xref: /openbmc/linux/fs/f2fs/segment.h (revision 8631f940b81bf0da3d375fce166d381fa8c47bb2)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * fs/f2fs/segment.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10 
11 /* constant macro */
12 #define NULL_SEGNO			((unsigned int)(~0))
13 #define NULL_SECNO			((unsigned int)(~0))
14 
15 #define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
17 
18 #define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19 
20 /* L: Logical segment # in volume, R: Relative segment # in main area */
21 #define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
22 #define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
23 
24 #define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
25 #define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE)
26 
27 #define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
28 #define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
29 #define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
30 
31 #define IS_CURSEG(sbi, seg)						\
32 	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
33 	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
34 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
35 	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
36 	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
37 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
38 
39 #define IS_CURSEC(sbi, secno)						\
40 	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
41 	  (sbi)->segs_per_sec) ||	\
42 	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
43 	  (sbi)->segs_per_sec) ||	\
44 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
45 	  (sbi)->segs_per_sec) ||	\
46 	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
47 	  (sbi)->segs_per_sec) ||	\
48 	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
49 	  (sbi)->segs_per_sec) ||	\
50 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
51 	  (sbi)->segs_per_sec))	\
52 
53 #define MAIN_BLKADDR(sbi)						\
54 	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
55 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
56 #define SEG0_BLKADDR(sbi)						\
57 	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
58 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
59 
60 #define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
61 #define MAIN_SECS(sbi)	((sbi)->total_sections)
62 
63 #define TOTAL_SEGS(sbi)							\
64 	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
65 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
66 #define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
67 
68 #define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
69 #define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
70 					(sbi)->log_blocks_per_seg))
71 
72 #define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
73 	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
74 
75 #define NEXT_FREE_BLKADDR(sbi, curseg)					\
76 	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
77 
78 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
79 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
80 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
81 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
82 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
83 
84 #define GET_SEGNO(sbi, blk_addr)					\
85 	((!is_valid_data_blkaddr(sbi, blk_addr)) ?			\
86 	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
87 		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
88 #define BLKS_PER_SEC(sbi)					\
89 	((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
90 #define GET_SEC_FROM_SEG(sbi, segno)				\
91 	((segno) / (sbi)->segs_per_sec)
92 #define GET_SEG_FROM_SEC(sbi, secno)				\
93 	((secno) * (sbi)->segs_per_sec)
94 #define GET_ZONE_FROM_SEC(sbi, secno)				\
95 	((secno) / (sbi)->secs_per_zone)
96 #define GET_ZONE_FROM_SEG(sbi, segno)				\
97 	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
98 
99 #define GET_SUM_BLOCK(sbi, segno)				\
100 	((sbi)->sm_info->ssa_blkaddr + (segno))
101 
102 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
103 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
104 
105 #define SIT_ENTRY_OFFSET(sit_i, segno)					\
106 	((segno) % (sit_i)->sents_per_block)
107 #define SIT_BLOCK_OFFSET(segno)					\
108 	((segno) / SIT_ENTRY_PER_BLOCK)
109 #define	START_SEGNO(segno)		\
110 	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
111 #define SIT_BLK_CNT(sbi)			\
112 	((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
113 #define f2fs_bitmap_size(nr)			\
114 	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
115 
116 #define SECTOR_FROM_BLOCK(blk_addr)					\
117 	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
118 #define SECTOR_TO_BLOCK(sectors)					\
119 	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
120 
121 /*
122  * indicate a block allocation direction: RIGHT and LEFT.
123  * RIGHT means allocating new sections towards the end of volume.
124  * LEFT means the opposite direction.
125  */
126 enum {
127 	ALLOC_RIGHT = 0,
128 	ALLOC_LEFT
129 };
130 
131 /*
132  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
133  * LFS writes data sequentially with cleaning operations.
134  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
135  */
136 enum {
137 	LFS = 0,
138 	SSR
139 };
140 
141 /*
142  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
143  * GC_CB is based on cost-benefit algorithm.
144  * GC_GREEDY is based on greedy algorithm.
145  */
146 enum {
147 	GC_CB = 0,
148 	GC_GREEDY,
149 	ALLOC_NEXT,
150 	FLUSH_DEVICE,
151 	MAX_GC_POLICY,
152 };
153 
154 /*
155  * BG_GC means the background cleaning job.
156  * FG_GC means the on-demand cleaning job.
157  * FORCE_FG_GC means on-demand cleaning job in background.
