1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fs/f2fs/segment.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/blkdev.h> 9 #include <linux/backing-dev.h> 10 11 /* constant macro */ 12 #define NULL_SEGNO ((unsigned int)(~0)) 13 #define NULL_SECNO ((unsigned int)(~0)) 14 15 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */ 16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */ 17 18 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */ 19 #define F2FS_MIN_META_SEGMENTS 8 /* SB + 2 (CP + SIT + NAT) + SSA */ 20 21 /* L: Logical segment # in volume, R: Relative segment # in main area */ 22 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno) 23 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno) 24 25 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA) 26 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE) 27 28 static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi, 29 unsigned short seg_type) 30 { 31 f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG); 32 } 33 34 #define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA) 35 #define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA) 36 #define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA) 37 38 #define IS_CURSEG(sbi, seg) \ 39 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ 40 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ 41 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ 42 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ 43 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ 44 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) || \ 45 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) || \ 46 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno)) 47 48 #define IS_CURSEC(sbi, secno) \ 49 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ 50 (sbi)->segs_per_sec) || \ 51 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ 52 (sbi)->segs_per_sec) || \ 53 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ 54 (sbi)->segs_per_sec) || \ 55 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ 56 (sbi)->segs_per_sec) || \ 57 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ 58 (sbi)->segs_per_sec) || \ 59 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ 60 (sbi)->segs_per_sec) || \ 61 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno / \ 62 (sbi)->segs_per_sec) || \ 63 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno / \ 64 (sbi)->segs_per_sec)) 65 66 #define MAIN_BLKADDR(sbi) \ 67 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \ 68 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr)) 69 #define SEG0_BLKADDR(sbi) \ 70 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \ 71 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr)) 72 73 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments) 74 #define MAIN_SECS(sbi) ((sbi)->total_sections) 75 76 #define TOTAL_SEGS(sbi) \ 77 (SM_I(sbi) ? SM_I(sbi)->segment_count : \ 78 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count)) 79 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg) 80 81 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi)) 82 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \ 83 (sbi)->log_blocks_per_seg)) 84 85 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \ 86 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg)) 87 88 #define NEXT_FREE_BLKADDR(sbi, curseg) \ 89 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff) 90 91 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi)) 92 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ 93 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg) 94 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \ 95 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1)) 96 97 #define GET_SEGNO(sbi, blk_addr) \ 98 ((!