xref: /openbmc/linux/fs/f2fs/segment.h (revision 63f59b73e80a0f7431f6f91383fcc3f5fac49bb8)
1 /*
2  * fs/f2fs/segment.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/blkdev.h>
12 #include <linux/backing-dev.h>
13 
14 /* constant macro */
15 #define NULL_SEGNO			((unsigned int)(~0))
16 #define NULL_SECNO			((unsigned int)(~0))
17 
18 #define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
19 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
20 
21 #define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
22 
23 /* L: Logical segment # in volume, R: Relative segment # in main area */
24 #define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
25 #define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
26 
27 #define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
28 #define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE)
29 
30 #define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
31 #define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
32 #define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
33 
34 #define IS_CURSEG(sbi, seg)						\
35 	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
36 	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
37 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
38 	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
39 	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
40 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
41 
42 #define IS_CURSEC(sbi, secno)						\
43 	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
44 	  (sbi)->segs_per_sec) ||	\
45 	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
46 	  (sbi)->segs_per_sec) ||	\
47 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
48 	  (sbi)->segs_per_sec) ||	\
49 	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
50 	  (sbi)->segs_per_sec) ||	\
51 	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
52 	  (sbi)->segs_per_sec) ||	\
53 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
54 	  (sbi)->segs_per_sec))	\
55 
56 #define MAIN_BLKADDR(sbi)						\
57 	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
58 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
59 #define SEG0_BLKADDR(sbi)						\
60 	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
61 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
62 
63 #define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
64 #define MAIN_SECS(sbi)	((sbi)->total_sections)
65 
66 #define TOTAL_SEGS(sbi)							\
67 	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
68 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
69 #define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
70 
71 #define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
72 #define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
73 					(sbi)->log_blocks_per_seg))
74 
75 #define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
76 	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
77 
78 #define NEXT_FREE_BLKADDR(sbi, curseg)					\
79 	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
80 
81 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
82 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
83 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
84 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
85 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
86 
87 #define GET_SEGNO(sbi, blk_addr)					\
88 	((!is_valid_data_blkaddr(sbi, blk_addr)) ?			\
89 	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
90 		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
91 #define BLKS_PER_SEC(sbi)					\
92 	((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
93 #define GET_SEC_FROM_SEG(sbi, segno)				\
94 	((segno) / (sbi)->segs_per_sec)
95 #define GET_SEG_FROM_SEC(sbi, secno)				\
96 	((secno) * (sbi)->segs_per_sec)
97 #define GET_ZONE_FROM_SEC(sbi, secno)				\
98 	((secno) / (sbi)->secs_per_zone)
99 #define GET_ZONE_FROM_SEG(sbi, segno)				\
100 	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
101 
102 #define GET_SUM_BLOCK(sbi, segno)				\
103 	((sbi)->sm_info->ssa_blkaddr + (segno))
104 
105 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
106 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
107 
108 #define SIT_ENTRY_OFFSET(sit_i, segno)					\
109 	((segno) % (sit_i)->sents_per_block)
110 #define SIT_BLOCK_OFFSET(segno)					\
111 	((segno) / SIT_ENTRY_PER_BLOCK)
112 #define	START_SEGNO(segno)		\
113 	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
114 #define SIT_BLK_CNT(sbi)			\
115 	((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
116 #define f2fs_bitmap_size(nr)			\
117 	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
118 
119 #define SECTOR_FROM_BLOCK(blk_addr)					\
120 	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
121 #define SECTOR_TO_BLOCK(sectors)					\
122 	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
123 
124 /*
125  * indicate a block allocation direction: RIGHT and LEFT.
126  * RIGHT means allocating new sections towards the end of volume.
127  * LEFT means the opposite direction.
128  */
129 enum {
130 	ALLOC_RIGHT = 0,
131 	ALLOC_LEFT
132 };
133 
134 /*
135  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
136  * LFS writes data sequentially with cleaning operations.
137  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
138  */
139 enum {
140 	LFS = 0,
141 	SSR
142 };
143 
144 /*
145  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
146  * GC_CB is based on cost-benefit algorithm.
147  * GC_GREEDY is based on greedy algorithm.
148  */
149 enum {
150 	GC_CB = 0,
151 	GC_GREEDY,
152 	ALLOC_NEXT,
153 	FLUSH_DEVICE,
154 	MAX_GC_POLICY,
155 };
156 
157 /*
158  * BG_GC means the background cleaning job.
