1 /* 2 * fs/f2fs/segment.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/blkdev.h> 12 #include <linux/backing-dev.h> 13 14 /* constant macro */ 15 #define NULL_SEGNO ((unsigned int)(~0)) 16 #define NULL_SECNO ((unsigned int)(~0)) 17 18 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */ 19 20 /* L: Logical segment # in volume, R: Relative segment # in main area */ 21 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno) 22 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno) 23 24 #define IS_DATASEG(t) (t <= CURSEG_COLD_DATA) 25 #define IS_NODESEG(t) (t >= CURSEG_HOT_NODE) 26 27 #define IS_CURSEG(sbi, seg) \ 28 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ 29 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ 30 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ 31 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ 32 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ 33 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno)) 34 35 #define IS_CURSEC(sbi, secno) \ 36 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ 37 sbi->segs_per_sec) || \ 38 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ 39 sbi->segs_per_sec) || \ 40 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ 41 sbi->segs_per_sec) || \ 42 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ 43 sbi->segs_per_sec) || \ 44 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ 45 sbi->segs_per_sec) || \ 46 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ 47 sbi->segs_per_sec)) \ 48 49 #define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr) 50 #define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr) 51 52 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments) 53 #define MAIN_SECS(sbi) (sbi->total_sections) 54 55 #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count) 56 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << sbi->log_blocks_per_seg) 57 58 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi)) 59 #define SEGMENT_SIZE(sbi) (1ULL << (sbi->log_blocksize + \ 60 sbi->log_blocks_per_seg)) 61 62 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \ 63 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg)) 64 65 #define NEXT_FREE_BLKADDR(sbi, curseg) \ 66 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff) 67 68 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi)) 69 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ 70 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg) 71 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \ 72 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & (sbi->blocks_per_seg - 1)) 73 74 #define GET_SEGNO(sbi, blk_addr) \ 75 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \ 76 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ 77 GET_SEGNO_FROM_SEG0(sbi, blk_addr))) 78 #define GET_SECNO(sbi, segno) \ 79 ((segno) / sbi->segs_per_sec) 80 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \ 81 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone) 82 83 #define GET_SUM_BLOCK(sbi, segno) \ 84 ((sbi->sm_info->ssa_blkaddr) + segno) 85 86 #define GET_SUM_TYPE(footer) ((footer)->entry_type) 87 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type) 88 89 #define SIT_ENTRY_OFFSET(sit_i, segno) \ 90 (segno % sit_i->sents_per_block) 91 #define SIT_BLOCK_OFFSET(segno) \ 92 (segno / SIT_ENTRY_PER_BLOCK) 93 #define START_SEGNO(segno) \ 94 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK) 95 #define SIT_BLK_CNT(sbi) \ 96 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK) 97 #define f2fs_bitmap_size(nr) \ 98 (BITS_TO_LONGS(nr) * sizeof(unsigned long)) 99 100 #define SECTOR_FROM_BLOCK(blk_addr) \ 101 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK) 102 #define SECTOR_TO_BLOCK(sectors) \ 103 (sectors >> F2FS_LOG_SECTORS_PER_BLOCK) 104 #define MAX_BIO_BLOCKS(sbi) \ 105 ((int)min((int)max_hw_blocks(sbi), BIO_MAX_PAGES)) 106 107 /* 108 * indicate a block allocation direction: RIGHT and LEFT. 109 * RIGHT means allocating new sections towards the end of volume. 