xref: /openbmc/linux/fs/f2fs/segment.h (revision f7c35abe)
1 /*
2  * fs/f2fs/segment.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/blkdev.h>
12 #include <linux/backing-dev.h>
13 
14 /* constant macro */
15 #define NULL_SEGNO			((unsigned int)(~0))
16 #define NULL_SECNO			((unsigned int)(~0))
17 
18 #define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
19 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
20 
21 #define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
22 
23 /* L: Logical segment # in volume, R: Relative segment # in main area */
24 #define GET_L2R_SEGNO(free_i, segno)	(segno - free_i->start_segno)
25 #define GET_R2L_SEGNO(free_i, segno)	(segno + free_i->start_segno)
26 
27 #define IS_DATASEG(t)	(t <= CURSEG_COLD_DATA)
28 #define IS_NODESEG(t)	(t >= CURSEG_HOT_NODE)
29 
30 #define IS_CURSEG(sbi, seg)						\
31 	((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
32 	 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
33 	 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
34 	 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
35 	 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
36 	 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
37 
38 #define IS_CURSEC(sbi, secno)						\
39 	((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
40 	  sbi->segs_per_sec) ||	\
41 	 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
42 	  sbi->segs_per_sec) ||	\
43 	 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
44 	  sbi->segs_per_sec) ||	\
45 	 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
46 	  sbi->segs_per_sec) ||	\
47 	 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
48 	  sbi->segs_per_sec) ||	\
49 	 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
50 	  sbi->segs_per_sec))	\
51 
52 #define MAIN_BLKADDR(sbi)	(SM_I(sbi)->main_blkaddr)
53 #define SEG0_BLKADDR(sbi)	(SM_I(sbi)->seg0_blkaddr)
54 
55 #define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
56 #define MAIN_SECS(sbi)	(sbi->total_sections)
57 
58 #define TOTAL_SEGS(sbi)	(SM_I(sbi)->segment_count)
59 #define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg)
60 
61 #define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
62 #define SEGMENT_SIZE(sbi)	(1ULL << (sbi->log_blocksize +		\
63 					sbi->log_blocks_per_seg))
64 
65 #define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
66 	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
67 
68 #define NEXT_FREE_BLKADDR(sbi, curseg)					\
69 	(START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
70 
71 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
72 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
73 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
74 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
75 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
76 
77 #define GET_SEGNO(sbi, blk_addr)					\
78 	(((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?		\
79 	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
80 		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
81 #define GET_SECNO(sbi, segno)					\
82 	((segno) / sbi->segs_per_sec)
83 #define GET_ZONENO_FROM_SEGNO(sbi, segno)				\
84 	((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
85 
86 #define GET_SUM_BLOCK(sbi, segno)				\
87 	((sbi->sm_info->ssa_blkaddr) + segno)
88 
89 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
90 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
91 
92 #define SIT_ENTRY_OFFSET(sit_i, segno)					\
93 	(segno % sit_i->sents_per_block)
94 #define SIT_BLOCK_OFFSET(segno)					\
95 	(segno / SIT_ENTRY_PER_BLOCK)
96 #define	START_SEGNO(segno)		\
97 	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
98 #define SIT_BLK_CNT(sbi)			\
99 	((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
100 #define f2fs_bitmap_size(nr)			\
101 	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
102 
103 #define SECTOR_FROM_BLOCK(blk_addr)					\
104 	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
105 #define SECTOR_TO_BLOCK(sectors)					\
106 	(sectors >> F2FS_LOG_SECTORS_PER_BLOCK)
107 
108 /*
109  * indicate a block allocation direction: RIGHT and LEFT.
110  * RIGHT means allocating new sections towards the end of volume.
111  * LEFT means the opposite direction.
112  */
113 enum {
114 	ALLOC_RIGHT = 0,
115 	ALLOC_LEFT
116 };
117 
118 /*
119  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
120  * LFS writes data sequentially with cleaning operations.
121  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
122  */
123 enum {
124 	LFS = 0,
125 	SSR
126 };
127 
128 /*
129  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
130  * GC_CB is based on cost-benefit algorithm.
