xref: /openbmc/linux/fs/f2fs/segment.h (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3  * fs/f2fs/segment.h
4  *
5  * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6  *             http://www.samsung.com/
7  */
8 #include <linux/blkdev.h>
9 #include <linux/backing-dev.h>
10 
11 /* constant macro */
12 #define NULL_SEGNO			((unsigned int)(~0))
13 #define NULL_SECNO			((unsigned int)(~0))
14 
15 #define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
16 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
17 
18 #define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19 
20 /* L: Logical segment # in volume, R: Relative segment # in main area */
21 #define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
22 #define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
23 
24 #define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
25 #define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE)
26 
27 #define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
28 #define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
29 #define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
30 
31 #define IS_CURSEG(sbi, seg)						\
32 	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
33 	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
34 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
35 	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
36 	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
37 	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno))
38 
39 #define IS_CURSEC(sbi, secno)						\
40 	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
41 	  (sbi)->segs_per_sec) ||	\
42 	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
43 	  (sbi)->segs_per_sec) ||	\
44 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
45 	  (sbi)->segs_per_sec) ||	\
46 	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
47 	  (sbi)->segs_per_sec) ||	\
48 	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
49 	  (sbi)->segs_per_sec) ||	\
50 	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
51 	  (sbi)->segs_per_sec))	\
52 
53 #define MAIN_BLKADDR(sbi)						\
54 	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
55 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
56 #define SEG0_BLKADDR(sbi)						\
57 	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
58 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
59 
60 #define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
61 #define MAIN_SECS(sbi)	((sbi)->total_sections)
62 
63 #define TOTAL_SEGS(sbi)							\
64 	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
65 		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
66 #define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
67 
68 #define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
69 #define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
70 					(sbi)->log_blocks_per_seg))
71 
72 #define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
73 	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
74 
75 #define NEXT_FREE_BLKADDR(sbi, curseg)					\
76 	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
77 
78 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
79 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
80 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
81 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
82 	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
83 
84 #define GET_SEGNO(sbi, blk_addr)					\
85 	((!__is_valid_data_blkaddr(blk_addr)) ?			\
86 	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
87 		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
88 #define BLKS_PER_SEC(sbi)					\
89 	((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
90 #define GET_SEC_FROM_SEG(sbi, segno)				\
91 	((segno) / (sbi)->segs_per_sec)
92 #define GET_SEG_FROM_SEC(sbi, secno)				\
93 	((secno) * (sbi)->segs_per_sec)
94 #define GET_ZONE_FROM_SEC(sbi, secno)				\
95 	((secno) / (sbi)->secs_per_zone)
96 #define GET_ZONE_FROM_SEG(sbi, segno)				\
97 	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
98 
99 #define GET_SUM_BLOCK(sbi, segno)				\
100 	((sbi)->sm_info->ssa_blkaddr + (segno))
101 
102 #define GET_SUM_TYPE(footer) ((footer)->entry_type)
103 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
104 
105 #define SIT_ENTRY_OFFSET(sit_i, segno)					\
106 	((segno) % (sit_i)->sents_per_block)
107 #define SIT_BLOCK_OFFSET(segno)					\
108 	((segno) / SIT_ENTRY_PER_BLOCK)
109 #define	START_SEGNO(segno)		\
110 	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
111 #define SIT_BLK_CNT(sbi)			\
112 	DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
113 #define f2fs_bitmap_size(nr)			\
114 	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
115 
116 #define SECTOR_FROM_BLOCK(blk_addr)					\
117 	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
118 #define SECTOR_TO_BLOCK(sectors)					\
119 	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
120 
121 /*
122  * indicate a block allocation direction: RIGHT and LEFT.
123  * RIGHT means allocating new sections towards the end of volume.
124  * LEFT means the opposite direction.
125  */
126 enum {
127 	ALLOC_RIGHT = 0,
128 	ALLOC_LEFT
129 };
130 
131 /*
132  * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
133  * LFS writes data sequentially with cleaning operations.
134  * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
135  */
136 enum {
137 	LFS = 0,
138 	SSR
139 };
140 
141 /*
142  * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
143  * GC_CB is based on cost-benefit algorithm.
144  * GC_GREEDY is based on greedy algorithm.
145  */
146 enum {
147 	GC_CB = 0,
148 	GC_GREEDY,
149 	ALLOC_NEXT,
150 	FLUSH_DEVICE,
151 	MAX_GC_POLICY,
152 };
153 
154 /*
155  * BG_GC means the background cleaning job.
