1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * fs/f2fs/segment.h 4 * 5 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 6 * http://www.samsung.com/ 7 */ 8 #include <linux/blkdev.h> 9 #include <linux/backing-dev.h> 10 11 /* constant macro */ 12 #define NULL_SEGNO ((unsigned int)(~0)) 13 #define NULL_SECNO ((unsigned int)(~0)) 14 15 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */ 16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */ 17 18 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */ 19 20 /* L: Logical segment # in volume, R: Relative segment # in main area */ 21 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno) 22 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno) 23 24 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA) 25 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE) 26 27 #define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA) 28 #define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA) 29 #define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA) 30 31 #define IS_CURSEG(sbi, seg) \ 32 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ 33 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ 34 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ 35 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ 36 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ 37 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno)) 38 39 #define IS_CURSEC(sbi, secno) \ 40 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ 41 (sbi)->segs_per_sec) || \ 42 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ 43 (sbi)->segs_per_sec) || \ 44 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ 45 (sbi)->segs_per_sec) || \ 46 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ 47 (sbi)->segs_per_sec) || \ 48 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ 49 (sbi)->segs_per_sec) || \ 50 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ 51 (sbi)->segs_per_sec)) \ 52 53 #define MAIN_BLKADDR(sbi) \ 54 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \ 55 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr)) 56 #define SEG0_BLKADDR(sbi) \ 57 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \ 58 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr)) 59 60 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments) 61 #define MAIN_SECS(sbi) ((sbi)->total_sections) 62 63 #define TOTAL_SEGS(sbi) \ 64 (SM_I(sbi) ? SM_I(sbi)->segment_count : \ 65 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count)) 66 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg) 67 68 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi)) 69 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \ 70 (sbi)->log_blocks_per_seg)) 71 72 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \ 73 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg)) 74 75 #define NEXT_FREE_BLKADDR(sbi, curseg) \ 76 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff) 77 78 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi)) 79 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ 80 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg) 81 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \ 82 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1)) 83 84 #define GET_SEGNO(sbi, blk_addr) \ 85 ((!__is_valid_data_blkaddr(blk_addr)) ? \ 86 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ 87 GET_SEGNO_FROM_SEG0(sbi, blk_addr))) 88 #define BLKS_PER_SEC(sbi) \ 89 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg) 90 #define GET_SEC_FROM_SEG(sbi, segno) \ 91 ((segno) / (sbi)->segs_per_sec) 92 #define GET_SEG_FROM_SEC(sbi, secno) \ 93 ((secno) * (sbi)->segs_per_sec) 94 #define GET_ZONE_FROM_SEC(sbi, secno) \ 95 ((secno) / (sbi)->secs_per_zone) 96 #define GET_ZONE_FROM_SEG(sbi, segno) \ 97 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno)) 98 99 #define GET_SUM_BLOCK(sbi, segno) \ 100 ((sbi)->sm_info->ssa_blkaddr + (segno)) 101 102 #define GET_SUM_TYPE(footer) ((footer)->entry_type) 