1 /* 2 * fs/f2fs/segment.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/blkdev.h> 12 13 /* constant macro */ 14 #define NULL_SEGNO ((unsigned int)(~0)) 15 #define NULL_SECNO ((unsigned int)(~0)) 16 17 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */ 18 19 /* L: Logical segment # in volume, R: Relative segment # in main area */ 20 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno) 21 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno) 22 23 #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA) 24 #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE) 25 26 #define IS_CURSEG(sbi, seg) \ 27 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ 28 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ 29 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ 30 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ 31 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ 32 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno)) 33 34 #define IS_CURSEC(sbi, secno) \ 35 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ 36 sbi->segs_per_sec) || \ 37 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ 38 sbi->segs_per_sec) || \ 39 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ 40 sbi->segs_per_sec) || \ 41 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ 42 sbi->segs_per_sec) || \ 43 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ 44 sbi->segs_per_sec) || \ 45 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ 46 sbi->segs_per_sec)) \ 47 48 #define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr) 49 #define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr) 50 51 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments) 52 #define MAIN_SECS(sbi) (sbi->total_sections) 53 54 #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count) 55 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg) 56 57 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi)) 58 #define SEGMENT_SIZE(sbi) (1ULL << (sbi->log_blocksize + \ 59 sbi->log_blocks_per_seg)) 60 61 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \ 62 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg)) 63 64 #define NEXT_FREE_BLKADDR(sbi, curseg) \ 65 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff) 66 67 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi)) 68 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ 69 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg) 70 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \ 71 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1)) 72 73 #define GET_SEGNO(sbi, blk_addr) \ 74 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \ 75 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ 76 GET_SEGNO_FROM_SEG0(sbi, blk_addr))) 77 #define GET_SECNO(sbi, segno) \ 78 ((segno) / sbi->segs_per_sec) 79 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \ 80 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone) 81 82 #define GET_SUM_BLOCK(sbi, segno) \ 83 ((sbi->sm_info->ssa_blkaddr) + segno) 84 85 #define GET_SUM_TYPE(footer) ((footer)->entry_type) 86 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type) 87 88 #define SIT_ENTRY_OFFSET(sit_i, segno) \ 89 (segno % sit_i->sents_per_block) 90 #define SIT_BLOCK_OFFSET(segno) \ 91 (segno / SIT_ENTRY_PER_BLOCK) 92 #define START_SEGNO(segno) \ 93 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK) 94 #define SIT_BLK_CNT(sbi) \ 95 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK) 96 #define f2fs_bitmap_size(nr) \ 97 (BITS_TO_LONGS(nr) * sizeof(unsigned long)) 98 99 #define SECTOR_FROM_BLOCK(blk_addr) \ 100 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK) 101 #define SECTOR_TO_BLOCK(sectors) \ 102 (sectors >> F2FS_LOG_SECTORS_PER_BLOCK) 103 #define MAX_BIO_BLOCKS(sbi) \ 104 ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES)) 105 106 /* 107 * indicate a block allocation direction: RIGHT and LEFT. 108 * RIGHT means allocating new sections towards the end of volume. 