1 /* 2 * fs/f2fs/segment.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/blkdev.h> 12 #include <linux/backing-dev.h> 13 14 /* constant macro */ 15 #define NULL_SEGNO ((unsigned int)(~0)) 16 #define NULL_SECNO ((unsigned int)(~0)) 17 18 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */ 19 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */ 20 21 /* L: Logical segment # in volume, R: Relative segment # in main area */ 22 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno) 23 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno) 24 25 #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA) 26 #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE) 27 28 #define IS_CURSEG(sbi, seg) \ 29 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ 30 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ 31 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ 32 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ 33 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ 34 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno)) 35 36 #define IS_CURSEC(sbi, secno) \ 37 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ 38 sbi->segs_per_sec) || \ 39 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ 40 sbi->segs_per_sec) || \ 41 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ 42 sbi->segs_per_sec) || \ 43 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ 44 sbi->segs_per_sec) || \ 45 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ 46 sbi->segs_per_sec) || \ 47 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ 48 sbi->segs_per_sec)) \ 49 50 #define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr) 51 #define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr) 52 53 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments) 54 #define MAIN_SECS(sbi) (sbi->total_sections) 55 56 #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count) 57 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg) 58 59 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi)) 60 #define SEGMENT_SIZE(sbi) (1ULL << (sbi->log_blocksize + \ 61 sbi->log_blocks_per_seg)) 62 63 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \ 64 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg)) 65 66 #define NEXT_FREE_BLKADDR(sbi, curseg) \ 67 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff) 68 69 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi)) 70 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ 71 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg) 72 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \ 73 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1)) 74 75 #define GET_SEGNO(sbi, blk_addr) \ 76 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \ 77 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ 78 GET_SEGNO_FROM_SEG0(sbi, blk_addr))) 79 #define GET_SECNO(sbi, segno) \ 80 ((segno) / sbi->segs_per_sec) 81 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \ 82 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone) 83 84 #define GET_SUM_BLOCK(sbi, segno) \ 85 ((sbi->sm_info->ssa_blkaddr) + segno) 86 87 #define GET_SUM_TYPE(footer) ((footer)->entry_type) 88 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type) 89 90 #define SIT_ENTRY_OFFSET(sit_i, segno) \ 91 (segno % sit_i->sents_per_block) 92 #define SIT_BLOCK_OFFSET(segno) \ 93 (segno / SIT_ENTRY_PER_BLOCK) 94 #define START_SEGNO(segno) \ 95 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK) 96 #define SIT_BLK_CNT(sbi) \ 97 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK) 98 #define f2fs_bitmap_size(nr) \ 99 (BITS_TO_LONGS(nr) * sizeof(unsigned long)) 100 101 #define SECTOR_FROM_BLOCK(blk_addr) \ 102 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK) 103 #define SECTOR_TO_BLOCK(sectors) \ 104 (sectors >> F2FS_LOG_SECTORS_PER_BLOCK) 105 #define MAX_BIO_BLOCKS(sbi) \ 106 ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES)) 107 108 /* 109 * indicate a block allocation direction: RIGHT and LEFT. 110 * RIGHT means allocating new sections towards the end of volume. 