xref: /openbmc/linux/fs/f2fs/segment.h (revision 5497b23e)
1  /* SPDX-License-Identifier: GPL-2.0 */
2  /*
3   * fs/f2fs/segment.h
4   *
5   * Copyright (c) 2012 Samsung Electronics Co., Ltd.
6   *             http://www.samsung.com/
7   */
8  #include <linux/blkdev.h>
9  #include <linux/backing-dev.h>
10  
11  /* constant macro */
12  #define NULL_SEGNO			((unsigned int)(~0))
13  #define NULL_SECNO			((unsigned int)(~0))
14  
15  #define DEF_RECLAIM_PREFREE_SEGMENTS	5	/* 5% over total segments */
16  #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS	4096	/* 8GB in maximum */
17  
18  #define F2FS_MIN_SEGMENTS	9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */
19  #define F2FS_MIN_META_SEGMENTS	8 /* SB + 2 (CP + SIT + NAT) + SSA */
20  
21  /* L: Logical segment # in volume, R: Relative segment # in main area */
22  #define GET_L2R_SEGNO(free_i, segno)	((segno) - (free_i)->start_segno)
23  #define GET_R2L_SEGNO(free_i, segno)	((segno) + (free_i)->start_segno)
24  
25  #define IS_DATASEG(t)	((t) <= CURSEG_COLD_DATA)
26  #define IS_NODESEG(t)	((t) >= CURSEG_HOT_NODE && (t) <= CURSEG_COLD_NODE)
27  
28  static inline void sanity_check_seg_type(struct f2fs_sb_info *sbi,
29  						unsigned short seg_type)
30  {
31  	f2fs_bug_on(sbi, seg_type >= NR_PERSISTENT_LOG);
32  }
33  
34  #define IS_HOT(t)	((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA)
35  #define IS_WARM(t)	((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA)
36  #define IS_COLD(t)	((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA)
37  
38  #define IS_CURSEG(sbi, seg)						\
39  	(((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) ||	\
40  	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) ||	\
41  	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) ||	\
42  	 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) ||	\
43  	 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) ||	\
44  	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno) ||	\
45  	 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno) ||	\
46  	 ((seg) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno))
47  
48  #define IS_CURSEC(sbi, secno)						\
49  	(((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno /		\
50  	  (sbi)->segs_per_sec) ||	\
51  	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno /		\
52  	  (sbi)->segs_per_sec) ||	\
53  	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno /		\
54  	  (sbi)->segs_per_sec) ||	\
55  	 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno /		\
56  	  (sbi)->segs_per_sec) ||	\
57  	 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno /		\
58  	  (sbi)->segs_per_sec) ||	\
59  	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno /		\
60  	  (sbi)->segs_per_sec) ||	\
61  	 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA_PINNED)->segno /	\
62  	  (sbi)->segs_per_sec) ||	\
63  	 ((secno) == CURSEG_I(sbi, CURSEG_ALL_DATA_ATGC)->segno /	\
64  	  (sbi)->segs_per_sec))
65  
66  #define MAIN_BLKADDR(sbi)						\
67  	(SM_I(sbi) ? SM_I(sbi)->main_blkaddr : 				\
68  		le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr))
69  #define SEG0_BLKADDR(sbi)						\
70  	(SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : 				\
71  		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr))
72  
73  #define MAIN_SEGS(sbi)	(SM_I(sbi)->main_segments)
74  #define MAIN_SECS(sbi)	((sbi)->total_sections)
75  
76  #define TOTAL_SEGS(sbi)							\
77  	(SM_I(sbi) ? SM_I(sbi)->segment_count : 				\
78  		le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count))
79  #define TOTAL_BLKS(sbi)	(TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg)
80  
81  #define MAX_BLKADDR(sbi)	(SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi))
82  #define SEGMENT_SIZE(sbi)	(1ULL << ((sbi)->log_blocksize +	\
83  					(sbi)->log_blocks_per_seg))
84  
85  #define START_BLOCK(sbi, segno)	(SEG0_BLKADDR(sbi) +			\
86  	 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg))
87  
88  #define NEXT_FREE_BLKADDR(sbi, curseg)					\
89  	(START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff)
90  
91  #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr)	((blk_addr) - SEG0_BLKADDR(sbi))
92  #define GET_SEGNO_FROM_SEG0(sbi, blk_addr)				\
93  	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg)
94  #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr)				\
