1 /* 2 * fs/f2fs/segment.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/blkdev.h> 12 #include <linux/backing-dev.h> 13 14 /* constant macro */ 15 #define NULL_SEGNO ((unsigned int)(~0)) 16 #define NULL_SECNO ((unsigned int)(~0)) 17 18 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */ 19 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */ 20 21 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */ 22 23 /* L: Logical segment # in volume, R: Relative segment # in main area */ 24 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno) 25 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno) 26 27 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA) 28 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE) 29 30 #define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA) 31 #define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA) 32 #define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA) 33 34 #define IS_CURSEG(sbi, seg) \ 35 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ 36 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ 37 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ 38 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ 39 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ 40 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno)) 41 42 #define IS_CURSEC(sbi, secno) \ 43 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ 44 (sbi)->segs_per_sec) || \ 45 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ 46 (sbi)->segs_per_sec) || \ 47 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ 48 (sbi)->segs_per_sec) || \ 49 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ 50 (sbi)->segs_per_sec) || \ 51 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ 52 (sbi)->segs_per_sec) || \ 53 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ 54 (sbi)->segs_per_sec)) \ 55 56 #define MAIN_BLKADDR(sbi) \ 57 (SM_I(sbi) ? SM_I(sbi)->main_blkaddr : \ 58 le32_to_cpu(F2FS_RAW_SUPER(sbi)->main_blkaddr)) 59 #define SEG0_BLKADDR(sbi) \ 60 (SM_I(sbi) ? SM_I(sbi)->seg0_blkaddr : \ 61 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment0_blkaddr)) 62 63 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments) 64 #define MAIN_SECS(sbi) ((sbi)->total_sections) 65 66 #define TOTAL_SEGS(sbi) \ 67 (SM_I(sbi) ? SM_I(sbi)->segment_count : \ 68 le32_to_cpu(F2FS_RAW_SUPER(sbi)->segment_count)) 69 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg) 70 71 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi)) 72 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \ 73 (sbi)->log_blocks_per_seg)) 74 75 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \ 76 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg)) 77 78 #define NEXT_FREE_BLKADDR(sbi, curseg) \ 79 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff) 80 81 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi)) 82 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ 83 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg) 84 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \ 85 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1)) 86 87 #define GET_SEGNO(sbi, blk_addr) \ 88 ((((blk_addr) == NULL_ADDR) || ((blk_addr) == NEW_ADDR)) ? \ 89 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ 90 GET_SEGNO_FROM_SEG0(sbi, blk_addr))) 91 #define BLKS_PER_SEC(sbi) \ 92 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg) 93 #define GET_SEC_FROM_SEG(sbi, segno) \ 94 ((segno) / (sbi)->segs_per_sec) 95 #define GET_SEG_FROM_SEC(sbi, secno) \ 96 ((secno) * (sbi)->segs_per_sec) 97 #define GET_ZONE_FROM_SEC(sbi, secno) \ 98 ((secno) / (sbi)->secs_per_zone) 99 #define GET_ZONE_FROM_SEG(sbi, segno) \ 100 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno)) 101 102 #define GET_SUM_BLOCK(sbi, segno) \ 103 ((sbi)->sm_info->ssa_blkaddr + (segno)) 104 105 #define GET_SUM_TYPE(footer) ((footer)->entry_type) 106 