111 * LEFT means the opposite direction. 112 */ 113 enum { 114 ALLOC_RIGHT = 0, 115 ALLOC_LEFT 116 }; 117 118 /* 119 * In the victim_sel_policy->alloc_mode, there are two block allocation modes. 120 * LFS writes data sequentially with cleaning operations. 121 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. 122 */ 123 enum { 124 LFS = 0, 125 SSR 126 }; 127 128 /* 129 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes. 130 * GC_CB is based on cost-benefit algorithm. 131 * GC_GREEDY is based on greedy algorithm. 132 */ 133 enum { 134 GC_CB = 0, 135 GC_GREEDY 136 }; 137 138 /* 139 * BG_GC means the background cleaning job. 140 * FG_GC means the on-demand cleaning job. 141 * FORCE_FG_GC means on-demand cleaning job in background. 142 */ 143 enum { 144 BG_GC = 0, 145 FG_GC, 146 FORCE_FG_GC, 147 }; 148 149 /* for a function parameter to select a victim segment */ 150 struct victim_sel_policy { 151 int alloc_mode; /* LFS or SSR */ 152 int gc_mode; /* GC_CB or GC_GREEDY */ 153 unsigned long *dirty_segmap; /* dirty segment bitmap */ 154 unsigned int max_search; /* maximum # of segments to search */ 155 unsigned int offset; /* last scanned bitmap offset */ 156 unsigned int ofs_unit; /* bitmap search unit */ 157 unsigned int min_cost; /* minimum cost */ 158 unsigned int min_segno; /* segment # having min. cost */ 159 }; 160 161 struct seg_entry { 162 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */ 163 unsigned int valid_blocks:10; /* # of valid blocks */ 164 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */ 165 unsigned int padding:6; /* padding */ 166 unsigned char *cur_valid_map; /* validity bitmap of blocks */ 167 /* 168 * # of valid blocks and the validity bitmap stored in the the last 169 * checkpoint pack. This information is used by the SSR mode. 170 */ 171 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */ 172 unsigned char *discard_map; 173 unsigned long long mtime; /* modification time of the segment */ 174 }; 175 176 struct sec_entry { 177 unsigned int valid_blocks; /* # of valid blocks in a section */ 178 }; 179 180 struct segment_allocation { 181 void (*allocate_segment)(struct f2fs_sb_info *, int, bool); 182 }; 183 184 /* 185 * this value is set in page as a private data which indicate that 186 * the page is atomically written, and it is in inmem_pages list. 187 */ 188 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1) 189 190 #define IS_ATOMIC_WRITTEN_PAGE(page) \ 191 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE) 192 193 struct inmem_pages { 194 struct list_head list; 195 struct page *page; 196 block_t old_addr; /* for revoking when fail to commit */ 197 }; 198 199 struct sit_info { 200 const struct segment_allocation *s_ops; 201 202 block_t sit_base_addr; /* start block address of SIT area */ 203 block_t sit_blocks; /* # of blocks used by SIT area */ 204 block_t written_valid_blocks; /* # of valid blocks in main area */ 205 char *sit_bitmap; /* SIT bitmap pointer */ 206 unsigned int bitmap_size; /* SIT bitmap size */ 207 208 unsigned long *tmp_map; /* bitmap for temporal use */ 209 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ 210 unsigned int dirty_sentries; /* # of dirty sentries */ 211 unsigned int sents_per_block; /* # of SIT entries per block */ 212 struct mutex sentry_lock; /* to protect SIT cache */ 213 struct seg_entry *sentries; /* SIT segment-level cache */ 214 struct sec_entry *sec_entries; /* SIT section-level cache */ 215 216 /* for cost-benefit algorithm in cleaning procedure */ 217 unsigned long long elapsed_time; /* elapsed time after mount */ 218 unsigned long long mounted_time; /* mount time */ 219 unsigned long long min_mtime; /* min. modification time */ 220 unsigned long long max_mtime; /* max. modification time */ 221 }; 222 223 struct free_segmap_info { 224 unsigned int start_segno; /* start segment number logically */ 225 unsigned int free_segments; /* # of free segments */ 226 unsigned int