159  * FG_GC means the on-demand cleaning job.
160  * FORCE_FG_GC means on-demand cleaning job in background.
161  */
162 enum {
163 	BG_GC = 0,
164 	FG_GC,
165 	FORCE_FG_GC,
166 };
167 
168 /* for a function parameter to select a victim segment */
169 struct victim_sel_policy {
170 	int alloc_mode;			/* LFS or SSR */
171 	int gc_mode;			/* GC_CB or GC_GREEDY */
172 	unsigned long *dirty_segmap;	/* dirty segment bitmap */
173 	unsigned int max_search;	/* maximum # of segments to search */
174 	unsigned int offset;		/* last scanned bitmap offset */
175 	unsigned int ofs_unit;		/* bitmap search unit */
176 	unsigned int min_cost;		/* minimum cost */
177 	unsigned int min_segno;		/* segment # having min. cost */
178 };
179 
180 struct seg_entry {
181 	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
182 	unsigned int valid_blocks:10;	/* # of valid blocks */
183 	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
184 	unsigned int padding:6;		/* padding */
185 	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
186 #ifdef CONFIG_F2FS_CHECK_FS
187 	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
188 #endif
189 	/*
190 	 * # of valid blocks and the validity bitmap stored in the the last
191 	 * checkpoint pack. This information is used by the SSR mode.
192 	 */
193 	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
194 	unsigned char *discard_map;
195 	unsigned long long mtime;	/* modification time of the segment */
196 };
197 
198 struct sec_entry {
199 	unsigned int valid_blocks;	/* # of valid blocks in a section */
200 };
201 
202 struct segment_allocation {
203 	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
204 };
205 
206 /*
207  * this value is set in page as a private data which indicate that
208  * the page is atomically written, and it is in inmem_pages list.
209  */
210 #define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
211 #define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
212 
213 #define IS_ATOMIC_WRITTEN_PAGE(page)			\
214 		(page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
215 #define IS_DUMMY_WRITTEN_PAGE(page)			\
216 		(page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
217 
218 #define MAX_SKIP_GC_COUNT			16
219 
220 struct inmem_pages {
221 	struct list_head list;
222 	struct page *page;
223 	block_t old_addr;		/* for revoking when fail to commit */
224 };
225 
226 struct sit_info {
227 	const struct segment_allocation *s_ops;
228 
229 	block_t sit_base_addr;		/* start block address of SIT area */
230 	block_t sit_blocks;		/* # of blocks used by SIT area */
231 	block_t written_valid_blocks;	/* # of valid blocks in main area */
232 	char *sit_bitmap;		/* SIT bitmap pointer */
233 #ifdef CONFIG_F2FS_CHECK_FS
234 	char *sit_bitmap_mir;		/* SIT bitmap mirror */
235 #endif
236 	unsigned int bitmap_size;	/* SIT bitmap size */
237 
238 	unsigned long *tmp_map;			/* bitmap for temporal use */
239 	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
240 	unsigned int dirty_sentries;		/* # of dirty sentries */
241 	unsigned int sents_per_block;		/* # of SIT entries per block */
242 	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
243 	struct seg_entry *sentries;		/* SIT segment-level cache */
244 	struct sec_entry *sec_entries;		/* SIT section-level cache */
245 
246 	/* for cost-benefit algorithm in cleaning procedure */
247 	unsigned long long elapsed_time;	/* elapsed time after mount */
248 	unsigned long long mounted_time;	/* mount time */
249 	unsigned long long min_mtime;		/* min. modification time */
250 	unsigned long long max_mtime;		/* max. modification time */
251 
252 	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
253 };
254 
255 struct free_segmap_info {
256 	unsigned int start_segno;	/* start segment number logically */
257 	unsigned int free_segments;	/* # of free segments */
258 	unsigned int free_sections;	/* # of free sections */
259 	spinlock_t segmap_lock;		/* free segmap lock */
260 	unsigned long *free_segmap;	/* free segment bitmap */
261 	unsigned long *free_secmap;	/* free section bitmap */
262 };
263 
264 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
265 enum dirty_type {
266 	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
267 	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
268 	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
269 	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
270 	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
271 	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
272 	DIRTY,			/* to count # of dirty segments */
273 	PRE,			/* to count # of entirely obsolete segments */
274 	NR_DIRTY_TYPE
275 };
276 
277 struct dirty_seglist_info {
278 	const struct victim_selection *v_ops;	/* victim selction operation */
279 	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
280 	struct mutex seglist_lock;		/* lock for segment bitmaps */
281 	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
282 	unsigned long *victim_secmap;		/* background GC victims */
