1 /* 2 * fs/f2fs/segment.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/blkdev.h> 12 #include <linux/backing-dev.h> 13 14 /* constant macro */ 15 #define NULL_SEGNO ((unsigned int)(~0)) 16 #define NULL_SECNO ((unsigned int)(~0)) 17 18 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */ 19 20 /* L: Logical segment # in volume, R: Relative segment # in main area */ 21 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno) 22 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno) 23 24 #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA) 25 #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE) 26 27 #define IS_CURSEG(sbi, seg) \ 28 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ 29 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ 30 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ 31 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ 32 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ 33 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno)) 34 35 #define IS_CURSEC(sbi, secno) \ 36 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ 37 sbi->segs_per_sec) || \ 38 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ 39 sbi->segs_per_sec) || \ 40 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ 41 sbi->segs_per_sec) || \ 42 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ 43 sbi->segs_per_sec) || \ 44 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ 45 sbi->segs_per_sec) || \ 46 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ 47 sbi->segs_per_sec)) \ 48 49 #define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr) 50 #define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr) 51 52 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments) 53 #define MAIN_SECS(sbi) (sbi->total_sections) 54 55 #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count) 56 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg) 57 58 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi)) 59 #define SEGMENT_SIZE(sbi) (1ULL << (sbi->log_blocksize + \ 60 sbi->log_blocks_per_seg)) 61 62 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \ 63 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg)) 64 65 #define NEXT_FREE_BLKADDR(sbi, curseg) \ 66 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff) 67 68 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi)) 69 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ 70 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg) 71 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \ 72 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1)) 73 74 #define GET_SEGNO(sbi, blk_addr) \ 75 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \ 76 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ 77 GET_SEGNO_FROM_SEG0(sbi, blk_addr))) 78 #define GET_SECNO(sbi, segno) \ 79 ((segno) / sbi->segs_per_sec) 80 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \ 81 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone) 82 83 #define GET_SUM_BLOCK(sbi, segno) \ 84 ((sbi->sm_info->ssa_blkaddr) + segno) 85 86 #define GET_SUM_TYPE(footer) ((footer)->entry_type) 87 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type) 88 89 #define SIT_ENTRY_OFFSET(sit_i, segno) \ 90 (segno % sit_i->sents_per_block) 91 #define SIT_BLOCK_OFFSET(segno) \ 92 (segno / SIT_ENTRY_PER_BLOCK) 93 #define START_SEGNO(segno) \ 94 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK) 95 #define SIT_BLK_CNT(sbi) \ 96 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK) 97 #define f2fs_bitmap_size(nr) \ 98 (BITS_TO_LONGS(nr) * sizeof(unsigned long)) 99 100 #define SECTOR_FROM_BLOCK(blk_addr) \ 101 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK) 102 #define SECTOR_TO_BLOCK(sectors) \ 103 (sectors >> F2FS_LOG_SECTORS_PER_BLOCK) 104 #define MAX_BIO_BLOCKS(sbi) \ 105 ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES)) 106 107 /* 108 * indicate a block allocation direction: RIGHT and LEFT. 109 * RIGHT means allocating new sections towards the end of volume. 110 * LEFT means the opposite direction. 111 */ 112 enum { 113 ALLOC_RIGHT = 0, 114 ALLOC_LEFT 115 }; 116 117 /* 118 * In the victim_sel_policy->alloc_mode, there are two block allocation modes. 119 * LFS writes data sequentially with cleaning operations. 120 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. 121 */ 122 enum { 123 LFS = 0, 124 SSR 125 }; 126 127 /* 128 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes. 129 * GC_CB is based on cost-benefit algorithm. 130 * GC_GREEDY is based on greedy algorithm. 