109 * LEFT means the opposite direction. 110 */ 111 enum { 112 ALLOC_RIGHT = 0, 113 ALLOC_LEFT 114 }; 115 116 /* 117 * In the victim_sel_policy->alloc_mode, there are two block allocation modes. 118 * LFS writes data sequentially with cleaning operations. 119 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. 120 */ 121 enum { 122 LFS = 0, 123 SSR 124 }; 125 126 /* 127 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes. 128 * GC_CB is based on cost-benefit algorithm. 129 * GC_GREEDY is based on greedy algorithm. 130 */ 131 enum { 132 GC_CB = 0, 133 GC_GREEDY 134 }; 135 136 /* 137 * BG_GC means the background cleaning job. 138 * FG_GC means the on-demand cleaning job. 139 */ 140 enum { 141 BG_GC = 0, 142 FG_GC 143 }; 144 145 /* for a function parameter to select a victim segment */ 146 struct victim_sel_policy { 147 int alloc_mode; /* LFS or SSR */ 148 int gc_mode; /* GC_CB or GC_GREEDY */ 149 unsigned long *dirty_segmap; /* dirty segment bitmap */ 150 unsigned int max_search; /* maximum # of segments to search */ 151 unsigned int offset; /* last scanned bitmap offset */ 152 unsigned int ofs_unit; /* bitmap search unit */ 153 unsigned int min_cost; /* minimum cost */ 154 unsigned int min_segno; /* segment # having min. cost */ 155 }; 156 157 struct seg_entry { 158 unsigned short valid_blocks; /* # of valid blocks */ 159 unsigned char *cur_valid_map; /* validity bitmap of blocks */ 160 /* 161 * # of valid blocks and the validity bitmap stored in the the last 162 * checkpoint pack. This information is used by the SSR mode. 163 */ 164 unsigned short ckpt_valid_blocks; 165 unsigned char *ckpt_valid_map; 166 unsigned char type; /* segment type like CURSEG_XXX_TYPE */ 167 unsigned long long mtime; /* modification time of the segment */ 168 }; 169 170 struct sec_entry { 171 unsigned int valid_blocks; /* # of valid blocks in a section */ 172 }; 173 174 struct segment_allocation { 175 void (*allocate_segment)(struct f2fs_sb_info *, int, bool); 176 }; 177 178 struct inmem_pages { 179 struct list_head list; 180 struct page *page; 181 }; 182 183 struct sit_info { 184 const struct segment_allocation *s_ops; 185 186 block_t sit_base_addr; /* start block address of SIT area */ 187 block_t sit_blocks; /* # of blocks used by SIT area */ 188 block_t written_valid_blocks; /* # of valid blocks in main area */ 189 char *sit_bitmap; /* SIT bitmap pointer */ 190 unsigned int bitmap_size; /* SIT bitmap size */ 191 192 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ 193 unsigned int dirty_sentries; /* # of dirty sentries */ 194 unsigned int sents_per_block; /* # of SIT entries per block */ 195 struct mutex sentry_lock; /* to protect SIT cache */ 196 struct seg_entry *sentries; /* SIT segment-level cache */ 197 struct sec_entry *sec_entries; /* SIT section-level cache */ 198 199 /* for cost-benefit algorithm in cleaning procedure */ 200 unsigned long long elapsed_time; /* elapsed time after mount */ 201 unsigned long long mounted_time; /* mount time */ 202 unsigned long long min_mtime; /* min. modification time */ 203 unsigned long long max_mtime; /* max. modification time */ 204 }; 205 206 struct free_segmap_info { 207 unsigned int start_segno; /* start segment number logically */ 208 unsigned int free_segments; /* # of free segments */ 209 unsigned int free_sections; /* # of free sections */ 210 rwlock_t segmap_lock; /* free segmap lock */ 211 unsigned long *free_segmap; /* free segment bitmap */ 212 unsigned long *free_secmap; /* free section bitmap */ 213 }; 214 215 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ 216 enum dirty_type { 217 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ 218 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ 219 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ 220 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ 221 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ 222 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ 223 DIRTY, /* to count # of dirty segments */ 224 PRE, /* to count # of entirely obsolete segments */ 225 NR_DIRTY_TYPE 226 }; 227 228 struct dirty_seglist_info { 229 const struct victim_selection *v_ops; /* victim selction operation */ 230 unsigned long *dirty_segmap[NR_DIRTY_TYPE]; 231 struct mutex seglist_lock; /* lock for segment bitmaps */ 232 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ 233 unsigned long *victim_secmap; /* background GC victims */ 234 }; 235 236 /* victim selection function for cleaning and SSR */ 237 struct victim_selection { 238 int (*get_victim)(struct f2fs_sb_info *, unsigned int *, 239 int, int, char); 240 }; 241 242 /* for active log information */ 243 struct curseg_info { 244 struct mutex curseg_mutex; /* lock for consistency */ 245 struct f2fs_summary_block *sum_blk; /* cached summary block */ 246 unsigned char alloc_type; /* current allocation type */ 247 unsigned int segno; /* current segment number */ 248 unsigned short next_blkoff; /* next block offset to write */ 249 unsigned int zone; /* current zone number */ 250 unsigned int next_segno; /* preallocated segment */ 251 }; 252 253 struct sit_entry_set { 254 struct list_head set_list; /* link with all sit sets */ 255 unsigned int start_segno; /* start segno of sits in set */ 256 unsigned int entry_cnt; /* the # of sit entries in set */ 257 }; 258 259 /* 260 * inline functions 261 */ 262 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) 263 { 264 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); 265 } 266 267 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, 268 unsigned int segno) 269 { 270 struct sit_info *sit_i = SIT_I(sbi); 271 return &sit_i->sentries[segno]; 272 } 273 274 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, 275 unsigned int segno) 276 { 277 struct sit_info *sit_i = SIT_I(sbi); 278 return &sit_i->sec_entries[GET_SECNO(sbi, segno)]; 279 } 280 281 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, 282 unsigned int segno, int section) 283 { 284 /* 285 * In order to get # of valid blocks in a section instantly from many 286 * segments, f2fs manages two counting structures separately. 287 */ 288 if (section > 1) 289 return get_sec_entry(sbi, segno)->valid_blocks; 290 else 291 return get_seg_entry(sbi, segno)->valid_blocks; 292 } 293 294 static inline void seg_info_from_raw_sit(struct seg_entry *se, 295 struct f2fs_sit_entry *rs) 296 { 297 se->valid_blocks = GET_SIT_VBLOCKS(rs); 298 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); 299 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 300 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 301 se->type = GET_SIT_TYPE(rs); 302 se->mtime = le64_to_cpu(rs->mtime); 303 } 304 305 static inline void seg_info_to_raw_sit(struct seg_entry *se, 306 struct f2fs_sit_entry *rs) 307 { 308 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | 309 se->valid_blocks; 310 rs->vblocks = cpu_to_le16(raw_vblocks); 311 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 312 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 313 se->ckpt_valid_blocks = se->valid_blocks; 314 rs->mtime = cpu_to_le64(se->mtime); 315 } 316 317 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, 318 unsigned int max, unsigned int segno) 319 { 320 unsigned int ret; 321 read_lock(&free_i->segmap_lock); 322 ret = find_next_bit(free_i->free_segmap, max, segno); 323 read_unlock(&free_i->segmap_lock); 324 return ret; 325 } 326 327 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) 328 { 329 struct free_segmap_info *free_i = FREE_I(sbi); 330 unsigned int secno = segno / sbi->segs_per_sec; 331 unsigned int start_segno = secno * sbi->segs_per_sec; 332 unsigned int next; 333 334 write_lock(&free_i->segmap_lock); 335 clear_bit(segno, free_i->free_segmap); 336 free_i->free_segments++; 337 338 next = find_next_bit(free_i->free_segmap, MAIN_SEGS(sbi), start_segno); 339 if (next >= start_segno + sbi->segs_per_sec) { 340 clear_bit(secno, free_i->free_secmap); 