1 /* 2 * fs/f2fs/segment.h 3 * 4 * Copyright (c) 2012 Samsung Electronics Co., Ltd. 5 * http://www.samsung.com/ 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/blkdev.h> 12 #include <linux/backing-dev.h> 13 14 /* constant macro */ 15 #define NULL_SEGNO ((unsigned int)(~0)) 16 #define NULL_SECNO ((unsigned int)(~0)) 17 18 #define DEF_RECLAIM_PREFREE_SEGMENTS 5 /* 5% over total segments */ 19 #define DEF_MAX_RECLAIM_PREFREE_SEGMENTS 4096 /* 8GB in maximum */ 20 21 #define F2FS_MIN_SEGMENTS 9 /* SB + 2 (CP + SIT + NAT) + SSA + MAIN */ 22 23 /* L: Logical segment # in volume, R: Relative segment # in main area */ 24 #define GET_L2R_SEGNO(free_i, segno) ((segno) - (free_i)->start_segno) 25 #define GET_R2L_SEGNO(free_i, segno) ((segno) + (free_i)->start_segno) 26 27 #define IS_DATASEG(t) ((t) <= CURSEG_COLD_DATA) 28 #define IS_NODESEG(t) ((t) >= CURSEG_HOT_NODE) 29 30 #define IS_HOT(t) ((t) == CURSEG_HOT_NODE || (t) == CURSEG_HOT_DATA) 31 #define IS_WARM(t) ((t) == CURSEG_WARM_NODE || (t) == CURSEG_WARM_DATA) 32 #define IS_COLD(t) ((t) == CURSEG_COLD_NODE || (t) == CURSEG_COLD_DATA) 33 34 #define IS_CURSEG(sbi, seg) \ 35 (((seg) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno) || \ 36 ((seg) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno) || \ 37 ((seg) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno) || \ 38 ((seg) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno) || \ 39 ((seg) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno) || \ 40 ((seg) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno)) 41 42 #define IS_CURSEC(sbi, secno) \ 43 (((secno) == CURSEG_I(sbi, CURSEG_HOT_DATA)->segno / \ 44 (sbi)->segs_per_sec) || \ 45 ((secno) == CURSEG_I(sbi, CURSEG_WARM_DATA)->segno / \ 46 (sbi)->segs_per_sec) || \ 47 ((secno) == CURSEG_I(sbi, CURSEG_COLD_DATA)->segno / \ 48 (sbi)->segs_per_sec) || \ 49 ((secno) == CURSEG_I(sbi, CURSEG_HOT_NODE)->segno / \ 50 (sbi)->segs_per_sec) || \ 51 ((secno) == CURSEG_I(sbi, CURSEG_WARM_NODE)->segno / \ 52 (sbi)->segs_per_sec) || \ 53 ((secno) == CURSEG_I(sbi, CURSEG_COLD_NODE)->segno / \ 54 (sbi)->segs_per_sec)) \ 55 56 #define MAIN_BLKADDR(sbi) (SM_I(sbi)->main_blkaddr) 57 #define SEG0_BLKADDR(sbi) (SM_I(sbi)->seg0_blkaddr) 58 59 #define MAIN_SEGS(sbi) (SM_I(sbi)->main_segments) 60 #define MAIN_SECS(sbi) ((sbi)->total_sections) 61 62 #define TOTAL_SEGS(sbi) (SM_I(sbi)->segment_count) 63 #define TOTAL_BLKS(sbi) (TOTAL_SEGS(sbi) << (sbi)->log_blocks_per_seg) 64 65 #define MAX_BLKADDR(sbi) (SEG0_BLKADDR(sbi) + TOTAL_BLKS(sbi)) 66 #define SEGMENT_SIZE(sbi) (1ULL << ((sbi)->log_blocksize + \ 67 (sbi)->log_blocks_per_seg)) 68 69 #define START_BLOCK(sbi, segno) (SEG0_BLKADDR(sbi) + \ 70 (GET_R2L_SEGNO(FREE_I(sbi), segno) << (sbi)->log_blocks_per_seg)) 71 72 #define NEXT_FREE_BLKADDR(sbi, curseg) \ 73 (START_BLOCK(sbi, (curseg)->segno) + (curseg)->next_blkoff) 74 75 #define GET_SEGOFF_FROM_SEG0(sbi, blk_addr) ((blk_addr) - SEG0_BLKADDR(sbi)) 76 #define GET_SEGNO_FROM_SEG0(sbi, blk_addr) \ 77 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) >> (sbi)->log_blocks_per_seg) 78 #define GET_BLKOFF_FROM_SEG0(sbi, blk_addr) \ 79 (GET_SEGOFF_FROM_SEG0(sbi, blk_addr) & ((sbi)->blocks_per_seg - 1)) 80 81 #define GET_SEGNO(sbi, blk_addr) \ 82 ((((blk_addr) == NULL_ADDR) || ((blk_addr) == NEW_ADDR)) ? \ 83 NULL_SEGNO : GET_L2R_SEGNO(FREE_I(sbi), \ 84 GET_SEGNO_FROM_SEG0(sbi, blk_addr))) 85 #define BLKS_PER_SEC(sbi) \ 86 ((sbi)->segs_per_sec * (sbi)->blocks_per_seg) 87 #define