xref: /openbmc/linux/fs/f2fs/segment.h (revision 62ea22c4)
1 /*
2  * fs/f2fs/segment.h
3  *
4  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5  *             http://www.samsung.com/
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/blkdev.h>
12 #include <linux/backing-dev.h>
13 
14 /* constant macro */
15 #define NULL_SEGNO			((unsigned int)(~0))
16 #define NULL_SECNO			((unsigned int)(~0))
17 
18 #define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
19 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
20 
21 #define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
22 
23 /* L: Logical segment # in volume, R: Relative segment # in main area */
24 #define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
25 #define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
26 
27 #define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
28 #define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE)
29 
30 #define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
31 #define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
32 #define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
33 
34 #define IS_CURSEG(sbi, seg)						\
35 	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
36 	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
37 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
38 	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
39 	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
40 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
41 
42 #define IS_CURSEC(sbi, secno)						\
43 	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
44 	  (sbi)->segs_per_sec) ||	\
45 	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
46 	  (sbi)->segs_per_sec) ||	\
47 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
48 	  (sbi)->segs_per_sec) ||	\
49 	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
50 	  (sbi)->segs_per_sec) ||	\
51 	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
52 	  (sbi)->segs_per_sec) ||	\
53 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
54 	  (sbi)->segs_per_sec))	\
55 
56 #define MAIN_BLKADDR(sbi)						\
57 	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
58 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
59 #define SEG0_BLKADDR(sbi)						\
60 	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
61 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
62 
63 #define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
64 #define MAIN_SECS(sbi)	((sbi)->total_sections)
65 
66 #define TOTAL_SEGS(sbi)							\
67 	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
68 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
69 #define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
70 
71 #define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
72 #define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
73 					(sbi)->log_blocks_per_seg))
74 
75 #define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
76 	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
77 
78 #define NEXT_FREE_BLKADDR(sbi, curseg)					\
79 	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
80 
81 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
82 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
83 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
84 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
85 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
86 
87 #define GET_SEGNO(sbi, blk_addr)					\
88 	((((blk_addr) == NULL_ADDR) || ((blk_addr) == NEW_ADDR)) ?	\
89 	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
90 		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
91 #define BLKS_PER_SEC(sbi)					\
92 	((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
93 #define GET_SEC_FROM_SEG(sbi, segno)				\
94 	((segno) / (sbi)->segs_per_sec)
95 #define GET_SEG_FROM_SEC(sbi, secno)				\
96 	((secno) * (sbi)->segs_per_sec)
97 #define GET_ZONE_FROM_SEC(sbi, secno)				\
98 	((secno) / (sbi)->secs_per_zone)
99 #define GET_ZONE_FROM_SEG(sbi, segno)				\
100 	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
101 
102 #define GET_SUM_BLOCK(sbi, segno)				\
103 	((sbi)->sm_info->ssa_blkaddr + (segno))
104 
105 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
106 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
107 
108 #define SIT_ENTRY_OFFSET(sit_i, segno)					\
109 	((segno) % (sit_i)->sents_per_block)
110 #define SIT_BLOCK_OFFSET(segno)					\
111 	((segno) / SIT_ENTRY_PER_BLOCK)
112 #define	START_SEGNO(segno)		\
113 	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
114 #define SIT_BLK_CNT(sbi)			\
115 	((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK)
116 #define f2fs_bitmap_size(nr)			\
117 	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
118 
119 #define SECTOR_FROM_BLOCK(blk_addr)					\
120 	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
121 #define SECTOR_TO_BLOCK(sectors)					\
122 	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
123 
124 /*
125  * indicate a block allocation direction: RIGHT and LEFT.
126  * RIGHT means allocating new sections towards the end of volume.
127  * LEFT means the opposite direction.
128  */
129 enum {
130 	ALLOC_RIGHT = 0,
131 	ALLOC_LEFT
132 };
133 
134 /*
135  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
136  * LFS writes data sequentially with cleaning operations.
137  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
138  */
139 enum {
140 	LFS = 0,
141 	SSR
142 };
143 
144 /*
145  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
146  * GC_CB is based on cost-benefit algorithm.
147  * GC_GREEDY is based on greedy algorithm.
148  */
149 enum {
150 	GC_CB = 0,
151 	GC_GREEDY,
152 	ALLOC_NEXT,
153 	FLUSH_DEVICE,
154 	MAX_GC_POLICY,
155 };
156 
157 /*
158  * BG_GC means the background cleaning job.