131  * GC_GREEDY is based on greedy algorithm.
132  */
133 enum {
134 	GC_CB = 0,
135 	GC_GREEDY
136 };
137 
138 /*
139  * BG_GC means the background cleaning job.
140  * FG_GC means the on-demand cleaning job.
141  * FORCE_FG_GC means on-demand cleaning job in background.
142  */
143 enum {
144 	BG_GC = 0,
145 	FG_GC,
146 	FORCE_FG_GC,
147 };
148 
149 /* for a function parameter to select a victim segment */
150 struct victim_sel_policy {
151 	int alloc_mode;			/* LFS or SSR */
152 	int gc_mode;			/* GC_CB or GC_GREEDY */
153 	unsigned long *dirty_segmap;	/* dirty segment bitmap */
154 	unsigned int max_search;	/* maximum # of segments to search */
155 	unsigned int offset;		/* last scanned bitmap offset */
156 	unsigned int ofs_unit;		/* bitmap search unit */
157 	unsigned int min_cost;		/* minimum cost */
158 	unsigned int min_segno;		/* segment # having min. cost */
159 };
160 
161 struct seg_entry {
162 	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
163 	unsigned int valid_blocks:10;	/* # of valid blocks */
164 	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
165 	unsigned int padding:6;		/* padding */
166 	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
167 #ifdef CONFIG_F2FS_CHECK_FS
168 	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
169 #endif
170 	/*
171 	 * # of valid blocks and the validity bitmap stored in the the last
172 	 * checkpoint pack. This information is used by the SSR mode.
173 	 */
174 	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
175 	unsigned char *discard_map;
176 	unsigned long long mtime;	/* modification time of the segment */
177 };
178 
179 struct sec_entry {
180 	unsigned int valid_blocks;	/* # of valid blocks in a section */
181 };
182 
183 struct segment_allocation {
184 	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
185 };
186 
187 /*
188  * this value is set in page as a private data which indicate that
189  * the page is atomically written, and it is in inmem_pages list.
190  */
191 #define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
192 #define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
193 
194 #define IS_ATOMIC_WRITTEN_PAGE(page)			\
195 		(page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
196 #define IS_DUMMY_WRITTEN_PAGE(page)			\
197 		(page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
198 
199 struct inmem_pages {
200 	struct list_head list;
201 	struct page *page;
202 	block_t old_addr;		/* for revoking when fail to commit */
203 };
204 
205 struct sit_info {
206 	const struct segment_allocation *s_ops;
207 
208 	block_t sit_base_addr;		/* start block address of SIT area */
209 	block_t sit_blocks;		/* # of blocks used by SIT area */
210 	block_t written_valid_blocks;	/* # of valid blocks in main area */
211 	char *sit_bitmap;		/* SIT bitmap pointer */
212 #ifdef CONFIG_F2FS_CHECK_FS
213 	char *sit_bitmap_mir;		/* SIT bitmap mirror */
214 #endif
215 	unsigned int bitmap_size;	/* SIT bitmap size */
216 
217 	unsigned long *tmp_map;			/* bitmap for temporal use */
218 	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
219 	unsigned int dirty_sentries;		/* # of dirty sentries */
220 	unsigned int sents_per_block;		/* # of SIT entries per block */
221 	struct mutex sentry_lock;		/* to protect SIT cache */
222 	struct seg_entry *sentries;		/* SIT segment-level cache */
223 	struct sec_entry *sec_entries;		/* SIT section-level cache */
224 
225 	/* for cost-benefit algorithm in cleaning procedure */
226 	unsigned long long elapsed_time;	/* elapsed time after mount */
227 	unsigned long long mounted_time;	/* mount time */
228 	unsigned long long min_mtime;		/* min. modification time */
229 	unsigned long long max_mtime;		/* max. modification time */
230 };
231 
232 struct free_segmap_info {
233 	unsigned int start_segno;	/* start segment number logically */
234 	unsigned int free_segments;	/* # of free segments */
235 	unsigned int free_sections;	/* # of free sections */
236 	spinlock_t segmap_lock;		/* free segmap lock */
237 	unsigned long *free_segmap;	/* free segment bitmap */
238 	unsigned long *free_secmap;	/* free section bitmap */
239 };
240 
241 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
242 enum dirty_type {
243 	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
244 	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
245 	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
246 	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
247 	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
248 	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
