xref: /openbmc/linux/fs/f2fs/super.c (revision 110e6f26)
1 /*
2  * fs/f2fs/super.c
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/fs.h>
14 #include <linux/statfs.h>
15 #include <linux/buffer_head.h>
16 #include <linux/backing-dev.h>
17 #include <linux/kthread.h>
18 #include <linux/parser.h>
19 #include <linux/mount.h>
20 #include <linux/seq_file.h>
21 #include <linux/proc_fs.h>
22 #include <linux/random.h>
23 #include <linux/exportfs.h>
24 #include <linux/blkdev.h>
25 #include <linux/f2fs_fs.h>
26 #include <linux/sysfs.h>
27 
28 #include "f2fs.h"
29 #include "node.h"
30 #include "segment.h"
31 #include "xattr.h"
32 #include "gc.h"
33 #include "trace.h"
34 
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/f2fs.h>
37 
38 static struct proc_dir_entry *f2fs_proc_root;
39 static struct kmem_cache *f2fs_inode_cachep;
40 static struct kset *f2fs_kset;
41 
42 /* f2fs-wide shrinker description */
43 static struct shrinker f2fs_shrinker_info = {
44 	.scan_objects = f2fs_shrink_scan,
45 	.count_objects = f2fs_shrink_count,
46 	.seeks = DEFAULT_SEEKS,
47 };
48 
49 enum {
50 	Opt_gc_background,
51 	Opt_disable_roll_forward,
52 	Opt_norecovery,
53 	Opt_discard,
54 	Opt_noheap,
55 	Opt_user_xattr,
56 	Opt_nouser_xattr,
57 	Opt_acl,
58 	Opt_noacl,
59 	Opt_active_logs,
60 	Opt_disable_ext_identify,
61 	Opt_inline_xattr,
62 	Opt_inline_data,
63 	Opt_inline_dentry,
64 	Opt_flush_merge,
65 	Opt_nobarrier,
66 	Opt_fastboot,
67 	Opt_extent_cache,
68 	Opt_noextent_cache,
69 	Opt_noinline_data,
70 	Opt_data_flush,
71 	Opt_err,
72 };
73 
74 static match_table_t f2fs_tokens = {
75 	{Opt_gc_background, "background_gc=%s"},
76 	{Opt_disable_roll_forward, "disable_roll_forward"},
77 	{Opt_norecovery, "norecovery"},
78 	{Opt_discard, "discard"},
79 	{Opt_noheap, "no_heap"},
80 	{Opt_user_xattr, "user_xattr"},
81 	{Opt_nouser_xattr, "nouser_xattr"},
82 	{Opt_acl, "acl"},
83 	{Opt_noacl, "noacl"},
84 	{Opt_active_logs, "active_logs=%u"},
85 	{Opt_disable_ext_identify, "disable_ext_identify"},
86 	{Opt_inline_xattr, "inline_xattr"},
87 	{Opt_inline_data, "inline_data"},
88 	{Opt_inline_dentry, "inline_dentry"},
89 	{Opt_flush_merge, "flush_merge"},
90 	{Opt_nobarrier, "nobarrier"},
91 	{Opt_fastboot, "fastboot"},
92 	{Opt_extent_cache, "extent_cache"},
93 	{Opt_noextent_cache, "noextent_cache"},
94 	{Opt_noinline_data, "noinline_data"},
95 	{Opt_data_flush, "data_flush"},
96 	{Opt_err, NULL},
97 };
98 
99 /* Sysfs support for f2fs */
100 enum {
101 	GC_THREAD,	/* struct f2fs_gc_thread */
102 	SM_INFO,	/* struct f2fs_sm_info */
103 	NM_INFO,	/* struct f2fs_nm_info */
104 	F2FS_SBI,	/* struct f2fs_sb_info */
105 };
106 
107 struct f2fs_attr {
108 	struct attribute attr;
109 	ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
110 	ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
111 			 const char *, size_t);
112 	int struct_type;
113 	int offset;
114 };
115 
116 static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
117 {
118 	if (struct_type == GC_THREAD)
119 		return (unsigned char *)sbi->gc_thread;
120 	else if (struct_type == SM_INFO)
121 		return (unsigned char *)SM_I(sbi);
122 	else if (struct_type == NM_INFO)
123 		return (unsigned char *)NM_I(sbi);
124 	else if (struct_type == F2FS_SBI)
125 		return (unsigned char *)sbi;
126 	return NULL;
127 }
128 
129 static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
130 		struct f2fs_sb_info *sbi, char *buf)
131 {
132 	struct super_block *sb = sbi->sb;
133 
134 	if (!sb->s_bdev->bd_part)
135 		return snprintf(buf, PAGE_SIZE, "0\n");
136 
137 	return snprintf(buf, PAGE_SIZE, "%llu\n",
138 		(unsigned long long)(sbi->kbytes_written +
139 			BD_PART_WRITTEN(sbi)));
140 }
141 
142 static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
143 			struct f2fs_sb_info *sbi, char *buf)
144 {
145 	unsigned char *ptr = NULL;
146 	unsigned int *ui;
147 
148 	ptr = __struct_ptr(sbi, a->struct_type);
149 	if (!ptr)
150 		return -EINVAL;
151 
152 	ui = (unsigned int *)(ptr + a->offset);
153 
154 	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
155 }
156 
157 static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
158 			struct f2fs_sb_info *sbi,
159 			const char *buf, size_t count)
160 {
161 	unsigned char *ptr;
162 	unsigned long t;
163 	unsigned int *ui;
164 	ssize_t ret;
165 
166 	ptr = __struct_ptr(sbi, a->struct_type);
167 	if (!ptr)
168 		return -EINVAL;
169 
170 	ui = (unsigned int *)(ptr + a->offset);
171 
172 	ret = kstrtoul(skip_spaces(buf), 0, &t);
173 	if (ret < 0)
174 		return ret;
175 	*ui = t;
176 	return count;
177 }
178 
179 static ssize_t f2fs_attr_show(struct kobject *kobj,
180 				struct attribute *attr, char *buf)
181 {
182 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
183 								s_kobj);
184 	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
185 
186 	return a->show ? a->show(a, sbi, buf) : 0;
187 }
188 
189 static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
190 						const char *buf, size_t len)
191 {
192 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
193 									s_kobj);
194 	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
195 
196 	return a->store ? a->store(a, sbi, buf, len) : 0;
197 }
198 
199 static void f2fs_sb_release(struct kobject *kobj)
200 {
201 	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
202 								s_kobj);
203 	complete(&sbi->s_kobj_unregister);
204 }
205 
206 #define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
207 static struct f2fs_attr f2fs_attr_##_name = {			\
208 	.attr = {.name = __stringify(_name), .mode = _mode },	\
209 	.show	= _show,					\
210 	.store	= _store,					\
211 	.struct_type = _struct_type,				\
212 	.offset = _offset					\
213 }
214 
215 #define F2FS_RW_ATTR(struct_type, struct_name, name, elname)	\
216 	F2FS_ATTR_OFFSET(struct_type, name, 0644,		\
217 		f2fs_sbi_show, f2fs_sbi_store,			\
218 		offsetof(struct struct_name, elname))
219 
220 #define F2FS_GENERAL_RO_ATTR(name) \
221 static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
222 
223 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
224 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
225 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
226 F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
227 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
228 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
229 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
230 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
231 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
232 F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
233 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
234 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
235 F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
