1 /* 2 * fs/f2fs/segment.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/blkdev.h> 12 #include <linux/backing-dev.h> 13 14 /* constant macro */ 15 #define NULL_SEGNO ((unsigned int)(~0)) 16 #define NULL_SECNO ((unsigned int)(~0)) 17 18 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */ 19 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */ 20 21 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */ 22 23 /* L: Logical segment # in volume, R: Relative segment # in main area */ 24 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno) 25 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno) 26 27 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA) 28 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE) 29 30 #define IS_CURSEG(sbi, seg) \ 31 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ 32 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ 33 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ 34 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ 35 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ 36 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno)) 37 38 #define IS_CURSEC(sbi, secno) \ 39 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ 40 (sbi)->segs_per_sec) || \ 41 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ 42 (sbi)->segs_per_sec) || \ 43 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ 44 (sbi)->segs_per_sec) || \ 45 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ 46 (sbi)->segs_per_sec) || \ 47 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ 48 (sbi)->segs_per_sec) || \ 49 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ 50 (sbi)->segs_per_sec)) \ 51 52 #define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr) 53 #define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr) 54 55 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments) 56 #define MAIN_SECS(sbi) ((sbi)->total_sections) 57 58 #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count) 59 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg) 60 61 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi)) 62 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \ 63 (sbi)->log_blocks_per_seg)) 64 65 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \ 66 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg)) 67 68 #define NEXT_FREE_BLKADDR(sbi, curseg) \ 69 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff) 70 71 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi)) 72 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ 73 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg) 74 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \ 75 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1)) 76 77 #define GET_SEGNO(sbi, blk_addr) \ 78 ((((blk_addr) == NULL_ADDR) || ((blk_addr) == NEW_ADDR)) ? \ 79 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ 80 GET_SEGNO_FROM_SEG0(sbi, blk_addr))) 81 #define BLKS_PER_SEC(sbi) \ 82 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg) 83 #define GET_SEC_FROM_SEG(sbi, segno) \ 84 ((segno) / (sbi)->segs_per_sec) 85 #define GET_SEG_FROM_SEC(sbi, secno) \ 86 ((secno) * (sbi)->segs_per_sec) 87 #define GET_ZONE_FROM_SEC(sbi, secno) \ 88 ((secno) / (sbi)->secs_per_zone) 89 #define GET_ZONE_FROM_SEG(sbi, segno) \ 90 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno)) 91 92 #define GET_SUM_BLOCK(sbi, segno) \ 93 ((sbi)->sm_info->ssa_blkaddr + (segno)) 94 95 #define GET_SUM_TYPE(footer) ((footer)->entry_type) 96 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type)) 97 98 #define SIT_ENTRY_OFFSET(sit_i, segno) \ 99 ((segno) % (sit_i)->sents_per_block) 100 #define SIT_BLOCK_OFFSET(segno) \ 101 ((segno) / SIT_ENTRY_PER_BLOCK) 102 #define START_SEGNO(segno) \ 103 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK) 104 #define SIT_BLK_CNT(sbi) \ 105 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK) 106 #define f2fs_bitmap_size(nr) \ 107 (BITS_TO_LONGS(nr) * sizeof(unsigned long)) 108 109 #define SECTOR_FROM_BLOCK(blk_addr) \ 110 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK) 111 #define SECTOR_TO_BLOCK(sectors) \ 112 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK) 113 114 /* 115 * indicate a block allocation direction: RIGHT and LEFT. 116 * RIGHT means allocating new sections towards the end of volume. 