110 * LEFT means the opposite direction. 111 */ 112 enum { 113 ALLOC_RIGHT = 0, 114 ALLOC_LEFT 115 }; 116 117 /* 118 * In the victim_sel_policy->alloc_mode, there are two block allocation modes. 119 * LFS writes data sequentially with cleaning operations. 120 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. 121 */ 122 enum { 123 LFS = 0, 124 SSR 125 }; 126 127 /* 128 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes. 129 * GC_CB is based on cost-benefit algorithm. 130 * GC_GREEDY is based on greedy algorithm. 131 */ 132 enum { 133 GC_CB = 0, 134 GC_GREEDY 135 }; 136 137 /* 138 * BG_GC means the background cleaning job. 139 * FG_GC means the on-demand cleaning job. 140 * FORCE_FG_GC means on-demand cleaning job in background. 141 */ 142 enum { 143 BG_GC = 0, 144 FG_GC, 145 FORCE_FG_GC, 146 }; 147 148 /* for a function parameter to select a victim segment */ 149 struct victim_sel_policy { 150 int alloc_mode; /* LFS or SSR */ 151 int gc_mode; /* GC_CB or GC_GREEDY */ 152 unsigned long *dirty_segmap; /* dirty segment bitmap */ 153 unsigned int max_search; /* maximum # of segments to search */ 154 unsigned int offset; /* last scanned bitmap offset */ 155 unsigned int ofs_unit; /* bitmap search unit */ 156 unsigned int min_cost; /* minimum cost */ 157 unsigned int min_segno; /* segment # having min. cost */ 158 }; 159 160 struct seg_entry { 161 unsigned short valid_blocks; /* # of valid blocks */ 162 unsigned char *cur_valid_map; /* validity bitmap of blocks */ 163 /* 164 * # of valid blocks and the validity bitmap stored in the the last 165 * checkpoint pack. This information is used by the SSR mode. 166 */ 167 unsigned short ckpt_valid_blocks; 168 unsigned char *ckpt_valid_map; 169 unsigned char *discard_map; 170 unsigned char type; /* segment type like CURSEG_XXX_TYPE */ 171 unsigned long long mtime; /* modification time of the segment */ 172 }; 173 174 struct sec_entry { 175 unsigned int valid_blocks; /* # of valid blocks in a section */ 176 }; 177 178 struct segment_allocation { 179 void (*allocate_segment)(struct f2fs_sb_info *, int, bool); 180 }; 181 182 /* 183 * this value is set in page as a private data which indicate that 184 * the page is atomically written, and it is in inmem_pages list. 185 */ 186 #define ATOMIC_WRITTEN_PAGE 0x0000ffff 187 188 #define IS_ATOMIC_WRITTEN_PAGE(page) \ 189 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE) 190 191 struct inmem_pages { 192 struct list_head list; 193 struct page *page; 194 }; 195 196 struct sit_info { 197 const struct segment_allocation *s_ops; 198 199 block_t sit_base_addr; /* start block address of SIT area */ 200 block_t sit_blocks; /* # of blocks used by SIT area */ 201 block_t written_valid_blocks; /* # of valid blocks in main area */ 202 char *sit_bitmap; /* SIT bitmap pointer */ 203 unsigned int bitmap_size; /* SIT bitmap size */ 204 205 unsigned long *tmp_map; /* bitmap for temporal use */ 206 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ 207 unsigned int dirty_sentries; /* # of dirty sentries */ 208 unsigned int sents_per_block; /* # of SIT entries per block */ 209 struct mutex sentry_lock; /* to protect SIT cache */ 210 struct seg_entry *sentries; /* SIT segment-level cache */ 211 struct sec_entry *sec_entries; /* SIT section-level cache */ 212 213 /* for cost-benefit algorithm in cleaning procedure */ 214 unsigned long long elapsed_time; /* elapsed time after mount */ 215 unsigned long long mounted_time; /* mount time */ 216 unsigned long long min_mtime; /* min. modification time */ 217 unsigned long long max_mtime; /* max. modification time */ 218 }; 219 220 struct free_segmap_info { 221 unsigned int start_segno; /* start segment number logically */ 222 unsigned int free_segments; /* # of free segments */ 223 unsigned int free_sections; /* # of free sections */ 224 spinlock_t