95  	(GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1))
96  
97  #define GET_SEGNO(sbi, blk_addr)					\
98  	((!__is_valid_data_blkaddr(blk_addr)) ?			\
99  	NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi),			\
100  		GET_SEGNO_FROM_SEG0(sbi, blk_addr)))
101  #define BLKS_PER_SEC(sbi)					\
102  	((sbi)->segs_per_sec * (sbi)->blocks_per_seg)
103  #define GET_SEC_FROM_SEG(sbi, segno)				\
104  	(((segno) == -1) ? -1: (segno) / (sbi)->segs_per_sec)
105  #define GET_SEG_FROM_SEC(sbi, secno)				\
106  	((secno) * (sbi)->segs_per_sec)
107  #define GET_ZONE_FROM_SEC(sbi, secno)				\
108  	(((secno) == -1) ? -1: (secno) / (sbi)->secs_per_zone)
109  #define GET_ZONE_FROM_SEG(sbi, segno)				\
110  	GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno))
111  
112  #define GET_SUM_BLOCK(sbi, segno)				\
113  	((sbi)->sm_info->ssa_blkaddr + (segno))
114  
115  #define GET_SUM_TYPE(footer) ((footer)->entry_type)
116  #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type))
117  
118  #define SIT_ENTRY_OFFSET(sit_i, segno)					\
119  	((segno) % (sit_i)->sents_per_block)
120  #define SIT_BLOCK_OFFSET(segno)					\
121  	((segno) / SIT_ENTRY_PER_BLOCK)
122  #define	START_SEGNO(segno)		\
123  	(SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK)
124  #define SIT_BLK_CNT(sbi)			\
125  	DIV_ROUND_UP(MAIN_SEGS(sbi), SIT_ENTRY_PER_BLOCK)
126  #define f2fs_bitmap_size(nr)			\
127  	(BITS_TO_LONGS(nr) * sizeof(unsigned long))
128  
129  #define SECTOR_FROM_BLOCK(blk_addr)					\
130  	(((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK)
131  #define SECTOR_TO_BLOCK(sectors)					\
132  	((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK)
133  
134  /*
135   * indicate a block allocation direction: RIGHT and LEFT.
136   * RIGHT means allocating new sections towards the end of volume.
137   * LEFT means the opposite direction.
138   */
139  enum {
140  	ALLOC_RIGHT = 0,
141  	ALLOC_LEFT
142  };
143  
144  /*
145   * In the victim_sel_policy->alloc_mode, there are two block allocation modes.
146   * LFS writes data sequentially with cleaning operations.
147   * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations.
148   * AT_SSR (Age Threshold based Slack Space Recycle) merges fragments into
149   * fragmented segment which has similar aging degree.
150   */
151  enum {
152  	LFS = 0,
153  	SSR,
154  	AT_SSR,
155  };
156  
157  /*
158   * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes.
159   * GC_CB is based on cost-benefit algorithm.
160   * GC_GREEDY is based on greedy algorithm.
161   * GC_AT is based on age-threshold algorithm.
162   */
163  enum {
164  	GC_CB = 0,
165  	GC_GREEDY,
166  	GC_AT,
167  	ALLOC_NEXT,
168  	FLUSH_DEVICE,
169  	MAX_GC_POLICY,
170  };
171  
172  /*
173   * BG_GC means the background cleaning job.
174   * FG_GC means the on-demand cleaning job.
175   * FORCE_FG_GC means on-demand cleaning job in background.
176   */
177  enum {
178  	BG_GC = 0,
179  	FG_GC,
180  	FORCE_FG_GC,
181  };
182  
183  /* for a function parameter to select a victim segment */
184  struct victim_sel_policy {
185  	int alloc_mode;			/* LFS or SSR */
186  	int gc_mode;			/* GC_CB or GC_GREEDY */
187  	unsigned long *dirty_bitmap;	/* dirty segment/section bitmap */
188  	unsigned int max_search;	/*
189  					 * maximum # of segments/sections
190  					 * to search
191  					 */
192  	unsigned int offset;		/* last scanned bitmap offset */
193  	unsigned int ofs_unit;		/* bitmap search unit */
194  	unsigned int min_cost;		/* minimum cost */
195  	unsigned long long oldest_age;	/* oldest age of segments having the same min cost */
196  	unsigned int min_segno;		/* segment # having min. cost */
197  	unsigned long long age;		/* mtime of GCed section*/
198  	unsigned long long age_threshold;/* age threshold */
199  };
200  
201  struct seg_entry {
202  	unsigned int type:6;		/* segment type like CURSEG_XXX_TYPE */
203  	unsigned int valid_blocks:10;	/* # of valid blocks */
204  	unsigned int ckpt_valid_blocks:10;	/* # of valid blocks last cp */
205  	unsigned int padding:6;		/* padding */
206  	unsigned char *cur_valid_map;	/* validity bitmap of blocks */
207  #ifdef CONFIG_F2FS_CHECK_FS
208  	unsigned char *cur_valid_map_mir;	/* mirror of current valid bitmap */
209  #endif
210  	/*
211  	 * # of valid blocks and the validity bitmap stored in the last
212  	 * checkpoint pack. This information is used by the SSR mode.