free_sections; /* # of free sections */ 227 spinlock_t segmap_lock; /* free segmap lock */ 228 unsigned long *free_segmap; /* free segment bitmap */ 229 unsigned long *free_secmap; /* free section bitmap */ 230 }; 231 232 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ 233 enum dirty_type { 234 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ 235 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ 236 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ 237 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ 238 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ 239 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ 240 DIRTY, /* to count # of dirty segments */ 241 PRE, /* to count # of entirely obsolete segments */ 242 NR_DIRTY_TYPE 243 }; 244 245 struct dirty_seglist_info { 246 const struct victim_selection *v_ops; /* victim selction operation */ 247 unsigned long *dirty_segmap[NR_DIRTY_TYPE]; 248 struct mutex seglist_lock; /* lock for segment bitmaps */ 249 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ 250 unsigned long *victim_secmap; /* background GC victims */ 251 }; 252 253 /* victim selection function for cleaning and SSR */ 254 struct victim_selection { 255 int (*get_victim)(struct f2fs_sb_info *, unsigned int *, 256 int, int, char); 257 }; 258 259 /* for active log information */ 260 struct curseg_info { 261 struct mutex curseg_mutex; /* lock for consistency */ 262 struct f2fs_summary_block *sum_blk; /* cached summary block */ 263 struct rw_semaphore journal_rwsem; /* protect journal area */ 264 struct f2fs_journal *journal; /* cached journal info */ 265 unsigned char alloc_type; /* current allocation type */ 266 unsigned int segno; /* current segment number */ 267 unsigned short next_blkoff; /* next block offset to write */ 268 unsigned int zone; /* current zone number */ 269 unsigned int next_segno; /* preallocated segment */ 270 }; 271 272 struct sit_entry_set { 273 struct list_head set_list; /* link with all sit sets */ 274 unsigned int start_segno; /* start segno of sits in set */ 275 unsigned int entry_cnt; /* the # of sit entries in set */ 276 }; 277 278 /* 279 * inline functions 280 */ 281 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) 282 { 283 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); 284 } 285 286 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, 287 unsigned int segno) 288 { 289 struct sit_info *sit_i = SIT_I(sbi); 290 return &sit_i->sentries[segno]; 291 } 292 293 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, 294 unsigned int segno) 295 { 296 struct sit_info *sit_i = SIT_I(sbi); 297 return &sit_i->sec_entries[GET_SECNO(sbi, segno)]; 298 } 299 300 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, 301 unsigned int segno, int section) 302 { 303 /* 304 * In order to get # of valid blocks in a section instantly from many 305 * segments, f2fs manages two counting structures separately. 306 */ 307 if (section > 1) 308 return get_sec_entry(sbi, segno)->valid_blocks; 309 else 310 return get_seg_entry(sbi, segno)->valid_blocks; 311 } 312 313 static inline void seg_info_from_raw_sit(struct seg_entry *se, 314 struct f2fs_sit_entry *rs) 315 { 316 se->valid_blocks = GET_SIT_VBLOCKS(rs); 317 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); 318 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 319 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 320 se->type = GET_SIT_TYPE(rs); 321 se->mtime = le64_to_cpu(rs->mtime); 322 } 323 324 static inline void seg_info_to_raw_sit(struct seg_entry *se, 325 struct f2fs_sit_entry *rs) 326 { 327 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | 328 se->valid_blocks; 329 rs->vblocks = cpu_to_le16(raw_vblocks); 330 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 331 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 332 se->ckpt_valid_blocks = se->valid_blocks; 333 rs->mtime = cpu_to_le64(se->mtime); 334 } 335 336 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, 337 unsigned int max, unsigned