segmap_lock; /* free segmap lock */ 225 unsigned long *free_segmap; /* free segment bitmap */ 226 unsigned long *free_secmap; /* free section bitmap */ 227 }; 228 229 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ 230 enum dirty_type { 231 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ 232 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ 233 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ 234 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ 235 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ 236 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ 237 DIRTY, /* to count # of dirty segments */ 238 PRE, /* to count # of entirely obsolete segments */ 239 NR_DIRTY_TYPE 240 }; 241 242 struct dirty_seglist_info { 243 const struct victim_selection *v_ops; /* victim selction operation */ 244 unsigned long *dirty_segmap[NR_DIRTY_TYPE]; 245 struct mutex seglist_lock; /* lock for segment bitmaps */ 246 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ 247 unsigned long *victim_secmap; /* background GC victims */ 248 }; 249 250 /* victim selection function for cleaning and SSR */ 251 struct victim_selection { 252 int (*get_victim)(struct f2fs_sb_info *, unsigned int *, 253 int, int, char); 254 }; 255 256 /* for active log information */ 257 struct curseg_info { 258 struct mutex curseg_mutex; /* lock for consistency */ 259 struct f2fs_summary_block *sum_blk; /* cached summary block */ 260 unsigned char alloc_type; /* current allocation type */ 261 unsigned int segno; /* current segment number */ 262 unsigned short next_blkoff; /* next block offset to write */ 263 unsigned int zone; /* current zone number */ 264 unsigned int next_segno; /* preallocated segment */ 265 }; 266 267 struct sit_entry_set { 268 struct list_head set_list; /* link with all sit sets */ 269 unsigned int start_segno; /* start segno of sits in set */ 270 unsigned int entry_cnt; /* the # of sit entries in set */ 271 }; 272 273 /* 274 * inline functions 275 */ 276 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) 277 { 278 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); 279 } 280 281 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, 282 unsigned int segno) 283 { 284 struct sit_info *sit_i = SIT_I(sbi); 285 return &sit_i->sentries[segno]; 286 } 287 288 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, 289 unsigned int segno) 290 { 291 struct sit_info *sit_i = SIT_I(sbi); 292 return &sit_i->sec_entries[GET_SECNO(sbi, segno)]; 293 } 294 295 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, 296 unsigned int segno, int section) 297 { 298 /* 299 * In order to get # of valid blocks in a section instantly from many 300 * segments, f2fs manages two counting structures separately. 301 */ 302 if (section > 1) 303 return get_sec_entry(sbi, segno)->valid_blocks; 304 else 305 return get_seg_entry(sbi, segno)->valid_blocks; 306 } 307 308 static inline void seg_info_from_raw_sit(struct seg_entry *se, 309 struct f2fs_sit_entry *rs) 310 { 311 se->valid_blocks = GET_SIT_VBLOCKS(rs); 312 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); 313 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 314 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 315 se->type = GET_SIT_TYPE(rs); 316 se->mtime = le64_to_cpu(rs->mtime); 317 } 318 319 static inline void seg_info_to_raw_sit(struct seg_entry *se, 320 struct f2fs_sit_entry *rs) 321 { 322 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | 323 se->valid_blocks; 324 rs->vblocks = cpu_to_le16(raw_vblocks); 325 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 326 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 327 se->ckpt_valid_blocks = se->valid_blocks; 328 rs->mtime = cpu_to_le64(se->mtime); 329 } 330 331 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, 332 unsigned int max, unsigned int segno) 333 { 334 unsigned int ret; 335 spin_lock(&free_i->segmap_lock); 336 ret = find_next_bit(free_i->free_segmap, max, segno); 337 spin_unlock(&free_i->segmap_lock); 338 return ret; 339 } 340 341 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) 342 { 343 struct free_segmap_info *free_i = FREE_I(sbi); 344 unsigned int secno = segno / sbi->segs_per_sec; 345 unsigned int start_segno = secno * sbi->segs_per_sec; 346 unsigned int next; 347 348 spin_lock(&free_i->segmap_lock); 349 clear_bit(segno, free_i->free_segmap); 350 free_i->free_segments++; 351 352 next = find_next_bit(free_i->free_segmap, 353 start_segno + sbi->segs_per_sec, start_segno); 354 if (next >= start_segno + sbi->segs_per_sec) { 355 clear_bit(secno, free_i->free_secmap); 356 free_i->free_sections++; 357 } 358 spin_unlock(&free_i->segmap_lock); 359 } 360 361 static inline void __set_inuse(struct f2fs_sb_info *sbi, 362 unsigned int segno) 363 { 364 struct free_segmap_info *free_i = FREE_I(sbi); 365 unsigned int secno = segno / sbi->segs_per_sec; 366 set_bit(segno, free_i->free_segmap); 367 free_i->free_segments--; 368 if (!test_and_set_bit(secno, free_i->free_secmap)) 369 free_i->free_sections--; 370 } 371 372 static inline void __set_test_and_free(struct f2fs_sb_info *sbi, 373 unsigned int segno) 374 { 375 struct free_segmap_info *free_i = FREE_I(sbi); 376 unsigned int secno = segno / sbi->segs_per_sec; 377 unsigned int start_segno = secno * sbi->segs_per_sec; 378 unsigned int next; 379 380 spin_lock(&free_i->segmap_lock); 381 if (test_and_clear_bit(segno, free_i->free_segmap)) { 382 free_i->free_segments++; 383 384 next = find_next_bit(free_i->free_segmap, 385 start_segno + sbi->segs_per_sec, start_segno); 386 if (next >= start_segno + sbi->segs_per_sec) { 387 if (test_and_clear_bit(secno, free_i->free_secmap)) 388 free_i->free_sections++; 389 } 390 } 391 spin_unlock(&free_i->segmap_lock); 392 } 393 394 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, 395 unsigned int segno) 396 { 397 struct free_segmap_info *free_i = FREE_I(sbi); 398 unsigned int secno = segno / sbi->segs_per_sec; 399 spin_lock(&free_i->segmap_lock); 400 if (!test_and_set_bit(segno, free_i->free_segmap)) { 401 free_i->free_segments--; 402 if (!test_and_set_bit(secno, free_i->free_secmap)) 403 free_i->free_sections--; 404 } 405 spin_unlock(&free_i->segmap_lock); 406 } 407 408 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, 409 void *dst_addr) 410 { 411 struct sit_info *sit_i = SIT_I(sbi); 412 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); 413 } 414 415 static inline block_t written_block_count(struct f2fs_sb_info *sbi) 416 { 417 return SIT_I(sbi)->written_valid_blocks; 418 } 419 420 static inline unsigned int free_segments(struct f2fs_sb_info *sbi) 421 { 422 return FREE_I(sbi)->free_segments; 423 } 424 425 static inline int reserved_segments(struct f2fs_sb_info *sbi) 426 { 427 return SM_I(sbi)->reserved_segments; 428 } 429 430 static inline unsigned int free_sections(struct f2fs_sb_info *sbi) 431 { 432 return FREE_I(sbi)->free_sections; 433 } 434 435 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) 436 { 437 return DIRTY_I(sbi)->nr_dirty[PRE]; 438 } 439 440 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) 441 { 442 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + 443 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + 444 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + 445 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + 446 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + 447 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; 448 } 449 450 static inline int overprovision_segments(struct f2fs_sb_info *sbi) 451 { 452 return SM_I(sbi)->ovp_segments; 453 } 454 455 static inline int overprovision_sections(struct f2fs_sb_info *sbi) 456 { 457 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec; 458 } 459 460 static inline int reserved_sections(struct f2fs_sb_info *sbi) 461 { 462 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec; 463 } 464 465 static