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type)) 107 108 #define SIT_ENTRY_OFFSET(sit_i, segno) \ 109 ((segno) % (sit_i)->sents_per_block) 110 #define SIT_BLOCK_OFFSET(segno) \ 111 ((segno) / SIT_ENTRY_PER_BLOCK) 112 #define START_SEGNO(segno) \ 113 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK) 114 #define SIT_BLK_CNT(sbi) \ 115 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK) 116 #define f2fs_bitmap_size(nr) \ 117 (BITS_TO_LONGS(nr) * sizeof(unsigned long)) 118 119 #define SECTOR_FROM_BLOCK(blk_addr) \ 120 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK) 121 #define SECTOR_TO_BLOCK(sectors) \ 122 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK) 123 124 /* 125 * indicate a block allocation direction: RIGHT and LEFT. 126 * RIGHT means allocating new sections towards the end of volume. 127 * LEFT means the opposite direction. 128 */ 129 enum { 130 ALLOC_RIGHT = 0, 131 ALLOC_LEFT 132 }; 133 134 /* 135 * In the victim_sel_policy->alloc_mode, there are two block allocation modes. 136 * LFS writes data sequentially with cleaning operations. 137 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. 138 */ 139 enum { 140 LFS = 0, 141 SSR 142 }; 143 144 /* 145 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes. 146 * GC_CB is based on cost-benefit algorithm. 147 * GC_GREEDY is based on greedy algorithm. 148 */ 149 enum { 150 GC_CB = 0, 151 GC_GREEDY, 152 ALLOC_NEXT, 153 FLUSH_DEVICE, 154 MAX_GC_POLICY, 155 }; 156 157 /* 158 * BG_GC means the background cleaning job. 159 * FG_GC means the on-demand cleaning job. 160 * FORCE_FG_GC means on-demand cleaning job in background. 161 */ 162 enum { 163 BG_GC = 0, 164 FG_GC, 165 FORCE_FG_GC, 166 }; 167 168 /* for a function parameter to select a victim segment */ 169 struct victim_sel_policy { 170 int alloc_mode; /* LFS or SSR */ 171 int gc_mode; /* GC_CB or GC_GREEDY */ 172 unsigned long *dirty_segmap; /* dirty segment bitmap */ 173 unsigned int max_search; /* maximum # of segments to search */ 174 unsigned int offset; /* last scanned bitmap offset */ 175 unsigned int ofs_unit; /* bitmap search unit */ 176 unsigned int min_cost; /* minimum cost */ 177 unsigned int min_segno; /* segment # having min. cost */ 178 }; 179 180 struct seg_entry { 181 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */ 182 unsigned int valid_blocks:10; /* # of valid blocks */ 183 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */ 184 unsigned int padding:6; /* padding */ 185 unsigned char *cur_valid_map; /* validity bitmap of blocks */ 186 #ifdef CONFIG_F2FS_CHECK_FS 187 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */ 188 #endif 189 /* 190 * # of valid blocks and the validity bitmap stored in the the last 191 * checkpoint pack. This information is used by the SSR mode. 192 */ 193 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */ 194 unsigned char *discard_map; 195 unsigned long long mtime; /* modification time of the segment */ 196 }; 197 198 struct sec_entry { 199 unsigned int valid_blocks; /* # of valid blocks in a section */ 200 }; 201 202 struct segment_allocation { 203 void (*allocate_segment)(struct f2fs_sb_info *, int, bool); 204 }; 205 206 /* 207 * this value is set in page as a private data which indicate that 208 * the page is atomically written, and it is in inmem_pages list. 209 */ 210 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1) 211 #define DUMMY_WRITTEN_PAGE ((unsigned long)-2) 212 213 #define IS_ATOMIC_WRITTEN_PAGE(page) \ 214 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE) 215 #define IS_DUMMY_WRITTEN_PAGE(page) \ 216 (page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE) 217 218 struct inmem_pages { 219 struct list_head list; 220 struct page *page; 221 block_t old_addr; /* for revoking when fail to commit */ 222 }; 223 224 struct sit_info { 225 const struct segment_allocation *s_ops; 226 227 block_t sit_base_addr; /* start block address