = f2fs_disable_checkpoint(sbi); 2495 if (err) 2496 goto restore_discard; 2497 } else { 2498 f2fs_enable_checkpoint(sbi); 2499 } 2500 } 2501 2502 skip: 2503 #ifdef CONFIG_QUOTA 2504 /* Release old quota file names */ 2505 for (i = 0; i < MAXQUOTAS; i++) 2506 kfree(org_mount_opt.s_qf_names[i]); 2507 #endif 2508 /* Update the POSIXACL Flag */ 2509 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 2510 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 2511 2512 limit_reserve_root(sbi); 2513 adjust_unusable_cap_perc(sbi); 2514 *flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME); 2515 return 0; 2516 restore_discard: 2517 if (need_restart_discard) { 2518 if (f2fs_start_discard_thread(sbi)) 2519 f2fs_warn(sbi, "discard has been stopped"); 2520 } else if (need_stop_discard) { 2521 f2fs_stop_discard_thread(sbi); 2522 } 2523 restore_flush: 2524 if (need_restart_flush) { 2525 if (f2fs_create_flush_cmd_control(sbi)) 2526 f2fs_warn(sbi, "background flush thread has stopped"); 2527 } else if (need_stop_flush) { 2528 clear_opt(sbi, FLUSH_MERGE); 2529 f2fs_destroy_flush_cmd_control(sbi, false); 2530 } 2531 restore_ckpt: 2532 if (need_restart_ckpt) { 2533 if (f2fs_start_ckpt_thread(sbi)) 2534 f2fs_warn(sbi, "background ckpt thread has stopped"); 2535 } else if (need_stop_ckpt) { 2536 f2fs_stop_ckpt_thread(sbi); 2537 } 2538 restore_gc: 2539 if (need_restart_gc) { 2540 if (f2fs_start_gc_thread(sbi)) 2541 f2fs_warn(sbi, "background gc thread has stopped"); 2542 } else if (need_stop_gc) { 2543 f2fs_stop_gc_thread(sbi); 2544 } 2545 restore_opts: 2546 #ifdef CONFIG_QUOTA 2547 F2FS_OPTION(sbi).s_jquota_fmt = org_mount_opt.s_jquota_fmt; 2548 for (i = 0; i < MAXQUOTAS; i++) { 2549 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 2550 F2FS_OPTION(sbi).s_qf_names[i] = org_mount_opt.s_qf_names[i]; 2551 } 2552 #endif 2553 sbi->mount_opt = org_mount_opt; 2554 sb->s_flags = old_sb_flags; 2555 return err; 2556 } 2557 2558 static void f2fs_shutdown(struct super_block *sb) 2559 { 2560 f2fs_do_shutdown(F2FS_SB(sb), F2FS_GOING_DOWN_NOSYNC, false, false); 2561 } 2562 2563 #ifdef CONFIG_QUOTA 2564 static bool f2fs_need_recovery(struct f2fs_sb_info *sbi) 2565 { 2566 /* need to recovery orphan */ 2567 if (is_set_ckpt_flags(sbi, CP_ORPHAN_PRESENT_FLAG)) 2568 return true; 2569 /* need to recovery data */ 2570 if (test_opt(sbi, DISABLE_ROLL_FORWARD)) 2571 return false; 2572 if (test_opt(sbi, NORECOVERY)) 2573 return false; 2574 return !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG); 2575 } 2576 2577 static bool f2fs_recover_quota_begin(struct f2fs_sb_info *sbi) 2578 { 2579 bool readonly = f2fs_readonly(sbi->sb); 2580 2581 if (!f2fs_need_recovery(sbi)) 2582 return false; 2583 2584 /* it doesn't need to check f2fs_sb_has_readonly() */ 2585 if (f2fs_hw_is_readonly(sbi)) 2586 return false; 2587 2588 if (readonly) { 2589 sbi->sb->s_flags &= ~SB_RDONLY; 2590 set_sbi_flag(sbi, SBI_IS_WRITABLE); 2591 } 2592 2593 /* 2594 * Turn on quotas which were not enabled for read-only mounts if 2595 * filesystem has quota feature, so that they are updated correctly. 2596 */ 2597 return f2fs_enable_quota_files(sbi, readonly); 2598 } 2599 2600 static void f2fs_recover_quota_end(struct f2fs_sb_info *sbi, 2601 bool quota_enabled) 2602 { 2603 if (quota_enabled) 2604 f2fs_quota_off_umount(sbi->sb); 2605 2606 if (is_sbi_flag_set(sbi, SBI_IS_WRITABLE)) { 2607 clear_sbi_flag(sbi, SBI_IS_WRITABLE); 2608 sbi->sb->s_flags |= SB_RDONLY; 2609 } 2610 } 2611 2612 /* Read data from quotafile */ 2613 static ssize_t f2fs_quota_read(struct super_block *sb, int type, char *data, 2614 size_t len, loff_t off) 2615 { 2616 struct inode *inode = sb_dqopt(sb)->files[type]; 2617 struct address_space *mapping = inode->i_mapping; 2618 block_t blkidx = F2FS_BYTES_TO_BLK(off); 2619 int offset = off & (sb->s_blocksize - 1); 2620 int tocopy; 2621 size_t toread; 2622 loff_t i_size = i_size_read(inode); 2623 struct page *page; 2624 2625 if (off > i_size) 2626 return 0; 2627 2628 if (off + len > i_size) 2629 len = i_size - off; 2630 toread = len; 2631 while (toread > 0) { 2632 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread); 2633 repeat: 2634 page = read_cache_page_gfp(mapping, blkidx, GFP_NOFS); 2635 if (IS_ERR(page)) { 2636 if (PTR_ERR(page) == -ENOMEM) { 2637 memalloc_retry_wait(GFP_NOFS); 2638 goto repeat; 2639 } 2640 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2641 return PTR_ERR(page); 2642 } 2643 2644 lock_page(page); 2645 2646 if (unlikely(page->mapping != mapping)) { 2647 f2fs_put_page(page, 1); 2648 goto repeat; 2649 } 2650 if (unlikely(!PageUptodate(page))) { 2651 f2fs_put_page(page, 1); 2652 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2653 return -EIO; 2654 } 2655 2656 memcpy_from_page(data, page, offset, tocopy); 2657 f2fs_put_page(page, 1); 2658 2659 offset = 0; 2660 toread -= tocopy; 2661 data += tocopy; 2662 blkidx++; 2663 } 2664 return len; 2665 } 2666 2667 /* Write to quotafile */ 2668 static ssize_t f2fs_quota_write(struct super_block *sb, int type, 2669 const char *data, size_t len, loff_t off) 2670 { 2671 struct inode *inode = sb_dqopt(sb)->files[type]; 2672 struct address_space *mapping = inode->i_mapping; 2673 const struct address_space_operations *a_ops = mapping->a_ops; 2674 int offset = off & (sb->s_blocksize - 1); 2675 size_t towrite = len; 2676 struct page *page; 2677 void *fsdata = NULL; 2678 int err = 0; 2679 int tocopy; 2680 2681 while (towrite > 0) { 2682 tocopy = min_t(unsigned long, sb->s_blocksize - offset, 2683 towrite); 2684 retry: 2685 err = a_ops->write_begin(NULL, mapping, off, tocopy, 2686 &page, &fsdata); 2687 if (unlikely(err)) { 2688 if (err == -ENOMEM) { 2689 f2fs_io_schedule_timeout(DEFAULT_IO_TIMEOUT); 2690 goto retry; 2691 } 2692 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 2693 break; 2694 } 2695 2696 memcpy_to_page(page, offset, data, tocopy); 2697 2698 a_ops->write_end(NULL, mapping, off, tocopy, tocopy, 2699 page, fsdata); 2700 offset = 0; 2701 towrite -= tocopy; 2702 off += tocopy; 2703 data += tocopy; 2704 cond_resched(); 2705 } 2706 2707 if (len == towrite) 2708 return err; 2709 inode->i_mtime = inode_set_ctime_current(inode); 2710 f2fs_mark_inode_dirty_sync(inode, false); 2711 return len - towrite; 2712 } 2713 2714 int f2fs_dquot_initialize(struct inode *inode) 2715 { 2716 if (time_to_inject(F2FS_I_SB(inode), FAULT_DQUOT_INIT)) 2717 return -ESRCH; 2718 2719 return dquot_initialize(inode); 2720 } 2721 2722 static struct dquot __rcu **f2fs_get_dquots(struct inode *inode) 2723 { 2724 return F2FS_I(inode)->i_dquot; 2725 } 2726 2727 static qsize_t *f2fs_get_reserved_space(struct inode *inode) 2728 { 2729 return &F2FS_I(inode)->i_reserved_quota; 2730 } 2731 2732 static int f2fs_quota_on_mount(struct f2fs_sb_info *sbi, int type) 2733 { 2734 if (is_set_ckpt_flags(sbi, CP_QUOTA_NEED_FSCK_FLAG)) { 2735 f2fs_err(sbi, "quota sysfile may be corrupted, skip loading it"); 2736 return 0; 2737 } 2738 2739 return dquot_quota_on_mount(sbi->sb, F2FS_OPTION(sbi).s_qf_names[type], 2740 F2FS_OPTION(sbi).s_jquota_fmt, type); 2741 } 2742 2743 int f2fs_enable_quota_files(struct f2fs_sb_info *sbi, bool rdonly) 2744 { 2745 int enabled = 0; 2746 int i, err; 2747 2748 if (f2fs_sb_has_quota_ino(sbi) && rdonly) { 2749 err = f2fs_enable_quotas(sbi->sb); 2750 if (err) { 2751 f2fs_err(sbi, "Cannot turn on quota_ino: %d", err); 2752 return 0; 2753 } 2754 return 1; 2755 } 2756 2757 for (i = 0; i < MAXQUOTAS; i++) { 2758 if (F2FS_OPTION(sbi).s_qf_names[i]) { 2759 err = f2fs_quota_on_mount(sbi, i); 2760 if (!err) { 2761 enabled = 1; 2762 continue; 2763 } 2764 f2fs_err(sbi, "Cannot turn on quotas: %d on %d", 2765 err, i); 2766 } 2767 } 2768 return enabled; 2769 } 2770 2771 static int f2fs_quota_enable(struct super_block *sb, int type, int format_id, 2772 unsigned int flags) 2773 { 2774 struct inode *qf_inode; 2775 unsigned long qf_inum; 2776 unsigned long qf_flag = F2FS_QUOTA_DEFAULT_FL; 2777 int err; 2778 2779 BUG_ON(!f2fs_sb_has_quota_ino(F2FS_SB(sb))); 2780 2781 qf_inum = f2fs_qf_ino(sb, type); 2782 if (!qf_inum) 2783 return -EPERM; 2784 2785 qf_inode = f2fs_iget(sb, qf_inum); 2786 if (IS_ERR(qf_inode)) { 2787 f2fs_err(F2FS_SB(sb), "Bad quota inode %u:%lu", type, qf_inum); 2788 return PTR_ERR(qf_inode); 2789 } 2790 2791 /* Don't account quota for quota files to avoid recursion */ 2792 inode_lock(qf_inode); 2793 qf_inode->i_flags |= S_NOQUOTA; 2794 2795 if ((F2FS_I(qf_inode)->i_flags & qf_flag) != qf_flag) { 2796 F2FS_I(qf_inode)->i_flags |= qf_flag; 2797 f2fs_set_inode_flags(qf_inode); 2798 } 2799 inode_unlock(qf_inode); 2800 2801 err = dquot_load_quota_inode(qf_inode, type, format_id, flags); 2802 iput(qf_inode); 2803 return err; 2804 } 2805 2806 static int f2fs_enable_quotas(struct super_block *sb) 2807 { 2808 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2809 int type, err = 0; 2810 unsigned long qf_inum; 2811 bool quota_mopt[MAXQUOTAS] = { 2812 test_opt(sbi, USRQUOTA), 2813 test_opt(sbi, GRPQUOTA), 2814 test_opt(sbi, PRJQUOTA), 2815 }; 2816 2817 if (is_set_ckpt_flags(F2FS_SB(sb), CP_QUOTA_NEED_FSCK_FLAG)) { 2818 f2fs_err(sbi, "quota file may be corrupted, skip loading it"); 2819 return 0; 2820 } 2821 2822 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE; 2823 2824 for (type = 0; type < MAXQUOTAS; type++) { 2825 qf_inum = f2fs_qf_ino(sb, type); 2826 if (qf_inum) { 2827 err = f2fs_quota_enable(sb, type, QFMT_VFS_V1, 2828 DQUOT_USAGE_ENABLED | 2829 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0)); 2830 if (err) { 2831 f2fs_err(sbi, "Failed to enable quota tracking (type=%d, err=%d). Please run fsck to fix.", 2832 type, err); 2833 for (type--; type >= 0; type--) 2834 dquot_quota_off(sb, type); 2835 set_sbi_flag(F2FS_SB(sb), 2836 SBI_QUOTA_NEED_REPAIR); 2837 return err; 2838 } 2839 } 2840 } 2841 return 0; 2842 } 2843 2844 static int f2fs_quota_sync_file(struct f2fs_sb_info *sbi, int type) 2845 { 2846 struct quota_info *dqopt = sb_dqopt(sbi->sb); 2847 struct address_space *mapping = dqopt->files[type]->i_mapping; 2848 int ret = 0; 2849 2850 ret = dquot_writeback_dquots(sbi->sb, type); 2851 if (ret) 2852 goto out; 2853 2854 ret = filemap_fdatawrite(mapping); 2855 if (ret) 2856 goto out; 2857 2858 /* if we are using journalled quota */ 2859 if (is_journalled_quota(sbi)) 2860 goto out; 2861 2862 ret = filemap_fdatawait(mapping); 2863 2864 truncate_inode_pages(&dqopt->files[type]->i_data, 0); 2865 out: 2866 if (ret) 2867 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 2868 return ret; 2869 } 2870 2871 int f2fs_quota_sync(struct super_block *sb, int type) 2872 { 2873 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2874 struct quota_info *dqopt = sb_dqopt(sb); 2875 int cnt; 2876 int ret = 0; 2877 2878 /* 2879 * Now when everything is written we can discard the pagecache so 2880 * that userspace sees the changes. 