__is_valid_data_blkaddr(blk_addr)) ? \ 99 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ 100 GET_SEGNO_FROM_SEG0(sbi, blk_addr))) 101 #define BLKS_PER_SEC(sbi) \ 102 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg) 103 #define GET_SEC_FROM_SEG(sbi, segno) \ 104 (((segno) == -1) ? -1: (segno) / (sbi)->segs_per_sec) 105 #define GET_SEG_FROM_SEC(sbi, secno) \ 106 ((secno) * (sbi)->segs_per_sec) 107 #define GET_ZONE_FROM_SEC(sbi, secno) \ 108 (((secno) == -1) ? -1: (secno) / (sbi)->secs_per_zone) 109 #define GET_ZONE_FROM_SEG(sbi, segno) \ 110 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno)) 111 112 #define GET_SUM_BLOCK(sbi, segno) \ 113 ((sbi)->sm_info->ssa_blkaddr + (segno)) 114 115 #define GET_SUM_TYPE(footer) ((footer)->entry_type) 116 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type)) 117 118 #define SIT_ENTRY_OFFSET(sit_i, segno) \ 119 ((segno) % (sit_i)->sents_per_block) 120 #define SIT_BLOCK_OFFSET(segno) \ 121 ((segno) / SIT_ENTRY_PER_BLOCK) 122 #define START_SEGNO(segno) \ 123 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK) 124 #define SIT_BLK_CNT(sbi) \ 125 DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK) 126 #define f2fs_bitmap_size(nr) \ 127 (BITS_TO_LONGS(nr) * sizeof(unsigned long)) 128 129 #define SECTOR_FROM_BLOCK(blk_addr) \ 130 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK) 131 #define SECTOR_TO_BLOCK(sectors) \ 132 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK) 133 134 /* 135 * indicate a block allocation direction: RIGHT and LEFT. 136 * RIGHT means allocating new sections towards the end of volume. 137 * LEFT means the opposite direction. 138 */ 139 enum { 140 ALLOC_RIGHT = 0, 141 ALLOC_LEFT 142 }; 143 144 /* 145 * In the victim_sel_policy->alloc_mode, there are two block allocation modes. 146 * LFS writes data sequentially with cleaning operations. 147 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. 148 * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into 149 * fragmented segment which has similar aging degree. 150 */ 151 enum { 152 LFS = 0, 153 SSR, 154 AT_SSR, 155 }; 156 157 /* 158 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes. 159 * GC_CB is based on cost-benefit algorithm. 160 * GC_GREEDY is based on greedy algorithm. 161 * GC_AT is based on age-threshold algorithm. 162 */ 163 enum { 164 GC_CB = 0, 165 GC_GREEDY, 166 GC_AT, 167 ALLOC_NEXT, 168 FLUSH_DEVICE, 169 MAX_GC_POLICY, 170 }; 171 172 /* 173 * BG_GC means the background cleaning job. 174 * FG_GC means the on-demand cleaning job. 175 * FORCE_FG_GC means on-demand cleaning job in background. 176 */ 177 enum { 178 BG_GC = 0, 179 FG_GC, 180 FORCE_FG_GC, 181 }; 182 183 /* for a function parameter to select a victim segment */ 184 struct victim_sel_policy { 185 int alloc_mode; /* LFS or SSR */ 186 int gc_mode; /* GC_CB or GC_GREEDY */ 187 unsigned long *dirty_bitmap; /* dirty segment/section bitmap */ 188 unsigned int max_search; /* 189 * maximum # of segments/sections 190 * to search 191 */ 192 unsigned int offset; /* last scanned bitmap offset */ 193 unsigned int ofs_unit; /* bitmap search unit */ 194 unsigned int min_cost; /* minimum cost */ 195 unsigned long long oldest_age; /* oldest age of segments having the same min cost */ 196 unsigned int min_segno; /* segment # having min. cost */ 197 unsigned long long age; /* mtime of GCed section*/ 198 unsigned long long age_threshold;/* age threshold */ 199 }; 200 201 struct seg_entry { 202 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */ 203 unsigned int valid_blocks:10; /* # of valid blocks */ 204 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */ 205 unsigned int padding:6; /* padding */ 206 unsigned char *cur_valid_map; /* validity bitmap of blocks */ 207 #ifdef CONFIG_F2FS_CHECK_FS 208 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */ 209 #endif 210 /* 211 * # of valid blocks and the validity bitmap stored in the last 212 * checkpoint pack. This information is used by the SSR mode. 213 */ 214 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */ 215 unsigned char *discard_map; 216 unsigned long long mtime; /* modification time of the segment */ 217 }; 218 219 struct sec_entry { 220 unsigned int valid_blocks; /* # of valid blocks in a section */ 221 }; 222 223 struct segment_allocation { 224 void (*allocate_segment)(struct f2fs_sb_info *, int, bool); 225 }; 226 227 #define MAX_SKIP_GC_COUNT 16 228 229 struct inmem_pages { 230 struct list_head list; 231 struct page *page; 232 block_t old_addr; /* for revoking when fail to commit */ 233 }; 234 235 struct sit_info { 236 const struct segment_allocation *s_ops; 237 238 block_t sit_base_addr; /* start