of SIT area */ 228 block_t sit_blocks; /* # of blocks used by SIT area */ 229 block_t written_valid_blocks; /* # of valid blocks in main area */ 230 char *sit_bitmap; /* SIT bitmap pointer */ 231 #ifdef CONFIG_F2FS_CHECK_FS 232 char *sit_bitmap_mir; /* SIT bitmap mirror */ 233 #endif 234 unsigned int bitmap_size; /* SIT bitmap size */ 235 236 unsigned long *tmp_map; /* bitmap for temporal use */ 237 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ 238 unsigned int dirty_sentries; /* # of dirty sentries */ 239 unsigned int sents_per_block; /* # of SIT entries per block */ 240 struct rw_semaphore sentry_lock; /* to protect SIT cache */ 241 struct seg_entry *sentries; /* SIT segment-level cache */ 242 struct sec_entry *sec_entries; /* SIT section-level cache */ 243 244 /* for cost-benefit algorithm in cleaning procedure */ 245 unsigned long long elapsed_time; /* elapsed time after mount */ 246 unsigned long long mounted_time; /* mount time */ 247 unsigned long long min_mtime; /* min. modification time */ 248 unsigned long long max_mtime; /* max. modification time */ 249 250 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */ 251 }; 252 253 struct free_segmap_info { 254 unsigned int start_segno; /* start segment number logically */ 255 unsigned int free_segments; /* # of free segments */ 256 unsigned int free_sections; /* # of free sections */ 257 spinlock_t segmap_lock; /* free segmap lock */ 258 unsigned long *free_segmap; /* free segment bitmap */ 259 unsigned long *free_secmap; /* free section bitmap */ 260 }; 261 262 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ 263 enum dirty_type { 264 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ 265 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ 266 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ 267 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ 268 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ 269 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ 270 DIRTY, /* to count # of dirty segments */ 271 PRE, /* to count # of entirely obsolete segments */ 272 NR_DIRTY_TYPE 273 }; 274 275 struct dirty_seglist_info { 276 const struct victim_selection *v_ops; /* victim selction operation */ 277 unsigned long *dirty_segmap[NR_DIRTY_TYPE]; 278 struct mutex seglist_lock; /* lock for segment bitmaps */ 279 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ 280 unsigned long *victim_secmap; /* background GC victims */ 281 }; 282 283 /* victim selection function for cleaning and SSR */ 284 struct victim_selection { 285 int (*get_victim)(struct f2fs_sb_info *, unsigned int *, 286 int, int, char); 287 }; 288 289 /* for active log information */ 290 struct curseg_info { 291 struct mutex curseg_mutex; /* lock for consistency */ 292 struct f2fs_summary_block *sum_blk; /* cached summary block */ 293 struct rw_semaphore journal_rwsem; /* protect journal area */ 294 struct f2fs_journal *journal; /* cached journal info */ 295 unsigned char alloc_type; /* current allocation type */ 296 unsigned int segno; /* current segment number */ 297 unsigned short next_blkoff; /* next block offset to write */ 298 unsigned int zone; /* current zone number */ 299 unsigned int next_segno; /* preallocated segment */ 300 }; 301 302 struct sit_entry_set { 303 struct list_head set_list; /* link with all sit sets */ 304 unsigned int start_segno; /* start segno of sits in set */ 305 unsigned int entry_cnt; /* the # of sit entries in set */ 306 }; 307 308 /* 309 * inline functions 310 */ 311 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) 312 { 313 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); 314 } 315 316 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, 317 unsigned int segno) 318 { 319 struct sit_info *sit_i = SIT_I(sbi); 320 return &sit_i->sentries[segno]; 321 } 322 323 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, 324 unsigned int segno) 325 { 326 struct sit_info *sit_i = SIT_I(sbi); 327 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)]; 328 } 329 330 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, 331 unsigned int segno, bool use_section) 332 { 333 /* 334 * In order to get # of valid blocks in a section instantly from many 335 * segments, f2fs manages two counting structures separately. 