158  */
159 enum {
160 	BG_GC = 0,
161 	FG_GC,
162 	FORCE_FG_GC,
163 };
164 
165 /* for a function parameter to select a victim segment */
166 struct victim_sel_policy {
167 	int alloc_mode;			/* LFS or SSR */
168 	int gc_mode;			/* GC_CB or GC_GREEDY */
169 	unsigned long *dirty_segmap;	/* dirty segment bitmap */
170 	unsigned int max_search;	/* maximum # of segments to search */
171 	unsigned int offset;		/* last scanned bitmap offset */
172 	unsigned int ofs_unit;		/* bitmap search unit */
173 	unsigned int min_cost;		/* minimum cost */
174 	unsigned int min_segno;		/* segment # having min. cost */
175 };
176 
177 struct seg_entry {
178 	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
179 	unsigned int valid_blocks:10;	/* # of valid blocks */
180 	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
181 	unsigned int padding:6;		/* padding */
182 	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
183 #ifdef CONFIG_F2FS_CHECK_FS
184 	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
185 #endif
186 	/*
187 	 * # of valid blocks and the validity bitmap stored in the the last
188 	 * checkpoint pack. This information is used by the SSR mode.
189 	 */
190 	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
191 	unsigned char *discard_map;
192 	unsigned long long mtime;	/* modification time of the segment */
193 };
194 
195 struct sec_entry {
196 	unsigned int valid_blocks;	/* # of valid blocks in a section */
197 };
198 
199 struct segment_allocation {
200 	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
201 };
202 
203 /*
204  * this value is set in page as a private data which indicate that
205  * the page is atomically written, and it is in inmem_pages list.
206  */
207 #define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
208 #define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
209 
210 #define IS_ATOMIC_WRITTEN_PAGE(page)			\
211 		(page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
212 #define IS_DUMMY_WRITTEN_PAGE(page)			\
213 		(page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
214 
215 #define MAX_SKIP_GC_COUNT			16
216 
217 struct inmem_pages {
218 	struct list_head list;
219 	struct page *page;
220 	block_t old_addr;		/* for revoking when fail to commit */
221 };
222 
223 struct sit_info {
224 	const struct segment_allocation *s_ops;
225 
226 	block_t sit_base_addr;		/* start block address of SIT area */
227 	block_t sit_blocks;		/* # of blocks used by SIT area */
228 	block_t written_valid_blocks;	/* # of valid blocks in main area */
229 	char *sit_bitmap;		/* SIT bitmap pointer */
230 #ifdef CONFIG_F2FS_CHECK_FS
231 	char *sit_bitmap_mir;		/* SIT bitmap mirror */
232 #endif
233 	unsigned int bitmap_size;	/* SIT bitmap size */
234 
235 	unsigned long *tmp_map;			/* bitmap for temporal use */
236 	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
237 	unsigned int dirty_sentries;		/* # of dirty sentries */
238 	unsigned int sents_per_block;		/* # of SIT entries per block */
239 	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
240 	struct seg_entry *sentries;		/* SIT segment-level cache */
241 	struct sec_entry *sec_entries;		/* SIT section-level cache */
242 
243 	/* for cost-benefit algorithm in cleaning procedure */
244 	unsigned long long elapsed_time;	/* elapsed time after mount */
245 	unsigned long long mounted_time;	/* mount time */
246 	unsigned long long min_mtime;		/* min. modification time */
247 	unsigned long long max_mtime;		/* max. modification time */
248 
249 	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
250 };
251 
252 struct free_segmap_info {
253 	unsigned int start_segno;	/* start segment number logically */
254 	unsigned int free_segments;	/* # of free segments */
255 	unsigned int free_sections;	/* # of free sections */
256 	spinlock_t segmap_lock;		/* free segmap lock */
257 	unsigned long *free_segmap;	/* free segment bitmap */
258 	unsigned long *free_secmap;	/* free section bitmap */
259 };
260 
261 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
262 enum dirty_type {
263 	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
264 	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
265 	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
266 	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
267 	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
268 	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
269 	DIRTY,			/* to count # of dirty segments */
270 	PRE,			/* to count # of entirely obsolete segments */
271 	NR_DIRTY_TYPE
272 };
273 
274 struct dirty_seglist_info {
275 	const struct victim_selection *v_ops;	/* victim selction operation */
276 	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
277 	struct mutex seglist_lock;		/* lock for segment bitmaps */
278 	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
279 	unsigned long *victim_secmap;		/* background GC victims */
280 };
281 
282 /* victim selection function for cleaning and SSR */
283 struct victim_selection {
284 	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
285 							int, int, char);