213  	 */
214  	unsigned char *ckpt_valid_map;	/* validity bitmap of blocks last cp */
215  	unsigned char *discard_map;
216  	unsigned long long mtime;	/* modification time of the segment */
217  };
218  
219  struct sec_entry {
220  	unsigned int valid_blocks;	/* # of valid blocks in a section */
221  };
222  
223  struct segment_allocation {
224  	void (*allocate_segment)(struct f2fs_sb_info *, int, bool);
225  };
226  
227  #define MAX_SKIP_GC_COUNT			16
228  
229  struct inmem_pages {
230  	struct list_head list;
231  	struct page *page;
232  	block_t old_addr;		/* for revoking when fail to commit */
233  };
234  
235  struct sit_info {
236  	const struct segment_allocation *s_ops;
237  
238  	block_t sit_base_addr;		/* start block address of SIT area */
239  	block_t sit_blocks;		/* # of blocks used by SIT area */
240  	block_t written_valid_blocks;	/* # of valid blocks in main area */
241  	char *bitmap;			/* all bitmaps pointer */
242  	char *sit_bitmap;		/* SIT bitmap pointer */
243  #ifdef CONFIG_F2FS_CHECK_FS
244  	char *sit_bitmap_mir;		/* SIT bitmap mirror */
245  
246  	/* bitmap of segments to be ignored by GC in case of errors */
247  	unsigned long *invalid_segmap;
248  #endif
249  	unsigned int bitmap_size;	/* SIT bitmap size */
250  
251  	unsigned long *tmp_map;			/* bitmap for temporal use */
252  	unsigned long *dirty_sentries_bitmap;	/* bitmap for dirty sentries */
253  	unsigned int dirty_sentries;		/* # of dirty sentries */
254  	unsigned int sents_per_block;		/* # of SIT entries per block */
255  	struct rw_semaphore sentry_lock;	/* to protect SIT cache */
256  	struct seg_entry *sentries;		/* SIT segment-level cache */
257  	struct sec_entry *sec_entries;		/* SIT section-level cache */
258  
259  	/* for cost-benefit algorithm in cleaning procedure */
260  	unsigned long long elapsed_time;	/* elapsed time after mount */
261  	unsigned long long mounted_time;	/* mount time */
262  	unsigned long long min_mtime;		/* min. modification time */
263  	unsigned long long max_mtime;		/* max. modification time */
264  	unsigned long long dirty_min_mtime;	/* rerange candidates in GC_AT */
265  	unsigned long long dirty_max_mtime;	/* rerange candidates in GC_AT */
266  
267  	unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */
268  };
269  
270  struct free_segmap_info {
271  	unsigned int start_segno;	/* start segment number logically */
272  	unsigned int free_segments;	/* # of free segments */
273  	unsigned int free_sections;	/* # of free sections */
274  	spinlock_t segmap_lock;		/* free segmap lock */
275  	unsigned long *free_segmap;	/* free segment bitmap */
276  	unsigned long *free_secmap;	/* free section bitmap */
277  };
278  
279  /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */
280  enum dirty_type {
281  	DIRTY_HOT_DATA,		/* dirty segments assigned as hot data logs */
282  	DIRTY_WARM_DATA,	/* dirty segments assigned as warm data logs */
283  	DIRTY_COLD_DATA,	/* dirty segments assigned as cold data logs */
284  	DIRTY_HOT_NODE,		/* dirty segments assigned as hot node logs */
285  	DIRTY_WARM_NODE,	/* dirty segments assigned as warm node logs */
286  	DIRTY_COLD_NODE,	/* dirty segments assigned as cold node logs */
287  	DIRTY,			/* to count # of dirty segments */
288  	PRE,			/* to count # of entirely obsolete segments */
289  	NR_DIRTY_TYPE
290  };
291  
292  struct dirty_seglist_info {
293  	const struct victim_selection *v_ops;	/* victim selction operation */
294  	unsigned long *dirty_segmap[NR_DIRTY_TYPE];
295  	unsigned long *dirty_secmap;
296  	struct mutex seglist_lock;		/* lock for segment bitmaps */
297  	int nr_dirty[NR_DIRTY_TYPE];		/* # of dirty segments */
298  	unsigned long *victim_secmap;		/* background GC victims */
299  };
300  
301  /* victim selection function for cleaning and SSR */
302  struct victim_selection {
303  	int (*get_victim)(struct f2fs_sb_info *, unsigned int *,
304  					int, int, char, unsigned long long);
305  };