336 */ 337 if (use_section && sbi->segs_per_sec > 1) 338 return get_sec_entry(sbi, segno)->valid_blocks; 339 else 340 return get_seg_entry(sbi, segno)->valid_blocks; 341 } 342 343 static inline void seg_info_from_raw_sit(struct seg_entry *se, 344 struct f2fs_sit_entry *rs) 345 { 346 se->valid_blocks = GET_SIT_VBLOCKS(rs); 347 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); 348 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 349 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 350 #ifdef CONFIG_F2FS_CHECK_FS 351 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 352 #endif 353 se->type = GET_SIT_TYPE(rs); 354 se->mtime = le64_to_cpu(rs->mtime); 355 } 356 357 static inline void __seg_info_to_raw_sit(struct seg_entry *se, 358 struct f2fs_sit_entry *rs) 359 { 360 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | 361 se->valid_blocks; 362 rs->vblocks = cpu_to_le16(raw_vblocks); 363 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 364 rs->mtime = cpu_to_le64(se->mtime); 365 } 366 367 static inline void seg_info_to_sit_page(struct f2fs_sb_info *sbi, 368 struct page *page, unsigned int start) 369 { 370 struct f2fs_sit_block *raw_sit; 371 struct seg_entry *se; 372 struct f2fs_sit_entry *rs; 373 unsigned int end = min(start + SIT_ENTRY_PER_BLOCK, 374 (unsigned long)MAIN_SEGS(sbi)); 375 int i; 376 377 raw_sit = (struct f2fs_sit_block *)page_address(page); 378 for (i = 0; i < end - start; i++) { 379 rs = &raw_sit->entries[i]; 380 se = get_seg_entry(sbi, start + i); 381 __seg_info_to_raw_sit(se, rs); 382 } 383 } 384 385 static inline void seg_info_to_raw_sit(struct seg_entry *se, 386 struct f2fs_sit_entry *rs) 387 { 388 __seg_info_to_raw_sit(se, rs); 389 390 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 391 se->ckpt_valid_blocks = se->valid_blocks; 392 } 393 394 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, 395 unsigned int max, unsigned int segno) 396 { 397 unsigned int ret; 398 spin_lock(&free_i->segmap_lock); 399 ret = find_next_bit(free_i->free_segmap, max, segno); 400 spin_unlock(&free_i->segmap_lock); 401 return ret; 402 } 403 404 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) 405 { 406 struct free_segmap_info *free_i = FREE_I(sbi); 407 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 408 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 409 unsigned int next; 410 411 spin_lock(&free_i->segmap_lock); 412 clear_bit(segno, free_i->free_segmap); 413 free_i->free_segments++; 414 415 next = find_next_bit(free_i->free_segmap, 416 start_segno + sbi->segs_per_sec, start_segno); 417 if (next >= start_segno + sbi->segs_per_sec) { 418 clear_bit(secno, free_i->free_secmap); 419 free_i->free_sections++; 420 } 421 spin_unlock(&free_i->segmap_lock); 422 } 423 424 static inline void __set_inuse(struct f2fs_sb_info *sbi, 425 unsigned int segno) 426 { 427 struct free_segmap_info *free_i = FREE_I(sbi); 428 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 429 430 set_bit(segno, free_i->free_segmap); 431 free_i->free_segments--; 432 if (!test_and_set_bit(secno, free_i->free_secmap)) 433 free_i->free_sections--; 434 } 435 436 static inline void __set_test_and_free(struct f2fs_sb_info *sbi, 437 unsigned int segno) 438 { 439 struct free_segmap_info *free_i = FREE_I(sbi); 440 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 441 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 442 unsigned int next; 443 444 spin_lock(&free_i->segmap_lock); 445 if (test_and_clear_bit(segno, free_i->free_segmap)) { 446 free_i->free_segments++; 447 448 next = find_next_bit(free_i->free_segmap, 