2881 */ 2882 for (cnt = 0; cnt < MAXQUOTAS; cnt++) { 2883 2884 if (type != -1 && cnt != type) 2885 continue; 2886 2887 if (!sb_has_quota_active(sb, cnt)) 2888 continue; 2889 2890 if (!f2fs_sb_has_quota_ino(sbi)) 2891 inode_lock(dqopt->files[cnt]); 2892 2893 /* 2894 * do_quotactl 2895 * f2fs_quota_sync 2896 * f2fs_down_read(quota_sem) 2897 * dquot_writeback_dquots() 2898 * f2fs_dquot_commit 2899 * block_operation 2900 * f2fs_down_read(quota_sem) 2901 */ 2902 f2fs_lock_op(sbi); 2903 f2fs_down_read(&sbi->quota_sem); 2904 2905 ret = f2fs_quota_sync_file(sbi, cnt); 2906 2907 f2fs_up_read(&sbi->quota_sem); 2908 f2fs_unlock_op(sbi); 2909 2910 if (!f2fs_sb_has_quota_ino(sbi)) 2911 inode_unlock(dqopt->files[cnt]); 2912 2913 if (ret) 2914 break; 2915 } 2916 return ret; 2917 } 2918 2919 static int f2fs_quota_on(struct super_block *sb, int type, int format_id, 2920 const struct path *path) 2921 { 2922 struct inode *inode; 2923 int err; 2924 2925 /* if quota sysfile exists, deny enabling quota with specific file */ 2926 if (f2fs_sb_has_quota_ino(F2FS_SB(sb))) { 2927 f2fs_err(F2FS_SB(sb), "quota sysfile already exists"); 2928 return -EBUSY; 2929 } 2930 2931 if (path->dentry->d_sb != sb) 2932 return -EXDEV; 2933 2934 err = f2fs_quota_sync(sb, type); 2935 if (err) 2936 return err; 2937 2938 inode = d_inode(path->dentry); 2939 2940 err = filemap_fdatawrite(inode->i_mapping); 2941 if (err) 2942 return err; 2943 2944 err = filemap_fdatawait(inode->i_mapping); 2945 if (err) 2946 return err; 2947 2948 err = dquot_quota_on(sb, type, format_id, path); 2949 if (err) 2950 return err; 2951 2952 inode_lock(inode); 2953 F2FS_I(inode)->i_flags |= F2FS_QUOTA_DEFAULT_FL; 2954 f2fs_set_inode_flags(inode); 2955 inode_unlock(inode); 2956 f2fs_mark_inode_dirty_sync(inode, false); 2957 2958 return 0; 2959 } 2960 2961 static int __f2fs_quota_off(struct super_block *sb, int type) 2962 { 2963 struct inode *inode = sb_dqopt(sb)->files[type]; 2964 int err; 2965 2966 if (!inode || !igrab(inode)) 2967 return dquot_quota_off(sb, type); 2968 2969 err = f2fs_quota_sync(sb, type); 2970 if (err) 2971 goto out_put; 2972 2973 err = dquot_quota_off(sb, type); 2974 if (err || f2fs_sb_has_quota_ino(F2FS_SB(sb))) 2975 goto out_put; 2976 2977 inode_lock(inode); 2978 F2FS_I(inode)->i_flags &= ~F2FS_QUOTA_DEFAULT_FL; 2979 f2fs_set_inode_flags(inode); 2980 inode_unlock(inode); 2981 f2fs_mark_inode_dirty_sync(inode, false); 2982 out_put: 2983 iput(inode); 2984 return err; 2985 } 2986 2987 static int f2fs_quota_off(struct super_block *sb, int type) 2988 { 2989 struct f2fs_sb_info *sbi = F2FS_SB(sb); 2990 int err; 2991 2992 err = __f2fs_quota_off(sb, type); 2993 2994 /* 2995 * quotactl can shutdown journalled quota, result in inconsistence 2996 * between quota record and fs data by following updates, tag the 2997 * flag to let fsck be aware of it. 2998 */ 2999 if (is_journalled_quota(sbi)) 3000 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3001 return err; 3002 } 3003 3004 void f2fs_quota_off_umount(struct super_block *sb) 3005 { 3006 int type; 3007 int err; 3008 3009 for (type = 0; type < MAXQUOTAS; type++) { 3010 err = __f2fs_quota_off(sb, type); 3011 if (err) { 3012 int ret = dquot_quota_off(sb, type); 3013 3014 f2fs_err(F2FS_SB(sb), "Fail to turn off disk quota (type: %d, err: %d, ret:%d), Please run fsck to fix it.", 3015 type, err, ret); 3016 set_sbi_flag(F2FS_SB(sb), SBI_QUOTA_NEED_REPAIR); 3017 } 3018 } 3019 /* 3020 * In case of checkpoint=disable, we must flush quota blocks. 3021 * This can cause NULL exception for node_inode in end_io, since 3022 * put_super already dropped it. 3023 */ 3024 sync_filesystem(sb); 3025 } 3026 3027 static void f2fs_truncate_quota_inode_pages(struct super_block *sb) 3028 { 3029 struct quota_info *dqopt = sb_dqopt(sb); 3030 int type; 3031 3032 for (type = 0; type < MAXQUOTAS; type++) { 3033 if (!dqopt->files[type]) 3034 continue; 3035 f2fs_inode_synced(dqopt->files[type]); 3036 } 3037 } 3038 3039 static int f2fs_dquot_commit(struct dquot *dquot) 3040 { 3041 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3042 int ret; 3043 3044 f2fs_down_read_nested(&sbi->quota_sem, SINGLE_DEPTH_NESTING); 3045 ret = dquot_commit(dquot); 3046 if (ret < 0) 3047 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3048 f2fs_up_read(&sbi->quota_sem); 3049 return ret; 3050 } 3051 3052 static int f2fs_dquot_acquire(struct dquot *dquot) 3053 { 3054 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3055 int ret; 3056 3057 f2fs_down_read(&sbi->quota_sem); 3058 ret = dquot_acquire(dquot); 3059 if (ret < 0) 3060 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3061 f2fs_up_read(&sbi->quota_sem); 3062 return ret; 3063 } 3064 3065 static int f2fs_dquot_release(struct dquot *dquot) 3066 { 3067 struct f2fs_sb_info *sbi = F2FS_SB(dquot->dq_sb); 3068 int ret = dquot_release(dquot); 3069 3070 if (ret < 0) 3071 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3072 return ret; 3073 } 3074 3075 static int f2fs_dquot_mark_dquot_dirty(struct dquot *dquot) 3076 { 3077 struct super_block *sb = dquot->dq_sb; 3078 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3079 int ret = dquot_mark_dquot_dirty(dquot); 3080 3081 /* if we are using journalled quota */ 3082 if (is_journalled_quota(sbi)) 3083 set_sbi_flag(sbi, SBI_QUOTA_NEED_FLUSH); 3084 3085 return ret; 3086 } 3087 3088 static int f2fs_dquot_commit_info(struct super_block *sb, int type) 3089 { 3090 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3091 int ret = dquot_commit_info(sb, type); 3092 3093 if (ret < 0) 3094 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 3095 return ret; 3096 } 3097 3098 static int f2fs_get_projid(struct inode *inode, kprojid_t *projid) 3099 { 3100 *projid = F2FS_I(inode)->i_projid; 3101 return 0; 3102 } 3103 3104 static const struct dquot_operations f2fs_quota_operations = { 3105 .get_reserved_space = f2fs_get_reserved_space, 3106 .write_dquot = f2fs_dquot_commit, 3107 .acquire_dquot = f2fs_dquot_acquire, 3108 .release_dquot = f2fs_dquot_release, 3109 .mark_dirty = f2fs_dquot_mark_dquot_dirty, 3110 .write_info = f2fs_dquot_commit_info, 3111 .alloc_dquot = dquot_alloc, 3112 .destroy_dquot = dquot_destroy, 3113 .get_projid = f2fs_get_projid, 3114 .get_next_id = dquot_get_next_id, 3115 }; 3116 3117 static const struct quotactl_ops f2fs_quotactl_ops = { 3118 .quota_on = f2fs_quota_on, 3119 .quota_off = f2fs_quota_off, 3120 .quota_sync = f2fs_quota_sync, 3121 .get_state = dquot_get_state, 3122 .set_info = dquot_set_dqinfo, 3123 .get_dqblk = dquot_get_dqblk, 3124 .set_dqblk = dquot_set_dqblk, 3125 .get_nextdqblk = dquot_get_next_dqblk, 3126 }; 3127 #else 3128 int f2fs_dquot_initialize(struct inode *inode) 3129 { 3130 return 0; 3131 } 3132 3133 int f2fs_quota_sync(struct super_block *sb, int type) 3134 { 3135 return 0; 3136 } 3137 3138 void f2fs_quota_off_umount(struct super_block *sb) 3139 { 3140 } 3141 #endif 3142 3143 static const struct super_operations f2fs_sops = { 3144 .alloc_inode = f2fs_alloc_inode, 3145 .free_inode = f2fs_free_inode, 3146 .drop_inode = f2fs_drop_inode, 3147 .write_inode = f2fs_write_inode, 3148 .dirty_inode = f2fs_dirty_inode, 3149 .show_options = f2fs_show_options, 3150 #ifdef CONFIG_QUOTA 3151 .quota_read = f2fs_quota_read, 3152 .quota_write = f2fs_quota_write, 3153 .get_dquots = f2fs_get_dquots, 3154 #endif 3155 .evict_inode = f2fs_evict_inode, 3156 .put_super = f2fs_put_super, 3157 .sync_fs = f2fs_sync_fs, 3158 .freeze_fs = f2fs_freeze, 3159 .unfreeze_fs = f2fs_unfreeze, 3160 .statfs = f2fs_statfs, 3161 .remount_fs = f2fs_remount, 3162 .shutdown = f2fs_shutdown, 3163 }; 3164 3165 #ifdef CONFIG_FS_ENCRYPTION 3166 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len) 3167 { 3168 return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 3169 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 3170 ctx, len, NULL); 3171 } 3172 3173 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len, 3174 void *fs_data) 3175 { 3176 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 3177 3178 /* 3179 * Encrypting the root directory is not allowed because fsck 3180 * expects lost+found directory to exist and remain unencrypted 3181 * if LOST_FOUND feature is enabled. 