236 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
237 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
238 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
239 F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
240 F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
241 
242 #define ATTR_LIST(name) (&f2fs_attr_##name.attr)
243 static struct attribute *f2fs_attrs[] = {
244 	ATTR_LIST(gc_min_sleep_time),
245 	ATTR_LIST(gc_max_sleep_time),
246 	ATTR_LIST(gc_no_gc_sleep_time),
247 	ATTR_LIST(gc_idle),
248 	ATTR_LIST(reclaim_segments),
249 	ATTR_LIST(max_small_discards),
250 	ATTR_LIST(batched_trim_sections),
251 	ATTR_LIST(ipu_policy),
252 	ATTR_LIST(min_ipu_util),
253 	ATTR_LIST(min_fsync_blocks),
254 	ATTR_LIST(max_victim_search),
255 	ATTR_LIST(dir_level),
256 	ATTR_LIST(ram_thresh),
257 	ATTR_LIST(ra_nid_pages),
258 	ATTR_LIST(dirty_nats_ratio),
259 	ATTR_LIST(cp_interval),
260 	ATTR_LIST(idle_interval),
261 	ATTR_LIST(lifetime_write_kbytes),
262 	NULL,
263 };
264 
265 static const struct sysfs_ops f2fs_attr_ops = {
266 	.show	= f2fs_attr_show,
267 	.store	= f2fs_attr_store,
268 };
269 
270 static struct kobj_type f2fs_ktype = {
271 	.default_attrs	= f2fs_attrs,
272 	.sysfs_ops	= &f2fs_attr_ops,
273 	.release	= f2fs_sb_release,
274 };
275 
276 void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
277 {
278 	struct va_format vaf;
279 	va_list args;
280 
281 	va_start(args, fmt);
282 	vaf.fmt = fmt;
283 	vaf.va = &args;
284 	printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
285 	va_end(args);
286 }
287 
288 static void init_once(void *foo)
289 {
290 	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
291 
292 	inode_init_once(&fi->vfs_inode);
293 }
294 
295 static int parse_options(struct super_block *sb, char *options)
296 {
297 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
298 	struct request_queue *q;
299 	substring_t args[MAX_OPT_ARGS];
300 	char *p, *name;
301 	int arg = 0;
302 
303 	if (!options)
304 		return 0;
305 
306 	while ((p = strsep(&options, ",")) != NULL) {
307 		int token;
308 		if (!*p)
309 			continue;
310 		/*
311 		 * Initialize args struct so we know whether arg was
312 		 * found; some options take optional arguments.
313 		 */
314 		args[0].to = args[0].from = NULL;
315 		token = match_token(p, f2fs_tokens, args);
316 
317 		switch (token) {
318 		case Opt_gc_background:
319 			name = match_strdup(&args[0]);
320 
321 			if (!name)
322 				return -ENOMEM;
323 			if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
324 				set_opt(sbi, BG_GC);
325 				clear_opt(sbi, FORCE_FG_GC);
326 			} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
327 				clear_opt(sbi, BG_GC);
328 				clear_opt(sbi, FORCE_FG_GC);
329 			} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
330 				set_opt(sbi, BG_GC);
331 				set_opt(sbi, FORCE_FG_GC);
332 			} else {
333 				kfree(name);
334 				return -EINVAL;
335 			}
336 			kfree(name);
337 			break;
338 		case Opt_disable_roll_forward:
339 			set_opt(sbi, DISABLE_ROLL_FORWARD);
340 			break;
341 		case Opt_norecovery:
342 			/* this option mounts f2fs with ro */
343 			set_opt(sbi, DISABLE_ROLL_FORWARD);
344 			if (!f2fs_readonly(sb))
345 				return -EINVAL;
346 			break;
347 		case Opt_discard:
348 			q = bdev_get_queue(sb->s_bdev);
349 			if (blk_queue_discard(q)) {
350 				set_opt(sbi, DISCARD);
351 			} else {
352 				f2fs_msg(sb, KERN_WARNING,
353 					"mounting with \"discard\" option, but "
354 					"the device does not support discard");
355 			}
356 			break;
357 		case Opt_noheap:
358 			set_opt(sbi, NOHEAP);
359 			break;
360 #ifdef CONFIG_F2FS_FS_XATTR
361 		case Opt_user_xattr:
362 			set_opt(sbi, XATTR_USER);
363 			break;
364 		case Opt_nouser_xattr:
365 			clear_opt(sbi, XATTR_USER);
366 			break;
367 		case Opt_inline_xattr:
368 			set_opt(sbi, INLINE_XATTR);
369 			break;
370 #else
371 		case Opt_user_xattr:
372 			f2fs_msg(sb, KERN_INFO,
373 				"user_xattr options not supported");
374 			break;
375 		case Opt_nouser_xattr:
376 			f2fs_msg(sb, KERN_INFO,
377 				"nouser_xattr options not supported");
378 			break;
379 		case Opt_inline_xattr:
380 			f2fs_msg(sb, KERN_INFO,
381 				"inline_xattr options not supported");
382 			break;
383 #endif
384 #ifdef CONFIG_F2FS_FS_POSIX_ACL
385 		case Opt_acl:
386 			set_opt(sbi, POSIX_ACL);
387 			break;
388 		case Opt_noacl:
389 			clear_opt(sbi, POSIX_ACL);
390 			break;
391 #else
392 		case Opt_acl:
393 			f2fs_msg(sb, KERN_INFO, "acl options not supported");
394 			break;
395 		case Opt_noacl:
396 			f2fs_msg(sb, KERN_INFO, "noacl options not supported");
397 			break;
398 #endif
399 		case Opt_active_logs:
400 			if (args->from && match_int(args, &arg))
401 				return -EINVAL;
402 			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
403 				return -EINVAL;
404 			sbi->active_logs = arg;
405 			break;
406 		case Opt_disable_ext_identify:
407 			set_opt(sbi, DISABLE_EXT_IDENTIFY);
408 			break;
409 		case Opt_inline_data:
410 			set_opt(sbi, INLINE_DATA);
411 			break;
412 		case Opt_inline_dentry:
413 			set_opt(sbi, INLINE_DENTRY);
414 			break;
415 		case Opt_flush_merge:
416 			set_opt(sbi, FLUSH_MERGE);
417 			break;
418 		case Opt_nobarrier:
419 			set_opt(sbi, NOBARRIER);
420 			break;
421 		case Opt_fastboot:
422 			set_opt(sbi, FASTBOOT);
423 			break;
424 		case Opt_extent_cache:
425 			set_opt(sbi, EXTENT_CACHE);
426 			break;
427 		case Opt_noextent_cache:
428 			clear_opt(sbi, EXTENT_CACHE);
429 			break;
430 		case Opt_noinline_data:
431 			clear_opt(sbi, INLINE_DATA);
432 			break;
433 		case Opt_data_flush:
434 			set_opt(sbi, DATA_FLUSH);
435 			break;
436 		default:
437 			f2fs_msg(sb, KERN_ERR,
438 				"Unrecognized mount option \"%s\" or missing value",
439 				p);
440 			return -EINVAL;
441 		}
442 	}
443 	return 0;
444 }
445 
446 static struct inode *f2fs_alloc_inode(struct super_block *sb)
447 {
448 	struct f2fs_inode_info *fi;
449 
450 	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
451 	if (!fi)
452 		return NULL;
453 
454 	init_once((void *) fi);
455 
456 	/* Initialize f2fs-specific inode info */
457 	fi->vfs_inode.i_version = 1;
458 	atomic_set(&fi->dirty_pages, 0);
459 	fi->i_current_depth = 1;
460 	fi->i_advise = 0;
461 	init_rwsem(&fi->i_sem);
462 	INIT_LIST_HEAD(&fi->dirty_list);
463 	INIT_LIST_HEAD(&fi->inmem_pages);
464 	mutex_init(&fi->inmem_lock);
465 
466 	set_inode_flag(fi, FI_NEW_INODE);
467 
468 	if (test_opt(F2FS_SB(sb), INLINE_XATTR))
469 		set_inode_flag(fi, FI_INLINE_XATTR);
470 
471 	/* Will be used by directory only */
472 	fi->i_dir_level = F2FS_SB(sb)->dir_level;
473 	return &fi->vfs_inode;
474 }
475 
476 static int f2fs_drop_inode(struct inode *inode)
477 {
478 	/*
479 	 * This is to avoid a deadlock condition like below.