283 };
284 
285 /* victim selection function for cleaning and SSR */
286 struct victim_selection {
287 	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
288 							int, int, char);
289 };
290 
291 /* for active log information */
292 struct curseg_info {
293 	struct mutex curseg_mutex;		/* lock for consistency */
294 	struct f2fs_summary_block *sum_blk;	/* cached summary block */
295 	struct rw_semaphore journal_rwsem;	/* protect journal area */
296 	struct f2fs_journal *journal;		/* cached journal info */
297 	unsigned char alloc_type;		/* current allocation type */
298 	unsigned int segno;			/* current segment number */
299 	unsigned short next_blkoff;		/* next block offset to write */
300 	unsigned int zone;			/* current zone number */
301 	unsigned int next_segno;		/* preallocated segment */
302 };
303 
304 struct sit_entry_set {
305 	struct list_head set_list;	/* link with all sit sets */
306 	unsigned int start_segno;	/* start segno of sits in set */
307 	unsigned int entry_cnt;		/* the # of sit entries in set */
308 };
309 
310 /*
311  * inline functions
312  */
313 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
314 {
315 	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
316 }
317 
318 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
319 						unsigned int segno)
320 {
321 	struct sit_info *sit_i = SIT_I(sbi);
322 	return &sit_i->sentries[segno];
323 }
324 
325 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
326 						unsigned int segno)
327 {
328 	struct sit_info *sit_i = SIT_I(sbi);
329 	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
330 }
331 
332 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
333 				unsigned int segno, bool use_section)
334 {
335 	/*
336 	 * In order to get # of valid blocks in a section instantly from many
337 	 * segments, f2fs manages two counting structures separately.
338 	 */
339 	if (use_section && sbi->segs_per_sec > 1)
340 		return get_sec_entry(sbi, segno)->valid_blocks;
341 	else
342 		return get_seg_entry(sbi, segno)->valid_blocks;
343 }
344 
345 static inline void seg_info_from_raw_sit(struct seg_entry *se,
346 					struct f2fs_sit_entry *rs)
347 {
348 	se->valid_blocks = GET_SIT_VBLOCKS(rs);
349 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
350 	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
351 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
352 #ifdef CONFIG_F2FS_CHECK_FS
353 	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
354 #endif
355 	se->type = GET_SIT_TYPE(rs);
356 	se->mtime = le64_to_cpu(rs->mtime);
357 }
358 
359 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
360 					struct f2fs_sit_entry *rs)
361 {
362 	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
363 					se->valid_blocks;
364 	rs->vblocks = cpu_to_le16(raw_vblocks);
365 	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
366 	rs->mtime = cpu_to_le64(se->mtime);
367 }
368 
369 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
370 				struct page *page, unsigned int start)
371 {
372 	struct f2fs_sit_block *raw_sit;
373 	struct seg_entry *se;
374 	struct f2fs_sit_entry *rs;
375 	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
376 					(unsigned long)MAIN_SEGS(sbi));
377 	int i;
378 
379 	raw_sit = (struct f2fs_sit_block *)page_address(page);
380 	memset(raw_sit, 0, PAGE_SIZE);
381 	for (i = 0; i < end - start; i++) {
382 		rs = &raw_sit->entries[i];
383 		se = get_seg_entry(sbi, start + i);
384 		__seg_info_to_raw_sit(se, rs);
385 	}
386 }
387 
388 static inline void seg_info_to_raw_sit(struct seg_entry *se,
389 					struct f2fs_sit_entry *rs)
390 {
391 	__seg_info_to_raw_sit(se, rs);
392 
393 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
394 	se->ckpt_valid_blocks = se->valid_blocks;
395 }
396 
397 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
398 		unsigned int max, unsigned int segno)
399 {
400 	unsigned int ret;
401 	spin_lock(&free_i->segmap_lock);
402 	ret = find_next_bit(free_i->free_segmap, max, segno);
403 	spin_unlock(&free_i->segmap_lock);
404 	return ret;
405 }
406 
407 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
408 {
409 	struct free_segmap_info *free_i = FREE_I(sbi);
410 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
411 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
412 	unsigned int next;
413 
414 	spin_lock(&free_i->segmap_lock);
415 	clear_bit(segno, free_i->free_segmap);
416 	free_i->free_segments++;
417 
418 	next = find_next_bit(free_i->free_segmap,
419 			start_segno + sbi->segs_per_sec, start_segno);
420 	if (next >= start_segno + sbi->segs_per_sec) {
421 		clear_bit(secno, free_i->free_secmap);
422 		free_i->free_sections++;
423 	}
424 	spin_unlock(&free_i->segmap_lock);
425 }
426 
427 static inline void __set_inuse(struct f2fs_sb_info *sbi,
428 		unsigned int segno)
429 {
430 	struct free_segmap_info *free_i = FREE_I(sbi);
431 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
432 
