xref: /openbmc/linux/fs/f2fs/segment.h (revision 97da55fc)
1 /*
2  * fs/f2fs/segment.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 /* constant macro */
12 #define NULL_SEGNO			((unsigned int)(~0))
13 
14 /* V: Logical segment # in volume, R: Relative segment # in main area */
15 #define GET_L2R_SEGNO(free_i, segno)	(segno - free_i->start_segno)
16 #define GET_R2L_SEGNO(free_i, segno)	(segno + free_i->start_segno)
17 
18 #define IS_DATASEG(t)							\
19 	((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) ||		\
20 	(t == CURSEG_WARM_DATA))
21 
22 #define IS_NODESEG(t)							\
23 	((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) ||		\
24 	(t == CURSEG_WARM_NODE))
25 
26 #define IS_CURSEG(sbi, segno)						\
27 	((segno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
28 	 (segno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
29 	 (segno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
30 	 (segno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
31 	 (segno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
32 	 (segno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
33 
34 #define IS_CURSEC(sbi, secno)						\
35 	((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
36 	  sbi->segs_per_sec) ||	\
37 	 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
38 	  sbi->segs_per_sec) ||	\
39 	 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
40 	  sbi->segs_per_sec) ||	\
41 	 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
42 	  sbi->segs_per_sec) ||	\
43 	 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
44 	  sbi->segs_per_sec) ||	\
45 	 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
46 	  sbi->segs_per_sec))	\
47 
48 #define START_BLOCK(sbi, segno)						\
49 	(SM_I(sbi)->seg0_blkaddr +					\
50 	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg))
51 #define NEXT_FREE_BLKADDR(sbi, curseg)					\
52 	(START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff)
53 
54 #define MAIN_BASE_BLOCK(sbi)	(SM_I(sbi)->main_blkaddr)
55 
56 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)				\
57 	((blk_addr) - SM_I(sbi)->seg0_blkaddr)
58 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
59 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg)
60 #define GET_SEGNO(sbi, blk_addr)					\
61 	(((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ?		\
62 	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
63 		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
64 #define GET_SECNO(sbi, segno)					\
65 	((segno) / sbi->segs_per_sec)
66 #define GET_ZONENO_FROM_SEGNO(sbi, segno)				\
67 	((segno / sbi->segs_per_sec) / sbi->secs_per_zone)
68 
69 #define GET_SUM_BLOCK(sbi, segno)				\
70 	((sbi->sm_info->ssa_blkaddr) + segno)
71 
72 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
73 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type)
74 
75 #define SIT_ENTRY_OFFSET(sit_i, segno)					\
76 	(segno % sit_i->sents_per_block)
77 #define SIT_BLOCK_OFFSET(sit_i, segno)					\
78 	(segno / SIT_ENTRY_PER_BLOCK)
79 #define	START_SEGNO(sit_i, segno)		\
80 	(SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK)
81 #define f2fs_bitmap_size(nr)			\
82 	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
83 #define TOTAL_SEGS(sbi)	(SM_I(sbi)->main_segments)
84 
85 #define SECTOR_FROM_BLOCK(sbi, blk_addr)				\
86 	(blk_addr << ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE))
87 
88 /* during checkpoint, bio_private is used to synchronize the last bio */
89 struct bio_private {
90 	struct f2fs_sb_info *sbi;
91 	bool is_sync;
92 	void *wait;
93 };
94 
95 /*
96  * indicate a block allocation direction: RIGHT and LEFT.
97  * RIGHT means allocating new sections towards the end of volume.
98  * LEFT means the opposite direction.
99  */
100 enum {
101 	ALLOC_RIGHT = 0,
102 	ALLOC_LEFT
103 };
104 
105 /*
106  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
107  * LFS writes data sequentially with cleaning operations.
108  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
109  */
110 enum {
111 	LFS = 0,
112 	SSR
113 };
114 
115 /*
116  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
117  * GC_CB is based on cost-benefit algorithm.