449 start_segno + sbi->segs_per_sec, start_segno); 450 if (next >= start_segno + sbi->segs_per_sec) { 451 if (test_and_clear_bit(secno, free_i->free_secmap)) 452 free_i->free_sections++; 453 } 454 } 455 spin_unlock(&free_i->segmap_lock); 456 } 457 458 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, 459 unsigned int segno) 460 { 461 struct free_segmap_info *free_i = FREE_I(sbi); 462 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 463 464 spin_lock(&free_i->segmap_lock); 465 if (!test_and_set_bit(segno, free_i->free_segmap)) { 466 free_i->free_segments--; 467 if (!test_and_set_bit(secno, free_i->free_secmap)) 468 free_i->free_sections--; 469 } 470 spin_unlock(&free_i->segmap_lock); 471 } 472 473 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, 474 void *dst_addr) 475 { 476 struct sit_info *sit_i = SIT_I(sbi); 477 478 #ifdef CONFIG_F2FS_CHECK_FS 479 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir, 480 sit_i->bitmap_size)) 481 f2fs_bug_on(sbi, 1); 482 #endif 483 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); 484 } 485 486 static inline block_t written_block_count(struct f2fs_sb_info *sbi) 487 { 488 return SIT_I(sbi)->written_valid_blocks; 489 } 490 491 static inline unsigned int free_segments(struct f2fs_sb_info *sbi) 492 { 493 return FREE_I(sbi)->free_segments; 494 } 495 496 static inline int reserved_segments(struct f2fs_sb_info *sbi) 497 { 498 return SM_I(sbi)->reserved_segments; 499 } 500 501 static inline unsigned int free_sections(struct f2fs_sb_info *sbi) 502 { 503 return FREE_I(sbi)->free_sections; 504 } 505 506 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) 507 { 508 return DIRTY_I(sbi)->nr_dirty[PRE]; 509 } 510 511 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) 512 { 513 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + 514 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + 515 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + 516 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + 517 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + 518 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; 519 } 520 521 static inline int overprovision_segments(struct f2fs_sb_info *sbi) 522 { 523 return SM_I(sbi)->ovp_segments; 524 } 525 526 static inline int reserved_sections(struct f2fs_sb_info *sbi) 527 { 528 return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi)); 529 } 530 531 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi) 532 { 533 unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) + 534 get_pages(sbi, F2FS_DIRTY_DENTS); 535 unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS); 536 unsigned int segno, left_blocks; 537 int i; 538 539 /* check current node segment */ 540 for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) { 541 segno = CURSEG_I(sbi, i)->segno; 542 left_blocks = sbi->blocks_per_seg - 543 get_seg_entry(sbi, segno)->ckpt_valid_blocks; 544 545 if (node_blocks > left_blocks) 546 return false; 547 } 548 549 /* check current data segment */ 550 segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno; 551 left_blocks = sbi->blocks_per_seg - 552 get_seg_entry(sbi, segno)->ckpt_valid_blocks; 553 if (dent_blocks > left_blocks) 554 return false; 555 return true; 556 } 557 558 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, 559 int freed, int needed) 560 { 561 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 562 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 563 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 564 565 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 566 return false; 567 568 if (free_sections(sbi) + freed == reserved_sections(sbi) + needed && 569 has_curseg_enough_space(sbi)) 570 return false; 571 return (free_sections(sbi) + freed) <= 572 (node_secs + 2 * dent_secs + imeta_secs + 573 reserved_sections(sbi) + needed); 574 } 575 576 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) 577 { 578 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; 579 } 580 581 static inline int utilization(struct f2fs_sb_info *sbi) 582 { 583 return div_u64((u64)valid_user_blocks(sbi) * 100, 584 sbi->user_block_count); 585 } 586 587 /* 588 * Sometimes f2fs may be better to drop out-of-place update policy. 