249 	DIRTY,			/* to count # of dirty segments */
250 	PRE,			/* to count # of entirely obsolete segments */
251 	NR_DIRTY_TYPE
252 };
253 
254 struct dirty_seglist_info {
255 	const struct victim_selection *v_ops;	/* victim selction operation */
256 	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
257 	struct mutex seglist_lock;		/* lock for segment bitmaps */
258 	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
259 	unsigned long *victim_secmap;		/* background GC victims */
260 };
261 
262 /* victim selection function for cleaning and SSR */
263 struct victim_selection {
264 	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
265 							int, int, char);
266 };
267 
268 /* for active log information */
269 struct curseg_info {
270 	struct mutex curseg_mutex;		/* lock for consistency */
271 	struct f2fs_summary_block *sum_blk;	/* cached summary block */
272 	struct rw_semaphore journal_rwsem;	/* protect journal area */
273 	struct f2fs_journal *journal;		/* cached journal info */
274 	unsigned char alloc_type;		/* current allocation type */
275 	unsigned int segno;			/* current segment number */
276 	unsigned short next_blkoff;		/* next block offset to write */
277 	unsigned int zone;			/* current zone number */
278 	unsigned int next_segno;		/* preallocated segment */
279 };
280 
281 struct sit_entry_set {
282 	struct list_head set_list;	/* link with all sit sets */
283 	unsigned int start_segno;	/* start segno of sits in set */
284 	unsigned int entry_cnt;		/* the # of sit entries in set */
285 };
286 
287 /*
288  * inline functions
289  */
290 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
291 {
292 	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
293 }
294 
295 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
296 						unsigned int segno)
297 {
298 	struct sit_info *sit_i = SIT_I(sbi);
299 	return &sit_i->sentries[segno];
300 }
301 
302 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
303 						unsigned int segno)
304 {
305 	struct sit_info *sit_i = SIT_I(sbi);
306 	return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
307 }
308 
309 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
310 				unsigned int segno, int section)
311 {
312 	/*
313 	 * In order to get # of valid blocks in a section instantly from many
314 	 * segments, f2fs manages two counting structures separately.
315 	 */
316 	if (section > 1)
317 		return get_sec_entry(sbi, segno)->valid_blocks;
318 	else
319 		return get_seg_entry(sbi, segno)->valid_blocks;
320 }
321 
322 static inline void seg_info_from_raw_sit(struct seg_entry *se,
323 					struct f2fs_sit_entry *rs)
324 {
325 	se->valid_blocks = GET_SIT_VBLOCKS(rs);
326 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
327 	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
328 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
329 #ifdef CONFIG_F2FS_CHECK_FS
330 	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
331 #endif
332 	se->type = GET_SIT_TYPE(rs);
333 	se->mtime = le64_to_cpu(rs->mtime);
334 }
335 
336 static inline void seg_info_to_raw_sit(struct seg_entry *se,
337 					struct f2fs_sit_entry *rs)
338 {
339 	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
340 					se->valid_blocks;
341 	rs->vblocks = cpu_to_le16(raw_vblocks);
342 	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
343 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
344 	se->ckpt_valid_blocks = se->valid_blocks;
345 	rs->mtime = cpu_to_le64(se->mtime);
346 }
347 
348 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
349 		unsigned int max, unsigned int segno)
350 {
351 	unsigned int ret;
352 	spin_lock(&free_i->segmap_lock);
353 	ret = find_next_bit(free_i->free_segmap, max, segno);
354 	spin_unlock(&free_i->segmap_lock);
355 	return ret;
356 }
357 
358 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
359 {
360 	struct free_segmap_info *free_i = FREE_I(sbi);
361 	unsigned int secno = segno / sbi->segs_per_sec;
362 	unsigned int start_segno = secno * sbi->segs_per_sec;
363 	unsigned int next;
364 
365 	spin_lock(&free_i->segmap_lock);
366 	clear_bit(segno, free_i->free_segmap);
367 	free_i->free_segments++;
368 
369 	next = find_next_bit(free_i->free_segmap,
370 			start_segno + sbi->segs_per_sec, start_segno);
371 	if (next >= start_segno + sbi->segs_per_sec) {
372 		clear_bit(secno, free_i->free_secmap);
373 		free_i->free_sections++;
374 	}
375 	spin_unlock(&free_i->segmap_lock);
376 }
377 
378 static inline void __set_inuse(struct f2fs_sb_info *sbi,
379 		unsigned int segno)
