1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * fs/f2fs/segment.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/blkdev.h> 9 #include <linux/backing-dev.h> 10 11 /* constant macro */ 12 #define NULL_SEGNO ((unsigned int)(~0)) 13 #define NULL_SECNO ((unsigned int)(~0)) 14 15 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */ 16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */ 17 18 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */ 19 20 /* L: Logical segment # in volume, R: Relative segment # in main area */ 21 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno) 22 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno) 23 24 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA) 25 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE) 26 27 #define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA) 28 #define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA) 29 #define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA) 30 31 #define IS_CURSEG(sbi, seg) \ 32 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ 33 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ 34 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ 35 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ 36 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ 37 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno)) 38 39 #define IS_CURSEC(sbi, secno) \ 40 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ 41 (sbi)->segs_per_sec) || \ 42 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ 43 (sbi)->segs_per_sec) || \ 44 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ 45 (sbi)->segs_per_sec) || \ 46 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ 47 (sbi)->segs_per_sec) || \ 48 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ 49 (sbi)->segs_per_sec) || \ 50 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ 51 (sbi)->segs_per_sec)) \ 52 53 #define MAIN_BLKADDR(sbi) \ 54 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \ 55 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr)) 56 #define SEG0_BLKADDR(sbi) \ 57 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \ 58 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr)) 59 60 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments) 61 #define MAIN_SECS(sbi) ((sbi)->total_sections) 62 63 #define TOTAL_SEGS(sbi) \ 64 (SM_I(sbi) ? SM_I(sbi)->segment_count : \ 65 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count)) 66 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg) 67 68 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi)) 69 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \ 70 (sbi)->log_blocks_per_seg)) 71 72 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \ 73 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg)) 74 75 #define NEXT_FREE_BLKADDR(sbi, curseg) \ 76 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff) 77 78 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi)) 79 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ 80 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg) 81 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \ 82 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1)) 83 84 #define GET_SEGNO(sbi, blk_addr) \ 85 ((!__is_valid_data_blkaddr(blk_addr)) ? \ 86 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ 87 GET_SEGNO_FROM_SEG0(sbi, blk_addr))) 88 #define BLKS_PER_SEC(sbi) \ 89 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg) 90 #define GET_SEC_FROM_SEG(sbi, segno) \ 91 ((segno) / (sbi)->segs_per_sec) 92 #define GET_SEG_FROM_SEC(sbi, secno) \ 93 ((secno) * (sbi)->segs_per_sec) 94 #define GET_ZONE_FROM_SEC(sbi, secno) \ 95 ((secno) / (sbi)->secs_per_zone) 96 #define GET_ZONE_FROM_SEG(sbi, segno) \ 97 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno)) 98 99 #define GET_SUM_BLOCK(sbi, segno) \ 100 ((sbi)->sm_info->ssa_blkaddr + (segno)) 101 102 #define GET_SUM_TYPE(footer) ((footer)->entry_type) 103 