480 	 * writeback_single_inode(inode)
481 	 *  - f2fs_write_data_page
482 	 *    - f2fs_gc -> iput -> evict
483 	 *       - inode_wait_for_writeback(inode)
484 	 */
485 	if (!inode_unhashed(inode) && inode->i_state & I_SYNC) {
486 		if (!inode->i_nlink && !is_bad_inode(inode)) {
487 			/* to avoid evict_inode call simultaneously */
488 			atomic_inc(&inode->i_count);
489 			spin_unlock(&inode->i_lock);
490 
491 			/* some remained atomic pages should discarded */
492 			if (f2fs_is_atomic_file(inode))
493 				drop_inmem_pages(inode);
494 
495 			/* should remain fi->extent_tree for writepage */
496 			f2fs_destroy_extent_node(inode);
497 
498 			sb_start_intwrite(inode->i_sb);
499 			i_size_write(inode, 0);
500 
501 			if (F2FS_HAS_BLOCKS(inode))
502 				f2fs_truncate(inode, true);
503 
504 			sb_end_intwrite(inode->i_sb);
505 
506 			fscrypt_put_encryption_info(inode, NULL);
507 			spin_lock(&inode->i_lock);
508 			atomic_dec(&inode->i_count);
509 		}
510 		return 0;
511 	}
512 	return generic_drop_inode(inode);
513 }
514 
515 /*
516  * f2fs_dirty_inode() is called from __mark_inode_dirty()
517  *
518  * We should call set_dirty_inode to write the dirty inode through write_inode.
519  */
520 static void f2fs_dirty_inode(struct inode *inode, int flags)
521 {
522 	set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
523 }
524 
525 static void f2fs_i_callback(struct rcu_head *head)
526 {
527 	struct inode *inode = container_of(head, struct inode, i_rcu);
528 	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
529 }
530 
531 static void f2fs_destroy_inode(struct inode *inode)
532 {
533 	call_rcu(&inode->i_rcu, f2fs_i_callback);
534 }
535 
536 static void f2fs_put_super(struct super_block *sb)
537 {
538 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
539 
540 	if (sbi->s_proc) {
541 		remove_proc_entry("segment_info", sbi->s_proc);
542 		remove_proc_entry(sb->s_id, f2fs_proc_root);
543 	}
544 	kobject_del(&sbi->s_kobj);
545 
546 	stop_gc_thread(sbi);
547 
548 	/* prevent remaining shrinker jobs */
549 	mutex_lock(&sbi->umount_mutex);
550 
551 	/*
552 	 * We don't need to do checkpoint when superblock is clean.
553 	 * But, the previous checkpoint was not done by umount, it needs to do
554 	 * clean checkpoint again.
555 	 */
556 	if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
557 			!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
558 		struct cp_control cpc = {
559 			.reason = CP_UMOUNT,
560 		};
561 		write_checkpoint(sbi, &cpc);
562 	}
563 
564 	/* write_checkpoint can update stat informaion */
565 	f2fs_destroy_stats(sbi);
566 
567 	/*
568 	 * normally superblock is clean, so we need to release this.
569 	 * In addition, EIO will skip do checkpoint, we need this as well.
570 	 */
571 	release_ino_entry(sbi);
572 	release_discard_addrs(sbi);
573 
574 	f2fs_leave_shrinker(sbi);
575 	mutex_unlock(&sbi->umount_mutex);
576 
577 	/* our cp_error case, we can wait for any writeback page */
578 	if (get_pages(sbi, F2FS_WRITEBACK))
579 		f2fs_flush_merged_bios(sbi);
580 
581 	iput(sbi->node_inode);
582 	iput(sbi->meta_inode);
583 
584 	/* destroy f2fs internal modules */
585 	destroy_node_manager(sbi);
586 	destroy_segment_manager(sbi);
587 
588 	kfree(sbi->ckpt);
589 	kobject_put(&sbi->s_kobj);
590 	wait_for_completion(&sbi->s_kobj_unregister);
591 
592 	sb->s_fs_info = NULL;
593 	if (sbi->s_chksum_driver)
594 		crypto_free_shash(sbi->s_chksum_driver);
595 	kfree(sbi->raw_super);
596 	kfree(sbi);
597 }
598 
599 int f2fs_sync_fs(struct super_block *sb, int sync)
600 {
601 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
602 	int err = 0;
603 
604 	trace_f2fs_sync_fs(sb, sync);
605 
606 	if (sync) {
607 		struct cp_control cpc;
608 
609 		cpc.reason = __get_cp_reason(sbi);
610 
611 		mutex_lock(&sbi->gc_mutex);
612 		err = write_checkpoint(sbi, &cpc);
613 		mutex_unlock(&sbi->gc_mutex);
614 	}
615 	f2fs_trace_ios(NULL, 1);
616 
617 	return err;
618 }
619 
620 static int f2fs_freeze(struct super_block *sb)
621 {
622 	int err;
623 
624 	if (f2fs_readonly(sb))
625 		return 0;
626 
627 	err = f2fs_sync_fs(sb, 1);
628 	return err;
629 }
630 
631 static int f2fs_unfreeze(struct super_block *sb)
632 {
633 	return 0;
634 }
635 
636 static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
637 {
638 	struct super_block *sb = dentry->d_sb;
639 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
640 	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
641 	block_t total_count, user_block_count, start_count, ovp_count;
642 
643 	total_count = le64_to_cpu(sbi->raw_super->block_count);
644 	user_block_count = sbi->user_block_count;
645 	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
646 	ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
647 	buf->f_type = F2FS_SUPER_MAGIC;
648 	buf->f_bsize = sbi->blocksize;
649 
650 	buf->f_blocks = total_count - start_count;
651 	buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
652 	buf->f_bavail = user_block_count - valid_user_blocks(sbi);
653 
654 	buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
655 	buf->f_ffree = buf->f_files - valid_inode_count(sbi);
656 
657 	buf->f_namelen = F2FS_NAME_LEN;
658 	buf->f_fsid.val[0] = (u32)id;
659 	buf->f_fsid.val[1] = (u32)(id >> 32);
660 
661 	return 0;
662 }
663 
664 static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
665 {
666 	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
667 
668 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
669 		if (test_opt(sbi, FORCE_FG_GC))
670 			seq_printf(seq, ",background_gc=%s", "sync");
671 		else
672 			seq_printf(seq, ",background_gc=%s", "on");
673 	} else {
674 		seq_printf(seq, ",background_gc=%s", "off");
675 	}
676 	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
677 		seq_puts(seq, ",disable_roll_forward");
678 	if (test_opt(sbi, DISCARD))
679 		seq_puts(seq, ",discard");
680 	if (test_opt(sbi, NOHEAP))
681 		seq_puts(seq, ",no_heap_alloc");
682 #ifdef CONFIG_F2FS_FS_XATTR
683 	if (test_opt(sbi, XATTR_USER))
684 		seq_puts(seq, ",user_xattr");
685 	else
686 		seq_puts(seq, ",nouser_xattr");
687 	if (test_opt(sbi, INLINE_XATTR))
688 		seq_puts(seq, ",inline_xattr");
689 #endif
690 #ifdef CONFIG_F2FS_FS_POSIX_ACL
691 	if (test_opt(sbi, POSIX_ACL))
692 		seq_puts(seq, ",acl");
693 	else
694 		seq_puts(seq, ",noacl");