159  * FG_GC means the on-demand cleaning job.
160  * FORCE_FG_GC means on-demand cleaning job in background.
161  */
162 enum {
163 	BG_GC = 0,
164 	FG_GC,
165 	FORCE_FG_GC,
166 };
167 
168 /* for a function parameter to select a victim segment */
169 struct victim_sel_policy {
170 	int alloc_mode;			/* LFS or SSR */
171 	int gc_mode;			/* GC_CB or GC_GREEDY */
172 	unsigned long *dirty_segmap;	/* dirty segment bitmap */
173 	unsigned int max_search;	/* maximum # of segments to search */
174 	unsigned int offset;		/* last scanned bitmap offset */
175 	unsigned int ofs_unit;		/* bitmap search unit */
176 	unsigned int min_cost;		/* minimum cost */
177 	unsigned int min_segno;		/* segment # having min. cost */
178 };
179 
180 struct seg_entry {
181 	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
182 	unsigned int valid_blocks:10;	/* # of valid blocks */
183 	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
184 	unsigned int padding:6;		/* padding */
185 	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
186 #ifdef CONFIG_F2FS_CHECK_FS
187 	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
188 #endif
189 	/*
190 	 * # of valid blocks and the validity bitmap stored in the the last
191 	 * checkpoint pack. This information is used by the SSR mode.
192 	 */
193 	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
194 	unsigned char *discard_map;
195 	unsigned long long mtime;	/* modification time of the segment */
196 };
197 
198 struct sec_entry {
199 	unsigned int valid_blocks;	/* # of valid blocks in a section */
200 };
201 
202 struct segment_allocation {
203 	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
204 };
205 
206 /*
207  * this value is set in page as a private data which indicate that
208  * the page is atomically written, and it is in inmem_pages list.
209  */
210 #define ATOMIC_WRITTEN_PAGE		((unsigned long)-1)
211 #define DUMMY_WRITTEN_PAGE		((unsigned long)-2)
212 
213 #define IS_ATOMIC_WRITTEN_PAGE(page)			\
214 		(page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE)
215 #define IS_DUMMY_WRITTEN_PAGE(page)			\
216 		(page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE)
217 
218 struct inmem_pages {
219 	struct list_head list;
220 	struct page *page;
221 	block_t old_addr;		/* for revoking when fail to commit */
222 };
223 
224 struct sit_info {
225 	const struct segment_allocation *s_ops;
226 
227 	block_t sit_base_addr;		/* start block address of SIT area */
228 	block_t sit_blocks;		/* # of blocks used by SIT area */
229 	block_t written_valid_blocks;	/* # of valid blocks in main area */
230 	char *sit_bitmap;		/* SIT bitmap pointer */
231 #ifdef CONFIG_F2FS_CHECK_FS
232 	char *sit_bitmap_mir;		/* SIT bitmap mirror */
233 #endif
234 	unsigned int bitmap_size;	/* SIT bitmap size */
235 
236 	unsigned long *tmp_map;			/* bitmap for temporal use */
237 	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
238 	unsigned int dirty_sentries;		/* # of dirty sentries */
239 	unsigned int sents_per_block;		/* # of SIT entries per block */
240 	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
241 	struct seg_entry *sentries;		/* SIT segment-level cache */
242 	struct sec_entry *sec_entries;		/* SIT section-level cache */
243 
244 	/* for cost-benefit algorithm in cleaning procedure */
245 	unsigned long long elapsed_time;	/* elapsed time after mount */
246 	unsigned long long mounted_time;	/* mount time */
247 	unsigned long long min_mtime;		/* min. modification time */
248 	unsigned long long max_mtime;		/* max. modification time */
249 
250 	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
251 };
252 
253 struct free_segmap_info {
254 	unsigned int start_segno;	/* start segment number logically */
255 	unsigned int free_segments;	/* # of free segments */
256 	unsigned int free_sections;	/* # of free sections */
257 	spinlock_t segmap_lock;		/* free segmap lock */
258 	unsigned long *free_segmap;	/* free segment bitmap */
259 	unsigned long *free_secmap;	/* free section bitmap */
260 };
261 
262 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
263 enum dirty_type {
264 	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
265 	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
266 	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
267 	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
268 	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
269 	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
270 	DIRTY,			/* to count # of dirty segments */
271 	PRE,			/* to count # of entirely obsolete segments */
272 	NR_DIRTY_TYPE
273 };
274 
275 struct dirty_seglist_info {
276 	const struct victim_selection *v_ops;	/* victim selction operation */
277 	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
278 	struct mutex seglist_lock;		/* lock for segment bitmaps */
279 	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
280 	unsigned long *victim_secmap;		/* background GC victims */