131 */ 132 enum { 133 GC_CB = 0, 134 GC_GREEDY 135 }; 136 137 /* 138 * BG_GC means the background cleaning job. 139 * FG_GC means the on-demand cleaning job. 140 */ 141 enum { 142 BG_GC = 0, 143 FG_GC 144 }; 145 146 /* for a function parameter to select a victim segment */ 147 struct victim_sel_policy { 148 int alloc_mode; /* LFS or SSR */ 149 int gc_mode; /* GC_CB or GC_GREEDY */ 150 unsigned long *dirty_segmap; /* dirty segment bitmap */ 151 unsigned int max_search; /* maximum # of segments to search */ 152 unsigned int offset; /* last scanned bitmap offset */ 153 unsigned int ofs_unit; /* bitmap search unit */ 154 unsigned int min_cost; /* minimum cost */ 155 unsigned int min_segno; /* segment # having min. cost */ 156 }; 157 158 struct seg_entry { 159 unsigned short valid_blocks; /* # of valid blocks */ 160 unsigned char *cur_valid_map; /* validity bitmap of blocks */ 161 /* 162 * # of valid blocks and the validity bitmap stored in the the last 163 * checkpoint pack. This information is used by the SSR mode. 164 */ 165 unsigned short ckpt_valid_blocks; 166 unsigned char *ckpt_valid_map; 167 unsigned char *discard_map; 168 unsigned char type; /* segment type like CURSEG_XXX_TYPE */ 169 unsigned long long mtime; /* modification time of the segment */ 170 }; 171 172 struct sec_entry { 173 unsigned int valid_blocks; /* # of valid blocks in a section */ 174 }; 175 176 struct segment_allocation { 177 void (*allocate_segment)(struct f2fs_sb_info *, int, bool); 178 }; 179 180 /* 181 * this value is set in page as a private data which indicate that 182 * the page is atomically written, and it is in inmem_pages list. 183 */ 184 #define ATOMIC_WRITTEN_PAGE 0x0000ffff 185 186 #define IS_ATOMIC_WRITTEN_PAGE(page) \ 187 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE) 188 189 struct inmem_pages { 190 struct list_head list; 191 struct page *page; 192 }; 193 194 struct sit_info { 195 const struct segment_allocation *s_ops; 196 197 block_t sit_base_addr; /* start block address of SIT area */ 198 block_t sit_blocks; /* # of blocks used by SIT area */ 199 block_t written_valid_blocks; /* # of valid blocks in main area */ 200 char *sit_bitmap; /* SIT bitmap pointer */ 201 unsigned int bitmap_size; /* SIT bitmap size */ 202 203 unsigned long *tmp_map; /* bitmap for temporal use */ 204 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ 205 unsigned int dirty_sentries; /* # of dirty sentries */ 206 unsigned int sents_per_block; /* # of SIT entries per block */ 207 struct mutex sentry_lock; /* to protect SIT cache */ 208 struct seg_entry *sentries; /* SIT segment-level cache */ 209 struct sec_entry *sec_entries; /* SIT section-level cache */ 210 211 /* for cost-benefit algorithm in cleaning procedure */ 212 unsigned long long elapsed_time; /* elapsed time after mount */ 213 unsigned long long mounted_time; /* mount time */ 214 unsigned long long min_mtime; /* min. modification time */ 215 unsigned long long max_mtime; /* max. modification time */ 216 }; 217 218 struct free_segmap_info { 219 unsigned int start_segno; /* start segment number logically */ 220 unsigned int free_segments; /* # of free segments */ 221 unsigned int free_sections; /* # of free sections */ 222 spinlock_t segmap_lock; /* free segmap lock */ 223 unsigned long *free_segmap; /* free segment bitmap */ 224 unsigned long *free_secmap; /* free section bitmap */ 225 }; 226 227 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ 228 enum dirty_type { 229 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ 230 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ 231 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ 232 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ 233 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ 234 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ 235 DIRTY, /* to count # of dirty segments */ 236 PRE, /* to count # of entirely obsolete segments */ 237 NR_DIRTY_TYPE 238 }; 239 240 struct dirty_seglist_info { 241 const struct victim_selection *v_ops; /* victim selction operation */ 242 unsigned long *dirty_segmap[NR_DIRTY_TYPE]; 243 struct mutex seglist_lock; /* lock for segment bitmaps */ 244 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ 245 unsigned long *victim_secmap; /* background GC victims */ 246 }; 247 248 /* victim selection function for cleaning and SSR */ 249 struct victim_selection { 250 int (*get_victim)(struct f2fs_sb_info *, unsigned int *, 251 int, int, char); 252 }; 253 254 /* for active log information */ 255 struct curseg_info { 256 struct mutex curseg_mutex; /* lock for consistency */ 257 struct f2fs_summary_block *sum_blk; /* cached summary block */ 258 unsigned char alloc_type; /* current allocation type */ 259 unsigned int segno; /* current segment number */ 260 unsigned short next_blkoff; /* next block offset to write */ 261 unsigned int