xref: /openbmc/linux/fs/f2fs/segment.h (revision ff6defa6)
1 /*
2  * fs/f2fs/segment.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/blkdev.h>
12 
13 /* constant macro */
14 #define NULL_SEGNO			((unsigned int)(~0))
15 #define NULL_SECNO			((unsigned int)(~0))
16 
17 #define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
18 
19 /* L: Logical segment # in volume, R: Relative segment # in main area */
20 #define GET_L2R_SEGNO(free_i, segno)	(segno - free_i->start_segno)
21 #define GET_R2L_SEGNO(free_i, segno)	(segno + free_i->start_segno)
22 
23 #define IS_DATASEG(t)	(t <= CURSEG_COLD_DATA)
24 #define IS_NODESEG(t)	(t >= CURSEG_HOT_NODE)
25 
26 #define IS_CURSEG(sbi, seg)						\
27 	((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
28 	 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
29 	 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
30 	 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
31 	 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
32 	 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
33 
34 #define IS_CURSEC(sbi, secno)						\
35 	((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
36 	  sbi->segs_per_sec) ||	\
37 	 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
38 	  sbi->segs_per_sec) ||	\
39 	 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
40 	  sbi->segs_per_sec) ||	\
41 	 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
42 	  sbi->segs_per_sec) ||	\
43 	 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
44 	  sbi->segs_per_sec) ||	\
45 	 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
46 	  sbi->segs_per_sec))	\
47 
48 #define MAIN_BLKADDR(sbi)	(SM_I(sbi)->main_blkaddr)
49 #define SEG0_BLKADDR(sbi)	(SM_I(sbi)->seg0_blkaddr)
50 
51 #define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
52 #define MAIN_SECS(sbi)	(sbi->total_sections)
53 
54 #define TOTAL_SEGS(sbi)	(SM_I(sbi)->segment_count)
55 #define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
56 
57 #define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
58 #define SEGMENT_SIZE(sbi)	(1ULL << (sbi->log_blocksize +		\
59 					sbi->log_blocks_per_seg))
60 
61 #define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
62 	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
63 
64 #define NEXT_FREE_BLKADDR(sbi, curseg)					\
65 	(START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
66 
67 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
68 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
69 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
70 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
71 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
72 
73 #define GET_SEGNO(sbi, blk_addr)					\
74 	(((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?		\
75 	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
76 		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
77 #define GET_SECNO(sbi, segno)					\
78 	((segno) / sbi->segs_per_sec)
79 #define GET_ZONENO_FROM_SEGNO(sbi, segno)				\
80 	((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
81 
82 #define GET_SUM_BLOCK(sbi, segno)				\
83 	((sbi->sm_info->ssa_blkaddr) + segno)
84 
85 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
86 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
87 
88 #define SIT_ENTRY_OFFSET(sit_i, segno)					\
89 	(segno % sit_i->sents_per_block)
90 #define SIT_BLOCK_OFFSET(segno)					\
91 	(segno / SIT_ENTRY_PER_BLOCK)
92 #define	START_SEGNO(segno)		\
93 	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
94 #define SIT_BLK_CNT(sbi)			\
95 	((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
96 #define f2fs_bitmap_size(nr)			\
97 	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
98 
99 #define SECTOR_FROM_BLOCK(blk_addr)					\
100 	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
101 #define SECTOR_TO_BLOCK(sectors)					\
102 	(sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
103 #define MAX_BIO_BLOCKS(sbi)						\
104 	((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES))
105 
106 /*
107  * indicate a block allocation direction: RIGHT and LEFT.
108  * RIGHT means allocating new sections towards the end of volume.
109  * LEFT means the opposite direction.
110  */
111 enum {
112 	ALLOC_RIGHT = 0,
113 	ALLOC_LEFT
114 };
115 
116 /*
117  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
118  * LFS writes data sequentially with cleaning operations.
119  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
120  */
121 enum {
122 	LFS = 0,
123 	SSR
124 };
125 
126 /*
127  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
128  * GC_CB is based on cost-benefit algorithm.
129  * GC_GREEDY is based on greedy algorithm.
130  */
131 enum {
132 	GC_CB = 0,
133 	GC_GREEDY
134 };
135 
136 /*
137  * BG_GC means the background cleaning job.
138  * FG_GC means the on-demand cleaning job.