int segno) 338 { 339 unsigned int ret; 340 spin_lock(&free_i->segmap_lock); 341 ret = find_next_bit(free_i->free_segmap, max, segno); 342 spin_unlock(&free_i->segmap_lock); 343 return ret; 344 } 345 346 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) 347 { 348 struct free_segmap_info *free_i = FREE_I(sbi); 349 unsigned int secno = segno / sbi->segs_per_sec; 350 unsigned int start_segno = secno * sbi->segs_per_sec; 351 unsigned int next; 352 353 spin_lock(&free_i->segmap_lock); 354 clear_bit(segno, free_i->free_segmap); 355 free_i->free_segments++; 356 357 next = find_next_bit(free_i->free_segmap, 358 start_segno + sbi->segs_per_sec, start_segno); 359 if (next >= start_segno + sbi->segs_per_sec) { 360 clear_bit(secno, free_i->free_secmap); 361 free_i->free_sections++; 362 } 363 spin_unlock(&free_i->segmap_lock); 364 } 365 366 static inline void __set_inuse(struct f2fs_sb_info *sbi, 367 unsigned int segno) 368 { 369 struct free_segmap_info *free_i = FREE_I(sbi); 370 unsigned int secno = segno / sbi->segs_per_sec; 371 set_bit(segno, free_i->free_segmap); 372 free_i->free_segments--; 373 if (!test_and_set_bit(secno, free_i->free_secmap)) 374 free_i->free_sections--; 375 } 376 377 static inline void __set_test_and_free(struct f2fs_sb_info *sbi, 378 unsigned int segno) 379 { 380 struct free_segmap_info *free_i = FREE_I(sbi); 381 unsigned int secno = segno / sbi->segs_per_sec; 382 unsigned int start_segno = secno * sbi->segs_per_sec; 383 unsigned int next; 384 385 spin_lock(&free_i->segmap_lock); 386 if (test_and_clear_bit(segno, free_i->free_segmap)) { 387 free_i->free_segments++; 388 389 next = find_next_bit(free_i->free_segmap, 390 start_segno + sbi->segs_per_sec, start_segno); 391 if (next >= start_segno + sbi->segs_per_sec) { 392 if (test_and_clear_bit(secno, free_i->free_secmap)) 393 free_i->free_sections++; 394 } 395 } 396 spin_unlock(&free_i->segmap_lock); 397 } 398 399 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, 400 unsigned int segno) 401 { 402 struct free_segmap_info *free_i = FREE_I(sbi); 403 unsigned int secno = segno / sbi->segs_per_sec; 404 spin_lock(&free_i->segmap_lock); 405 if (!test_and_set_bit(segno, free_i->free_segmap)) { 406 free_i->free_segments--; 407 if (!test_and_set_bit(secno, free_i->free_secmap)) 408 free_i->free_sections--; 409 } 410 spin_unlock(&free_i->segmap_lock); 411 } 412 413 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, 414 void *dst_addr) 415 { 416 struct sit_info *sit_i = SIT_I(sbi); 417 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); 418 } 419 420 static inline block_t written_block_count(struct f2fs_sb_info *sbi) 421 { 422 return SIT_I(sbi)->written_valid_blocks; 423 } 424 425 static inline unsigned int free_segments(struct f2fs_sb_info *sbi) 426 { 427 return FREE_I(sbi)->free_segments; 428 } 429 430 static inline int reserved_segments(struct f2fs_sb_info *sbi) 431 { 432 return SM_I(sbi)->reserved_segments; 433 } 434 435 static inline unsigned int free_sections(struct f2fs_sb_info *sbi) 436 { 437 return FREE_I(sbi)->free_sections; 438 } 439 440 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) 441 { 442 return DIRTY_I(sbi)->nr_dirty[PRE]; 443 } 444 445 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) 446 { 447 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + 448 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + 449 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + 450 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + 451 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + 452 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; 453 } 454 455 static inline int overprovision_segments(struct f2fs_sb_info *sbi) 456 { 457 return SM_I(sbi)->ovp_segments; 458 } 459 460 static inline int overprovision_sections(struct f2fs_sb_info *sbi) 461 { 462 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec; 463 } 464 465 static inline int reserved_sections(struct f2fs_sb_info *sbi) 466 { 467 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec; 