695 #endif
696 	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
697 		seq_puts(seq, ",disable_ext_identify");
698 	if (test_opt(sbi, INLINE_DATA))
699 		seq_puts(seq, ",inline_data");
700 	else
701 		seq_puts(seq, ",noinline_data");
702 	if (test_opt(sbi, INLINE_DENTRY))
703 		seq_puts(seq, ",inline_dentry");
704 	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
705 		seq_puts(seq, ",flush_merge");
706 	if (test_opt(sbi, NOBARRIER))
707 		seq_puts(seq, ",nobarrier");
708 	if (test_opt(sbi, FASTBOOT))
709 		seq_puts(seq, ",fastboot");
710 	if (test_opt(sbi, EXTENT_CACHE))
711 		seq_puts(seq, ",extent_cache");
712 	else
713 		seq_puts(seq, ",noextent_cache");
714 	if (test_opt(sbi, DATA_FLUSH))
715 		seq_puts(seq, ",data_flush");
716 	seq_printf(seq, ",active_logs=%u", sbi->active_logs);
717 
718 	return 0;
719 }
720 
721 static int segment_info_seq_show(struct seq_file *seq, void *offset)
722 {
723 	struct super_block *sb = seq->private;
724 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
725 	unsigned int total_segs =
726 			le32_to_cpu(sbi->raw_super->segment_count_main);
727 	int i;
728 
729 	seq_puts(seq, "format: segment_type|valid_blocks\n"
730 		"segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
731 
732 	for (i = 0; i < total_segs; i++) {
733 		struct seg_entry *se = get_seg_entry(sbi, i);
734 
735 		if ((i % 10) == 0)
736 			seq_printf(seq, "%-10d", i);
737 		seq_printf(seq, "%d|%-3u", se->type,
738 					get_valid_blocks(sbi, i, 1));
739 		if ((i % 10) == 9 || i == (total_segs - 1))
740 			seq_putc(seq, '\n');
741 		else
742 			seq_putc(seq, ' ');
743 	}
744 
745 	return 0;
746 }
747 
748 static int segment_info_open_fs(struct inode *inode, struct file *file)
749 {
750 	return single_open(file, segment_info_seq_show, PDE_DATA(inode));
751 }
752 
753 static const struct file_operations f2fs_seq_segment_info_fops = {
754 	.owner = THIS_MODULE,
755 	.open = segment_info_open_fs,
756 	.read = seq_read,
757 	.llseek = seq_lseek,
758 	.release = single_release,
759 };
760 
761 static void default_options(struct f2fs_sb_info *sbi)
762 {
763 	/* init some FS parameters */
764 	sbi->active_logs = NR_CURSEG_TYPE;
765 
766 	set_opt(sbi, BG_GC);
767 	set_opt(sbi, INLINE_DATA);
768 	set_opt(sbi, EXTENT_CACHE);
769 
770 #ifdef CONFIG_F2FS_FS_XATTR
771 	set_opt(sbi, XATTR_USER);
772 #endif
773 #ifdef CONFIG_F2FS_FS_POSIX_ACL
774 	set_opt(sbi, POSIX_ACL);
775 #endif
776 }
777 
778 static int f2fs_remount(struct super_block *sb, int *flags, char *data)
779 {
780 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
781 	struct f2fs_mount_info org_mount_opt;
782 	int err, active_logs;
783 	bool need_restart_gc = false;
784 	bool need_stop_gc = false;
785 	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
786 
787 	/*
788 	 * Save the old mount options in case we
789 	 * need to restore them.
790 	 */
791 	org_mount_opt = sbi->mount_opt;
792 	active_logs = sbi->active_logs;
793 
794 	if (*flags & MS_RDONLY) {
795 		set_opt(sbi, FASTBOOT);
796 		set_sbi_flag(sbi, SBI_IS_DIRTY);
797 	}
798 
799 	sync_filesystem(sb);
800 
801 	sbi->mount_opt.opt = 0;
802 	default_options(sbi);
803 
804 	/* parse mount options */
805 	err = parse_options(sb, data);
806 	if (err)
807 		goto restore_opts;
808 
809 	/*
810 	 * Previous and new state of filesystem is RO,
811 	 * so skip checking GC and FLUSH_MERGE conditions.
812 	 */
813 	if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
814 		goto skip;
815 
816 	/* disallow enable/disable extent_cache dynamically */
817 	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
818 		err = -EINVAL;
819 		f2fs_msg(sbi->sb, KERN_WARNING,
820 				"switch extent_cache option is not allowed");
821 		goto restore_opts;
822 	}
823 
824 	/*
825 	 * We stop the GC thread if FS is mounted as RO
826 	 * or if background_gc = off is passed in mount
827 	 * option. Also sync the filesystem.
828 	 */
829 	if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
830 		if (sbi->gc_thread) {
831 			stop_gc_thread(sbi);
832 			f2fs_sync_fs(sb, 1);
833 			need_restart_gc = true;
834 		}
835 	} else if (!sbi->gc_thread) {
836 		err = start_gc_thread(sbi);
837 		if (err)
838 			goto restore_opts;
839 		need_stop_gc = true;
840 	}
841 
842 	/*
843 	 * We stop issue flush thread if FS is mounted as RO
844 	 * or if flush_merge is not passed in mount option.
845 	 */
846 	if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
847 		destroy_flush_cmd_control(sbi);
848 	} else if (!SM_I(sbi)->cmd_control_info) {
849 		err = create_flush_cmd_control(sbi);
850 		if (err)
851 			goto restore_gc;
852 	}
853 skip:
854 	/* Update the POSIXACL Flag */
855 	 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
856 		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
857 	return 0;
858 restore_gc:
859 	if (need_restart_gc) {
860 		if (start_gc_thread(sbi))
861 			f2fs_msg(sbi->sb, KERN_WARNING,
862 				"background gc thread has stopped");
863 	} else if (need_stop_gc) {
864 		stop_gc_thread(sbi);
865 	}
866 restore_opts:
867 	sbi->mount_opt = org_mount_opt;
868 	sbi->active_logs = active_logs;
869 	return err;
870 }
871 
872 static struct super_operations f2fs_sops = {
873 	.alloc_inode	= f2fs_alloc_inode,
874 	.drop_inode	= f2fs_drop_inode,
875 	.destroy_inode	= f2fs_destroy_inode,
876 	.write_inode	= f2fs_write_inode,
877 	.dirty_inode	= f2fs_dirty_inode,
878 	.show_options	= f2fs_show_options,
879 	.evict_inode	= f2fs_evict_inode,
880 	.put_super	= f2fs_put_super,
881 	.sync_fs	= f2fs_sync_fs,
882 	.freeze_fs	= f2fs_freeze,
883 	.unfreeze_fs	= f2fs_unfreeze,
884 	.statfs		= f2fs_statfs,
885 	.remount_fs	= f2fs_remount,
886 };
887 
888 #ifdef CONFIG_F2FS_FS_ENCRYPTION
889 static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
890 {
891 	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
892 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
893 				ctx, len, NULL);
894 }
895 
896 static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
897 							void *fs_data)
898 {
899 	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
900 				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
901 				ctx, len, fs_data, XATTR_CREATE);
902 }
903 
904 static unsigned f2fs_max_namelen(struct inode *inode)
905 {
906 	return S_ISLNK(inode->i_mode) ?