286 };
287 
288 /* for active log information */
289 struct curseg_info {
290 	struct mutex curseg_mutex;		/* lock for consistency */
291 	struct f2fs_summary_block *sum_blk;	/* cached summary block */
292 	struct rw_semaphore journal_rwsem;	/* protect journal area */
293 	struct f2fs_journal *journal;		/* cached journal info */
294 	unsigned char alloc_type;		/* current allocation type */
295 	unsigned int segno;			/* current segment number */
296 	unsigned short next_blkoff;		/* next block offset to write */
297 	unsigned int zone;			/* current zone number */
298 	unsigned int next_segno;		/* preallocated segment */
299 };
300 
301 struct sit_entry_set {
302 	struct list_head set_list;	/* link with all sit sets */
303 	unsigned int start_segno;	/* start segno of sits in set */
304 	unsigned int entry_cnt;		/* the # of sit entries in set */
305 };
306 
307 /*
308  * inline functions
309  */
310 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
311 {
312 	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
313 }
314 
315 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
316 						unsigned int segno)
317 {
318 	struct sit_info *sit_i = SIT_I(sbi);
319 	return &sit_i->sentries[segno];
320 }
321 
322 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
323 						unsigned int segno)
324 {
325 	struct sit_info *sit_i = SIT_I(sbi);
326 	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
327 }
328 
329 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
330 				unsigned int segno, bool use_section)
331 {
332 	/*
333 	 * In order to get # of valid blocks in a section instantly from many
334 	 * segments, f2fs manages two counting structures separately.
335 	 */
336 	if (use_section && __is_large_section(sbi))
337 		return get_sec_entry(sbi, segno)->valid_blocks;
338 	else
339 		return get_seg_entry(sbi, segno)->valid_blocks;
340 }
341 
342 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
343 				unsigned int segno)
344 {
345 	return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
346 }
347 
348 static inline void seg_info_from_raw_sit(struct seg_entry *se,
349 					struct f2fs_sit_entry *rs)
350 {
351 	se->valid_blocks = GET_SIT_VBLOCKS(rs);
352 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
353 	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
354 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
355 #ifdef CONFIG_F2FS_CHECK_FS
356 	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
357 #endif
358 	se->type = GET_SIT_TYPE(rs);
359 	se->mtime = le64_to_cpu(rs->mtime);
360 }
361 
362 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
363 					struct f2fs_sit_entry *rs)
364 {
365 	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
366 					se->valid_blocks;
367 	rs->vblocks = cpu_to_le16(raw_vblocks);
368 	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
369 	rs->mtime = cpu_to_le64(se->mtime);
370 }
371 
372 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
373 				struct page *page, unsigned int start)
374 {
375 	struct f2fs_sit_block *raw_sit;
376 	struct seg_entry *se;
377 	struct f2fs_sit_entry *rs;
378 	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
379 					(unsigned long)MAIN_SEGS(sbi));
380 	int i;
381 
382 	raw_sit = (struct f2fs_sit_block *)page_address(page);
383 	memset(raw_sit, 0, PAGE_SIZE);
384 	for (i = 0; i < end - start; i++) {
385 		rs = &raw_sit->entries[i];
386 		se = get_seg_entry(sbi, start + i);
387 		__seg_info_to_raw_sit(se, rs);
388 	}
389 }
390 
391 static inline void seg_info_to_raw_sit(struct seg_entry *se,
392 					struct f2fs_sit_entry *rs)
393 {
394 	__seg_info_to_raw_sit(se, rs);
395 
396 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
397 	se->ckpt_valid_blocks = se->valid_blocks;
398 }
399 
400 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
401 		unsigned int max, unsigned int segno)
402 {
403 	unsigned int ret;
404 	spin_lock(&free_i->segmap_lock);
405 	ret = find_next_bit(free_i->free_segmap, max, segno);
406 	spin_unlock(&free_i->segmap_lock);
407 	return ret;
408 }
409 
410 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
411 {
412 	struct free_segmap_info *free_i = FREE_I(sbi);
413 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
414 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
415 	unsigned int next;
416 
417 	spin_lock(&free_i->segmap_lock);
418 	clear_bit(segno, free_i->free_segmap);
419 	free_i->free_segments++;
420 
421 	next = find_next_bit(free_i->free_segmap,
422 			start_segno + sbi->segs_per_sec, start_segno);
423 	if (next >= start_segno + sbi->segs_per_sec) {
424 		clear_bit(secno, free_i->free_secmap);
425 		free_i->free_sections++;
426 	}
427 	spin_unlock(&free_i->segmap_lock);
428 }
429 
430 static inline void __set_inuse(struct f2fs_sb_info *sbi,
431 		unsigned int segno)
432 {
433 	struct free_segmap_info *free_i = FREE_I(sbi);
434 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
435 
436 	set_bit(segno, free_i->free_segmap);
437 	free_i->free_segments--;
438 	if (!test_and_set_bit(secno, free_i->free_secmap))
439 		free_i->free_sections--;
440 }
441 
