1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fs/f2fs/segment.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/blkdev.h> 9 #include <linux/backing-dev.h> 10 11 /* constant macro */ 12 #define NULL_SEGNO ((unsigned int)(~0)) 13 #define NULL_SECNO ((unsigned int)(~0)) 14 15 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */ 16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */ 17 18 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */ 19 #define F2FS_MIN_META_SEGMENTS 8 /* SB + 2 (CP + SIT + NAT) + SSA */ 20 21 /* L: Logical segment # in volume, R: Relative segment # in main area */ 22 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno) 23 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno) 24 25 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA) 26 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE) 27 #define SE_PAGETYPE(se) ((IS_NODESEG((se)->type) ? NODE : DATA)) 28 29 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi, 30 unsigned short seg_type) 31 { 32 f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG); 33 } 34 35 #define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA) 36 #define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA) 37 #define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA) 38 39 #define IS_CURSEG(sbi, seg) \ 40 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ 41 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ 42 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ 43 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ 44 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ 45 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) || \ 46 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) || \ 47 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno)) 48 49 #define IS_CURSEC(sbi, secno) \ 50 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ 51 (sbi)->segs_per_sec) || \ 52 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ 53 (sbi)->segs_per_sec) || \ 54 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ 55 (sbi)->segs_per_sec) || \ 56 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ 57 (sbi)->segs_per_sec) || \ 58 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ 59 (sbi)->segs_per_sec) || \ 60 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ 61 (sbi)->segs_per_sec) || \ 62 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno / \ 63 (sbi)->segs_per_sec) || \ 64 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno / \ 65 (sbi)->segs_per_sec)) 66 67 #define MAIN_BLKADDR(sbi) \ 68 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \ 69 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr)) 70 #define SEG0_BLKADDR(sbi) \ 71 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \ 72 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr)) 73 74 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments) 75 #define MAIN_SECS(sbi) ((sbi)->total_sections) 76 77 #define TOTAL_SEGS(sbi) \ 78 (SM_I(sbi) ? SM_I(sbi)->segment_count : \ 79 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count)) 80 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg) 81 82 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi)) 83 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \ 84 (sbi)->log_blocks_per_seg)) 85 86 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \ 87 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg)) 88 89 #define NEXT_FREE_BLKADDR(sbi, curseg) \ 90 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff) 91 92 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi)) 93 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ 94 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg) 95 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \ 96 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1)) 97 98 #define GET_SEGNO(sbi, blk_addr) \ 99 ((!