281 };
282 
283 /* victim selection function for cleaning and SSR */
284 struct victim_selection {
285 	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
286 							int, int, char);
287 };
288 
289 /* for active log information */
290 struct curseg_info {
291 	struct mutex curseg_mutex;		/* lock for consistency */
292 	struct f2fs_summary_block *sum_blk;	/* cached summary block */
293 	struct rw_semaphore journal_rwsem;	/* protect journal area */
294 	struct f2fs_journal *journal;		/* cached journal info */
295 	unsigned char alloc_type;		/* current allocation type */
296 	unsigned int segno;			/* current segment number */
297 	unsigned short next_blkoff;		/* next block offset to write */
298 	unsigned int zone;			/* current zone number */
299 	unsigned int next_segno;		/* preallocated segment */
300 };
301 
302 struct sit_entry_set {
303 	struct list_head set_list;	/* link with all sit sets */
304 	unsigned int start_segno;	/* start segno of sits in set */
305 	unsigned int entry_cnt;		/* the # of sit entries in set */
306 };
307 
308 /*
309  * inline functions
310  */
311 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
312 {
313 	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
314 }
315 
316 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
317 						unsigned int segno)
318 {
319 	struct sit_info *sit_i = SIT_I(sbi);
320 	return &sit_i->sentries[segno];
321 }
322 
323 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
324 						unsigned int segno)
325 {
326 	struct sit_info *sit_i = SIT_I(sbi);
327 	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
328 }
329 
330 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
331 				unsigned int segno, bool use_section)
332 {
333 	/*
334 	 * In order to get # of valid blocks in a section instantly from many
335 	 * segments, f2fs manages two counting structures separately.
336 	 */
337 	if (use_section && sbi->segs_per_sec > 1)
338 		return get_sec_entry(sbi, segno)->valid_blocks;
339 	else
340 		return get_seg_entry(sbi, segno)->valid_blocks;
341 }
342 
343 static inline void seg_info_from_raw_sit(struct seg_entry *se,
344 					struct f2fs_sit_entry *rs)
345 {
346 	se->valid_blocks = GET_SIT_VBLOCKS(rs);
347 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
348 	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
349 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
350 #ifdef CONFIG_F2FS_CHECK_FS
351 	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
352 #endif
353 	se->type = GET_SIT_TYPE(rs);
354 	se->mtime = le64_to_cpu(rs->mtime);
355 }
356 
357 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
358 					struct f2fs_sit_entry *rs)
359 {
360 	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
361 					se->valid_blocks;
362 	rs->vblocks = cpu_to_le16(raw_vblocks);
363 	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
364 	rs->mtime = cpu_to_le64(se->mtime);
365 }
366 
367 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
368 				struct page *page, unsigned int start)
369 {
370 	struct f2fs_sit_block *raw_sit;
371 	struct seg_entry *se;
372 	struct f2fs_sit_entry *rs;
373 	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
374 					(unsigned long)MAIN_SEGS(sbi));
375 	int i;
376 
377 	raw_sit = (struct f2fs_sit_block *)page_address(page);
378 	for (i = 0; i < end - start; i++) {
379 		rs = &raw_sit->entries[i];
380 		se = get_seg_entry(sbi, start + i);
381 		__seg_info_to_raw_sit(se, rs);
382 	}
383 }
384 
385 static inline void seg_info_to_raw_sit(struct seg_entry *se,
386 					struct f2fs_sit_entry *rs)
387 {
388 	__seg_info_to_raw_sit(se, rs);
389 
390 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
391 	se->ckpt_valid_blocks = se->valid_blocks;
392 }
393 
394 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
395 		unsigned int max, unsigned int segno)
396 {
397 	unsigned int ret;
398 	spin_lock(&free_i->segmap_lock);
399 	ret = find_next_bit(free_i->free_segmap, max, segno);
400 	spin_unlock(&free_i->segmap_lock);
401 	return ret;
402 }
403 
404 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
405 {
406 	struct free_segmap_info *free_i = FREE_I(sbi);
407 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
408 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
409 	unsigned int next;
410 
411 	spin_lock(&free_i->segmap_lock);
412 	clear_bit(segno, free_i->free_segmap);
413 	free_i->free_segments++;
414 
415 	next = find_next_bit(free_i->free_segmap,
416 			start_segno + sbi->segs_per_sec, start_segno);
417 	if (next >= start_segno + sbi->segs_per_sec) {
418 		clear_bit(secno, free_i->free_secmap);
419 		free_i->free_sections++;
420 	}
421 	spin_unlock(&free_i->segmap_lock);
422 }
423 
424 static inline void __set_inuse(struct f2fs_sb_info *sbi,
425 		unsigned int segno)
426 {
427 	struct free_segmap_info *free_i = FREE_I(sbi);
428 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