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type)) 104 105 #define SIT_ENTRY_OFFSET(sit_i, segno) \ 106 ((segno) % (sit_i)->sents_per_block) 107 #define SIT_BLOCK_OFFSET(segno) \ 108 ((segno) / SIT_ENTRY_PER_BLOCK) 109 #define START_SEGNO(segno) \ 110 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK) 111 #define SIT_BLK_CNT(sbi) \ 112 DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK) 113 #define f2fs_bitmap_size(nr) \ 114 (BITS_TO_LONGS(nr) * sizeof(unsigned long)) 115 116 #define SECTOR_FROM_BLOCK(blk_addr) \ 117 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK) 118 #define SECTOR_TO_BLOCK(sectors) \ 119 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK) 120 121 /* 122 * indicate a block allocation direction: RIGHT and LEFT. 123 * RIGHT means allocating new sections towards the end of volume. 124 * LEFT means the opposite direction. 125 */ 126 enum { 127 ALLOC_RIGHT = 0, 128 ALLOC_LEFT 129 }; 130 131 /* 132 * In the victim_sel_policy->alloc_mode, there are two block allocation modes. 133 * LFS writes data sequentially with cleaning operations. 134 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. 135 */ 136 enum { 137 LFS = 0, 138 SSR 139 }; 140 141 /* 142 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes. 143 * GC_CB is based on cost-benefit algorithm. 144 * GC_GREEDY is based on greedy algorithm. 145 */ 146 enum { 147 GC_CB = 0, 148 GC_GREEDY, 149 ALLOC_NEXT, 150 FLUSH_DEVICE, 151 MAX_GC_POLICY, 152 }; 153 154 /* 155 * BG_GC means the background cleaning job. 156 * FG_GC means the on-demand cleaning job. 157 * FORCE_FG_GC means on-demand cleaning job in background. 158 */ 159 enum { 160 BG_GC = 0, 161 FG_GC, 162 FORCE_FG_GC, 163 }; 164 165 /* for a function parameter to select a victim segment */ 166 struct victim_sel_policy { 167 int alloc_mode; /* LFS or SSR */ 168 int gc_mode; /* GC_CB or GC_GREEDY */ 169 unsigned long *dirty_segmap; /* dirty segment bitmap */ 170 unsigned int max_search; /* maximum # of segments to search */ 171 unsigned int offset; /* last scanned bitmap offset */ 172 unsigned int ofs_unit; /* bitmap search unit */ 173 unsigned int min_cost; /* minimum cost */ 174 unsigned int min_segno; /* segment # having min. cost */ 175 }; 176 177 struct seg_entry { 178 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */ 179 unsigned int valid_blocks:10; /* # of valid blocks */ 180 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */ 181 unsigned int padding:6; /* padding */ 182 unsigned char *cur_valid_map; /* validity bitmap of blocks */ 183 #ifdef CONFIG_F2FS_CHECK_FS 184 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */ 185 #endif 186 /* 187 * # of valid blocks and the validity bitmap stored in the the last 188 * checkpoint pack. This information is used by the SSR mode. 189 */ 190 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */ 191 unsigned char *discard_map; 192 unsigned long long mtime; /* modification time of the segment */ 193 }; 194 195 struct sec_entry { 196 unsigned int valid_blocks; /* # of valid blocks in a section */ 197 }; 198 199 struct segment_allocation { 200 void (*allocate_segment)(struct f2fs_sb_info *, int, bool); 201 }; 202 203 #define MAX_SKIP_GC_COUNT 16 204 205 struct inmem_pages { 206 struct list_head list; 207 struct page *page; 208 block_t old_addr; /* for revoking when fail to commit */ 209 }; 210 211 struct sit_info { 212 const struct segment_allocation *s_ops; 213 214 block_t sit_base_addr; /* start block address of SIT area */ 215 block_t sit_blocks; /* # of blocks used by SIT area */ 216 block_t written_valid_blocks; /* # of valid blocks in main area */ 217 char *bitmap; /* all bitmaps pointer */ 218 char *sit_bitmap; /* SIT bitmap pointer */ 219 #ifdef CONFIG_F2FS_CHECK_FS 220 char *sit_bitmap_mir; /* SIT bitmap mirror */ 221 222 /* bitmap of segments to be ignored by GC in case of errors */ 223 unsigned long *invalid_segmap; 224 #endif 225 unsigned int bitmap_size; /* SIT bitmap size */ 226 227 unsigned long *tmp_map; /* bitmap