156  * FG_GC means the on-demand cleaning job.
157  * FORCE_FG_GC means on-demand cleaning job in background.
158  */
159 enum {
160 	BG_GC = 0,
161 	FG_GC,
162 	FORCE_FG_GC,
163 };
164 
165 /* for a function parameter to select a victim segment */
166 struct victim_sel_policy {
167 	int alloc_mode;			/* LFS or SSR */
168 	int gc_mode;			/* GC_CB or GC_GREEDY */
169 	unsigned long *dirty_bitmap;	/* dirty segment/section bitmap */
170 	unsigned int max_search;	/*
171 					 * maximum # of segments/sections
172 					 * to search
173 					 */
174 	unsigned int offset;		/* last scanned bitmap offset */
175 	unsigned int ofs_unit;		/* bitmap search unit */
176 	unsigned int min_cost;		/* minimum cost */
177 	unsigned int min_segno;		/* segment # having min. cost */
178 };
179 
180 struct seg_entry {
181 	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
182 	unsigned int valid_blocks:10;	/* # of valid blocks */
183 	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
184 	unsigned int padding:6;		/* padding */
185 	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
186 #ifdef CONFIG_F2FS_CHECK_FS
187 	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
188 #endif
189 	/*
190 	 * # of valid blocks and the validity bitmap stored in the last
191 	 * checkpoint pack. This information is used by the SSR mode.
192 	 */
193 	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
194 	unsigned char *discard_map;
195 	unsigned long long mtime;	/* modification time of the segment */
196 };
197 
198 struct sec_entry {
199 	unsigned int valid_blocks;	/* # of valid blocks in a section */
200 };
201 
202 struct segment_allocation {
203 	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
204 };
205 
206 #define MAX_SKIP_GC_COUNT			16
207 
208 struct inmem_pages {
209 	struct list_head list;
210 	struct page *page;
211 	block_t old_addr;		/* for revoking when fail to commit */
212 };
213 
214 struct sit_info {
215 	const struct segment_allocation *s_ops;
216 
217 	block_t sit_base_addr;		/* start block address of SIT area */
218 	block_t sit_blocks;		/* # of blocks used by SIT area */
219 	block_t written_valid_blocks;	/* # of valid blocks in main area */
220 	char *bitmap;			/* all bitmaps pointer */
221 	char *sit_bitmap;		/* SIT bitmap pointer */
222 #ifdef CONFIG_F2FS_CHECK_FS
223 	char *sit_bitmap_mir;		/* SIT bitmap mirror */
224 
225 	/* bitmap of segments to be ignored by GC in case of errors */
226 	unsigned long *invalid_segmap;
227 #endif
228 	unsigned int bitmap_size;	/* SIT bitmap size */
229 
230 	unsigned long *tmp_map;			/* bitmap for temporal use */
231 	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
232 	unsigned int dirty_sentries;		/* # of dirty sentries */
233 	unsigned int sents_per_block;		/* # of SIT entries per block */
234 	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
235 	struct seg_entry *sentries;		/* SIT segment-level cache */
236 	struct sec_entry *sec_entries;		/* SIT section-level cache */
237 
238 	/* for cost-benefit algorithm in cleaning procedure */
239 	unsigned long long elapsed_time;	/* elapsed time after mount */
240 	unsigned long long mounted_time;	/* mount time */
241 	unsigned long long min_mtime;		/* min. modification time */
242 	unsigned long long max_mtime;		/* max. modification time */
243 
244 	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
245 };
246 
247 struct free_segmap_info {
248 	unsigned int start_segno;	/* start segment number logically */
249 	unsigned int free_segments;	/* # of free segments */
250 	unsigned int free_sections;	/* # of free sections */
251 	spinlock_t segmap_lock;		/* free segmap lock */
252 	unsigned long *free_segmap;	/* free segment bitmap */
253 	unsigned long *free_secmap;	/* free section bitmap */
254 };
255 
256 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
257 enum dirty_type {
258 	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
259 	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
260 	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
261 	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
262 	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
263 	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
264 	DIRTY,			/* to count # of dirty segments */
265 	PRE,			/* to count # of entirely obsolete segments */
266 	NR_DIRTY_TYPE
267 };
268 
269 struct dirty_seglist_info {
270 	const struct victim_selection *v_ops;	/* victim selction operation */
271 	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
272 	unsigned long *dirty_secmap;
273 	struct mutex seglist_lock;		/* lock for segment bitmaps */
274 	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
275 	unsigned long *victim_secmap;		/* background GC victims */
276 };
277 
278 /* victim selection function for cleaning and SSR */
279 struct victim_selection {
280 	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
281 							int, int, char);
282 };
283 
284 /* for active log information */
285 struct curseg_info {
286 	struct mutex curseg_mutex;		/* lock for consistency */