306  
307  /* for active log information */
308  struct curseg_info {
309  	struct mutex curseg_mutex;		/* lock for consistency */
310  	struct f2fs_summary_block *sum_blk;	/* cached summary block */
311  	struct rw_semaphore journal_rwsem;	/* protect journal area */
312  	struct f2fs_journal *journal;		/* cached journal info */
313  	unsigned char alloc_type;		/* current allocation type */
314  	unsigned short seg_type;		/* segment type like CURSEG_XXX_TYPE */
315  	unsigned int segno;			/* current segment number */
316  	unsigned short next_blkoff;		/* next block offset to write */
317  	unsigned int zone;			/* current zone number */
318  	unsigned int next_segno;		/* preallocated segment */
319  	bool inited;				/* indicate inmem log is inited */
320  };
321  
322  struct sit_entry_set {
323  	struct list_head set_list;	/* link with all sit sets */
324  	unsigned int start_segno;	/* start segno of sits in set */
325  	unsigned int entry_cnt;		/* the # of sit entries in set */
326  };
327  
328  /*
329   * inline functions
330   */
331  static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type)
332  {
333  	return (struct curseg_info *)(SM_I(sbi)->curseg_array + type);
334  }
335  
336  static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi,
337  						unsigned int segno)
338  {
339  	struct sit_info *sit_i = SIT_I(sbi);
340  	return &sit_i->sentries[segno];
341  }
342  
343  static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi,
344  						unsigned int segno)
345  {
346  	struct sit_info *sit_i = SIT_I(sbi);
347  	return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)];
348  }
349  
350  static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi,
351  				unsigned int segno, bool use_section)
352  {
353  	/*
354  	 * In order to get # of valid blocks in a section instantly from many
355  	 * segments, f2fs manages two counting structures separately.
356  	 */
357  	if (use_section && __is_large_section(sbi))
358  		return get_sec_entry(sbi, segno)->valid_blocks;
359  	else
360  		return get_seg_entry(sbi, segno)->valid_blocks;
361  }
362  
363  static inline unsigned int get_ckpt_valid_blocks(struct f2fs_sb_info *sbi,
364  				unsigned int segno)
365  {
366  	return get_seg_entry(sbi, segno)->ckpt_valid_blocks;
367  }
368  
369  static inline void seg_info_from_raw_sit(struct seg_entry *se,
370  					struct f2fs_sit_entry *rs)
371  {
372  	se->valid_blocks = GET_SIT_VBLOCKS(rs);
373  	se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs);
374  	memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
375  	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
376  #ifdef CONFIG_F2FS_CHECK_FS
377  	memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
378  #endif
379  	se->type = GET_SIT_TYPE(rs);
380  	se->mtime = le64_to_cpu(rs->mtime);
381  }
382  
383  static inline void __seg_info_to_raw_sit(struct seg_entry *se,
384  					struct f2fs_sit_entry *rs)
385  {
386  	unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) |
387  					se->valid_blocks;
388  	rs->vblocks = cpu_to_le16(raw_vblocks);
389  	memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE);
390  	rs->mtime = cpu_to_le64(se->mtime);
391  }
392  
393  static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi,
394  				struct page *page, unsigned int start)
395  {
396  	struct f2fs_sit_block *raw_sit;
397  	struct seg_entry *se;
398  	struct f2fs_sit_entry *rs;
399  	unsigned int end = min(start + SIT_ENTRY_PER_BLOCK,
400  					(unsigned long)MAIN_SEGS(sbi));
401  	int i;
402  
403  	raw_sit = (struct f2fs_sit_block *)page_address(page);
404  	memset(raw_sit, 0, PAGE_SIZE);
405  	for (i = 0; i < end - start; i++) {
406  		rs = &raw_sit->entries[i];
407  		se = get_seg_entry(sbi, start + i);
408  		__seg_info_to_raw_sit(se, rs);
409  	}
410  }
411  
412  static inline void seg_info_to_raw_sit(struct seg_entry *se,
413  					struct f2fs_sit_entry *rs)
414  {
415  	__seg_info_to_raw_sit(se, rs);