433 	set_bit(segno, free_i->free_segmap);
434 	free_i->free_segments--;
435 	if (!test_and_set_bit(secno, free_i->free_secmap))
436 		free_i->free_sections--;
437 }
438 
439 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
440 		unsigned int segno)
441 {
442 	struct free_segmap_info *free_i = FREE_I(sbi);
443 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
444 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
445 	unsigned int next;
446 
447 	spin_lock(&free_i->segmap_lock);
448 	if (test_and_clear_bit(segno, free_i->free_segmap)) {
449 		free_i->free_segments++;
450 
451 		if (IS_CURSEC(sbi, secno))
452 			goto skip_free;
453 		next = find_next_bit(free_i->free_segmap,
454 				start_segno + sbi->segs_per_sec, start_segno);
455 		if (next >= start_segno + sbi->segs_per_sec) {
456 			if (test_and_clear_bit(secno, free_i->free_secmap))
457 				free_i->free_sections++;
458 		}
459 	}
460 skip_free:
461 	spin_unlock(&free_i->segmap_lock);
462 }
463 
464 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
465 		unsigned int segno)
466 {
467 	struct free_segmap_info *free_i = FREE_I(sbi);
468 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
469 
470 	spin_lock(&free_i->segmap_lock);
471 	if (!test_and_set_bit(segno, free_i->free_segmap)) {
472 		free_i->free_segments--;
473 		if (!test_and_set_bit(secno, free_i->free_secmap))
474 			free_i->free_sections--;
475 	}
476 	spin_unlock(&free_i->segmap_lock);
477 }
478 
479 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
480 		void *dst_addr)
481 {
482 	struct sit_info *sit_i = SIT_I(sbi);
483 
484 #ifdef CONFIG_F2FS_CHECK_FS
485 	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
486 						sit_i->bitmap_size))
487 		f2fs_bug_on(sbi, 1);
488 #endif
489 	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
490 }
491 
492 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
493 {
494 	return SIT_I(sbi)->written_valid_blocks;
495 }
496 
497 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
498 {
499 	return FREE_I(sbi)->free_segments;
500 }
501 
502 static inline int reserved_segments(struct f2fs_sb_info *sbi)
503 {
504 	return SM_I(sbi)->reserved_segments;
505 }
506 
507 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
508 {
509 	return FREE_I(sbi)->free_sections;
510 }
511 
512 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
513 {
514 	return DIRTY_I(sbi)->nr_dirty[PRE];
515 }
516 
517 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
518 {
519 	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
520 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
521 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
522 		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
523 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
524 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
525 }
526 
527 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
528 {
529 	return SM_I(sbi)->ovp_segments;
530 }
531 
532 static inline int reserved_sections(struct f2fs_sb_info *sbi)
533 {
534 	return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi));
535 }
536 
537 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
538 {
539 	unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
540 					get_pages(sbi, F2FS_DIRTY_DENTS);
541 	unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
542 	unsigned int segno, left_blocks;
543 	int i;
544 
545 	/* check current node segment */
546 	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
547 		segno = CURSEG_I(sbi, i)->segno;
548 		left_blocks = sbi->blocks_per_seg -
549 			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
550 
551 		if (node_blocks > left_blocks)
552 			return false;
553 	}
554 
555 	/* check current data segment */
556 	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
557 	left_blocks = sbi->blocks_per_seg -
558 			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
559 	if (dent_blocks > left_blocks)
560 		return false;
561 	return true;
562 }
563 
564 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
565 					int freed, int needed)
566 {
567 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
568 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
569 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
570 
571 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
572 		return false;
573 
574 	if (free_sections(sbi) + freed == reserved_sections(sbi) + needed &&
575 			has_curseg_enough_space(sbi))
576 		return false;
577 	return (free_sections(sbi) + freed) <=
578 		(node_secs + 2 * dent_secs + imeta_secs +
579 		reserved_sections(sbi) + needed);
580 }
581 
582 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
583 {
584 	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
585 }
586 
587 static inline int utilization(struct f2fs_sb_info *sbi)
588 {
589 	return div_u64((u64)valid_user_blocks(sbi) * 100,
590 					sbi->user_block_count);
591 }
592 
593 /*
594  * Sometimes f2fs may be better to drop out-of-place update policy.