907 			inode->i_sb->s_blocksize : F2FS_NAME_LEN;
908 }
909 
910 static struct fscrypt_operations f2fs_cryptops = {
911 	.get_context	= f2fs_get_context,
912 	.set_context	= f2fs_set_context,
913 	.is_encrypted	= f2fs_encrypted_inode,
914 	.empty_dir	= f2fs_empty_dir,
915 	.max_namelen	= f2fs_max_namelen,
916 };
917 #else
918 static struct fscrypt_operations f2fs_cryptops = {
919 	.is_encrypted	= f2fs_encrypted_inode,
920 };
921 #endif
922 
923 static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
924 		u64 ino, u32 generation)
925 {
926 	struct f2fs_sb_info *sbi = F2FS_SB(sb);
927 	struct inode *inode;
928 
929 	if (check_nid_range(sbi, ino))
930 		return ERR_PTR(-ESTALE);
931 
932 	/*
933 	 * f2fs_iget isn't quite right if the inode is currently unallocated!
934 	 * However f2fs_iget currently does appropriate checks to handle stale
935 	 * inodes so everything is OK.
936 	 */
937 	inode = f2fs_iget(sb, ino);
938 	if (IS_ERR(inode))
939 		return ERR_CAST(inode);
940 	if (unlikely(generation && inode->i_generation != generation)) {
941 		/* we didn't find the right inode.. */
942 		iput(inode);
943 		return ERR_PTR(-ESTALE);
944 	}
945 	return inode;
946 }
947 
948 static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
949 		int fh_len, int fh_type)
950 {
951 	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
952 				    f2fs_nfs_get_inode);
953 }
954 
955 static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
956 		int fh_len, int fh_type)
957 {
958 	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
959 				    f2fs_nfs_get_inode);
960 }
961 
962 static const struct export_operations f2fs_export_ops = {
963 	.fh_to_dentry = f2fs_fh_to_dentry,
964 	.fh_to_parent = f2fs_fh_to_parent,
965 	.get_parent = f2fs_get_parent,
966 };
967 
968 static loff_t max_file_blocks(void)
969 {
970 	loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
971 	loff_t leaf_count = ADDRS_PER_BLOCK;
972 
973 	/* two direct node blocks */
974 	result += (leaf_count * 2);
975 
976 	/* two indirect node blocks */
977 	leaf_count *= NIDS_PER_BLOCK;
978 	result += (leaf_count * 2);
979 
980 	/* one double indirect node block */
981 	leaf_count *= NIDS_PER_BLOCK;
982 	result += leaf_count;
983 
984 	return result;
985 }
986 
987 static int __f2fs_commit_super(struct buffer_head *bh,
988 			struct f2fs_super_block *super)
989 {
990 	lock_buffer(bh);
991 	if (super)
992 		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
993 	set_buffer_uptodate(bh);
994 	set_buffer_dirty(bh);
995 	unlock_buffer(bh);
996 
997 	/* it's rare case, we can do fua all the time */
998 	return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
999 }
1000 
1001 static inline bool sanity_check_area_boundary(struct super_block *sb,
1002 					struct buffer_head *bh)
1003 {
1004 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1005 					(bh->b_data + F2FS_SUPER_OFFSET);
1006 	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1007 	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1008 	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1009 	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1010 	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1011 	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1012 	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1013 	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1014 	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1015 	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1016 	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1017 	u32 segment_count = le32_to_cpu(raw_super->segment_count);
1018 	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1019 	u64 main_end_blkaddr = main_blkaddr +
1020 				(segment_count_main << log_blocks_per_seg);
1021 	u64 seg_end_blkaddr = segment0_blkaddr +
1022 				(segment_count << log_blocks_per_seg);
1023 
1024 	if (segment0_blkaddr != cp_blkaddr) {
1025 		f2fs_msg(sb, KERN_INFO,
1026 			"Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1027 			segment0_blkaddr, cp_blkaddr);
1028 		return true;
1029 	}
1030 
1031 	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1032 							sit_blkaddr) {
1033 		f2fs_msg(sb, KERN_INFO,
1034 			"Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1035 			cp_blkaddr, sit_blkaddr,
1036 			segment_count_ckpt << log_blocks_per_seg);
1037 		return true;
1038 	}
1039 
1040 	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1041 							nat_blkaddr) {
1042 		f2fs_msg(sb, KERN_INFO,
1043 			"Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1044 			sit_blkaddr, nat_blkaddr,
1045 			segment_count_sit << log_blocks_per_seg);
1046 		return true;
1047 	}
1048 
1049 	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1050 							ssa_blkaddr) {
1051 		f2fs_msg(sb, KERN_INFO,
1052 			"Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1053 			nat_blkaddr, ssa_blkaddr,
1054 			segment_count_nat << log_blocks_per_seg);
1055 		return true;
1056 	}
1057 
1058 	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1059 							main_blkaddr) {
1060 		f2fs_msg(sb, KERN_INFO,
1061 			"Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1062 			ssa_blkaddr, main_blkaddr,
1063 			segment_count_ssa << log_blocks_per_seg);
1064 		return true;
1065 	}
1066 
1067 	if (main_end_blkaddr > seg_end_blkaddr) {
1068 		f2fs_msg(sb, KERN_INFO,
1069 			"Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1070 			main_blkaddr,
1071 			segment0_blkaddr +
1072 				(segment_count << log_blocks_per_seg),
1073 			segment_count_main << log_blocks_per_seg);
1074 		return true;
1075 	} else if (main_end_blkaddr < seg_end_blkaddr) {
1076 		int err = 0;
1077 		char *res;
1078 
1079 		/* fix in-memory information all the time */
1080 		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1081 				segment0_blkaddr) >> log_blocks_per_seg);
1082 
1083 		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1084 			res = "internally";
1085 		} else {
1086 			err = __f2fs_commit_super(bh, NULL);
1087 			res = err ? "failed" : "done";
1088 		}
1089 		f2fs_msg(sb, KERN_INFO,
1090 			"Fix alignment : %s, start(%u) end(%u) block(%u)",
1091 			res, main_blkaddr,
1092 			segment0_blkaddr +
1093 				(segment_count << log_blocks_per_seg),
1094 			segment_count_main << log_blocks_per_seg);
1095 		if (err)
1096 			return true;
1097 	}
1098 	return false;
1099 }
1100 
1101 static int sanity_check_raw_super(struct super_block *sb,
1102 				struct buffer_head *bh)
1103 {
1104 	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1105 					(bh->b_data + F2FS_SUPER_OFFSET);
1106 	unsigned int blocksize;
1107 
1108 	if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1109 		f2fs_msg(sb, KERN_INFO,
1110 			"Magic Mismatch, valid(0x%x) - read(0x%x)",
