1 /* 2 * fs/f2fs/segment.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/blkdev.h> 12 13 /* constant macro */ 14 #define NULL_SEGNO ((unsigned int)(~0)) 15 #define NULL_SECNO ((unsigned int)(~0)) 16 17 #define DEF_RECLAIM_PREFREE_SEGMENTS 100 /* 200MB of prefree segments */ 18 19 /* L: Logical segment # in volume, R: Relative segment # in main area */ 20 #define GET_L2R_SEGNO(free_i, segno) (segno - free_i->start_segno) 21 #define GET_R2L_SEGNO(free_i, segno) (segno + free_i->start_segno) 22 23 #define IS_DATASEG(t) \ 24 ((t == CURSEG_HOT_DATA) || (t == CURSEG_COLD_DATA) || \ 25 (t == CURSEG_WARM_DATA)) 26 27 #define IS_NODESEG(t) \ 28 ((t == CURSEG_HOT_NODE) || (t == CURSEG_COLD_NODE) || \ 29 (t == CURSEG_WARM_NODE)) 30 31 #define IS_CURSEG(sbi, seg) \ 32 ((seg == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ 33 (seg == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ 34 (seg == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ 35 (seg == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ 36 (seg == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ 37 (seg == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno)) 38 39 #define IS_CURSEC(sbi, secno) \ 40 ((secno == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ 41 sbi->segs_per_sec) || \ 42 (secno == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ 43 sbi->segs_per_sec) || \ 44 (secno == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ 45 sbi->segs_per_sec) || \ 46 (secno == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ 47 sbi->segs_per_sec) || \ 48 (secno == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ 49 sbi->segs_per_sec) || \ 50 (secno == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ 51 sbi->segs_per_sec)) \ 52 53 #define START_BLOCK(sbi, segno) \ 54 (SM_I(sbi)->seg0_blkaddr + \ 55 (GET_R2L_SEGNO(FREE_I(sbi), segno) << sbi->log_blocks_per_seg)) 56 #define NEXT_FREE_BLKADDR(sbi, curseg) \ 57 (START_BLOCK(sbi, curseg->segno) + curseg->next_blkoff) 58 59 #define MAIN_BASE_BLOCK(sbi) (SM_I(sbi)->main_blkaddr) 60 61 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) \ 62 ((blk_addr) - SM_I(sbi)->seg0_blkaddr) 63 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ 64 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> sbi->log_blocks_per_seg) 65 #define GET_SEGNO(sbi, blk_addr) \ 66 (((blk_addr == NULL_ADDR) || (blk_addr == NEW_ADDR)) ? \ 67 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ 68 GET_SEGNO_FROM_SEG0(sbi, blk_addr))) 69 #define GET_SECNO(sbi, segno) \ 70 ((segno) / sbi->segs_per_sec) 71 #define GET_ZONENO_FROM_SEGNO(sbi, segno) \ 72 ((segno / sbi->segs_per_sec) / sbi->secs_per_zone) 73 74 #define GET_SUM_BLOCK(sbi, segno) \ 75 ((sbi->sm_info->ssa_blkaddr) + segno) 76 77 #define GET_SUM_TYPE(footer) ((footer)->entry_type) 78 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = type) 79 80 #define SIT_ENTRY_OFFSET(sit_i, segno) \ 81 (segno % sit_i->sents_per_block) 82 #define SIT_BLOCK_OFFSET(sit_i, segno) \ 83 (segno / SIT_ENTRY_PER_BLOCK) 84 #define START_SEGNO(sit_i, segno) \ 85 (SIT_BLOCK_OFFSET(sit_i, segno) * SIT_ENTRY_PER_BLOCK) 86 #define f2fs_bitmap_size(nr) \ 87 (BITS_TO_LONGS(nr) * sizeof(unsigned long)) 88 #define TOTAL_SEGS(sbi) (SM_I(sbi)->main_segments) 89 #define TOTAL_SECS(sbi) (sbi->total_sections) 90 91 #define SECTOR_FROM_BLOCK(sbi, blk_addr) \ 92 (blk_addr << ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE)) 93 #define SECTOR_TO_BLOCK(sbi, sectors) \ 94 (sectors >> ((sbi)->log_blocksize - F2FS_LOG_SECTOR_SIZE)) 95 #define MAX_BIO_BLOCKS(max_hw_blocks) \ 96 (min((int)max_hw_blocks, BIO_MAX_PAGES)) 97 98 /* during checkpoint, bio_private is used to synchronize the last bio */ 99 struct bio_private { 100 struct f2fs_sb_info *sbi; 101 bool is_sync; 102 void *wait; 103 }; 104 105 /* 106 * indicate a block allocation direction: RIGHT and LEFT. 107 * RIGHT means allocating new sections towards the end of volume. 108 * LEFT means the opposite direction. 109 */ 110 enum { 111 ALLOC_RIGHT = 0, 112 ALLOC_LEFT 113 }; 114 115 /* 116 * In the victim_sel_policy->alloc_mode, there are two block allocation modes. 117 * LFS writes data sequentially with cleaning operations. 118 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. 