3182 * 3183 */ 3184 if (f2fs_sb_has_lost_found(sbi) && 3185 inode->i_ino == F2FS_ROOT_INO(sbi)) 3186 return -EPERM; 3187 3188 return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION, 3189 F2FS_XATTR_NAME_ENCRYPTION_CONTEXT, 3190 ctx, len, fs_data, XATTR_CREATE); 3191 } 3192 3193 static const union fscrypt_policy *f2fs_get_dummy_policy(struct super_block *sb) 3194 { 3195 return F2FS_OPTION(F2FS_SB(sb)).dummy_enc_policy.policy; 3196 } 3197 3198 static bool f2fs_has_stable_inodes(struct super_block *sb) 3199 { 3200 return true; 3201 } 3202 3203 static void f2fs_get_ino_and_lblk_bits(struct super_block *sb, 3204 int *ino_bits_ret, int *lblk_bits_ret) 3205 { 3206 *ino_bits_ret = 8 * sizeof(nid_t); 3207 *lblk_bits_ret = 8 * sizeof(block_t); 3208 } 3209 3210 static struct block_device **f2fs_get_devices(struct super_block *sb, 3211 unsigned int *num_devs) 3212 { 3213 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3214 struct block_device **devs; 3215 int i; 3216 3217 if (!f2fs_is_multi_device(sbi)) 3218 return NULL; 3219 3220 devs = kmalloc_array(sbi->s_ndevs, sizeof(*devs), GFP_KERNEL); 3221 if (!devs) 3222 return ERR_PTR(-ENOMEM); 3223 3224 for (i = 0; i < sbi->s_ndevs; i++) 3225 devs[i] = FDEV(i).bdev; 3226 *num_devs = sbi->s_ndevs; 3227 return devs; 3228 } 3229 3230 static const struct fscrypt_operations f2fs_cryptops = { 3231 .key_prefix = "f2fs:", 3232 .get_context = f2fs_get_context, 3233 .set_context = f2fs_set_context, 3234 .get_dummy_policy = f2fs_get_dummy_policy, 3235 .empty_dir = f2fs_empty_dir, 3236 .has_stable_inodes = f2fs_has_stable_inodes, 3237 .get_ino_and_lblk_bits = f2fs_get_ino_and_lblk_bits, 3238 .get_devices = f2fs_get_devices, 3239 }; 3240 #endif 3241 3242 static struct inode *f2fs_nfs_get_inode(struct super_block *sb, 3243 u64 ino, u32 generation) 3244 { 3245 struct f2fs_sb_info *sbi = F2FS_SB(sb); 3246 struct inode *inode; 3247 3248 if (f2fs_check_nid_range(sbi, ino)) 3249 return ERR_PTR(-ESTALE); 3250 3251 /* 3252 * f2fs_iget isn't quite right if the inode is currently unallocated! 3253 * However f2fs_iget currently does appropriate checks to handle stale 3254 * inodes so everything is OK. 3255 */ 3256 inode = f2fs_iget(sb, ino); 3257 if (IS_ERR(inode)) 3258 return ERR_CAST(inode); 3259 if (unlikely(generation && inode->i_generation != generation)) { 3260 /* we didn't find the right inode.. */ 3261 iput(inode); 3262 return ERR_PTR(-ESTALE); 3263 } 3264 return inode; 3265 } 3266 3267 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid, 3268 int fh_len, int fh_type) 3269 { 3270 return generic_fh_to_dentry(sb, fid, fh_len, fh_type, 3271 f2fs_nfs_get_inode); 3272 } 3273 3274 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid, 3275 int fh_len, int fh_type) 3276 { 3277 return generic_fh_to_parent(sb, fid, fh_len, fh_type, 3278 f2fs_nfs_get_inode); 3279 } 3280 3281 static const struct export_operations f2fs_export_ops = { 3282 .fh_to_dentry = f2fs_fh_to_dentry, 3283 .fh_to_parent = f2fs_fh_to_parent, 3284 .get_parent = f2fs_get_parent, 3285 }; 3286 3287 loff_t max_file_blocks(struct inode *inode) 3288 { 3289 loff_t result = 0; 3290 loff_t leaf_count; 3291 3292 /* 3293 * note: previously, result is equal to (DEF_ADDRS_PER_INODE - 3294 * DEFAULT_INLINE_XATTR_ADDRS), but now f2fs try to reserve more 3295 * space in inode.i_addr, it will be more safe to reassign 3296 * result as zero. 3297 */ 3298 3299 if (inode && f2fs_compressed_file(inode)) 3300 leaf_count = ADDRS_PER_BLOCK(inode); 3301 else 3302 leaf_count = DEF_ADDRS_PER_BLOCK; 3303 3304 /* two direct node blocks */ 3305 result += (leaf_count * 2); 3306 3307 /* two indirect node blocks */ 3308 leaf_count *= NIDS_PER_BLOCK; 3309 result += (leaf_count * 2); 3310 3311 /* one double indirect node block */ 3312 leaf_count *= NIDS_PER_BLOCK; 3313 result += leaf_count; 3314 3315 return result; 3316 } 3317 3318 static int __f2fs_commit_super(struct buffer_head *bh, 3319 struct f2fs_super_block *super) 3320 { 3321 lock_buffer(bh); 3322 if (super) 3323 memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super)); 3324 set_buffer_dirty(bh); 3325 unlock_buffer(bh); 3326 3327 /* it's rare case, we can do fua all the time */ 3328 return __sync_dirty_buffer(bh, REQ_SYNC | REQ_PREFLUSH | REQ_FUA); 3329 } 3330 3331 static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi, 3332 struct buffer_head *bh) 3333 { 3334 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 3335 (bh->b_data + F2FS_SUPER_OFFSET); 3336 struct super_block *sb = sbi->sb; 3337 u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr); 3338 u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr); 3339 u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr); 3340 u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr); 3341 u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr); 3342 u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr); 3343 u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt); 3344 u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit); 3345 u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat); 3346 u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa); 3347 u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3348 u32 segment_count = le32_to_cpu(raw_super->segment_count); 3349 u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3350 u64 main_end_blkaddr = main_blkaddr + 3351 ((u64)segment_count_main << log_blocks_per_seg); 3352 u64 seg_end_blkaddr = segment0_blkaddr + 3353 ((u64)segment_count << log_blocks_per_seg); 3354 3355 if (segment0_blkaddr != cp_blkaddr) { 3356 f2fs_info(sbi, "Mismatch start address, segment0(%u) cp_blkaddr(%u)", 3357 segment0_blkaddr, cp_blkaddr); 3358 return true; 3359 } 3360 3361 if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) != 3362 sit_blkaddr) { 3363 f2fs_info(sbi, "Wrong CP boundary, start(%u) end(%u) blocks(%u)", 3364 cp_blkaddr, sit_blkaddr, 3365 segment_count_ckpt << log_blocks_per_seg); 3366 return true; 3367 } 3368 3369 if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) != 3370 nat_blkaddr) { 3371 f2fs_info(sbi, "Wrong SIT boundary, start(%u) end(%u) blocks(%u)", 3372 sit_blkaddr, nat_blkaddr, 3373 segment_count_sit << log_blocks_per_seg); 3374 return true; 3375 } 3376 3377 if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) != 3378 ssa_blkaddr) { 3379 f2fs_info(sbi, "Wrong NAT boundary, start(%u) end(%u) blocks(%u)", 3380 nat_blkaddr, ssa_blkaddr, 3381 segment_count_nat << log_blocks_per_seg); 3382 return true; 3383 } 3384 3385 if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) != 3386 main_blkaddr) { 3387 f2fs_info(sbi, "Wrong SSA boundary, start(%u) end(%u) blocks(%u)", 3388 ssa_blkaddr, main_blkaddr, 3389 segment_count_ssa << log_blocks_per_seg); 3390 return true; 3391 } 3392 3393 if (main_end_blkaddr > seg_end_blkaddr) { 3394 f2fs_info(sbi, "Wrong MAIN_AREA boundary, start(%u) end(%llu) block(%u)", 3395 main_blkaddr, seg_end_blkaddr, 3396 segment_count_main << log_blocks_per_seg); 3397 return true; 3398 } else if (main_end_blkaddr < seg_end_blkaddr) { 3399 int err = 0; 3400 char *res; 3401 3402 /* fix in-memory information all the time */ 3403 raw_super->segment_count = cpu_to_le32((main_end_blkaddr - 3404 segment0_blkaddr) >> log_blocks_per_seg); 3405 3406 if (f2fs_readonly(sb) || f2fs_hw_is_readonly(sbi)) { 3407 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3408 res = "internally"; 3409 } else { 3410 err = __f2fs_commit_super(bh, NULL); 3411 res = err ? "failed" : "done"; 3412 } 3413 f2fs_info(sbi, "Fix alignment : %s, start(%u) end(%llu) block(%u)", 3414 res, main_blkaddr, seg_end_blkaddr, 3415 segment_count_main << log_blocks_per_seg); 3416 if (err) 3417 return true; 3418 } 3419 return false; 3420 } 3421 3422 static int sanity_check_raw_super(struct f2fs_sb_info *sbi, 3423 struct buffer_head *bh) 3424 { 3425 block_t segment_count, segs_per_sec, secs_per_zone, segment_count_main; 3426 block_t total_sections, blocks_per_seg; 3427 struct f2fs_super_block *raw_super = (struct f2fs_super_block *) 3428 (bh->b_data + F2FS_SUPER_OFFSET); 3429 size_t crc_offset = 0; 3430 __u32 crc = 0; 3431 3432 if (le32_to_cpu(raw_super->magic) != F2FS_SUPER_MAGIC) { 3433 f2fs_info(sbi, "Magic Mismatch, valid(0x%x) - read(0x%x)", 3434 F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic)); 3435 return -EINVAL; 3436 } 3437 3438 /* Check checksum_offset and crc in superblock */ 3439 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_SB_CHKSUM)) { 3440 crc_offset = le32_to_cpu(raw_super->checksum_offset); 3441 if (crc_offset != 3442 offsetof(struct f2fs_super_block, crc)) { 3443 f2fs_info(sbi, "Invalid SB checksum offset: %zu", 3444 crc_offset); 3445 return -EFSCORRUPTED; 3446 } 3447 crc = le32_to_cpu(raw_super->crc); 3448 if (!f2fs_crc_valid(sbi, crc, raw_super, crc_offset)) { 3449 f2fs_info(sbi, "Invalid SB checksum value: %u", crc); 3450 return -EFSCORRUPTED; 3451 } 3452 } 3453 3454 /* Currently, support only 4KB block size */ 3455 if (le32_to_cpu(raw_super->log_blocksize) != F2FS_BLKSIZE_BITS) { 3456 f2fs_info(sbi, "Invalid log_blocksize (%u), supports only %u", 3457 le32_to_cpu(raw_super->log_blocksize), 3458 F2FS_BLKSIZE_BITS); 3459 return -EFSCORRUPTED; 3460 } 3461 3462 /* check log blocks per segment */ 3463 if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) { 3464 f2fs_info(sbi, "Invalid log blocks per segment (%u)", 3465 le32_to_cpu(raw_super->log_blocks_per_seg)); 3466 return -EFSCORRUPTED; 3467 } 3468 3469 /* Currently, support 512/1024/2048/4096 bytes sector size */ 3470 if (le32_to_cpu(raw_super->log_sectorsize) > 3471 F2FS_MAX_LOG_SECTOR_SIZE || 3472 le32_to_cpu(raw_super->log_sectorsize) < 3473 F2FS_MIN_LOG_SECTOR_SIZE) { 3474 f2fs_info(sbi, "Invalid log sectorsize (%u)", 3475 le32_to_cpu(raw_super->log_sectorsize)); 3476 return -EFSCORRUPTED; 3477 } 3478 if (le32_to_cpu(raw_super->log_sectors_per_block) + 