287 	struct f2fs_summary_block *sum_blk;	/* cached summary block */
288 	struct rw_semaphore journal_rwsem;	/* protect journal area */
289 	struct f2fs_journal *journal;		/* cached journal info */
290 	unsigned char alloc_type;		/* current allocation type */
291 	unsigned int segno;			/* current segment number */
292 	unsigned short next_blkoff;		/* next block offset to write */
293 	unsigned int zone;			/* current zone number */
294 	unsigned int next_segno;		/* preallocated segment */
295 };
296 
297 struct sit_entry_set {
298 	struct list_head set_list;	/* link with all sit sets */
299 	unsigned int start_segno;	/* start segno of sits in set */
300 	unsigned int entry_cnt;		/* the # of sit entries in set */
301 };
302 
303 /*
304  * inline functions
305  */
306 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
307 {
308 	if (type == CURSEG_COLD_DATA_PINNED)
309 		type = CURSEG_COLD_DATA;
310 	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
311 }
312 
313 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
314 						unsigned int segno)
315 {
316 	struct sit_info *sit_i = SIT_I(sbi);
317 	return &sit_i->sentries[segno];
318 }
319 
320 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
321 						unsigned int segno)
322 {
323 	struct sit_info *sit_i = SIT_I(sbi);
324 	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
325 }
326 
327 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
328 				unsigned int segno, bool use_section)
329 {
330 	/*
331 	 * In order to get # of valid blocks in a section instantly from many
332 	 * segments, f2fs manages two counting structures separately.
333 	 */
334 	if (use_section && __is_large_section(sbi))
335 		return get_sec_entry(sbi, segno)->valid_blocks;
336 	else
337 		return get_seg_entry(sbi, segno)->valid_blocks;
338 }
339 
340 static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
341 				unsigned int segno)
342 {
343 	return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
344 }
345 
346 static inline void seg_info_from_raw_sit(struct seg_entry *se,
347 					struct f2fs_sit_entry *rs)
348 {
349 	se->valid_blocks = GET_SIT_VBLOCKS(rs);
350 	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
351 	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
352 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
353 #ifdef CONFIG_F2FS_CHECK_FS
354 	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
355 #endif
356 	se->type = GET_SIT_TYPE(rs);
357 	se->mtime = le64_to_cpu(rs->mtime);
358 }
359 
360 static inline void __seg_info_to_raw_sit(struct seg_entry *se,
361 					struct f2fs_sit_entry *rs)
362 {
363 	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
364 					se->valid_blocks;
365 	rs->vblocks = cpu_to_le16(raw_vblocks);
366 	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
367 	rs->mtime = cpu_to_le64(se->mtime);
368 }
369 
370 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
371 				struct page *page, unsigned int start)
372 {
373 	struct f2fs_sit_block *raw_sit;
374 	struct seg_entry *se;
375 	struct f2fs_sit_entry *rs;
376 	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
377 					(unsigned long)MAIN_SEGS(sbi));
378 	int i;
379 
380 	raw_sit = (struct f2fs_sit_block *)page_address(page);
381 	memset(raw_sit, 0, PAGE_SIZE);
382 	for (i = 0; i < end - start; i++) {
383 		rs = &raw_sit->entries[i];
384 		se = get_seg_entry(sbi, start + i);
385 		__seg_info_to_raw_sit(se, rs);
386 	}
387 }
388 
389 static inline void seg_info_to_raw_sit(struct seg_entry *se,
390 					struct f2fs_sit_entry *rs)
391 {
392 	__seg_info_to_raw_sit(se, rs);
393 
394 	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
395 	se->ckpt_valid_blocks = se->valid_blocks;
396 }
397 
398 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
399 		unsigned int max, unsigned int segno)
400 {
401 	unsigned int ret;
402 	spin_lock(&free_i->segmap_lock);
403 	ret = find_next_bit(free_i->free_segmap, max, segno);
404 	spin_unlock(&free_i->segmap_lock);
405 	return ret;
406 }
407 
408 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
409 {
410 	struct free_segmap_info *free_i = FREE_I(sbi);
411 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
412 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
413 	unsigned int next;
414 
415 	spin_lock(&free_i->segmap_lock);
416 	clear_bit(segno, free_i->free_segmap);
417 	free_i->free_segments++;
418 
419 	next = find_next_bit(free_i->free_segmap,
420 			start_segno + sbi->segs_per_sec, start_segno);
421 	if (next >= start_segno + sbi->segs_per_sec) {
422 		clear_bit(secno, free_i->free_secmap);
423 		free_i->free_sections++;
424 	}
425 	spin_unlock(&free_i->segmap_lock);
426 }
427 
428 static inline void __set_inuse(struct f2fs_sb_info *sbi,
429 		unsigned int segno)
430 {
431 	struct free_segmap_info *free_i = FREE_I(sbi);
432 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
433 
434 	set_bit(segno, free_i->free_segmap);
435 	free_i->free_segments--;
436 	if (!test_and_set_bit(secno, free_i->free_secmap))
437 		free_i->free_sections--;
438 }
439 
440 static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