block address of SIT area */ 239 block_t sit_blocks; /* # of blocks used by SIT area */ 240 block_t written_valid_blocks; /* # of valid blocks in main area */ 241 char *bitmap; /* all bitmaps pointer */ 242 char *sit_bitmap; /* SIT bitmap pointer */ 243 #ifdef CONFIG_F2FS_CHECK_FS 244 char *sit_bitmap_mir; /* SIT bitmap mirror */ 245 246 /* bitmap of segments to be ignored by GC in case of errors */ 247 unsigned long *invalid_segmap; 248 #endif 249 unsigned int bitmap_size; /* SIT bitmap size */ 250 251 unsigned long *tmp_map; /* bitmap for temporal use */ 252 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ 253 unsigned int dirty_sentries; /* # of dirty sentries */ 254 unsigned int sents_per_block; /* # of SIT entries per block */ 255 struct rw_semaphore sentry_lock; /* to protect SIT cache */ 256 struct seg_entry *sentries; /* SIT segment-level cache */ 257 struct sec_entry *sec_entries; /* SIT section-level cache */ 258 259 /* for cost-benefit algorithm in cleaning procedure */ 260 unsigned long long elapsed_time; /* elapsed time after mount */ 261 unsigned long long mounted_time; /* mount time */ 262 unsigned long long min_mtime; /* min. modification time */ 263 unsigned long long max_mtime; /* max. modification time */ 264 unsigned long long dirty_min_mtime; /* rerange candidates in GC_AT */ 265 unsigned long long dirty_max_mtime; /* rerange candidates in GC_AT */ 266 267 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */ 268 }; 269 270 struct free_segmap_info { 271 unsigned int start_segno; /* start segment number logically */ 272 unsigned int free_segments; /* # of free segments */ 273 unsigned int free_sections; /* # of free sections */ 274 spinlock_t segmap_lock; /* free segmap lock */ 275 unsigned long *free_segmap; /* free segment bitmap */ 276 unsigned long *free_secmap; /* free section bitmap */ 277 }; 278 279 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ 280 enum dirty_type { 281 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ 282 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ 283 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ 284 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ 285 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ 286 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ 287 DIRTY, /* to count # of dirty segments */ 288 PRE, /* to count # of entirely obsolete segments */ 289 NR_DIRTY_TYPE 290 }; 291 292 struct dirty_seglist_info { 293 const struct victim_selection *v_ops; /* victim selction operation */ 294 unsigned long *dirty_segmap[NR_DIRTY_TYPE]; 295 unsigned long *dirty_secmap; 296 struct mutex seglist_lock; /* lock for segment bitmaps */ 297 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ 298 unsigned long *victim_secmap; /* background GC victims */ 299 }; 300 301 /* victim selection function for cleaning and SSR */ 302 struct victim_selection { 303 int (*get_victim)(struct f2fs_sb_info *, unsigned int *, 304 int, int, char, unsigned long long); 305 }; 306 307 /* for active log information */ 308 struct curseg_info { 309 struct mutex curseg_mutex; /* lock for consistency */ 310 struct f2fs_summary_block *sum_blk; /* cached summary block */ 311 struct rw_semaphore journal_rwsem; /* protect journal area */ 312 struct f2fs_journal *journal; /* cached journal info */ 313 unsigned char alloc_type; /* current allocation type */ 314 unsigned short seg_type; /* segment type like CURSEG_XXX_TYPE */ 315 unsigned int segno; /* current segment number */ 316 unsigned short next_blkoff; /* next block offset to write */ 317 unsigned int zone; /* current zone number */ 318 unsigned int next_segno; /* preallocated segment */ 319 bool inited; /* indicate inmem log is inited */ 320 }; 321 322 struct sit_entry_set { 323 struct list_head set_list; /* link with all sit sets */ 324 unsigned int start_segno; /* start segno of sits in set */ 325 unsigned int entry_cnt; /* the # of sit entries in set */ 326 }; 327 328 /* 329 * inline functions 330 */ 331 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) 332 { 333 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); 334 } 335 336 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, 337 unsigned int segno) 338 { 339 struct sit_info *sit_i = SIT_I(sbi); 340 return &sit_i->sentries[segno]; 341 } 342 343 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, 344 unsigned int segno) 345 { 346 struct sit_info *sit_i = SIT_I(sbi); 347 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)]; 348 } 349 350 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, 351 unsigned int segno, bool use_section) 352 { 353 /* 354 * In order to get # of valid blocks in a section instantly from many 355 * segments, f2fs manages two counting structures separately. 