118  * GC_GREEDY is based on greedy algorithm.
119  */
120 enum {
121 	GC_CB = 0,
122 	GC_GREEDY
123 };
124 
125 /*
126  * BG_GC means the background cleaning job.
127  * FG_GC means the on-demand cleaning job.
128  */
129 enum {
130 	BG_GC = 0,
131 	FG_GC
132 };
133 
134 /* for a function parameter to select a victim segment */
135 struct victim_sel_policy {
136 	int alloc_mode;			/* LFS or SSR */
137 	int gc_mode;			/* GC_CB or GC_GREEDY */
138 	unsigned long *dirty_segmap;	/* dirty segment bitmap */
139 	unsigned int offset;		/* last scanned bitmap offset */
140 	unsigned int ofs_unit;		/* bitmap search unit */
141 	unsigned int min_cost;		/* minimum cost */
142 	unsigned int min_segno;		/* segment # having min. cost */
143 };
144 
145 struct seg_entry {
146 	unsigned short valid_blocks;	/* # of valid blocks */
147 	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
148 	/*
149 	 * # of valid blocks and the validity bitmap stored in the the last
150 	 * checkpoint pack. This information is used by the SSR mode.
151 	 */
152 	unsigned short ckpt_valid_blocks;
153 	unsigned char *ckpt_valid_map;
154 	unsigned char type;		/* segment type like CURSEG_XXX_TYPE */
155 	unsigned long long mtime;	/* modification time of the segment */
156 };
157 
158 struct sec_entry {
159 	unsigned int valid_blocks;	/* # of valid blocks in a section */
160 };
161 
162 struct segment_allocation {
163 	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
164 };
165 
166 struct sit_info {
167 	const struct segment_allocation *s_ops;
168 
169 	block_t sit_base_addr;		/* start block address of SIT area */
170 	block_t sit_blocks;		/* # of blocks used by SIT area */
171 	block_t written_valid_blocks;	/* # of valid blocks in main area */
172 	char *sit_bitmap;		/* SIT bitmap pointer */
173 	unsigned int bitmap_size;	/* SIT bitmap size */
174 
175 	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
176 	unsigned int dirty_sentries;		/* # of dirty sentries */
177 	unsigned int sents_per_block;		/* # of SIT entries per block */
178 	struct mutex sentry_lock;		/* to protect SIT cache */
179 	struct seg_entry *sentries;		/* SIT segment-level cache */
180 	struct sec_entry *sec_entries;		/* SIT section-level cache */
181 
182 	/* for cost-benefit algorithm in cleaning procedure */
183 	unsigned long long elapsed_time;	/* elapsed time after mount */
184 	unsigned long long mounted_time;	/* mount time */
185 	unsigned long long min_mtime;		/* min. modification time */
186 	unsigned long long max_mtime;		/* max. modification time */
187 };
188 
189 struct free_segmap_info {
190 	unsigned int start_segno;	/* start segment number logically */
191 	unsigned int free_segments;	/* # of free segments */
192 	unsigned int free_sections;	/* # of free sections */
193 	rwlock_t segmap_lock;		/* free segmap lock */
194 	unsigned long *free_segmap;	/* free segment bitmap */
195 	unsigned long *free_secmap;	/* free section bitmap */
196 };
197 
198 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
199 enum dirty_type {
200 	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
201 	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
202 	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
203 	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
204 	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
205 	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
206 	DIRTY,			/* to count # of dirty segments */
207 	PRE,			/* to count # of entirely obsolete segments */
208 	NR_DIRTY_TYPE
209 };
210 
211 struct dirty_seglist_info {
212 	const struct victim_selection *v_ops;	/* victim selction operation */
213 	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
214 	struct mutex seglist_lock;		/* lock for segment bitmaps */
215 	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
216 	unsigned long *victim_segmap[2];	/* BG_GC, FG_GC */
217 };
218 
219 /* victim selection function for cleaning and SSR */
220 struct victim_selection {
221 	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
