xref: /openbmc/linux/fs/f2fs/segment.h (revision b34e08d5)
1 /*
2  * fs/f2fs/segment.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/blkdev.h>
12 
13 /* constant macro */
14 #define NULL_SEGNO			((unsigned int)(~0))
15 #define NULL_SECNO			((unsigned int)(~0))
16 
17 #define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
18 
19 /* L: Logical segment # in volume, R: Relative segment # in main area */
20 #define GET_L2R_SEGNO(free_i, segno)	(segno - free_i->start_segno)
21 #define GET_R2L_SEGNO(free_i, segno)	(segno + free_i->start_segno)
22 
23 #define IS_DATASEG(t)	(t <= CURSEG_COLD_DATA)
24 #define IS_NODESEG(t)	(t >= CURSEG_HOT_NODE)
25 
26 #define IS_CURSEG(sbi, seg)						\
27 	((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
28 	 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
29 	 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
30 	 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
31 	 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
32 	 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
33 
34 #define IS_CURSEC(sbi, secno)						\
35 	((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
36 	  sbi->segs_per_sec) ||	\
37 	 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
38 	  sbi->segs_per_sec) ||	\
39 	 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
40 	  sbi->segs_per_sec) ||	\
41 	 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
42 	  sbi->segs_per_sec) ||	\
43 	 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
44 	  sbi->segs_per_sec) ||	\
45 	 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
46 	  sbi->segs_per_sec))	\
47 
48 #define START_BLOCK(sbi, segno)						\
49 	(SM_I(sbi)->seg0_blkaddr +					\
50 	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
51 #define NEXT_FREE_BLKADDR(sbi, curseg)					\
52 	(START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
53 
54 #define MAIN_BASE_BLOCK(sbi)	(SM_I(sbi)->main_blkaddr)
55 
56 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)				\
57 	((blk_addr) - SM_I(sbi)->seg0_blkaddr)
58 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
59 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
60 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
61 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1))
62 
63 #define GET_SEGNO(sbi, blk_addr)					\
64 	(((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?		\
65 	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
66 		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
67 #define GET_SECNO(sbi, segno)					\
68 	((segno) / sbi->segs_per_sec)
69 #define GET_ZONENO_FROM_SEGNO(sbi, segno)				\
70 	((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
71 
72 #define GET_SUM_BLOCK(sbi, segno)				\
73 	((sbi->sm_info->ssa_blkaddr) + segno)
74 
75 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
76 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
77 
78 #define SIT_ENTRY_OFFSET(sit_i, segno)					\
79 	(segno % sit_i->sents_per_block)
80 #define SIT_BLOCK_OFFSET(sit_i, segno)					\
81 	(segno / SIT_ENTRY_PER_BLOCK)
82 #define	START_SEGNO(sit_i, segno)		\
83 	(SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
84 #define SIT_BLK_CNT(sbi)			\
85 	((TOTAL_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
86 #define f2fs_bitmap_size(nr)			\
87 	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
88 #define TOTAL_SEGS(sbi)	(SM_I(sbi)->main_segments)
89 #define TOTAL_SECS(sbi)	(sbi->total_sections)
90 
91 #define SECTOR_FROM_BLOCK(sbi, blk_addr)				\
92 	(((sector_t)blk_addr) << (sbi)->log_sectors_per_block)
93 #define SECTOR_TO_BLOCK(sbi, sectors)					\
94 	(sectors >> (sbi)->log_sectors_per_block)
95 #define MAX_BIO_BLOCKS(max_hw_blocks)					\
96 	(min((int)max_hw_blocks, BIO_MAX_PAGES))
97 
98 /*
99  * indicate a block allocation direction: RIGHT and LEFT.
100  * RIGHT means allocating new sections towards the end of volume.
101  * LEFT means the opposite direction.
102  */
103 enum {
104 	ALLOC_RIGHT = 0,
105 	ALLOC_LEFT
106 };
107 
108 /*
109  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
110  * LFS writes data sequentially with cleaning operations.
111  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
112  */
113 enum {
114 	LFS = 0,
115 	SSR
116 };
117 
118 /*
119  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
120  * GC_CB is based on cost-benefit algorithm.
121  * GC_GREEDY is based on greedy algorithm.
122  */
123 enum {
124 	GC_CB = 0,
125 	GC_GREEDY
126 };
127 
128 /*
129  * BG_GC means the background cleaning job.
130  * FG_GC means the on-demand cleaning job.