zone; /* current zone number */ 262 unsigned int next_segno; /* preallocated segment */ 263 }; 264 265 struct sit_entry_set { 266 struct list_head set_list; /* link with all sit sets */ 267 unsigned int start_segno; /* start segno of sits in set */ 268 unsigned int entry_cnt; /* the # of sit entries in set */ 269 }; 270 271 /* 272 * inline functions 273 */ 274 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) 275 { 276 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); 277 } 278 279 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, 280 unsigned int segno) 281 { 282 struct sit_info *sit_i = SIT_I(sbi); 283 return &sit_i->sentries[segno]; 284 } 285 286 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, 287 unsigned int segno) 288 { 289 struct sit_info *sit_i = SIT_I(sbi); 290 return &sit_i->sec_entries[GET_SECNO(sbi, segno)]; 291 } 292 293 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, 294 unsigned int segno, int section) 295 { 296 /* 297 * In order to get # of valid blocks in a section instantly from many 298 * segments, f2fs manages two counting structures separately. 299 */ 300 if (section > 1) 301 return get_sec_entry(sbi, segno)->valid_blocks; 302 else 303 return get_seg_entry(sbi, segno)->valid_blocks; 304 } 305 306 static inline void seg_info_from_raw_sit(struct seg_entry *se, 307 struct f2fs_sit_entry *rs) 308 { 309 se->valid_blocks = GET_SIT_VBLOCKS(rs); 310 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); 311 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 312 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 313 se->type = GET_SIT_TYPE(rs); 314 se->mtime = le64_to_cpu(rs->mtime); 315 } 316 317 static inline void seg_info_to_raw_sit(struct seg_entry *se, 318 struct f2fs_sit_entry *rs) 319 { 320 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | 321 se->valid_blocks; 322 rs->vblocks = cpu_to_le16(raw_vblocks); 323 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 324 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 325 se->ckpt_valid_blocks = se->valid_blocks; 326 rs->mtime = cpu_to_le64(se->mtime); 327 } 328 329 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, 330 unsigned int max, unsigned int segno) 331 { 332 unsigned int ret; 333 spin_lock(&free_i->segmap_lock); 334 ret = find_next_bit(free_i->free_segmap, max, segno); 335 spin_unlock(&free_i->segmap_lock); 336 return ret; 337 } 338 339 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) 340 { 341 struct free_segmap_info *free_i = FREE_I(sbi); 342 unsigned int secno = segno / sbi->segs_per_sec; 343 unsigned int start_segno = secno * sbi->segs_per_sec; 344 unsigned int next; 345 346 spin_lock(&free_i->segmap_lock); 347 clear_bit(segno, free_i->free_segmap); 348 free_i->free_segments++; 349 350 next = find_next_bit(free_i->free_segmap, 351 start_segno + sbi->segs_per_sec, start_segno); 352 if (next >= start_segno + sbi->segs_per_sec) { 353 clear_bit(secno, free_i->free_secmap); 354 free_i->free_sections++; 355 } 356 spin_unlock(&free_i->segmap_lock); 357 } 358 359 static inline void __set_inuse(struct f2fs_sb_info *sbi, 360 unsigned int segno) 361 { 362 struct free_segmap_info *free_i = FREE_I(sbi); 363 unsigned int secno = segno / sbi->segs_per_sec; 364 set_bit(segno, free_i->free_segmap); 365 free_i->free_segments--; 366 if (!test_and_set_bit(secno, free_i->free_secmap)) 367 free_i->free_sections--; 368 } 369 370 static inline void __set_test_and_free(struct f2fs_sb_info *sbi, 371 unsigned int segno) 372 { 373 struct free_segmap_info *free_i = FREE_I(sbi); 374 unsigned int secno = segno / sbi->segs_per_sec; 375 unsigned int start_segno = secno * sbi->segs_per_sec; 376 unsigned int next; 377 378 spin_lock(&free_i->segmap_lock); 379 if (test_and_clear_bit(segno, free_i->free_segmap)) { 380 free_i->free_segments++; 381 382 next = find_next_bit(free_i->free_segmap, 383 start_segno + sbi->segs_per_sec, start_segno); 384 if (next >= start_segno + sbi->segs_per_sec) { 385 if (test_and_clear_bit(secno, free_i->free_secmap)) 386 free_i->free_sections++; 387 } 388 } 389 spin_unlock(&free_i->segmap_lock); 390 } 391 392 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, 393 unsigned int segno) 394 { 395 struct free_segmap_info *free_i = FREE_I(sbi); 396 unsigned int secno = segno / sbi->segs_per_sec; 397 spin_lock(&free_i->segmap_lock); 398 if (!test_and_set_bit(segno, free_i->free_segmap)) { 399 free_i->free_segments--; 400 if (!test_and_set_bit(secno, free_i->free_secmap)) 401 free_i->free_sections--; 402 } 403 spin_unlock(&free_i->segmap_lock); 404 } 405 406 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, 407 void *dst_addr) 408 { 409 struct sit_info *sit_i = SIT_I(sbi); 410 