222 							int, int, char);
223 };
224 
225 /* for active log information */
226 struct curseg_info {
227 	struct mutex curseg_mutex;		/* lock for consistency */
228 	struct f2fs_summary_block *sum_blk;	/* cached summary block */
229 	unsigned char alloc_type;		/* current allocation type */
230 	unsigned int segno;			/* current segment number */
231 	unsigned short next_blkoff;		/* next block offset to write */
232 	unsigned int zone;			/* current zone number */
233 	unsigned int next_segno;		/* preallocated segment */
234 };
235 
236 /*
237  * inline functions
238  */
239 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
240 {
241 	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
242 }
243 
244 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
245 						unsigned int segno)
246 {
247 	struct sit_info *sit_i = SIT_I(sbi);
248 	return &sit_i->sentries[segno];
249 }
250 
251 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
252 						unsigned int segno)
253 {
254 	struct sit_info *sit_i = SIT_I(sbi);
255 	return &sit_i->sec_entries[GET_SECNO(sbi, segno)];
256 }
257 
258 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
259 				unsigned int segno, int section)
260 {
261 	/*
262 	 * In order to get # of valid blocks in a section instantly from many
263 	 * segments, f2fs manages two counting structures separately.
264 	 */
265 	if (section > 1)
266 		return get_sec_entry(sbi, segno)->valid_blocks;
267 	else
268 		return get_seg_entry(sbi, segno)->valid_blocks;
269 }
270 
271 static inline void seg_info_from_raw_sit(struct seg_entry *se,
272 					struct f2fs_sit_entry *rs)
273 {
274 	se->valid_blocks = GET_SIT_VBLOCKS(rs);
275 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
276 	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
277 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
278 	se->type = GET_SIT_TYPE(rs);
279 	se->mtime = le64_to_cpu(rs->mtime);
280 }
281 
282 static inline void seg_info_to_raw_sit(struct seg_entry *se,
283 					struct f2fs_sit_entry *rs)
284 {
285 	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
286 					se->valid_blocks;
287 	rs->vblocks = cpu_to_le16(raw_vblocks);
288 	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
289 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
290 	se->ckpt_valid_blocks = se->valid_blocks;
291 	rs->mtime = cpu_to_le64(se->mtime);
292 }
293 
294 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
295 		unsigned int max, unsigned int segno)
296 {
297 	unsigned int ret;
298 	read_lock(&free_i->segmap_lock);
299 	ret = find_next_bit(free_i->free_segmap, max, segno);
300 	read_unlock(&free_i->segmap_lock);
301 	return ret;
302 }
303 
304 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
305 {
306 	struct free_segmap_info *free_i = FREE_I(sbi);
307 	unsigned int secno = segno / sbi->segs_per_sec;
308 	unsigned int start_segno = secno * sbi->segs_per_sec;
309 	unsigned int next;
310 
311 	write_lock(&free_i->segmap_lock);
312 	clear_bit(segno, free_i->free_segmap);
313 	free_i->free_segments++;
314 
315 	next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno);
316 	if (next >= start_segno + sbi->segs_per_sec) {
317 		clear_bit(secno, free_i->free_secmap);
318 		free_i->free_sections++;
319 	}
320 	write_unlock(&free_i->segmap_lock);
321 }
322 
323 static inline void __set_inuse(struct f2fs_sb_info *sbi,
324 		unsigned int segno)
325 {
326 	struct free_segmap_info *free_i = FREE_I(sbi);
327 	unsigned int secno = segno / sbi->segs_per_sec;
328 	set_bit(segno, free_i->free_segmap);
329 	free_i->free_segments--;
330 	if (!test_and_set_bit(secno, free_i->free_secmap))
331 		free_i->free_sections--;
332 }
333 
334 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
335 		unsigned int segno)
336 {
337 	struct free_segmap_info *free_i = FREE_I(sbi);
338 	unsigned int secno = segno / sbi->segs_per_sec;
339 	unsigned int start_segno = secno * sbi->segs_per_sec;
340 	unsigned int next;
341 
342 	write_lock(&free_i->segmap_lock);
343 	if (test_and_clear_bit(segno, free_i->free_segmap)) {