inline bool need_SSR(struct f2fs_sb_info *sbi) 466 { 467 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 468 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 469 return free_sections(sbi) <= (node_secs + 2 * dent_secs + 470 reserved_sections(sbi) + 1); 471 } 472 473 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed) 474 { 475 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 476 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 477 478 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 479 return false; 480 481 return (free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs + 482 reserved_sections(sbi)); 483 } 484 485 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) 486 { 487 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; 488 } 489 490 static inline int utilization(struct f2fs_sb_info *sbi) 491 { 492 return div_u64((u64)valid_user_blocks(sbi) * 100, 493 sbi->user_block_count); 494 } 495 496 /* 497 * Sometimes f2fs may be better to drop out-of-place update policy. 498 * And, users can control the policy through sysfs entries. 499 * There are five policies with triggering conditions as follows. 500 * F2FS_IPU_FORCE - all the time, 501 * F2FS_IPU_SSR - if SSR mode is activated, 502 * F2FS_IPU_UTIL - if FS utilization is over threashold, 503 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over 504 * threashold, 505 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash 506 * storages. IPU will be triggered only if the # of dirty 507 * pages over min_fsync_blocks. 508 * F2FS_IPUT_DISABLE - disable IPU. (=default option) 509 */ 510 #define DEF_MIN_IPU_UTIL 70 511 #define DEF_MIN_FSYNC_BLOCKS 8 512 513 enum { 514 F2FS_IPU_FORCE, 515 F2FS_IPU_SSR, 516 F2FS_IPU_UTIL, 517 F2FS_IPU_SSR_UTIL, 518 F2FS_IPU_FSYNC, 519 }; 520 521 static inline bool need_inplace_update(struct inode *inode) 522 { 523 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 524 unsigned int policy = SM_I(sbi)->ipu_policy; 525 526 /* IPU can be done only for the user data */ 527 if (S_ISDIR(inode->i_mode) || f2fs_is_atomic_file(inode)) 528 return false; 529 530 if (policy & (0x1 << F2FS_IPU_FORCE)) 531 return true; 532 if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi)) 533 return true; 534 if (policy & (0x1 << F2FS_IPU_UTIL) && 535 utilization(sbi) > SM_I(sbi)->min_ipu_util) 536 return true; 537 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) && 538 utilization(sbi) > SM_I(sbi)->min_ipu_util) 539 return true; 540 541 /* this is only set during fdatasync */ 542 if (policy & (0x1 << F2FS_IPU_FSYNC) && 543 is_inode_flag_set(F2FS_I(inode), FI_NEED_IPU)) 544 return true; 545 546 return false; 547 } 548 549 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, 550 int type) 551 { 552 struct curseg_info *curseg = CURSEG_I(sbi, type); 553 return curseg->segno; 554 } 555 556 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, 557 int type) 558 { 559 struct curseg_info *curseg = CURSEG_I(sbi, type); 560 return curseg->alloc_type; 561 } 562 563 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) 564 { 565 struct curseg_info *curseg = CURSEG_I(sbi, type); 566 return curseg->next_blkoff; 567 } 568 569 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) 570 { 571 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1); 572 } 573 574 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr) 575 { 576 f2fs_bug_on(sbi, blk_addr < SEG0_BLKADDR(sbi) 577 || blk_addr >= MAX_BLKADDR(sbi)); 578 } 579 580 /* 581 * Summary block is always treated as an invalid block 582 */ 583 static inline void check_block_count(struct f2fs_sb_info *sbi, 584 int segno, struct f2fs_sit_entry *raw_sit) 585 { 586 #ifdef CONFIG_F2FS_CHECK_FS 587 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; 588 int valid_blocks = 0; 589 int cur_pos = 0, next_pos; 590 591 /* check bitmap with valid block count */ 592 do { 593 if (is_valid) { 594 next_pos = find_next_zero_bit_le(&raw_sit->valid_map, 