131  */
132 enum {
133 	BG_GC = 0,
134 	FG_GC
135 };
136 
137 /* for a function parameter to select a victim segment */
138 struct victim_sel_policy {
139 	int alloc_mode;			/* LFS or SSR */
140 	int gc_mode;			/* GC_CB or GC_GREEDY */
141 	unsigned long *dirty_segmap;	/* dirty segment bitmap */
142 	unsigned int max_search;	/* maximum # of segments to search */
143 	unsigned int offset;		/* last scanned bitmap offset */
144 	unsigned int ofs_unit;		/* bitmap search unit */
145 	unsigned int min_cost;		/* minimum cost */
146 	unsigned int min_segno;		/* segment # having min. cost */
147 };
148 
149 struct seg_entry {
150 	unsigned short valid_blocks;	/* # of valid blocks */
151 	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
152 	/*
153 	 * # of valid blocks and the validity bitmap stored in the the last
154 	 * checkpoint pack. This information is used by the SSR mode.
155 	 */
156 	unsigned short ckpt_valid_blocks;
157 	unsigned char *ckpt_valid_map;
158 	unsigned char type;		/* segment type like CURSEG_XXX_TYPE */
159 	unsigned long long mtime;	/* modification time of the segment */
160 };
161 
162 struct sec_entry {
163 	unsigned int valid_blocks;	/* # of valid blocks in a section */
164 };
165 
166 struct segment_allocation {
167 	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
168 };
169 
170 struct sit_info {
171 	const struct segment_allocation *s_ops;
172 
173 	block_t sit_base_addr;		/* start block address of SIT area */
174 	block_t sit_blocks;		/* # of blocks used by SIT area */
175 	block_t written_valid_blocks;	/* # of valid blocks in main area */
176 	char *sit_bitmap;		/* SIT bitmap pointer */
177 	unsigned int bitmap_size;	/* SIT bitmap size */
178 
179 	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
180 	unsigned int dirty_sentries;		/* # of dirty sentries */
181 	unsigned int sents_per_block;		/* # of SIT entries per block */
182 	struct mutex sentry_lock;		/* to protect SIT cache */
183 	struct seg_entry *sentries;		/* SIT segment-level cache */
184 	struct sec_entry *sec_entries;		/* SIT section-level cache */
185 
186 	/* for cost-benefit algorithm in cleaning procedure */
187 	unsigned long long elapsed_time;	/* elapsed time after mount */
188 	unsigned long long mounted_time;	/* mount time */
189 	unsigned long long min_mtime;		/* min. modification time */
190 	unsigned long long max_mtime;		/* max. modification time */
191 };
192 
193 struct free_segmap_info {
194 	unsigned int start_segno;	/* start segment number logically */
195 	unsigned int free_segments;	/* # of free segments */
196 	unsigned int free_sections;	/* # of free sections */
197 	rwlock_t segmap_lock;		/* free segmap lock */
198 	unsigned long *free_segmap;	/* free segment bitmap */
199 	unsigned long *free_secmap;	/* free section bitmap */
200 };
201 
202 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
203 enum dirty_type {
204 	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
205 	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
206 	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
207 	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
208 	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
209 	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
210 	DIRTY,			/* to count # of dirty segments */
211 	PRE,			/* to count # of entirely obsolete segments */
212 	NR_DIRTY_TYPE
213 };
214 
215 struct dirty_seglist_info {
216 	const struct victim_selection *v_ops;	/* victim selction operation */
217 	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
218 	struct mutex seglist_lock;		/* lock for segment bitmaps */
219 	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
220 	unsigned long *victim_secmap;		/* background GC victims */
221 };
222 
223 /* victim selection function for cleaning and SSR */
224 struct victim_selection {
225 	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
226 							int, int, char);
227 };
228 
229 /* for active log information */
230 struct curseg_info {
231 	struct mutex curseg_mutex;		/* lock for consistency */
232 	struct f2fs_summary_block *sum_blk;	/* cached summary block */
233 	unsigned char alloc_type;		/* current allocation type */
234 	unsigned int segno;			/* current segment number */
235 	unsigned short next_blkoff;		/* next block offset to write */
236 	unsigned int zone;			/* current zone number */
237 	unsigned int next_segno;		/* preallocated segment */
238 };
239 
240 /*
241  * inline functions
242  */
243 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
244 {
245 	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
246 }
247 
248 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
249 						unsigned int segno)
250 {
251 	struct sit_info *sit_i = SIT_I(sbi);
252 	return &sit_i->sentries[segno];
253 }
254 
255 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
256 						unsigned int segno)
257 {
258 	struct sit_info *sit_i = SIT_I(sbi);
259 	return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
260 }
261 
262 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
263 				unsigned int segno, int section)
264 {
265 	/*
266 	 * In order to get # of valid blocks in a section instantly from many
267 	 * segments, f2fs manages two counting structures separately.