117 * LEFT means the opposite direction. 118 */ 119 enum { 120 ALLOC_RIGHT = 0, 121 ALLOC_LEFT 122 }; 123 124 /* 125 * In the victim_sel_policy->alloc_mode, there are two block allocation modes. 126 * LFS writes data sequentially with cleaning operations. 127 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. 128 */ 129 enum { 130 LFS = 0, 131 SSR 132 }; 133 134 /* 135 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes. 136 * GC_CB is based on cost-benefit algorithm. 137 * GC_GREEDY is based on greedy algorithm. 138 */ 139 enum { 140 GC_CB = 0, 141 GC_GREEDY, 142 ALLOC_NEXT, 143 FLUSH_DEVICE, 144 MAX_GC_POLICY, 145 }; 146 147 /* 148 * BG_GC means the background cleaning job. 149 * FG_GC means the on-demand cleaning job. 150 * FORCE_FG_GC means on-demand cleaning job in background. 151 */ 152 enum { 153 BG_GC = 0, 154 FG_GC, 155 FORCE_FG_GC, 156 }; 157 158 /* for a function parameter to select a victim segment */ 159 struct victim_sel_policy { 160 int alloc_mode; /* LFS or SSR */ 161 int gc_mode; /* GC_CB or GC_GREEDY */ 162 unsigned long *dirty_segmap; /* dirty segment bitmap */ 163 unsigned int max_search; /* maximum # of segments to search */ 164 unsigned int offset; /* last scanned bitmap offset */ 165 unsigned int ofs_unit; /* bitmap search unit */ 166 unsigned int min_cost; /* minimum cost */ 167 unsigned int min_segno; /* segment # having min. cost */ 168 }; 169 170 struct seg_entry { 171 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */ 172 unsigned int valid_blocks:10; /* # of valid blocks */ 173 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */ 174 unsigned int padding:6; /* padding */ 175 unsigned char *cur_valid_map; /* validity bitmap of blocks */ 176 #ifdef CONFIG_F2FS_CHECK_FS 177 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */ 178 #endif 179 /* 180 * # of valid blocks and the validity bitmap stored in the the last 181 * checkpoint pack. This information is used by the SSR mode. 182 */ 183 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */ 184 unsigned char *discard_map; 185 unsigned long long mtime; /* modification time of the segment */ 186 }; 187 188 struct sec_entry { 189 unsigned int valid_blocks; /* # of valid blocks in a section */ 190 }; 191 192 struct segment_allocation { 193 void (*allocate_segment)(struct f2fs_sb_info *, int, bool); 194 }; 195 196 /* 197 * this value is set in page as a private data which indicate that 198 * the page is atomically written, and it is in inmem_pages list. 199 */ 200 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1) 201 #define DUMMY_WRITTEN_PAGE ((unsigned long)-2) 202 203 #define IS_ATOMIC_WRITTEN_PAGE(page) \ 204 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE) 205 #define IS_DUMMY_WRITTEN_PAGE(page) \ 206 (page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE) 207 208 struct inmem_pages { 209 struct list_head list; 210 struct page *page; 211 block_t old_addr; /* for revoking when fail to commit */ 212 }; 213 214 struct sit_info { 215 const struct segment_allocation *s_ops; 216 217 block_t sit_base_addr; /* start block address of SIT area */ 218 block_t sit_blocks; /* # of blocks used by SIT area */ 219 block_t written_valid_blocks; /* # of valid blocks in main area */ 220 char *sit_bitmap; /* SIT bitmap pointer */ 221 #ifdef CONFIG_F2FS_CHECK_FS 222 char *sit_bitmap_mir; /* SIT bitmap mirror */ 223 #endif 224 unsigned int bitmap_size; /* SIT bitmap size */ 225 226 unsigned long *tmp_map; /* bitmap for temporal use */ 227 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ 228 unsigned int dirty_sentries; /* # of dirty sentries */ 229 unsigned int sents_per_block; /* # of SIT entries per block */ 230 struct mutex sentry_lock; /* to protect SIT cache */ 231 struct seg_entry *sentries; /* SIT segment-level cache */ 232 struct sec_entry *sec_entries; /* SIT section-level cache */ 233 234 /* for cost-benefit algorithm in cleaning procedure */ 235 unsigned long long elapsed_time; /* elapsed time after mount */ 236 unsigned long long mounted_time; /* mount time */ 237 unsigned long long min_mtime; /* min. modification time */ 238 unsigned long long max_mtime; /* max. modification time */ 239 240 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */ 241 }; 242 243 struct free_segmap_info { 244 unsigned int start_segno; /* start segment number logically */ 245 unsigned int free_segments; /* # of free segments */ 246 unsigned int free_sections; /* # of free sections */ 247 spinlock_t segmap_lock; /* free segmap lock */ 248 unsigned long *free_segmap; /* free segment bitmap */ 249 unsigned long *free_secmap; /* free section bitmap */ 250 }; 251 252 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ 253 enum dirty_type { 254 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ 255 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ 256 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ 257 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ 258 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ 259 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ 260 DIRTY, /* to count # of dirty segments */ 261 PRE, /* to count # of entirely obsolete segments */ 262 NR_DIRTY_TYPE 263 }; 264 265 struct dirty_seglist_info { 266 const struct victim_selection *v_ops; /* victim selction operation */ 267 unsigned long *dirty_segmap[NR_DIRTY_TYPE]; 268 struct mutex seglist_lock; /* lock for segment bitmaps */ 269 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ 270 unsigned long *victim_secmap; /* background GC victims */ 271 }; 272 273 /* victim selection function for cleaning and SSR */ 274 struct victim_selection { 275 int (*get_victim)(struct f2fs_sb_info *, unsigned int *, 276 int, int, char); 277 }; 278 279 /* for active log information */ 280 struct curseg_info { 281 struct mutex curseg_mutex; /* lock for consistency */ 282 struct f2fs_summary_block *sum_blk; /* cached summary block */ 283 struct rw_semaphore journal_rwsem; /* protect journal area */ 284 struct f2fs_journal *journal; /* cached journal info */ 285 unsigned char alloc_type; /* current allocation type */ 286 unsigned int segno; /* current segment number */ 287 unsigned short next_blkoff; /* next block offset to write */ 288 unsigned int zone; /* current zone number */ 289 unsigned int next_segno; /* preallocated segment */ 290 }; 291 292 struct sit_entry_set { 293 struct list_head set_list; /* link with all sit sets */ 294 unsigned int start_segno; /* start segno of sits in set */ 295 unsigned int entry_cnt; /* the # of sit entries in set */ 296 }; 297 298 /* 299 * inline functions 300 */ 301 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) 302 { 303 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); 304 } 305 306 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, 307 unsigned int segno) 308 { 309 struct sit_info *sit_i = SIT_I(sbi); 310 return &sit_i->sentries[segno]; 311 } 312 313 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, 314 unsigned int segno) 315 { 316 struct sit_info *sit_i = SIT_I(sbi); 317 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)]; 318 } 319 320 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, 321 unsigned int segno, bool use_section) 322 { 323 /* 324 * In order to get # of valid blocks in a section instantly from many 325 * segments, f2fs manages two counting structures separately. 326 */ 327 if (use_section && sbi->segs_per_sec > 1) 328 return get_sec_entry(sbi, segno)->valid_blocks; 329 else 330 return get_seg_entry(sbi, segno)->valid_blocks; 331 } 332 333 static inline void seg_info_from_raw_sit(struct seg_entry *se, 334 struct f2fs_sit_entry *rs) 335 { 336 se->valid_blocks = GET_SIT_VBLOCKS(rs); 337 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); 338 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 339 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 340 #ifdef CONFIG_F2FS_CHECK_FS 341 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 342 #endif 343 se->type = GET_SIT_TYPE(rs); 344 se->mtime = le64_to_cpu(rs->mtime); 345 } 346 347 static inline void seg_info_to_raw_sit(struct seg_entry *se, 348 struct f2fs_sit_entry *rs) 349 { 350 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | 351 se->valid_blocks; 352 rs->vblocks = cpu_to_le16(raw_vblocks); 353 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 354 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 355 se->ckpt_valid_blocks = se->valid_blocks; 356 rs->mtime = cpu_to_le64(se->mtime); 357 } 358 359 