441 		unsigned int segno)
442 {
443 	struct free_segmap_info *free_i = FREE_I(sbi);
444 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
445 	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
446 	unsigned int next;
447 
448 	spin_lock(&free_i->segmap_lock);
449 	if (test_and_clear_bit(segno, free_i->free_segmap)) {
450 		free_i->free_segments++;
451 
452 		if (IS_CURSEC(sbi, secno))
453 			goto skip_free;
454 		next = find_next_bit(free_i->free_segmap,
455 				start_segno + sbi->segs_per_sec, start_segno);
456 		if (next >= start_segno + sbi->segs_per_sec) {
457 			if (test_and_clear_bit(secno, free_i->free_secmap))
458 				free_i->free_sections++;
459 		}
460 	}
461 skip_free:
462 	spin_unlock(&free_i->segmap_lock);
463 }
464 
465 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
466 		unsigned int segno)
467 {
468 	struct free_segmap_info *free_i = FREE_I(sbi);
469 	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
470 
471 	spin_lock(&free_i->segmap_lock);
472 	if (!test_and_set_bit(segno, free_i->free_segmap)) {
473 		free_i->free_segments--;
474 		if (!test_and_set_bit(secno, free_i->free_secmap))
475 			free_i->free_sections--;
476 	}
477 	spin_unlock(&free_i->segmap_lock);
478 }
479 
480 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
481 		void *dst_addr)
482 {
483 	struct sit_info *sit_i = SIT_I(sbi);
484 
485 #ifdef CONFIG_F2FS_CHECK_FS
486 	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
487 						sit_i->bitmap_size))
488 		f2fs_bug_on(sbi, 1);
489 #endif
490 	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
491 }
492 
493 static inline block_t written_block_count(struct f2fs_sb_info *sbi)
494 {
495 	return SIT_I(sbi)->written_valid_blocks;
496 }
497 
498 static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
499 {
500 	return FREE_I(sbi)->free_segments;
501 }
502 
503 static inline int reserved_segments(struct f2fs_sb_info *sbi)
504 {
505 	return SM_I(sbi)->reserved_segments;
506 }
507 
508 static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
509 {
510 	return FREE_I(sbi)->free_sections;
511 }
512 
513 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
514 {
515 	return DIRTY_I(sbi)->nr_dirty[PRE];
516 }
517 
518 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
519 {
520 	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
521 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
522 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
523 		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
524 		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
525 		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
526 }
527 
528 static inline int overprovision_segments(struct f2fs_sb_info *sbi)
529 {
530 	return SM_I(sbi)->ovp_segments;
531 }
532 
533 static inline int reserved_sections(struct f2fs_sb_info *sbi)
534 {
535 	return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi));
536 }
537 
538 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
539 {
540 	unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
541 					get_pages(sbi, F2FS_DIRTY_DENTS);
542 	unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
543 	unsigned int segno, left_blocks;
544 	int i;
545 
546 	/* check current node segment */
547 	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
548 		segno = CURSEG_I(sbi, i)->segno;
549 		left_blocks = sbi->blocks_per_seg -
550 			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
551 
552 		if (node_blocks > left_blocks)
553 			return false;
554 	}
555 
556 	/* check current data segment */
557 	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
558 	left_blocks = sbi->blocks_per_seg -
559 			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
560 	if (dent_blocks > left_blocks)
561 		return false;
562 	return true;
563 }
564 
565 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
566 					int freed, int needed)
567 {
568 	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
569 	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
570 	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
571 
572 	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
573 		return false;
574 
575 	if (free_sections(sbi) + freed == reserved_sections(sbi) + needed &&
576 			has_curseg_enough_space(sbi))
577 		return false;
578 	return (free_sections(sbi) + freed) <=
579 		(node_secs + 2 * dent_secs + imeta_secs +
580 		reserved_sections(sbi) + needed);
581 }
582 
583 static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
584 {
585 	if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
586 		return true;
587 	if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
588 		return true;
589 	return false;
590 }
591 
592 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
593 {
594 	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
595 }
596 
597 static inline int utilization(struct f2fs_sb_info *sbi)
598 {
599 	return div_u64((u64)valid_user_blocks(sbi) * 100,
600 					sbi->user_block_count);
601 }
602 
603 /*
604  * Sometimes f2fs may be better to drop out-of-place update policy.