416  
417  	memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE);
418  	se->ckpt_valid_blocks = se->valid_blocks;
419  }
420  
421  static inline unsigned int find_next_inuse(struct free_segmap_info *free_i,
422  		unsigned int max, unsigned int segno)
423  {
424  	unsigned int ret;
425  	spin_lock(&free_i->segmap_lock);
426  	ret = find_next_bit(free_i->free_segmap, max, segno);
427  	spin_unlock(&free_i->segmap_lock);
428  	return ret;
429  }
430  
431  static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno)
432  {
433  	struct free_segmap_info *free_i = FREE_I(sbi);
434  	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
435  	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
436  	unsigned int next;
437  	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
438  
439  	spin_lock(&free_i->segmap_lock);
440  	clear_bit(segno, free_i->free_segmap);
441  	free_i->free_segments++;
442  
443  	next = find_next_bit(free_i->free_segmap,
444  			start_segno + sbi->segs_per_sec, start_segno);
445  	if (next >= start_segno + usable_segs) {
446  		clear_bit(secno, free_i->free_secmap);
447  		free_i->free_sections++;
448  	}
449  	spin_unlock(&free_i->segmap_lock);
450  }
451  
452  static inline void __set_inuse(struct f2fs_sb_info *sbi,
453  		unsigned int segno)
454  {
455  	struct free_segmap_info *free_i = FREE_I(sbi);
456  	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
457  
458  	set_bit(segno, free_i->free_segmap);
459  	free_i->free_segments--;
460  	if (!test_and_set_bit(secno, free_i->free_secmap))
461  		free_i->free_sections--;
462  }
463  
464  static inline void __set_test_and_free(struct f2fs_sb_info *sbi,
465  		unsigned int segno, bool inmem)
466  {
467  	struct free_segmap_info *free_i = FREE_I(sbi);
468  	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
469  	unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno);
470  	unsigned int next;
471  	unsigned int usable_segs = f2fs_usable_segs_in_sec(sbi, segno);
472  
473  	spin_lock(&free_i->segmap_lock);
474  	if (test_and_clear_bit(segno, free_i->free_segmap)) {
475  		free_i->free_segments++;
476  
477  		if (!inmem && IS_CURSEC(sbi, secno))
478  			goto skip_free;
479  		next = find_next_bit(free_i->free_segmap,
480  				start_segno + sbi->segs_per_sec, start_segno);
481  		if (next >= start_segno + usable_segs) {
482  			if (test_and_clear_bit(secno, free_i->free_secmap))
483  				free_i->free_sections++;
484  		}
485  	}
486  skip_free:
487  	spin_unlock(&free_i->segmap_lock);
488  }
489  
490  static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi,
491  		unsigned int segno)
492  {
493  	struct free_segmap_info *free_i = FREE_I(sbi);
494  	unsigned int secno = GET_SEC_FROM_SEG(sbi, segno);
495  
496  	spin_lock(&free_i->segmap_lock);
497  	if (!test_and_set_bit(segno, free_i->free_segmap)) {
498  		free_i->free_segments--;
499  		if (!test_and_set_bit(secno, free_i->free_secmap))
500  			free_i->free_sections--;
501  	}
502  	spin_unlock(&free_i->segmap_lock);
503  }
504  
505  static inline void get_sit_bitmap(struct f2fs_sb_info *sbi,
506  		void *dst_addr)
507  {
508  	struct sit_info *sit_i = SIT_I(sbi);
509  
510  #ifdef CONFIG_F2FS_CHECK_FS
511  	if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir,
512  						sit_i->bitmap_size))
513  		f2fs_bug_on(sbi, 1);
514  #endif
515  	memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size);
516  }
517  
518  static inline block_t written_block_count(struct f2fs_sb_info *sbi)
519  {
520  	return SIT_I(sbi)->written_valid_blocks;
521  }
522  
523  static inline unsigned int free_segments(struct f2fs_sb_info *sbi)
524  {
525  	return FREE_I(sbi)->free_segments;
526  }
527  
528  static inline unsigned int reserved_segments(struct f2fs_sb_info *sbi)
529  {
530  	return SM_I(sbi)->reserved_segments;
531  }
532  
533  static inline unsigned int free_sections(struct f2fs_sb_info *sbi)
534  {
535  	return FREE_I(sbi)->free_sections;