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, 360 unsigned int max, unsigned int segno) 361 { 362 unsigned int ret; 363 spin_lock(&free_i->segmap_lock); 364 ret = find_next_bit(free_i->free_segmap, max, segno); 365 spin_unlock(&free_i->segmap_lock); 366 return ret; 367 } 368 369 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) 370 { 371 struct free_segmap_info *free_i = FREE_I(sbi); 372 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 373 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 374 unsigned int next; 375 376 spin_lock(&free_i->segmap_lock); 377 clear_bit(segno, free_i->free_segmap); 378 free_i->free_segments++; 379 380 next = find_next_bit(free_i->free_segmap, 381 start_segno + sbi->segs_per_sec, start_segno); 382 if (next >= start_segno + sbi->segs_per_sec) { 383 clear_bit(secno, free_i->free_secmap); 384 free_i->free_sections++; 385 } 386 spin_unlock(&free_i->segmap_lock); 387 } 388 389 static inline void __set_inuse(struct f2fs_sb_info *sbi, 390 unsigned int segno) 391 { 392 struct free_segmap_info *free_i = FREE_I(sbi); 393 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 394 395 set_bit(segno, free_i->free_segmap); 396 free_i->free_segments--; 397 if (!test_and_set_bit(secno, free_i->free_secmap)) 398 free_i->free_sections--; 399 } 400 401 static inline void __set_test_and_free(struct f2fs_sb_info *sbi, 402 unsigned int segno) 403 { 404 struct free_segmap_info *free_i = FREE_I(sbi); 405 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 406 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 407 unsigned int next; 408 409 spin_lock(&free_i->segmap_lock); 410 if (test_and_clear_bit(segno, free_i->free_segmap)) { 411 free_i->free_segments++; 412 413 next = find_next_bit(free_i->free_segmap, 414 start_segno + sbi->segs_per_sec, start_segno); 415 if (next >= start_segno + sbi->segs_per_sec) { 416 if (test_and_clear_bit(secno, free_i->free_secmap)) 417 free_i->free_sections++; 418 } 419 } 420 spin_unlock(&free_i->segmap_lock); 421 } 422 423 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, 424 unsigned int segno) 425 { 426 struct free_segmap_info *free_i = FREE_I(sbi); 427 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 428 429 spin_lock(&free_i->segmap_lock); 430 if (!test_and_set_bit(segno, free_i->free_segmap)) { 431 free_i->free_segments--; 432 if (!test_and_set_bit(secno, free_i->free_secmap)) 433 free_i->free_sections--; 434 } 435 spin_unlock(&free_i->segmap_lock); 436 } 437 438 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, 439 void *dst_addr) 440 { 441 struct sit_info *sit_i = SIT_I(sbi); 442 443 #ifdef CONFIG_F2FS_CHECK_FS 444 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir, 445 sit_i->bitmap_size)) 446 f2fs_bug_on(sbi, 1); 447 #endif 448 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); 449 } 450 451 static inline block_t written_block_count(struct f2fs_sb_info *sbi) 452 { 453 return SIT_I(sbi)->written_valid_blocks; 454 } 455 456 static inline unsigned int free_segments(struct f2fs_sb_info *sbi) 457 { 458 return FREE_I(sbi)->free_segments; 459 } 460 461 static inline int reserved_segments(struct f2fs_sb_info *sbi) 462 { 463 return SM_I(sbi)->reserved_segments; 464 } 465 466 static inline unsigned int free_sections(struct f2fs_sb_info *sbi) 467 { 468 return FREE_I(sbi)->free_sections; 469 } 470 471 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) 472 { 473 return DIRTY_I(sbi)->nr_dirty[PRE]; 474 } 475 476 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) 477 { 478 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + 479 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + 480 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + 481 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + 482 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + 483 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; 484 } 485 486 static inline int overprovision_segments(struct f2fs_sb_info *sbi) 487 { 488 return SM_I(sbi)->ovp_segments; 489 } 490 491 static inline int overprovision_sections(struct f2fs_sb_info *sbi) 492 { 493 return GET_SEC_FROM_SEG(sbi, (unsigned int)overprovision_segments(sbi)); 494 } 495 496 static inline int reserved_sections(struct f2fs_sb_info *sbi) 497 { 498 return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi)); 