344 		free_i->free_segments++;
345 
346 		next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi),
347 								start_segno);
348 		if (next >= start_segno + sbi->segs_per_sec) {
349 			if (test_and_clear_bit(secno, free_i->free_secmap))
350 				free_i->free_sections++;
351 		}
352 	}
353 	write_unlock(&free_i->segmap_lock);
354 }
355 
356 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
357 		unsigned int segno)
358 {
359 	struct free_segmap_info *free_i = FREE_I(sbi);
360 	unsigned int secno = segno / sbi->segs_per_sec;
361 	write_lock(&free_i->segmap_lock);
362 	if (!test_and_set_bit(segno, free_i->free_segmap)) {
363 		free_i->free_segments--;
364 		if (!test_and_set_bit(secno, free_i->free_secmap))
365 			free_i->free_sections--;
366 	}
367 	write_unlock(&free_i->segmap_lock);
368 }
369 
370 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
371 		void *dst_addr)
372 {
373 	struct sit_info *sit_i = SIT_I(sbi);
374 	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
375 }
376 
377 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
378 {
379 	struct sit_info *sit_i = SIT_I(sbi);
380 	block_t vblocks;
381 
382 	mutex_lock(&sit_i->sentry_lock);
383 	vblocks = sit_i->written_valid_blocks;
384 	mutex_unlock(&sit_i->sentry_lock);
385 
386 	return vblocks;
387 }
388 
389 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
390 {
391 	struct free_segmap_info *free_i = FREE_I(sbi);
392 	unsigned int free_segs;
393 
394 	read_lock(&free_i->segmap_lock);
395 	free_segs = free_i->free_segments;
396 	read_unlock(&free_i->segmap_lock);
397 
398 	return free_segs;
399 }
400 
401 static inline int reserved_segments(struct f2fs_sb_info *sbi)
402 {
403 	return SM_I(sbi)->reserved_segments;
404 }
405 
406 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
407 {
408 	struct free_segmap_info *free_i = FREE_I(sbi);
409 	unsigned int free_secs;
410 
411 	read_lock(&free_i->segmap_lock);
412 	free_secs = free_i->free_sections;
413 	read_unlock(&free_i->segmap_lock);
414 
415 	return free_secs;
416 }
417 
418 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
419 {
420 	return DIRTY_I(sbi)->nr_dirty[PRE];
421 }
422 
423 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
424 {
425 	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
426 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
427 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
428 		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
429 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
430 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
431 }
432 
433 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
434 {
435 	return SM_I(sbi)->ovp_segments;
436 }
437 
438 static inline int overprovision_sections(struct f2fs_sb_info *sbi)
439 {
440 	return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec;
441 }
442 
443 static inline int reserved_sections(struct f2fs_sb_info *sbi)
444 {
445 	return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec;
446 }
447 
448 static inline bool need_SSR(struct f2fs_sb_info *sbi)
449 {
450 	return (free_sections(sbi) < overprovision_sections(sbi));
451 }
452 
453 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed)
454 {
455 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
456 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
457 
458 	if (sbi->por_doing)
459 		return false;
460 
461 	return ((free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs +
462 						reserved_sections(sbi)));
463 }
464 
465 static inline int utilization(struct f2fs_sb_info *sbi)
466 {
467 	return (long int)valid_user_blocks(sbi) * 100 /
468 			(long int)sbi->user_block_count;
469 }
470 
471 /*
472  * Sometimes f2fs may be better to drop out-of-place update policy.
473  * So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write
474  * data in the original place likewise other traditional file systems.
475  * But, currently set 100 in percentage, which means it is disabled.
476  * See below need_inplace_update().