589 * And, users can control the policy through sysfs entries. 590 * There are five policies with triggering conditions as follows. 591 * F2FS_IPU_FORCE - all the time, 592 * F2FS_IPU_SSR - if SSR mode is activated, 593 * F2FS_IPU_UTIL - if FS utilization is over threashold, 594 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over 595 * threashold, 596 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash 597 * storages. IPU will be triggered only if the # of dirty 598 * pages over min_fsync_blocks. 599 * F2FS_IPUT_DISABLE - disable IPU. (=default option) 600 */ 601 #define DEF_MIN_IPU_UTIL 70 602 #define DEF_MIN_FSYNC_BLOCKS 8 603 #define DEF_MIN_HOT_BLOCKS 16 604 605 #define SMALL_VOLUME_SEGMENTS (16 * 512) /* 16GB */ 606 607 enum { 608 F2FS_IPU_FORCE, 609 F2FS_IPU_SSR, 610 F2FS_IPU_UTIL, 611 F2FS_IPU_SSR_UTIL, 612 F2FS_IPU_FSYNC, 613 F2FS_IPU_ASYNC, 614 }; 615 616 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, 617 int type) 618 { 619 struct curseg_info *curseg = CURSEG_I(sbi, type); 620 return curseg->segno; 621 } 622 623 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, 624 int type) 625 { 626 struct curseg_info *curseg = CURSEG_I(sbi, type); 627 return curseg->alloc_type; 628 } 629 630 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) 631 { 632 struct curseg_info *curseg = CURSEG_I(sbi, type); 633 return curseg->next_blkoff; 634 } 635 636 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) 637 { 638 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1); 639 } 640 641 static inline void verify_block_addr(struct f2fs_io_info *fio, block_t blk_addr) 642 { 643 struct f2fs_sb_info *sbi = fio->sbi; 644 645 if (PAGE_TYPE_OF_BIO(fio->type) == META && 646 (!is_read_io(fio->op) || fio->is_meta)) 647 BUG_ON(blk_addr < SEG0_BLKADDR(sbi) || 648 blk_addr >= MAIN_BLKADDR(sbi)); 649 else 650 BUG_ON(blk_addr < MAIN_BLKADDR(sbi) || 651 blk_addr >= MAX_BLKADDR(sbi)); 652 } 653 654 /* 655 * Summary block is always treated as an invalid block 656 */ 657 static inline int check_block_count(struct f2fs_sb_info *sbi, 658 int segno, struct f2fs_sit_entry *raw_sit) 659 { 660 #ifdef CONFIG_F2FS_CHECK_FS 661 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; 662 int valid_blocks = 0; 663 int cur_pos = 0, next_pos; 664 665 /* check bitmap with valid block count */ 666 do { 667 if (is_valid) { 668 next_pos = find_next_zero_bit_le(&raw_sit->valid_map, 669 sbi->blocks_per_seg, 670 cur_pos); 671 valid_blocks += next_pos - cur_pos; 672 } else 673 next_pos = find_next_bit_le(&raw_sit->valid_map, 674 sbi->blocks_per_seg, 675 cur_pos); 676 cur_pos = next_pos; 677 is_valid = !is_valid; 678 } while (cur_pos < sbi->blocks_per_seg); 679 680 if (unlikely(GET_SIT_VBLOCKS(raw_sit) != valid_blocks)) { 681 f2fs_msg(sbi->sb, KERN_ERR, 682 "Mismatch valid blocks %d vs. %d", 683 GET_SIT_VBLOCKS(raw_sit), valid_blocks); 684 set_sbi_flag(sbi, SBI_NEED_FSCK); 685 return -EINVAL; 686 } 687 #endif 688 /* check segment usage, and check boundary of a given segment number */ 689 if (unlikely(GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg 690 || segno > TOTAL_SEGS(sbi) - 1)) { 691 f2fs_msg(sbi->sb, KERN_ERR, 692 "Wrong valid blocks %d or segno %u", 693 GET_SIT_VBLOCKS(raw_sit), segno); 694 set_sbi_flag(sbi, SBI_NEED_FSCK); 695 return -EINVAL; 696 } 697 return 0; 698 } 699 700 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, 701 unsigned int start) 702 { 703 struct sit_info *sit_i = SIT_I(sbi); 704 unsigned int offset = SIT_BLOCK_OFFSET(start); 705 block_t blk_addr = sit_i->sit_base_addr + offset; 706 707 check_seg_range(sbi, start); 708 