356 */ 357 if (use_section && __is_large_section(sbi)) 358 return get_sec_entry(sbi, segno)->valid_blocks; 359 else 360 return get_seg_entry(sbi, segno)->valid_blocks; 361 } 362 363 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi, 364 unsigned int segno) 365 { 366 return get_seg_entry(sbi, segno)->ckpt_valid_blocks; 367 } 368 369 static inline void seg_info_from_raw_sit(struct seg_entry *se, 370 struct f2fs_sit_entry *rs) 371 { 372 se->valid_blocks = GET_SIT_VBLOCKS(rs); 373 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); 374 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 375 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 376 #ifdef CONFIG_F2FS_CHECK_FS 377 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 378 #endif 379 se->type = GET_SIT_TYPE(rs); 380 se->mtime = le64_to_cpu(rs->mtime); 381 } 382 383 static inline void __seg_info_to_raw_sit(struct seg_entry *se, 384 struct f2fs_sit_entry *rs) 385 { 386 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | 387 se->valid_blocks; 388 rs->vblocks = cpu_to_le16(raw_vblocks); 389 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 390 rs->mtime = cpu_to_le64(se->mtime); 391 } 392 393 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi, 394 struct page *page, unsigned int start) 395 { 396 struct f2fs_sit_block *raw_sit; 397 struct seg_entry *se; 398 struct f2fs_sit_entry *rs; 399 unsigned int end = min(start + SIT_ENTRY_PER_BLOCK, 400 (unsigned long)MAIN_SEGS(sbi)); 401 int i; 402 403 raw_sit = (struct f2fs_sit_block *)page_address(page); 404 memset(raw_sit, 0, PAGE_SIZE); 405 for (i = 0; i < end - start; i++) { 406 rs = &raw_sit->entries[i]; 407 se = get_seg_entry(sbi, start + i); 408 __seg_info_to_raw_sit(se, rs); 409 } 410 } 411 412 static inline void seg_info_to_raw_sit(struct seg_entry *se, 413 struct f2fs_sit_entry *rs) 414 { 415 __seg_info_to_raw_sit(se, rs); 416 417 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 418 se->ckpt_valid_blocks = se->valid_blocks; 419 } 420 421 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, 422 unsigned int max, unsigned int segno) 423 { 424 unsigned int ret; 425 spin_lock(&free_i->segmap_lock); 426 ret = find_next_bit(free_i->free_segmap, max, segno); 427 spin_unlock(&free_i->segmap_lock); 428 return ret; 429 } 430 431 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) 432 { 433 struct free_segmap_info *free_i = FREE_I(sbi); 434 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 435 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 436 unsigned int next; 437 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno); 438 439 spin_lock(&free_i->segmap_lock); 440 clear_bit(segno, free_i->free_segmap); 441 free_i->free_segments++; 442 443 next = find_next_bit(free_i->free_segmap, 444 start_segno + sbi->segs_per_sec, start_segno); 445 if (next >= start_segno + usable_segs) { 446 clear_bit(secno, free_i->free_secmap); 447 free_i->free_sections++; 448 } 449 spin_unlock(&free_i->segmap_lock); 450 } 451 452 static inline void __set_inuse(struct f2fs_sb_info *sbi, 453 unsigned int segno) 454 { 455 struct free_segmap_info *free_i = FREE_I(sbi); 456 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 457 458 set_bit(segno, free_i->free_segmap); 459 free_i->free_segments--; 460 if (!test_and_set_bit(secno, free_i->free_secmap)) 461 free_i->free_sections--; 462 } 463 464 static inline void __set_test_and_free(struct f2fs_sb_info *sbi, 465 unsigned int segno, bool inmem) 466 { 467 struct free_segmap_info *free_i = FREE_I(sbi); 468 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 469 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 470 unsigned int next; 471 unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno); 