341 free_i->free_sections++; 342 } 343 write_unlock(&free_i->segmap_lock); 344 } 345 346 static inline void __set_inuse(struct f2fs_sb_info *sbi, 347 unsigned int segno) 348 { 349 struct free_segmap_info *free_i = FREE_I(sbi); 350 unsigned int secno = segno / sbi->segs_per_sec; 351 set_bit(segno, free_i->free_segmap); 352 free_i->free_segments--; 353 if (!test_and_set_bit(secno, free_i->free_secmap)) 354 free_i->free_sections--; 355 } 356 357 static inline void __set_test_and_free(struct f2fs_sb_info *sbi, 358 unsigned int segno) 359 { 360 struct free_segmap_info *free_i = FREE_I(sbi); 361 unsigned int secno = segno / sbi->segs_per_sec; 362 unsigned int start_segno = secno * sbi->segs_per_sec; 363 unsigned int next; 364 365 write_lock(&free_i->segmap_lock); 366 if (test_and_clear_bit(segno, free_i->free_segmap)) { 367 free_i->free_segments++; 368 369 next = find_next_bit(free_i->free_segmap, 370 start_segno + sbi->segs_per_sec, start_segno); 371 if (next >= start_segno + sbi->segs_per_sec) { 372 if (test_and_clear_bit(secno, free_i->free_secmap)) 373 free_i->free_sections++; 374 } 375 } 376 write_unlock(&free_i->segmap_lock); 377 } 378 379 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, 380 unsigned int segno) 381 { 382 struct free_segmap_info *free_i = FREE_I(sbi); 383 unsigned int secno = segno / sbi->segs_per_sec; 384 write_lock(&free_i->segmap_lock); 385 if (!test_and_set_bit(segno, free_i->free_segmap)) { 386 free_i->free_segments--; 387 if (!test_and_set_bit(secno, free_i->free_secmap)) 388 free_i->free_sections--; 389 } 390 write_unlock(&free_i->segmap_lock); 391 } 392 393 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, 394 void *dst_addr) 395 { 396 struct sit_info *sit_i = SIT_I(sbi); 397 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); 398 } 399 400 static inline block_t written_block_count(struct f2fs_sb_info *sbi) 401 { 402 return SIT_I(sbi)->written_valid_blocks; 403 } 404 405 static inline unsigned int free_segments(struct f2fs_sb_info *sbi) 406 { 407 return FREE_I(sbi)->free_segments; 408 } 409 410 static inline int reserved_segments(struct f2fs_sb_info *sbi) 411 { 412 return SM_I(sbi)->reserved_segments; 413 } 414 415 static inline unsigned int free_sections(struct f2fs_sb_info *sbi) 416 { 417 return FREE_I(sbi)->free_sections; 418 } 419 420 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) 421 { 422 return DIRTY_I(sbi)->nr_dirty[PRE]; 423 } 424 425 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) 426 { 427 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + 428 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + 429 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + 430 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + 431 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + 432 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; 433 } 434 435 static inline int overprovision_segments(struct f2fs_sb_info *sbi) 436 { 437 return SM_I(sbi)->ovp_segments; 438 } 439 440 static inline int overprovision_sections(struct f2fs_sb_info *sbi) 441 { 442 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec; 443 } 444 445 static inline int reserved_sections(struct f2fs_sb_info *sbi) 446 { 447 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec; 448 } 449 450 static inline bool need_SSR(struct f2fs_sb_info *sbi) 451 { 452 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 453 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 454 return free_sections(sbi) <= (node_secs + 2 * dent_secs + 455 reserved_sections(sbi) + 1); 456 } 457 458 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed) 459 { 460 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 461 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 462 463 if (unlikely(sbi->por_doing)) 464 return false; 465 466 return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs + 467 reserved_sections(sbi)); 468 } 469 470 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) 471 { 472 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; 473 } 474 475 static inline int utilization(struct f2fs_sb_info *sbi) 476 { 477 return div_u64((u64)valid_user_blocks(sbi) * 100, 478 sbi->user_block_count); 479 } 480 481 /* 482 * Sometimes f2fs may be better to drop out-of-place update policy. 