442 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
443 		unsigned int segno)
444 {
445 	struct free_segmap_info *free_i = FREE_I(sbi);
446 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
447 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
448 	unsigned int next;
449 
450 	spin_lock(&free_i->segmap_lock);
451 	if (test_and_clear_bit(segno, free_i->free_segmap)) {
452 		free_i->free_segments++;
453 
454 		if (IS_CURSEC(sbi, secno))
455 			goto skip_free;
456 		next = find_next_bit(free_i->free_segmap,
457 				start_segno + sbi->segs_per_sec, start_segno);
458 		if (next >= start_segno + sbi->segs_per_sec) {
459 			if (test_and_clear_bit(secno, free_i->free_secmap))
460 				free_i->free_sections++;
461 		}
462 	}
463 skip_free:
464 	spin_unlock(&free_i->segmap_lock);
465 }
466 
467 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
468 		unsigned int segno)
469 {
470 	struct free_segmap_info *free_i = FREE_I(sbi);
471 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
472 
473 	spin_lock(&free_i->segmap_lock);
474 	if (!test_and_set_bit(segno, free_i->free_segmap)) {
475 		free_i->free_segments--;
476 		if (!test_and_set_bit(secno, free_i->free_secmap))
477 			free_i->free_sections--;
478 	}
479 	spin_unlock(&free_i->segmap_lock);
480 }
481 
482 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
483 		void *dst_addr)
484 {
485 	struct sit_info *sit_i = SIT_I(sbi);
486 
487 #ifdef CONFIG_F2FS_CHECK_FS
488 	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
489 						sit_i->bitmap_size))
490 		f2fs_bug_on(sbi, 1);
491 #endif
492 	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
493 }
494 
495 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
496 {
497 	return SIT_I(sbi)->written_valid_blocks;
498 }
499 
500 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
501 {
502 	return FREE_I(sbi)->free_segments;
503 }
504 
505 static inline int reserved_segments(struct f2fs_sb_info *sbi)
506 {
507 	return SM_I(sbi)->reserved_segments;
508 }
509 
510 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
511 {
512 	return FREE_I(sbi)->free_sections;
513 }
514 
515 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
516 {
517 	return DIRTY_I(sbi)->nr_dirty[PRE];
518 }
519 
520 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
521 {
522 	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
523 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
524 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
525 		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
526 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
527 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
528 }
529 
530 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
531 {
532 	return SM_I(sbi)->ovp_segments;
533 }
534 
535 static inline int reserved_sections(struct f2fs_sb_info *sbi)
536 {
537 	return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi));
538 }
539 
540 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
541 {
542 	unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
543 					get_pages(sbi, F2FS_DIRTY_DENTS);
544 	unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
545 	unsigned int segno, left_blocks;
546 	int i;
547 
548 	/* check current node segment */
549 	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
550 		segno = CURSEG_I(sbi, i)->segno;
551 		left_blocks = sbi->blocks_per_seg -
552 			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
553 
554 		if (node_blocks > left_blocks)
555 			return false;
556 	}
557 
558 	/* check current data segment */
559 	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
560 	left_blocks = sbi->blocks_per_seg -
561 			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
562 	if (dent_blocks > left_blocks)
563 		return false;
564 	return true;
565 }
566 
567 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
568 					int freed, int needed)
569 {
570 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
571 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
572 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
573 
574 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
575 		return false;
576 
577 	if (free_sections(sbi) + freed == reserved_sections(sbi) + needed &&
578 			has_curseg_enough_space(sbi))
579 		return false;
580 	return (free_sections(sbi) + freed) <=
581 		(node_secs + 2 * dent_secs + imeta_secs +
582 		reserved_sections(sbi) + needed);
583 }
584 
585 static inline int f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
586 {
587 	if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
588 		return 0;
589 	if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
590 		return 0;
591 	return -ENOSPC;
592 }
593 
594 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
595 {
596 	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
597 }
598 
599 static inline int utilization(struct f2fs_sb_info *sbi)
600 {
601 	return div_u64((u64)valid_user_blocks(sbi) * 100,
602 					sbi->user_block_count);
603 }
604 
605 /*
606  * Sometimes f2fs may be better to drop out-of-place update policy.