472 473 spin_lock(&free_i->segmap_lock); 474 if (test_and_clear_bit(segno, free_i->free_segmap)) { 475 free_i->free_segments++; 476 477 if (!inmem && IS_CURSEC(sbi, secno)) 478 goto skip_free; 479 next = find_next_bit(free_i->free_segmap, 480 start_segno + sbi->segs_per_sec, start_segno); 481 if (next >= start_segno + usable_segs) { 482 if (test_and_clear_bit(secno, free_i->free_secmap)) 483 free_i->free_sections++; 484 } 485 } 486 skip_free: 487 spin_unlock(&free_i->segmap_lock); 488 } 489 490 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, 491 unsigned int segno) 492 { 493 struct free_segmap_info *free_i = FREE_I(sbi); 494 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 495 496 spin_lock(&free_i->segmap_lock); 497 if (!test_and_set_bit(segno, free_i->free_segmap)) { 498 free_i->free_segments--; 499 if (!test_and_set_bit(secno, free_i->free_secmap)) 500 free_i->free_sections--; 501 } 502 spin_unlock(&free_i->segmap_lock); 503 } 504 505 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, 506 void *dst_addr) 507 { 508 struct sit_info *sit_i = SIT_I(sbi); 509 510 #ifdef CONFIG_F2FS_CHECK_FS 511 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir, 512 sit_i->bitmap_size)) 513 f2fs_bug_on(sbi, 1); 514 #endif 515 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); 516 } 517 518 static inline block_t written_block_count(struct f2fs_sb_info *sbi) 519 { 520 return SIT_I(sbi)->written_valid_blocks; 521 } 522 523 static inline unsigned int free_segments(struct f2fs_sb_info *sbi) 524 { 525 return FREE_I(sbi)->free_segments; 526 } 527 528 static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi) 529 { 530 return SM_I(sbi)->reserved_segments; 531 } 532 533 static inline unsigned int free_sections(struct f2fs_sb_info *sbi) 534 { 535 return FREE_I(sbi)->free_sections; 536 } 537 538 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) 539 { 540 return DIRTY_I(sbi)->nr_dirty[PRE]; 541 } 542 543 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) 544 { 545 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + 546 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + 547 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + 548 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + 549 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + 550 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; 551 } 552 553 static inline int overprovision_segments(struct f2fs_sb_info *sbi) 554 { 555 return SM_I(sbi)->ovp_segments; 556 } 557 558 static inline int reserved_sections(struct f2fs_sb_info *sbi) 559 { 560 return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi)); 561 } 562 563 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi) 564 { 565 unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) + 566 get_pages(sbi, F2FS_DIRTY_DENTS); 567 unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS); 568 unsigned int segno, left_blocks; 569 int i; 570 571 /* check current node segment */ 572 for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) { 573 segno = CURSEG_I(sbi, i)->segno; 574 left_blocks = f2fs_usable_blks_in_seg(sbi, segno) - 575 get_seg_entry(sbi, segno)->ckpt_valid_blocks; 576 577 if (node_blocks > left_blocks) 578 return false; 579 } 580 581 /* check current data segment */ 582 segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno; 583 left_blocks = f2fs_usable_blks_in_seg(sbi, segno) - 584 get_seg_entry(sbi, segno)->ckpt_valid_blocks; 585 if (dent_blocks > left_blocks) 586 return false; 587 return true; 588 } 589 590 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, 591 int freed, int needed) 592 { 593 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 594 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 595 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 596 597 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 598 return false; 599 600 if (free_sections(sbi) + freed == reserved_sections(sbi) + needed && 601 has_curseg_enough_space(sbi)) 602 return false; 603 return (free_sections(sbi) + freed) <= 604 (node_secs + 2 * dent_secs + imeta_secs + 605 reserved_sections(sbi) + needed); 606 } 607 608 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi) 609 { 610 if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 611 return true; 612 if (likely(!has_not_enough_free_secs(sbi, 0, 0))) 613 return true; 614 return false; 615 } 616 617 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) 618 { 619 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; 620 } 621 622 static inline int utilization(struct f2fs_sb_info *sbi) 623 { 624 return div_u64((u64)valid_user_blocks(sbi) * 100, 625 sbi->user_block_count); 626 } 627 628 /* 629 * Sometimes f2fs may be better to drop out-of-place update policy. 