103 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type)) 104 105 #define SIT_ENTRY_OFFSET(sit_i, segno) \ 106 ((segno) % (sit_i)->sents_per_block) 107 #define SIT_BLOCK_OFFSET(segno) \ 108 ((segno) / SIT_ENTRY_PER_BLOCK) 109 #define START_SEGNO(segno) \ 110 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK) 111 #define SIT_BLK_CNT(sbi) \ 112 DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK) 113 #define f2fs_bitmap_size(nr) \ 114 (BITS_TO_LONGS(nr) * sizeof(unsigned long)) 115 116 #define SECTOR_FROM_BLOCK(blk_addr) \ 117 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK) 118 #define SECTOR_TO_BLOCK(sectors) \ 119 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK) 120 121 /* 122 * indicate a block allocation direction: RIGHT and LEFT. 123 * RIGHT means allocating new sections towards the end of volume. 124 * LEFT means the opposite direction. 125 */ 126 enum { 127 ALLOC_RIGHT = 0, 128 ALLOC_LEFT 129 }; 130 131 /* 132 * In the victim_sel_policy->alloc_mode, there are two block allocation modes. 133 * LFS writes data sequentially with cleaning operations. 134 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. 135 */ 136 enum { 137 LFS = 0, 138 SSR 139 }; 140 141 /* 142 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes. 143 * GC_CB is based on cost-benefit algorithm. 144 * GC_GREEDY is based on greedy algorithm. 145 */ 146 enum { 147 GC_CB = 0, 148 GC_GREEDY, 149 ALLOC_NEXT, 150 FLUSH_DEVICE, 151 MAX_GC_POLICY, 152 }; 153 154 /* 155 * BG_GC means the background cleaning job. 156 * FG_GC means the on-demand cleaning job. 157 * FORCE_FG_GC means on-demand cleaning job in background. 158 */ 159 enum { 160 BG_GC = 0, 161 FG_GC, 162 FORCE_FG_GC, 163 }; 164 165 /* for a function parameter to select a victim segment */ 166 struct victim_sel_policy { 167 int alloc_mode; /* LFS or SSR */ 168 int gc_mode; /* GC_CB or GC_GREEDY */ 169 unsigned long *dirty_bitmap; /* dirty segment/section bitmap */ 170 unsigned int max_search; /* 171 * maximum # of segments/sections 172 * to search 173 */ 174 unsigned int offset; /* last scanned bitmap offset */ 175 unsigned int ofs_unit; /* bitmap search unit */ 176 unsigned int min_cost; /* minimum cost */ 177 unsigned int min_segno; /* segment # having min. cost */ 178 }; 179 180 struct seg_entry { 181 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */ 182 unsigned int valid_blocks:10; /* # of valid blocks */ 183 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */ 184 unsigned int padding:6; /* padding */ 185 unsigned char *cur_valid_map; /* validity bitmap of blocks */ 186 #ifdef CONFIG_F2FS_CHECK_FS 187 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */ 188 #endif 189 /* 190 * # of valid blocks and the validity bitmap stored in the last 191 * checkpoint pack. This information is used by the SSR mode. 192 */ 193 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */ 194 unsigned char *discard_map; 195 unsigned long long mtime; /* modification time of the segment */ 196 }; 197 198 struct sec_entry { 199 unsigned int valid_blocks; /* # of valid blocks in a section */ 200 }; 201 202 struct segment_allocation { 203 void (*allocate_segment)(struct f2fs_sb_info *, int, bool); 204 }; 205 206 #define MAX_SKIP_GC_COUNT 16 207 208 struct inmem_pages { 209 struct list_head list; 210 struct page *page; 211 block_t old_addr; /* for revoking when fail to commit */ 212 }; 213 214 struct sit_info { 215 const struct segment_allocation *s_ops; 216 217 block_t sit_base_addr; /* start block address of SIT area */ 218 block_t sit_blocks; /* # of blocks used by SIT area */ 219 block_t written_valid_blocks; /* # of valid blocks in main area */ 220 char *bitmap; /* all bitmaps pointer */ 221 char *sit_bitmap; /* SIT bitmap pointer */ 222 #ifdef CONFIG_F2FS_CHECK_FS 223 char *sit_bitmap_mir; /* SIT bitmap mirror */ 224 225 /* bitmap of segments to be ignored by GC in case of errors */ 226 unsigned long *invalid_segmap; 227 #endif 228 unsigned int bitmap_size; /* SIT