GET_SEC_FROM_SEG(sbi, segno) \ 88 ((segno) / (sbi)->segs_per_sec) 89 #define GET_SEG_FROM_SEC(sbi, secno) \ 90 ((secno) * (sbi)->segs_per_sec) 91 #define GET_ZONE_FROM_SEC(sbi, secno) \ 92 ((secno) / (sbi)->secs_per_zone) 93 #define GET_ZONE_FROM_SEG(sbi, segno) \ 94 GET_ZONE_FROM_SEC(sbi, GET_SEC_FROM_SEG(sbi, segno)) 95 96 #define GET_SUM_BLOCK(sbi, segno) \ 97 ((sbi)->sm_info->ssa_blkaddr + (segno)) 98 99 #define GET_SUM_TYPE(footer) ((footer)->entry_type) 100 #define SET_SUM_TYPE(footer, type) ((footer)->entry_type = (type)) 101 102 #define SIT_ENTRY_OFFSET(sit_i, segno) \ 103 ((segno) % (sit_i)->sents_per_block) 104 #define SIT_BLOCK_OFFSET(segno) \ 105 ((segno) / SIT_ENTRY_PER_BLOCK) 106 #define START_SEGNO(segno) \ 107 (SIT_BLOCK_OFFSET(segno) * SIT_ENTRY_PER_BLOCK) 108 #define SIT_BLK_CNT(sbi) \ 109 ((MAIN_SEGS(sbi) + SIT_ENTRY_PER_BLOCK - 1) / SIT_ENTRY_PER_BLOCK) 110 #define f2fs_bitmap_size(nr) \ 111 (BITS_TO_LONGS(nr) * sizeof(unsigned long)) 112 113 #define SECTOR_FROM_BLOCK(blk_addr) \ 114 (((sector_t)blk_addr) << F2FS_LOG_SECTORS_PER_BLOCK) 115 #define SECTOR_TO_BLOCK(sectors) \ 116 ((sectors) >> F2FS_LOG_SECTORS_PER_BLOCK) 117 118 /* 119 * indicate a block allocation direction: RIGHT and LEFT. 120 * RIGHT means allocating new sections towards the end of volume. 121 * LEFT means the opposite direction. 122 */ 123 enum { 124 ALLOC_RIGHT = 0, 125 ALLOC_LEFT 126 }; 127 128 /* 129 * In the victim_sel_policy->alloc_mode, there are two block allocation modes. 130 * LFS writes data sequentially with cleaning operations. 131 * SSR (Slack Space Recycle) reuses obsolete space without cleaning operations. 132 */ 133 enum { 134 LFS = 0, 135 SSR 136 }; 137 138 /* 139 * In the victim_sel_policy->gc_mode, there are two gc, aka cleaning, modes. 140 * GC_CB is based on cost-benefit algorithm. 141 * GC_GREEDY is based on greedy algorithm. 142 */ 143 enum { 144 GC_CB = 0, 145 GC_GREEDY, 146 ALLOC_NEXT, 147 FLUSH_DEVICE, 148 MAX_GC_POLICY, 149 }; 150 151 /* 152 * BG_GC means the background cleaning job. 153 * FG_GC means the on-demand cleaning job. 154 * FORCE_FG_GC means on-demand cleaning job in background. 155 */ 156 enum { 157 BG_GC = 0, 158 FG_GC, 159 FORCE_FG_GC, 160 }; 161 162 /* for a function parameter to select a victim segment */ 163 struct victim_sel_policy { 164 int alloc_mode; /* LFS or SSR */ 165 int gc_mode; /* GC_CB or GC_GREEDY */ 166 unsigned long *dirty_segmap; /* dirty segment bitmap */ 167 unsigned int max_search; /* maximum # of segments to search */ 168 unsigned int offset; /* last scanned bitmap offset */ 169 unsigned int ofs_unit; /* bitmap search unit */ 170 unsigned int min_cost; /* minimum cost */ 171 unsigned int min_segno; /* segment # having min. cost */ 172 }; 173 174 struct seg_entry { 175 unsigned int type:6; /* segment type like CURSEG_XXX_TYPE */ 176 unsigned int valid_blocks:10; /* # of valid blocks */ 177 unsigned int ckpt_valid_blocks:10; /* # of valid blocks last cp */ 178 unsigned int padding:6; /* padding */ 179 unsigned char *cur_valid_map; /* validity bitmap of blocks */ 180 #ifdef CONFIG_F2FS_CHECK_FS 181 unsigned char *cur_valid_map_mir; /* mirror of current valid bitmap */ 182 #endif 183 /* 184 * # of valid blocks and the validity bitmap stored in the the last 185 * checkpoint pack. This information is used by the SSR mode. 186 */ 187 unsigned char *ckpt_valid_map; /* validity bitmap of blocks last cp */ 188 unsigned char *discard_map; 189 unsigned long long mtime; /* modification time of the segment */ 190 }; 191 192 struct sec_entry { 193 unsigned int valid_blocks; /* # of valid blocks in a section */ 194 }; 195 196 struct segment_allocation { 197 void (*allocate_segment)(struct f2fs_sb_info *, int, bool); 198 }; 199 200 /* 201 * this value is set in page as a private data which indicate that 202 * the page is atomically written, and it is in inmem_pages list. 203 */ 204 #define ATOMIC_WRITTEN_PAGE ((unsigned long)-1) 205 #define DUMMY_WRITTEN_PAGE ((unsigned long)-2) 206 207 #define IS_ATOMIC_WRITTEN_PAGE(page) \ 208 (page_private(page) == (unsigned long)ATOMIC_WRITTEN_PAGE) 209 #define IS_DUMMY_WRITTEN_PAGE(page) \ 210 (page_private(page) == (unsigned long)DUMMY_WRITTEN_PAGE) 211 212 struct inmem_pages { 213 struct list_head list; 214 struct page *page; 215 block_t old_addr; /* for revoking when fail to commit */ 216 }; 217 218 struct sit_info { 219 const struct segment_allocation *s_ops; 220 221 block_t sit_base_addr; /* start block address of SIT area */ 222 block_t sit_blocks; /* # of blocks used by SIT area */ 223 block_t written_valid_blocks; /* # of valid blocks in main area */ 224 char *sit_bitmap; /* SIT bitmap pointer */ 225 #ifdef CONFIG_F2FS_CHECK_FS 226 char *sit_bitmap_mir; /* SIT bitmap mirror */ 227 #endif 228 unsigned int bitmap_size; /* SIT bitmap size */ 229 230 unsigned long *tmp_map; /* bitmap for temporal use */ 231 unsigned long *dirty_sentries_bitmap; /* bitmap for dirty sentries */ 232 unsigned int dirty_sentries; /* # of dirty sentries */ 233 unsigned int sents_per_block; /* # of SIT entries per block */ 234 struct rw_semaphore sentry_lock; /* to protect SIT cache */ 235 struct seg_entry *sentries; /* SIT segment-level cache */ 236 struct sec_entry *sec_entries; /* SIT section-level cache */ 237 238 /* for cost-benefit algorithm in cleaning procedure */ 239 unsigned long long elapsed_time; /* elapsed time after mount */ 240 unsigned long long mounted_time; /* mount time */ 241 unsigned long long min_mtime; /* min. modification time */ 242 unsigned long long max_mtime; /* max. modification time */ 243 244 unsigned int last_victim[MAX_GC_POLICY]; /* last victim segment # */ 245 }; 246 247 struct free_segmap_info { 248 unsigned int start_segno; /* start segment number logically */ 249 unsigned int free_segments; /* # of free segments */ 250 unsigned int free_sections; /* # of free sections */ 251 spinlock_t segmap_lock; /* free segmap lock */ 252 unsigned long *free_segmap; /* free segment bitmap */ 253 unsigned long *free_secmap; /* free section bitmap */ 254 }; 255 256 /* Notice: The order of dirty type is same with CURSEG_XXX in f2fs.h */ 257 enum dirty_type { 258 DIRTY_HOT_DATA, /* dirty segments assigned as hot data logs */ 259 DIRTY_WARM_DATA, /* dirty segments assigned as warm data logs */ 260 DIRTY_COLD_DATA, /* dirty segments assigned as cold data logs */ 261 DIRTY_HOT_NODE, /* dirty segments assigned as hot node logs */ 262 DIRTY_WARM_NODE, /* dirty segments assigned as warm node logs */ 263 DIRTY_COLD_NODE, /* dirty segments assigned as cold node logs */ 264 DIRTY, /* to count # of dirty segments */ 265 PRE, /* to count # of entirely obsolete segments */ 266 NR_DIRTY_TYPE 267 }; 268 269 struct dirty_seglist_info { 270 const struct victim_selection *v_ops; /* victim selction operation */ 271 unsigned long *dirty_segmap[NR_DIRTY_TYPE]; 272 struct mutex seglist_lock; /* lock for segment bitmaps */ 273 int nr_dirty[NR_DIRTY_TYPE]; /* # of dirty segments */ 274 unsigned long *victim_secmap; /* background