119 */ 120 enum { 121 LFS = 0, 122 SSR 123 }; 124 125 /* 126 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes. 127 * GC_CB is based on cost-benefit algorithm. 128 * GC_GREEDY is based on greedy algorithm. 129 */ 130 enum { 131 GC_CB = 0, 132 GC_GREEDY 133 }; 134 135 /* 136 * BG_GC means the background cleaning job. 137 * FG_GC means the on-demand cleaning job. 138 */ 139 enum { 140 BG_GC = 0, 141 FG_GC 142 }; 143 144 /* for a function parameter to select a victim segment */ 145 struct victim_sel_policy { 146 int alloc_mode; /* LFS or SSR */ 147 int gc_mode; /* GC_CB or GC_GREEDY */ 148 unsigned long *dirty_segmap; /* dirty segment bitmap */ 149 unsigned int max_search; /* maximum # of segments to search */ 150 unsigned int offset; /* last scanned bitmap offset */ 151 unsigned int ofs_unit; /* bitmap search unit */ 152 unsigned int min_cost; /* minimum cost */ 153 unsigned int min_segno; /* segment # having min. cost */ 154 }; 155 156 struct seg_entry { 157 unsigned short valid_blocks; /* # of valid blocks */ 158 unsigned char *cur_valid_map; /* validity bitmap of blocks */ 159 /* 160 * # of valid blocks and the validity bitmap stored in the the last 161 * checkpoint pack. This information is used by the SSR mode. 162 */ 163 unsigned short ckpt_valid_blocks; 164 unsigned char *ckpt_valid_map; 165 unsigned char type; /* segment type like CURSEG_XXX_TYPE */ 166 unsigned long long mtime; /* modification time of the segment */ 167 }; 168 169 struct sec_entry { 170 unsigned int valid_blocks; /* # of valid blocks in a section */ 171 }; 172 173 struct segment_allocation { 174 void (*allocate_segment)(struct f2fs_sb_info *, int, bool); 175 }; 176 177 struct sit_info { 178 const struct segment_allocation *s_ops; 179 180 block_t sit_base_addr; /* start block address of SIT area */ 181 block_t sit_blocks; /* # of blocks used by SIT area */ 182 block_t written_valid_blocks; /* # of valid blocks in main area */ 183 char *sit_bitmap; /* SIT bitmap pointer */ 184 unsigned int bitmap_size; /* SIT bitmap size */ 185 186 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ 187 unsigned int dirty_sentries; /* # of dirty sentries */ 188 unsigned int sents_per_block; /* # of SIT entries per block */ 189 struct mutex sentry_lock; /* to protect SIT cache */ 190 struct seg_entry *sentries; /* SIT segment-level cache */ 191 struct sec_entry *sec_entries; /* SIT section-level cache */ 192 193 /* for cost-benefit algorithm in cleaning procedure */ 194 unsigned long long elapsed_time; /* elapsed time after mount */ 195 unsigned long long mounted_time; /* mount time */ 196 unsigned long long min_mtime; /* min. modification time */ 197 unsigned long long max_mtime; /* max. modification time */ 198 }; 199 200 struct free_segmap_info { 201 unsigned int start_segno; /* start segment number logically */ 202 unsigned int free_segments; /* # of free segments */ 203 unsigned int free_sections; /* # of free sections */ 204 rwlock_t segmap_lock; /* free segmap lock */ 205 unsigned long *free_segmap; /* free segment bitmap */ 206 unsigned long *free_secmap; /* free section bitmap */ 207 }; 208 209 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ 210 enum dirty_type { 211 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ 212 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ 213 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ 214 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ 215 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ 216 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ 217 DIRTY, /* to count # of dirty segments */ 218 PRE, /* to count # of entirely obsolete segments */ 219 NR_DIRTY_TYPE 220 }; 221 222 struct dirty_seglist_info { 223 const struct victim_selection *v_ops; /* victim selction operation */ 224 unsigned long *dirty_segmap[NR_DIRTY_TYPE]; 225 struct mutex seglist_lock; /* lock for segment bitmaps */ 226 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ 227 unsigned long *victim_secmap; /* background GC victims */ 228 }; 229 230 /* victim selection function for cleaning and SSR */ 231 struct victim_selection { 232 int (*get_victim)(struct f2fs_sb_info *, unsigned int *, 233 int, int, char); 234 }; 235 236 /* for active log information */ 237 struct curseg_info { 238 struct mutex curseg_mutex; /* lock for consistency */ 239 struct f2fs_summary_block *sum_blk; /* cached summary block */ 240 unsigned char alloc_type; /* current allocation type */ 241 unsigned int segno; /* current segment number */ 242 unsigned short next_blkoff; /* next block offset to write */ 243 unsigned int zone; /* current zone number */ 244 unsigned int next_segno; /* preallocated segment */ 245 }; 246 247 /* 248 * inline functions 249 */ 250 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) 251 { 252 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); 253 } 254 255 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, 256 unsigned int segno) 257 { 258 struct sit_info *sit_i = SIT_I(sbi); 259 return &sit_i->sentries[segno]; 260 } 261 262 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, 263 unsigned int segno) 264 { 265 struct sit_info *sit_i = SIT_I(sbi); 266 return &sit_i->sec_entries[GET_SECNO(sbi, segno)]; 267 } 268 269 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, 270 unsigned int segno, int section) 271 { 272 /* 273 * In order to get # of valid blocks in a section instantly from many 274 * segments, f2fs manages two counting structures separately. 275 */ 276 if (section > 1) 277 return get_sec_entry(sbi, segno)->valid_blocks; 278 else 279 return get_seg_entry(sbi, segno)->valid_blocks; 280 } 281 282 static inline void seg_info_from_raw_sit(struct seg_entry *se, 283 struct f2fs_sit_entry *rs) 284 { 285 se->valid_blocks = GET_SIT_VBLOCKS(rs); 286 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); 287 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 288 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 289 se->type = GET_SIT_TYPE(rs); 290 se->mtime = le64_to_cpu(rs->mtime); 291 } 292 293 static inline void seg_info_to_raw_sit(struct seg_entry *se, 294 struct f2fs_sit_entry *rs) 295 { 296 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | 297 se->valid_blocks; 298 rs->vblocks = cpu_to_le16(raw_vblocks); 299 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 300 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 301 se->ckpt_valid_blocks = se->valid_blocks; 302 rs->mtime = cpu_to_le64(se->mtime); 303 } 304 305 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, 306 unsigned int max, unsigned int segno) 307 { 308 unsigned int ret; 309 read_lock(&free_i->segmap_lock); 310 ret = find_next_bit(free_i->free_segmap, max, segno); 311 read_unlock(&free_i->segmap_lock); 312 return ret; 313 } 314 315 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) 316 { 317 struct free_segmap_info *free_i = FREE_I(sbi); 318 unsigned int secno = segno / sbi->segs_per_sec; 319 unsigned int start_segno = secno * sbi->segs_per_sec; 320 unsigned int next; 321 322 write_lock(&free_i->segmap_lock); 323 clear_bit(segno, free_i->free_segmap); 324 free_i->free_segments++; 325 326 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), start_segno); 327 if (next >= start_segno + sbi->segs_per_sec) { 328 clear_bit(secno, free_i->free_secmap); 329 free_i->free_sections++; 330 } 331 write_unlock(&free_i->segmap_lock); 332 } 333 334 static inline void __set_inuse(struct f2fs_sb_info *sbi, 335 unsigned int segno) 336 { 337 struct free_segmap_info *free_i = FREE_I(sbi); 338 unsigned int secno = segno / sbi->segs_per_sec; 339 set_bit(segno, free_i->free_segmap); 340 free_i->free_segments--; 341 if (!test_and_set_bit(secno, free_i->free_secmap)) 342 free_i->free_sections--; 343 } 344 345 static inline void __set_test_and_free(struct f2fs_sb_info *sbi, 346 unsigned int segno) 347 { 348 struct free_segmap_info *free_i = FREE_I(sbi); 349 unsigned int secno = segno / sbi->segs_per_sec; 350 unsigned int start_segno = secno * sbi->segs_per_sec; 351 unsigned int next; 352 353 write_lock(&free_i->segmap_lock); 354 if (test_and_clear_bit(segno, free_i->free_segmap)) { 355 free_i->free_segments++; 356 357 next = find_next_bit(free_i->free_segmap, TOTAL_SEGS(sbi), 358 start_segno); 359 if (next >= start_segno + sbi->segs_per_sec) { 360 if (test_and_clear_bit(secno, free_i->free_secmap)) 361 free_i->free_sections++; 362 } 363 } 364 write_unlock(&free_i->segmap_lock); 365 } 366 367 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, 368 unsigned int segno) 369 { 370 struct free_segmap_info *free_i = FREE_I(sbi); 371 unsigned int secno = segno / sbi->segs_per_sec; 372 