3479 le32_to_cpu(raw_super->log_sectorsize) != 3480 F2FS_MAX_LOG_SECTOR_SIZE) { 3481 f2fs_info(sbi, "Invalid log sectors per block(%u) log sectorsize(%u)", 3482 le32_to_cpu(raw_super->log_sectors_per_block), 3483 le32_to_cpu(raw_super->log_sectorsize)); 3484 return -EFSCORRUPTED; 3485 } 3486 3487 segment_count = le32_to_cpu(raw_super->segment_count); 3488 segment_count_main = le32_to_cpu(raw_super->segment_count_main); 3489 segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3490 secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3491 total_sections = le32_to_cpu(raw_super->section_count); 3492 3493 /* blocks_per_seg should be 512, given the above check */ 3494 blocks_per_seg = BIT(le32_to_cpu(raw_super->log_blocks_per_seg)); 3495 3496 if (segment_count > F2FS_MAX_SEGMENT || 3497 segment_count < F2FS_MIN_SEGMENTS) { 3498 f2fs_info(sbi, "Invalid segment count (%u)", segment_count); 3499 return -EFSCORRUPTED; 3500 } 3501 3502 if (total_sections > segment_count_main || total_sections < 1 || 3503 segs_per_sec > segment_count || !segs_per_sec) { 3504 f2fs_info(sbi, "Invalid segment/section count (%u, %u x %u)", 3505 segment_count, total_sections, segs_per_sec); 3506 return -EFSCORRUPTED; 3507 } 3508 3509 if (segment_count_main != total_sections * segs_per_sec) { 3510 f2fs_info(sbi, "Invalid segment/section count (%u != %u * %u)", 3511 segment_count_main, total_sections, segs_per_sec); 3512 return -EFSCORRUPTED; 3513 } 3514 3515 if ((segment_count / segs_per_sec) < total_sections) { 3516 f2fs_info(sbi, "Small segment_count (%u < %u * %u)", 3517 segment_count, segs_per_sec, total_sections); 3518 return -EFSCORRUPTED; 3519 } 3520 3521 if (segment_count > (le64_to_cpu(raw_super->block_count) >> 9)) { 3522 f2fs_info(sbi, "Wrong segment_count / block_count (%u > %llu)", 3523 segment_count, le64_to_cpu(raw_super->block_count)); 3524 return -EFSCORRUPTED; 3525 } 3526 3527 if (RDEV(0).path[0]) { 3528 block_t dev_seg_count = le32_to_cpu(RDEV(0).total_segments); 3529 int i = 1; 3530 3531 while (i < MAX_DEVICES && RDEV(i).path[0]) { 3532 dev_seg_count += le32_to_cpu(RDEV(i).total_segments); 3533 i++; 3534 } 3535 if (segment_count != dev_seg_count) { 3536 f2fs_info(sbi, "Segment count (%u) mismatch with total segments from devices (%u)", 3537 segment_count, dev_seg_count); 3538 return -EFSCORRUPTED; 3539 } 3540 } else { 3541 if (__F2FS_HAS_FEATURE(raw_super, F2FS_FEATURE_BLKZONED) && 3542 !bdev_is_zoned(sbi->sb->s_bdev)) { 3543 f2fs_info(sbi, "Zoned block device path is missing"); 3544 return -EFSCORRUPTED; 3545 } 3546 } 3547 3548 if (secs_per_zone > total_sections || !secs_per_zone) { 3549 f2fs_info(sbi, "Wrong secs_per_zone / total_sections (%u, %u)", 3550 secs_per_zone, total_sections); 3551 return -EFSCORRUPTED; 3552 } 3553 if (le32_to_cpu(raw_super->extension_count) > F2FS_MAX_EXTENSION || 3554 raw_super->hot_ext_count > F2FS_MAX_EXTENSION || 3555 (le32_to_cpu(raw_super->extension_count) + 3556 raw_super->hot_ext_count) > F2FS_MAX_EXTENSION) { 3557 f2fs_info(sbi, "Corrupted extension count (%u + %u > %u)", 3558 le32_to_cpu(raw_super->extension_count), 3559 raw_super->hot_ext_count, 3560 F2FS_MAX_EXTENSION); 3561 return -EFSCORRUPTED; 3562 } 3563 3564 if (le32_to_cpu(raw_super->cp_payload) >= 3565 (blocks_per_seg - F2FS_CP_PACKS - 3566 NR_CURSEG_PERSIST_TYPE)) { 3567 f2fs_info(sbi, "Insane cp_payload (%u >= %u)", 3568 le32_to_cpu(raw_super->cp_payload), 3569 blocks_per_seg - F2FS_CP_PACKS - 3570 NR_CURSEG_PERSIST_TYPE); 3571 return -EFSCORRUPTED; 3572 } 3573 3574 /* check reserved ino info */ 3575 if (le32_to_cpu(raw_super->node_ino) != 1 || 3576 le32_to_cpu(raw_super->meta_ino) != 2 || 3577 le32_to_cpu(raw_super->root_ino) != 3) { 3578 f2fs_info(sbi, "Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)", 3579 le32_to_cpu(raw_super->node_ino), 3580 le32_to_cpu(raw_super->meta_ino), 3581 le32_to_cpu(raw_super->root_ino)); 3582 return -EFSCORRUPTED; 3583 } 3584 3585 /* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */ 3586 if (sanity_check_area_boundary(sbi, bh)) 3587 return -EFSCORRUPTED; 3588 3589 return 0; 3590 } 3591 3592 int f2fs_sanity_check_ckpt(struct f2fs_sb_info *sbi) 3593 { 3594 unsigned int total, fsmeta; 3595 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 3596 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi); 3597 unsigned int ovp_segments, reserved_segments; 3598 unsigned int main_segs, blocks_per_seg; 3599 unsigned int sit_segs, nat_segs; 3600 unsigned int sit_bitmap_size, nat_bitmap_size; 3601 unsigned int log_blocks_per_seg; 3602 unsigned int segment_count_main; 3603 unsigned int cp_pack_start_sum, cp_payload; 3604 block_t user_block_count, valid_user_blocks; 3605 block_t avail_node_count, valid_node_count; 3606 unsigned int nat_blocks, nat_bits_bytes, nat_bits_blocks; 3607 int i, j; 3608 3609 total = le32_to_cpu(raw_super->segment_count); 3610 fsmeta = le32_to_cpu(raw_super->segment_count_ckpt); 3611 sit_segs = le32_to_cpu(raw_super->segment_count_sit); 3612 fsmeta += sit_segs; 3613 nat_segs = le32_to_cpu(raw_super->segment_count_nat); 3614 fsmeta += nat_segs; 3615 fsmeta += le32_to_cpu(ckpt->rsvd_segment_count); 3616 fsmeta += le32_to_cpu(raw_super->segment_count_ssa); 3617 3618 if (unlikely(fsmeta >= total)) 3619 return 1; 3620 3621 ovp_segments = le32_to_cpu(ckpt->overprov_segment_count); 3622 reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count); 3623 3624 if (!f2fs_sb_has_readonly(sbi) && 3625 unlikely(fsmeta < F2FS_MIN_META_SEGMENTS || 3626 ovp_segments == 0 || reserved_segments == 0)) { 3627 f2fs_err(sbi, "Wrong layout: check mkfs.f2fs version"); 3628 return 1; 3629 } 3630 user_block_count = le64_to_cpu(ckpt->user_block_count); 3631 segment_count_main = le32_to_cpu(raw_super->segment_count_main) + 3632 (f2fs_sb_has_readonly(sbi) ? 1 : 0); 3633 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3634 if (!user_block_count || user_block_count >= 3635 segment_count_main << log_blocks_per_seg) { 3636 f2fs_err(sbi, "Wrong user_block_count: %u", 3637 user_block_count); 3638 return 1; 3639 } 3640 3641 valid_user_blocks = le64_to_cpu(ckpt->valid_block_count); 3642 if (valid_user_blocks > user_block_count) { 3643 f2fs_err(sbi, "Wrong valid_user_blocks: %u, user_block_count: %u", 3644 valid_user_blocks, user_block_count); 3645 return 1; 3646 } 3647 3648 valid_node_count = le32_to_cpu(ckpt->valid_node_count); 3649 avail_node_count = sbi->total_node_count - F2FS_RESERVED_NODE_NUM; 3650 if (valid_node_count > avail_node_count) { 3651 f2fs_err(sbi, "Wrong valid_node_count: %u, avail_node_count: %u", 3652 valid_node_count, avail_node_count); 3653 return 1; 3654 } 3655 3656 main_segs = le32_to_cpu(raw_super->segment_count_main); 3657 blocks_per_seg = BLKS_PER_SEG(sbi); 3658 3659 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3660 if (le32_to_cpu(ckpt->cur_node_segno[i]) >= main_segs || 3661 le16_to_cpu(ckpt->cur_node_blkoff[i]) >= blocks_per_seg) 3662 return 1; 3663 3664 if (f2fs_sb_has_readonly(sbi)) 3665 goto check_data; 3666 3667 for (j = i + 1; j < NR_CURSEG_NODE_TYPE; j++) { 3668 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3669 le32_to_cpu(ckpt->cur_node_segno[j])) { 3670 f2fs_err(sbi, "Node segment (%u, %u) has the same segno: %u", 3671 i, j, 3672 le32_to_cpu(ckpt->cur_node_segno[i])); 3673 return 1; 3674 } 3675 } 3676 } 3677 check_data: 3678 for (i = 0; i < NR_CURSEG_DATA_TYPE; i++) { 3679 if (le32_to_cpu(ckpt->cur_data_segno[i]) >= main_segs || 3680 le16_to_cpu(ckpt->cur_data_blkoff[i]) >= blocks_per_seg) 3681 return 1; 3682 3683 if (f2fs_sb_has_readonly(sbi)) 3684 goto skip_cross; 3685 3686 for (j = i + 1; j < NR_CURSEG_DATA_TYPE; j++) { 3687 if (le32_to_cpu(ckpt->cur_data_segno[i]) == 3688 le32_to_cpu(ckpt->cur_data_segno[j])) { 3689 f2fs_err(sbi, "Data segment (%u, %u) has the same segno: %u", 3690 i, j, 3691 le32_to_cpu(ckpt->cur_data_segno[i])); 3692 return 1; 3693 } 3694 } 3695 } 3696 for (i = 0; i < NR_CURSEG_NODE_TYPE; i++) { 3697 for (j = 0; j < NR_CURSEG_DATA_TYPE; j++) { 3698 if (le32_to_cpu(ckpt->cur_node_segno[i]) == 3699 le32_to_cpu(ckpt->cur_data_segno[j])) { 3700 f2fs_err(sbi, "Node segment (%u) and Data segment (%u) has the same segno: %u", 3701 i, j, 3702 le32_to_cpu(ckpt->cur_node_segno[i])); 3703 return 1; 3704 } 3705 } 3706 } 3707 skip_cross: 3708 sit_bitmap_size = le32_to_cpu(ckpt->sit_ver_bitmap_bytesize); 3709 nat_bitmap_size = le32_to_cpu(ckpt->nat_ver_bitmap_bytesize); 3710 3711 if (sit_bitmap_size != ((sit_segs / 2) << log_blocks_per_seg) / 8 || 3712 nat_bitmap_size != ((nat_segs / 2) << log_blocks_per_seg) / 8) { 3713 f2fs_err(sbi, "Wrong bitmap size: sit: %u, nat:%u", 3714 sit_bitmap_size, nat_bitmap_size); 3715 return 1; 3716 } 3717 3718 cp_pack_start_sum = __start_sum_addr(sbi); 3719 cp_payload = __cp_payload(sbi); 3720 if (cp_pack_start_sum < cp_payload + 1 || 3721 cp_pack_start_sum > blocks_per_seg - 1 - 3722 NR_CURSEG_PERSIST_TYPE) { 3723 f2fs_err(sbi, "Wrong cp_pack_start_sum: %u", 3724 cp_pack_start_sum); 3725 return 1; 3726 } 3727 3728 if (__is_set_ckpt_flags(ckpt, CP_LARGE_NAT_BITMAP_FLAG) && 3729 le32_to_cpu(ckpt->checksum_offset) != CP_MIN_CHKSUM_OFFSET) { 3730 f2fs_warn(sbi, "using deprecated layout of large_nat_bitmap, " 3731 "please run fsck v1.13.0 or higher to repair, chksum_offset: %u, " 3732 "fixed with patch: \"f2fs-tools: relocate chksum_offset for large_nat_bitmap feature\"", 3733 le32_to_cpu(ckpt->checksum_offset)); 3734 return 1; 3735 } 3736 3737 nat_blocks = nat_segs << log_blocks_per_seg; 3738 nat_bits_bytes = nat_blocks / BITS_PER_BYTE; 3739 nat_bits_blocks = F2FS_BLK_ALIGN((nat_bits_bytes << 1) + 8); 3740 if (__is_set_ckpt_flags(ckpt, CP_NAT_BITS_FLAG) && 