268 	 */
269 	if (section > 1)
270 		return get_sec_entry(sbi, segno)->valid_blocks;
271 	else
272 		return get_seg_entry(sbi, segno)->valid_blocks;
273 }
274 
275 static inline void seg_info_from_raw_sit(struct seg_entry *se,
276 					struct f2fs_sit_entry *rs)
277 {
278 	se->valid_blocks = GET_SIT_VBLOCKS(rs);
279 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
280 	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
281 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
282 	se->type = GET_SIT_TYPE(rs);
283 	se->mtime = le64_to_cpu(rs->mtime);
284 }
285 
286 static inline void seg_info_to_raw_sit(struct seg_entry *se,
287 					struct f2fs_sit_entry *rs)
288 {
289 	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
290 					se->valid_blocks;
291 	rs->vblocks = cpu_to_le16(raw_vblocks);
292 	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
293 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
294 	se->ckpt_valid_blocks = se->valid_blocks;
295 	rs->mtime = cpu_to_le64(se->mtime);
296 }
297 
298 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
299 		unsigned int max, unsigned int segno)
300 {
301 	unsigned int ret;
302 	read_lock(&free_i->segmap_lock);
303 	ret = find_next_bit(free_i->free_segmap, max, segno);
304 	read_unlock(&free_i->segmap_lock);
305 	return ret;
306 }
307 
308 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
309 {
310 	struct free_segmap_info *free_i = FREE_I(sbi);
311 	unsigned int secno = segno / sbi->segs_per_sec;
312 	unsigned int start_segno = secno * sbi->segs_per_sec;
313 	unsigned int next;
314 
315 	write_lock(&free_i->segmap_lock);
316 	clear_bit(segno, free_i->free_segmap);
317 	free_i->free_segments++;
318 
319 	next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
320 	if (next >= start_segno + sbi->segs_per_sec) {
321 		clear_bit(secno, free_i->free_secmap);
322 		free_i->free_sections++;
323 	}
324 	write_unlock(&free_i->segmap_lock);
325 }
326 
327 static inline void __set_inuse(struct f2fs_sb_info *sbi,
328 		unsigned int segno)
329 {
330 	struct free_segmap_info *free_i = FREE_I(sbi);
331 	unsigned int secno = segno / sbi->segs_per_sec;
332 	set_bit(segno, free_i->free_segmap);
333 	free_i->free_segments--;
334 	if (!test_and_set_bit(secno, free_i->free_secmap))
335 		free_i->free_sections--;
336 }
337 
338 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
339 		unsigned int segno)
340 {
341 	struct free_segmap_info *free_i = FREE_I(sbi);
342 	unsigned int secno = segno / sbi->segs_per_sec;
343 	unsigned int start_segno = secno * sbi->segs_per_sec;
344 	unsigned int next;
345 
346 	write_lock(&free_i->segmap_lock);
347 	if (test_and_clear_bit(segno, free_i->free_segmap)) {
348 		free_i->free_segments++;
349 
350 		next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
351 								start_segno);
352 		if (next >= start_segno + sbi->segs_per_sec) {
353 			if (test_and_clear_bit(secno, free_i->free_secmap))
354 				free_i->free_sections++;
355 		}
356 	}
357 	write_unlock(&free_i->segmap_lock);
358 }
359 
360 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
361 		unsigned int segno)
362 {
363 	struct free_segmap_info *free_i = FREE_I(sbi);
364 	unsigned int secno = segno / sbi->segs_per_sec;
365 	write_lock(&free_i->segmap_lock);
366 	if (!test_and_set_bit(segno, free_i->free_segmap)) {
367 		free_i->free_segments--;
368 		if (!test_and_set_bit(secno, free_i->free_secmap))
369 			free_i->free_sections--;
370 	}
371 	write_unlock(&free_i->segmap_lock);
372 }
373 
374 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
375 		void *dst_addr)
376 {
377 	struct sit_info *sit_i = SIT_I(sbi);
378 	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
379 }
380 
381 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
382 {
383 	return SIT_I(sbi)->written_valid_blocks;
384 }
385 
386 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
387 {
388 	return FREE_I(sbi)->free_segments;
389 }
390 
391 static inline int reserved_segments(struct f2fs_sb_info *sbi)
392 {
393 	return SM_I(sbi)->reserved_segments;
394 }
395 
396 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
397 {
398 	return FREE_I(sbi)->free_sections;
399 }
400 
401 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
402 {
403 	return DIRTY_I(sbi)->nr_dirty[PRE];
404 }
405 
406 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
407 {
408 	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
409 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