GC victims */ 275 }; 276 277 /* victim selection function for cleaning and SSR */ 278 struct victim_selection { 279 int (*get_victim)(struct f2fs_sb_info *, unsigned int *, 280 int, int, char); 281 }; 282 283 /* for active log information */ 284 struct curseg_info { 285 struct mutex curseg_mutex; /* lock for consistency */ 286 struct f2fs_summary_block *sum_blk; /* cached summary block */ 287 struct rw_semaphore journal_rwsem; /* protect journal area */ 288 struct f2fs_journal *journal; /* cached journal info */ 289 unsigned char alloc_type; /* current allocation type */ 290 unsigned int segno; /* current segment number */ 291 unsigned short next_blkoff; /* next block offset to write */ 292 unsigned int zone; /* current zone number */ 293 unsigned int next_segno; /* preallocated segment */ 294 }; 295 296 struct sit_entry_set { 297 struct list_head set_list; /* link with all sit sets */ 298 unsigned int start_segno; /* start segno of sits in set */ 299 unsigned int entry_cnt; /* the # of sit entries in set */ 300 }; 301 302 /* 303 * inline functions 304 */ 305 static inline struct curseg_info *CURSEG_I(struct f2fs_sb_info *sbi, int type) 306 { 307 return (struct curseg_info *)(SM_I(sbi)->curseg_array + type); 308 } 309 310 static inline struct seg_entry *get_seg_entry(struct f2fs_sb_info *sbi, 311 unsigned int segno) 312 { 313 struct sit_info *sit_i = SIT_I(sbi); 314 return &sit_i->sentries[segno]; 315 } 316 317 static inline struct sec_entry *get_sec_entry(struct f2fs_sb_info *sbi, 318 unsigned int segno) 319 { 320 struct sit_info *sit_i = SIT_I(sbi); 321 return &sit_i->sec_entries[GET_SEC_FROM_SEG(sbi, segno)]; 322 } 323 324 static inline unsigned int get_valid_blocks(struct f2fs_sb_info *sbi, 325 unsigned int segno, bool use_section) 326 { 327 /* 328 * In order to get # of valid blocks in a section instantly from many 329 * segments, f2fs manages two counting structures separately. 330 */ 331 if (use_section && sbi->segs_per_sec > 1) 332 return get_sec_entry(sbi, segno)->valid_blocks; 333 else 334 return get_seg_entry(sbi, segno)->valid_blocks; 335 } 336 337 static inline void seg_info_from_raw_sit(struct seg_entry *se, 338 struct f2fs_sit_entry *rs) 339 { 340 se->valid_blocks = GET_SIT_VBLOCKS(rs); 341 se->ckpt_valid_blocks = GET_SIT_VBLOCKS(rs); 342 memcpy(se->cur_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 343 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 344 #ifdef CONFIG_F2FS_CHECK_FS 345 memcpy(se->cur_valid_map_mir, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 346 #endif 347 se->type = GET_SIT_TYPE(rs); 348 se->mtime = le64_to_cpu(rs->mtime); 349 } 350 351 static inline void seg_info_to_raw_sit(struct seg_entry *se, 352 struct f2fs_sit_entry *rs) 353 { 354 unsigned short raw_vblocks = (se->type << SIT_VBLOCKS_SHIFT) | 355 se->valid_blocks; 356 rs->vblocks = cpu_to_le16(raw_vblocks); 357 memcpy(rs->valid_map, se->cur_valid_map, SIT_VBLOCK_MAP_SIZE); 358 memcpy(se->ckpt_valid_map, rs->valid_map, SIT_VBLOCK_MAP_SIZE); 359 se->ckpt_valid_blocks = se->valid_blocks; 360 rs->mtime = cpu_to_le64(se->mtime); 361 } 362 363 static inline unsigned int find_next_inuse(struct free_segmap_info *free_i, 364 unsigned int max, unsigned int segno) 365 { 366 unsigned int ret; 367 spin_lock(&free_i->segmap_lock); 368 ret = find_next_bit(free_i->free_segmap, max, segno); 369 spin_unlock(&free_i->segmap_lock); 370 return ret; 371 } 372 373 static inline void __set_free(struct f2fs_sb_info *sbi, unsigned int segno) 374 { 375 struct free_segmap_info *free_i = FREE_I(sbi); 376 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 377 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 378 unsigned int next; 379 380 spin_lock(&free_i->segmap_lock); 381 clear_bit(segno, free_i->free_segmap); 382 free_i->free_segments++; 383 384 next = find_next_bit(free_i->free_segmap, 385 start_segno + sbi->segs_per_sec, start_segno); 386 if (next >= start_segno + sbi->segs_per_sec) { 387 clear_bit(secno, free_i->free_secmap); 388 free_i->free_sections++; 389 } 390 spin_unlock(&free_i->segmap_lock); 391 } 392 393 static inline void __set_inuse(struct f2fs_sb_info *sbi, 394 unsigned int segno) 395 { 396 struct free_segmap_info *free_i = FREE_I(sbi); 397 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 398 399 set_bit(segno, free_i->free_segmap); 400 free_i->free_segments--; 401 if (!test_and_set_bit(secno, free_i->free_secmap)) 402 free_i->free_sections--; 403 } 404 405 static inline void __set_test_and_free(struct f2fs_sb_info *sbi, 406 unsigned int segno) 407 { 408 struct free_segmap_info *free_i = FREE_I(sbi); 409 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 410 unsigned int start_segno = GET_SEG_FROM_SEC(sbi, secno); 411 unsigned int next; 412 413 spin_lock(&free_i->segmap_lock); 414 if (test_and_clear_bit(segno, free_i->free_segmap)) { 415 free_i->free_segments++; 416 417 next = find_next_bit(free_i->free_segmap, 418 start_segno + sbi->segs_per_sec, start_segno); 419 if (next >= start_segno + sbi->segs_per_sec) { 420 if (test_and_clear_bit(secno, free_i->free_secmap)) 421 free_i->free_sections++; 422 } 423 } 424 spin_unlock(&free_i->segmap_lock); 425 } 426 427 static inline void __set_test_and_inuse(struct f2fs_sb_info *sbi, 428 unsigned int segno) 429 { 430 struct free_segmap_info *free_i = FREE_I(sbi); 431 unsigned int secno = GET_SEC_FROM_SEG(sbi, segno); 432 433 spin_lock(&free_i->segmap_lock); 434 if (!test_and_set_bit(segno, free_i->free_segmap)) { 435 free_i->free_segments--; 436 if (!test_and_set_bit(secno, free_i->free_secmap)) 437 free_i->free_sections--; 438 } 439 spin_unlock(&free_i->segmap_lock); 440 } 441 442 static inline void get_sit_bitmap(struct f2fs_sb_info *sbi, 443 void *dst_addr) 444 { 445 struct sit_info *sit_i = SIT_I(sbi); 446 447 #ifdef CONFIG_F2FS_CHECK_FS 448 if (memcmp(sit_i->sit_bitmap, sit_i->sit_bitmap_mir, 449 sit_i->bitmap_size)) 450 f2fs_bug_on(sbi, 1); 451 #endif 452 memcpy(dst_addr, sit_i->sit_bitmap, sit_i->bitmap_size); 453 } 454 455 static inline block_t written_block_count(struct f2fs_sb_info *sbi) 456 { 457 return SIT_I(sbi)->written_valid_blocks; 458 } 459 460 static inline unsigned int free_segments(struct f2fs_sb_info *sbi) 461 { 462 return FREE_I(sbi)->free_segments; 463 } 464 465 static inline int reserved_segments(struct f2fs_sb_info *sbi) 466 { 467 return SM_I(sbi)->reserved_segments; 468 } 469 470 static inline unsigned int free_sections(struct f2fs_sb_info *sbi) 471 { 472 return FREE_I(sbi)->free_sections; 473 } 474 475 static inline unsigned int prefree_segments(struct f2fs_sb_info *sbi) 476 { 477 return DIRTY_I(sbi)->nr_dirty[PRE]; 478 } 479 480 static inline unsigned int dirty_segments(struct f2fs_sb_info *sbi) 481 { 482 return DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_DATA] + 483 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_DATA] + 484 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_DATA] + 485 DIRTY_I(sbi)->nr_dirty[DIRTY_HOT_NODE] + 486 DIRTY_I(sbi)->nr_dirty[DIRTY_WARM_NODE] + 