605  * And, users can control the policy through sysfs entries.
606  * There are five policies with triggering conditions as follows.
607  * F2FS_IPU_FORCE - all the time,
608  * F2FS_IPU_SSR - if SSR mode is activated,
609  * F2FS_IPU_UTIL - if FS utilization is over threashold,
610  * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
611  *                     threashold,
612  * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
613  *                     storages. IPU will be triggered only if the # of dirty
614  *                     pages over min_fsync_blocks. (=default option)
615  * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
616  * F2FS_IPU_NOCACHE - disable IPU bio cache.
617  * F2FS_IPUT_DISABLE - disable IPU. (=default option in LFS mode)
618  */
619 #define DEF_MIN_IPU_UTIL	70
620 #define DEF_MIN_FSYNC_BLOCKS	8
621 #define DEF_MIN_HOT_BLOCKS	16
622 
623 #define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
624 
625 enum {
626 	F2FS_IPU_FORCE,
627 	F2FS_IPU_SSR,
628 	F2FS_IPU_UTIL,
629 	F2FS_IPU_SSR_UTIL,
630 	F2FS_IPU_FSYNC,
631 	F2FS_IPU_ASYNC,
632 	F2FS_IPU_NOCACHE,
633 };
634 
635 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
636 		int type)
637 {
638 	struct curseg_info *curseg = CURSEG_I(sbi, type);
639 	return curseg->segno;
640 }
641 
642 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
643 		int type)
644 {
645 	struct curseg_info *curseg = CURSEG_I(sbi, type);
646 	return curseg->alloc_type;
647 }
648 
649 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
650 {
651 	struct curseg_info *curseg = CURSEG_I(sbi, type);
652 	return curseg->next_blkoff;
653 }
654 
655 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
656 {
657 	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
658 }
659 
660 static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
661 {
662 	struct f2fs_sb_info *sbi = fio->sbi;
663 
664 	if (__is_valid_data_blkaddr(fio->old_blkaddr))
665 		verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
666 					META_GENERIC : DATA_GENERIC);
667 	verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
668 					META_GENERIC : DATA_GENERIC_ENHANCE);
669 }
670 
671 /*
672  * Summary block is always treated as an invalid block
673  */
674 static inline int check_block_count(struct f2fs_sb_info *sbi,
675 		int segno, struct f2fs_sit_entry *raw_sit)
676 {
677 	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
678 	int valid_blocks = 0;
679 	int cur_pos = 0, next_pos;
680 
681 	/* check bitmap with valid block count */
682 	do {
683 		if (is_valid) {
684 			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
685 					sbi->blocks_per_seg,
686 					cur_pos);
687 			valid_blocks += next_pos - cur_pos;
688 		} else
689 			next_pos = find_next_bit_le(&raw_sit->valid_map,
690 					sbi->blocks_per_seg,
691 					cur_pos);
692 		cur_pos = next_pos;
693 		is_valid = !is_valid;
694 	} while (cur_pos < sbi->blocks_per_seg);
695 
696 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
697 		f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
698 			 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
699 		set_sbi_flag(sbi, SBI_NEED_FSCK);
700 		return -EFSCORRUPTED;
701 	}
702 
703 	/* check segment usage, and check boundary of a given segment number */
704 	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg
705 					|| segno > TOTAL_SEGS(sbi) - 1)) {
706 		f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
707 			 GET_SIT_VBLOCKS(raw_sit), segno);
708 		set_sbi_flag(sbi, SBI_NEED_FSCK);
709 		return -EFSCORRUPTED;
710 	}
711 	return 0;
712 }
713 
714 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
715 						unsigned int start)
716 {
717 	struct sit_info *sit_i = SIT_I(sbi);
718 	unsigned int offset = SIT_BLOCK_OFFSET(start);
719 	block_t blk_addr = sit_i->sit_base_addr + offset;
720 
721 	check_seg_range(sbi, start);
722 
723 #ifdef CONFIG_F2FS_CHECK_FS
724 	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
725 			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