630 * And, users can control the policy through sysfs entries. 631 * There are five policies with triggering conditions as follows. 632 * F2FS_IPU_FORCE - all the time, 633 * F2FS_IPU_SSR - if SSR mode is activated, 634 * F2FS_IPU_UTIL - if FS utilization is over threashold, 635 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over 636 * threashold, 637 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash 638 * storages. IPU will be triggered only if the # of dirty 639 * pages over min_fsync_blocks. (=default option) 640 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests. 641 * F2FS_IPU_NOCACHE - disable IPU bio cache. 642 * F2FS_IPUT_DISABLE - disable IPU. (=default option in LFS mode) 643 */ 644 #define DEF_MIN_IPU_UTIL 70 645 #define DEF_MIN_FSYNC_BLOCKS 8 646 #define DEF_MIN_HOT_BLOCKS 16 647 648 #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */ 649 650 enum { 651 F2FS_IPU_FORCE, 652 F2FS_IPU_SSR, 653 F2FS_IPU_UTIL, 654 F2FS_IPU_SSR_UTIL, 655 F2FS_IPU_FSYNC, 656 F2FS_IPU_ASYNC, 657 F2FS_IPU_NOCACHE, 658 }; 659 660 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, 661 int type) 662 { 663 struct curseg_info *curseg = CURSEG_I(sbi, type); 664 return curseg->segno; 665 } 666 667 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, 668 int type) 669 { 670 struct curseg_info *curseg = CURSEG_I(sbi, type); 671 return curseg->alloc_type; 672 } 673 674 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) 675 { 676 struct curseg_info *curseg = CURSEG_I(sbi, type); 677 return curseg->next_blkoff; 678 } 679 680 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) 681 { 682 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1); 683 } 684 685 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio) 686 { 687 struct f2fs_sb_info *sbi = fio->sbi; 688 689 if (__is_valid_data_blkaddr(fio->old_blkaddr)) 690 verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ? 691 META_GENERIC : DATA_GENERIC); 692 verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ? 693 META_GENERIC : DATA_GENERIC_ENHANCE); 694 } 695 696 /* 697 * Summary block is always treated as an invalid block 698 */ 699 static inline int check_block_count(struct f2fs_sb_info *sbi, 700 int segno, struct f2fs_sit_entry *raw_sit) 701 { 702 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; 703 int valid_blocks = 0; 704 int cur_pos = 0, next_pos; 705 unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno); 706 707 /* check bitmap with valid block count */ 708 do { 709 if (is_valid) { 710 next_pos = find_next_zero_bit_le(&raw_sit->valid_map, 711 usable_blks_per_seg, 712 cur_pos); 713 valid_blocks += next_pos - cur_pos; 714 } else 715 next_pos = find_next_bit_le(&raw_sit->valid_map, 716 usable_blks_per_seg, 717 cur_pos); 718 cur_pos = next_pos; 719 is_valid = !is_valid; 720 } while (cur_pos < usable_blks_per_seg); 721 722 if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) { 723 f2fs_err(sbi, "Mismatch valid blocks %d vs. %d", 724 GET_SIT_VBLOCKS(raw_sit), valid_blocks); 725 set_sbi_flag(sbi, SBI_NEED_FSCK); 726 return -EFSCORRUPTED; 727 } 728 729 if (usable_blks_per_seg < sbi->blocks_per_seg) 730 f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map, 731 sbi->blocks_per_seg, 732 usable_blks_per_seg) != sbi->blocks_per_seg); 733 734 /* check segment usage, and check boundary of a given segment number */ 735 if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg 736 || segno > TOTAL_SEGS(sbi) - 1)) { 737 f2fs_err(sbi, "Wrong valid blocks %d or segno %u", 738 GET_SIT_VBLOCKS(raw_sit), segno); 739 set_sbi_flag(sbi, SBI_NEED_FSCK); 740 return -EFSCORRUPTED; 741 } 742 return 0; 743 } 744 745 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, 