410 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
411 		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
412 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
413 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
414 }
415 
416 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
417 {
418 	return SM_I(sbi)->ovp_segments;
419 }
420 
421 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
422 {
423 	return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
424 }
425 
426 static inline int reserved_sections(struct f2fs_sb_info *sbi)
427 {
428 	return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
429 }
430 
431 static inline bool need_SSR(struct f2fs_sb_info *sbi)
432 {
433 	return (prefree_segments(sbi) / sbi->segs_per_sec)
434 			+ free_sections(sbi) < overprovision_sections(sbi);
435 }
436 
437 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
438 {
439 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
440 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
441 
442 	if (unlikely(sbi->por_doing))
443 		return false;
444 
445 	return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
446 						reserved_sections(sbi));
447 }
448 
449 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
450 {
451 	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
452 }
453 
454 static inline int utilization(struct f2fs_sb_info *sbi)
455 {
456 	return div_u64((u64)valid_user_blocks(sbi) * 100,
457 					sbi->user_block_count);
458 }
459 
460 /*
461  * Sometimes f2fs may be better to drop out-of-place update policy.
462  * And, users can control the policy through sysfs entries.
463  * There are five policies with triggering conditions as follows.
464  * F2FS_IPU_FORCE - all the time,
465  * F2FS_IPU_SSR - if SSR mode is activated,
466  * F2FS_IPU_UTIL - if FS utilization is over threashold,
467  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
468  *                     threashold,
469  * F2FS_IPUT_DISABLE - disable IPU. (=default option)
470  */
471 #define DEF_MIN_IPU_UTIL	70
472 
473 enum {
474 	F2FS_IPU_FORCE,
475 	F2FS_IPU_SSR,
476 	F2FS_IPU_UTIL,
477 	F2FS_IPU_SSR_UTIL,
478 	F2FS_IPU_DISABLE,
479 };
480 
481 static inline bool need_inplace_update(struct inode *inode)
482 {
483 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
484 
485 	/* IPU can be done only for the user data */
486 	if (S_ISDIR(inode->i_mode))
487 		return false;
488 
489 	switch (SM_I(sbi)->ipu_policy) {
490 	case F2FS_IPU_FORCE:
491 		return true;
492 	case F2FS_IPU_SSR:
493 		if (need_SSR(sbi))
494 			return true;
495 		break;
496 	case F2FS_IPU_UTIL:
497 		if (utilization(sbi) > SM_I(sbi)->min_ipu_util)
498 			return true;
499 		break;
500 	case F2FS_IPU_SSR_UTIL:
501 		if (need_SSR(sbi) && utilization(sbi) > SM_I(sbi)->min_ipu_util)
502 			return true;
503 		break;
504 	case F2FS_IPU_DISABLE:
505 		break;
506 	}
507 	return false;
508 }
509 
510 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
511 		int type)
512 {
513 	struct curseg_info *curseg = CURSEG_I(sbi, type);
514 	return curseg->segno;
515 }
516 
517 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
518 		int type)
519 {
520 	struct curseg_info *curseg = CURSEG_I(sbi, type);
521 	return curseg->alloc_type;
522 }
523 
524 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
525 {
526 	struct curseg_info *curseg = CURSEG_I(sbi, type);
527 	return curseg->next_blkoff;
528 }
529 
530 #ifdef CONFIG_F2FS_CHECK_FS
531 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
532 {
533 	unsigned int end_segno = SM_I(sbi)->segment_count - 1;
534 	BUG_ON(segno > end_segno);
535 }
536 
537 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
538 {
539 	struct f2fs_sm_info *sm_info = SM_I(sbi);
540 	block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
541 	block_t start_addr = sm_info->seg0_blkaddr;
542 	block_t end_addr = start_addr + total_blks - 1;
543 	BUG_ON(blk_addr < start_addr);
544 	BUG_ON(blk_addr > end_addr);
545 }
546 
547 /*
548  * Summary block is always treated as invalid block
549  */
550 static inline void check_block_count(struct f2fs_sb_info *sbi,
551 		int segno, struct f2fs_sit_entry *raw_sit)
552 {
553 	struct f2fs_sm_info *sm_info = SM_I(sbi);
554 	unsigned int end_segno = sm_info->segment_count - 1;
555 	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
556 	int valid_blocks = 0;
557 	int cur_pos = 0, next_pos;
558 
559 	/* check segment usage */