for temporal use */ 228 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ 229 unsigned int dirty_sentries; /* # of dirty sentries */ 230 unsigned int sents_per_block; /* # of SIT entries per block */ 231 struct rw_semaphore sentry_lock; /* to protect SIT cache */ 232 struct seg_entry *sentries; /* SIT segment-level cache */ 233 struct sec_entry *sec_entries; /* SIT section-level cache */ 234 235 /* for cost-benefit algorithm in cleaning procedure */ 236 unsigned long long elapsed_time; /* elapsed time after mount */ 237 unsigned long long mounted_time; /* mount time */ 238 unsigned long long min_mtime; /* min. modification time */ 239 unsigned long long max_mtime; /* max. modification time */ 240 241 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */ 242 }; 243 244 struct free_segmap_info { 245 unsigned int start_segno; /* start segment number logically */ 246 unsigned int free_segments; /* # of free segments */ 247 unsigned int free_sections; /* # of free sections */ 248 spinlock_t segmap_lock; /* free segmap lock */ 249 unsigned long *free_segmap; /* free segment bitmap */ 250 unsigned long *free_secmap; /* free section bitmap */ 251 }; 252 253 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ 254 enum dirty_type { 255 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ 256 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ 257 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ 258 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ 259 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ 260 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ 261 DIRTY, /* to count # of dirty segments */ 262 PRE, /* to count # of entirely obsolete segments */ 263 NR_DIRTY_TYPE 264 }; 265 266 struct dirty_seglist_info { 267 const struct victim_selection *v_ops; /* victim selction operation */ 268 unsigned long *dirty_segmap[NR_DIRTY_TYPE]; 269 struct mutex seglist_lock; /* lock for segment bitmaps */ 270 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ 271 unsigned long *victim_secmap; /* background GC victims */ 272 }; 273 274 /* victim selection function for cleaning and SSR */ 275 struct victim_selection { 276 int (*get_victim)(struct f2fs_sb_info *, unsigned int *, 277 int, int, char); 278 }; 279 280 /* for active log information */ 281 struct curseg_info { 282 struct mutex curseg_mutex; /* lock for consistency */ 283 struct f2fs_summary_block *sum_blk; /* cached summary block */ 284 struct rw_semaphore journal_rwsem; /* protect journal area */ 285 struct f2fs_journal *journal; /* cached journal info */ 286 unsigned char alloc_type; /* current allocation type */ 287 unsigned int segno; /* current segment number */ 288 unsigned short next_blkoff; /* next block offset to write */ 289 unsigned int zone; /* current zone number */ 290 unsigned int next_segno; /* preallocated segment */ 291 }; 292 293 struct sit_entry_set { 294 struct list_head set_list; /* link with all sit sets */ 295 unsigned int start_segno; /* start segno of sits in set */ 296 unsigned int entry_cnt; /* the # of sit entries in set */ 297 }; 298 299 /* 300 * inline functions 301 */ 302 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) 303 { 304 if (type == CURSEG_COLD_DATA_PINNED) 305 type = CURSEG_COLD_DATA; 306 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); 307 } 308 309 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, 310 unsigned int segno) 311 { 312 struct sit_info *sit_i = SIT_I(sbi); 313 return &sit_i->sentries[segno]; 314 } 315 316 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, 317 unsigned int segno) 318 { 319 struct sit_info *sit_i = SIT_I(sbi); 320 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)]; 321 } 322 323 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, 324 unsigned int segno, bool use_section) 325 { 326 /* 327 * In order to get # of valid blocks in a section instantly from many 328 * segments, f2fs manages two counting structures separately. 