536  }
537  
538  static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi)
539  {
540  	return DIRTY_I(sbi)->nr_dirty[PRE];
541  }
542  
543  static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi)
544  {
545  	return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] +
546  		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] +
547  		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] +
548  		DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] +
549  		DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] +
550  		DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE];
551  }
552  
553  static inline int overprovision_segments(struct f2fs_sb_info *sbi)
554  {
555  	return SM_I(sbi)->ovp_segments;
556  }
557  
558  static inline int reserved_sections(struct f2fs_sb_info *sbi)
559  {
560  	return GET_SEC_FROM_SEG(sbi, reserved_segments(sbi));
561  }
562  
563  static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi)
564  {
565  	unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) +
566  					get_pages(sbi, F2FS_DIRTY_DENTS);
567  	unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS);
568  	unsigned int segno, left_blocks;
569  	int i;
570  
571  	/* check current node segment */
572  	for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) {
573  		segno = CURSEG_I(sbi, i)->segno;
574  		left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
575  				get_seg_entry(sbi, segno)->ckpt_valid_blocks;
576  
577  		if (node_blocks > left_blocks)
578  			return false;
579  	}
580  
581  	/* check current data segment */
582  	segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno;
583  	left_blocks = f2fs_usable_blks_in_seg(sbi, segno) -
584  			get_seg_entry(sbi, segno)->ckpt_valid_blocks;
585  	if (dent_blocks > left_blocks)
586  		return false;
587  	return true;
588  }
589  
590  static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi,
591  					int freed, int needed)
592  {
593  	int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES);
594  	int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS);
595  	int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA);
596  
597  	if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING)))
598  		return false;
599  
600  	if (free_sections(sbi) + freed == reserved_sections(sbi) + needed &&
601  			has_curseg_enough_space(sbi))
602  		return false;
603  	return (free_sections(sbi) + freed) <=
604  		(node_secs + 2 * dent_secs + imeta_secs +
605  		reserved_sections(sbi) + needed);
606  }
607  
608  static inline bool f2fs_is_checkpoint_ready(struct f2fs_sb_info *sbi)
609  {
610  	if (likely(!is_sbi_flag_set(sbi, SBI_CP_DISABLED)))
611  		return true;
612  	if (likely(!has_not_enough_free_secs(sbi, 0, 0)))
613  		return true;
614  	return false;
615  }
616  
617  static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi)
618  {
619  	return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments;
620  }
621  
622  static inline int utilization(struct f2fs_sb_info *sbi)
623  {
624  	return div_u64((u64)valid_user_blocks(sbi) * 100,
625  					sbi->user_block_count);
626  }
627  
628  /*
629   * Sometimes f2fs may be better to drop out-of-place update policy.
630   * And, users can control the policy through sysfs entries.
631   * There are five policies with triggering conditions as follows.
632   * F2FS_IPU_FORCE - all the time,
633   * F2FS_IPU_SSR - if SSR mode is activated,
634   * F2FS_IPU_UTIL - if FS utilization is over threashold,
635   * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over
636   *                     threashold,
637   * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash
638   *                     storages. IPU will be triggered only if the # of dirty
639   *                     pages over min_fsync_blocks. (=default option)
640   * F2FS_IPU_ASYNC - do IPU given by asynchronous write requests.
641   * F2FS_IPU_NOCACHE - disable IPU bio cache.