595  * And, users can control the policy through sysfs entries.
596  * There are five policies with triggering conditions as follows.
597  * F2FS_IPU_FORCE - all the time,
598  * F2FS_IPU_SSR - if SSR mode is activated,
599  * F2FS_IPU_UTIL - if FS utilization is over threashold,
600  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
601  *                     threashold,
602  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
603  *                     storages. IPU will be triggered only if the # of dirty
604  *                     pages over min_fsync_blocks.
605  * F2FS_IPUT_DISABLE - disable IPU. (=default option)
606  */
607 #define DEF_MIN_IPU_UTIL	70
608 #define DEF_MIN_FSYNC_BLOCKS	8
609 #define DEF_MIN_HOT_BLOCKS	16
610 
611 #define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
612 
613 enum {
614 	F2FS_IPU_FORCE,
615 	F2FS_IPU_SSR,
616 	F2FS_IPU_UTIL,
617 	F2FS_IPU_SSR_UTIL,
618 	F2FS_IPU_FSYNC,
619 	F2FS_IPU_ASYNC,
620 };
621 
622 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
623 		int type)
624 {
625 	struct curseg_info *curseg = CURSEG_I(sbi, type);
626 	return curseg->segno;
627 }
628 
629 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
630 		int type)
631 {
632 	struct curseg_info *curseg = CURSEG_I(sbi, type);
633 	return curseg->alloc_type;
634 }
635 
636 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
637 {
638 	struct curseg_info *curseg = CURSEG_I(sbi, type);
639 	return curseg->next_blkoff;
640 }
641 
642 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
643 {
644 	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
645 }
646 
647 static inline void verify_block_addr(struct f2fs_io_info *fio, block_t blk_addr)
648 {
649 	struct f2fs_sb_info *sbi = fio->sbi;
650 
651 	if (__is_meta_io(fio))
652 		verify_blkaddr(sbi, blk_addr, META_GENERIC);
653 	else
654 		verify_blkaddr(sbi, blk_addr, DATA_GENERIC);
655 }
656 
657 /*
658  * Summary block is always treated as an invalid block
659  */
660 static inline int check_block_count(struct f2fs_sb_info *sbi,
661 		int segno, struct f2fs_sit_entry *raw_sit)
662 {
663 #ifdef CONFIG_F2FS_CHECK_FS
664 	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
665 	int valid_blocks = 0;
666 	int cur_pos = 0, next_pos;
667 
668 	/* check bitmap with valid block count */
669 	do {
670 		if (is_valid) {
671 			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
672 					sbi->blocks_per_seg,
673 					cur_pos);
674 			valid_blocks += next_pos - cur_pos;
675 		} else
676 			next_pos = find_next_bit_le(&raw_sit->valid_map,
677 					sbi->blocks_per_seg,
678 					cur_pos);
679 		cur_pos = next_pos;
680 		is_valid = !is_valid;
681 	} while (cur_pos < sbi->blocks_per_seg);
682 
683 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
684 		f2fs_msg(sbi->sb, KERN_ERR,
685 				"Mismatch valid blocks %d vs. %d",
686 					GET_SIT_VBLOCKS(raw_sit), valid_blocks);
687 		set_sbi_flag(sbi, SBI_NEED_FSCK);
688 		return -EINVAL;
689 	}
690 #endif
691 	/* check segment usage, and check boundary of a given segment number */
692 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
693 					|| segno > TOTAL_SEGS(sbi) - 1)) {
694 		f2fs_msg(sbi->sb, KERN_ERR,
695 				"Wrong valid blocks %d or segno %u",
696 					GET_SIT_VBLOCKS(raw_sit), segno);
697 		set_sbi_flag(sbi, SBI_NEED_FSCK);
698 		return -EINVAL;
699 	}
700 	return 0;
701 }
702 
703 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
704 						unsigned int start)
705 {
706 	struct sit_info *sit_i = SIT_I(sbi);
707 	unsigned int offset = SIT_BLOCK_OFFSET(start);
708 	block_t blk_addr = sit_i->sit_base_addr + offset;
709 
710 	check_seg_range(sbi, start);
711 
712 #ifdef CONFIG_F2FS_CHECK_FS
713 	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
714 			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
715 		f2fs_bug_on(sbi, 1);
716 #endif
717 
718 	/* calculate sit block address */