329 */ 330 if (use_section && __is_large_section(sbi)) 331 return get_sec_entry(sbi, segno)->valid_blocks; 332 else 333 return get_seg_entry(sbi, segno)->valid_blocks; 334 } 335 336 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi, 337 unsigned int segno) 338 { 339 return get_seg_entry(sbi, segno)->ckpt_valid_blocks; 340 } 341 342 static inline void seg_info_from_raw_sit(struct seg_entry *se, 343 struct f2fs_sit_entry *rs) 344 { 345 se->valid_blocks = GET_SIT_VBLOCKS(rs); 346 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); 347 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 348 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 349 #ifdef CONFIG_F2FS_CHECK_FS 350 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 351 #endif 352 se->type = GET_SIT_TYPE(rs); 353 se->mtime = le64_to_cpu(rs->mtime); 354 } 355 356 static inline void __seg_info_to_raw_sit(struct seg_entry *se, 357 struct f2fs_sit_entry *rs) 358 { 359 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | 360 se->valid_blocks; 361 rs->vblocks = cpu_to_le16(raw_vblocks); 362 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 363 rs->mtime = cpu_to_le64(se->mtime); 364 } 365 366 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi, 367 struct page *page, unsigned int start) 368 { 369 struct f2fs_sit_block *raw_sit; 370 struct seg_entry *se; 371 struct f2fs_sit_entry *rs; 372 unsigned int end = min(start + SIT_ENTRY_PER_BLOCK, 373 (unsigned long)MAIN_SEGS(sbi)); 374 int i; 375 376 raw_sit = (struct f2fs_sit_block *)page_address(page); 377 memset(raw_sit, 0, PAGE_SIZE); 378 for (i = 0; i < end - start; i++) { 379 rs = &raw_sit->entries[i]; 380 se = get_seg_entry(sbi, start + i); 381 __seg_info_to_raw_sit(se, rs); 382 } 383 } 384 385 static inline void seg_info_to_raw_sit(struct seg_entry *se, 386 struct f2fs_sit_entry *rs) 387 { 388 __seg_info_to_raw_sit(se, rs); 389 390 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 391 se->ckpt_valid_blocks = se->valid_blocks; 392 } 393 394 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, 395 unsigned int max, unsigned int segno) 396 { 397 unsigned int ret; 398 spin_lock(&free_i->segmap_lock); 399 ret = find_next_bit(free_i->free_segmap, max, segno); 400 spin_unlock(&free_i->segmap_lock); 401 return ret; 402 } 403 404 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) 405 { 406 struct free_segmap_info *free_i = FREE_I(sbi); 407 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 408 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 409 unsigned int next; 410 411 spin_lock(&free_i->segmap_lock); 412 clear_bit(segno, free_i->free_segmap); 413 free_i->free_segments++; 414 415 next = find_next_bit(free_i->free_segmap, 416 start_segno + sbi->segs_per_sec, start_segno); 417 if (next >= start_segno + sbi->segs_per_sec) { 418 clear_bit(secno, free_i->free_secmap); 419 free_i->free_sections++; 420 } 421 spin_unlock(&free_i->segmap_lock); 422 } 423 424 static inline void __set_inuse(struct f2fs_sb_info *sbi, 425 unsigned int segno) 426 { 427 struct free_segmap_info *free_i = FREE_I(sbi); 428 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 429 430 set_bit(segno, free_i->free_segmap); 431 free_i->free_segments--; 432 if (!test_and_set_bit(secno, free_i->free_secmap)) 433 free_i->free_sections--; 434 } 435 436 static inline void __set_test_and_free(struct f2fs_sb_info *sbi, 437 unsigned int segno) 438 { 439 struct free_segmap_info *free_i = FREE_I(sbi); 440 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 441 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 442 unsigned int next; 443 444 spin_lock(&free_i->segmap_lock); 445 if (test_and_clear_bit(segno, free_i->free_segmap)) { 446 free_i->free_segments++; 447 448 if (IS_CURSEC(sbi, secno)) 449 goto skip_free; 450 next = find_next_bit(free_i->free_segmap, 451 start_segno + sbi->segs_per_sec, start_segno); 452 if (next >= start_segno + sbi->segs_per_sec) { 453 if (test_and_clear_bit(secno, free_i->free_secmap)) 454 free_i->free_sections++; 455 } 