380 {
381 	struct free_segmap_info *free_i = FREE_I(sbi);
382 	unsigned int secno = segno / sbi->segs_per_sec;
383 	set_bit(segno, free_i->free_segmap);
384 	free_i->free_segments--;
385 	if (!test_and_set_bit(secno, free_i->free_secmap))
386 		free_i->free_sections--;
387 }
388 
389 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
390 		unsigned int segno)
391 {
392 	struct free_segmap_info *free_i = FREE_I(sbi);
393 	unsigned int secno = segno / sbi->segs_per_sec;
394 	unsigned int start_segno = secno * sbi->segs_per_sec;
395 	unsigned int next;
396 
397 	spin_lock(&free_i->segmap_lock);
398 	if (test_and_clear_bit(segno, free_i->free_segmap)) {
399 		free_i->free_segments++;
400 
401 		next = find_next_bit(free_i->free_segmap,
402 				start_segno + sbi->segs_per_sec, start_segno);
403 		if (next >= start_segno + sbi->segs_per_sec) {
404 			if (test_and_clear_bit(secno, free_i->free_secmap))
405 				free_i->free_sections++;
406 		}
407 	}
408 	spin_unlock(&free_i->segmap_lock);
409 }
410 
411 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
412 		unsigned int segno)
413 {
414 	struct free_segmap_info *free_i = FREE_I(sbi);
415 	unsigned int secno = segno / sbi->segs_per_sec;
416 	spin_lock(&free_i->segmap_lock);
417 	if (!test_and_set_bit(segno, free_i->free_segmap)) {
418 		free_i->free_segments--;
419 		if (!test_and_set_bit(secno, free_i->free_secmap))
420 			free_i->free_sections--;
421 	}
422 	spin_unlock(&free_i->segmap_lock);
423 }
424 
425 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
426 		void *dst_addr)
427 {
428 	struct sit_info *sit_i = SIT_I(sbi);
429 
430 #ifdef CONFIG_F2FS_CHECK_FS
431 	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
432 						sit_i->bitmap_size))
433 		f2fs_bug_on(sbi, 1);
434 #endif
435 	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
436 }
437 
438 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
439 {
440 	return SIT_I(sbi)->written_valid_blocks;
441 }
442 
443 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
444 {
445 	return FREE_I(sbi)->free_segments;
446 }
447 
448 static inline int reserved_segments(struct f2fs_sb_info *sbi)
449 {
450 	return SM_I(sbi)->reserved_segments;
451 }
452 
453 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
454 {
455 	return FREE_I(sbi)->free_sections;
456 }
457 
458 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
459 {
460 	return DIRTY_I(sbi)->nr_dirty[PRE];
461 }
462 
463 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
464 {
465 	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
466 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
467 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
468 		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
469 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
470 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
471 }
472 
473 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
474 {
475 	return SM_I(sbi)->ovp_segments;
476 }
477 
478 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
479 {
480 	return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
481 }
482 
483 static inline int reserved_sections(struct f2fs_sb_info *sbi)
484 {
485 	return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
486 }
487 
488 static inline bool need_SSR(struct f2fs_sb_info *sbi)
489 {
490 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
491 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
492 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
493 
494 	if (test_opt(sbi, LFS))
495 		return false;
496 
497 	return free_sections(sbi) <= (node_secs + 2 * dent_secs + imeta_secs +
498 						reserved_sections(sbi) + 1);
499 }
500 
501 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
502 					int freed, int needed)
503 {
504 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
505 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
506 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
507 
508 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
509 		return false;
510 
511 	return (free_sections(sbi) + freed) <=
512 		(node_secs + 2 * dent_secs + imeta_secs +
513 		reserved_sections(sbi) + needed);
514 }
515 
516 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
517 {
518 	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
519 }
520 
521 static inline int utilization(struct f2fs_sb_info *sbi)
522 {
523 	return div_u64((u64)valid_user_blocks(sbi) * 100,
524 					sbi->user_block_count);
525 }
526 
527 /*
528  * Sometimes f2fs may be better to drop out-of-place update policy.