726 		f2fs_bug_on(sbi, 1);
727 #endif
728 
729 	/* calculate sit block address */
730 	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
731 		blk_addr += sit_i->sit_blocks;
732 
733 	return blk_addr;
734 }
735 
736 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
737 						pgoff_t block_addr)
738 {
739 	struct sit_info *sit_i = SIT_I(sbi);
740 	block_addr -= sit_i->sit_base_addr;
741 	if (block_addr < sit_i->sit_blocks)
742 		block_addr += sit_i->sit_blocks;
743 	else
744 		block_addr -= sit_i->sit_blocks;
745 
746 	return block_addr + sit_i->sit_base_addr;
747 }
748 
749 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
750 {
751 	unsigned int block_off = SIT_BLOCK_OFFSET(start);
752 
753 	f2fs_change_bit(block_off, sit_i->sit_bitmap);
754 #ifdef CONFIG_F2FS_CHECK_FS
755 	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
756 #endif
757 }
758 
759 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
760 						bool base_time)
761 {
762 	struct sit_info *sit_i = SIT_I(sbi);
763 	time64_t diff, now = ktime_get_boottime_seconds();
764 
765 	if (now >= sit_i->mounted_time)
766 		return sit_i->elapsed_time + now - sit_i->mounted_time;
767 
768 	/* system time is set to the past */
769 	if (!base_time) {
770 		diff = sit_i->mounted_time - now;
771 		if (sit_i->elapsed_time >= diff)
772 			return sit_i->elapsed_time - diff;
773 		return 0;
774 	}
775 	return sit_i->elapsed_time;
776 }
777 
778 static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
779 			unsigned int ofs_in_node, unsigned char version)
780 {
781 	sum->nid = cpu_to_le32(nid);
782 	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
783 	sum->version = version;
784 }
785 
786 static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
787 {
788 	return __start_cp_addr(sbi) +
789 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
790 }
791 
792 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
793 {
794 	return __start_cp_addr(sbi) +
795 		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
796 				- (base + 1) + type;
797 }
798 
799 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
800 {
801 	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
802 		return true;
803 	return false;
804 }
805 
806 /*
807  * It is very important to gather dirty pages and write at once, so that we can
808  * submit a big bio without interfering other data writes.
809  * By default, 512 pages for directory data,
810  * 512 pages (2MB) * 8 for nodes, and
811  * 256 pages * 8 for meta are set.
812  */
813 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
814 {
815 	if (sbi->sb->s_bdi->wb.dirty_exceeded)
816 		return 0;
817 
818 	if (type == DATA)
819 		return sbi->blocks_per_seg;
820 	else if (type == NODE)
821 		return 8 * sbi->blocks_per_seg;
822 	else if (type == META)
823 		return 8 * BIO_MAX_PAGES;
824 	else
825 		return 0;
826 }
827 
828 /*
829  * When writing pages, it'd better align nr_to_write for segment size.
830  */
831 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
832 					struct writeback_control *wbc)
833 {
834 	long nr_to_write, desired;
835 
836 	if (wbc->sync_mode != WB_SYNC_NONE)
837 		return 0;
838 
839 	nr_to_write = wbc->nr_to_write;
840 	desired = BIO_MAX_PAGES;
841 	if (type == NODE)
842 		desired <<= 1;
843 
844 	wbc->nr_to_write = desired;
845 	return desired - nr_to_write;
846 }
847 
848 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
849 {
850 	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
851 	bool wakeup = false;
852 	int i;
853 
854 	if (force)
855 		goto wake_up;
856 
857 	mutex_lock(&dcc->cmd_lock);
858 	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
859 		if (i + 1 < dcc->discard_granularity)
860 			break;
861 		if (!list_empty(&dcc->pend_list[i])) {
862 			wakeup = true;
863 			break;
864 		}
865 	}
866 	mutex_unlock(&dcc->cmd_lock);
867 	if (!wakeup || !is_idle(sbi, DISCARD_TIME))
868 		return;
869 wake_up:
870 	dcc->discard_wake = 1;
871 	wake_up_interruptible_all(&dcc->discard_wait_queue);
872 }
873