468 } 469 470 static inline bool need_SSR(struct f2fs_sb_info *sbi) 471 { 472 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 473 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 474 475 if (test_opt(sbi, LFS)) 476 return false; 477 478 return free_sections(sbi) <= (node_secs + 2 * dent_secs + 479 reserved_sections(sbi) + 1); 480 } 481 482 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed) 483 { 484 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 485 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 486 487 node_secs += get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 488 489 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 490 return false; 491 492 return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs + 493 reserved_sections(sbi)); 494 } 495 496 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) 497 { 498 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; 499 } 500 501 static inline int utilization(struct f2fs_sb_info *sbi) 502 { 503 return div_u64((u64)valid_user_blocks(sbi) * 100, 504 sbi->user_block_count); 505 } 506 507 /* 508 * Sometimes f2fs may be better to drop out-of-place update policy. 509 * And, users can control the policy through sysfs entries. 510 * There are five policies with triggering conditions as follows. 511 * F2FS_IPU_FORCE - all the time, 512 * F2FS_IPU_SSR - if SSR mode is activated, 513 * F2FS_IPU_UTIL - if FS utilization is over threashold, 514 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over 515 * threashold, 516 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash 517 * storages. IPU will be triggered only if the # of dirty 518 * pages over min_fsync_blocks. 519 * F2FS_IPUT_DISABLE - disable IPU. (=default option) 520 */ 521 #define DEF_MIN_IPU_UTIL 70 522 #define DEF_MIN_FSYNC_BLOCKS 8 523 524 enum { 525 F2FS_IPU_FORCE, 526 F2FS_IPU_SSR, 527 F2FS_IPU_UTIL, 528 F2FS_IPU_SSR_UTIL, 529 F2FS_IPU_FSYNC, 530 }; 531 532 static inline bool need_inplace_update(struct inode *inode) 533 { 534 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 535 unsigned int policy = SM_I(sbi)->ipu_policy; 536 537 /* IPU can be done only for the user data */ 538 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode)) 539 return false; 540 541 if (test_opt(sbi, LFS)) 542 return false; 543 544 if (policy & (0x1 << F2FS_IPU_FORCE)) 545 return true; 546 if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi)) 547 return true; 548 if (policy & (0x1 << F2FS_IPU_UTIL) && 549 utilization(sbi) > SM_I(sbi)->min_ipu_util) 550 return true; 551 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) && 552 utilization(sbi) > SM_I(sbi)->min_ipu_util) 553 return true; 554 555 /* this is only set during fdatasync */ 556 if (policy & (0x1 << F2FS_IPU_FSYNC) && 557 is_inode_flag_set(inode, FI_NEED_IPU)) 558 return true; 559 560 return false; 561 } 562 563 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, 564 int type) 565 { 566 struct curseg_info *curseg = CURSEG_I(sbi, type); 567 return curseg->segno; 568 } 569 570 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, 571 int type) 572 { 573 struct curseg_info *curseg = CURSEG_I(sbi, type); 574 return curseg->alloc_type; 575 } 576 577 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) 578 { 579 struct curseg_info *curseg = CURSEG_I(sbi, type); 580 return curseg->next_blkoff; 581 } 582 583 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) 584 { 585 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1); 586 } 587 588 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr) 589 { 590 f2fs_bug_on(sbi, blk_addr < SEG0_BLKADDR(sbi) 591 || blk_addr >= MAX_BLKADDR(sbi)); 592 } 593 594 /* 595 * Summary block is always treated as an invalid block 596 */ 597 static inline void check_block_count(struct f2fs_sb_info *sbi, 598 int segno, struct f2fs_sit_entry *raw_sit) 599 { 600 #ifdef CONFIG_F2FS_CHECK_FS 601 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; 602 int valid_blocks = 0; 603 int cur_pos = 0, next_pos; 604 