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); 411 } 412 413 static inline block_t written_block_count(struct f2fs_sb_info *sbi) 414 { 415 return SIT_I(sbi)->written_valid_blocks; 416 } 417 418 static inline unsigned int free_segments(struct f2fs_sb_info *sbi) 419 { 420 return FREE_I(sbi)->free_segments; 421 } 422 423 static inline int reserved_segments(struct f2fs_sb_info *sbi) 424 { 425 return SM_I(sbi)->reserved_segments; 426 } 427 428 static inline unsigned int free_sections(struct f2fs_sb_info *sbi) 429 { 430 return FREE_I(sbi)->free_sections; 431 } 432 433 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) 434 { 435 return DIRTY_I(sbi)->nr_dirty[PRE]; 436 } 437 438 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) 439 { 440 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + 441 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + 442 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + 443 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + 444 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + 445 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; 446 } 447 448 static inline int overprovision_segments(struct f2fs_sb_info *sbi) 449 { 450 return SM_I(sbi)->ovp_segments; 451 } 452 453 static inline int overprovision_sections(struct f2fs_sb_info *sbi) 454 { 455 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec; 456 } 457 458 static inline int reserved_sections(struct f2fs_sb_info *sbi) 459 { 460 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec; 461 } 462 463 static inline bool need_SSR(struct f2fs_sb_info *sbi) 464 { 465 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 466 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 467 return free_sections(sbi) <= (node_secs + 2 * dent_secs + 468 reserved_sections(sbi) + 1); 469 } 470 471 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed) 472 { 473 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 474 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 475 476 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 477 return false; 478 479 return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs + 480 reserved_sections(sbi)); 481 } 482 483 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) 484 { 485 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; 486 } 487 488 static inline int utilization(struct f2fs_sb_info *sbi) 489 { 490 return div_u64((u64)valid_user_blocks(sbi) * 100, 491 sbi->user_block_count); 492 } 493 494 /* 495 * Sometimes f2fs may be better to drop out-of-place update policy. 496 * And, users can control the policy through sysfs entries. 497 * There are five policies with triggering conditions as follows. 498 * F2FS_IPU_FORCE - all the time, 499 * F2FS_IPU_SSR - if SSR mode is activated, 500 * F2FS_IPU_UTIL - if FS utilization is over threashold, 501 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over 502 * threashold, 503 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash 504 * storages. IPU will be triggered only if the # of dirty 505 * pages over min_fsync_blocks. 506 * F2FS_IPUT_DISABLE - disable IPU. (=default option) 507 */ 508 #define DEF_MIN_IPU_UTIL 70 509 #define DEF_MIN_FSYNC_BLOCKS 8 510 511 enum { 512 F2FS_IPU_FORCE, 513 F2FS_IPU_SSR, 514 F2FS_IPU_UTIL, 515 F2FS_IPU_SSR_UTIL, 516 F2FS_IPU_FSYNC, 517 }; 518 519 static inline bool need_inplace_update(struct inode *inode) 520 { 521 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 522 unsigned int policy = SM_I(sbi)->ipu_policy; 523 524 /* IPU can be done only for the user data */ 525 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode)) 526 return false; 527 528 if (policy & (0x1 << F2FS_IPU_FORCE)) 529 return true; 530 if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi)) 531 return true; 532 if (policy & (0x1 << F2FS_IPU_UTIL) && 533 utilization(sbi) > SM_I(sbi)->min_ipu_util) 534 return true; 535 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) && 536 utilization(sbi) > SM_I(sbi)->min_ipu_util) 537 return true; 538 539 /* this is only set during fdatasync */ 540 if (policy & (0x1 << F2FS_IPU_FSYNC) && 541 is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU)) 542 return true; 543 544 return false; 545 } 546 547 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, 548 int type) 549 { 550 struct curseg_info *curseg = CURSEG_I(sbi, type); 551 return curseg->segno; 552 } 553 554 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, 555 int type) 556 { 557 struct curseg_info *curseg = CURSEG_I(sbi, type); 558 return curseg->alloc_type; 559 } 560 561 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) 562 { 563 struct curseg_info *curseg = CURSEG_I(sbi, type); 564 return curseg->next_blkoff; 565 } 566 567 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) 568 { 569 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1); 570 } 571 572 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr) 573 { 574 f2fs_bug_on(sbi, blk_addr < SEG0_BLKADDR(sbi) 575 || blk_addr >= MAX_BLKADDR(sbi)); 576 } 577 578 /* 579 * Summary block is always treated as an invalid block 580 */ 581 static inline void check_block_count(struct f2fs_sb_info *sbi, 582 int segno, struct f2fs_sit_entry *raw_sit) 583 { 584 #ifdef CONFIG_F2FS_CHECK_FS 585 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; 586 int valid_blocks = 0; 587 int cur_pos = 0, next_pos; 588 589 /* check bitmap with valid block count */ 590 do { 591 if (is_valid) { 592 next_pos = find_next_zero_bit_le(&raw_sit->valid_map, 593 sbi->blocks_per_seg, 594 cur_pos); 595 valid_blocks += next_pos - cur_pos; 596 } else 597 next_pos = find_next_bit_le(&raw_sit->valid_map, 598 sbi->blocks_per_seg, 599 cur_pos); 600 cur_pos = next_pos; 601 is_valid = !is_valid; 602 } while (cur_pos < sbi->blocks_per_seg); 603 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks); 604 #endif 605 /* check segment usage, and check boundary of a given segment number */ 606 f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg 607 || segno > TOTAL_SEGS(sbi) - 1); 608 } 609 610 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, 611 unsigned int start) 612 { 613 struct sit_info *sit_i = SIT_I(sbi); 614 unsigned int offset = SIT_BLOCK_OFFSET(start); 615 block_t blk_addr = sit_i->sit_base_addr + offset; 616 617 check_seg_range(sbi, start); 618 619 /* calculate sit block address */ 620 if (f2fs_test_bit(offset, sit_i->sit_bitmap)) 621 blk_addr += sit_i->sit_blocks; 622 623 return blk_addr; 624 } 625 626 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, 627 pgoff_t block_addr) 628 { 629 struct sit_info *sit_i = SIT_I(sbi); 630 block_addr -= sit_i->sit_base_addr; 631 if (block_addr < sit_i->sit_blocks) 632 block_addr += sit_i->sit_blocks; 633 else 634 block_addr -= sit_i->sit_blocks; 635 636 return block_addr + sit_i->sit_base_addr; 637 } 638 639 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) 640 { 641 unsigned int block_off = SIT_BLOCK_OFFSET(start); 642 643 f2fs_change_bit(block_off, sit_i->sit_bitmap); 644 } 645 646 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi) 647 { 648 struct sit_info *sit_i = SIT_I(sbi); 649 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec - 650 sit_i->mounted_time; 651 } 652 653 static inline void set_summary(struct f2fs_summary *sum, nid_t nid, 654 unsigned int ofs_in_node, unsigned char version) 655 { 656 sum->nid = cpu_to_le32(nid); 657 sum->ofs_in_node = cpu_to_le16(ofs_in_node); 658 sum->version = version; 659 } 660 661 static inline block_t start_sum_block(struct f2fs_sb_info *sbi) 662 { 663 return __start_cp_addr(sbi) + 664 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 665 } 666 667 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) 668 { 669 return __start_cp_addr(sbi) + 670 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) 671 - (base + 1) + type; 672 } 673 674 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) 675 { 676 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) 677 return true; 678 return false; 679 } 680 681 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi) 682 { 683 struct block_device *bdev = sbi->sb->s_bdev; 684 struct request_queue *q = bdev_get_queue(bdev); 685 return SECTOR_TO_BLOCK(queue_max_sectors(q)); 686 } 687 688 /* 689 * It is very important to gather dirty pages and write at once, so that we can 690 * submit a big bio without interfering other data writes. 691 * By default, 512 pages for directory data, 692 * 512 pages (2MB) * 3 for three types of nodes, and 693 * max_bio_blocks for meta are set. 694 */ 695 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type) 696 { 697 if (sbi->sb->s_bdi->wb.dirty_exceeded) 698 return 0; 699 700 if (type == DATA) 701 return sbi->blocks_per_seg; 702 else if (type == NODE) 703 return 3 * sbi->blocks_per_seg; 704 else if (type == META) 705 return MAX_BIO_BLOCKS(sbi); 706 else 707 return 0; 708 } 709 710 /* 711 * When writing pages, it'd better align nr_to_write for segment size. 712 */ 713 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type, 714 struct writeback_control *wbc) 715 { 716 long nr_to_write, desired; 717 718 if (wbc->sync_mode != WB_SYNC_NONE) 719 return 0; 720 721 nr_to_write = wbc->nr_to_write; 722 723 if (type == DATA) 724 desired = 4096; 725 else if (type == NODE) 726 desired = 3 * max_hw_blocks(sbi); 727 else 728 desired = MAX_BIO_BLOCKS(sbi); 729 730 wbc->nr_to_write = desired; 731 return desired - nr_to_write; 732 } 733