1111 			F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1112 		return 1;
1113 	}
1114 
1115 	/* Currently, support only 4KB page cache size */
1116 	if (F2FS_BLKSIZE != PAGE_SIZE) {
1117 		f2fs_msg(sb, KERN_INFO,
1118 			"Invalid page_cache_size (%lu), supports only 4KB\n",
1119 			PAGE_SIZE);
1120 		return 1;
1121 	}
1122 
1123 	/* Currently, support only 4KB block size */
1124 	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1125 	if (blocksize != F2FS_BLKSIZE) {
1126 		f2fs_msg(sb, KERN_INFO,
1127 			"Invalid blocksize (%u), supports only 4KB\n",
1128 			blocksize);
1129 		return 1;
1130 	}
1131 
1132 	/* check log blocks per segment */
1133 	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1134 		f2fs_msg(sb, KERN_INFO,
1135 			"Invalid log blocks per segment (%u)\n",
1136 			le32_to_cpu(raw_super->log_blocks_per_seg));
1137 		return 1;
1138 	}
1139 
1140 	/* Currently, support 512/1024/2048/4096 bytes sector size */
1141 	if (le32_to_cpu(raw_super->log_sectorsize) >
1142 				F2FS_MAX_LOG_SECTOR_SIZE ||
1143 		le32_to_cpu(raw_super->log_sectorsize) <
1144 				F2FS_MIN_LOG_SECTOR_SIZE) {
1145 		f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1146 			le32_to_cpu(raw_super->log_sectorsize));
1147 		return 1;
1148 	}
1149 	if (le32_to_cpu(raw_super->log_sectors_per_block) +
1150 		le32_to_cpu(raw_super->log_sectorsize) !=
1151 			F2FS_MAX_LOG_SECTOR_SIZE) {
1152 		f2fs_msg(sb, KERN_INFO,
1153 			"Invalid log sectors per block(%u) log sectorsize(%u)",
1154 			le32_to_cpu(raw_super->log_sectors_per_block),
1155 			le32_to_cpu(raw_super->log_sectorsize));
1156 		return 1;
1157 	}
1158 
1159 	/* check reserved ino info */
1160 	if (le32_to_cpu(raw_super->node_ino) != 1 ||
1161 		le32_to_cpu(raw_super->meta_ino) != 2 ||
1162 		le32_to_cpu(raw_super->root_ino) != 3) {
1163 		f2fs_msg(sb, KERN_INFO,
1164 			"Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1165 			le32_to_cpu(raw_super->node_ino),
1166 			le32_to_cpu(raw_super->meta_ino),
1167 			le32_to_cpu(raw_super->root_ino));
1168 		return 1;
1169 	}
1170 
1171 	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1172 	if (sanity_check_area_boundary(sb, bh))
1173 		return 1;
1174 
1175 	return 0;
1176 }
1177 
1178 int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1179 {
1180 	unsigned int total, fsmeta;
1181 	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1182 	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1183 
1184 	total = le32_to_cpu(raw_super->segment_count);
1185 	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1186 	fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1187 	fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1188 	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1189 	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1190 
1191 	if (unlikely(fsmeta >= total))
1192 		return 1;
1193 
1194 	if (unlikely(f2fs_cp_error(sbi))) {
1195 		f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1196 		return 1;
1197 	}
1198 	return 0;
1199 }
1200 
1201 static void init_sb_info(struct f2fs_sb_info *sbi)
1202 {
1203 	struct f2fs_super_block *raw_super = sbi->raw_super;
1204 	int i;
1205 
1206 	sbi->log_sectors_per_block =
1207 		le32_to_cpu(raw_super->log_sectors_per_block);
1208 	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1209 	sbi->blocksize = 1 << sbi->log_blocksize;
1210 	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1211 	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1212 	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1213 	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1214 	sbi->total_sections = le32_to_cpu(raw_super->section_count);
1215 	sbi->total_node_count =
1216 		(le32_to_cpu(raw_super->segment_count_nat) / 2)
1217 			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1218 	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1219 	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1220 	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1221 	sbi->cur_victim_sec = NULL_SECNO;
1222 	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1223 
1224 	for (i = 0; i < NR_COUNT_TYPE; i++)
1225 		atomic_set(&sbi->nr_pages[i], 0);
1226 
1227 	sbi->dir_level = DEF_DIR_LEVEL;
1228 	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1229 	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1230 	clear_sbi_flag(sbi, SBI_NEED_FSCK);
1231 
1232 	INIT_LIST_HEAD(&sbi->s_list);
1233 	mutex_init(&sbi->umount_mutex);
1234 }
1235 
1236 /*
1237  * Read f2fs raw super block.
1238  * Because we have two copies of super block, so read both of them
1239  * to get the first valid one. If any one of them is broken, we pass
1240  * them recovery flag back to the caller.
1241  */
1242 static int read_raw_super_block(struct super_block *sb,
1243 			struct f2fs_super_block **raw_super,
1244 			int *valid_super_block, int *recovery)
1245 {
1246 	int block;
1247 	struct buffer_head *bh;
1248 	struct f2fs_super_block *super;
1249 	int err = 0;
1250 
1251 	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1252 	if (!super)
1253 		return -ENOMEM;
1254 
1255 	for (block = 0; block < 2; block++) {
1256 		bh = sb_bread(sb, block);
1257 		if (!bh) {
1258 			f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1259 				block + 1);
1260 			err = -EIO;
1261 			continue;
1262 		}
1263 
1264 		/* sanity checking of raw super */
1265 		if (sanity_check_raw_super(sb, bh)) {
1266 			f2fs_msg(sb, KERN_ERR,
1267 				"Can't find valid F2FS filesystem in %dth superblock",
1268 				block + 1);
1269 			err = -EINVAL;
1270 			brelse(bh);
1271 			continue;
1272 		}
1273 
1274 		if (!*raw_super) {
1275 			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1276 							sizeof(*super));
1277 			*valid_super_block = block;
1278 			*raw_super = super;
1279 		}
1280 		brelse(bh);
1281 	}
1282 
1283 	/* Fail to read any one of the superblocks*/
1284 	if (err < 0)
1285 		*recovery = 1;
1286 
1287 	/* No valid superblock */
1288 	if (!*raw_super)
1289 		kfree(super);
1290 	else
1291 		err = 0;
1292 
1293 	return err;
1294 }
1295 
1296 int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1297 {
1298 	struct buffer_head *bh;
1299 	int err;
1300 
1301 	/* write back-up superblock first */
1302 	bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1303 	if (!bh)
1304 		return -EIO;
1305 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1306 	brelse(bh);
1307 
1308 	/* if we are in recovery path, skip writing valid superblock */
1309 	if (recover || err)
1310 		return err;
1311 
1312 	/* write current valid superblock */
1313 	bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1314 	if (!bh)
1315 		return -EIO;
1316 	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1317 	brelse(bh);
1318 	return err;
1319 }