write_lock(&free_i->segmap_lock); 373 if (!test_and_set_bit(segno, free_i->free_segmap)) { 374 free_i->free_segments--; 375 if (!test_and_set_bit(secno, free_i->free_secmap)) 376 free_i->free_sections--; 377 } 378 write_unlock(&free_i->segmap_lock); 379 } 380 381 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, 382 void *dst_addr) 383 { 384 struct sit_info *sit_i = SIT_I(sbi); 385 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); 386 } 387 388 static inline block_t written_block_count(struct f2fs_sb_info *sbi) 389 { 390 struct sit_info *sit_i = SIT_I(sbi); 391 block_t vblocks; 392 393 mutex_lock(&sit_i->sentry_lock); 394 vblocks = sit_i->written_valid_blocks; 395 mutex_unlock(&sit_i->sentry_lock); 396 397 return vblocks; 398 } 399 400 static inline unsigned int free_segments(struct f2fs_sb_info *sbi) 401 { 402 struct free_segmap_info *free_i = FREE_I(sbi); 403 unsigned int free_segs; 404 405 read_lock(&free_i->segmap_lock); 406 free_segs = free_i->free_segments; 407 read_unlock(&free_i->segmap_lock); 408 409 return free_segs; 410 } 411 412 static inline int reserved_segments(struct f2fs_sb_info *sbi) 413 { 414 return SM_I(sbi)->reserved_segments; 415 } 416 417 static inline unsigned int free_sections(struct f2fs_sb_info *sbi) 418 { 419 struct free_segmap_info *free_i = FREE_I(sbi); 420 unsigned int free_secs; 421 422 read_lock(&free_i->segmap_lock); 423 free_secs = free_i->free_sections; 424 read_unlock(&free_i->segmap_lock); 425 426 return free_secs; 427 } 428 429 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) 430 { 431 return DIRTY_I(sbi)->nr_dirty[PRE]; 432 } 433 434 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) 435 { 436 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + 437 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + 438 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + 439 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + 440 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + 441 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; 442 } 443 444 static inline int overprovision_segments(struct f2fs_sb_info *sbi) 445 { 446 return SM_I(sbi)->ovp_segments; 447 } 448 449 static inline int overprovision_sections(struct f2fs_sb_info *sbi) 450 { 451 return ((unsigned int) overprovision_segments(sbi)) / sbi->segs_per_sec; 452 } 453 454 static inline int reserved_sections(struct f2fs_sb_info *sbi) 455 { 456 return ((unsigned int) reserved_segments(sbi)) / sbi->segs_per_sec; 457 } 458 459 static inline bool need_SSR(struct f2fs_sb_info *sbi) 460 { 461 return ((prefree_segments(sbi) / sbi->segs_per_sec) 462 + free_sections(sbi) < overprovision_sections(sbi)); 463 } 464 465 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, int freed) 466 { 467 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 468 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 469 470 if (sbi->por_doing) 471 return false; 472 473 return ((free_sections(sbi) + freed) <= (node_secs + 2 * dent_secs + 474 reserved_sections(sbi))); 475 } 476 477 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) 478 { 479 return (prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments); 480 } 481 482 static inline int utilization(struct f2fs_sb_info *sbi) 483 { 484 return div_u64((u64)valid_user_blocks(sbi) * 100, sbi->user_block_count); 485 } 486 487 /* 488 * Sometimes f2fs may be better to drop out-of-place update policy. 489 * So, if fs utilization is over MIN_IPU_UTIL, then f2fs tries to write 490 * data in the original place likewise other traditional file systems. 491 * But, currently set 100 in percentage, which means it is disabled. 492 * See below need_inplace_update(). 493 */ 494 #define MIN_IPU_UTIL 100 495 static inline bool need_inplace_update(struct inode *inode) 496 { 497 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb); 498 if (S_ISDIR(inode->i_mode)) 499 return false; 500 if (need_SSR(sbi) && utilization(sbi) > MIN_IPU_UTIL) 501 return true; 502 return false; 503 } 504 505 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, 506 int type) 507 { 508 struct curseg_info *curseg = CURSEG_I(sbi, type); 509 return curseg->segno; 510 } 511 512 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, 513 int type) 514 { 515 struct curseg_info *curseg = CURSEG_I(sbi, type); 516 return curseg->alloc_type; 