__is_valid_data_blkaddr(blk_addr)) ? \ 100 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ 101 GET_SEGNO_FROM_SEG0(sbi, blk_addr))) 102 #define BLKS_PER_SEC(sbi) \ 103 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg) 104 #define GET_SEC_FROM_SEG(sbi, segno) \ 105 (((segno) == -1) ? -1: (segno) / (sbi)->segs_per_sec) 106 #define GET_SEG_FROM_SEC(sbi, secno) \ 107 ((secno) * (sbi)->segs_per_sec) 108 #define GET_ZONE_FROM_SEC(sbi, secno) \ 109 (((secno) == -1) ? -1: (secno) / (sbi)->secs_per_zone) 110 #define GET_ZONE_FROM_SEG(sbi, segno) \ 111 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno)) 112 113 #define GET_SUM_BLOCK(sbi, segno) \ 114 ((sbi)->sm_info->ssa_blkaddr + (segno)) 115 116 #define GET_SUM_TYPE(footer) ((footer)->entry_type) 117 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type)) 118 119 #define SIT_ENTRY_OFFSET(sit_i, segno) \ 120 ((segno) % (sit_i)->sents_per_block) 121 #define SIT_BLOCK_OFFSET(segno) \ 122 ((segno) / SIT_ENTRY_PER_BLOCK) 123 #define START_SEGNO(segno) \ 124 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK) 125 #define SIT_BLK_CNT(sbi) \ 126 DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK) 127 #define f2fs_bitmap_size(nr) \ 128 (BITS_TO_LONGS(nr) * sizeof(unsigned long)) 129 130 #define SECTOR_FROM_BLOCK(blk_addr) \ 131 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK) 132 #define SECTOR_TO_BLOCK(sectors) \ 133 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK) 134 135 /* 136 * indicate a block allocation direction: RIGHT and LEFT. 137 * RIGHT means allocating new sections towards the end of volume. 138 * LEFT means the opposite direction. 139 */ 140 enum { 141 ALLOC_RIGHT = 0, 142 ALLOC_LEFT 143 }; 144 145 /* 146 * In the victim_sel_policy->alloc_mode, there are three block allocation modes. 147 * LFS writes data sequentially with cleaning operations. 148 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. 149 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into 150 * fragmented segment which has similar aging degree. 151 */ 152 enum { 153 LFS = 0, 154 SSR, 155 AT_SSR, 156 }; 157 158 /* 159 * In the victim_sel_policy->gc_mode, there are three gc, aka cleaning, modes. 160 * GC_CB is based on cost-benefit algorithm. 161 * GC_GREEDY is based on greedy algorithm. 162 * GC_AT is based on age-threshold algorithm. 163 */ 164 enum { 165 GC_CB = 0, 166 GC_GREEDY, 167 GC_AT, 168 ALLOC_NEXT, 169 FLUSH_DEVICE, 170 MAX_GC_POLICY, 171 }; 172 173 /* 174 * BG_GC means the background cleaning job. 175 * FG_GC means the on-demand cleaning job. 176 */ 177 enum { 178 BG_GC = 0, 179 FG_GC, 180 }; 181 182 /* for a function parameter to select a victim segment */ 183 struct victim_sel_policy { 184 int alloc_mode; /* LFS or SSR */ 185 int gc_mode; /* GC_CB or GC_GREEDY */ 186 unsigned long *dirty_bitmap; /* dirty segment/section bitmap */ 187 unsigned int max_search; /* 188 * maximum # of segments/sections 189 * to search 190 */ 191 unsigned int offset; /* last scanned bitmap offset */ 192 unsigned int ofs_unit; /* bitmap search unit */ 193 unsigned int min_cost; /* minimum cost */ 194 unsigned long long oldest_age; /* oldest age of segments having the same min cost */ 195 unsigned int min_segno; /* segment # having min. cost */ 196 unsigned long long age; /* mtime of GCed section*/ 197 unsigned long long age_threshold;/* age threshold */ 198 }; 199 200 struct seg_entry { 201 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */ 202 unsigned int valid_blocks:10; /* # of valid blocks */ 203 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */ 204 unsigned int padding:6; /* padding */ 205 unsigned char *cur_valid_map; /* validity bitmap of blocks */ 206 #ifdef CONFIG_F2FS_CHECK_FS 207 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */ 208 #endif 209 /* 210 * # of valid blocks and the validity bitmap stored in the last 211 * checkpoint pack. This information is used by the SSR mode. 212 */ 213 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */ 214 unsigned char *discard_map; 215 unsigned long long mtime; /* modification time of the segment */ 216 }; 217 218 struct sec_entry { 219 unsigned int valid_blocks; /* # of valid blocks in a section */ 220 }; 221 222 struct segment_allocation { 223 void (*allocate_segment)(struct f2fs_sb_info *, int, bool); 224 }; 225 226 #define MAX_SKIP_GC_COUNT 16 227 228 struct revoke_entry { 229 struct list_head list; 230 block_t old_addr; /* for revoking when fail to commit */ 231 pgoff_t index; 232 }; 233 234 struct sit_info { 235 const struct segment_allocation *s_ops; 236 237 block_t sit_base_addr; /* start block address of SIT area */ 238 block_t sit_blocks; /* # of blocks used by SIT area */ 239 block_t written_valid_blocks; /* # of valid blocks in main area */ 240 char *bitmap; /* all bitmaps pointer */ 241 char *sit_bitmap; /* SIT bitmap pointer */ 242 #ifdef CONFIG_F2FS_CHECK_FS 243 char *sit_bitmap_mir; /* SIT bitmap mirror */ 244 245 /* bitmap of segments to be ignored by GC in case of errors */ 246 unsigned long *invalid_segmap; 247 #endif 248 unsigned int bitmap_size; /* SIT bitmap size */ 249 250 unsigned long *tmp_map; /* bitmap for temporal use */ 251 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ 252 unsigned int dirty_sentries; /* # of dirty sentries */ 253 unsigned int sents_per_block; /* # of SIT entries per block */ 254 struct rw_semaphore sentry_lock; /* to protect SIT cache */ 255 struct seg_entry *sentries; /* SIT segment-level cache */ 256 struct sec_entry *sec_entries; /* SIT section-level cache */ 257 258 /* for cost-benefit algorithm in cleaning procedure */ 259 unsigned long long elapsed_time; /* elapsed time after mount */ 260 unsigned long long mounted_time; /* mount time */ 261 unsigned long long min_mtime; /* min. modification time */ 262 unsigned long long max_mtime; /* max. modification time */ 263 unsigned long long dirty_min_mtime; /* rerange candidates in GC_AT */ 264 unsigned long long dirty_max_mtime; /* rerange candidates in GC_AT */ 265 266 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */ 267 }; 268 269 struct free_segmap_info { 270 unsigned int start_segno; /* start segment number logically */ 271 unsigned int free_segments; /* # of free segments */ 272 unsigned int free_sections; /* # of free sections */ 273 spinlock_t segmap_lock; /* free segmap lock */ 274 unsigned long *free_segmap; /* free segment bitmap */ 275 unsigned long *free_secmap; /* free section bitmap */ 276 }; 277 278 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ 279 enum dirty_type { 280 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ 281 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ 282 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ 283 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ 284 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ 285 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ 286 DIRTY, /* to count # of dirty segments */ 287 PRE, /* to count # of entirely obsolete segments */ 288 NR_DIRTY_TYPE 289 }; 290 291 struct dirty_seglist_info { 292 const struct victim_selection *v_ops; /* victim selction operation */ 293 unsigned long *dirty_segmap[NR_DIRTY_TYPE]; 294 unsigned long *dirty_secmap; 295 struct mutex seglist_lock; /* lock for segment bitmaps */ 296 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ 297 unsigned long *victim_secmap; /* background GC victims */ 298 unsigned long *pinned_secmap; /* pinned victims from foreground GC */ 299 unsigned int pinned_secmap_cnt; /* count of victims which has pinned data */ 300 bool enable_pin_section; /* enable pinning section */ 301 }; 302 303 /* victim selection function for cleaning and SSR */ 304 struct victim_selection { 305 int (*get_victim)(struct f2fs_sb_info *, unsigned int *, 306 int, int, char, unsigned long long); 307 }; 308 309 /* for active log information */ 310 struct curseg_info { 311 struct mutex curseg_mutex; /* lock for consistency */ 312 struct f2fs_summary_block *sum_blk; /* cached summary block */ 313 struct rw_semaphore journal_rwsem; /* protect journal area */ 314 struct f2fs_journal *journal; /* cached journal info */ 315 unsigned char alloc_type; /* current allocation type */ 316 unsigned short seg_type; /* segment type like CURSEG_XXX_TYPE */ 317 unsigned int segno; /* current segment number */ 318 unsigned short next_blkoff; /* next block offset to write */ 319 unsigned int zone; /* current zone number */ 320 unsigned int next_segno; /* preallocated segment */ 321 int fragment_remained_chunk; /* remained block size in a chunk for block fragmentation mode */ 322 bool inited; /* indicate inmem log is inited */ 323 }; 324 325 struct sit_entry_set { 326 struct list_head set_list; /* link with all sit sets */ 327 unsigned int start_segno; /* start segno of sits in set */ 328 unsigned int entry_cnt; /* the # of sit entries in set */ 329 }; 330 331 /* 332 * inline functions 333 */ 334 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) 335 { 336 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); 337 } 338 339 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, 340 unsigned int segno) 341 { 342 struct sit_info *sit_i = SIT_I(sbi); 343 return &sit_i->sentries[segno]; 344 } 345 346 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, 347 unsigned int segno) 348 { 349 struct sit_info *sit_i = SIT_I(sbi); 350 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)]; 351 } 352 353 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, 354 unsigned int segno, bool use_section) 355 { 356 /* 357 * In order to get # of valid blocks in a section instantly from many 358 * segments, f2fs manages two counting structures separately. 