456 } 457 skip_free: 458 spin_unlock(&free_i->segmap_lock); 459 } 460 461 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, 462 unsigned int segno) 463 { 464 struct free_segmap_info *free_i = FREE_I(sbi); 465 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 466 467 spin_lock(&free_i->segmap_lock); 468 if (!test_and_set_bit(segno, free_i->free_segmap)) { 469 free_i->free_segments--; 470 if (!test_and_set_bit(secno, free_i->free_secmap)) 471 free_i->free_sections--; 472 } 473 spin_unlock(&free_i->segmap_lock); 474 } 475 476 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, 477 void *dst_addr) 478 { 479 struct sit_info *sit_i = SIT_I(sbi); 480 481 #ifdef CONFIG_F2FS_CHECK_FS 482 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir, 483 sit_i->bitmap_size)) 484 f2fs_bug_on(sbi, 1); 485 #endif 486 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); 487 } 488 489 static inline block_t written_block_count(struct f2fs_sb_info *sbi) 490 { 491 return SIT_I(sbi)->written_valid_blocks; 492 } 493 494 static inline unsigned int free_segments(struct f2fs_sb_info *sbi) 495 { 496 return FREE_I(sbi)->free_segments; 497 } 498 499 static inline int reserved_segments(struct f2fs_sb_info *sbi) 500 { 501 return SM_I(sbi)->reserved_segments; 502 } 503 504 static inline unsigned int free_sections(struct f2fs_sb_info *sbi) 505 { 506 return FREE_I(sbi)->free_sections; 507 } 508 509 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) 510 { 511 return DIRTY_I(sbi)->nr_dirty[PRE]; 512 } 513 514 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) 515 { 516 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + 517 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + 518 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + 519 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + 520 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + 521 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; 522 } 523 524 static inline int overprovision_segments(struct f2fs_sb_info *sbi) 525 { 526 return SM_I(sbi)->ovp_segments; 527 } 528 529 static inline int reserved_sections(struct f2fs_sb_info *sbi) 530 { 531 return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi)); 532 } 533 534 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi) 535 { 536 unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) + 537 get_pages(sbi, F2FS_DIRTY_DENTS); 538 unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS); 539 unsigned int segno, left_blocks; 540 int i; 541 542 /* check current node segment */ 543 for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) { 544 segno = CURSEG_I(sbi, i)->segno; 545 left_blocks = sbi->blocks_per_seg - 546 get_seg_entry(sbi, segno)->ckpt_valid_blocks; 547 548 if (node_blocks > left_blocks) 549 return false; 550 } 551 552 /* check current data segment */ 553 segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno; 554 left_blocks = sbi->blocks_per_seg - 555 get_seg_entry(sbi, segno)->ckpt_valid_blocks; 556 if (dent_blocks > left_blocks) 557 return false; 558 return true; 559 } 560 561 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, 562 int freed, int needed) 563 { 564 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 565 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 566 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 567 568 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 569 return false; 570 571 if (free_sections(sbi) + freed == reserved_sections(sbi) + needed && 572 has_curseg_enough_space(sbi)) 573 return false; 574 return (free_sections(sbi) + freed) <= 575 (node_secs + 2 * dent_secs + imeta_secs + 576 reserved_sections(sbi) + needed); 577 } 578 579 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi) 580 { 581 if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 582 return true; 583 if (likely(!has_not_enough_free_secs(sbi, 0, 0))) 584 return true; 585 return false; 586 } 587 588 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) 589 { 590 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; 591 } 592 593 static inline int utilization(struct f2fs_sb_info *sbi) 594 { 595 return div_u64((u64)valid_user_blocks(sbi) * 100, 596 sbi->user_block_count); 597 } 598 599 /* 600 * Sometimes f2fs may be better to drop out-of-place update policy. 