429 
430 	set_bit(segno, free_i->free_segmap);
431 	free_i->free_segments--;
432 	if (!test_and_set_bit(secno, free_i->free_secmap))
433 		free_i->free_sections--;
434 }
435 
436 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
437 		unsigned int segno)
438 {
439 	struct free_segmap_info *free_i = FREE_I(sbi);
440 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
441 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
442 	unsigned int next;
443 
444 	spin_lock(&free_i->segmap_lock);
445 	if (test_and_clear_bit(segno, free_i->free_segmap)) {
446 		free_i->free_segments++;
447 
448 		next = find_next_bit(free_i->free_segmap,
449 				start_segno + sbi->segs_per_sec, start_segno);
450 		if (next >= start_segno + sbi->segs_per_sec) {
451 			if (test_and_clear_bit(secno, free_i->free_secmap))
452 				free_i->free_sections++;
453 		}
454 	}
455 	spin_unlock(&free_i->segmap_lock);
456 }
457 
458 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
459 		unsigned int segno)
460 {
461 	struct free_segmap_info *free_i = FREE_I(sbi);
462 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
463 
464 	spin_lock(&free_i->segmap_lock);
465 	if (!test_and_set_bit(segno, free_i->free_segmap)) {
466 		free_i->free_segments--;
467 		if (!test_and_set_bit(secno, free_i->free_secmap))
468 			free_i->free_sections--;
469 	}
470 	spin_unlock(&free_i->segmap_lock);
471 }
472 
473 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
474 		void *dst_addr)
475 {
476 	struct sit_info *sit_i = SIT_I(sbi);
477 
478 #ifdef CONFIG_F2FS_CHECK_FS
479 	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
480 						sit_i->bitmap_size))
481 		f2fs_bug_on(sbi, 1);
482 #endif
483 	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
484 }
485 
486 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
487 {
488 	return SIT_I(sbi)->written_valid_blocks;
489 }
490 
491 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
492 {
493 	return FREE_I(sbi)->free_segments;
494 }
495 
496 static inline int reserved_segments(struct f2fs_sb_info *sbi)
497 {
498 	return SM_I(sbi)->reserved_segments;
499 }
500 
501 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
502 {
503 	return FREE_I(sbi)->free_sections;
504 }
505 
506 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
507 {
508 	return DIRTY_I(sbi)->nr_dirty[PRE];
509 }
510 
511 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
512 {
513 	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
514 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
515 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
516 		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
517 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
518 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
519 }
520 
521 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
522 {
523 	return SM_I(sbi)->ovp_segments;
524 }
525 
526 static inline int reserved_sections(struct f2fs_sb_info *sbi)
527 {
528 	return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi));
529 }
530 
531 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
532 {
533 	unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
534 					get_pages(sbi, F2FS_DIRTY_DENTS);
535 	unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
536 	unsigned int segno, left_blocks;
537 	int i;
538 
539 	/* check current node segment */
540 	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
541 		segno = CURSEG_I(sbi, i)->segno;
542 		left_blocks = sbi->blocks_per_seg -
543 			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
544 
545 		if (node_blocks > left_blocks)
546 			return false;
547 	}
548 
549 	/* check current data segment */
550 	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
551 	left_blocks = sbi->blocks_per_seg -
552 			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
553 	if (dent_blocks > left_blocks)
554 		return false;
555 	return true;
556 }
557 
558 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
559 					int freed, int needed)
560 {
561 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
562 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
563 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
564 
565 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
566 		return false;
567 
568 	if (free_sections(sbi) + freed == reserved_sections(sbi) + needed &&
569 			has_curseg_enough_space(sbi))
570 		return false;
571 	return (free_sections(sbi) + freed) <=
572 		(node_secs + 2 * dent_secs + imeta_secs +
573 		reserved_sections(sbi) + needed);
574 }
575 
576 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
577 {
578 	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
579 }
580 
581 static inline int utilization(struct f2fs_sb_info *sbi)
582 {
583 	return div_u64((u64)valid_user_blocks(sbi) * 100,
584 					sbi->user_block_count);
585 }
586 
587 /*
588  * Sometimes f2fs may be better to drop out-of-place update policy.