359 */ 360 if (use_section && __is_large_section(sbi)) 361 return get_sec_entry(sbi, segno)->valid_blocks; 362 else 363 return get_seg_entry(sbi, segno)->valid_blocks; 364 } 365 366 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi, 367 unsigned int segno, bool use_section) 368 { 369 if (use_section && __is_large_section(sbi)) { 370 unsigned int start_segno = START_SEGNO(segno); 371 unsigned int blocks = 0; 372 int i; 373 374 for (i = 0; i < sbi->segs_per_sec; i++, start_segno++) { 375 struct seg_entry *se = get_seg_entry(sbi, start_segno); 376 377 blocks += se->ckpt_valid_blocks; 378 } 379 return blocks; 380 } 381 return get_seg_entry(sbi, segno)->ckpt_valid_blocks; 382 } 383 384 static inline void seg_info_from_raw_sit(struct seg_entry *se, 385 struct f2fs_sit_entry *rs) 386 { 387 se->valid_blocks = GET_SIT_VBLOCKS(rs); 388 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); 389 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 390 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 391 #ifdef CONFIG_F2FS_CHECK_FS 392 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 393 #endif 394 se->type = GET_SIT_TYPE(rs); 395 se->mtime = le64_to_cpu(rs->mtime); 396 } 397 398 static inline void __seg_info_to_raw_sit(struct seg_entry *se, 399 struct f2fs_sit_entry *rs) 400 { 401 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | 402 se->valid_blocks; 403 rs->vblocks = cpu_to_le16(raw_vblocks); 404 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 405 rs->mtime = cpu_to_le64(se->mtime); 406 } 407 408 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi, 409 struct page *page, unsigned int start) 410 { 411 struct f2fs_sit_block *raw_sit; 412 struct seg_entry *se; 413 struct f2fs_sit_entry *rs; 414 unsigned int end = min(start + SIT_ENTRY_PER_BLOCK, 415 (unsigned long)MAIN_SEGS(sbi)); 416 int i; 417 418 raw_sit = (struct f2fs_sit_block *)page_address(page); 419 memset(raw_sit, 0, PAGE_SIZE); 420 for (i = 0; i < end - start; i++) { 421 rs = &raw_sit->entries[i]; 422 se = get_seg_entry(sbi, start + i); 423 __seg_info_to_raw_sit(se, rs); 424 } 425 } 426 427 static inline void seg_info_to_raw_sit(struct seg_entry *se, 428 struct f2fs_sit_entry *rs) 429 { 430 __seg_info_to_raw_sit(se, rs); 431 432 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 433 se->ckpt_valid_blocks = se->valid_blocks; 434 } 435 436 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, 437 unsigned int max, unsigned int segno) 438 { 439 unsigned int ret; 440 spin_lock(&free_i->segmap_lock); 441 ret = find_next_bit(free_i->free_segmap, max, segno); 442 spin_unlock(&free_i->segmap_lock); 443 return ret; 444 } 445 446 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) 447 { 448 struct free_segmap_info *free_i = FREE_I(sbi); 449 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 450 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 451 unsigned int next; 452 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno); 453 454 spin_lock(&free_i->segmap_lock); 455 clear_bit(segno, free_i->free_segmap); 456 free_i->free_segments++; 457 458 next = find_next_bit(free_i->free_segmap, 459 start_segno + sbi->segs_per_sec, start_segno); 460 if (next >= start_segno + usable_segs) { 461 clear_bit(secno, free_i->free_secmap); 462 free_i->free_sections++; 463 } 464 spin_unlock(&free_i->segmap_lock); 465 } 466 467 static inline void __set_inuse(struct f2fs_sb_info *sbi, 468 unsigned int segno) 469 { 470 struct free_segmap_info *free_i = FREE_I(sbi); 471 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 472 473 set_bit(segno, free_i->free_segmap); 474 free_i->free_segments--; 475 if (!test_and_set_bit(secno, free_i->free_secmap)) 476 free_i->free_sections--; 477 } 478 479 static inline void __set_test_and_free(struct f2fs_sb_info *sbi, 480 unsigned int segno, bool inmem) 481 { 482 struct free_segmap_info *free_i = FREE_I(sbi); 483 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 484 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 485 unsigned int next; 486 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno); 487 488 