605 /* check bitmap with valid block count */ 606 do { 607 if (is_valid) { 608 next_pos = find_next_zero_bit_le(&raw_sit->valid_map, 609 sbi->blocks_per_seg, 610 cur_pos); 611 valid_blocks += next_pos - cur_pos; 612 } else 613 next_pos = find_next_bit_le(&raw_sit->valid_map, 614 sbi->blocks_per_seg, 615 cur_pos); 616 cur_pos = next_pos; 617 is_valid = !is_valid; 618 } while (cur_pos < sbi->blocks_per_seg); 619 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks); 620 #endif 621 /* check segment usage, and check boundary of a given segment number */ 622 f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg 623 || segno > TOTAL_SEGS(sbi) - 1); 624 } 625 626 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, 627 unsigned int start) 628 { 629 struct sit_info *sit_i = SIT_I(sbi); 630 unsigned int offset = SIT_BLOCK_OFFSET(start); 631 block_t blk_addr = sit_i->sit_base_addr + offset; 632 633 check_seg_range(sbi, start); 634 635 /* calculate sit block address */ 636 if (f2fs_test_bit(offset, sit_i->sit_bitmap)) 637 blk_addr += sit_i->sit_blocks; 638 639 return blk_addr; 640 } 641 642 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, 643 pgoff_t block_addr) 644 { 645 struct sit_info *sit_i = SIT_I(sbi); 646 block_addr -= sit_i->sit_base_addr; 647 if (block_addr < sit_i->sit_blocks) 648 block_addr += sit_i->sit_blocks; 649 else 650 block_addr -= sit_i->sit_blocks; 651 652 return block_addr + sit_i->sit_base_addr; 653 } 654 655 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) 656 { 657 unsigned int block_off = SIT_BLOCK_OFFSET(start); 658 659 f2fs_change_bit(block_off, sit_i->sit_bitmap); 660 } 661 662 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi) 663 { 664 struct sit_info *sit_i = SIT_I(sbi); 665 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec - 666 sit_i->mounted_time; 667 } 668 669 static inline void set_summary(struct f2fs_summary *sum, nid_t nid, 670 unsigned int ofs_in_node, unsigned char version) 671 { 672 sum->nid = cpu_to_le32(nid); 673 sum->ofs_in_node = cpu_to_le16(ofs_in_node); 674 sum->version = version; 675 } 676 677 static inline block_t start_sum_block(struct f2fs_sb_info *sbi) 678 { 679 return __start_cp_addr(sbi) + 680 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 681 } 682 683 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) 684 { 685 return __start_cp_addr(sbi) + 686 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) 687 - (base + 1) + type; 688 } 689 690 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) 691 { 692 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) 693 return true; 694 return false; 695 } 696 697 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi) 698 { 699 struct block_device *bdev = sbi->sb->s_bdev; 700 struct request_queue *q = bdev_get_queue(bdev); 701 return SECTOR_TO_BLOCK(queue_max_sectors(q)); 702 } 703 704 /* 705 * It is very important to gather dirty pages and write at once, so that we can 706 * submit a big bio without interfering other data writes. 707 * By default, 512 pages for directory data, 708 * 512 pages (2MB) * 3 for three types of nodes, and 709 * max_bio_blocks for meta are set. 710 */ 711 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type) 712 { 713 if (sbi->sb->s_bdi->wb.dirty_exceeded) 714 return 0; 715 716 if (type == DATA) 717 return sbi->blocks_per_seg; 718 else if (type == NODE) 719 return 8 * sbi->blocks_per_seg; 720 else if (type == META) 721 return 8 * MAX_BIO_BLOCKS(sbi); 722 else 723 return 0; 724 } 725 726 /* 727 * When writing pages, it'd better align nr_to_write for segment size. 728 */ 729 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type, 730 struct writeback_control *wbc) 731 { 732 long nr_to_write, desired; 733 734 if (wbc->sync_mode != WB_SYNC_NONE) 735 return 0; 736 737 nr_to_write = wbc->nr_to_write; 738 739 if (type == NODE) 740 desired = 2 * max_hw_blocks(sbi); 741 else 742 desired = MAX_BIO_BLOCKS(sbi); 743 744 wbc->nr_to_write = desired; 745 return desired - nr_to_write; 746 } 747