139  */
140 enum {
141 	BG_GC = 0,
142 	FG_GC
143 };
144 
145 /* for a function parameter to select a victim segment */
146 struct victim_sel_policy {
147 	int alloc_mode;			/* LFS or SSR */
148 	int gc_mode;			/* GC_CB or GC_GREEDY */
149 	unsigned long *dirty_segmap;	/* dirty segment bitmap */
150 	unsigned int max_search;	/* maximum # of segments to search */
151 	unsigned int offset;		/* last scanned bitmap offset */
152 	unsigned int ofs_unit;		/* bitmap search unit */
153 	unsigned int min_cost;		/* minimum cost */
154 	unsigned int min_segno;		/* segment # having min. cost */
155 };
156 
157 struct seg_entry {
158 	unsigned short valid_blocks;	/* # of valid blocks */
159 	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
160 	/*
161 	 * # of valid blocks and the validity bitmap stored in the the last
162 	 * checkpoint pack. This information is used by the SSR mode.
163 	 */
164 	unsigned short ckpt_valid_blocks;
165 	unsigned char *ckpt_valid_map;
166 	unsigned char type;		/* segment type like CURSEG_XXX_TYPE */
167 	unsigned long long mtime;	/* modification time of the segment */
168 };
169 
170 struct sec_entry {
171 	unsigned int valid_blocks;	/* # of valid blocks in a section */
172 };
173 
174 struct segment_allocation {
175 	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
176 };
177 
178 struct inmem_pages {
179 	struct list_head list;
180 	struct page *page;
181 };
182 
183 struct sit_info {
184 	const struct segment_allocation *s_ops;
185 
186 	block_t sit_base_addr;		/* start block address of SIT area */
187 	block_t sit_blocks;		/* # of blocks used by SIT area */
188 	block_t written_valid_blocks;	/* # of valid blocks in main area */
189 	char *sit_bitmap;		/* SIT bitmap pointer */
190 	unsigned int bitmap_size;	/* SIT bitmap size */
191 
192 	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
193 	unsigned int dirty_sentries;		/* # of dirty sentries */
194 	unsigned int sents_per_block;		/* # of SIT entries per block */
195 	struct mutex sentry_lock;		/* to protect SIT cache */
196 	struct seg_entry *sentries;		/* SIT segment-level cache */
197 	struct sec_entry *sec_entries;		/* SIT section-level cache */
198 
199 	/* for cost-benefit algorithm in cleaning procedure */
200 	unsigned long long elapsed_time;	/* elapsed time after mount */
201 	unsigned long long mounted_time;	/* mount time */
202 	unsigned long long min_mtime;		/* min. modification time */
203 	unsigned long long max_mtime;		/* max. modification time */
204 };
205 
206 struct free_segmap_info {
207 	unsigned int start_segno;	/* start segment number logically */
208 	unsigned int free_segments;	/* # of free segments */
209 	unsigned int free_sections;	/* # of free sections */
210 	rwlock_t segmap_lock;		/* free segmap lock */
211 	unsigned long *free_segmap;	/* free segment bitmap */
212 	unsigned long *free_secmap;	/* free section bitmap */
213 };
214 
215 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
216 enum dirty_type {
217 	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
218 	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
219 	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
220 	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
221 	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
222 	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
223 	DIRTY,			/* to count # of dirty segments */
224 	PRE,			/* to count # of entirely obsolete segments */
225 	NR_DIRTY_TYPE
226 };
227 
228 struct dirty_seglist_info {
229 	const struct victim_selection *v_ops;	/* victim selction operation */
230 	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
231 	struct mutex seglist_lock;		/* lock for segment bitmaps */
232 	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
233 	unsigned long *victim_secmap;		/* background GC victims */
234 };
235 
236 /* victim selection function for cleaning and SSR */
237 struct victim_selection {
238 	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
239 							int, int, char);
240 };
241 
242 /* for active log information */
243 struct curseg_info {
244 	struct mutex curseg_mutex;		/* lock for consistency */
245 	struct f2fs_summary_block *sum_blk;	/* cached summary block */
246 	unsigned char alloc_type;		/* current allocation type */
247 	unsigned int segno;			/* current segment number */
248 	unsigned short next_blkoff;		/* next block offset to write */
249 	unsigned int zone;			/* current zone number */
250 	unsigned int next_segno;		/* preallocated segment */
251 };
252 
253 struct sit_entry_set {
254 	struct list_head set_list;	/* link with all sit sets */
255 	unsigned int start_segno;	/* start segno of sits in set */
256 	unsigned int entry_cnt;		/* the # of sit entries in set */
257 };
258 
259 /*
260  * inline functions
261  */
262 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
263 {
264 	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
265 }
266 
267 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
268 						unsigned int segno)
269 {
270 	struct sit_info *sit_i = SIT_I(sbi);
271 	return &sit_i->sentries[segno];
272 }
273 
274 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
275 						unsigned int segno)
276 {
277 	struct sit_info *sit_i = SIT_I(sbi);
278 	return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
279 }
280 
281 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
282 				unsigned int segno, int section)
283 {
284 	/*
285 	 * In order to get # of valid blocks in a section instantly from many
286 	 * segments, f2fs manages two counting structures separately.