607  * And, users can control the policy through sysfs entries.
608  * There are five policies with triggering conditions as follows.
609  * F2FS_IPU_FORCE - all the time,
610  * F2FS_IPU_SSR - if SSR mode is activated,
611  * F2FS_IPU_UTIL - if FS utilization is over threashold,
612  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
613  *                     threashold,
614  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
615  *                     storages. IPU will be triggered only if the # of dirty
616  *                     pages over min_fsync_blocks.
617  * F2FS_IPUT_DISABLE - disable IPU. (=default option)
618  */
619 #define DEF_MIN_IPU_UTIL	70
620 #define DEF_MIN_FSYNC_BLOCKS	8
621 #define DEF_MIN_HOT_BLOCKS	16
622 
623 #define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
624 
625 enum {
626 	F2FS_IPU_FORCE,
627 	F2FS_IPU_SSR,
628 	F2FS_IPU_UTIL,
629 	F2FS_IPU_SSR_UTIL,
630 	F2FS_IPU_FSYNC,
631 	F2FS_IPU_ASYNC,
632 };
633 
634 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
635 		int type)
636 {
637 	struct curseg_info *curseg = CURSEG_I(sbi, type);
638 	return curseg->segno;
639 }
640 
641 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
642 		int type)
643 {
644 	struct curseg_info *curseg = CURSEG_I(sbi, type);
645 	return curseg->alloc_type;
646 }
647 
648 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
649 {
650 	struct curseg_info *curseg = CURSEG_I(sbi, type);
651 	return curseg->next_blkoff;
652 }
653 
654 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
655 {
656 	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
657 }
658 
659 static inline void verify_block_addr(struct f2fs_io_info *fio, block_t blk_addr)
660 {
661 	struct f2fs_sb_info *sbi = fio->sbi;
662 
663 	if (__is_meta_io(fio))
664 		verify_blkaddr(sbi, blk_addr, META_GENERIC);
665 	else
666 		verify_blkaddr(sbi, blk_addr, DATA_GENERIC);
667 }
668 
669 /*
670  * Summary block is always treated as an invalid block
671  */
672 static inline int check_block_count(struct f2fs_sb_info *sbi,
673 		int segno, struct f2fs_sit_entry *raw_sit)
674 {
675 #ifdef CONFIG_F2FS_CHECK_FS
676 	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
677 	int valid_blocks = 0;
678 	int cur_pos = 0, next_pos;
679 
680 	/* check bitmap with valid block count */
681 	do {
682 		if (is_valid) {
683 			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
684 					sbi->blocks_per_seg,
685 					cur_pos);
686 			valid_blocks += next_pos - cur_pos;
687 		} else
688 			next_pos = find_next_bit_le(&raw_sit->valid_map,
689 					sbi->blocks_per_seg,
690 					cur_pos);
691 		cur_pos = next_pos;
692 		is_valid = !is_valid;
693 	} while (cur_pos < sbi->blocks_per_seg);
694 
695 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
696 		f2fs_msg(sbi->sb, KERN_ERR,
697 				"Mismatch valid blocks %d vs. %d",
698 					GET_SIT_VBLOCKS(raw_sit), valid_blocks);
699 		set_sbi_flag(sbi, SBI_NEED_FSCK);
700 		return -EINVAL;
701 	}
702 #endif
703 	/* check segment usage, and check boundary of a given segment number */
704 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
705 					|| segno > TOTAL_SEGS(sbi) - 1)) {
706 		f2fs_msg(sbi->sb, KERN_ERR,
707 				"Wrong valid blocks %d or segno %u",
708 					GET_SIT_VBLOCKS(raw_sit), segno);
709 		set_sbi_flag(sbi, SBI_NEED_FSCK);
710 		return -EINVAL;
711 	}
712 	return 0;
713 }
714 
715 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
716 						unsigned int start)
717 {
718 	struct sit_info *sit_i = SIT_I(sbi);
719 	unsigned int offset = SIT_BLOCK_OFFSET(start);
720 	block_t blk_addr = sit_i->sit_base_addr + offset;
721 
722 	check_seg_range(sbi, start);
723 
724 #ifdef CONFIG_F2FS_CHECK_FS
725 	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
726 			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
727 		f2fs_bug_on(sbi, 1);
728 #endif
729 
730 	/* calculate sit block address */