589  * And, users can control the policy through sysfs entries.
590  * There are five policies with triggering conditions as follows.
591  * F2FS_IPU_FORCE - all the time,
592  * F2FS_IPU_SSR - if SSR mode is activated,
593  * F2FS_IPU_UTIL - if FS utilization is over threashold,
594  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
595  *                     threashold,
596  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
597  *                     storages. IPU will be triggered only if the # of dirty
598  *                     pages over min_fsync_blocks.
599  * F2FS_IPUT_DISABLE - disable IPU. (=default option)
600  */
601 #define DEF_MIN_IPU_UTIL	70
602 #define DEF_MIN_FSYNC_BLOCKS	8
603 #define DEF_MIN_HOT_BLOCKS	16
604 
605 #define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
606 
607 enum {
608 	F2FS_IPU_FORCE,
609 	F2FS_IPU_SSR,
610 	F2FS_IPU_UTIL,
611 	F2FS_IPU_SSR_UTIL,
612 	F2FS_IPU_FSYNC,
613 	F2FS_IPU_ASYNC,
614 };
615 
616 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
617 		int type)
618 {
619 	struct curseg_info *curseg = CURSEG_I(sbi, type);
620 	return curseg->segno;
621 }
622 
623 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
624 		int type)
625 {
626 	struct curseg_info *curseg = CURSEG_I(sbi, type);
627 	return curseg->alloc_type;
628 }
629 
630 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
631 {
632 	struct curseg_info *curseg = CURSEG_I(sbi, type);
633 	return curseg->next_blkoff;
634 }
635 
636 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
637 {
638 	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
639 }
640 
641 static inline void verify_block_addr(struct f2fs_io_info *fio, block_t blk_addr)
642 {
643 	struct f2fs_sb_info *sbi = fio->sbi;
644 
645 	if (PAGE_TYPE_OF_BIO(fio->type) == META &&
646 				(!is_read_io(fio->op) || fio->is_meta))
647 		BUG_ON(blk_addr < SEG0_BLKADDR(sbi) ||
648 				blk_addr >= MAIN_BLKADDR(sbi));
649 	else
650 		BUG_ON(blk_addr < MAIN_BLKADDR(sbi) ||
651 				blk_addr >= MAX_BLKADDR(sbi));
652 }
653 
654 /*
655  * Summary block is always treated as an invalid block
656  */
657 static inline int check_block_count(struct f2fs_sb_info *sbi,
658 		int segno, struct f2fs_sit_entry *raw_sit)
659 {
660 #ifdef CONFIG_F2FS_CHECK_FS
661 	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
662 	int valid_blocks = 0;
663 	int cur_pos = 0, next_pos;
664 
665 	/* check bitmap with valid block count */
666 	do {
667 		if (is_valid) {
668 			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
669 					sbi->blocks_per_seg,
670 					cur_pos);
671 			valid_blocks += next_pos - cur_pos;
672 		} else
673 			next_pos = find_next_bit_le(&raw_sit->valid_map,
674 					sbi->blocks_per_seg,
675 					cur_pos);
676 		cur_pos = next_pos;
677 		is_valid = !is_valid;
678 	} while (cur_pos < sbi->blocks_per_seg);
679 
680 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
681 		f2fs_msg(sbi->sb, KERN_ERR,
682 				"Mismatch valid blocks %d vs. %d",
683 					GET_SIT_VBLOCKS(raw_sit), valid_blocks);
684 		set_sbi_flag(sbi, SBI_NEED_FSCK);
685 		return -EINVAL;
686 	}
687 #endif
688 	/* check segment usage, and check boundary of a given segment number */
689 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
690 					|| segno > TOTAL_SEGS(sbi) - 1)) {
691 		f2fs_msg(sbi->sb, KERN_ERR,
692 				"Wrong valid blocks %d or segno %u",
693 					GET_SIT_VBLOCKS(raw_sit), segno);
694 		set_sbi_flag(sbi, SBI_NEED_FSCK);
695 		return -EINVAL;
696 	}
697 	return 0;
698 }
699 
700 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
701 						unsigned int start)
702 {
703 	struct sit_info *sit_i = SIT_I(sbi);
704 	unsigned int offset = SIT_BLOCK_OFFSET(start);
705 	block_t blk_addr = sit_i->sit_base_addr + offset;
706 
707 	check_seg_range(sbi, start);
708 
709 #ifdef CONFIG_F2FS_CHECK_FS
710 	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
711 			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