287 	 */
288 	if (section > 1)
289 		return get_sec_entry(sbi, segno)->valid_blocks;
290 	else
291 		return get_seg_entry(sbi, segno)->valid_blocks;
292 }
293 
294 static inline void seg_info_from_raw_sit(struct seg_entry *se,
295 					struct f2fs_sit_entry *rs)
296 {
297 	se->valid_blocks = GET_SIT_VBLOCKS(rs);
298 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
299 	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
300 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
301 	se->type = GET_SIT_TYPE(rs);
302 	se->mtime = le64_to_cpu(rs->mtime);
303 }
304 
305 static inline void seg_info_to_raw_sit(struct seg_entry *se,
306 					struct f2fs_sit_entry *rs)
307 {
308 	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
309 					se->valid_blocks;
310 	rs->vblocks = cpu_to_le16(raw_vblocks);
311 	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
312 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
313 	se->ckpt_valid_blocks = se->valid_blocks;
314 	rs->mtime = cpu_to_le64(se->mtime);
315 }
316 
317 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
318 		unsigned int max, unsigned int segno)
319 {
320 	unsigned int ret;
321 	read_lock(&free_i->segmap_lock);
322 	ret = find_next_bit(free_i->free_segmap, max, segno);
323 	read_unlock(&free_i->segmap_lock);
324 	return ret;
325 }
326 
327 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
328 {
329 	struct free_segmap_info *free_i = FREE_I(sbi);
330 	unsigned int secno = segno / sbi->segs_per_sec;
331 	unsigned int start_segno = secno * sbi->segs_per_sec;
332 	unsigned int next;
333 
334 	write_lock(&free_i->segmap_lock);
335 	clear_bit(segno, free_i->free_segmap);
336 	free_i->free_segments++;
337 
338 	next = find_next_bit(free_i->free_segmap, MAIN_SEGS(sbi), start_segno);
339 	if (next >= start_segno + sbi->segs_per_sec) {
340 		clear_bit(secno, free_i->free_secmap);
341 		free_i->free_sections++;
342 	}
343 	write_unlock(&free_i->segmap_lock);
344 }
345 
346 static inline void __set_inuse(struct f2fs_sb_info *sbi,
347 		unsigned int segno)
348 {
349 	struct free_segmap_info *free_i = FREE_I(sbi);
350 	unsigned int secno = segno / sbi->segs_per_sec;
351 	set_bit(segno, free_i->free_segmap);
352 	free_i->free_segments--;
353 	if (!test_and_set_bit(secno, free_i->free_secmap))
354 		free_i->free_sections--;
355 }
356 
357 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
358 		unsigned int segno)
359 {
360 	struct free_segmap_info *free_i = FREE_I(sbi);
361 	unsigned int secno = segno / sbi->segs_per_sec;
362 	unsigned int start_segno = secno * sbi->segs_per_sec;
363 	unsigned int next;
364 
365 	write_lock(&free_i->segmap_lock);
366 	if (test_and_clear_bit(segno, free_i->free_segmap)) {
367 		free_i->free_segments++;
368 
369 		next = find_next_bit(free_i->free_segmap,
370 				start_segno + sbi->segs_per_sec, start_segno);
371 		if (next >= start_segno + sbi->segs_per_sec) {
372 			if (test_and_clear_bit(secno, free_i->free_secmap))
373 				free_i->free_sections++;
374 		}
375 	}
376 	write_unlock(&free_i->segmap_lock);
377 }
378 
379 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
380 		unsigned int segno)
381 {
382 	struct free_segmap_info *free_i = FREE_I(sbi);
383 	unsigned int secno = segno / sbi->segs_per_sec;
384 	write_lock(&free_i->segmap_lock);
385 	if (!test_and_set_bit(segno, free_i->free_segmap)) {
386 		free_i->free_segments--;
387 		if (!test_and_set_bit(secno, free_i->free_secmap))
388 			free_i->free_sections--;
389 	}
390 	write_unlock(&free_i->segmap_lock);
391 }
392 
393 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
394 		void *dst_addr)
395 {
396 	struct sit_info *sit_i = SIT_I(sbi);
397 	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
398 }
399 
400 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
401 {
402 	return SIT_I(sbi)->written_valid_blocks;
403 }
404 
405 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
406 {
407 	return FREE_I(sbi)->free_segments;
408 }
409 
410 static inline int reserved_segments(struct f2fs_sb_info *sbi)
411 {
412 	return SM_I(sbi)->reserved_segments;
413 }
414 
415 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
416 {
417 	return FREE_I(sbi)->free_sections;
418 }
419 
420 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
421 {
422 	return DIRTY_I(sbi)->nr_dirty[PRE];
423 }
424 
425 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
426 {
427 	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
428 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
429 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
430 		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
431 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