709 #ifdef CONFIG_F2FS_CHECK_FS 710 if (f2fs_test_bit(offset, sit_i->sit_bitmap) != 711 f2fs_test_bit(offset, sit_i->sit_bitmap_mir)) 712 f2fs_bug_on(sbi, 1); 713 #endif 714 715 /* calculate sit block address */ 716 if (f2fs_test_bit(offset, sit_i->sit_bitmap)) 717 blk_addr += sit_i->sit_blocks; 718 719 return blk_addr; 720 } 721 722 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, 723 pgoff_t block_addr) 724 { 725 struct sit_info *sit_i = SIT_I(sbi); 726 block_addr -= sit_i->sit_base_addr; 727 if (block_addr < sit_i->sit_blocks) 728 block_addr += sit_i->sit_blocks; 729 else 730 block_addr -= sit_i->sit_blocks; 731 732 return block_addr + sit_i->sit_base_addr; 733 } 734 735 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) 736 { 737 unsigned int block_off = SIT_BLOCK_OFFSET(start); 738 739 f2fs_change_bit(block_off, sit_i->sit_bitmap); 740 #ifdef CONFIG_F2FS_CHECK_FS 741 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir); 742 #endif 743 } 744 745 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi) 746 { 747 struct sit_info *sit_i = SIT_I(sbi); 748 time64_t now = ktime_get_real_seconds(); 749 750 return sit_i->elapsed_time + now - sit_i->mounted_time; 751 } 752 753 static inline void set_summary(struct f2fs_summary *sum, nid_t nid, 754 unsigned int ofs_in_node, unsigned char version) 755 { 756 sum->nid = cpu_to_le32(nid); 757 sum->ofs_in_node = cpu_to_le16(ofs_in_node); 758 sum->version = version; 759 } 760 761 static inline block_t start_sum_block(struct f2fs_sb_info *sbi) 762 { 763 return __start_cp_addr(sbi) + 764 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 765 } 766 767 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) 768 { 769 return __start_cp_addr(sbi) + 770 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) 771 - (base + 1) + type; 772 } 773 774 static inline bool no_fggc_candidate(struct f2fs_sb_info *sbi, 775 unsigned int secno) 776 { 777 if (get_valid_blocks(sbi, GET_SEG_FROM_SEC(sbi, secno), true) > 778 sbi->fggc_threshold) 779 return true; 780 return false; 781 } 782 783 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) 784 { 785 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) 786 return true; 787 return false; 788 } 789 790 /* 791 * It is very important to gather dirty pages and write at once, so that we can 792 * submit a big bio without interfering other data writes. 793 * By default, 512 pages for directory data, 794 * 512 pages (2MB) * 8 for nodes, and 795 * 256 pages * 8 for meta are set. 796 */ 797 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type) 798 { 799 if (sbi->sb->s_bdi->wb.dirty_exceeded) 800 return 0; 801 802 if (type == DATA) 803 return sbi->blocks_per_seg; 804 else if (type == NODE) 805 return 8 * sbi->blocks_per_seg; 806 else if (type == META) 807 return 8 * BIO_MAX_PAGES; 808 else 809 return 0; 810 } 811 812 /* 813 * When writing pages, it'd better align nr_to_write for segment size. 814 */ 815 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type, 816 struct writeback_control *wbc) 817 { 818 long nr_to_write, desired; 819 820 if (wbc->sync_mode != WB_SYNC_NONE) 821 return 0; 822 823 nr_to_write = wbc->nr_to_write; 824 desired = BIO_MAX_PAGES; 825 if (type == NODE) 826 desired <<= 1; 827 828 wbc->nr_to_write = desired; 829 return desired - nr_to_write; 830 } 831 832 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force) 833 { 834 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 835 bool wakeup = false; 836 int i; 837 838 if (force) 839 goto wake_up; 840 841 mutex_lock(&dcc->cmd_lock); 842 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 843 if (i + 1 < dcc->discard_granularity) 844 break; 845 if (!list_empty(&dcc->pend_list[i])) { 846 wakeup = true; 847 break; 848 } 849 } 850 mutex_unlock(&dcc->cmd_lock); 851 if (!wakeup) 852 return; 853 wake_up: 854 dcc->discard_wake = 1; 855 wake_up_interruptible_all(&dcc->discard_wait_queue); 856 } 857