spin_lock(&free_i->segmap_lock); 489 if (test_and_clear_bit(segno, free_i->free_segmap)) { 490 free_i->free_segments++; 491 492 if (!inmem && IS_CURSEC(sbi, secno)) 493 goto skip_free; 494 next = find_next_bit(free_i->free_segmap, 495 start_segno + sbi->segs_per_sec, start_segno); 496 if (next >= start_segno + usable_segs) { 497 if (test_and_clear_bit(secno, free_i->free_secmap)) 498 free_i->free_sections++; 499 } 500 } 501 skip_free: 502 spin_unlock(&free_i->segmap_lock); 503 } 504 505 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, 506 unsigned int segno) 507 { 508 struct free_segmap_info *free_i = FREE_I(sbi); 509 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 510 511 spin_lock(&free_i->segmap_lock); 512 if (!test_and_set_bit(segno, free_i->free_segmap)) { 513 free_i->free_segments--; 514 if (!test_and_set_bit(secno, free_i->free_secmap)) 515 free_i->free_sections--; 516 } 517 spin_unlock(&free_i->segmap_lock); 518 } 519 520 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, 521 void *dst_addr) 522 { 523 struct sit_info *sit_i = SIT_I(sbi); 524 525 #ifdef CONFIG_F2FS_CHECK_FS 526 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir, 527 sit_i->bitmap_size)) 528 f2fs_bug_on(sbi, 1); 529 #endif 530 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); 531 } 532 533 static inline block_t written_block_count(struct f2fs_sb_info *sbi) 534 { 535 return SIT_I(sbi)->written_valid_blocks; 536 } 537 538 static inline unsigned int free_segments(struct f2fs_sb_info *sbi) 539 { 540 return FREE_I(sbi)->free_segments; 541 } 542 543 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi) 544 { 545 return SM_I(sbi)->reserved_segments + 546 SM_I(sbi)->additional_reserved_segments; 547 } 548 549 static inline unsigned int free_sections(struct f2fs_sb_info *sbi) 550 { 551 return FREE_I(sbi)->free_sections; 552 } 553 554 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) 555 { 556 return DIRTY_I(sbi)->nr_dirty[PRE]; 557 } 558 559 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) 560 { 561 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + 562 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + 563 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + 564 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + 565 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + 566 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; 567 } 568 569 static inline int overprovision_segments(struct f2fs_sb_info *sbi) 570 { 571 return SM_I(sbi)->ovp_segments; 572 } 573 574 static inline int reserved_sections(struct f2fs_sb_info *sbi) 575 { 576 return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi)); 577 } 578 579 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi, 580 unsigned int node_blocks, unsigned int dent_blocks) 581 { 582 583 unsigned int segno, left_blocks; 584 int i; 585 586 /* check current node segment */ 587 for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) { 588 segno = CURSEG_I(sbi, i)->segno; 589 left_blocks = f2fs_usable_blks_in_seg(sbi, segno) - 590 get_seg_entry(sbi, segno)->ckpt_valid_blocks; 591 592 if (node_blocks > left_blocks) 593 return false; 594 } 595 596 /* check current data segment */ 597 segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno; 598 left_blocks = f2fs_usable_blks_in_seg(sbi, segno) - 599 get_seg_entry(sbi, segno)->ckpt_valid_blocks; 600 if (dent_blocks > left_blocks) 601 return false; 602 return true; 603 } 604 605 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, 606 int freed, int needed) 607 { 608 unsigned int total_node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) + 609 get_pages(sbi, F2FS_DIRTY_DENTS) + 610 get_pages(sbi, F2FS_DIRTY_IMETA); 611 unsigned int total_dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS); 612 unsigned int node_secs = total_node_blocks / BLKS_PER_SEC(sbi); 613 unsigned int dent_secs = total_dent_blocks / BLKS_PER_SEC(sbi); 614 unsigned int node_blocks = total_node_blocks % BLKS_PER_SEC(sbi); 615 unsigned int dent_blocks = total_dent_blocks % BLKS_PER_SEC(sbi); 616 unsigned int free, need_lower, need_upper; 617 618 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 619 return false; 620 621 free = free_sections(sbi) + freed; 622 need_lower = node_secs + dent_secs + reserved_sections(sbi) + needed; 623 need_upper = need_lower + (node_blocks ? 1 : 0) + (dent_blocks ? 