642   * F2FS_IPUT_DISABLE - disable IPU. (=default option in LFS mode)
643   */
644  #define DEF_MIN_IPU_UTIL	70
645  #define DEF_MIN_FSYNC_BLOCKS	8
646  #define DEF_MIN_HOT_BLOCKS	16
647  
648  #define SMALL_VOLUME_SEGMENTS	(16 * 512)	/* 16GB */
649  
650  enum {
651  	F2FS_IPU_FORCE,
652  	F2FS_IPU_SSR,
653  	F2FS_IPU_UTIL,
654  	F2FS_IPU_SSR_UTIL,
655  	F2FS_IPU_FSYNC,
656  	F2FS_IPU_ASYNC,
657  	F2FS_IPU_NOCACHE,
658  };
659  
660  static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi,
661  		int type)
662  {
663  	struct curseg_info *curseg = CURSEG_I(sbi, type);
664  	return curseg->segno;
665  }
666  
667  static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi,
668  		int type)
669  {
670  	struct curseg_info *curseg = CURSEG_I(sbi, type);
671  	return curseg->alloc_type;
672  }
673  
674  static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type)
675  {
676  	struct curseg_info *curseg = CURSEG_I(sbi, type);
677  	return curseg->next_blkoff;
678  }
679  
680  static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno)
681  {
682  	f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1);
683  }
684  
685  static inline void verify_fio_blkaddr(struct f2fs_io_info *fio)
686  {
687  	struct f2fs_sb_info *sbi = fio->sbi;
688  
689  	if (__is_valid_data_blkaddr(fio->old_blkaddr))
690  		verify_blkaddr(sbi, fio->old_blkaddr, __is_meta_io(fio) ?
691  					META_GENERIC : DATA_GENERIC);
692  	verify_blkaddr(sbi, fio->new_blkaddr, __is_meta_io(fio) ?
693  					META_GENERIC : DATA_GENERIC_ENHANCE);
694  }
695  
696  /*
697   * Summary block is always treated as an invalid block
698   */
699  static inline int check_block_count(struct f2fs_sb_info *sbi,
700  		int segno, struct f2fs_sit_entry *raw_sit)
701  {
702  	bool is_valid  = test_bit_le(0, raw_sit->valid_map) ? true : false;
703  	int valid_blocks = 0;
704  	int cur_pos = 0, next_pos;
705  	unsigned int usable_blks_per_seg = f2fs_usable_blks_in_seg(sbi, segno);
706  
707  	/* check bitmap with valid block count */
708  	do {
709  		if (is_valid) {
710  			next_pos = find_next_zero_bit_le(&raw_sit->valid_map,
711  					usable_blks_per_seg,
712  					cur_pos);
713  			valid_blocks += next_pos - cur_pos;
714  		} else
715  			next_pos = find_next_bit_le(&raw_sit->valid_map,
716  					usable_blks_per_seg,
717  					cur_pos);
718  		cur_pos = next_pos;
719  		is_valid = !is_valid;
720  	} while (cur_pos < usable_blks_per_seg);
721  
722  	if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) {
723  		f2fs_err(sbi, "Mismatch valid blocks %d vs. %d",
724  			 GET_SIT_VBLOCKS(raw_sit), valid_blocks);
725  		set_sbi_flag(sbi, SBI_NEED_FSCK);
726  		return -EFSCORRUPTED;
727  	}
728  
729  	if (usable_blks_per_seg < sbi->blocks_per_seg)
730  		f2fs_bug_on(sbi, find_next_bit_le(&raw_sit->valid_map,
731  				sbi->blocks_per_seg,
732  				usable_blks_per_seg) != sbi->blocks_per_seg);
733  
734  	/* check segment usage, and check boundary of a given segment number */
735  	if (unlikely(GET_SIT_VBLOCKS(raw_sit) > usable_blks_per_seg
736  					|| segno > TOTAL_SEGS(sbi) - 1)) {
737  		f2fs_err(sbi, "Wrong valid blocks %d or segno %u",
738  			 GET_SIT_VBLOCKS(raw_sit), segno);
739  		set_sbi_flag(sbi, SBI_NEED_FSCK);
740  		return -EFSCORRUPTED;
741  	}
742  	return 0;
743  }
744  
745  static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi,
746  						unsigned int start)
747  {
748  	struct sit_info *sit_i = SIT_I(sbi);
749  	unsigned int offset = SIT_BLOCK_OFFSET(start);
750  	block_t blk_addr = sit_i->sit_base_addr + offset;
751  
752  	check_seg_range(sbi, start);
753  
754  #ifdef CONFIG_F2FS_CHECK_FS
755  	if (f2fs_test_bit(offset, sit_i->sit_bitmap) !=
756  			f2fs_test_bit(offset, sit_i->sit_bitmap_mir))
757  		f2fs_bug_on(sbi, 1);
758  #endif
759  
760  	/* calculate sit block address */
761  	if (f2fs_test_bit(offset, sit_i->sit_bitmap))
762  		blk_addr += sit_i->sit_blocks;
763  
764  	return blk_addr;
765  }
766  
767  static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi,