560 	BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
561 
562 	/* check boundary of a given segment number */
563 	BUG_ON(segno > end_segno);
564 
565 	/* check bitmap with valid block count */
566 	do {
567 		if (is_valid) {
568 			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
569 					sbi->blocks_per_seg,
570 					cur_pos);
571 			valid_blocks += next_pos - cur_pos;
572 		} else
573 			next_pos = find_next_bit_le(&raw_sit->valid_map,
574 					sbi->blocks_per_seg,
575 					cur_pos);
576 		cur_pos = next_pos;
577 		is_valid = !is_valid;
578 	} while (cur_pos < sbi->blocks_per_seg);
579 	BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
580 }
581 #else
582 #define check_seg_range(sbi, segno)
583 #define verify_block_addr(sbi, blk_addr)
584 #define check_block_count(sbi, segno, raw_sit)
585 #endif
586 
587 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
588 						unsigned int start)
589 {
590 	struct sit_info *sit_i = SIT_I(sbi);
591 	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
592 	block_t blk_addr = sit_i->sit_base_addr + offset;
593 
594 	check_seg_range(sbi, start);
595 
596 	/* calculate sit block address */
597 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
598 		blk_addr += sit_i->sit_blocks;
599 
600 	return blk_addr;
601 }
602 
603 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
604 						pgoff_t block_addr)
605 {
606 	struct sit_info *sit_i = SIT_I(sbi);
607 	block_addr -= sit_i->sit_base_addr;
608 	if (block_addr < sit_i->sit_blocks)
609 		block_addr += sit_i->sit_blocks;
610 	else
611 		block_addr -= sit_i->sit_blocks;
612 
613 	return block_addr + sit_i->sit_base_addr;
614 }
615 
616 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
617 {
618 	unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
619 
620 	if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
621 		f2fs_clear_bit(block_off, sit_i->sit_bitmap);
622 	else
623 		f2fs_set_bit(block_off, sit_i->sit_bitmap);
624 }
625 
626 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
627 {
628 	struct sit_info *sit_i = SIT_I(sbi);
629 	return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
630 						sit_i->mounted_time;
631 }
632 
633 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
634 			unsigned int ofs_in_node, unsigned char version)
635 {
636 	sum->nid = cpu_to_le32(nid);
637 	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
638 	sum->version = version;
639 }
640 
641 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
642 {
643 	return __start_cp_addr(sbi) +
644 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
645 }
646 
647 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
648 {
649 	return __start_cp_addr(sbi) +
650 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
651 				- (base + 1) + type;
652 }
653 
654 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
655 {
656 	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
657 		return true;
658 	return false;
659 }
660 
661 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi)
662 {
663 	struct block_device *bdev = sbi->sb->s_bdev;
664 	struct request_queue *q = bdev_get_queue(bdev);
665 	return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q));
666 }
667 
668 /*
669  * It is very important to gather dirty pages and write at once, so that we can
670  * submit a big bio without interfering other data writes.
671  * By default, 512 pages for directory data,
672  * 512 pages (2MB) * 3 for three types of nodes, and
673  * max_bio_blocks for meta are set.
674  */
675 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
676 {
677 	if (type == DATA)
678 		return sbi->blocks_per_seg;
679 	else if (type == NODE)
680 		return 3 * sbi->blocks_per_seg;
681 	else if (type == META)
682 		return MAX_BIO_BLOCKS(max_hw_blocks(sbi));
683 	else
684 		return 0;
685 }
686 
687 /*
688  * When writing pages, it'd better align nr_to_write for segment size.
689  */
690 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
691 					struct writeback_control *wbc)
692 {
693 	long nr_to_write, desired;
694 
695 	if (wbc->sync_mode != WB_SYNC_NONE)
696 		return 0;
697 
698 	nr_to_write = wbc->nr_to_write;
699 
700 	if (type == DATA)
701 		desired = 4096;
702 	else if (type == NODE)
703 		desired = 3 * max_hw_blocks(sbi);
704 	else
705 		desired = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
706 
707 	wbc->nr_to_write = desired;
708 	return desired - nr_to_write;
709 }
710