1 : 0); 624 625 if (free > need_upper) 626 return false; 627 else if (free <= need_lower) 628 return true; 629 return !has_curseg_enough_space(sbi, node_blocks, dent_blocks); 630 } 631 632 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi) 633 { 634 if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 635 return true; 636 if (likely(!has_not_enough_free_secs(sbi, 0, 0))) 637 return true; 638 return false; 639 } 640 641 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) 642 { 643 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; 644 } 645 646 static inline int utilization(struct f2fs_sb_info *sbi) 647 { 648 return div_u64((u64)valid_user_blocks(sbi) * 100, 649 sbi->user_block_count); 650 } 651 652 /* 653 * Sometimes f2fs may be better to drop out-of-place update policy. 654 * And, users can control the policy through sysfs entries. 655 * There are five policies with triggering conditions as follows. 656 * F2FS_IPU_FORCE - all the time, 657 * F2FS_IPU_SSR - if SSR mode is activated, 658 * F2FS_IPU_UTIL - if FS utilization is over threashold, 659 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over 660 * threashold, 661 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash 662 * storages. IPU will be triggered only if the # of dirty 663 * pages over min_fsync_blocks. (=default option) 664 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests. 665 * F2FS_IPU_NOCACHE - disable IPU bio cache. 666 * F2FS_IPU_HONOR_OPU_WRITE - use OPU write prior to IPU write if inode has 667 * FI_OPU_WRITE flag. 668 * F2FS_IPU_DISABLE - disable IPU. (=default option in LFS mode) 669 */ 670 #define DEF_MIN_IPU_UTIL 70 671 #define DEF_MIN_FSYNC_BLOCKS 8 672 #define DEF_MIN_HOT_BLOCKS 16 673 674 #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */ 675 676 enum { 677 F2FS_IPU_FORCE, 678 F2FS_IPU_SSR, 679 F2FS_IPU_UTIL, 680 F2FS_IPU_SSR_UTIL, 681 F2FS_IPU_FSYNC, 682 F2FS_IPU_ASYNC, 683 F2FS_IPU_NOCACHE, 684 F2FS_IPU_HONOR_OPU_WRITE, 685 }; 686 687 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, 688 int type) 689 { 690 struct curseg_info *curseg = CURSEG_I(sbi, type); 691 return curseg->segno; 692 } 693 694 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, 695 int type) 696 { 697 struct curseg_info *curseg = CURSEG_I(sbi, type); 698 return curseg->alloc_type; 699 } 700 701 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) 702 { 703 struct curseg_info *curseg = CURSEG_I(sbi, type); 704 return curseg->next_blkoff; 705 } 706 707 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) 708 { 709 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1); 710 } 711 712 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio) 713 { 714 struct f2fs_sb_info *sbi = fio->sbi; 715 716 if (__is_valid_data_blkaddr(fio->old_blkaddr)) 717 verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ? 718 META_GENERIC : DATA_GENERIC); 719 verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ? 720 META_GENERIC : DATA_GENERIC_ENHANCE); 721 } 722 723 /* 724 * Summary block is always treated as an invalid block 725 */ 726 static inline int check_block_count(struct f2fs_sb_info *sbi, 727 int segno, struct f2fs_sit_entry *raw_sit) 728 { 729 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; 730 int valid_blocks = 0; 731 int cur_pos = 0, next_pos; 732 unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno); 733 734 /* check bitmap with valid block count */ 735 do { 736 if (is_valid) { 737 next_pos = find_next_zero_bit_le(&raw_sit->valid_map, 738 usable_blks_per_seg, 739 cur_pos); 740 valid_blocks += next_pos - cur_pos; 741 } else 742 next_pos = find_next_bit_le(&raw_sit->valid_map, 743 usable_blks_per_seg, 744 cur_pos); 745 cur_pos = next_pos; 746 is_valid = !is_valid; 747 } while (cur_pos < usable_blks_per_seg); 748 749 if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) { 750 f2fs_err(sbi, "Mismatch valid blocks %d vs. %d", 751 GET_SIT_VBLOCKS(raw_sit), valid_blocks); 752 set_sbi_flag(sbi, SBI_NEED_FSCK); 753 return -EFSCORRUPTED; 754 } 755 756 if (usable_blks_per_seg < sbi->blocks_per_seg) 757 f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map, 758 sbi->blocks_per_seg, 759 usable_blks_per_seg) != sbi->blocks_per_seg); 760 761 /* check segment usage, and check boundary of a given segment number */ 762 if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg 763 || segno > TOTAL_SEGS(sbi) - 1)) { 764 f2fs_err(sbi, "Wrong valid blocks %d or segno %u", 765 