601 * And, users can control the policy through sysfs entries. 602 * There are five policies with triggering conditions as follows. 603 * F2FS_IPU_FORCE - all the time, 604 * F2FS_IPU_SSR - if SSR mode is activated, 605 * F2FS_IPU_UTIL - if FS utilization is over threashold, 606 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over 607 * threashold, 608 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash 609 * storages. IPU will be triggered only if the # of dirty 610 * pages over min_fsync_blocks. (=default option) 611 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests. 612 * F2FS_IPU_NOCACHE - disable IPU bio cache. 613 * F2FS_IPUT_DISABLE - disable IPU. (=default option in LFS mode) 614 */ 615 #define DEF_MIN_IPU_UTIL 70 616 #define DEF_MIN_FSYNC_BLOCKS 8 617 #define DEF_MIN_HOT_BLOCKS 16 618 619 #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */ 620 621 enum { 622 F2FS_IPU_FORCE, 623 F2FS_IPU_SSR, 624 F2FS_IPU_UTIL, 625 F2FS_IPU_SSR_UTIL, 626 F2FS_IPU_FSYNC, 627 F2FS_IPU_ASYNC, 628 F2FS_IPU_NOCACHE, 629 }; 630 631 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, 632 int type) 633 { 634 struct curseg_info *curseg = CURSEG_I(sbi, type); 635 return curseg->segno; 636 } 637 638 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, 639 int type) 640 { 641 struct curseg_info *curseg = CURSEG_I(sbi, type); 642 return curseg->alloc_type; 643 } 644 645 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) 646 { 647 struct curseg_info *curseg = CURSEG_I(sbi, type); 648 return curseg->next_blkoff; 649 } 650 651 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) 652 { 653 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1); 654 } 655 656 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio) 657 { 658 struct f2fs_sb_info *sbi = fio->sbi; 659 660 if (__is_valid_data_blkaddr(fio->old_blkaddr)) 661 verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ? 662 META_GENERIC : DATA_GENERIC); 663 verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ? 664 META_GENERIC : DATA_GENERIC_ENHANCE); 665 } 666 667 /* 668 * Summary block is always treated as an invalid block 669 */ 670 static inline int check_block_count(struct f2fs_sb_info *sbi, 671 int segno, struct f2fs_sit_entry *raw_sit) 672 { 673 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; 674 int valid_blocks = 0; 675 int cur_pos = 0, next_pos; 676 677 /* check bitmap with valid block count */ 678 do { 679 if (is_valid) { 680 next_pos = find_next_zero_bit_le(&raw_sit->valid_map, 681 sbi->blocks_per_seg, 682 cur_pos); 683 valid_blocks += next_pos - cur_pos; 684 } else 685 next_pos = find_next_bit_le(&raw_sit->valid_map, 686 sbi->blocks_per_seg, 687 cur_pos); 688 cur_pos = next_pos; 689 is_valid = !is_valid; 690 } while (cur_pos < sbi->blocks_per_seg); 691 692 if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) { 693 f2fs_err(sbi, "Mismatch valid blocks %d vs. %d", 694 GET_SIT_VBLOCKS(raw_sit), valid_blocks); 695 set_sbi_flag(sbi, SBI_NEED_FSCK); 696 return -EFSCORRUPTED; 697 } 698 699 /* check segment usage, and check boundary of a given segment number */ 700 if (unlikely(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg 701 || segno > TOTAL_SEGS(sbi) - 1)) { 702 f2fs_err(sbi, "Wrong valid blocks %d or segno %u", 703 GET_SIT_VBLOCKS(raw_sit), segno); 704 set_sbi_flag(sbi, SBI_NEED_FSCK); 705 return -EFSCORRUPTED; 706 } 707 return 0; 708 } 709 710 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, 711 unsigned int start) 712 { 713 struct sit_info *sit_i = SIT_I(sbi); 714 unsigned int offset = SIT_BLOCK_OFFSET(start); 715 block_t blk_addr = sit_i->sit_base_addr + offset; 716 717 check_seg_range(sbi, start); 718 719 #ifdef