432 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
433 }
434 
435 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
436 {
437 	return SM_I(sbi)->ovp_segments;
438 }
439 
440 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
441 {
442 	return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
443 }
444 
445 static inline int reserved_sections(struct f2fs_sb_info *sbi)
446 {
447 	return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
448 }
449 
450 static inline bool need_SSR(struct f2fs_sb_info *sbi)
451 {
452 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
453 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
454 	return free_sections(sbi) <= (node_secs + 2 * dent_secs +
455 						reserved_sections(sbi) + 1);
456 }
457 
458 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
459 {
460 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
461 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
462 
463 	if (unlikely(sbi->por_doing))
464 		return false;
465 
466 	return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
467 						reserved_sections(sbi));
468 }
469 
470 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
471 {
472 	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
473 }
474 
475 static inline int utilization(struct f2fs_sb_info *sbi)
476 {
477 	return div_u64((u64)valid_user_blocks(sbi) * 100,
478 					sbi->user_block_count);
479 }
480 
481 /*
482  * Sometimes f2fs may be better to drop out-of-place update policy.
483  * And, users can control the policy through sysfs entries.
484  * There are five policies with triggering conditions as follows.
485  * F2FS_IPU_FORCE - all the time,
486  * F2FS_IPU_SSR - if SSR mode is activated,
487  * F2FS_IPU_UTIL - if FS utilization is over threashold,
488  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
489  *                     threashold,
490  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
491  *                     storages. IPU will be triggered only if the # of dirty
492  *                     pages over min_fsync_blocks.
493  * F2FS_IPUT_DISABLE - disable IPU. (=default option)
494  */
495 #define DEF_MIN_IPU_UTIL	70
496 #define DEF_MIN_FSYNC_BLOCKS	8
497 
498 enum {
499 	F2FS_IPU_FORCE,
500 	F2FS_IPU_SSR,
501 	F2FS_IPU_UTIL,
502 	F2FS_IPU_SSR_UTIL,
503 	F2FS_IPU_FSYNC,
504 };
505 
506 static inline bool need_inplace_update(struct inode *inode)
507 {
508 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
509 	unsigned int policy = SM_I(sbi)->ipu_policy;
510 
511 	/* IPU can be done only for the user data */
512 	if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
513 		return false;
514 
515 	if (policy & (0x1 << F2FS_IPU_FORCE))
516 		return true;
517 	if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
518 		return true;
519 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
520 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
521 		return true;
522 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
523 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
524 		return true;
525 
526 	/* this is only set during fdatasync */
527 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
528 			is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU))
529 		return true;
530 
531 	return false;
532 }
533 
534 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
535 		int type)
536 {
537 	struct curseg_info *curseg = CURSEG_I(sbi, type);
538 	return curseg->segno;
539 }
540 
541 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
542 		int type)
543 {
544 	struct curseg_info *curseg = CURSEG_I(sbi, type);
545 	return curseg->alloc_type;
546 }
547 
548 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
549 {
550 	struct curseg_info *curseg = CURSEG_I(sbi, type);
551 	return curseg->next_blkoff;
552 }
553 
554 #ifdef CONFIG_F2FS_CHECK_FS
555 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
556 {
557 	BUG_ON(segno > TOTAL_SEGS(sbi) - 1);
558 }
559 
560 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
561 {
562 	BUG_ON(blk_addr < SEG0_BLKADDR(sbi));
563 	BUG_ON(blk_addr >= MAX_BLKADDR(sbi));
564 }
565 
566 /*
567  * Summary block is always treated as an invalid block
568  */
569 static inline void check_block_count(struct f2fs_sb_info *sbi,
570 		int segno, struct f2fs_sit_entry *raw_sit)
571 {
572 	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
573 	int valid_blocks = 0;
574 	int cur_pos = 0, next_pos;
575 
576 	/* check segment usage */
577 	BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
578 
579 	/* check boundary of a given segment number */
580 	BUG_ON(segno > TOTAL_SEGS(sbi) - 1);
581 
582 	/* check bitmap with valid block count */
583 	do {
584 		if (is_valid) {