GET_SIT_VBLOCKS(raw_sit), segno); 766 set_sbi_flag(sbi, SBI_NEED_FSCK); 767 return -EFSCORRUPTED; 768 } 769 return 0; 770 } 771 772 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, 773 unsigned int start) 774 { 775 struct sit_info *sit_i = SIT_I(sbi); 776 unsigned int offset = SIT_BLOCK_OFFSET(start); 777 block_t blk_addr = sit_i->sit_base_addr + offset; 778 779 check_seg_range(sbi, start); 780 781 #ifdef CONFIG_F2FS_CHECK_FS 782 if (f2fs_test_bit(offset, sit_i->sit_bitmap) != 783 f2fs_test_bit(offset, sit_i->sit_bitmap_mir)) 784 f2fs_bug_on(sbi, 1); 785 #endif 786 787 /* calculate sit block address */ 788 if (f2fs_test_bit(offset, sit_i->sit_bitmap)) 789 blk_addr += sit_i->sit_blocks; 790 791 return blk_addr; 792 } 793 794 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, 795 pgoff_t block_addr) 796 { 797 struct sit_info *sit_i = SIT_I(sbi); 798 block_addr -= sit_i->sit_base_addr; 799 if (block_addr < sit_i->sit_blocks) 800 block_addr += sit_i->sit_blocks; 801 else 802 block_addr -= sit_i->sit_blocks; 803 804 return block_addr + sit_i->sit_base_addr; 805 } 806 807 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) 808 { 809 unsigned int block_off = SIT_BLOCK_OFFSET(start); 810 811 f2fs_change_bit(block_off, sit_i->sit_bitmap); 812 #ifdef CONFIG_F2FS_CHECK_FS 813 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir); 814 #endif 815 } 816 817 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi, 818 bool base_time) 819 { 820 struct sit_info *sit_i = SIT_I(sbi); 821 time64_t diff, now = ktime_get_boottime_seconds(); 822 823 if (now >= sit_i->mounted_time) 824 return sit_i->elapsed_time + now - sit_i->mounted_time; 825 826 /* system time is set to the past */ 827 if (!base_time) { 828 diff = sit_i->mounted_time - now; 829 if (sit_i->elapsed_time >= diff) 830 return sit_i->elapsed_time - diff; 831 return 0; 832 } 833 return sit_i->elapsed_time; 834 } 835 836 static inline void set_summary(struct f2fs_summary *sum, nid_t nid, 837 unsigned int ofs_in_node, unsigned char version) 838 { 839 sum->nid = cpu_to_le32(nid); 840 sum->ofs_in_node = cpu_to_le16(ofs_in_node); 841 sum->version = version; 842 } 843 844 static inline block_t start_sum_block(struct f2fs_sb_info *sbi) 845 { 846 return __start_cp_addr(sbi) + 847 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 848 } 849 850 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) 851 { 852 return __start_cp_addr(sbi) + 853 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) 854 - (base + 1) + type; 855 } 856 857 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) 858 { 859 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) 860 return true; 861 return false; 862 } 863 864 /* 865 * It is very important to gather dirty pages and write at once, so that we can 866 * submit a big bio without interfering other data writes. 867 * By default, 512 pages for directory data, 868 * 512 pages (2MB) * 8 for nodes, and 869 * 256 pages * 8 for meta are set. 870 */ 871 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type) 872 { 873 if (sbi->sb->s_bdi->wb.dirty_exceeded) 874 return 0; 875 876 if (type == DATA) 877 return sbi->blocks_per_seg; 878 else if (type == NODE) 879 return 8 * sbi->blocks_per_seg; 880 else if (type == META) 881 return 8 * BIO_MAX_VECS; 882 else 883 return 0; 884 } 885 886 /* 887 * When writing pages, it'd better align nr_to_write for segment size. 888 */ 889 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type, 890 struct writeback_control *wbc) 891 { 892 long nr_to_write, desired; 893 894 if (wbc->sync_mode != WB_SYNC_NONE) 895 return 0; 896 897 nr_to_write = wbc->nr_to_write; 898 desired = BIO_MAX_VECS; 899 if (type == NODE) 900 desired <<= 1; 901 902 wbc->nr_to_write = desired; 903 return desired - nr_to_write; 904 } 905 906 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force) 907 { 908 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 909 bool wakeup = false; 910 int i; 911 912 if (force) 913 goto wake_up; 914 915 mutex_lock(&dcc->cmd_lock); 916 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 917 if (i + 1 < dcc->discard_granularity) 918 break; 919 if (!list_empty(&dcc->pend_list[i])) { 920 wakeup = true; 921 break; 922 } 923 } 924 mutex_unlock(&dcc->cmd_lock); 925 if (!wakeup || !is_idle(sbi, DISCARD_TIME)) 926 return; 927 wake_up: 928 dcc->discard_wake = 1; 929 wake_up_interruptible_all(&dcc->discard_wait_queue); 930 } 931