731 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
732 		blk_addr += sit_i->sit_blocks;
733 
734 	return blk_addr;
735 }
736 
737 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
738 						pgoff_t block_addr)
739 {
740 	struct sit_info *sit_i = SIT_I(sbi);
741 	block_addr -= sit_i->sit_base_addr;
742 	if (block_addr < sit_i->sit_blocks)
743 		block_addr += sit_i->sit_blocks;
744 	else
745 		block_addr -= sit_i->sit_blocks;
746 
747 	return block_addr + sit_i->sit_base_addr;
748 }
749 
750 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
751 {
752 	unsigned int block_off = SIT_BLOCK_OFFSET(start);
753 
754 	f2fs_change_bit(block_off, sit_i->sit_bitmap);
755 #ifdef CONFIG_F2FS_CHECK_FS
756 	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
757 #endif
758 }
759 
760 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
761 						bool base_time)
762 {
763 	struct sit_info *sit_i = SIT_I(sbi);
764 	time64_t diff, now = ktime_get_real_seconds();
765 
766 	if (now >= sit_i->mounted_time)
767 		return sit_i->elapsed_time + now - sit_i->mounted_time;
768 
769 	/* system time is set to the past */
770 	if (!base_time) {
771 		diff = sit_i->mounted_time - now;
772 		if (sit_i->elapsed_time >= diff)
773 			return sit_i->elapsed_time - diff;
774 		return 0;
775 	}
776 	return sit_i->elapsed_time;
777 }
778 
779 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
780 			unsigned int ofs_in_node, unsigned char version)
781 {
782 	sum->nid = cpu_to_le32(nid);
783 	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
784 	sum->version = version;
785 }
786 
787 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
788 {
789 	return __start_cp_addr(sbi) +
790 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
791 }
792 
793 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
794 {
795 	return __start_cp_addr(sbi) +
796 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
797 				- (base + 1) + type;
798 }
799 
800 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
801 {
802 	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
803 		return true;
804 	return false;
805 }
806 
807 /*
808  * It is very important to gather dirty pages and write at once, so that we can
809  * submit a big bio without interfering other data writes.
810  * By default, 512 pages for directory data,
811  * 512 pages (2MB) * 8 for nodes, and
812  * 256 pages * 8 for meta are set.
813  */
814 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
815 {
816 	if (sbi->sb->s_bdi->wb.dirty_exceeded)
817 		return 0;
818 
819 	if (type == DATA)
820 		return sbi->blocks_per_seg;
821 	else if (type == NODE)
822 		return 8 * sbi->blocks_per_seg;
823 	else if (type == META)
824 		return 8 * BIO_MAX_PAGES;
825 	else
826 		return 0;
827 }
828 
829 /*
830  * When writing pages, it'd better align nr_to_write for segment size.
831  */
832 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
833 					struct writeback_control *wbc)
834 {
835 	long nr_to_write, desired;
836 
837 	if (wbc->sync_mode != WB_SYNC_NONE)
838 		return 0;
839 
840 	nr_to_write = wbc->nr_to_write;
841 	desired = BIO_MAX_PAGES;
842 	if (type == NODE)
843 		desired <<= 1;
844 
845 	wbc->nr_to_write = desired;
846 	return desired - nr_to_write;
847 }
848 
849 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
850 {
851 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
852 	bool wakeup = false;
853 	int i;
854 
855 	if (force)
856 		goto wake_up;
857 
858 	mutex_lock(&dcc->cmd_lock);
859 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
860 		if (i + 1 < dcc->discard_granularity)
861 			break;
862 		if (!list_empty(&dcc->pend_list[i])) {
863 			wakeup = true;
864 			break;
865 		}
866 	}
867 	mutex_unlock(&dcc->cmd_lock);
868 	if (!wakeup)
869 		return;
870 wake_up:
871 	dcc->discard_wake = 1;
872 	wake_up_interruptible_all(&dcc->discard_wait_queue);
873 }
874