585 			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
586 					sbi->blocks_per_seg,
587 					cur_pos);
588 			valid_blocks += next_pos - cur_pos;
589 		} else
590 			next_pos = find_next_bit_le(&raw_sit->valid_map,
591 					sbi->blocks_per_seg,
592 					cur_pos);
593 		cur_pos = next_pos;
594 		is_valid = !is_valid;
595 	} while (cur_pos < sbi->blocks_per_seg);
596 	BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
597 }
598 #else
599 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
600 {
601 	if (segno > TOTAL_SEGS(sbi) - 1)
602 		sbi->need_fsck = true;
603 }
604 
605 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
606 {
607 	if (blk_addr < SEG0_BLKADDR(sbi) || blk_addr >= MAX_BLKADDR(sbi))
608 		sbi->need_fsck = true;
609 }
610 
611 /*
612  * Summary block is always treated as an invalid block
613  */
614 static inline void check_block_count(struct f2fs_sb_info *sbi,
615 		int segno, struct f2fs_sit_entry *raw_sit)
616 {
617 	/* check segment usage */
618 	if (GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg)
619 		sbi->need_fsck = true;
620 
621 	/* check boundary of a given segment number */
622 	if (segno > TOTAL_SEGS(sbi) - 1)
623 		sbi->need_fsck = true;
624 }
625 #endif
626 
627 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
628 						unsigned int start)
629 {
630 	struct sit_info *sit_i = SIT_I(sbi);
631 	unsigned int offset = SIT_BLOCK_OFFSET(start);
632 	block_t blk_addr = sit_i->sit_base_addr + offset;
633 
634 	check_seg_range(sbi, start);
635 
636 	/* calculate sit block address */
637 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
638 		blk_addr += sit_i->sit_blocks;
639 
640 	return blk_addr;
641 }
642 
643 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
644 						pgoff_t block_addr)
645 {
646 	struct sit_info *sit_i = SIT_I(sbi);
647 	block_addr -= sit_i->sit_base_addr;
648 	if (block_addr < sit_i->sit_blocks)
649 		block_addr += sit_i->sit_blocks;
650 	else
651 		block_addr -= sit_i->sit_blocks;
652 
653 	return block_addr + sit_i->sit_base_addr;
654 }
655 
656 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
657 {
658 	unsigned int block_off = SIT_BLOCK_OFFSET(start);
659 
660 	f2fs_change_bit(block_off, sit_i->sit_bitmap);
661 }
662 
663 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
664 {
665 	struct sit_info *sit_i = SIT_I(sbi);
666 	return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
667 						sit_i->mounted_time;
668 }
669 
670 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
671 			unsigned int ofs_in_node, unsigned char version)
672 {
673 	sum->nid = cpu_to_le32(nid);
674 	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
675 	sum->version = version;
676 }
677 
678 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
679 {
680 	return __start_cp_addr(sbi) +
681 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
682 }
683 
684 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
685 {
686 	return __start_cp_addr(sbi) +
687 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
688 				- (base + 1) + type;
689 }
690 
691 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
692 {
693 	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
694 		return true;
695 	return false;
696 }
697 
698 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
699 {
700 	struct block_device *bdev = sbi->sb->s_bdev;
701 	struct request_queue *q = bdev_get_queue(bdev);
702 	return SECTOR_TO_BLOCK(queue_max_sectors(q));
703 }
704 
705 /*
706  * It is very important to gather dirty pages and write at once, so that we can
707  * submit a big bio without interfering other data writes.
708  * By default, 512 pages for directory data,
709  * 512 pages (2MB) * 3 for three types of nodes, and
710  * max_bio_blocks for meta are set.
711  */
712 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
713 {
714 	if (sbi->sb->s_bdi->dirty_exceeded)
715 		return 0;
716 
717 	if (type == DATA)
718 		return sbi->blocks_per_seg;
719 	else if (type == NODE)
720 		return 3 * sbi->blocks_per_seg;
721 	else if (type == META)
722 		return MAX_BIO_BLOCKS(sbi);
723 	else
724 		return 0;
725 }
726 
727 /*
728  * When writing pages, it'd better align nr_to_write for segment size.
729  */
730 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
731 					struct writeback_control *wbc)
732 {
733 	long nr_to_write, desired;
734 
735 	if (wbc->sync_mode != WB_SYNC_NONE)
736 		return 0;
737 
738 	nr_to_write = wbc->nr_to_write;
739 
740 	if (type == DATA)
741 		desired = 4096;
742 	else if (type == NODE)
743 		desired = 3 * max_hw_blocks(sbi);
744 	else
745 		desired = MAX_BIO_BLOCKS(sbi);
746 
747 	wbc->nr_to_write = desired;
748 	return desired - nr_to_write;
749 }
750