712 		f2fs_bug_on(sbi, 1);
713 #endif
714 
715 	/* calculate sit block address */
716 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
717 		blk_addr += sit_i->sit_blocks;
718 
719 	return blk_addr;
720 }
721 
722 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
723 						pgoff_t block_addr)
724 {
725 	struct sit_info *sit_i = SIT_I(sbi);
726 	block_addr -= sit_i->sit_base_addr;
727 	if (block_addr < sit_i->sit_blocks)
728 		block_addr += sit_i->sit_blocks;
729 	else
730 		block_addr -= sit_i->sit_blocks;
731 
732 	return block_addr + sit_i->sit_base_addr;
733 }
734 
735 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
736 {
737 	unsigned int block_off = SIT_BLOCK_OFFSET(start);
738 
739 	f2fs_change_bit(block_off, sit_i->sit_bitmap);
740 #ifdef CONFIG_F2FS_CHECK_FS
741 	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
742 #endif
743 }
744 
745 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi)
746 {
747 	struct sit_info *sit_i = SIT_I(sbi);
748 	time64_t now = ktime_get_real_seconds();
749 
750 	return sit_i->elapsed_time + now - sit_i->mounted_time;
751 }
752 
753 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
754 			unsigned int ofs_in_node, unsigned char version)
755 {
756 	sum->nid = cpu_to_le32(nid);
757 	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
758 	sum->version = version;
759 }
760 
761 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
762 {
763 	return __start_cp_addr(sbi) +
764 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
765 }
766 
767 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
768 {
769 	return __start_cp_addr(sbi) +
770 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
771 				- (base + 1) + type;
772 }
773 
774 static inline bool no_fggc_candidate(struct f2fs_sb_info *sbi,
775 						unsigned int secno)
776 {
777 	if (get_valid_blocks(sbi, GET_SEG_FROM_SEC(sbi, secno), true) >
778 						sbi->fggc_threshold)
779 		return true;
780 	return false;
781 }
782 
783 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
784 {
785 	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
786 		return true;
787 	return false;
788 }
789 
790 /*
791  * It is very important to gather dirty pages and write at once, so that we can
792  * submit a big bio without interfering other data writes.
793  * By default, 512 pages for directory data,
794  * 512 pages (2MB) * 8 for nodes, and
795  * 256 pages * 8 for meta are set.
796  */
797 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
798 {
799 	if (sbi->sb->s_bdi->wb.dirty_exceeded)
800 		return 0;
801 
802 	if (type == DATA)
803 		return sbi->blocks_per_seg;
804 	else if (type == NODE)
805 		return 8 * sbi->blocks_per_seg;
806 	else if (type == META)
807 		return 8 * BIO_MAX_PAGES;
808 	else
809 		return 0;
810 }
811 
812 /*
813  * When writing pages, it'd better align nr_to_write for segment size.
814  */
815 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
816 					struct writeback_control *wbc)
817 {
818 	long nr_to_write, desired;
819 
820 	if (wbc->sync_mode != WB_SYNC_NONE)
821 		return 0;
822 
823 	nr_to_write = wbc->nr_to_write;
824 	desired = BIO_MAX_PAGES;
825 	if (type == NODE)
826 		desired <<= 1;
827 
828 	wbc->nr_to_write = desired;
829 	return desired - nr_to_write;
830 }
831 
832 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
833 {
834 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
835 	bool wakeup = false;
836 	int i;
837 
838 	if (force)
839 		goto wake_up;
840 
841 	mutex_lock(&dcc->cmd_lock);
842 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
843 		if (i + 1 < dcc->discard_granularity)
844 			break;
845 		if (!list_empty(&dcc->pend_list[i])) {
846 			wakeup = true;
847 			break;
848 		}
849 	}
850 	mutex_unlock(&dcc->cmd_lock);
851 	if (!wakeup)
852 		return;
853 wake_up:
854 	dcc->discard_wake = 1;
855 	wake_up_interruptible_all(&dcc->discard_wait_queue);
856 }
857