1320 
1321 static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1322 {
1323 	struct f2fs_sb_info *sbi;
1324 	struct f2fs_super_block *raw_super;
1325 	struct inode *root;
1326 	long err;
1327 	bool retry = true, need_fsck = false;
1328 	char *options = NULL;
1329 	int recovery, i, valid_super_block;
1330 	struct curseg_info *seg_i;
1331 
1332 try_onemore:
1333 	err = -EINVAL;
1334 	raw_super = NULL;
1335 	valid_super_block = -1;
1336 	recovery = 0;
1337 
1338 	/* allocate memory for f2fs-specific super block info */
1339 	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1340 	if (!sbi)
1341 		return -ENOMEM;
1342 
1343 	/* Load the checksum driver */
1344 	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1345 	if (IS_ERR(sbi->s_chksum_driver)) {
1346 		f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1347 		err = PTR_ERR(sbi->s_chksum_driver);
1348 		sbi->s_chksum_driver = NULL;
1349 		goto free_sbi;
1350 	}
1351 
1352 	/* set a block size */
1353 	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1354 		f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1355 		goto free_sbi;
1356 	}
1357 
1358 	err = read_raw_super_block(sb, &raw_super, &valid_super_block,
1359 								&recovery);
1360 	if (err)
1361 		goto free_sbi;
1362 
1363 	sb->s_fs_info = sbi;
1364 	default_options(sbi);
1365 	/* parse mount options */
1366 	options = kstrdup((const char *)data, GFP_KERNEL);
1367 	if (data && !options) {
1368 		err = -ENOMEM;
1369 		goto free_sb_buf;
1370 	}
1371 
1372 	err = parse_options(sb, options);
1373 	if (err)
1374 		goto free_options;
1375 
1376 	sbi->max_file_blocks = max_file_blocks();
1377 	sb->s_maxbytes = sbi->max_file_blocks <<
1378 				le32_to_cpu(raw_super->log_blocksize);
1379 	sb->s_max_links = F2FS_LINK_MAX;
1380 	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1381 
1382 	sb->s_op = &f2fs_sops;
1383 	sb->s_cop = &f2fs_cryptops;
1384 	sb->s_xattr = f2fs_xattr_handlers;
1385 	sb->s_export_op = &f2fs_export_ops;
1386 	sb->s_magic = F2FS_SUPER_MAGIC;
1387 	sb->s_time_gran = 1;
1388 	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1389 		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1390 	memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1391 
1392 	/* init f2fs-specific super block info */
1393 	sbi->sb = sb;
1394 	sbi->raw_super = raw_super;
1395 	sbi->valid_super_block = valid_super_block;
1396 	mutex_init(&sbi->gc_mutex);
1397 	mutex_init(&sbi->writepages);
1398 	mutex_init(&sbi->cp_mutex);
1399 	init_rwsem(&sbi->node_write);
1400 
1401 	/* disallow all the data/node/meta page writes */
1402 	set_sbi_flag(sbi, SBI_POR_DOING);
1403 	spin_lock_init(&sbi->stat_lock);
1404 
1405 	init_rwsem(&sbi->read_io.io_rwsem);
1406 	sbi->read_io.sbi = sbi;
1407 	sbi->read_io.bio = NULL;
1408 	for (i = 0; i < NR_PAGE_TYPE; i++) {
1409 		init_rwsem(&sbi->write_io[i].io_rwsem);
1410 		sbi->write_io[i].sbi = sbi;
1411 		sbi->write_io[i].bio = NULL;
1412 	}
1413 
1414 	init_rwsem(&sbi->cp_rwsem);
1415 	init_waitqueue_head(&sbi->cp_wait);
1416 	init_sb_info(sbi);
1417 
1418 	/* get an inode for meta space */
1419 	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1420 	if (IS_ERR(sbi->meta_inode)) {
1421 		f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1422 		err = PTR_ERR(sbi->meta_inode);
1423 		goto free_options;
1424 	}
1425 
1426 	err = get_valid_checkpoint(sbi);
1427 	if (err) {
1428 		f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1429 		goto free_meta_inode;
1430 	}
1431 
1432 	sbi->total_valid_node_count =
1433 				le32_to_cpu(sbi->ckpt->valid_node_count);
1434 	sbi->total_valid_inode_count =
1435 				le32_to_cpu(sbi->ckpt->valid_inode_count);
1436 	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1437 	sbi->total_valid_block_count =
1438 				le64_to_cpu(sbi->ckpt->valid_block_count);
1439 	sbi->last_valid_block_count = sbi->total_valid_block_count;
1440 	sbi->alloc_valid_block_count = 0;
1441 	for (i = 0; i < NR_INODE_TYPE; i++) {
1442 		INIT_LIST_HEAD(&sbi->inode_list[i]);
1443 		spin_lock_init(&sbi->inode_lock[i]);
1444 	}
1445 
1446 	init_extent_cache_info(sbi);
1447 
1448 	init_ino_entry_info(sbi);
1449 
1450 	/* setup f2fs internal modules */
1451 	err = build_segment_manager(sbi);
1452 	if (err) {
1453 		f2fs_msg(sb, KERN_ERR,
1454 			"Failed to initialize F2FS segment manager");
1455 		goto free_sm;
1456 	}
1457 	err = build_node_manager(sbi);
1458 	if (err) {
1459 		f2fs_msg(sb, KERN_ERR,
1460 			"Failed to initialize F2FS node manager");
1461 		goto free_nm;
1462 	}
1463 
1464 	/* For write statistics */
1465 	if (sb->s_bdev->bd_part)
1466 		sbi->sectors_written_start =
1467 			(u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1468 
1469 	/* Read accumulated write IO statistics if exists */
1470 	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1471 	if (__exist_node_summaries(sbi))
1472 		sbi->kbytes_written =
1473 			le64_to_cpu(seg_i->journal->info.kbytes_written);
1474 
1475 	build_gc_manager(sbi);
1476 
1477 	/* get an inode for node space */
1478 	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1479 	if (IS_ERR(sbi->node_inode)) {
1480 		f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1481 		err = PTR_ERR(sbi->node_inode);
1482 		goto free_nm;
1483 	}
1484 
1485 	f2fs_join_shrinker(sbi);
1486 
1487 	/* if there are nt orphan nodes free them */
1488 	err = recover_orphan_inodes(sbi);
1489 	if (err)
1490 		goto free_node_inode;
1491 
1492 	/* read root inode and dentry */
1493 	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1494 	if (IS_ERR(root)) {
1495 		f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1496 		err = PTR_ERR(root);
1497 		goto free_node_inode;
1498 	}
1499 	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1500 		iput(root);
1501 		err = -EINVAL;
1502 		goto free_node_inode;
1503 	}
1504 
1505 	sb->s_root = d_make_root(root); /* allocate root dentry */
1506 	if (!sb->s_root) {
1507 		err = -ENOMEM;
1508 		goto free_root_inode;
1509 	}
1510 
1511 	err = f2fs_build_stats(sbi);
1512 	if (err)
1513 		goto free_root_inode;
1514 
1515 	if (f2fs_proc_root)
1516 		sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1517 
1518 	if (sbi->s_proc)
1519 		proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1520 				 &f2fs_seq_segment_info_fops, sb);
1521 
1522 	sbi->s_kobj.kset = f2fs_kset;
1523 	init_completion(&sbi->s_kobj_unregister);
1524 	err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1525 							"%s", sb->s_id);
1526 	if (err)
1527 		goto free_proc;
1528 
1529 	/* recover fsynced data */
1530 	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1531 		/*
1532 		 * mount should be failed, when device has readonly mode, and
1533 		 * previous checkpoint was not done by clean system shutdown.