517 } 518 519 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) 520 { 521 struct curseg_info *curseg = CURSEG_I(sbi, type); 522 return curseg->next_blkoff; 523 } 524 525 #ifdef CONFIG_F2FS_CHECK_FS 526 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) 527 { 528 unsigned int end_segno = SM_I(sbi)->segment_count - 1; 529 BUG_ON(segno > end_segno); 530 } 531 532 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr) 533 { 534 struct f2fs_sm_info *sm_info = SM_I(sbi); 535 block_t total_blks = sm_info->segment_count << sbi->log_blocks_per_seg; 536 block_t start_addr = sm_info->seg0_blkaddr; 537 block_t end_addr = start_addr + total_blks - 1; 538 BUG_ON(blk_addr < start_addr); 539 BUG_ON(blk_addr > end_addr); 540 } 541 542 /* 543 * Summary block is always treated as invalid block 544 */ 545 static inline void check_block_count(struct f2fs_sb_info *sbi, 546 int segno, struct f2fs_sit_entry *raw_sit) 547 { 548 struct f2fs_sm_info *sm_info = SM_I(sbi); 549 unsigned int end_segno = sm_info->segment_count - 1; 550 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; 551 int valid_blocks = 0; 552 int cur_pos = 0, next_pos; 553 554 /* check segment usage */ 555 BUG_ON(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg); 556 557 /* check boundary of a given segment number */ 558 BUG_ON(segno > end_segno); 559 560 /* check bitmap with valid block count */ 561 do { 562 if (is_valid) { 563 next_pos = find_next_zero_bit_le(&raw_sit->valid_map, 564 sbi->blocks_per_seg, 565 cur_pos); 566 valid_blocks += next_pos - cur_pos; 567 } else 568 next_pos = find_next_bit_le(&raw_sit->valid_map, 569 sbi->blocks_per_seg, 570 cur_pos); 571 cur_pos = next_pos; 572 is_valid = !is_valid; 573 } while (cur_pos < sbi->blocks_per_seg); 574 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks); 575 } 576 #else 577 #define check_seg_range(sbi, segno) 578 #define verify_block_addr(sbi, blk_addr) 579 #define check_block_count(sbi, segno, raw_sit) 580 #endif 581 582 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, 583 unsigned int start) 584 { 585 struct sit_info *sit_i = SIT_I(sbi); 586 unsigned int offset = SIT_BLOCK_OFFSET(sit_i, start); 587 block_t blk_addr = sit_i->sit_base_addr + offset; 588 589 check_seg_range(sbi, start); 590 591 /* calculate sit block address */ 592 if (f2fs_test_bit(offset, sit_i->sit_bitmap)) 593 blk_addr += sit_i->sit_blocks; 594 595 return blk_addr; 596 } 597 598 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, 599 pgoff_t block_addr) 600 { 601 struct sit_info *sit_i = SIT_I(sbi); 602 block_addr -= sit_i->sit_base_addr; 603 if (block_addr < sit_i->sit_blocks) 604 block_addr += sit_i->sit_blocks; 605 else 606 block_addr -= sit_i->sit_blocks; 607 608 return block_addr + sit_i->sit_base_addr; 609 } 610 611 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) 612 { 613 unsigned int block_off = SIT_BLOCK_OFFSET(sit_i, start); 614 615 if (f2fs_test_bit(block_off, sit_i->sit_bitmap)) 616 f2fs_clear_bit(block_off, sit_i->sit_bitmap); 617 else 618 f2fs_set_bit(block_off, sit_i->sit_bitmap); 619 } 620 621 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi) 622 { 623 struct sit_info *sit_i = SIT_I(sbi); 624 return sit_i->elapsed_time + CURRENT_TIME_SEC.tv_sec - 625 sit_i->mounted_time; 626 } 627 628 static inline void set_summary(struct f2fs_summary *sum, nid_t nid, 629 unsigned int ofs_in_node, unsigned char version) 630 { 631 sum->nid = cpu_to_le32(nid); 632 sum->ofs_in_node = cpu_to_le16(ofs_in_node); 633 sum->version = version; 634 } 635 636 static inline block_t start_sum_block(struct f2fs_sb_info *sbi) 637 { 638 return __start_cp_addr(sbi) + 639 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 640 } 641 642 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) 643 { 644 return __start_cp_addr(sbi) + 645 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) 646 - (base + 1) + type; 647 } 648 649 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) 650 { 651 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) 652 return true; 653 return false; 654 } 655 656 static inline unsigned int max_hw_blocks(struct f2fs_sb_info *sbi) 657 { 658 struct block_device *bdev = sbi->sb->s_bdev; 659 struct request_queue *q = bdev_get_queue(bdev); 660 return SECTOR_TO_BLOCK(sbi, queue_max_sectors(q)); 661 } 662