477  */
478 #define MIN_IPU_UTIL		100
479 static inline bool need_inplace_update(struct inode *inode)
480 {
481 	struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
482 	if (S_ISDIR(inode->i_mode))
483 		return false;
484 	if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL)
485 		return true;
486 	return false;
487 }
488 
489 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
490 		int type)
491 {
492 	struct curseg_info *curseg = CURSEG_I(sbi, type);
493 	return curseg->segno;
494 }
495 
496 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
497 		int type)
498 {
499 	struct curseg_info *curseg = CURSEG_I(sbi, type);
500 	return curseg->alloc_type;
501 }
502 
503 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
504 {
505 	struct curseg_info *curseg = CURSEG_I(sbi, type);
506 	return curseg->next_blkoff;
507 }
508 
509 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
510 {
511 	unsigned int end_segno = SM_I(sbi)->segment_count - 1;
512 	BUG_ON(segno > end_segno);
513 }
514 
515 /*
516  * This function is used for only debugging.
517  * NOTE: In future, we have to remove this function.
518  */
519 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr)
520 {
521 	struct f2fs_sm_info *sm_info = SM_I(sbi);
522 	block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg;
523 	block_t start_addr = sm_info->seg0_blkaddr;
524 	block_t end_addr = start_addr + total_blks - 1;
525 	BUG_ON(blk_addr < start_addr);
526 	BUG_ON(blk_addr > end_addr);
527 }
528 
529 /*
530  * Summary block is always treated as invalid block
531  */
532 static inline void check_block_count(struct f2fs_sb_info *sbi,
533 		int segno, struct f2fs_sit_entry *raw_sit)
534 {
535 	struct f2fs_sm_info *sm_info = SM_I(sbi);
536 	unsigned int end_segno = sm_info->segment_count - 1;
537 	int valid_blocks = 0;
538 	int i;
539 
540 	/* check segment usage */
541 	BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg);
542 
543 	/* check boundary of a given segment number */
544 	BUG_ON(segno > end_segno);
545 
546 	/* check bitmap with valid block count */
547 	for (i = 0; i < sbi->blocks_per_seg; i++)
548 		if (f2fs_test_bit(i, raw_sit->valid_map))
549 			valid_blocks++;
550 	BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks);
551 }
552 
553 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
554 						unsigned int start)
555 {
556 	struct sit_info *sit_i = SIT_I(sbi);
557 	unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start);
558 	block_t blk_addr = sit_i->sit_base_addr + offset;
559 
560 	check_seg_range(sbi, start);
561 
562 	/* calculate sit block address */
563 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
564 		blk_addr += sit_i->sit_blocks;
565 
566 	return blk_addr;
567 }
568 
569 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
570 						pgoff_t block_addr)
571 {
572 	struct sit_info *sit_i = SIT_I(sbi);
573 	block_addr -= sit_i->sit_base_addr;
574 	if (block_addr < sit_i->sit_blocks)
575 		block_addr += sit_i->sit_blocks;
576 	else
577 		block_addr -= sit_i->sit_blocks;
578 
579 	return block_addr + sit_i->sit_base_addr;
580 }
581 
582 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
583 {
584 	unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start);
585 
586 	if (f2fs_test_bit(block_off, sit_i->sit_bitmap))
587 		f2fs_clear_bit(block_off, sit_i->sit_bitmap);
588 	else
589 		f2fs_set_bit(block_off, sit_i->sit_bitmap);
590 }
591 
592 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
593 {
594 	struct sit_info *sit_i = SIT_I(sbi);
595 	return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec -
596 						sit_i->mounted_time;
597 }
598 
599 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
600 			unsigned int ofs_in_node, unsigned char version)
601 {
602 	sum->nid = cpu_to_le32(nid);
603 	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
604 	sum->version = version;
605 }
606 
607 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
608 {
609 	return __start_cp_addr(sbi) +
610 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
611 }
612 
613 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
614 {
615 	return __start_cp_addr(sbi) +
616 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
617 				- (base + 1) + type;
618 }
619