bitmap size */ 229 230 unsigned long *tmp_map; /* bitmap for temporal use */ 231 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ 232 unsigned int dirty_sentries; /* # of dirty sentries */ 233 unsigned int sents_per_block; /* # of SIT entries per block */ 234 struct rw_semaphore sentry_lock; /* to protect SIT cache */ 235 struct seg_entry *sentries; /* SIT segment-level cache */ 236 struct sec_entry *sec_entries; /* SIT section-level cache */ 237 238 /* for cost-benefit algorithm in cleaning procedure */ 239 unsigned long long elapsed_time; /* elapsed time after mount */ 240 unsigned long long mounted_time; /* mount time */ 241 unsigned long long min_mtime; /* min. modification time */ 242 unsigned long long max_mtime; /* max. modification time */ 243 244 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */ 245 }; 246 247 struct free_segmap_info { 248 unsigned int start_segno; /* start segment number logically */ 249 unsigned int free_segments; /* # of free segments */ 250 unsigned int free_sections; /* # of free sections */ 251 spinlock_t segmap_lock; /* free segmap lock */ 252 unsigned long *free_segmap; /* free segment bitmap */ 253 unsigned long *free_secmap; /* free section bitmap */ 254 }; 255 256 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ 257 enum dirty_type { 258 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ 259 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ 260 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ 261 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ 262 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ 263 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ 264 DIRTY, /* to count # of dirty segments */ 265 PRE, /* to count # of entirely obsolete segments */ 266 NR_DIRTY_TYPE 267 }; 268 269 struct dirty_seglist_info { 270 const struct victim_selection *v_ops; /* victim selction operation */ 271 unsigned long *dirty_segmap[NR_DIRTY_TYPE]; 272 unsigned long *dirty_secmap; 273 struct mutex seglist_lock; /* lock for segment bitmaps */ 274 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ 275 unsigned long *victim_secmap; /* background GC victims */ 276 }; 277 278 /* victim selection function for cleaning and SSR */ 279 struct victim_selection { 280 int (*get_victim)(struct f2fs_sb_info *, unsigned int *, 281 int, int, char); 282 }; 283 284 /* for active log information */ 285 struct curseg_info { 286 struct mutex curseg_mutex; /* lock for consistency */ 287 struct f2fs_summary_block *sum_blk; /* cached summary block */ 288 struct rw_semaphore journal_rwsem; /* protect journal area */ 289 struct f2fs_journal *journal; /* cached journal info */ 290 unsigned char alloc_type; /* current allocation type */ 291 unsigned int segno; /* current segment number */ 292 unsigned short next_blkoff; /* next block offset to write */ 293 unsigned int zone; /* current zone number */ 294 unsigned int next_segno; /* preallocated segment */ 295 }; 296 297 struct sit_entry_set { 298 struct list_head set_list; /* link with all sit sets */ 299 unsigned int start_segno; /* start segno of sits in set */ 300 unsigned int entry_cnt; /* the # of sit entries in set */ 301 }; 302 303 /* 304 * inline functions 305 */ 306 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) 307 { 308 if (type == CURSEG_COLD_DATA_PINNED) 309 type = CURSEG_COLD_DATA; 310 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); 311 } 312 313 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, 314 unsigned int segno) 315 { 316 struct sit_info *sit_i = SIT_I(sbi); 317 return &sit_i->sentries[segno]; 318 } 319 320 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, 321 unsigned int segno) 322 { 323 struct sit_info *sit_i = SIT_I(sbi); 324 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)]; 325 } 326 327 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, 328 unsigned int segno, bool use_section) 329 { 330 /* 331 * In order to get # of valid blocks in a section instantly from many 332 * segments, f2fs manages two counting structures separately. 