768  						pgoff_t block_addr)
769  {
770  	struct sit_info *sit_i = SIT_I(sbi);
771  	block_addr -= sit_i->sit_base_addr;
772  	if (block_addr < sit_i->sit_blocks)
773  		block_addr += sit_i->sit_blocks;
774  	else
775  		block_addr -= sit_i->sit_blocks;
776  
777  	return block_addr + sit_i->sit_base_addr;
778  }
779  
780  static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start)
781  {
782  	unsigned int block_off = SIT_BLOCK_OFFSET(start);
783  
784  	f2fs_change_bit(block_off, sit_i->sit_bitmap);
785  #ifdef CONFIG_F2FS_CHECK_FS
786  	f2fs_change_bit(block_off, sit_i->sit_bitmap_mir);
787  #endif
788  }
789  
790  static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi,
791  						bool base_time)
792  {
793  	struct sit_info *sit_i = SIT_I(sbi);
794  	time64_t diff, now = ktime_get_boottime_seconds();
795  
796  	if (now >= sit_i->mounted_time)
797  		return sit_i->elapsed_time + now - sit_i->mounted_time;
798  
799  	/* system time is set to the past */
800  	if (!base_time) {
801  		diff = sit_i->mounted_time - now;
802  		if (sit_i->elapsed_time >= diff)
803  			return sit_i->elapsed_time - diff;
804  		return 0;
805  	}
806  	return sit_i->elapsed_time;
807  }
808  
809  static inline void set_summary(struct f2fs_summary *sum, nid_t nid,
810  			unsigned int ofs_in_node, unsigned char version)
811  {
812  	sum->nid = cpu_to_le32(nid);
813  	sum->ofs_in_node = cpu_to_le16(ofs_in_node);
814  	sum->version = version;
815  }
816  
817  static inline block_t start_sum_block(struct f2fs_sb_info *sbi)
818  {
819  	return __start_cp_addr(sbi) +
820  		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum);
821  }
822  
823  static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type)
824  {
825  	return __start_cp_addr(sbi) +
826  		le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count)
827  				- (base + 1) + type;
828  }
829  
830  static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno)
831  {
832  	if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno))
833  		return true;
834  	return false;
835  }
836  
837  /*
838   * It is very important to gather dirty pages and write at once, so that we can
839   * submit a big bio without interfering other data writes.
840   * By default, 512 pages for directory data,
841   * 512 pages (2MB) * 8 for nodes, and
842   * 256 pages * 8 for meta are set.
843   */
844  static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type)
845  {
846  	if (sbi->sb->s_bdi->wb.dirty_exceeded)
847  		return 0;
848  
849  	if (type == DATA)
850  		return sbi->blocks_per_seg;
851  	else if (type == NODE)
852  		return 8 * sbi->blocks_per_seg;
853  	else if (type == META)
854  		return 8 * BIO_MAX_PAGES;
855  	else
856  		return 0;
857  }
858  
859  /*
860   * When writing pages, it'd better align nr_to_write for segment size.
861   */
862  static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type,
863  					struct writeback_control *wbc)
864  {
865  	long nr_to_write, desired;
866  
867  	if (wbc->sync_mode != WB_SYNC_NONE)
868  		return 0;
869  
870  	nr_to_write = wbc->nr_to_write;
871  	desired = BIO_MAX_PAGES;
872  	if (type == NODE)
873  		desired <<= 1;
874  
875  	wbc->nr_to_write = desired;
876  	return desired - nr_to_write;
877  }
878  
879  static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force)
880  {
881  	struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info;
882  	bool wakeup = false;
883  	int i;
884  
885  	if (force)
886  		goto wake_up;
887  
888  	mutex_lock(&dcc->cmd_lock);
889  	for (i = MAX_PLIST_NUM - 1; i >= 0; i--) {
890  		if (i + 1 < dcc->discard_granularity)
891  			break;
892  		if (!list_empty(&dcc->pend_list[i])) {
893  			wakeup = true;
894  			break;
895  		}
896  	}
897  	mutex_unlock(&dcc->cmd_lock);
898  	if (!wakeup || !is_idle(sbi, DISCARD_TIME))
899  		return;
900  wake_up:
901  	dcc->discard_wake = 1;
902  	wake_up_interruptible_all(&dcc->discard_wait_queue);
903  }
904