529  * And, users can control the policy through sysfs entries.
530  * There are five policies with triggering conditions as follows.
531  * F2FS_IPU_FORCE - all the time,
532  * F2FS_IPU_SSR - if SSR mode is activated,
533  * F2FS_IPU_UTIL - if FS utilization is over threashold,
534  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
535  *                     threashold,
536  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
537  *                     storages. IPU will be triggered only if the # of dirty
538  *                     pages over min_fsync_blocks.
539  * F2FS_IPUT_DISABLE - disable IPU. (=default option)
540  */
541 #define DEF_MIN_IPU_UTIL	70
542 #define DEF_MIN_FSYNC_BLOCKS	8
543 
544 enum {
545 	F2FS_IPU_FORCE,
546 	F2FS_IPU_SSR,
547 	F2FS_IPU_UTIL,
548 	F2FS_IPU_SSR_UTIL,
549 	F2FS_IPU_FSYNC,
550 };
551 
552 static inline bool need_inplace_update(struct inode *inode)
553 {
554 	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
555 	unsigned int policy = SM_I(sbi)->ipu_policy;
556 
557 	/* IPU can be done only for the user data */
558 	if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode))
559 		return false;
560 
561 	if (test_opt(sbi, LFS))
562 		return false;
563 
564 	if (policy & (0x1 << F2FS_IPU_FORCE))
565 		return true;
566 	if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi))
567 		return true;
568 	if (policy & (0x1 << F2FS_IPU_UTIL) &&
569 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
570 		return true;
571 	if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) &&
572 			utilization(sbi) > SM_I(sbi)->min_ipu_util)
573 		return true;
574 
575 	/* this is only set during fdatasync */
576 	if (policy & (0x1 << F2FS_IPU_FSYNC) &&
577 			is_inode_flag_set(inode, FI_NEED_IPU))
578 		return true;
579 
580 	return false;
581 }
582 
583 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
584 		int type)
585 {
586 	struct curseg_info *curseg = CURSEG_I(sbi, type);
587 	return curseg->segno;
588 }
589 
590 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
591 		int type)
592 {
593 	struct curseg_info *curseg = CURSEG_I(sbi, type);
594 	return curseg->alloc_type;
595 }
596 
597 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
598 {
599 	struct curseg_info *curseg = CURSEG_I(sbi, type);
600 	return curseg->next_blkoff;
601 }
602 
603 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
604 {
605 	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
606 }
607 
608 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
609 {
610 	BUG_ON(blk_addr < SEG0_BLKADDR(sbi)
611 			|| blk_addr >= MAX_BLKADDR(sbi));
612 }
613 
614 /*
615  * Summary block is always treated as an invalid block
616  */
617 static inline void check_block_count(struct f2fs_sb_info *sbi,
618 		int segno, struct f2fs_sit_entry *raw_sit)
619 {
620 #ifdef CONFIG_F2FS_CHECK_FS
621 	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
622 	int valid_blocks = 0;
623 	int cur_pos = 0, next_pos;
624 
625 	/* check bitmap with valid block count */
626 	do {
627 		if (is_valid) {
628 			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
629 					sbi->blocks_per_seg,
630 					cur_pos);
631 			valid_blocks += next_pos - cur_pos;
632 		} else
633 			next_pos = find_next_bit_le(&raw_sit->valid_map,
634 					sbi->blocks_per_seg,
635 					cur_pos);
636 		cur_pos = next_pos;
637 		is_valid = !is_valid;
638 	} while (cur_pos < sbi->blocks_per_seg);
639 	BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
640 #endif
641 	/* check segment usage, and check boundary of a given segment number */
642 	f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
643 					|| segno > TOTAL_SEGS(sbi) - 1);
644 }
645 