333 */ 334 if (use_section && __is_large_section(sbi)) 335 return get_sec_entry(sbi, segno)->valid_blocks; 336 else 337 return get_seg_entry(sbi, segno)->valid_blocks; 338 } 339 340 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi, 341 unsigned int segno) 342 { 343 return get_seg_entry(sbi, segno)->ckpt_valid_blocks; 344 } 345 346 static inline void seg_info_from_raw_sit(struct seg_entry *se, 347 struct f2fs_sit_entry *rs) 348 { 349 se->valid_blocks = GET_SIT_VBLOCKS(rs); 350 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); 351 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 352 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 353 #ifdef CONFIG_F2FS_CHECK_FS 354 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 355 #endif 356 se->type = GET_SIT_TYPE(rs); 357 se->mtime = le64_to_cpu(rs->mtime); 358 } 359 360 static inline void __seg_info_to_raw_sit(struct seg_entry *se, 361 struct f2fs_sit_entry *rs) 362 { 363 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | 364 se->valid_blocks; 365 rs->vblocks = cpu_to_le16(raw_vblocks); 366 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 367 rs->mtime = cpu_to_le64(se->mtime); 368 } 369 370 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi, 371 struct page *page, unsigned int start) 372 { 373 struct f2fs_sit_block *raw_sit; 374 struct seg_entry *se; 375 struct f2fs_sit_entry *rs; 376 unsigned int end = min(start + SIT_ENTRY_PER_BLOCK, 377 (unsigned long)MAIN_SEGS(sbi)); 378 int i; 379 380 raw_sit = (struct f2fs_sit_block *)page_address(page); 381 memset(raw_sit, 0, PAGE_SIZE); 382 for (i = 0; i < end - start; i++) { 383 rs = &raw_sit->entries[i]; 384 se = get_seg_entry(sbi, start + i); 385 __seg_info_to_raw_sit(se, rs); 386 } 387 } 388 389 static inline void seg_info_to_raw_sit(struct seg_entry *se, 390 struct f2fs_sit_entry *rs) 391 { 392 __seg_info_to_raw_sit(se, rs); 393 394 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 395 se->ckpt_valid_blocks = se->valid_blocks; 396 } 397 398 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, 399 unsigned int max, unsigned int segno) 400 { 401 unsigned int ret; 402 spin_lock(&free_i->segmap_lock); 403 ret = find_next_bit(free_i->free_segmap, max, segno); 404 spin_unlock(&free_i->segmap_lock); 405 return ret; 406 } 407 408 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) 409 { 410 struct free_segmap_info *free_i = FREE_I(sbi); 411 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 412 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 413 unsigned int next; 414 415 spin_lock(&free_i->segmap_lock); 416 clear_bit(segno, free_i->free_segmap); 417 free_i->free_segments++; 418 419 next = find_next_bit(free_i->free_segmap, 420 start_segno + sbi->segs_per_sec, start_segno); 421 if (next >= start_segno + sbi->segs_per_sec) { 422 clear_bit(secno, free_i->free_secmap); 423 free_i->free_sections++; 424 } 425 spin_unlock(&free_i->segmap_lock); 426 } 427 428 static inline void __set_inuse(struct f2fs_sb_info *sbi, 429 unsigned int segno) 430 { 431 struct free_segmap_info *free_i = FREE_I(sbi); 432 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 433 434 set_bit(segno, free_i->free_segmap); 435 free_i->free_segments--; 436 if (!test_and_set_bit(secno, free_i->free_secmap)) 437 free_i->free_sections--; 438 } 439 440 static inline void __set_test_and_free(struct f2fs_sb_info *sbi, 441 unsigned int segno) 442 { 443 struct free_segmap_info *free_i = FREE_I(sbi); 444 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 445 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 446 unsigned int next; 447 448 spin_lock(&free_i->segmap_lock); 449 if (test_and_clear_bit(segno, free_i->free_segmap)) { 450 free_i->free_segments++; 451 452 if (IS_CURSEC(sbi, secno)) 453 goto skip_free; 454 next = find_next_bit(free_i->free_segmap, 455 start_segno + sbi->segs_per_sec, start_segno); 456 if (next >= start_segno + sbi->segs_per_sec) { 457 if (test_and_clear_bit(secno, free_i->free_secmap)) 