487 DIRTY_I(sbi)->nr_dirty[DIRTY_COLD_NODE]; 488 } 489 490 static inline int overprovision_segments(struct f2fs_sb_info *sbi) 491 { 492 return SM_I(sbi)->ovp_segments; 493 } 494 495 static inline int reserved_sections(struct f2fs_sb_info *sbi) 496 { 497 return GET_SEC_FROM_SEG(sbi, (unsigned int)reserved_segments(sbi)); 498 } 499 500 static inline bool has_curseg_enough_space(struct f2fs_sb_info *sbi) 501 { 502 unsigned int node_blocks = get_pages(sbi, F2FS_DIRTY_NODES) + 503 get_pages(sbi, F2FS_DIRTY_DENTS); 504 unsigned int dent_blocks = get_pages(sbi, F2FS_DIRTY_DENTS); 505 unsigned int segno, left_blocks; 506 int i; 507 508 /* check current node segment */ 509 for (i = CURSEG_HOT_NODE; i <= CURSEG_COLD_NODE; i++) { 510 segno = CURSEG_I(sbi, i)->segno; 511 left_blocks = sbi->blocks_per_seg - 512 get_seg_entry(sbi, segno)->ckpt_valid_blocks; 513 514 if (node_blocks > left_blocks) 515 return false; 516 } 517 518 /* check current data segment */ 519 segno = CURSEG_I(sbi, CURSEG_HOT_DATA)->segno; 520 left_blocks = sbi->blocks_per_seg - 521 get_seg_entry(sbi, segno)->ckpt_valid_blocks; 522 if (dent_blocks > left_blocks) 523 return false; 524 return true; 525 } 526 527 static inline bool has_not_enough_free_secs(struct f2fs_sb_info *sbi, 528 int freed, int needed) 529 { 530 int node_secs = get_blocktype_secs(sbi, F2FS_DIRTY_NODES); 531 int dent_secs = get_blocktype_secs(sbi, F2FS_DIRTY_DENTS); 532 int imeta_secs = get_blocktype_secs(sbi, F2FS_DIRTY_IMETA); 533 534 if (unlikely(is_sbi_flag_set(sbi, SBI_POR_DOING))) 535 return false; 536 537 if (free_sections(sbi) + freed == reserved_sections(sbi) + needed && 538 has_curseg_enough_space(sbi)) 539 return false; 540 return (free_sections(sbi) + freed) <= 541 (node_secs + 2 * dent_secs + imeta_secs + 542 reserved_sections(sbi) + needed); 543 } 544 545 static inline bool excess_prefree_segs(struct f2fs_sb_info *sbi) 546 { 547 return prefree_segments(sbi) > SM_I(sbi)->rec_prefree_segments; 548 } 549 550 static inline int utilization(struct f2fs_sb_info *sbi) 551 { 552 return div_u64((u64)valid_user_blocks(sbi) * 100, 553 sbi->user_block_count); 554 } 555 556 /* 557 * Sometimes f2fs may be better to drop out-of-place update policy. 558 * And, users can control the policy through sysfs entries. 559 * There are five policies with triggering conditions as follows. 560 * F2FS_IPU_FORCE - all the time, 561 * F2FS_IPU_SSR - if SSR mode is activated, 562 * F2FS_IPU_UTIL - if FS utilization is over threashold, 563 * F2FS_IPU_SSR_UTIL - if SSR mode is activated and FS utilization is over 564 * threashold, 565 * F2FS_IPU_FSYNC - activated in fsync path only for high performance flash 566 * storages. IPU will be triggered only if the # of dirty 567 * pages over min_fsync_blocks. 568 * F2FS_IPUT_DISABLE - disable IPU. (=default option) 569 */ 570 #define DEF_MIN_IPU_UTIL 70 571 #define DEF_MIN_FSYNC_BLOCKS 8 572 #define DEF_MIN_HOT_BLOCKS 16 573 574 enum { 575 F2FS_IPU_FORCE, 576 F2FS_IPU_SSR, 577 F2FS_IPU_UTIL, 578 F2FS_IPU_SSR_UTIL, 579 F2FS_IPU_FSYNC, 580 F2FS_IPU_ASYNC, 581 }; 582 583 static inline bool need_inplace_update_policy(struct inode *inode, 584 struct f2fs_io_info *fio) 585 { 586 struct f2fs_sb_info *sbi = F2FS_I_SB(inode); 587 unsigned int policy = SM_I(sbi)->ipu_policy; 588 589 if (test_opt(sbi, LFS)) 590 return false; 591 592 /* if this is cold file, we should overwrite to avoid fragmentation */ 593 if (file_is_cold(inode)) 594 return true; 595 596 if (policy & (0x1 << F2FS_IPU_FORCE)) 597 return true; 598 if (policy & (0x1 << F2FS_IPU_SSR) && need_SSR(sbi)) 599 return true; 600 if (policy & (0x1 << F2FS_IPU_UTIL) && 601 utilization(sbi) > SM_I(sbi)->min_ipu_util) 602 return true; 603 if (policy & (0x1 << F2FS_IPU_SSR_UTIL) && need_SSR(sbi) && 604 utilization(sbi) > SM_I(sbi)->min_ipu_util) 605 return true; 606 607 /* 608 * IPU for rewrite async pages 609 */ 610 if (policy & (0x1 << F2FS_IPU_ASYNC) && 611 fio && fio->op == REQ_OP_WRITE && 612 !