646 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
647 						unsigned int start)
648 {
649 	struct sit_info *sit_i = SIT_I(sbi);
650 	unsigned int offset = SIT_BLOCK_OFFSET(start);
651 	block_t blk_addr = sit_i->sit_base_addr + offset;
652 
653 	check_seg_range(sbi, start);
654 
655 #ifdef CONFIG_F2FS_CHECK_FS
656 	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
657 			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
658 		f2fs_bug_on(sbi, 1);
659 #endif
660 
661 	/* calculate sit block address */
662 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
663 		blk_addr += sit_i->sit_blocks;
664 
665 	return blk_addr;
666 }
667 
668 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
669 						pgoff_t block_addr)
670 {
671 	struct sit_info *sit_i = SIT_I(sbi);
672 	block_addr -= sit_i->sit_base_addr;
673 	if (block_addr < sit_i->sit_blocks)
674 		block_addr += sit_i->sit_blocks;
675 	else
676 		block_addr -= sit_i->sit_blocks;
677 
678 	return block_addr + sit_i->sit_base_addr;
679 }
680 
681 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
682 {
683 	unsigned int block_off = SIT_BLOCK_OFFSET(start);
684 
685 	f2fs_change_bit(block_off, sit_i->sit_bitmap);
686 #ifdef CONFIG_F2FS_CHECK_FS
687 	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
688 #endif
689 }
690 
691 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
692 {
693 	struct sit_info *sit_i = SIT_I(sbi);
694 	return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
695 						sit_i->mounted_time;
696 }
697 
698 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
699 			unsigned int ofs_in_node, unsigned char version)
700 {
701 	sum->nid = cpu_to_le32(nid);
702 	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
703 	sum->version = version;
704 }
705 
706 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
707 {
708 	return __start_cp_addr(sbi) +
709 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
710 }
711 
712 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
713 {
714 	return __start_cp_addr(sbi) +
715 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
716 				- (base + 1) + type;
717 }
718 
719 static inline bool no_fggc_candidate(struct f2fs_sb_info *sbi,
720 						unsigned int secno)
721 {
722 	if (get_valid_blocks(sbi, secno, sbi->segs_per_sec) >=
723 						sbi->fggc_threshold)
724 		return true;
725 	return false;
726 }
727 
728 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
729 {
730 	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
731 		return true;
732 	return false;
733 }
734 
735 /*
736  * It is very important to gather dirty pages and write at once, so that we can
737  * submit a big bio without interfering other data writes.
738  * By default, 512 pages for directory data,
739  * 512 pages (2MB) * 8 for nodes, and
740  * 256 pages * 8 for meta are set.
741  */
742 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
743 {
744 	if (sbi->sb->s_bdi->wb.dirty_exceeded)
745 		return 0;
746 
747 	if (type == DATA)
748 		return sbi->blocks_per_seg;
749 	else if (type == NODE)
750 		return 8 * sbi->blocks_per_seg;
751 	else if (type == META)
752 		return 8 * BIO_MAX_PAGES;
753 	else
754 		return 0;
755 }
756 
757 /*
758  * When writing pages, it'd better align nr_to_write for segment size.
759  */
760 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
761 					struct writeback_control *wbc)
762 {
763 	long nr_to_write, desired;
764 
765 	if (wbc->sync_mode != WB_SYNC_NONE)
766 		return 0;
767 
768 	nr_to_write = wbc->nr_to_write;
769 	desired = BIO_MAX_PAGES;
770 	if (type == NODE)
771 		desired <<= 1;
772 
773 	wbc->nr_to_write = desired;
774 	return desired - nr_to_write;
775 }
776