1534 		 */
1535 		if (bdev_read_only(sb->s_bdev) &&
1536 				!is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1537 			err = -EROFS;
1538 			goto free_kobj;
1539 		}
1540 
1541 		if (need_fsck)
1542 			set_sbi_flag(sbi, SBI_NEED_FSCK);
1543 
1544 		err = recover_fsync_data(sbi);
1545 		if (err) {
1546 			need_fsck = true;
1547 			f2fs_msg(sb, KERN_ERR,
1548 				"Cannot recover all fsync data errno=%ld", err);
1549 			goto free_kobj;
1550 		}
1551 	}
1552 	/* recover_fsync_data() cleared this already */
1553 	clear_sbi_flag(sbi, SBI_POR_DOING);
1554 
1555 	/*
1556 	 * If filesystem is not mounted as read-only then
1557 	 * do start the gc_thread.
1558 	 */
1559 	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1560 		/* After POR, we can run background GC thread.*/
1561 		err = start_gc_thread(sbi);
1562 		if (err)
1563 			goto free_kobj;
1564 	}
1565 	kfree(options);
1566 
1567 	/* recover broken superblock */
1568 	if (recovery && !f2fs_readonly(sb) && !bdev_read_only(sb->s_bdev)) {
1569 		err = f2fs_commit_super(sbi, true);
1570 		f2fs_msg(sb, KERN_INFO,
1571 			"Try to recover %dth superblock, ret: %ld",
1572 			sbi->valid_super_block ? 1 : 2, err);
1573 	}
1574 
1575 	f2fs_update_time(sbi, CP_TIME);
1576 	f2fs_update_time(sbi, REQ_TIME);
1577 	return 0;
1578 
1579 free_kobj:
1580 	kobject_del(&sbi->s_kobj);
1581 	kobject_put(&sbi->s_kobj);
1582 	wait_for_completion(&sbi->s_kobj_unregister);
1583 free_proc:
1584 	if (sbi->s_proc) {
1585 		remove_proc_entry("segment_info", sbi->s_proc);
1586 		remove_proc_entry(sb->s_id, f2fs_proc_root);
1587 	}
1588 	f2fs_destroy_stats(sbi);
1589 free_root_inode:
1590 	dput(sb->s_root);
1591 	sb->s_root = NULL;
1592 free_node_inode:
1593 	mutex_lock(&sbi->umount_mutex);
1594 	f2fs_leave_shrinker(sbi);
1595 	iput(sbi->node_inode);
1596 	mutex_unlock(&sbi->umount_mutex);
1597 free_nm:
1598 	destroy_node_manager(sbi);
1599 free_sm:
1600 	destroy_segment_manager(sbi);
1601 	kfree(sbi->ckpt);
1602 free_meta_inode:
1603 	make_bad_inode(sbi->meta_inode);
1604 	iput(sbi->meta_inode);
1605 free_options:
1606 	kfree(options);
1607 free_sb_buf:
1608 	kfree(raw_super);
1609 free_sbi:
1610 	if (sbi->s_chksum_driver)
1611 		crypto_free_shash(sbi->s_chksum_driver);
1612 	kfree(sbi);
1613 
1614 	/* give only one another chance */
1615 	if (retry) {
1616 		retry = false;
1617 		shrink_dcache_sb(sb);
1618 		goto try_onemore;
1619 	}
1620 	return err;
1621 }
1622 
1623 static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1624 			const char *dev_name, void *data)
1625 {
1626 	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1627 }
1628 
1629 static void kill_f2fs_super(struct super_block *sb)
1630 {
1631 	if (sb->s_root)
1632 		set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1633 	kill_block_super(sb);
1634 }
1635 
1636 static struct file_system_type f2fs_fs_type = {
1637 	.owner		= THIS_MODULE,
1638 	.name		= "f2fs",
1639 	.mount		= f2fs_mount,
1640 	.kill_sb	= kill_f2fs_super,
1641 	.fs_flags	= FS_REQUIRES_DEV,
1642 };
1643 MODULE_ALIAS_FS("f2fs");
1644 
1645 static int __init init_inodecache(void)
1646 {
1647 	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
1648 			sizeof(struct f2fs_inode_info), 0,
1649 			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
1650 	if (!f2fs_inode_cachep)
1651 		return -ENOMEM;
1652 	return 0;
1653 }
1654 
1655 static void destroy_inodecache(void)
1656 {
1657 	/*
1658 	 * Make sure all delayed rcu free inodes are flushed before we
1659 	 * destroy cache.
1660 	 */
1661 	rcu_barrier();
1662 	kmem_cache_destroy(f2fs_inode_cachep);
1663 }
1664 
1665 static int __init init_f2fs_fs(void)
1666 {
1667 	int err;
1668 
1669 	f2fs_build_trace_ios();
1670 
1671 	err = init_inodecache();
1672 	if (err)
1673 		goto fail;
1674 	err = create_node_manager_caches();
1675 	if (err)
1676 		goto free_inodecache;
1677 	err = create_segment_manager_caches();
1678 	if (err)
1679 		goto free_node_manager_caches;
1680 	err = create_checkpoint_caches();
1681 	if (err)
1682 		goto free_segment_manager_caches;
1683 	err = create_extent_cache();
1684 	if (err)
1685 		goto free_checkpoint_caches;
1686 	f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1687 	if (!f2fs_kset) {
1688 		err = -ENOMEM;
1689 		goto free_extent_cache;
1690 	}
1691 	err = register_shrinker(&f2fs_shrinker_info);
1692 	if (err)
1693 		goto free_kset;
1694 
1695 	err = register_filesystem(&f2fs_fs_type);
1696 	if (err)
1697 		goto free_shrinker;
1698 	err = f2fs_create_root_stats();
1699 	if (err)
1700 		goto free_filesystem;
1701 	f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1702 	return 0;
1703 
1704 free_filesystem:
1705 	unregister_filesystem(&f2fs_fs_type);
1706 free_shrinker:
1707 	unregister_shrinker(&f2fs_shrinker_info);
1708 free_kset:
1709 	kset_unregister(f2fs_kset);
1710 free_extent_cache:
1711 	destroy_extent_cache();
1712 free_checkpoint_caches:
1713 	destroy_checkpoint_caches();
1714 free_segment_manager_caches:
1715 	destroy_segment_manager_caches();
1716 free_node_manager_caches:
1717 	destroy_node_manager_caches();
1718 free_inodecache:
1719 	destroy_inodecache();
1720 fail:
1721 	return err;
1722 }
1723 
1724 static void __exit exit_f2fs_fs(void)
1725 {
1726 	remove_proc_entry("fs/f2fs", NULL);
1727 	f2fs_destroy_root_stats();
1728 	unregister_shrinker(&f2fs_shrinker_info);
1729 	unregister_filesystem(&f2fs_fs_type);
1730 	destroy_extent_cache();
1731 	destroy_checkpoint_caches();
1732 	destroy_segment_manager_caches();
1733 	destroy_node_manager_caches();
1734 	destroy_inodecache();
1735 	kset_unregister(f2fs_kset);
1736 	f2fs_destroy_trace_ios();
1737 }
1738 
1739 module_init(init_f2fs_fs)
1740 module_exit(exit_f2fs_fs)
1741 
1742 MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1743 MODULE_DESCRIPTION("Flash Friendly File System");
1744 MODULE_LICENSE("GPL");
1745