3741 (cp_payload + F2FS_CP_PACKS + 3742 NR_CURSEG_PERSIST_TYPE + nat_bits_blocks >= blocks_per_seg)) { 3743 f2fs_warn(sbi, "Insane cp_payload: %u, nat_bits_blocks: %u)", 3744 cp_payload, nat_bits_blocks); 3745 return 1; 3746 } 3747 3748 if (unlikely(f2fs_cp_error(sbi))) { 3749 f2fs_err(sbi, "A bug case: need to run fsck"); 3750 return 1; 3751 } 3752 return 0; 3753 } 3754 3755 static void init_sb_info(struct f2fs_sb_info *sbi) 3756 { 3757 struct f2fs_super_block *raw_super = sbi->raw_super; 3758 int i; 3759 3760 sbi->log_sectors_per_block = 3761 le32_to_cpu(raw_super->log_sectors_per_block); 3762 sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize); 3763 sbi->blocksize = BIT(sbi->log_blocksize); 3764 sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg); 3765 sbi->blocks_per_seg = BIT(sbi->log_blocks_per_seg); 3766 sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec); 3767 sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone); 3768 sbi->total_sections = le32_to_cpu(raw_super->section_count); 3769 sbi->total_node_count = 3770 ((le32_to_cpu(raw_super->segment_count_nat) / 2) * 3771 NAT_ENTRY_PER_BLOCK) << sbi->log_blocks_per_seg; 3772 F2FS_ROOT_INO(sbi) = le32_to_cpu(raw_super->root_ino); 3773 F2FS_NODE_INO(sbi) = le32_to_cpu(raw_super->node_ino); 3774 F2FS_META_INO(sbi) = le32_to_cpu(raw_super->meta_ino); 3775 sbi->cur_victim_sec = NULL_SECNO; 3776 sbi->gc_mode = GC_NORMAL; 3777 sbi->next_victim_seg[BG_GC] = NULL_SEGNO; 3778 sbi->next_victim_seg[FG_GC] = NULL_SEGNO; 3779 sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH; 3780 sbi->migration_granularity = SEGS_PER_SEC(sbi); 3781 sbi->seq_file_ra_mul = MIN_RA_MUL; 3782 sbi->max_fragment_chunk = DEF_FRAGMENT_SIZE; 3783 sbi->max_fragment_hole = DEF_FRAGMENT_SIZE; 3784 spin_lock_init(&sbi->gc_remaining_trials_lock); 3785 atomic64_set(&sbi->current_atomic_write, 0); 3786 3787 sbi->dir_level = DEF_DIR_LEVEL; 3788 sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL; 3789 sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL; 3790 sbi->interval_time[DISCARD_TIME] = DEF_IDLE_INTERVAL; 3791 sbi->interval_time[GC_TIME] = DEF_IDLE_INTERVAL; 3792 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_INTERVAL; 3793 sbi->interval_time[UMOUNT_DISCARD_TIMEOUT] = 3794 DEF_UMOUNT_DISCARD_TIMEOUT; 3795 clear_sbi_flag(sbi, SBI_NEED_FSCK); 3796 3797 for (i = 0; i < NR_COUNT_TYPE; i++) 3798 atomic_set(&sbi->nr_pages[i], 0); 3799 3800 for (i = 0; i < META; i++) 3801 atomic_set(&sbi->wb_sync_req[i], 0); 3802 3803 INIT_LIST_HEAD(&sbi->s_list); 3804 mutex_init(&sbi->umount_mutex); 3805 init_f2fs_rwsem(&sbi->io_order_lock); 3806 spin_lock_init(&sbi->cp_lock); 3807 3808 sbi->dirty_device = 0; 3809 spin_lock_init(&sbi->dev_lock); 3810 3811 init_f2fs_rwsem(&sbi->sb_lock); 3812 init_f2fs_rwsem(&sbi->pin_sem); 3813 } 3814 3815 static int init_percpu_info(struct f2fs_sb_info *sbi) 3816 { 3817 int err; 3818 3819 err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL); 3820 if (err) 3821 return err; 3822 3823 err = percpu_counter_init(&sbi->rf_node_block_count, 0, GFP_KERNEL); 3824 if (err) 3825 goto err_valid_block; 3826 3827 err = percpu_counter_init(&sbi->total_valid_inode_count, 0, 3828 GFP_KERNEL); 3829 if (err) 3830 goto err_node_block; 3831 return 0; 3832 3833 err_node_block: 3834 percpu_counter_destroy(&sbi->rf_node_block_count); 3835 err_valid_block: 3836 percpu_counter_destroy(&sbi->alloc_valid_block_count); 3837 return err; 3838 } 3839 3840 #ifdef CONFIG_BLK_DEV_ZONED 3841 3842 struct f2fs_report_zones_args { 3843 struct f2fs_sb_info *sbi; 3844 struct f2fs_dev_info *dev; 3845 }; 3846 3847 static int f2fs_report_zone_cb(struct blk_zone *zone, unsigned int idx, 3848 void *data) 3849 { 3850 struct f2fs_report_zones_args *rz_args = data; 3851 block_t unusable_blocks = (zone->len - zone->capacity) >> 3852 F2FS_LOG_SECTORS_PER_BLOCK; 3853 3854 if (zone->type == BLK_ZONE_TYPE_CONVENTIONAL) 3855 return 0; 3856 3857 set_bit(idx, rz_args->dev->blkz_seq); 3858 if (!rz_args->sbi->unusable_blocks_per_sec) { 3859 rz_args->sbi->unusable_blocks_per_sec = unusable_blocks; 3860 return 0; 3861 } 3862 if (rz_args->sbi->unusable_blocks_per_sec != unusable_blocks) { 3863 f2fs_err(rz_args->sbi, "F2FS supports single zone capacity\n"); 3864 return -EINVAL; 3865 } 3866 return 0; 3867 } 3868 3869 static int init_blkz_info(struct f2fs_sb_info *sbi, int devi) 3870 { 3871 struct block_device *bdev = FDEV(devi).bdev; 3872 sector_t nr_sectors = bdev_nr_sectors(bdev); 3873 struct f2fs_report_zones_args rep_zone_arg; 3874 u64 zone_sectors; 3875 int ret; 3876 3877 if (!f2fs_sb_has_blkzoned(sbi)) 3878 return 0; 3879 3880 zone_sectors = bdev_zone_sectors(bdev); 3881 if (sbi->blocks_per_blkz && sbi->blocks_per_blkz != 3882 SECTOR_TO_BLOCK(zone_sectors)) 3883 return -EINVAL; 3884 sbi->blocks_per_blkz = SECTOR_TO_BLOCK(zone_sectors); 3885 FDEV(devi).nr_blkz = div_u64(SECTOR_TO_BLOCK(nr_sectors), 3886 sbi->blocks_per_blkz); 3887 if (nr_sectors & (zone_sectors - 1)) 3888 FDEV(devi).nr_blkz++; 3889 3890 FDEV(devi).blkz_seq = f2fs_kvzalloc(sbi, 3891 BITS_TO_LONGS(FDEV(devi).nr_blkz) 3892 * sizeof(unsigned long), 3893 GFP_KERNEL); 3894 if (!FDEV(devi).blkz_seq) 3895 return -ENOMEM; 3896 3897 rep_zone_arg.sbi = sbi; 3898 rep_zone_arg.dev = &FDEV(devi); 3899 3900 ret = blkdev_report_zones(bdev, 0, BLK_ALL_ZONES, f2fs_report_zone_cb, 3901 &rep_zone_arg); 3902 if (ret < 0) 3903 return ret; 3904 return 0; 3905 } 3906 #endif 3907 3908 /* 3909 * Read f2fs raw super block. 3910 * Because we have two copies of super block, so read both of them 3911 * to get the first valid one. If any one of them is broken, we pass 3912 * them recovery flag back to the caller. 3913 */ 3914 static int read_raw_super_block(struct f2fs_sb_info *sbi, 3915 struct f2fs_super_block **raw_super, 3916 int *valid_super_block, int *recovery) 3917 { 3918 struct super_block *sb = sbi->sb; 3919 int block; 3920 struct buffer_head *bh; 3921 struct f2fs_super_block *super; 3922 int err = 0; 3923 3924 super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL); 3925 if (!super) 3926 return -ENOMEM; 3927 3928 for (block = 0; block < 2; block++) { 3929 bh = sb_bread(sb, block); 3930 if (!bh) { 3931 f2fs_err(sbi, "Unable to read %dth superblock", 3932 block + 1); 3933 err = -EIO; 3934 *recovery = 1; 3935 continue; 3936 } 3937 3938 /* sanity checking of raw super */ 3939 err = sanity_check_raw_super(sbi, bh); 3940 if (err) { 3941 f2fs_err(sbi, "Can't find valid F2FS filesystem in %dth superblock", 3942 block + 1); 3943 brelse(bh); 3944 *recovery = 1; 3945 continue; 3946 } 3947 3948 if (!*raw_super) { 3949 memcpy(super, bh->b_data + F2FS_SUPER_OFFSET, 3950 sizeof(*super)); 3951 *valid_super_block = block; 3952 *raw_super = super; 3953 } 3954 brelse(bh); 3955 } 3956 3957 /* No valid superblock */ 3958 if (!*raw_super) 3959 kfree(super); 3960 else 3961 err = 0; 3962 3963 return err; 3964 } 3965 3966 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover) 3967 { 3968 struct buffer_head *bh; 3969 __u32 crc = 0; 3970 int err; 3971 3972 if ((recover && f2fs_readonly(sbi->sb)) || 3973 f2fs_hw_is_readonly(sbi)) { 3974 set_sbi_flag(sbi, SBI_NEED_SB_WRITE); 3975 return -EROFS; 3976 } 3977 3978 /* we should update superblock crc here */ 3979 if (!recover && f2fs_sb_has_sb_chksum(sbi)) { 3980 crc = f2fs_crc32(sbi, F2FS_RAW_SUPER(sbi), 3981 offsetof(struct f2fs_super_block, crc)); 3982 F2FS_RAW_SUPER(sbi)->crc = cpu_to_le32(crc); 3983 } 3984 3985 /* write back-up superblock first */ 3986 bh = sb_bread(sbi->sb, sbi->valid_super_block ? 0 : 1); 3987 if (!bh) 3988 return -EIO; 3989 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 3990 brelse(bh); 3991 3992 /* if we are in recovery path, skip writing valid superblock */ 3993 if (recover || err) 3994 return err; 3995 3996 /* write current valid superblock */ 3997 bh = sb_bread(sbi->sb, sbi->valid_super_block); 3998 if (!bh) 3999 return -EIO; 4000 err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi)); 4001 brelse(bh); 4002 return err; 4003 } 4004 4005 static void save_stop_reason(struct f2fs_sb_info *sbi, unsigned char reason) 4006 { 4007 unsigned long flags; 4008 4009 spin_lock_irqsave(&sbi->error_lock, flags); 4010 if (sbi->stop_reason[reason] < GENMASK(BITS_PER_BYTE - 1, 0)) 4011 sbi->stop_reason[reason]++; 4012 spin_unlock_irqrestore(&sbi->error_lock, flags); 4013 } 4014 4015 static void f2fs_record_stop_reason(struct f2fs_sb_info *sbi) 4016 { 4017 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4018 unsigned long flags; 4019 int err; 4020 4021 f2fs_down_write(&sbi->sb_lock); 4022 4023 spin_lock_irqsave(&sbi->error_lock, flags); 4024 if (sbi->error_dirty) { 4025 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors, 4026 MAX_F2FS_ERRORS); 4027 sbi->error_dirty = false; 4028 } 4029 memcpy(raw_super->s_stop_reason, sbi->stop_reason, MAX_STOP_REASON); 4030 spin_unlock_irqrestore(&sbi->error_lock, flags); 4031 4032 err = f2fs_commit_super(sbi, false); 4033 4034 f2fs_up_write(&sbi->sb_lock); 4035 if (err) 4036 f2fs_err(sbi, "f2fs_commit_super fails to record err:%d", err); 4037 } 4038 4039 void f2fs_save_errors(struct f2fs_sb_info *sbi, unsigned char flag) 4040 { 4041 unsigned long flags; 4042 4043 spin_lock_irqsave(&sbi->error_lock, flags); 4044 if (!test_bit(flag, (unsigned long *)sbi->errors)) { 4045 set_bit(flag, (unsigned long *)sbi->errors); 4046 sbi->error_dirty = true; 4047 } 4048 spin_unlock_irqrestore(&sbi->error_lock, flags); 4049 } 4050 4051 static bool f2fs_update_errors(struct f2fs_sb_info *sbi) 4052 { 4053 unsigned long flags; 4054 bool need_update = false; 4055 4056 spin_lock_irqsave(&sbi->error_lock, flags); 