458 free_i->free_sections++; 459 } 460 } 461 skip_free: 462 spin_unlock(&free_i->segmap_lock); 463 } 464 465 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, 466 unsigned int segno) 467 { 468 struct free_segmap_info *free_i = FREE_I(sbi); 469 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 470 471 spin_lock(&free_i->segmap_lock); 472 if (!test_and_set_bit(segno, free_i->free_segmap)) { 473 free_i->free_segments--; 474 if (!test_and_set_bit(secno, free_i->free_secmap)) 475 free_i->free_sections--; 476 } 477 spin_unlock(&free_i->segmap_lock); 478 } 479 480 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, 481 void *dst_addr) 482 { 483 struct sit_info *sit_i = SIT_I(sbi); 484 485 #ifdef CONFIG_F2FS_CHECK_FS 486 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir, 487 sit_i->bitmap_size)) 488 f2fs_bug_on(sbi, 1); 489 #endif 490 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); 491 } 492 493 static inline block_t written_block_count(struct f2fs_sb_info *sbi) 494 { 495 return SIT_I(sbi)->written_valid_blocks; 496 } 497 498 static inline unsigned int free_segments(struct f2fs_sb_info *sbi) 499 { 500 return FREE_I(sbi)->free_segments; 501 } 502 503 static inline int reserved_segments(struct f2fs_sb_info *sbi) 504 { 505 return SM_I(sbi)->reserved_segments; 506 } 507 508 static inline unsigned int free_sections(struct f2fs_sb_info *sbi) 509 { 510 return FREE_I(sbi)->free_sections; 511 } 512 513 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) 514 { 515 return DIRTY_I(sbi)->nr_dirty[PRE]; 516 } 517 518 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) 519 { 520 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + 521 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + 522 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + 523 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + 524 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + 525 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; 526 } 527 528 static inline int overprovision_segments(struct f2fs_sb_info *sbi) 529 { 530 return SM_I(sbi)->ovp_segments; 531 } 532 533 static inline int reserved_sections(struct f2fs_sb_info *sbi) 534 { 535 return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi)); 536 } 537 538 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi) 539 { 540 unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) + 541 get_pages(sbi, F2FS_DIRTY_DENTS); 542 unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS); 543 unsigned int segno, left_blocks; 544 int i; 545 546 /* check current node segment */ 547 for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) { 548 segno = CURSEG_I(sbi, i)->segno; 549 left_blocks = sbi->blocks_per_seg - 550 get_seg_entry(sbi, segno)->ckpt_valid_blocks; 551 552 if (node_blocks > left_blocks) 553 return false; 554 } 555 556 /* check current data segment */ 557 segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno; 558 left_blocks = sbi->blocks_per_seg - 559 get_seg_entry(sbi, segno)->ckpt_valid_blocks; 560 if (dent_blocks > left_blocks) 561 return false; 562 return true; 563 } 564 565 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, 566 int freed, int needed) 567 { 568 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 569 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 570 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 571 572 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 573 return false; 574 575 if (free_sections(sbi) + freed == reserved_sections(sbi) + needed && 576 has_curseg_enough_space(sbi)) 577 return false; 578 return (free_sections(sbi) + freed) <= 579 (node_secs + 2 * dent_secs + imeta_secs + 580 reserved_sections(sbi) + needed); 581 } 582 583 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi) 584 { 585 if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED))) 586 return true; 587 if (likely(!has_not_enough_free_secs(sbi, 0, 0))) 588 return true; 589 return false; 590 } 591 592 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) 593 { 594 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; 595 } 596 597 static inline int utilization(struct f2fs_sb_info *sbi) 598 { 599 return div_u64((u64)valid_user_blocks(sbi) * 100, 600 sbi->user_block_count); 601 } 602 603 /* 604 * Sometimes f2fs may be better to drop out-of-place update policy. 