(fio->op_flags & REQ_SYNC) && 613 !f2fs_encrypted_inode(inode)) 614 return true; 615 616 /* this is only set during fdatasync */ 617 if (policy & (0x1 << F2FS_IPU_FSYNC) && 618 is_inode_flag_set(inode, FI_NEED_IPU)) 619 return true; 620 621 return false; 622 } 623 624 static inline unsigned int curseg_segno(struct f2fs_sb_info *sbi, 625 int type) 626 { 627 struct curseg_info *curseg = CURSEG_I(sbi, type); 628 return curseg->segno; 629 } 630 631 static inline unsigned char curseg_alloc_type(struct f2fs_sb_info *sbi, 632 int type) 633 { 634 struct curseg_info *curseg = CURSEG_I(sbi, type); 635 return curseg->alloc_type; 636 } 637 638 static inline unsigned short curseg_blkoff(struct f2fs_sb_info *sbi, int type) 639 { 640 struct curseg_info *curseg = CURSEG_I(sbi, type); 641 return curseg->next_blkoff; 642 } 643 644 static inline void check_seg_range(struct f2fs_sb_info *sbi, unsigned int segno) 645 { 646 f2fs_bug_on(sbi, segno > TOTAL_SEGS(sbi) - 1); 647 } 648 649 static inline void verify_block_addr(struct f2fs_sb_info *sbi, block_t blk_addr) 650 { 651 BUG_ON(blk_addr < SEG0_BLKADDR(sbi) 652 || blk_addr >= MAX_BLKADDR(sbi)); 653 } 654 655 /* 656 * Summary block is always treated as an invalid block 657 */ 658 static inline void check_block_count(struct f2fs_sb_info *sbi, 659 int segno, struct f2fs_sit_entry *raw_sit) 660 { 661 #ifdef CONFIG_F2FS_CHECK_FS 662 bool is_valid = test_bit_le(0, raw_sit->valid_map) ? true : false; 663 int valid_blocks = 0; 664 int cur_pos = 0, next_pos; 665 666 /* check bitmap with valid block count */ 667 do { 668 if (is_valid) { 669 next_pos = find_next_zero_bit_le(&raw_sit->valid_map, 670 sbi->blocks_per_seg, 671 cur_pos); 672 valid_blocks += next_pos - cur_pos; 673 } else 674 next_pos = find_next_bit_le(&raw_sit->valid_map, 675 sbi->blocks_per_seg, 676 cur_pos); 677 cur_pos = next_pos; 678 is_valid = !is_valid; 679 } while (cur_pos < sbi->blocks_per_seg); 680 BUG_ON(GET_SIT_VBLOCKS(raw_sit) != valid_blocks); 681 #endif 682 /* check segment usage, and check boundary of a given segment number */ 683 f2fs_bug_on(sbi, GET_SIT_VBLOCKS(raw_sit) > sbi->blocks_per_seg 684 || segno > TOTAL_SEGS(sbi) - 1); 685 } 686 687 static inline pgoff_t current_sit_addr(struct f2fs_sb_info *sbi, 688 unsigned int start) 689 { 690 struct sit_info *sit_i = SIT_I(sbi); 691 unsigned int offset = SIT_BLOCK_OFFSET(start); 692 block_t blk_addr = sit_i->sit_base_addr + offset; 693 694 check_seg_range(sbi, start); 695 696 #ifdef CONFIG_F2FS_CHECK_FS 697 if (f2fs_test_bit(offset, sit_i->sit_bitmap) != 698 f2fs_test_bit(offset, sit_i->sit_bitmap_mir)) 699 f2fs_bug_on(sbi, 1); 700 #endif 701 702 /* calculate sit block address */ 703 if (f2fs_test_bit(offset, sit_i->sit_bitmap)) 704 blk_addr += sit_i->sit_blocks; 705 706 return blk_addr; 707 } 708 709 static inline pgoff_t next_sit_addr(struct f2fs_sb_info *sbi, 710 pgoff_t block_addr) 711 { 712 struct sit_info *sit_i = SIT_I(sbi); 713 block_addr -= sit_i->sit_base_addr; 714 if (block_addr < sit_i->sit_blocks) 715 block_addr += sit_i->sit_blocks; 716 else 717 block_addr -= sit_i->sit_blocks; 718 719 return block_addr + sit_i->sit_base_addr; 720 } 721 722 static inline void set_to_next_sit(struct sit_info *sit_i, unsigned int start) 723 { 724 unsigned int block_off = SIT_BLOCK_OFFSET(start); 725 726 f2fs_change_bit(block_off, sit_i->sit_bitmap); 727 #ifdef CONFIG_F2FS_CHECK_FS 728 f2fs_change_bit(block_off, sit_i->sit_bitmap_mir); 729 #endif 730 } 731 732 static inline unsigned long long get_mtime(struct f2fs_sb_info *sbi) 733 { 734 struct sit_info *sit_i = SIT_I(sbi); 735 time64_t now = ktime_get_real_seconds(); 736 737 return sit_i->elapsed_time + now - sit_i->mounted_time; 738 } 739 740 static inline void set_summary(struct f2fs_summary *sum, nid_t nid, 741 unsigned int ofs_in_node, unsigned char version) 742 { 743 sum->nid = cpu_to_le32(nid); 744 sum->ofs_in_node = cpu_to_le16(ofs_in_node); 745 sum->version = version; 746 } 747 748 static inline block_t start_sum_block(struct f2fs_sb_info *sbi) 749 { 750 return __start_cp_addr(sbi) + 751 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_start_sum); 752 } 753 754 static inline block_t sum_blk_addr(struct f2fs_sb_info *sbi, int base, int type) 755 { 756 return __start_cp_addr(sbi) + 757 le32_to_cpu(F2FS_CKPT(sbi)->cp_pack_total_block_count) 758 - (base + 1) + type; 759 } 760 761 static inline bool no_fggc_candidate(struct f2fs_sb_info *sbi, 762 unsigned int secno) 763 { 764 if (get_valid_blocks(sbi, GET_SEG_FROM_SEC(sbi, secno), true) > 765 sbi->fggc_threshold) 766 return true; 767 return false; 768 } 769 770 static inline bool sec_usage_check(struct f2fs_sb_info *sbi, unsigned int secno) 771 { 772 if (IS_CURSEC(sbi, secno) || (sbi->cur_victim_sec == secno)) 773 return true; 774 return false; 775 } 776 777 /* 778 * It is very important to gather dirty pages and write at once, so that we can 779 * submit a big bio without interfering other data writes. 780 * By default, 512 pages for directory data, 781 * 512 pages (2MB) * 8 for nodes, and 782 * 256 pages * 8 for meta are set. 783 */ 784 static inline int nr_pages_to_skip(struct f2fs_sb_info *sbi, int type) 785 { 786 if (sbi->sb->s_bdi->wb.dirty_exceeded) 787 return 0; 788 789 if (type == DATA) 790 return sbi->blocks_per_seg; 791 else if (type == NODE) 792 return 8 * sbi->blocks_per_seg; 793 else if (type == META) 794 return 8 * BIO_MAX_PAGES; 795 else 796 return 0; 797 } 798 799 /* 800 * When writing pages, it'd better align nr_to_write for segment size. 801 */ 802 static inline long nr_pages_to_write(struct f2fs_sb_info *sbi, int type, 803 struct writeback_control *wbc) 804 { 805 long nr_to_write, desired; 806 807 if (wbc->sync_mode != WB_SYNC_NONE) 808 return 0; 809 810 nr_to_write = wbc->nr_to_write; 811 desired = BIO_MAX_PAGES; 812 if (type == NODE) 813 desired <<= 1; 814 815 wbc->nr_to_write = desired; 816 return desired - nr_to_write; 817 } 818 819 static inline void wake_up_discard_thread(struct f2fs_sb_info *sbi, bool force) 820 { 821 struct discard_cmd_control *dcc = SM_I(sbi)->dcc_info; 822 bool wakeup = false; 823 int i; 824 825 if (force) 826 goto wake_up; 827 828 mutex_lock(&dcc->cmd_lock); 829 for (i = MAX_PLIST_NUM - 1; i >= 0; i--) { 830 if (i + 1 < dcc->discard_granularity) 831 break; 832 if (!list_empty(&dcc->pend_list[i])) { 833 wakeup = true; 834 break; 835 } 836 } 837 mutex_unlock(&dcc->cmd_lock); 838 if (!wakeup) 839 return; 840 wake_up: 841 dcc->discard_wake = 1; 842 wake_up_interruptible_all(&dcc->discard_wait_queue); 843 } 844