4057 if (sbi->error_dirty) { 4058 memcpy(F2FS_RAW_SUPER(sbi)->s_errors, sbi->errors, 4059 MAX_F2FS_ERRORS); 4060 sbi->error_dirty = false; 4061 need_update = true; 4062 } 4063 spin_unlock_irqrestore(&sbi->error_lock, flags); 4064 4065 return need_update; 4066 } 4067 4068 static void f2fs_record_errors(struct f2fs_sb_info *sbi, unsigned char error) 4069 { 4070 int err; 4071 4072 f2fs_down_write(&sbi->sb_lock); 4073 4074 if (!f2fs_update_errors(sbi)) 4075 goto out_unlock; 4076 4077 err = f2fs_commit_super(sbi, false); 4078 if (err) 4079 f2fs_err(sbi, "f2fs_commit_super fails to record errors:%u, err:%d", 4080 error, err); 4081 out_unlock: 4082 f2fs_up_write(&sbi->sb_lock); 4083 } 4084 4085 void f2fs_handle_error(struct f2fs_sb_info *sbi, unsigned char error) 4086 { 4087 f2fs_save_errors(sbi, error); 4088 f2fs_record_errors(sbi, error); 4089 } 4090 4091 void f2fs_handle_error_async(struct f2fs_sb_info *sbi, unsigned char error) 4092 { 4093 f2fs_save_errors(sbi, error); 4094 4095 if (!sbi->error_dirty) 4096 return; 4097 if (!test_bit(error, (unsigned long *)sbi->errors)) 4098 return; 4099 schedule_work(&sbi->s_error_work); 4100 } 4101 4102 static bool system_going_down(void) 4103 { 4104 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF 4105 || system_state == SYSTEM_RESTART; 4106 } 4107 4108 void f2fs_handle_critical_error(struct f2fs_sb_info *sbi, unsigned char reason) 4109 { 4110 struct super_block *sb = sbi->sb; 4111 bool shutdown = reason == STOP_CP_REASON_SHUTDOWN; 4112 bool continue_fs = !shutdown && 4113 F2FS_OPTION(sbi).errors == MOUNT_ERRORS_CONTINUE; 4114 4115 set_ckpt_flags(sbi, CP_ERROR_FLAG); 4116 4117 if (!f2fs_hw_is_readonly(sbi)) { 4118 save_stop_reason(sbi, reason); 4119 4120 /* 4121 * always create an asynchronous task to record stop_reason 4122 * in order to avoid potential deadlock when running into 4123 * f2fs_record_stop_reason() synchronously. 4124 */ 4125 schedule_work(&sbi->s_error_work); 4126 } 4127 4128 /* 4129 * We force ERRORS_RO behavior when system is rebooting. Otherwise we 4130 * could panic during 'reboot -f' as the underlying device got already 4131 * disabled. 4132 */ 4133 if (F2FS_OPTION(sbi).errors == MOUNT_ERRORS_PANIC && 4134 !shutdown && !system_going_down() && 4135 !is_sbi_flag_set(sbi, SBI_IS_SHUTDOWN)) 4136 panic("F2FS-fs (device %s): panic forced after error\n", 4137 sb->s_id); 4138 4139 if (shutdown) 4140 set_sbi_flag(sbi, SBI_IS_SHUTDOWN); 4141 4142 /* 4143 * Continue filesystem operators if errors=continue. Should not set 4144 * RO by shutdown, since RO bypasses thaw_super which can hang the 4145 * system. 4146 */ 4147 if (continue_fs || f2fs_readonly(sb) || shutdown) { 4148 f2fs_warn(sbi, "Stopped filesystem due to reason: %d", reason); 4149 return; 4150 } 4151 4152 f2fs_warn(sbi, "Remounting filesystem read-only"); 4153 4154 /* 4155 * We have already set CP_ERROR_FLAG flag to stop all updates 4156 * to filesystem, so it doesn't need to set SB_RDONLY flag here 4157 * because the flag should be set covered w/ sb->s_umount semaphore 4158 * via remount procedure, otherwise, it will confuse code like 4159 * freeze_super() which will lead to deadlocks and other problems. 4160 */ 4161 } 4162 4163 static void f2fs_record_error_work(struct work_struct *work) 4164 { 4165 struct f2fs_sb_info *sbi = container_of(work, 4166 struct f2fs_sb_info, s_error_work); 4167 4168 f2fs_record_stop_reason(sbi); 4169 } 4170 4171 static int f2fs_scan_devices(struct f2fs_sb_info *sbi) 4172 { 4173 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi); 4174 unsigned int max_devices = MAX_DEVICES; 4175 unsigned int logical_blksize; 4176 blk_mode_t mode = sb_open_mode(sbi->sb->s_flags); 4177 int i; 4178 4179 /* Initialize single device information */ 4180 if (!RDEV(0).path[0]) { 4181 if (!bdev_is_zoned(sbi->sb->s_bdev)) 4182 return 0; 4183 max_devices = 1; 4184 } 4185 4186 /* 4187 * Initialize multiple devices information, or single 4188 * zoned block device information. 4189 */ 4190 sbi->devs = f2fs_kzalloc(sbi, 4191 array_size(max_devices, 4192 sizeof(struct f2fs_dev_info)), 4193 GFP_KERNEL); 4194 if (!sbi->devs) 4195 return -ENOMEM; 4196 4197 logical_blksize = bdev_logical_block_size(sbi->sb->s_bdev); 4198 sbi->aligned_blksize = true; 4199 4200 for (i = 0; i < max_devices; i++) { 4201 if (i == 0) 4202 FDEV(0).bdev = sbi->sb->s_bdev; 4203 else if (!RDEV(i).path[0]) 4204 break; 4205 4206 if (max_devices > 1) { 4207 /* Multi-device mount */ 4208 memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN); 4209 FDEV(i).total_segments = 4210 le32_to_cpu(RDEV(i).total_segments); 4211 if (i == 0) { 4212 FDEV(i).start_blk = 0; 4213 FDEV(i).end_blk = FDEV(i).start_blk + 4214 (FDEV(i).total_segments << 4215 sbi->log_blocks_per_seg) - 1 + 4216 le32_to_cpu(raw_super->segment0_blkaddr); 4217 } else { 4218 FDEV(i).start_blk = FDEV(i - 1).end_blk + 1; 4219 FDEV(i).end_blk = FDEV(i).start_blk + 4220 (FDEV(i).total_segments << 4221 sbi->log_blocks_per_seg) - 1; 4222 FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path, 4223 mode, sbi->sb, NULL); 4224 } 4225 } 4226 if (IS_ERR(FDEV(i).bdev)) 4227 return PTR_ERR(FDEV(i).bdev); 4228 4229 /* to release errored devices */ 4230 sbi->s_ndevs = i + 1; 4231 4232 if (logical_blksize != bdev_logical_block_size(FDEV(i).bdev)) 4233 sbi->aligned_blksize = false; 4234 4235 #ifdef CONFIG_BLK_DEV_ZONED 4236 if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM && 4237 !f2fs_sb_has_blkzoned(sbi)) { 4238 f2fs_err(sbi, "Zoned block device feature not enabled"); 4239 return -EINVAL; 4240 } 4241 if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) { 4242 if (init_blkz_info(sbi, i)) { 4243 f2fs_err(sbi, "Failed to initialize F2FS blkzone information"); 4244 return -EINVAL; 4245 } 4246 if (max_devices == 1) 4247 break; 4248 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)", 4249 i, FDEV(i).path, 4250 FDEV(i).total_segments, 4251 FDEV(i).start_blk, FDEV(i).end_blk, 4252 bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ? 4253 "Host-aware" : "Host-managed"); 4254 continue; 4255 } 4256 #endif 4257 f2fs_info(sbi, "Mount Device [%2d]: %20s, %8u, %8x - %8x", 4258 i, FDEV(i).path, 4259 FDEV(i).total_segments, 4260 FDEV(i).start_blk, FDEV(i).end_blk); 4261 } 4262 return 0; 4263 } 4264 4265 static int f2fs_setup_casefold(struct f2fs_sb_info *sbi) 4266 { 4267 #if IS_ENABLED(CONFIG_UNICODE) 4268 if (f2fs_sb_has_casefold(sbi) && !sbi->sb->s_encoding) { 4269 const struct f2fs_sb_encodings *encoding_info; 4270 struct unicode_map *encoding; 4271 __u16 encoding_flags; 4272 4273 encoding_info = f2fs_sb_read_encoding(sbi->raw_super); 4274 if (!encoding_info) { 4275 f2fs_err(sbi, 4276 "Encoding requested by superblock is unknown"); 4277 return -EINVAL; 4278 } 4279 4280 encoding_flags = le16_to_cpu(sbi->raw_super->s_encoding_flags); 4281 encoding = utf8_load(encoding_info->version); 4282 if (IS_ERR(encoding)) { 4283 f2fs_err(sbi, 4284 "can't mount with superblock charset: %s-%u.%u.%u " 4285 "not supported by the kernel. flags: 0x%x.", 4286 encoding_info->name, 4287 unicode_major(encoding_info->version), 4288 unicode_minor(encoding_info->version), 4289 unicode_rev(encoding_info->version), 4290 encoding_flags); 4291 return PTR_ERR(encoding); 4292 } 4293 f2fs_info(sbi, "Using encoding defined by superblock: " 4294 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name, 4295 unicode_major(encoding_info->version), 4296 unicode_minor(encoding_info->version), 4297 unicode_rev(encoding_info->version), 4298 encoding_flags); 4299 4300 sbi->sb->s_encoding = encoding; 4301 sbi->sb->s_encoding_flags = encoding_flags; 4302 } 4303 #else 4304 if (f2fs_sb_has_casefold(sbi)) { 4305 f2fs_err(sbi, "Filesystem with casefold feature cannot be mounted without CONFIG_UNICODE"); 4306 return -EINVAL; 4307 } 4308 #endif 4309 return 0; 4310 } 4311 4312 static void f2fs_tuning_parameters(struct f2fs_sb_info *sbi) 4313 { 4314 /* adjust parameters according to the volume size */ 4315 if (MAIN_SEGS(sbi) <= SMALL_VOLUME_SEGMENTS) { 4316 if (f2fs_block_unit_discard(sbi)) 4317 SM_I(sbi)->dcc_info->discard_granularity = 4318 MIN_DISCARD_GRANULARITY; 4319 if (!f2fs_lfs_mode(sbi)) 4320 SM_I(sbi)->ipu_policy = BIT(F2FS_IPU_FORCE) | 4321 BIT(F2FS_IPU_HONOR_OPU_WRITE); 4322 } 4323 4324 sbi->readdir_ra = true; 4325 } 4326 4327 static int f2fs_fill_super(struct super_block *sb, void *data, int silent) 4328 { 4329 struct f2fs_sb_info *sbi; 4330 struct f2fs_super_block *raw_super; 4331 struct inode *root; 4332 int err; 4333 bool skip_recovery = false, need_fsck = false; 4334 char *options = NULL; 4335 int recovery, i, valid_super_block; 4336 struct curseg_info *seg_i; 4337 int retry_cnt = 1; 4338 #ifdef CONFIG_QUOTA 4339 bool quota_enabled = false; 4340 #endif 4341 4342 try_onemore: 4343 err = -EINVAL; 4344 raw_super = NULL; 4345 valid_super_block = -1; 4346 recovery = 0; 4347 4348 /* allocate memory for f2fs-specific super block info */ 4349 sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL); 4350 if (!sbi) 4351 return -ENOMEM; 4352 4353 sbi->sb = sb; 4354 4355 /* initialize locks within allocated memory */ 4356 init_f2fs_rwsem(&sbi->gc_lock); 4357 mutex_init(&sbi->writepages); 4358 init_f2fs_rwsem(&sbi->cp_global_sem); 4359 init_f2fs_rwsem(&sbi->node_write); 4360 init_f2fs_rwsem(&sbi->node_change); 4361 spin_lock_init(&sbi->stat_lock); 4362 init_f2fs_rwsem(&sbi->cp_rwsem); 4363 init_f2fs_rwsem(&sbi->quota_sem); 4364 init_waitqueue_head(&sbi->cp_wait); 4365 spin_lock_init(&sbi->error_lock); 4366 4367 for (i = 0; i < NR_INODE_TYPE; i++) { 4368 INIT_LIST_HEAD(&sbi->inode_list[i]); 4369 spin_lock_init(&sbi->inode_lock[i]); 4370 } 4371 mutex_init(&sbi->flush_lock); 4372 4373 /* Load the checksum driver */ 4374 sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0); 4375 if (IS_ERR(sbi->s_chksum_driver)) { 4376 f2fs_err(sbi, "Cannot load crc32 driver."); 4377 err = PTR_ERR(sbi->s_chksum_driver); 4378 sbi->s_chksum_driver = NULL; 4379 goto free_sbi; 4380 } 4381 4382 /* set a block size */ 4383 if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) { 4384 f2fs_err(sbi, "unable to set blocksize"); 4385 goto free_sbi; 4386 } 4387 4388 err = read_raw_super_block(sbi, &raw_super, &valid_super_block, 4389 &recovery); 4390 if (err) 4391 goto free_sbi; 4392 4393 sb->s_fs_info = sbi; 4394 sbi->raw_super = raw_super; 4395 4396 INIT_WORK(&sbi->s_error_work, f2fs_record_error_work); 4397 memcpy(sbi->errors, raw_super->s_errors, MAX_F2FS_ERRORS); 4398 memcpy(sbi->stop_reason, raw_super->s_stop_reason, MAX_STOP_REASON); 4399 4400 /* precompute checksum seed for metadata */ 4401 if (f2fs_sb_has_inode_chksum(sbi)) 4402 sbi->s_chksum_seed = f2fs_chksum(sbi, ~0, raw_super->uuid, 4403 sizeof(raw_super->uuid)); 4404 4405 default_options(sbi, false); 4406 /* parse mount options */ 4407 options = kstrdup((const char *)data, GFP_KERNEL); 4408 if (data && !options) { 4409 err = -ENOMEM; 4410 goto free_sb_buf; 4411 } 4412 4413 err = parse_options(sb, options, false); 4414 if (err) 4415 goto free_options; 4416 4417 sb->s_maxbytes = max_file_blocks(NULL) << 4418 le32_to_cpu(raw_super->log_blocksize); 4419 sb->s_max_links = F2FS_LINK_MAX; 4420 4421 err = f2fs_setup_casefold(sbi); 4422 if (err) 4423 goto free_options; 4424 4425 #ifdef CONFIG_QUOTA 4426 sb->dq_op = &f2fs_quota_operations; 4427 sb->s_qcop = &f2fs_quotactl_ops; 4428 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ; 4429 4430 if (f2fs_sb_has_quota_ino(sbi)) { 4431 for (i = 0; i < MAXQUOTAS; i++) { 4432 if (f2fs_qf_ino(sbi->sb, i)) 4433 sbi->nquota_files++; 4434 } 4435 } 4436 #endif 4437 4438 sb->s_op = &f2fs_sops; 4439 #ifdef CONFIG_FS_ENCRYPTION 4440 sb->s_cop = &f2fs_cryptops; 4441 #endif 4442 #ifdef CONFIG_FS_VERITY 4443 sb->s_vop = &f2fs_verityops; 4444 #endif 4445 sb->s_xattr = f2fs_xattr_handlers; 4446 sb->s_export_op = &f2fs_export_ops; 4447 sb->s_magic = F2FS_SUPER_MAGIC; 4448 sb->s_time_gran = 1; 4449 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) | 4450 (test_opt(sbi, POSIX_ACL) ? SB_POSIXACL : 0); 4451 memcpy(&sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid)); 4452 sb->s_iflags |= SB_I_CGROUPWB; 4453 4454 /* init f2fs-specific super block info */ 4455 sbi->valid_super_block = valid_super_block; 4456 4457 /* disallow all the data/node/meta page writes */ 4458 set_sbi_flag(sbi, SBI_POR_DOING); 4459 4460 err = f2fs_init_write_merge_io(sbi); 4461 if (err) 4462 goto free_bio_info; 4463 4464 init_sb_info(sbi); 4465 4466 err = f2fs_init_iostat(sbi); 4467 if (err) 4468 goto free_bio_info; 4469 4470 err = init_percpu_info(sbi); 4471 if (err) 4472 goto free_iostat; 4473 4474 /* init per sbi slab cache */ 4475 err = f2fs_init_xattr_caches(sbi); 4476 if (err) 4477 goto free_percpu; 4478 err = f2fs_init_page_array_cache(sbi); 4479 if (err) 4480 goto free_xattr_cache; 4481 4482 /* get an inode for meta space */ 4483 sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi)); 4484 if (IS_ERR(sbi->meta_inode)) { 4485 f2fs_err(sbi, "Failed to read F2FS meta data inode"); 4486 err = PTR_ERR(sbi->meta_inode); 4487 goto free_page_array_cache; 4488 } 4489 4490 err = f2fs_get_valid_checkpoint(sbi); 4491 if (err) { 4492 f2fs_err(sbi, "Failed to get valid F2FS checkpoint"); 4493 goto free_meta_inode; 4494 } 4495 4496 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_QUOTA_NEED_FSCK_FLAG)) 4497 set_sbi_flag(sbi, SBI_QUOTA_NEED_REPAIR); 4498 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_DISABLED_QUICK_FLAG)) { 4499 set_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4500 sbi->interval_time[DISABLE_TIME] = DEF_DISABLE_QUICK_INTERVAL; 4501 } 4502 4503 if (__is_set_ckpt_flags(F2FS_CKPT(sbi), CP_FSCK_FLAG)) 4504 set_sbi_flag(sbi, SBI_NEED_FSCK); 4505 4506 /* Initialize device list */ 4507 err = f2fs_scan_devices(sbi); 4508 if (err) { 4509 f2fs_err(sbi, "Failed to find devices"); 4510 goto free_devices; 4511 } 4512 4513 err = f2fs_init_post_read_wq(sbi); 4514 if (err) { 4515 f2fs_err(sbi, "Failed to initialize post read workqueue"); 4516 goto free_devices; 4517 } 4518 4519 sbi->total_valid_node_count = 4520 le32_to_cpu(sbi->ckpt->valid_node_count); 4521 percpu_counter_set(&sbi->total_valid_inode_count, 4522 le32_to_cpu(sbi->ckpt->valid_inode_count)); 4523 sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count); 4524 sbi->total_valid_block_count = 4525 le64_to_cpu(sbi->ckpt->valid_block_count); 4526 sbi->last_valid_block_count = sbi->total_valid_block_count; 4527 sbi->reserved_blocks = 0; 4528 sbi->current_reserved_blocks = 0; 4529 limit_reserve_root(sbi); 4530 adjust_unusable_cap_perc(sbi); 4531 4532 f2fs_init_extent_cache_info(sbi); 4533 4534 f2fs_init_ino_entry_info(sbi); 4535 4536 f2fs_init_fsync_node_info(sbi); 4537 4538 /* setup checkpoint request control and start checkpoint issue thread */ 4539 f2fs_init_ckpt_req_control(sbi); 4540 if (!f2fs_readonly(sb) && !test_opt(sbi, DISABLE_CHECKPOINT) && 4541 test_opt(sbi, MERGE_CHECKPOINT)) { 4542 err = f2fs_start_ckpt_thread(sbi); 4543 if (err) { 4544 f2fs_err(sbi, 4545 "Failed to start F2FS issue_checkpoint_thread (%d)", 4546 err); 4547 goto stop_ckpt_thread; 4548 } 4549 } 4550 4551 /* setup f2fs internal modules */ 4552 err = f2fs_build_segment_manager(sbi); 4553 if (err) { 4554 f2fs_err(sbi, "Failed to initialize F2FS segment manager (%d)", 4555 err); 4556 goto free_sm; 4557 } 4558 err = f2fs_build_node_manager(sbi); 4559 if (err) { 4560 f2fs_err(sbi, "Failed to initialize F2FS node manager (%d)", 4561 err); 4562 goto free_nm; 4563 } 4564 4565 /* For write statistics */ 4566 sbi->sectors_written_start = f2fs_get_sectors_written(sbi); 4567 4568 /* Read accumulated write IO statistics if exists */ 4569 seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE); 4570 if (__exist_node_summaries(sbi)) 4571 sbi->kbytes_written = 4572 le64_to_cpu(seg_i->journal->info.kbytes_written); 4573 4574 f2fs_build_gc_manager(sbi); 4575 4576 err = f2fs_build_stats(sbi); 4577 if (err) 4578 goto free_nm; 4579 4580 /* get an inode for node space */ 4581 sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi)); 4582 if (IS_ERR(sbi->node_inode)) { 4583 f2fs_err(sbi, "Failed to read node inode"); 4584 err = PTR_ERR(sbi->node_inode); 4585 goto free_stats; 4586 } 4587 4588 /* read root inode and dentry */ 4589 root = f2fs_iget(sb, F2FS_ROOT_INO(sbi)); 4590 if (IS_ERR(root)) { 4591 f2fs_err(sbi, "Failed to read root inode"); 4592 err = PTR_ERR(root); 4593 goto free_node_inode; 4594 } 4595 if (!S_ISDIR(root->i_mode) || !root->i_blocks || 4596 !root->i_size || !root->i_nlink) { 4597 iput(root); 4598 err = -EINVAL; 4599 goto free_node_inode; 4600 } 4601 4602 sb->s_root = d_make_root(root); /* allocate root dentry */ 4603 if (!sb->s_root) { 4604 err = -ENOMEM; 4605 goto free_node_inode; 4606 } 4607 4608 err = f2fs_init_compress_inode(sbi); 4609 if (err) 4610 goto free_root_inode; 4611 4612 err = f2fs_register_sysfs(sbi); 4613 if (err) 4614 goto free_compress_inode; 4615 4616 #ifdef CONFIG_QUOTA 4617 /* Enable quota usage during mount */ 4618 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) { 4619 err = f2fs_enable_quotas(sb); 4620 if (err) 4621 f2fs_err(sbi, "Cannot turn on quotas: error %d", err); 4622 } 4623 4624 quota_enabled = f2fs_recover_quota_begin(sbi); 4625 #endif 4626 /* if there are any orphan inodes, free them */ 4627 err = f2fs_recover_orphan_inodes(sbi); 4628 if (err) 4629 goto free_meta; 4630 4631 if (unlikely(is_set_ckpt_flags(sbi, CP_DISABLED_FLAG))) 4632 goto reset_checkpoint; 4633 4634 /* recover fsynced data */ 4635 if (!test_opt(sbi, DISABLE_ROLL_FORWARD) && 4636 !test_opt(sbi, NORECOVERY)) { 4637 /* 4638 * mount should be failed, when device has readonly mode, and 4639 * previous checkpoint was not done by clean system shutdown. 4640 */ 4641 if (f2fs_hw_is_readonly(sbi)) { 4642 if (!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4643 err = f2fs_recover_fsync_data(sbi, true); 4644 if (err > 0) { 4645 err = -EROFS; 4646 f2fs_err(sbi, "Need to recover fsync data, but " 4647 "write access unavailable, please try " 4648 "mount w/ disable_roll_forward or norecovery"); 4649 } 4650 if (err < 0) 4651 goto free_meta; 4652 } 4653 f2fs_info(sbi, "write access unavailable, skipping recovery"); 4654 goto reset_checkpoint; 4655 } 4656 4657 if (need_fsck) 4658 set_sbi_flag(sbi, SBI_NEED_FSCK); 4659 4660 if (skip_recovery) 4661 goto reset_checkpoint; 4662 4663 err = f2fs_recover_fsync_data(sbi, false); 4664 if (err < 0) { 4665 if (err != -ENOMEM) 4666 skip_recovery = true; 4667 need_fsck = true; 4668 f2fs_err(sbi, "Cannot recover all fsync data errno=%d", 4669 err); 4670 goto free_meta; 4671 } 4672 } else { 4673 err = f2fs_recover_fsync_data(sbi, true); 4674 4675 if (!f2fs_readonly(sb) && err > 0) { 4676 err = -EINVAL; 4677 f2fs_err(sbi, "Need to recover fsync data"); 4678 goto free_meta; 4679 } 4680 } 4681 4682 #ifdef CONFIG_QUOTA 4683 f2fs_recover_quota_end(sbi, quota_enabled); 4684 #endif 4685 4686 /* 4687 * If the f2fs is not readonly and fsync data recovery succeeds, 4688 * check zoned block devices' write pointer consistency. 