746 unsigned int start) 747 { 748 struct sit_info *sit_i = SIT_I(sbi); 749 unsigned int offset = SIT_BLOCK_OFFSET(start); 750 block_t blk_addr = sit_i->sit_base_addr + offset; 751 752 check_seg_range(sbi, start); 753 754 #ifdef CONFIG_F2FS_CHECK_FS 755 if (f2fs_test_bit(offset, sit_i->sit_bitmap) != 756 f2fs_test_bit(offset, sit_i->sit_bitmap_mir)) 757 f2fs_bug_on(sbi, 1); 758 #endif 759 760 /* calculate sit block address */ 761 if (f2fs_test_bit(offset, sit_i->sit_bitmap)) 762 blk_addr += sit_i->sit_blocks; 763 764 return blk_addr; 765 } 766 767 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, 768 pgoff_t block_addr) 769 { 770 struct sit_info *sit_i = SIT_I(sbi); 771 block_addr -= sit_i->sit_base_addr; 772 if (block_addr < sit_i->sit_blocks) 773 block_addr += sit_i->sit_blocks; 774 else 775 block_addr -= sit_i->sit_blocks; 776 777 return block_addr + sit_i->sit_base_addr; 778 } 779 780 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) 781 { 782 unsigned int block_off = SIT_BLOCK_OFFSET(start); 783 784 f2fs_change_bit(block_off, sit_i->sit_bitmap); 785 #ifdef CONFIG_F2FS_CHECK_FS 786 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir); 787 #endif 788 } 789 790 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi, 791 bool base_time) 792 { 793 struct sit_info *sit_i = SIT_I(sbi); 794 time64_t diff, now = ktime_get_boottime_seconds(); 795 796 if (now >= sit_i->mounted_time) 797 return sit_i->elapsed_time + now - sit_i->mounted_time; 798 799 /* system time is set to the past */ 800 if (!base_time) { 801 diff = sit_i->mounted_time - now; 802 if (sit_i->elapsed_time >= diff) 803 return sit_i->elapsed_time - diff; 804 return 0; 805 } 806 return sit_i->elapsed_time; 807 } 808 809 static inline void set_summary(struct f2fs_summary *sum, nid_t nid, 810 unsigned int ofs_in_node, unsigned char version) 811 { 812 sum->nid = cpu_to_le32(nid); 813 sum->ofs_in_node = cpu_to_le16(ofs_in_node); 814 sum->version = version; 815 } 816 817 static inline block_t start_sum_block(struct f2fs_sb_info *sbi) 818 { 819 return __start_cp_addr(sbi) + 820 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 821 } 822 823 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) 824 { 825 return __start_cp_addr(sbi) + 826 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) 827 - (base + 1) + type; 828 } 829 830 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) 831 { 832 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) 833 return true; 834 return false; 835 } 836 837 /* 838 * It is very important to gather dirty pages and write at once, so that we can 839 * submit a big bio without interfering other data writes. 840 * By default, 512 pages for directory data, 841 * 512 pages (2MB) * 8 for nodes, and 842 * 256 pages * 8 for meta are set. 843 */ 844 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type) 845 { 846 if (sbi->sb->s_bdi->wb.dirty_exceeded) 847 return 0; 848 849 if (type == DATA) 850 return sbi->blocks_per_seg; 851 else if (type == NODE) 852 return 8 * sbi->blocks_per_seg; 853 else if (type == META) 854 return 8 * BIO_MAX_VECS; 855 else 856 return 0; 857 } 858 859 /* 860 * When writing pages, it'd better align nr_to_write for segment size. 861 */ 862 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type, 863 struct writeback_control *wbc) 864 { 865 long nr_to_write, desired; 866 867 if (wbc->sync_mode != WB_SYNC_NONE) 868 return 0; 869 870 nr_to_write = wbc->nr_to_write; 871 desired = BIO_MAX_VECS; 872 if (type == NODE) 873 desired <<= 1; 874 875 wbc->nr_to_write = desired; 876 return desired - nr_to_write; 877 } 878 879 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force) 880 { 881 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 882 bool wakeup = false; 883 int i; 884 885 if (force) 886 goto wake_up; 887 888 mutex_lock(&dcc->cmd_lock); 889 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 890 if (i + 1 < dcc->discard_granularity) 891 break; 892 if (!list_empty(&dcc->pend_list[i])) { 893 wakeup = true; 894 break; 895 } 896 } 897 mutex_unlock(&dcc->cmd_lock); 898 if (!wakeup || !is_idle(sbi, DISCARD_TIME)) 899 return; 900 wake_up: 901 dcc->discard_wake = 1; 902 wake_up_interruptible_all(&dcc->discard_wait_queue); 903 } 904