499 } 500 501 static inline bool need_SSR(struct f2fs_sb_info *sbi) 502 { 503 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 504 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 505 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 506 507 if (test_opt(sbi, LFS)) 508 return false; 509 510 return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs + 511 2 * reserved_sections(sbi)); 512 } 513 514 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, 515 int freed, int needed) 516 { 517 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 518 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 519 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 520 521 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 522 return false; 523 524 return (free_sections(sbi) + freed) <= 525 (node_secs + 2 * dent_secs + imeta_secs + 526 reserved_sections(sbi) + needed); 527 } 528 529 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) 530 { 531 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; 532 } 533 534 static inline int utilization(struct f2fs_sb_info *sbi) 535 { 536 return div_u64((u64)valid_user_blocks(sbi) * 100, 537 sbi->user_block_count); 538 } 539 540 /* 541 * Sometimes f2fs may be better to drop out-of-place update policy. 542 * And, users can control the policy through sysfs entries. 543 * There are five policies with triggering conditions as follows. 544 * F2FS_IPU_FORCE - all the time, 545 * F2FS_IPU_SSR - if SSR mode is activated, 546 * F2FS_IPU_UTIL - if FS utilization is over threashold, 547 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over 548 * threashold, 549 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash 550 * storages. IPU will be triggered only if the # of dirty 551 * pages over min_fsync_blocks. 552 * F2FS_IPUT_DISABLE - disable IPU. (=default option) 553 */ 554 #define DEF_MIN_IPU_UTIL 70 555 #define DEF_MIN_FSYNC_BLOCKS 8 556 #define DEF_MIN_HOT_BLOCKS 16 557 558 enum { 559 F2FS_IPU_FORCE, 560 F2FS_IPU_SSR, 561 F2FS_IPU_UTIL, 562 F2FS_IPU_SSR_UTIL, 563 F2FS_IPU_FSYNC, 564 F2FS_IPU_ASYNC, 565 }; 566 567 static inline bool need_inplace_update_policy(struct inode *inode, 568 struct f2fs_io_info *fio) 569 { 570 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 571 unsigned int policy = SM_I(sbi)->ipu_policy; 572 573 if (test_opt(sbi, LFS)) 574 return false; 575 576 if (policy & (0x1 << F2FS_IPU_FORCE)) 577 return true; 578 if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi)) 579 return true; 580 if (policy & (0x1 << F2FS_IPU_UTIL) && 581 utilization(sbi) > SM_I(sbi)->min_ipu_util) 582 return true; 583 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) && 584 utilization(sbi) > SM_I(sbi)->min_ipu_util) 585 return true; 586 587 /* 588 * IPU for rewrite async pages 589 */ 590 if (policy & (0x1 << F2FS_IPU_ASYNC) && 591 fio && fio->op == REQ_OP_WRITE && 592 !(fio->op_flags & REQ_SYNC) && 593 !f2fs_encrypted_inode(inode)) 594 return true; 595 596 /* this is only set during fdatasync */ 597 if (policy & (0x1 << F2FS_IPU_FSYNC) && 598 is_inode_flag_set(inode, FI_NEED_IPU)) 599 return true; 600 601 return false; 602 } 603 604 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, 605 int type) 606 { 607 struct curseg_info *curseg = CURSEG_I(sbi, type); 608 return curseg->segno; 609 } 610 611 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, 612 int type) 613 { 614 struct curseg_info *curseg = CURSEG_I(sbi, type); 615 return curseg->alloc_type; 616 } 617 618 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) 619 { 620 struct curseg_info *curseg = CURSEG_I(sbi, type); 621 return curseg->next_blkoff; 622 } 623 624 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) 625 { 626 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1); 627 } 628 629 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr) 630 { 631 BUG_ON(blk_addr < SEG0_BLKADDR(sbi) 632 || blk_addr >= MAX_BLKADDR(sbi)); 633 } 634 635 /* 636 * Summary block is always treated as an invalid block 637 */ 638 static inline void check_block_count(struct f2fs_sb_info *sbi, 639 int segno, struct f2fs_sit_entry *raw_sit) 640 { 641 #ifdef CONFIG_F2FS_CHECK_FS 642 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; 643 int valid_blocks = 0; 644 int cur_pos = 