719 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
720 		blk_addr += sit_i->sit_blocks;
721 
722 	return blk_addr;
723 }
724 
725 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
726 						pgoff_t block_addr)
727 {
728 	struct sit_info *sit_i = SIT_I(sbi);
729 	block_addr -= sit_i->sit_base_addr;
730 	if (block_addr < sit_i->sit_blocks)
731 		block_addr += sit_i->sit_blocks;
732 	else
733 		block_addr -= sit_i->sit_blocks;
734 
735 	return block_addr + sit_i->sit_base_addr;
736 }
737 
738 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
739 {
740 	unsigned int block_off = SIT_BLOCK_OFFSET(start);
741 
742 	f2fs_change_bit(block_off, sit_i->sit_bitmap);
743 #ifdef CONFIG_F2FS_CHECK_FS
744 	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
745 #endif
746 }
747 
748 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
749 						bool base_time)
750 {
751 	struct sit_info *sit_i = SIT_I(sbi);
752 	time64_t diff, now = ktime_get_real_seconds();
753 
754 	if (now >= sit_i->mounted_time)
755 		return sit_i->elapsed_time + now - sit_i->mounted_time;
756 
757 	/* system time is set to the past */
758 	if (!base_time) {
759 		diff = sit_i->mounted_time - now;
760 		if (sit_i->elapsed_time >= diff)
761 			return sit_i->elapsed_time - diff;
762 		return 0;
763 	}
764 	return sit_i->elapsed_time;
765 }
766 
767 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
768 			unsigned int ofs_in_node, unsigned char version)
769 {
770 	sum->nid = cpu_to_le32(nid);
771 	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
772 	sum->version = version;
773 }
774 
775 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
776 {
777 	return __start_cp_addr(sbi) +
778 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
779 }
780 
781 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
782 {
783 	return __start_cp_addr(sbi) +
784 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
785 				- (base + 1) + type;
786 }
787 
788 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
789 {
790 	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
791 		return true;
792 	return false;
793 }
794 
795 /*
796  * It is very important to gather dirty pages and write at once, so that we can
797  * submit a big bio without interfering other data writes.
798  * By default, 512 pages for directory data,
799  * 512 pages (2MB) * 8 for nodes, and
800  * 256 pages * 8 for meta are set.
801  */
802 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
803 {
804 	if (sbi->sb->s_bdi->wb.dirty_exceeded)
805 		return 0;
806 
807 	if (type == DATA)
808 		return sbi->blocks_per_seg;
809 	else if (type == NODE)
810 		return 8 * sbi->blocks_per_seg;
811 	else if (type == META)
812 		return 8 * BIO_MAX_PAGES;
813 	else
814 		return 0;
815 }
816 
817 /*
818  * When writing pages, it'd better align nr_to_write for segment size.
819  */
820 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
821 					struct writeback_control *wbc)
822 {
823 	long nr_to_write, desired;
824 
825 	if (wbc->sync_mode != WB_SYNC_NONE)
826 		return 0;
827 
828 	nr_to_write = wbc->nr_to_write;
829 	desired = BIO_MAX_PAGES;
830 	if (type == NODE)
831 		desired <<= 1;
832 
833 	wbc->nr_to_write = desired;
834 	return desired - nr_to_write;
835 }
836 
837 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
838 {
839 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
840 	bool wakeup = false;
841 	int i;
842 
843 	if (force)
844 		goto wake_up;
845 
846 	mutex_lock(&dcc->cmd_lock);
847 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
848 		if (i + 1 < dcc->discard_granularity)
849 			break;
850 		if (!list_empty(&dcc->pend_list[i])) {
851 			wakeup = true;
852 			break;
853 		}
854 	}
855 	mutex_unlock(&dcc->cmd_lock);
856 	if (!wakeup)
857 		return;
858 wake_up:
859 	dcc->discard_wake = 1;
860 	wake_up_interruptible_all(&dcc->discard_wait_queue);
861 }
862