605 * And, users can control the policy through sysfs entries. 606 * There are five policies with triggering conditions as follows. 607 * F2FS_IPU_FORCE - all the time, 608 * F2FS_IPU_SSR - if SSR mode is activated, 609 * F2FS_IPU_UTIL - if FS utilization is over threashold, 610 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over 611 * threashold, 612 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash 613 * storages. IPU will be triggered only if the # of dirty 614 * pages over min_fsync_blocks. (=default option) 615 * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests. 616 * F2FS_IPU_NOCACHE - disable IPU bio cache. 617 * F2FS_IPUT_DISABLE - disable IPU. (=default option in LFS mode) 618 */ 619 #define DEF_MIN_IPU_UTIL 70 620 #define DEF_MIN_FSYNC_BLOCKS 8 621 #define DEF_MIN_HOT_BLOCKS 16 622 623 #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */ 624 625 enum { 626 F2FS_IPU_FORCE, 627 F2FS_IPU_SSR, 628 F2FS_IPU_UTIL, 629 F2FS_IPU_SSR_UTIL, 630 F2FS_IPU_FSYNC, 631 F2FS_IPU_ASYNC, 632 F2FS_IPU_NOCACHE, 633 }; 634 635 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, 636 int type) 637 { 638 struct curseg_info *curseg = CURSEG_I(sbi, type); 639 return curseg->segno; 640 } 641 642 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, 643 int type) 644 { 645 struct curseg_info *curseg = CURSEG_I(sbi, type); 646 return curseg->alloc_type; 647 } 648 649 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) 650 { 651 struct curseg_info *curseg = CURSEG_I(sbi, type); 652 return curseg->next_blkoff; 653 } 654 655 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) 656 { 657 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1); 658 } 659 660 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio) 661 { 662 struct f2fs_sb_info *sbi = fio->sbi; 663 664 if (__is_valid_data_blkaddr(fio->old_blkaddr)) 665 verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ? 666 META_GENERIC : DATA_GENERIC); 667 verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ? 668 META_GENERIC : DATA_GENERIC_ENHANCE); 669 } 670 671 /* 672 * Summary block is always treated as an invalid block 673 */ 674 static inline int check_block_count(struct f2fs_sb_info *sbi, 675 int segno, struct f2fs_sit_entry *raw_sit) 676 { 677 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; 678 int valid_blocks = 0; 679 int cur_pos = 0, next_pos; 680 681 /* check bitmap with valid block count */ 682 do { 683 if (is_valid) { 684 next_pos = find_next_zero_bit_le(&raw_sit->valid_map, 685 sbi->blocks_per_seg, 686 cur_pos); 687 valid_blocks += next_pos - cur_pos; 688 } else 689 next_pos = find_next_bit_le(&raw_sit->valid_map, 690 sbi->blocks_per_seg, 691 cur_pos); 692 cur_pos = next_pos; 693 is_valid = !is_valid; 694 } while (cur_pos < sbi->blocks_per_seg); 695 696 if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) { 697 f2fs_err(sbi, "Mismatch valid blocks %d vs. %d", 698 GET_SIT_VBLOCKS(raw_sit), valid_blocks); 699 set_sbi_flag(sbi, SBI_NEED_FSCK); 700 return -EFSCORRUPTED; 701 } 702 703 /* check segment usage, and check boundary of a given segment number */ 704 if (unlikely(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg 705 || segno > TOTAL_SEGS(sbi) - 1)) { 706 f2fs_err(sbi, "Wrong valid blocks %d or segno %u", 707 GET_SIT_VBLOCKS(raw_sit), segno); 708 set_sbi_flag(sbi, SBI_NEED_FSCK); 709 return -EFSCORRUPTED; 710 } 711 return 0; 712 } 713 714 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, 715 unsigned int start) 716 { 717 struct sit_info *sit_i = SIT_I(sbi); 718 unsigned int offset = SIT_BLOCK_OFFSET(start); 719 block_t blk_addr = sit_i->sit_base_addr + offset; 720 721 check_seg_range(sbi, start); 722 723 #ifdef CONFIG_F2FS_CHECK_FS 724 if (f2fs_test_bit(offset, sit_i->sit_bitmap) != 725 f2fs_test_bit(offset, sit_i->sit_bitmap_mir)) 726 f2fs_bug_on(sbi, 1); 727 #endif 728 729 /* calculate sit block address */ 730 if (f2fs_test_bit(offset, sit_i->sit_bitmap)) 731 blk_addr += sit_i->sit_blocks; 732 733 return blk_addr; 734 } 735 736 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, 737 pgoff_t block_addr) 738 { 739 struct sit_info *sit_i = SIT_I(sbi); 740 block_addr -= sit_i->sit_base_addr; 741 if (block_addr < sit_i->sit_blocks) 742 block_addr += sit_i->sit_blocks; 743 else 744 block_addr -= sit_i->sit_blocks; 745 746 return block_addr + sit_i->sit_base_addr; 747 } 748 749 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) 750 { 751 unsigned int block_off = SIT_BLOCK_OFFSET(start); 752 753 f2fs_change_bit(block_off, sit_i->sit_bitmap); 754 #ifdef CONFIG_F2FS_CHECK_FS 755 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir); 756 #endif 757 } 758 759 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi, 760 bool base_time) 761 { 762 struct sit_info *sit_i = SIT_I(sbi); 763 time64_t diff, now = ktime_get_boottime_seconds(); 764 765 if (now >= sit_i->mounted_time) 766 return sit_i->elapsed_time + now - sit_i->mounted_time; 767 768 /* system time is set to the past */ 769 if (!base_time) { 770 diff = sit_i->mounted_time - now; 771 if (sit_i->elapsed_time >= diff) 772 return sit_i->elapsed_time - diff; 773 return 0; 774 } 775 return sit_i->elapsed_time; 776 } 777 778 static inline void set_summary(struct f2fs_summary *sum, nid_t nid, 779 unsigned int ofs_in_node, unsigned char version) 780 { 781 sum->nid = cpu_to_le32(nid); 782 sum->ofs_in_node = cpu_to_le16(ofs_in_node); 783 sum->version = version; 784 } 785 786 static inline block_t start_sum_block(struct f2fs_sb_info *sbi) 787 { 788 return __start_cp_addr(sbi) + 789 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 790 } 791 792 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) 793 { 794 return __start_cp_addr(sbi) + 795 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) 796 - (base + 1) + type; 797 } 798 799 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) 800 { 801 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) 802 return true; 803 return false; 804 } 805 806 /* 807 * It is very important to gather dirty pages and write at once, so that we can 808 * submit a big bio without interfering other data writes. 809 * By default, 512 pages for directory data, 810 * 512 pages (2MB) * 8 for nodes, and 811 * 256 pages * 8 for meta are set. 812 */ 813 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type) 814 { 815 if (sbi->sb->s_bdi->wb.dirty_exceeded) 816 return 0; 817 818 if (type == DATA) 819 return sbi->blocks_per_seg; 820 else if (type == NODE) 821 return 8 * sbi->blocks_per_seg; 822 else if (type == META) 823 return 8 * BIO_MAX_PAGES; 824 else 825 return 0; 826 } 827 828 /* 829 * When writing pages, it'd better align nr_to_write for segment size. 830 */ 831 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type, 832 struct writeback_control *wbc) 833 { 834 long nr_to_write, desired; 835 836 if (wbc->sync_mode != WB_SYNC_NONE) 837 return 0; 838 839 nr_to_write = wbc->nr_to_write; 840 desired = BIO_MAX_PAGES; 841 if (type == NODE) 842 desired <<= 1; 843 844 wbc->nr_to_write = desired; 845 return desired - nr_to_write; 846 } 847 848 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force) 849 { 850 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 851 bool wakeup = false; 852 int i; 853 854 if (force) 855 goto wake_up; 856 857 mutex_lock(&dcc->cmd_lock); 858 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 859 if (i + 1 < dcc->discard_granularity) 860 break; 861 if (!list_empty(&dcc->pend_list[i])) { 862 wakeup = true; 863 break; 864 } 865 } 866 mutex_unlock(&dcc->cmd_lock); 867 if (!wakeup || !is_idle(sbi, DISCARD_TIME)) 868 return; 869 wake_up: 870 dcc->discard_wake = 1; 871 wake_up_interruptible_all(&dcc->discard_wait_queue); 872 } 873