4689 */ 4690 if (!err && !f2fs_readonly(sb) && f2fs_sb_has_blkzoned(sbi)) { 4691 err = f2fs_check_write_pointer(sbi); 4692 if (err) 4693 goto free_meta; 4694 } 4695 4696 reset_checkpoint: 4697 f2fs_init_inmem_curseg(sbi); 4698 4699 /* f2fs_recover_fsync_data() cleared this already */ 4700 clear_sbi_flag(sbi, SBI_POR_DOING); 4701 4702 if (test_opt(sbi, DISABLE_CHECKPOINT)) { 4703 err = f2fs_disable_checkpoint(sbi); 4704 if (err) 4705 goto sync_free_meta; 4706 } else if (is_set_ckpt_flags(sbi, CP_DISABLED_FLAG)) { 4707 f2fs_enable_checkpoint(sbi); 4708 } 4709 4710 /* 4711 * If filesystem is not mounted as read-only then 4712 * do start the gc_thread. 4713 */ 4714 if ((F2FS_OPTION(sbi).bggc_mode != BGGC_MODE_OFF || 4715 test_opt(sbi, GC_MERGE)) && !f2fs_readonly(sb)) { 4716 /* After POR, we can run background GC thread.*/ 4717 err = f2fs_start_gc_thread(sbi); 4718 if (err) 4719 goto sync_free_meta; 4720 } 4721 kvfree(options); 4722 4723 /* recover broken superblock */ 4724 if (recovery) { 4725 err = f2fs_commit_super(sbi, true); 4726 f2fs_info(sbi, "Try to recover %dth superblock, ret: %d", 4727 sbi->valid_super_block ? 1 : 2, err); 4728 } 4729 4730 f2fs_join_shrinker(sbi); 4731 4732 f2fs_tuning_parameters(sbi); 4733 4734 f2fs_notice(sbi, "Mounted with checkpoint version = %llx", 4735 cur_cp_version(F2FS_CKPT(sbi))); 4736 f2fs_update_time(sbi, CP_TIME); 4737 f2fs_update_time(sbi, REQ_TIME); 4738 clear_sbi_flag(sbi, SBI_CP_DISABLED_QUICK); 4739 return 0; 4740 4741 sync_free_meta: 4742 /* safe to flush all the data */ 4743 sync_filesystem(sbi->sb); 4744 retry_cnt = 0; 4745 4746 free_meta: 4747 #ifdef CONFIG_QUOTA 4748 f2fs_truncate_quota_inode_pages(sb); 4749 if (f2fs_sb_has_quota_ino(sbi) && !f2fs_readonly(sb)) 4750 f2fs_quota_off_umount(sbi->sb); 4751 #endif 4752 /* 4753 * Some dirty meta pages can be produced by f2fs_recover_orphan_inodes() 4754 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg() 4755 * followed by f2fs_write_checkpoint() through f2fs_write_node_pages(), which 4756 * falls into an infinite loop in f2fs_sync_meta_pages(). 4757 */ 4758 truncate_inode_pages_final(META_MAPPING(sbi)); 4759 /* evict some inodes being cached by GC */ 4760 evict_inodes(sb); 4761 f2fs_unregister_sysfs(sbi); 4762 free_compress_inode: 4763 f2fs_destroy_compress_inode(sbi); 4764 free_root_inode: 4765 dput(sb->s_root); 4766 sb->s_root = NULL; 4767 free_node_inode: 4768 f2fs_release_ino_entry(sbi, true); 4769 truncate_inode_pages_final(NODE_MAPPING(sbi)); 4770 iput(sbi->node_inode); 4771 sbi->node_inode = NULL; 4772 free_stats: 4773 f2fs_destroy_stats(sbi); 4774 free_nm: 4775 /* stop discard thread before destroying node manager */ 4776 f2fs_stop_discard_thread(sbi); 4777 f2fs_destroy_node_manager(sbi); 4778 free_sm: 4779 f2fs_destroy_segment_manager(sbi); 4780 stop_ckpt_thread: 4781 f2fs_stop_ckpt_thread(sbi); 4782 /* flush s_error_work before sbi destroy */ 4783 flush_work(&sbi->s_error_work); 4784 f2fs_destroy_post_read_wq(sbi); 4785 free_devices: 4786 destroy_device_list(sbi); 4787 kvfree(sbi->ckpt); 4788 free_meta_inode: 4789 make_bad_inode(sbi->meta_inode); 4790 iput(sbi->meta_inode); 4791 sbi->meta_inode = NULL; 4792 free_page_array_cache: 4793 f2fs_destroy_page_array_cache(sbi); 4794 free_xattr_cache: 4795 f2fs_destroy_xattr_caches(sbi); 4796 free_percpu: 4797 destroy_percpu_info(sbi); 4798 free_iostat: 4799 f2fs_destroy_iostat(sbi); 4800 free_bio_info: 4801 for (i = 0; i < NR_PAGE_TYPE; i++) 4802 kvfree(sbi->write_io[i]); 4803 4804 #if IS_ENABLED(CONFIG_UNICODE) 4805 utf8_unload(sb->s_encoding); 4806 sb->s_encoding = NULL; 4807 #endif 4808 free_options: 4809 #ifdef CONFIG_QUOTA 4810 for (i = 0; i < MAXQUOTAS; i++) 4811 kfree(F2FS_OPTION(sbi).s_qf_names[i]); 4812 #endif 4813 fscrypt_free_dummy_policy(&F2FS_OPTION(sbi).dummy_enc_policy); 4814 kvfree(options); 4815 free_sb_buf: 4816 kfree(raw_super); 4817 free_sbi: 4818 if (sbi->s_chksum_driver) 4819 crypto_free_shash(sbi->s_chksum_driver); 4820 kfree(sbi); 4821 4822 /* give only one another chance */ 4823 if (retry_cnt > 0 && skip_recovery) { 4824 retry_cnt--; 4825 shrink_dcache_sb(sb); 4826 goto try_onemore; 4827 } 4828 return err; 4829 } 4830 4831 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags, 4832 const char *dev_name, void *data) 4833 { 4834 return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super); 4835 } 4836 4837 static void kill_f2fs_super(struct super_block *sb) 4838 { 4839 if (sb->s_root) { 4840 struct f2fs_sb_info *sbi = F2FS_SB(sb); 4841 4842 set_sbi_flag(sbi, SBI_IS_CLOSE); 4843 f2fs_stop_gc_thread(sbi); 4844 f2fs_stop_discard_thread(sbi); 4845 4846 #ifdef CONFIG_F2FS_FS_COMPRESSION 4847 /* 4848 * latter evict_inode() can bypass checking and invalidating 4849 * compress inode cache. 4850 */ 4851 if (test_opt(sbi, COMPRESS_CACHE)) 4852 truncate_inode_pages_final(COMPRESS_MAPPING(sbi)); 4853 #endif 4854 4855 if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) || 4856 !is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) { 4857 struct cp_control cpc = { 4858 .reason = CP_UMOUNT, 4859 }; 4860 stat_inc_cp_call_count(sbi, TOTAL_CALL); 4861 f2fs_write_checkpoint(sbi, &cpc); 4862 } 4863 4864 if (is_sbi_flag_set(sbi, SBI_IS_RECOVERED) && f2fs_readonly(sb)) 4865 sb->s_flags &= ~SB_RDONLY; 4866 } 4867 kill_block_super(sb); 4868 } 4869 4870 static struct file_system_type f2fs_fs_type = { 4871 .owner = THIS_MODULE, 4872 .name = "f2fs", 4873 .mount = f2fs_mount, 4874 .kill_sb = kill_f2fs_super, 4875 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP, 4876 }; 4877 MODULE_ALIAS_FS("f2fs"); 4878 4879 static int __init init_inodecache(void) 4880 { 4881 f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache", 4882 sizeof(struct f2fs_inode_info), 0, 4883 SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL); 4884 return f2fs_inode_cachep ? 0 : -ENOMEM; 4885 } 4886 4887 static void destroy_inodecache(void) 4888 { 4889 /* 4890 * Make sure all delayed rcu free inodes are flushed before we 4891 * destroy cache. 4892 */ 4893 rcu_barrier(); 4894 kmem_cache_destroy(f2fs_inode_cachep); 4895 } 4896 4897 static int __init init_f2fs_fs(void) 4898 { 4899 int err; 4900 4901 if (PAGE_SIZE != F2FS_BLKSIZE) { 4902 printk("F2FS not supported on PAGE_SIZE(%lu) != %d\n", 4903 PAGE_SIZE, F2FS_BLKSIZE); 4904 return -EINVAL; 4905 } 4906 4907 err = init_inodecache(); 4908 if (err) 4909 goto fail; 4910 err = f2fs_create_node_manager_caches(); 4911 if (err) 4912 goto free_inodecache; 4913 err = f2fs_create_segment_manager_caches(); 4914 if (err) 4915 goto free_node_manager_caches; 4916 err = f2fs_create_checkpoint_caches(); 4917 if (err) 4918 goto free_segment_manager_caches; 4919 err = f2fs_create_recovery_cache(); 4920 if (err) 4921 goto free_checkpoint_caches; 4922 err = f2fs_create_extent_cache(); 4923 if (err) 4924 goto free_recovery_cache; 4925 err = f2fs_create_garbage_collection_cache(); 4926 if (err) 4927 goto free_extent_cache; 4928 err = f2fs_init_sysfs(); 4929 if (err) 4930 goto free_garbage_collection_cache; 4931 err = register_shrinker(&f2fs_shrinker_info, "f2fs-shrinker"); 4932 if (err) 4933 goto free_sysfs; 4934 err = register_filesystem(&f2fs_fs_type); 4935 if (err) 4936 goto free_shrinker; 4937 f2fs_create_root_stats(); 4938 err = f2fs_init_post_read_processing(); 4939 if (err) 4940 goto free_root_stats; 4941 err = f2fs_init_iostat_processing(); 4942 if (err) 4943 goto free_post_read; 4944 err = f2fs_init_bio_entry_cache(); 4945 if (err) 4946 goto free_iostat; 4947 err = f2fs_init_bioset(); 4948 if (err) 4949 goto free_bio_entry_cache; 4950 err = f2fs_init_compress_mempool(); 4951 if (err) 4952 goto free_bioset; 4953 err = f2fs_init_compress_cache(); 4954 if (err) 4955 goto free_compress_mempool; 4956 err = f2fs_create_casefold_cache(); 4957 if (err) 4958 goto free_compress_cache; 4959 return 0; 4960 free_compress_cache: 4961 f2fs_destroy_compress_cache(); 4962 free_compress_mempool: 4963 f2fs_destroy_compress_mempool(); 4964 free_bioset: 4965 f2fs_destroy_bioset(); 4966 free_bio_entry_cache: 4967 f2fs_destroy_bio_entry_cache(); 4968 free_iostat: 4969 f2fs_destroy_iostat_processing(); 4970 free_post_read: 4971 f2fs_destroy_post_read_processing(); 4972 free_root_stats: 4973 f2fs_destroy_root_stats(); 4974 unregister_filesystem(&f2fs_fs_type); 4975 free_shrinker: 4976 unregister_shrinker(&f2fs_shrinker_info); 4977 free_sysfs: 4978 f2fs_exit_sysfs(); 4979 free_garbage_collection_cache: 4980 f2fs_destroy_garbage_collection_cache(); 4981 free_extent_cache: 4982 f2fs_destroy_extent_cache(); 4983 free_recovery_cache: 4984 f2fs_destroy_recovery_cache(); 4985 free_checkpoint_caches: 4986 f2fs_destroy_checkpoint_caches(); 4987 free_segment_manager_caches: 4988 f2fs_destroy_segment_manager_caches(); 4989 free_node_manager_caches: 4990 f2fs_destroy_node_manager_caches(); 4991 free_inodecache: 4992 destroy_inodecache(); 4993 fail: 4994 return err; 4995 } 4996 4997 static void __exit exit_f2fs_fs(void) 4998 { 4999 f2fs_destroy_casefold_cache(); 5000 f2fs_destroy_compress_cache(); 5001 f2fs_destroy_compress_mempool(); 5002 f2fs_destroy_bioset(); 5003 f2fs_destroy_bio_entry_cache(); 5004 f2fs_destroy_iostat_processing(); 5005 f2fs_destroy_post_read_processing(); 5006 f2fs_destroy_root_stats(); 5007 unregister_filesystem(&f2fs_fs_type); 5008 unregister_shrinker(&f2fs_shrinker_info); 5009 f2fs_exit_sysfs(); 5010 f2fs_destroy_garbage_collection_cache(); 5011 f2fs_destroy_extent_cache(); 5012 f2fs_destroy_recovery_cache(); 5013 f2fs_destroy_checkpoint_caches(); 5014 f2fs_destroy_segment_manager_caches(); 5015 f2fs_destroy_node_manager_caches(); 5016 destroy_inodecache(); 5017 } 5018 5019 module_init(init_f2fs_fs) 5020 module_exit(exit_f2fs_fs) 5021 5022 MODULE_AUTHOR("Samsung Electronics's Praesto Team"); 5023 MODULE_DESCRIPTION("Flash Friendly File System"); 5024 MODULE_LICENSE("GPL"); 5025 MODULE_SOFTDEP("pre: crc32"); 5026 5027