483 * And, users can control the policy through sysfs entries. 484 * There are five policies with triggering conditions as follows. 485 * F2FS_IPU_FORCE - all the time, 486 * F2FS_IPU_SSR - if SSR mode is activated, 487 * F2FS_IPU_UTIL - if FS utilization is over threashold, 488 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over 489 * threashold, 490 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash 491 * storages. IPU will be triggered only if the # of dirty 492 * pages over min_fsync_blocks. 493 * F2FS_IPUT_DISABLE - disable IPU. (=default option) 494 */ 495 #define DEF_MIN_IPU_UTIL 70 496 #define DEF_MIN_FSYNC_BLOCKS 8 497 498 enum { 499 F2FS_IPU_FORCE, 500 F2FS_IPU_SSR, 501 F2FS_IPU_UTIL, 502 F2FS_IPU_SSR_UTIL, 503 F2FS_IPU_FSYNC, 504 }; 505 506 static inline bool need_inplace_update(struct inode *inode) 507 { 508 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 509 unsigned int policy = SM_I(sbi)->ipu_policy; 510 511 /* IPU can be done only for the user data */ 512 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode)) 513 return false; 514 515 if (policy & (0x1 << F2FS_IPU_FORCE)) 516 return true; 517 if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi)) 518 return true; 519 if (policy & (0x1 << F2FS_IPU_UTIL) && 520 utilization(sbi) > SM_I(sbi)->min_ipu_util) 521 return true; 522 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) && 523 utilization(sbi) > SM_I(sbi)->min_ipu_util) 524 return true; 525 526 /* this is only set during fdatasync */ 527 if (policy & (0x1 << F2FS_IPU_FSYNC) && 528 is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU)) 529 return true; 530 531 return false; 532 } 533 534 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, 535 int type) 536 { 537 struct curseg_info *curseg = CURSEG_I(sbi, type); 538 return curseg->segno; 539 } 540 541 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, 542 int type) 543 { 544 struct curseg_info *curseg = CURSEG_I(sbi, type); 545 return curseg->alloc_type; 546 } 547 548 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) 549 { 550 struct curseg_info *curseg = CURSEG_I(sbi, type); 551 return curseg->next_blkoff; 552 } 553 554 #ifdef CONFIG_F2FS_CHECK_FS 555 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) 556 { 557 BUG_ON(segno > TOTAL_SEGS(sbi) - 1); 558 } 559 560 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr) 561 { 562 BUG_ON(blk_addr < SEG0_BLKADDR(sbi)); 563 BUG_ON(blk_addr >= MAX_BLKADDR(sbi)); 564 } 565 566 /* 567 * Summary block is always treated as an invalid block 568 */ 569 static inline void check_block_count(struct f2fs_sb_info *sbi, 570 int segno, struct f2fs_sit_entry *raw_sit) 571 { 572 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; 573 int valid_blocks = 0; 574 int cur_pos = 0, next_pos; 575 576 /* check segment usage */ 577 BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg); 578 579 /* check boundary of a given segment number */ 580 BUG_ON(segno > TOTAL_SEGS(sbi) - 1); 581 582 /* check bitmap with valid block count */ 583 do { 584 if (is_valid) { 585 next_pos = find_next_zero_bit_le(&raw_sit->valid_map, 586 sbi->blocks_per_seg, 587 cur_pos); 588 valid_blocks += next_pos - cur_pos; 589 } else 590 next_pos = find_next_bit_le(&raw_sit->valid_map, 591 sbi->blocks_per_seg, 592 cur_pos); 593 cur_pos = next_pos; 594 is_valid = !is_valid; 595 } while (cur_pos < sbi->blocks_per_seg); 596 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks); 597 } 598 #else 599 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) 600 { 601 if (segno > TOTAL_SEGS(sbi) - 1) 602 sbi->need_fsck = true; 603 } 604 605 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr) 