595 sbi->blocks_per_seg, 596 cur_pos); 597 valid_blocks += next_pos - cur_pos; 598 } else 599 next_pos = find_next_bit_le(&raw_sit->valid_map, 600 sbi->blocks_per_seg, 601 cur_pos); 602 cur_pos = next_pos; 603 is_valid = !is_valid; 604 } while (cur_pos < sbi->blocks_per_seg); 605 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks); 606 #endif 607 /* check segment usage, and check boundary of a given segment number */ 608 f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg 609 || segno > TOTAL_SEGS(sbi) - 1); 610 } 611 612 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, 613 unsigned int start) 614 { 615 struct sit_info *sit_i = SIT_I(sbi); 616 unsigned int offset = SIT_BLOCK_OFFSET(start); 617 block_t blk_addr = sit_i->sit_base_addr + offset; 618 619 check_seg_range(sbi, start); 620 621 /* calculate sit block address */ 622 if (f2fs_test_bit(offset, sit_i->sit_bitmap)) 623 blk_addr += sit_i->sit_blocks; 624 625 return blk_addr; 626 } 627 628 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, 629 pgoff_t block_addr) 630 { 631 struct sit_info *sit_i = SIT_I(sbi); 632 block_addr -= sit_i->sit_base_addr; 633 if (block_addr < sit_i->sit_blocks) 634 block_addr += sit_i->sit_blocks; 635 else 636 block_addr -= sit_i->sit_blocks; 637 638 return block_addr + sit_i->sit_base_addr; 639 } 640 641 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) 642 { 643 unsigned int block_off = SIT_BLOCK_OFFSET(start); 644 645 f2fs_change_bit(block_off, sit_i->sit_bitmap); 646 } 647 648 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi) 649 { 650 struct sit_info *sit_i = SIT_I(sbi); 651 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec - 652 sit_i->mounted_time; 653 } 654 655 static inline void set_summary(struct f2fs_summary *sum, nid_t nid, 656 unsigned int ofs_in_node, unsigned char version) 657 { 658 sum->nid = cpu_to_le32(nid); 659 sum->ofs_in_node = cpu_to_le16(ofs_in_node); 660 sum->version = version; 661 } 662 663 static inline block_t start_sum_block(struct f2fs_sb_info *sbi) 664 { 665 return __start_cp_addr(sbi) + 666 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 667 } 668 669 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) 670 { 671 return __start_cp_addr(sbi) + 672 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) 673 - (base + 1) + type; 674 } 675 676 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) 677 { 678 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) 679 return true; 680 return false; 681 } 682 683 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi) 684 { 685 struct block_device *bdev = sbi->sb->s_bdev; 686 struct request_queue *q = bdev_get_queue(bdev); 687 return SECTOR_TO_BLOCK(queue_max_sectors(q)); 688 } 689 690 /* 691 * It is very important to gather dirty pages and write at once, so that we can 692 * submit a big bio without interfering other data writes. 693 * By default, 512 pages for directory data, 694 * 512 pages (2MB) * 3 for three types of nodes, and 695 * max_bio_blocks for meta are set. 696 */ 697 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type) 698 { 699 if (sbi->sb->s_bdi->wb.dirty_exceeded) 700 return 0; 701 702 if (type == DATA) 703 return sbi->blocks_per_seg; 704 else if (type == NODE) 705 return 3 * sbi->blocks_per_seg; 706 else if (type == META) 707 return MAX_BIO_BLOCKS(sbi); 708 else 709 return 0; 710 } 711 712 /* 713 * When writing pages, it'd better align nr_to_write for segment size. 714 */ 715 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type, 716 struct writeback_control *wbc) 717 { 718 long nr_to_write, desired; 719 720 if (wbc->sync_mode != WB_SYNC_NONE) 721 return 0; 722 723 nr_to_write = wbc->nr_to_write; 724 725 if (type == DATA) 726 desired = 4096; 727 else if (type == NODE) 728 desired = 3 * max_hw_blocks(sbi); 729 else 730 desired = MAX_BIO_BLOCKS(sbi); 731 732 wbc->nr_to_write = desired; 733 return desired - nr_to_write; 734 } 735