CONFIG_F2FS_CHECK_FS 720 if (f2fs_test_bit(offset, sit_i->sit_bitmap) != 721 f2fs_test_bit(offset, sit_i->sit_bitmap_mir)) 722 f2fs_bug_on(sbi, 1); 723 #endif 724 725 /* calculate sit block address */ 726 if (f2fs_test_bit(offset, sit_i->sit_bitmap)) 727 blk_addr += sit_i->sit_blocks; 728 729 return blk_addr; 730 } 731 732 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, 733 pgoff_t block_addr) 734 { 735 struct sit_info *sit_i = SIT_I(sbi); 736 block_addr -= sit_i->sit_base_addr; 737 if (block_addr < sit_i->sit_blocks) 738 block_addr += sit_i->sit_blocks; 739 else 740 block_addr -= sit_i->sit_blocks; 741 742 return block_addr + sit_i->sit_base_addr; 743 } 744 745 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) 746 { 747 unsigned int block_off = SIT_BLOCK_OFFSET(start); 748 749 f2fs_change_bit(block_off, sit_i->sit_bitmap); 750 #ifdef CONFIG_F2FS_CHECK_FS 751 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir); 752 #endif 753 } 754 755 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi, 756 bool base_time) 757 { 758 struct sit_info *sit_i = SIT_I(sbi); 759 time64_t diff, now = ktime_get_real_seconds(); 760 761 if (now >= sit_i->mounted_time) 762 return sit_i->elapsed_time + now - sit_i->mounted_time; 763 764 /* system time is set to the past */ 765 if (!base_time) { 766 diff = sit_i->mounted_time - now; 767 if (sit_i->elapsed_time >= diff) 768 return sit_i->elapsed_time - diff; 769 return 0; 770 } 771 return sit_i->elapsed_time; 772 } 773 774 static inline void set_summary(struct f2fs_summary *sum, nid_t nid, 775 unsigned int ofs_in_node, unsigned char version) 776 { 777 sum->nid = cpu_to_le32(nid); 778 sum->ofs_in_node = cpu_to_le16(ofs_in_node); 779 sum->version = version; 780 } 781 782 static inline block_t start_sum_block(struct f2fs_sb_info *sbi) 783 { 784 return __start_cp_addr(sbi) + 785 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 786 } 787 788 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) 789 { 790 return __start_cp_addr(sbi) + 791 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) 792 - (base + 1) + type; 793 } 794 795 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) 796 { 797 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) 798 return true; 799 return false; 800 } 801 802 /* 803 * It is very important to gather dirty pages and write at once, so that we can 804 * submit a big bio without interfering other data writes. 805 * By default, 512 pages for directory data, 806 * 512 pages (2MB) * 8 for nodes, and 807 * 256 pages * 8 for meta are set. 808 */ 809 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type) 810 { 811 if (sbi->sb->s_bdi->wb.dirty_exceeded) 812 return 0; 813 814 if (type == DATA) 815 return sbi->blocks_per_seg; 816 else if (type == NODE) 817 return 8 * sbi->blocks_per_seg; 818 else if (type == META) 819 return 8 * BIO_MAX_PAGES; 820 else 821 return 0; 822 } 823 824 /* 825 * When writing pages, it'd better align nr_to_write for segment size. 826 */ 827 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type, 828 struct writeback_control *wbc) 829 { 830 long nr_to_write, desired; 831 832 if (wbc->sync_mode != WB_SYNC_NONE) 833 return 0; 834 835 nr_to_write = wbc->nr_to_write; 836 desired = BIO_MAX_PAGES; 837 if (type == NODE) 838 desired <<= 1; 839 840 wbc->nr_to_write = desired; 841 return desired - nr_to_write; 842 } 843 844 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force) 845 { 846 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 847 bool wakeup = false; 848 int i; 849 850 if (force) 851 goto wake_up; 852 853 mutex_lock(&dcc->cmd_lock); 854 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 855 if (i + 1 < dcc->discard_granularity) 856 break; 857 if (!list_empty(&dcc->pend_list[i])) { 858 wakeup = true; 859 break; 860 } 861 } 862 mutex_unlock(&dcc->cmd_lock); 863 if (!wakeup || !is_idle(sbi, DISCARD_TIME)) 864 return; 865 wake_up: 866 dcc->discard_wake = 1; 867 wake_up_interruptible_all(&dcc->discard_wait_queue); 868 } 869