606 { 607 if (blk_addr < SEG0_BLKADDR(sbi) || blk_addr >= MAX_BLKADDR(sbi)) 608 sbi->need_fsck = true; 609 } 610 611 /* 612 * Summary block is always treated as an invalid block 613 */ 614 static inline void check_block_count(struct f2fs_sb_info *sbi, 615 int segno, struct f2fs_sit_entry *raw_sit) 616 { 617 /* check segment usage */ 618 if (GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg) 619 sbi->need_fsck = true; 620 621 /* check boundary of a given segment number */ 622 if (segno > TOTAL_SEGS(sbi) - 1) 623 sbi->need_fsck = true; 624 } 625 #endif 626 627 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, 628 unsigned int start) 629 { 630 struct sit_info *sit_i = SIT_I(sbi); 631 unsigned int offset = SIT_BLOCK_OFFSET(start); 632 block_t blk_addr = sit_i->sit_base_addr + offset; 633 634 check_seg_range(sbi, start); 635 636 /* calculate sit block address */ 637 if (f2fs_test_bit(offset, sit_i->sit_bitmap)) 638 blk_addr += sit_i->sit_blocks; 639 640 return blk_addr; 641 } 642 643 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, 644 pgoff_t block_addr) 645 { 646 struct sit_info *sit_i = SIT_I(sbi); 647 block_addr -= sit_i->sit_base_addr; 648 if (block_addr < sit_i->sit_blocks) 649 block_addr += sit_i->sit_blocks; 650 else 651 block_addr -= sit_i->sit_blocks; 652 653 return block_addr + sit_i->sit_base_addr; 654 } 655 656 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) 657 { 658 unsigned int block_off = SIT_BLOCK_OFFSET(start); 659 660 f2fs_change_bit(block_off, sit_i->sit_bitmap); 661 } 662 663 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi) 664 { 665 struct sit_info *sit_i = SIT_I(sbi); 666 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec - 667 sit_i->mounted_time; 668 } 669 670 static inline void set_summary(struct f2fs_summary *sum, nid_t nid, 671 unsigned int ofs_in_node, unsigned char version) 672 { 673 sum->nid = cpu_to_le32(nid); 674 sum->ofs_in_node = cpu_to_le16(ofs_in_node); 675 sum->version = version; 676 } 677 678 static inline block_t start_sum_block(struct f2fs_sb_info *sbi) 679 { 680 return __start_cp_addr(sbi) + 681 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 682 } 683 684 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) 685 { 686 return __start_cp_addr(sbi) + 687 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) 688 - (base + 1) + type; 689 } 690 691 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) 692 { 693 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) 694 return true; 695 return false; 696 } 697 698 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi) 699 { 700 struct block_device *bdev = sbi->sb->s_bdev; 701 struct request_queue *q = bdev_get_queue(bdev); 702 return SECTOR_TO_BLOCK(queue_max_sectors(q)); 703 } 704 705 /* 706 * It is very important to gather dirty pages and write at once, so that we can 707 * submit a big bio without interfering other data writes. 708 * By default, 512 pages for directory data, 709 * 512 pages (2MB) * 3 for three types of nodes, and 710 * max_bio_blocks for meta are set. 711 */ 712 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type) 713 { 714 if (sbi->sb->s_bdi->dirty_exceeded) 715 return 0; 716 717 if (type == DATA) 718 return sbi->blocks_per_seg; 719 else if (type == NODE) 720 return 3 * sbi->blocks_per_seg; 721 else if (type == META) 722 return MAX_BIO_BLOCKS(sbi); 723 else 724 return 0; 725 } 726 727 /* 728 * When writing pages, it'd better align nr_to_write for segment size. 729 */ 730 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type, 731 struct writeback_control *wbc) 732 { 733 long nr_to_write, desired; 734 735 if (wbc->sync_mode != WB_SYNC_NONE) 736 return 0; 737 738 nr_to_write = wbc->nr_to_write; 739 740 if (type == DATA) 741 desired = 4096; 742 else if (type == NODE) 743 desired = 3 * max_hw_blocks(sbi); 744 else 745 desired = MAX_BIO_BLOCKS(sbi); 746 747 wbc->nr_to_write = desired; 748 return desired - nr_to_write; 749 } 750