0, next_pos; 645 646 /* check bitmap with valid block count */ 647 do { 648 if (is_valid) { 649 next_pos = find_next_zero_bit_le(&raw_sit->valid_map, 650 sbi->blocks_per_seg, 651 cur_pos); 652 valid_blocks += next_pos - cur_pos; 653 } else 654 next_pos = find_next_bit_le(&raw_sit->valid_map, 655 sbi->blocks_per_seg, 656 cur_pos); 657 cur_pos = next_pos; 658 is_valid = !is_valid; 659 } while (cur_pos < sbi->blocks_per_seg); 660 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks); 661 #endif 662 /* check segment usage, and check boundary of a given segment number */ 663 f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg 664 || segno > TOTAL_SEGS(sbi) - 1); 665 } 666 667 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, 668 unsigned int start) 669 { 670 struct sit_info *sit_i = SIT_I(sbi); 671 unsigned int offset = SIT_BLOCK_OFFSET(start); 672 block_t blk_addr = sit_i->sit_base_addr + offset; 673 674 check_seg_range(sbi, start); 675 676 #ifdef CONFIG_F2FS_CHECK_FS 677 if (f2fs_test_bit(offset, sit_i->sit_bitmap) != 678 f2fs_test_bit(offset, sit_i->sit_bitmap_mir)) 679 f2fs_bug_on(sbi, 1); 680 #endif 681 682 /* calculate sit block address */ 683 if (f2fs_test_bit(offset, sit_i->sit_bitmap)) 684 blk_addr += sit_i->sit_blocks; 685 686 return blk_addr; 687 } 688 689 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, 690 pgoff_t block_addr) 691 { 692 struct sit_info *sit_i = SIT_I(sbi); 693 block_addr -= sit_i->sit_base_addr; 694 if (block_addr < sit_i->sit_blocks) 695 block_addr += sit_i->sit_blocks; 696 else 697 block_addr -= sit_i->sit_blocks; 698 699 return block_addr + sit_i->sit_base_addr; 700 } 701 702 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) 703 { 704 unsigned int block_off = SIT_BLOCK_OFFSET(start); 705 706 f2fs_change_bit(block_off, sit_i->sit_bitmap); 707 #ifdef CONFIG_F2FS_CHECK_FS 708 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir); 709 #endif 710 } 711 712 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi) 713 { 714 struct sit_info *sit_i = SIT_I(sbi); 715 time64_t now = ktime_get_real_seconds(); 716 717 return sit_i->elapsed_time + now - sit_i->mounted_time; 718 } 719 720 static inline void set_summary(struct f2fs_summary *sum, nid_t nid, 721 unsigned int ofs_in_node, unsigned char version) 722 { 723 sum->nid = cpu_to_le32(nid); 724 sum->ofs_in_node = cpu_to_le16(ofs_in_node); 725 sum->version = version; 726 } 727 728 static inline block_t start_sum_block(struct f2fs_sb_info *sbi) 729 { 730 return __start_cp_addr(sbi) + 731 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 732 } 733 734 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) 735 { 736 return __start_cp_addr(sbi) + 737 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) 738 - (base + 1) + type; 739 } 740 741 static inline bool no_fggc_candidate(struct f2fs_sb_info *sbi, 742 unsigned int secno) 743 { 744 if (get_valid_blocks(sbi, GET_SEG_FROM_SEC(sbi, secno), true) >= 745 sbi->fggc_threshold) 746 return true; 747 return false; 748 } 749 750 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) 751 { 752 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) 753 return true; 754 return false; 755 } 756 757 /* 758 * It is very important to gather dirty pages and write at once, so that we can 759 * submit a big bio without interfering other data writes. 760 * By default, 512 pages for directory data, 761 * 512 pages (2MB) * 8 for nodes, and 762 * 256 pages * 8 for meta are set. 763 */ 764 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type) 765 { 766 if (sbi->sb->s_bdi->wb.dirty_exceeded) 767 return 0; 768 769 if (type == DATA) 770 return sbi->blocks_per_seg; 771 else if (type == NODE) 772 return 8 * sbi->blocks_per_seg; 773 else if (type == META) 774 return 8 * BIO_MAX_PAGES; 775 else 776 return 0; 777 } 778 779 /* 780 * When writing pages, it'd better align nr_to_write for segment size. 781 */ 782 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type, 783 struct writeback_control *wbc) 784 { 785 long nr_to_write, desired; 786 787 if (wbc->sync_mode != WB_SYNC_NONE) 788 return 0; 789 790 nr_to_write = wbc->nr_to_write; 791 desired = BIO_MAX_PAGES; 792 if (type == NODE) 793 desired <<= 1; 794 795 wbc->nr_to_write = desired; 796 return desired - nr_to_write; 797 } 798